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1. INTRODUCTION

An accurate mathematical model of structures is extremely important for the analysis of modem

aerospace or other complex structures. In many cases, the Finite Element Method is practically

the only possible method for the analysis of such structures. The accuracy of the finite element

analysis depends on how the model of the structure is made. Reliable modelling of complex

structures is not possible without refinement of the model compared with experimental results.

Especially, damping parameters, structural characteristics of joint, and boundary conditions are

very difficult to be estimated, which cause discrepancy between the analytic result and actual

measured behavior of the real structure. To overcome such difficulties, numerous schemes of

the finite element model update have been developed and reported by many researchers [1]. In

general, these methods are to update the analytical model so that it can predict the dynamic

response of the structure more closely to the result of modal testing. The underlying assumption

is that the test result is more reliable, which is arguable itself. Essentially the task poses an

inverse problem because it is an attempt to find the equations of motion from a limited,

insufficient set of solutions of the equations. Therefore, none of the methods can provide a

unique solution of the problem in all situations. However, a reasonable degree of accuracy in

finite element model update/identification is obtainable with proper assumptions and clever

strategy.

In the first part of this study, a few representative methods of the structural identification

were reviewed and their relative advantages and disadvantages were compared. In the second

part, an identification method for the damping properties of the structure has been developed

based on the work by Junkins [2]. The main objective of the damping identification is to obtain

the damping matrix of the finite element model utilizing measured data. In this study, the main
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focus has been put on the identification of the structures with nonproportional viscous damping,

which covers the proportional damping as a special case. An algorithm for numerical

implementation has been developed and a computer program has been developed for the purpose

of method verification during the study. The program can identify the damping matrix of discrete

lumped parameter dynamic systems of any degree of freedom and boundary configuration. The

method is confirmed to be working satisfactorily for most viscously underdamped structures.

Although the program was developed for the spring-mass-damper system, the method can easily

be incorporated to the existing identification program for frame structures developed in Wright

Laboratory [3,4]. An algorithm to extend the method to identify other types of damping such

as structural or Coulomb damping has been suggested.
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2. BASIC THEORETICAL BACKGROUND

2.1 Undamped System

Equations of motion of the structure with n degree of freedom are expressed as:

(1)

where n by n symmetric matrices [m], [c], and [k] represent inertia, damping and stiffness of the

structure which are formulated by finite element method, {q) and {f) are displacement and force

vectors of order n. In case of undamped free vibration [c] = [0] and If) = (0}, by letting:

{q} = {Q) eJ t ,we obtain a classical eigenvalue problem:

[k-( 2m] = {o} (2)

In general, solving equation (2) gives n eigenvalues and eigenvectors which represent natural

frequencies and normal modes of the structure. The eigenvectors are mutually orthogonal with

respect to [m] and [k] matrices:

{} [m]{ }- 84, ij = 1,2 .... n

{* }[k1{* }=w2a 1, ij=1,2 ....,n (4)

where {.*}, w., are the ith undamped natural mode and frequency, and 8 is the Kronecker

delta function. Usually, the frequencies and modes by solving equation (2) are not the same as

measured data; therefore, the need for the analytical model update rises. One can view the
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identification problem as to find out elements of [m] and [k] matrices of the analytical model so

that the resulting frequencies and modes are reasonably close to the exact solution, which are

assumed to be the measurement result in general. Since the matrices are symmetric, there are

n(n+l) elements to be identified in [m] and [k] matrices if we want to identify all of them. As

an ideal case, if all n modes were available from the measurements in compatible coordinate with

the analytic model, comparing natural frequencies would give us n equations:

(00, = oa , i = 1,2,3,...,n (5)

where &,a represents the ith measured undamped natural frequency (variables with hats stand

for measured quantities hereafter). Comparing n normalized modes would provide n2

equations:

I{ d = {i, 1,2,3,...,n (6)

Therefore, theoretically it is possible to identify [m] and [k] matrices uniquely. In reality, there

are many difficulties which make this impossible. At first, only a limited number of modes are

available, especially in the measured data. Secondly, the experimental model and analytical

model may be incompatible in geometry; therefore, a mapping method is required to compare

them. Finally, the experimental model itself includes its inherent errors and approximations.

2.2 Damped System

First, let us consider a proportionally damped structure as a special case. By definition, the

damping matrix [c] is represented as a linear combination of mass and stiffness matrices.

As in the undamped case, by letting {q(t)} ett{W) , we obtain an eigenvalue problem:
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[AG. + a) mI+ k] 0 (8)

Therefore, if we let + = a) we obtain an identical form to the undamped equation.
PI +I

Damped natural frequencies w, are obtained because X. =j~1 can be calculated by solving:

101 =j X=+- ,i = 1,2,...,n (9)

(PI1~+ 1)

Equation (8) tells that eigenvectors of proportionally damped systems are real and the same as

the undamped modes.

For the analysis of the system with nonproportional damping, we have to use an

equivalent 2n set of first order ordinary equation of motions known as Hamilton's canonical form

[51:

]() I +[Iq(t) O(10)
14(t) J (4(t) J

where A=[ 0 , k (11)

Hence , if we let {{0}} The eigenvalue problem becomes:

)A + +B ](0) --0) (12)

Solving equation (12), one can obtain 2n eigenvalues and 2n eigenfunctions, half of them are

merely the complex conjugates of the other half. Eigenfunctions have not only arbitrary
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magnitudes but also arbitrary phase angles. For relatively light damping, the real and imaginary

parts of the eigenvalues can be written in similar form to the proportionally damped case:

(13)
, - ,( *jVr 1 C-,2 ,,, r=1,2 .... 2n

where, C, are damping ratios. However, it should be noted that the equation (13) is valid only

in an approximate sense for lightly damped structures.
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3. REVIEW OF PREVIOUS WORKS

Commonly used criteria to compare the analysis to measurements are natural frequencies, natural

modes, and orthogonal conditions of the measured modes with respect to the analytical mass

and/or stiffness matrices. The majority of works are involved with minimization of a certain

functional which is usually an error norm defined by the difference between analytic and

measured results. In some cases, only the orthogonality and/or symmetry of the matrices were

used which leads to a set of simultaneous linear equations.

3.1 Approach by Berman and Baruch [6,7]

In their approach, error norms defined by the stiffness and mass matrices are minimized using

the orthorgonality conditions, equations of motion and symmetry of the matrices as constraints.

For example, if the analytical mass matrix is considered more reliable, the mass matrix is refined

first to satisfy the orthogonality condition:

F= IMA2(MMA)MA2 + y(* MT 80) (14)
I j

where MA is the analytic mass matrix to be updated, M is the desired final mass matrix, I

are Lagrange multipliers and *, are experimental mode shapes. Solving equation (14), the

nearest mass matrix from the current analytic mass matrix which satisfies the orthogonality with

respect to the measured modes is found. Then, the stiffness matrix [K] is updated to satisfy the

symmetry of itself, equations of motion, and orthogonality conditions. That is, minimize:

Y2 --M-2(K-K)M-21 +E 1 (K,-M4r,) (15)
T 1 I

T|

i ! i
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If the stiffness matrix is believed to be more reliable, the sequence can be reversed. The problem

associated with this method is that it tends to average out errors because there are not enough

numbers of constraints to guarantee uniqueness of the solution in most practical cases. For

example, the error which is from boundary condition assessment could be spread out to ot',er

parameters. Although the resulting equations of motion may produce correct natural frequencies

and modes for the given configuration and frequency range, it does not guarantee that the model

is accurate for other configurations. Also, the identified matrices become almost fully populated

which is not physically valid because the method operates directly on the matrix elements rather

than using an update scheme linked to physical properties of the model such as sectional

thickness or area. One advantage of this method is that it requires very little computation

compared with other methods, because closed form expressions of the [M] and [K] matrices are

obtained in terms of [KA] ,[MA], and measured modes.

3.2 Chen and Garba's Method [8]

Chen and Garba's method is to minimize:

Y=Ar +At 2 +....+Ar2 (16)

with the constraint to satisfy:

&f Af- a r) (17)

where (Arl represents the necessary update of physical properties and {Af) represents the

errors in modes and frequencies. Therefore, the method finds a set of the smallest possible

update (Arl that is compatible with the first order perturbation equations of motion. The fact

that the first order perturbation is used in the constraint equation and minimum variation from
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the initial analytic model is sought implies that the analytic model is assumed to be reasonably

accurate. They also developed a method to calculate the Jacobian matrix used in equation (17)

using the perturbation technique so that simultaneous equations are solved instead of the new

eigenvalue problem. They used the linked update scheme which updates actual physical

parameters to preserve the physical connectivity of the model.

3.3 Approach by Hanagud [91

S.V. Hanagud also used the first order perturbation equation of the motion to identify the mass,

stiffness and damping matrices with a physical parameter update scheme. Since the method is

based on the first order perturbation method (as the method by Chen and Garba), the method is

considered to be valid only for small error cases. Besides the perturbed equations of motion, no

other conditions were used for the identification, which may cause some problems. For example,

the updated system matrices may not be orthogonal to the measured modes because no related

conditions are used.

3.4 Approach by Junkins and Creamer [2]

Junkins and Creamer used frequency response functions directly for the identification. One can

normalize the experimental modes with respect to the mass matrix by introducing

4 -- , r = 1,2, .... m where are normalized modes. By equating the truncated

frequency response functions (equation 18) to the full frequency response function described in

terms of normalized mode 4*# (equation 19):

h( )  4' (18)
_ ( a 2



a1 + __ )(19)
(a) a,)+a

one can calculate a1 and a2 , which are the effects of rigid body mode and truncated modes,

and normalization factors a of the measure modes. Then they utilized the orthogonality

conditions of the modes to find the mass and stiffness matrices directly from the measured FRF.

Because the mode normalization is essentially a part of experimental modal analysis, only the

orthogonality conditions were used for the system identification. They proposed to identify the

damping matrix in a separate step utilizing the identified mass and stiffness matrix. The first

order perturbations from the undamped equations of motion have been used to identify the

damping matrix of the structure. This method of damping identification can be used in

conjunction with any other undamped structural identification methods. The work in this study

for damping identification is based upon this method.

3.5 Identification Using Nonlinear Optimization Technique

Ewing and Venkayya [4], Ewing and Kolonay [3] used a constrained nonlinear optimization

method for the structural identification. Which is:

minimize (w-a) 2 I (20 a)
J-1

or I,, -. i2 (20 b)

subect to the constr IInts (,0, - )21 < e (21)
J-1

where a is a small error bound. Any other combinations of equations (20) and (21), and any

other constraints such as the total mass of the structure known, may also be used. For the update
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of parameters, they used physical parameter update, a similar concept to the macro element

approach [10]. There are a few important advantages of ,ng the nonlinear optimization

technique for structural identification. At first, the small er jr assumption is not necessary unlike

all other methods, which could be very useful for the identification of some obscure parameters

such as boundary conditions and joint flexibility which might have large errors. Secondly,

because the nonlinear optimization theory is very mature and well established, there are many

existing state of art utilities readily to be used such as ASTROS [ 11]. Since it is necessary to

compute the sensitivity of the objective function defined by eigenvalue solutions, the method will

certainly require a lot more computational effort compared with least square based or other type

noniterative type solution. This may be partially alleviated by using Nelson's method for the

sensitivity calculation [12,13], although the method is still very computational and may cause

another numerical difficulty when the physical and analytical models have incompatible

coordinates. However, the computational effort may not be a serious problem for most of

practical applications if only a few parameters are to be identified, which are probably the most

practical cases. For example, even in complex truss structures, the area and moment of inertia

of a typical section are so obvious that they don't need to be or should not be updated.

Therefore, there are typically much smaller number of structural properties to be identified, such

as flexibility of boundary support and truss joint, or sectional properties of a few really complex

and obscure elements. Also, the method can be used with any other method to make a hybrid

type identification procedure. For example, a few key parameters can be identified by this

method and other parameters are to be fine tuned in the next step by using a least square based

method.
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4. IDENTIFICATION OF DAMPING MATRIX

Junkins and Creamer[2] used a perturbation technique to identify the damping matrix from the

experimental damping ratio and undamped identification results. The damped equations of

motion in state space form are given in equation (10). If we consider only the structures with

small, viscous damping, one can expand the matrix B in undamped and damped parts:

B= [koj+[ 0 =B, +B 1  (22)

Let us consider an undamped eigenvalue problem:

-A,,A,*,, = B,00,, r = 1,2 ..... ,2n (23)

Equation of motion for a damped system can be thought of as a perturbation of equation (10):

-,Ao,. = B ,, r = 1,2,...,2n (24)

where, A., = or + %I, and 0,. = eo, +0 r= 1,2 ..... ,2n (25)

The subscript o in above equations means undamped quantities and 1 means quantities due to the

first order perturbation to consider the effect of damping. Expanding the equation (24) and

neglecting higher orders, we obtain:

B 0o1 ,+Bo 01, =-o, A, 0 , -Ai A, 0,, •r= 1,2,...,2n (26)

The perturbed mode can be expanded as a linear combination of other undamped modes 151:

2n

0Ir = , rk fok 9 where e -=0 (27)
k-I

Substituting the equation (27) and utilizing the orthorgonality of the undamped modes, the

expression of the perturbed eigenvalue is obtained:
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;11 -6 T , *,, r = 1,2,3,...,2n (28)

;L1, is able to be considered as the difference between the measured, damped eigenvalue and

undamped eigenvalue:

-r ( ( , j&,) -jc),, r = 1,2 ..... ,2n (29)

If the undamped normal modes are normalized with respect to the matrix A as in reference [2]:

(30)

Therefore, by substituting equation (30) to equation (28), we obtain:

2 q.Or+(W,-.,)=-*ir[(X qcq)4ai (31)

where, there are R subgroups of elements with different damping parameters to be identified,

, are parameters to adjust the initial damping estimation C, of the rth subgroup. For

relatively small damping, we can neglect the imaginary part of the left-hand side of the equation

(31), which makes the coefficient t q real. Then equation (31) can be arranged in a matrix

form:

"-2al'

-_ . . . . . "(32

(32)

-2a i.OM... OO.JA

The coefficients t, .... in turn the damping matrix, are obtained by solving equation (32).

When the number of available modes m is greater than the number of the damping submatrices

to be identified, one can use a least square method or the Singular Value Decomposition method

13



[14]. Some other methods of damping identification can be found in references 1151 and [161.

A computer program to implement and verify the procedure described in this section has

been developed. The method seems to be working well for a system with relatively small

damping, say up to 40% of the critical damping, although it appears to depend on other

conditions too. The program can handle a lumped parameter vibration system of any degrees of

freedom. The routine can be easily incorporated into any undamped identification algorithm of

framed structures.
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5. POSSIBLE FUTURE EXTENSION OF THE WORK

5.1 Identification Method in General

Further Research of Identification Methods Using Nonlinear Optimization Technique:

(1) With experimental support, the relative advantage of the method for the case which needs

relatively large scale parameter update may be demonstrated. For example, an identification of

a few highly uncertain parameters such as unknown boundary conditions can be done by this

method with the backup of experimental measurements, and the results can be compared with

those from other methods. Also, a hybrid method of the sensitivity based method and other non-

iterative methods can be attempted. For example, a few highly uncertain parameters can be

identified by the first method, then a method similar to Chen and Garba can be used for all other

parameters in the next step.

(2) Another interesting work will be utilizing measurement data of more than one configuration

of the structure for the identification purpose [ 17,18]. For example, a structure may be measured

with several radically different boundary conditions, or as divided into subsections. There are

a few advantages of doing this although it will require more work in the experimental and

identification procedures. First, because any identification scheme is using an incomplete set

of information, more experimental information will enhance the reliability of the identification.

Second, multiple configurations will provide better experimental quality because it will reduce

the possibility to miss certain modes and other types of experimental errors. Last, but perhaps

it may be most important, it is equivalently a simulation of the full cycle of actual structural

development which includes the modelling, testing, identification, and design change. Therefore,

it may provide some idea on how useful the identification work will be when the real structure

is developed.
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5.2 Extension of the Damping Identification Method to the Structures with Hysteretic and

Coulomb Damping

The damping identification method used in this study is to identify relatively lightly, viscously

damped structures. The method can be extended to other types of damping such as structural

(hysteretic) damping and Coulomb damping. Structural damping is an important subject in the

application of aerospace structures because of the increased use of composite materials. In fact

any material has structural damping characteristics to some degree, by nature. Since damping

parameters of this type are frequency dependent, it is necessary to extend the perturbed equation

of the method used in this study. In equation (12), both matrices [A] and [B become complex

coefficient matrices because the stiffness matrix [k] is represented as:

RI

[k] E[2 [(1 +jq )k ]
i-I

where 1 , represents the structural damping coefficient of the ith element group. Since the

matrices A and B in equation (12) are not Hermitian, the resulting eigenfunctions are not

mutually orthogonal. Compared with equation (22), we have to consider the perturbations of

both matrices [A] and [B], which are A=A,+A 1 and B=B,+B The perturbed

eigenfunctions still can be expanded in terms of undamped eigenfunctions. With a similar

procedure, the equation (28) will become:

li[= - Tr [A + B1 ] (34)

lir = -, -P"0 (35)
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where I. is the rth root of the experimental system equation:

s 2[mJ + s[c] +[k] = 0 (36)

Therefore, the equation (31) will become:

ITI

112 o4A 01 I
1i 0

1 . R,. (37)
2 1 r 1Kr 1

(A)l € am COaM
In~i

By solving equation (37) using the least square method or Singular Value Decomposition method,

one can identify general damping matrices which may be a combination of viscous and structural

damping. The above procedure has to be tested using a computer implementation similar to the

one in the Appendix. Equation (37) may be divided into two equations of the real part for the

viscous damping and imaginary part for the structural damping.

The Coulomb damping is caused by dry friction in structures; therefore, it is dependent on the

amplitude of the relative motion between the friction surfaces. The resulting equation of motion

becomes nonlinear. An equivalent structural damping can approximate this type of damping

reasonably [ 191. A measurement setup with a known amplitude of motion at the friction joint may

be used to identify an equivalent structural damping parameter.
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6. SUMMARY AND CONCLUSION

Various methods of structural identification have been studied and compared in terms of their basic

assumptions and advantages. The nonlinear optimization based method is thought to be promising

for the identification of structures with highly uncertain structural parameters.

An algorithm has been developed to construct the damping matrix from the experimental

data based on the method by Junkins and Creamer. A computer program has been developed for

the purpose of verification of this method. Underlying assumptions of the method are that the

stiffness and mass matrices have already been identified at the previous step and experimental

information on the damping ratios is available. The method is working well for lightly, viscously

damped structures which is the most important in practical applications. If the structure is

overdamped, the theory cannot be used, which doesn't seem to be a serious limitation because the

vibration parameters are not any more significant in overdamped cases. If the damping becomes

higher, for example 60% of the critical damping, the method might give poor results. The

accuracy of the result appears to depend on the system configuration as well as damping ratios,

which needs more study to know the correlations. A suggestion of a possible algorithm has been

made to extend the method to the identification of structures with hysteretic damping and Coulomb

damping.
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APPENDIX

EXAMPLES OF DAMPING MATRIX CALCULATION
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((( INPUT ECHO )))
ENTER THE FILE NAME YOU WANT TO USE
ESULT.OUT
INPUT OPTION : I = PHYSICPL SYSTEM

2 = M, C, K DIRECTLY
1

ENTER THE NUMBER OF NODES
9

ENTER THE NUMBER OF ELEMENTS sample input data
8

ENTER THE MASS AT THE NODE 1
8.oeO00O0E,00

ENTER THE MASS AT THE NODE 2
1.0000

ENTER THE MASS AT THE NODE 3
2.000000

ENTER THE MPSS AT THE NODE 4
3.000000

ENTER THE MASS AT THE NODE 5
1.000000

ENTER THE MASS AT THE NODE 6
2.000000

ENTER THE MASS AT THE NODE 7
1.000000

ENTER THE MASS AT THE NODE 8
2.000000

ENTER THE MASS AT THE NODE 9
1.000000

INFORMATION ON ELEMENT 1
ENTER THE FIRST NODE, SECOND NODE

1 2
SPRING CONSTANT

1.000000
INFORMATION ON ELEMENT 2
ENTER THE FIRST NODE, SECOND NODE

2 3
SPRING CONSTANT

2.080000
INFORMATION ON ELEMENT 3
ENTER THE FIRST NODE, SECOND NODE

3 4
SPRING CONSTANT
3.00M0

INFORMATION ON ELEMENT 4
ENTER THE FIRST NODE, SECOND NODE

4 5
SPRING CONSTANT

4.000000
INFORMATION ON ELEMENT 5
ENTER THE FIRST NODE, SECOND NODE

5 6
SPRING CONSTANT

1.080000
INFORMATION ON ELEMENT 6
ENTER THE FIRST NODE, SECOND NODE

6 7
SPRING CONSTANT

2.000000
INFORMATION ON ELEMENT 7
ENTER THE FIRST NODE, SECOND NODE

7 8
SPRING CONSTANT

3.00000
INFORMATION ON ELEMENT 8
ENTER THE FIRST NODE, SECOND NODE

8 9
SPRING CONSTANT
4.00000

•. INFORMATION ON DAMPING ..
NO. OF DIFFERENT DAMPING GROUPS

5
NO. OF ELEMENTS IN THE GROUP I

1
MAGNITUDE OF DAMPING
0.1000000



ENTER ASSOCIATED ELEMENTS C 1 ELEMENTS)
1

NO. OF ELEMENTS IN THE GROUP 2
1

MAGNITUDE OF DAMPING
0.2000000

ENTER ASSOCIATED ELEMENTS ( 1 ELEMENTS)
2

NO. OF ELEMENTS IN THE GROUP 3
1

MAGNITUDE OF DAMPING
0.3000000
ENTER ASSOCIATED ELEMENTS ( I ELEMENTS)

3
NO. OF ELEMENTS IN THE GROUP 4

1
MAGNITUDE OF DAMPING
0.25000000

ENTER ASSOCIATED ELEMENTS ( 1 ELEMENTS)
4

NO. OF ELEMENTS IN THE GROUP 5
4

MAGNITUDE OF DAMPING
0.5000000

ENTER ASSOCIATED ELEMENTS ( 4 ELEMENTS)
5 6 7

ENTER THE NODE TO BE FIXED
I

MORE TO FIX? [Y/N]

NUMBER OF THE MODES TO BE USED FOR DAMPING CALCULATION
5

2 2 3 3 44) 1 Qzl) , z@'

(System to be identified)

C, = 0.1

C2 = 0.2

C3 = 0.3

C 4 = 0.25

C5 = 0.5
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6TH EIGENVECTOR
-0.116193E-03-0.248733E-02 ( 0.249005E-02 0.267325E 03 DEG)
0.184526E-02 0.556889E-02 ( 0.586664E-02 0.716673E*02 DEG)-0.108272E-01-O.1646OOE-01 ( 0.188743E-01 0.234995E+03 DEG)
0.616620E-01 0.385349E-01 ( 0.727127E-01 0.320028E+02 DEG)
-0.647483E-01-O.632821E-01 ( 0.905371E-01 0.224344E+03 DEG)
0.166332E.00 0.433229E 00 ( 0.464062E.00 0.689965E+02 DEG)
0.54735SE-02-0.332411E.00 ( 0.332456E*00 0.270943E*03 DEG)-0,804840E-01 0.357053E 00 ( 0.366012E+00 0.102703E 03 DEG)

-0.656216E-02 0.180547E-02 ( 0.680600E-02 0.164617E+03 DEG)
0.137292E-O1-O.826OS6E-02 ( 0.160227E-01 0.328966E*03 DEG)
-0.347049E-01 0.381504E-01 ( 0.515741E-01 0.132292E+03 DEG)
0.656549E-01-0.187494E+00 ( 0.198657E+00 0.289299E+03 DEG)-0.129770E+00 0.210598E+00 ( 0.247369E+00 0.121641E+03 DEG)
0.105474E+01-O.703602E00 ( 0.126789E 01 0.326293E+03 DEG)

-0.889264E+00 0.185128E+00 ( 0.908329E+00 0.168240E+03 DEG)
0.100000E+01 0.000000E+00 ( 0.100000E+01 0.OOOOOOE 00 DEG)

IDENTIFIED DAMPING ..

GROUP 1 DAMPING VALUE = 0.0956ASSOCIATED ELEMENTS part of ouput
1

GROUP 2 DAMPING VALUE = 0.1920
ASSOCIATED ELEMENTS

2

GROUP 3 DAMPING VALUE = 0.3171

ASSOCIATED ELEMENTS

3

GROUP 4 DAMPING VALUE = 0.4832
ASSOCIATED ELEMENTS

4

GROUP 5 DAMPING VALUE = 0.4957
ASSOCIATED ELEMENTS

5 6 7 8

(REFRENCE DATA)
MASS MATRIX

ROW = 1
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000
ROW = 2

0.0000 2.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000

ROW = 3
0.0000 0.0000 3.0000 0.0000 0.0000 0.0000

0.0000 0.0000
ROW = 4

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000

ROW = 6
0.0000 0.0000 0.0000 0.0000 2.0000 0.0000



Identified Damping Values
and Number of Modes Used

identified number of modes used
damping 3 4

C1 0.1 0.1
C2 0.2 0.2
C3 0.3001 0.3

Equation Least Square
solver Method

* 1: Least Square Method gives as good result as using equation solver

EFFECT OF DAMPING RATIO

damping values to be found

C1 nondimensional Identified
damping ratio values

Cl 1.0 0.102 1.0017

C2 2.0 0.421 1.9763

C3 3.0 0.612 3.0522

*1: In this case, identification was made fairly
accurately for a system with 60% damping ratio.

*2: Overdamped cases give completely wrong results.

-. I C @3

I A= z2 =4

SOME IDENTIFICATION RESULTS:

* 1: Effect of modes used

*2: Effect of damping magnitude

*U.S. GOVERNMENT MIINTING OMCF: 1"I - 64-127/6I2

25


