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ABSTRACT

A significant task in the automated interpretation of cloud

features on satellite imagery is the segmentation of the image

into separate cloud features to be identified. A new technique,

Hierarchical Threshold Segmentation (HTS) is presented. In HTS,

region boundaries are defined over a range of grayshade thresh-

olds. The hierarchy of the spatial relationships between colo-

cated regions from different thresholds is represented in tree

form. This tree is pruned, using a neural network, such that the

regions of appropriate sizes and shapes are isolated. These var-

ious regions from the pruned tree are then collected to form the

final segmentation of the entire image.
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SEGMENTATION OF SATELLITE IMAGERY USING

HIERARCHICAL THRESHOLDING AND NEURAL NETWORKS

1. Introduction

One of the goals of the Naval Oceanographic and Atmospheric

Research Laboratory (NOARL) is the automated interpretation of

cloud features on satellite images. Such an image interpreter

would be used on Navy ships as an aid to the shipboard Oceanogra-

pher/Meteorologist. In previous studies (Peak, 1991a & b), the

design for the evolving system has been presented and progres-

sively refined as methods for accomplishing the necessary tasks

it must perform have been determined. Briefly, the three main

tasks are: 1) isolate any cloud features on the image, 2) identi-

fy the features in meteorological terms, and 3) perform an over-

all image interpretation using the individual cloud features to

reveal related weather such as turbulence, sea state, etc.

In past work, the third task of top-level interpretation of

cloud features and their interrelationships has been addressed in

SIAMES -- the Satellite Image Analysis Meteorological Expert

System (Peak, 1989). This frame-based expert system guides a

human through the process of identifying and analyzing cloud

features seen on a satellite image and reveals the associated

sensible weather associated with such features.

The ultimate goal of SIAMES is that it would be incorporated

into a completely automated system. In other words, the human

user, whose role in the present interactive version is to be the

pattern recognizer, will be replaced by an automated pattern

recognizer. Such an automated cloud pattern recognizer would

have to perform the first two above-stated tasks. Initial work

in developing such a system was made in Peak (1991a). In that
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study it was shown that feed-forward, back-propagation neural

networks could be trained to identify large-scale cloud features

(Task 2).

One of the conclusions of Peak (1991b) is that the difficult

problem lies not so much in the classification of the various

large-scale cloud shapes, but rather in the determination of the

cloudy areas that define such shapes. This image segmentation

problem (Task 1) became the focus of a study using the Hierarchi-

cal Stepwise Optimization technique of Beaulieu and Goldberg

(1989) on satellite imagery (Peak 1991c). Only limited success

was achieved, partly due to the relatively low resolution

(7.5 dpi) of the scenes in the study. The technique performed

poorly in regions where separate cloud features were located

close together, because the average grayshade of the growing

regions tended to cause the separate regions to appear to have

the same characteristics, and therefore to be combined.

Peak (1991c) concluded that image segmentation, whether via

region-growing or edge detection, should be performed in a way

that includes constraints on the size and shape of the emergent

segments. The notion of derivation using constraints seems to

imply that neural networks could somehow be used. The purpose of

this study is to address the image segmentation issue particular-

ly with regard to cloud pattern segmentation using neural net-

works. It will be shown that the new methodology presented here

provides a cloud feature segmentation in which both large- and

small-scale features emerge. In addition, the boundaries of
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these features retain the high degree of detail necessary for the

top-le'el SIAMES analysis.

2. A New Approach to Segmentation

As indicated in Peak (1991b), there are two approaches to

image segmentation. One is region-growing, in which pixels of

similar grayshade values are grouped together. The HSWO tech-

nique, described in Peak (1991c) is a region-growing approach.

Another approach is edge detection, in which differentials of

grayshade values are used to indicate boundaries between objects

in the image. Typically, some gradient of the grayshade is

calculated for each pixel of the image. Strong gradients are

then used to indicate edges. The difficulty in this methodology

is in how to choose the appropriate gradient strength; i.e., in

choosing a threshold above which to accept an edge and below

which to ignore an apparent edge. Once a threshold is chosen,

the resultant edge map often has false edges associated with

interior details of objects or other grayshade gradients not

associated with actual object boundaries.

Neither of these techniques, as used in a classical sense,

appears to solve the problems associated with isolating cloud

features. The problems with HSWO have already been discussed

above and in Peak (1991c). Meaningful cloud patterns in a single

image may consist of both sharp and weak grayshade gradients.

For example, edges of a region of cirrus may be quite diffuse

while a strong front may be have a relatively sharp edge. The

choice of an appropriate edge detection threshold to isolate both
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such features would be difficult. Cloud features often contain

much interior structure which would cause many extraneous edges.

2.1 Segmentation Using Neural Nets

The difficulty with either of the classical segmentation

methods is that they are not performed in an "intelligent" way.

An Artificial Intelligence (AI) approach would be to define the

regions with the inclusion of constraints about the size and

shape of the emergent segments. On the surface, such an attempt

at an AI-based segmentation might simply be to define a neural

network that accepts the pixel grayshades as inputs, and then

outputs whether the pixels should be classified as being in a

cloud region or not. Such a network would have as many inputs as

there are pixels in the image, and also that many outputs.

Because of the large number of pixels in an image, it is clear

that such a network would be difficult to train. For example, if

the region presented later in this study, which contains 33750

pixels, were used the network would have 67500 total inputs and

outputs, not to mention the hidden units. Such a network would

be impossible to train, besides which there would not be enough

cases on which to train such a large network. Therefore such a

direct application of neural networks is not possible. However,

other neural network approaches are possible.

2.2 Segmentation Using Thresholding

Before pursuing other ways to apply neural networks to the

problem, the discussion here will return to the particular seg-

mentation problems regarding cloud features. Such features
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typically consist of clouds of different grayshades. For exam-

ple, the poleward end front might have deeper convection, and

hence brighter clouds, than the equatorward end. Other cloud

features might contain brighter regions within a dimmer boundary,

or have a sharp, bright boundary on one side and not on the

other. Neither of the classical segmentation methods would

appear well-able to handle such problems.

To introduce the methodology used in this study, we present

a similar problem for illustration. Consider the hypothetical

mountain range presented in Fig. 1. The range consists of three

mountains: Mt. Hovermale, Tag Crag and Peak's Pike (Fig. la). In

Fig 2a is the corresponding top-down view of these mountains as

they would appear on a topographical map with contours of eleva-

tion. How can this range be separated into individual mountains?

One cannot simply look for local maxima in elevation (Fig 1b) or

10 apparent mountains emerge. The problem is that some mountains

consist of more than one local peak. In the case of Mt. Hover-

male, the mountain is easily defined by looking for the overall

elevation maximum. Tag Crag, however, has two nearly identical

peaks but is classified as a separate mountain because of the

significant valley between it and Mt. Hovermale. If that valley

were not present, the Tag Crag peaks would simply be included as

more of the lesser peaks of Mt. Hovermale. Similarly, Peak's

Pike has three local peaks separated from Tag Crag by a valley.

Thus, we separate the mountains not so much by their peaks

but by the valleys between them. The problem is that there are

valleys between the local peaks of a given mountain as well. An
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edge detection method using gradients of height would separate

only the peaks that have steep valleys (strong height gradients)

between them. The problem is that a deep, but gradual, valley

separating two mountains would not correspond to an edge.

The contour map (Fig. 2a) reveals how the mountains might

actually be separated. One does not look at the contours around

local elevation maxima because they sometimes indicate secondary

peaks. Rather, we choose the contours that surround regions that

correspond to the contour sizes and shapes we expect a mountain

to have. Figures 2b-h depict a breakdown of the closed contour

regions in Fig. 2a at progressively higher elevations. Notice

that the closed-contour regions at lower elevations always encir-

cle those at higher elevations (we assume no overhanging cliffs).

In fact, the hierarchy of regions contained by regions at lower

elevations can be represented by a tree structure (Fig. 3).

Each of these closed-contour regions represents a candidate

definition (i.e., partial image segmentation) of a mountain. If

our notion of a mountain is so strict that only the highest

elevation qualifies, then region N (Fig. 2h) would be the only

mountain present. If the mountain definition is very general,

then any raised ground qualifies and region A (Fig. 2b) is our

mountain. The actual case lies somewhere between these extremes.

An intelligence-based analysis of these regions might pro-

ceed as follows: Region A is too large, and contains too many

local peaks, to be one mountain. Region B is rejected for the

same reason. Region C qualifies as a mountain because its size

and shape fit our notion of a mountain. Region D is dumbbell-

6



shaped, and therefore is rejected. Region F is the right size

and shape; it also has some local peaks (regions H-M) but not so

many that it should be rejected. Region G also fits the size and

shape, and has only two local peaks, so it also is accepted.

Thus, the three mountains in the range are separated here into

regions F (Mt. Hovermale), G (Tag Crag) and C (Peak's Pike).

The key idea in the preceding example is that a simple

elevation threshold can be used to outline the different mountain

regions as long as you use different thresholds for different

mountains. By applying intelligence in the choice of a thresh-

old, i.e. reasoning about the sizes and shapes of emergent re-

gions, the proper threshold can be selected. Such a reasoning

process is the basis for the intelligent segmentation methodology

presented in the next section.

2.3 Proposed Segmentation Using Hierarchical Thresholding

The example in the previous section leads directly to the

methodology proposed here. The technique is called Hierarchical

Threshold Segmentation (HTS). The above methodology can be used

for segmenting grayshade images if brighter grayshade values can

be considered to correspond to higher elevations. As a demon-

stration of this correspondence, a grayshade image of cloud

features is now presented. As will be described later, the

images analyzed in this study are subregions taken from GOES-West

photographs. An example case (not used in this study) depicting

the size and location of this subregion is presented in Figure 4.

The subregion is located in the Gulf of Alaska from approximately

1300 W to 1650 W and from 20°N to 470 N. The example chosen is
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taken from the Oct. 1, 1983 GOES-W image (Fig. 5a). This

3 inch x 2 inch image was digitized from a photograph into gray-

shade values between 0 and 255 at 75 dots-per-inch (dpi) resolu-

tion.

Whereas in the mountain example we used progressive eleva-

tions, here we use grayshade values. If we choose contours of

grayshade in brightness intervals of 10, the 0-255 range yields

25 successive grayshade maps (Fig. 6). The last map in Fig. 6

(grayshade=250) is omitted to save space. As before, a tree is

used to depict the spatial relationships between regions at

different grayshade thresholds (Fig. 7). The region numbering

scheme used here is internal to the computer program to group the

distinct regions; the values have no physical meaning. Regions

that consist of less than 100 pixels are arbitrarily omitted.

To demonstrate the behavior of Hierarchical Threshold Seg-

mentation on satellite cloud imagery it is useful to follow the

progression of various regions. For example, region 9 on thresh-

old 10 envelops a band of mostly disjoint, cumulus cells in the

lower right quadrant of the image. By threshold 30, the tree

indicates a split into the two subregions 6 and 85 (Fig. 7).

From threshold 30 until 60, region 85 gets progressively smaller

and finally disappears. Similarly, region 6 disappears by

threshold 80 (Fig. 6). For the purpose of cloud feature segmen-

tation, a meteorologist would notice the perceptual grouping of

the cells into a line, and would therefore choose region 9 in

threshold 10 as the best segmentation of this feature. Such a
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complex group of clouds would be difficult to segment correctly

using a region-growing or edge-detection scheme.

Another cloud feature a meteorologist would key into is the

bright, frontal band across the northwest corner (Fig. 5a). In

threshold 10 (Fig. 6), this band is included in a very large

region (region 2) that dominates the entire northern two-thirds

of the area. As the threshold increases from 10 to 130, subfea-

tures are progressively separated from the edges of this large

region until the frontal band is isolated (region 157,

threshold 130). If the thresholding is continued, the frontal

band continues to shrink, and small, subregions of the band

continue to split off.

To demonstrate the overall image segmentation, the optimal

threshold choices for the various branches of the tree are indi-

cated by squares around the region number (Fig. 7). The selec-

tions here have been made by the author using his admittedly

limited satellite interpretation experience. The first criterion

in these selections was to isolate distinct, meteorological

features. In ambiguous situations, an attempt was made to select

regions that seemed to have some perceptual grouping in favor of

those that did not. The point in this study is not so much to

accept or reject the author's classifications, but rather to

demonstrate that the HTS methodology can learn to perform those

classifications. As will be shown, the technique can be trained

on any set of cases that conform to alternate classifications

than those used here.
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The optimum, overall image segmentation is presented in

Fig. 5b. The feature numbers correspond to those in squares in

Fig. 7. The segmentation does quite well in segmenting the

frontal band (area 157 from threshold 130), the large area of

stratocumulus (area 2), the vorticity max (area 18), the before-

mentioned cumulus band (area 9) and the tropical cloudiness

extending northward from the ITCZ (area 230). The segmentation

of these areas is not only excellent in terms of matching well

with the image, but also in terms of the detail of the segmenta-

tion boundaries. The eventual feature identification and SIAMES

interpretation should be able to capitalize on such detail.

Other sporadic cumulus regions (areas 184, 229, 174 and

157(60)) are delineated. Whether these areas should be inter-

preted separately or jointly, or even ignored, is an issue for

the subsequent module in the overall system. Similarly, the

stratocumulus behind the frontal band is segmented into the three

regions 238, 285 and 320. It might be preferable for the segmen-

tation to group this entire area as one region. However, the

advantages in overall segmentation outweigh such a minor problem

because the feature identifier could be designed to consider such

small, nearby regions together rather than separately. When one

compares the segmentation here with that accomplished by HSWO

(Peak, 1991c, Fig. 9a & b) the improvement is considerable.

The above segmentation was accomplished using human, not

machine, intelligence in the selection of the thresholds. The

excellent results indicate the potential for such a methodology

should an additional method for the intelligent selection of
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thresholds be developed. As in the mountain example, such a

selection method should make the decision based on information

about the sizes and shapes of the emergent cloud regions. To

accomplish this task, a neural network is used.

Before discussing how a neural network can be applied to

this task, we return to the discussion of threshold trees

(Fig. 7). The terminology used here is that a "split" is the

point at which a region divides into two or more regions at the

next higher threshold. A "limb" or "branch" is a successive

progression bf regions that do not split between thresholds. The

selection of the appropriate segmentation threshold for a region

effectively accomplishes a "pruning" of the threshold tree.

To structure this decision process in a fashion that can be

addressed by a neural network, we choose to process a tree from

its base to its limb ends. All splits from threshold 0 (the

entire, original image) to threshold 10 are always accepted.

Thus, we begin at threshold 10 to decide whether to prune a limb

or split. If no pruning is decided upon, the limbs or splits are

followed to threshold 20 in the tree and the pruning issue is

again decided.

Upon examination of many threshold trees and the segmenta-

tion regions they describe, a heuristic for the pruning of cer-

tain limbs has emerged: when a limb terminates due to its repre-

sentative regions shrinking in size to less than 100 pixels, or

by such a limb extending to the maximum threshold (250) without

splitting, the limb is automatically pruned just after its latest

split. For example, the limb in Fig. 7 that begins at region 18
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in threshold 20 is automatically pruned at that point. Often,

the pruning of a split leaves a limb which is then automatically

pruned again back to the point just after the last split.

Once the above heuristic is accepted, all that remains is to

decide whether to accept a split or to prune it. This decision

is the one which a neural network will make. Since we want the

network to make the decision based on the size and shape of the

emergent regions, the network inputs are chosen to reveal such

information. The first input, indicating the size of a region,

is simply the number of pixels contained in the region. The

shape of a region is more difficult to define. The actual shape

of standard cloud regions such as fronts or vortices may be quite

different from case to case. Thus, we avoid using direct meas-

ures of shape that might prevent the network from applying to

generalized cases. Rather, we have developed two shape indica-

tors that appear to work very well in indicating representative

shape characteristics rather than actual shapes. The first of

these indicators is the length of the region boundary, the number

of pixels on the perimeter. The second shape indicator is the

ratio of the number of pixels in the region to the number of

boundary pixels. This ratio is referred to here as the "fractal

dimension" because, like a fractal dimension, it expresses the

complexity of a region (fractal) boundary relative to its size.

Here a smaller fractal dimension indicates a more complex region

boundary.

The neural network needs information about the regions both

before and after a potential split. If all splits were from one

12



region into two regions, we could simply include the three

above-stated parameters for the region prior to the split and for

the two regions after the split; a total of nine parameters.

However, sometimes a split leads to multiple subregions. Because

the neural network can only accept a fixed number of inputs, in

those situations we provide the network with the parameters for

the two largest of these potential subregions. The complete

network configuration will be described later.

In the next section, a data set of cases for training the

network will be presented. The neural network architecture will

be chosen, and the HTS technique will be tested on both dependent

and independent data.

Before proceeding, the steps in the Hierarchical Threshold

Segmentation procedure are summarized:

1. Start with a grayshade (0-255) image.

2. Partition the image into regions of contiguous pixels
with grayshade values above a given threshold.

3. Do this partitioning for thresholds every 10 grayshade
values (10, 20, 30, ..., 240, 250).

4. Construct a tree in which regions at higher thresholds
limb or split from regions occupying the same area at lower
thresholds.

5. Prune the limbs of the tree:

5.1 Prune from the tree base to the limb ends.

5.2 Start with the regions in the grayshade
10 threshold.

5.3 When a limb terminates with no split, prune it back
at the point just after the latest split.

5.4 When a limb splits into two or more limbs use the
neural network to decide whether to keep or prune the
split.
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6. The regions at the ends of the pruned tree limbs are
those that best segment the image.

7. Collect these individual region segmentations to form an
overall image segmentation.

3. Cloud Feature Image Segmentation Using Hierarchical

Threshold Segmentation

3.1 Data Set Description

The cases used in this study are a subset of the GOES_W

images used in Peak (1991b). In this study, only the Oct. and

Nov. 1983 cases are used. Cases are taken every three days,

yielding 21 images. The Oct. 19 image has a particularly bright

latitude/longitude grid overlaid on the image which interfered

with the HTS technique; therefore this case has been eliminated,

reducing the data set to 20 cases. These cases were alternately

assigned to dependent and independent samples as summarized in

Table 1.

In Peak (1991b), these GOES-W photographic images of the

Pacific Ocean were digitized to grayshades at 75 dpi resolution

and then averaged to lower resolution for the HSWO tests. Here,

the goal is to retain the higher resolution so that the thresh-

olding technique can delineate detailed region boundaries. To

keep the amount of data in each case at a smaller, more manage-

able level, the entire image area was not used here. Rather, a

midlatitude subregion, located in the Gulf of Alaska, was used

(e.g., Fig. 4). This region covers a 3 inch x 2 inch area on the

original image and was chosen because it includes many signifi-

cant midlatitude cloud features, and because it avoids inclusion
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Table 1. Dependent and independent sample cases.

Dependent Sample Number of Splits Image & Threshold
Segmentation Tree

Oct. 4 17 Fig. 8 Fig. 9
Oct. 10 8 Fig. 10 Fig. 11
Oct. 16 11 Fig. 12 Fig. 13
Oct. 25 11 Fig. 14 Fig. 15
Oct. 31 9 Fig. 16 Fig. 17
Nov. 6 6 Fig. 18 Fig. 19
Nov. 12 11 Fig. 20 Fig. 21
Nov. 18 11 Fig. 22 Fig. 23
Nov. 24 8 Fig. 24 Fig. 25
Nov. 30 9 Fig. 26 Fig. 27

Total Dependent Splits 101

Independent Sample Number of Splits Image & Threshold
Segmentation Tree

Oct. 1 13 Fig. 5 Fig. 7
Oct. 7 13 Fig. 28 Fig. 29
Oct. 13 15 Fig. 30 Fig. 31
Oct. 22 5 Fig. 32 Fig. 33
Oct. 28 8 Fig. 34 Fig. 35
Nov. 3 8 Fig. 36 Fig. 37
Nov. 9 8 Fig. 38 Fig. 39
Nov. 15 12 Fig. 40 Fig. 41
Nov. 21 13 Fig. 42 Fig. 43
Nov. 27 10 Fig. 44 Fig. 45

Total Independent Splits 105

Total Splits 206

of any coastlines which are artificially outlined on these photo-

graphs. At 75 dpi the region has 225 x 150 pixels, or a total of

33750 grayshade values in each image.

For the images listed in Table 1, the Gulf of Alaska subre-

gions were isolated. These 20 cases are depicted in the Figures

listed in Table 1. As in Fig. 6, HTS was applied at increments

of 10 grayshade values. Figures of the hierarchical threshold

regions, such as those for the Oct. 1 case depicted in Fig. 6,
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will not be shown here for the remaining 19 cases (to save

space). The resultant threshold trees for the 20 cases are

depicted in the Figures listed in Table 1. The optimal pruning

points, as outlined by squares in the trees, lead to an ideal

segmentation for each case. These segmentations are depicted

directly beneath each image in the Figures listed in Table 1.

Each split in the 20 threshold trees becomes a case in the data

sets for training and testing the neural network. This process

will be described in the next section.

3.2 Neural Network Derivation

In Section 2.3, nine potential inputs from each case for the

neural network were presented. As in Peak (1991b), discriminant

analysis will be used to reduce the number of inputs to the

neural network. In previous experiments such a reduction has led

to improved network performance while requiring fewer training

cases.

The results of the stepwise discriminant analysis, using all

206 cases, are presented in Table 2. The terminology used here

is that the region before the split is the "parent" while the two

regions it is split into are the "child" regions. The larger of

Table 2. Order of entry of variables into stepwise discriminant
analysis of cases in Table 2. The symbol # refers to number or
count.

Entry Number Variable F-to-Enter
1 # child 1 pixels 245.81
2 parent fractal dim. 52.92
3 # parent boundary 8.67
4 child 1 fractal dim. 1.12
5 # child 2 boundary 8.00
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the two is always designated "child i" and the smaller,

"child 2." The most significant parameter (e.g., having the

largest F-to-Enter ratio) affecting the decision to split is the

number of pixels in child 1 (Table 2). The second-most signifi-

cant predictor is the fractal dimension of the parent region.

Additional important information is the number of parent boundary

pixels and the child 1 fractal dimension (Table 2). The number

of boundary pixels is the only predictor included that pertains

to child 2.

The discriminant analysis reduces the number of inputs from

nine to only five. Using the heuristic that we need as many

training cases as the number of inputs plus the number of outputs

times five, we need a minimum of five plus two times five, or 35

cases. Here we have 101 cases in the dependent sample (Table 1)

which is clearly sufficient for training the neural network.

As in Peak (1991a & b), we use a feed-forward, backpropaga-

tion neural network. The network configuration chosen is depict-

ed in Fig. 46. The network has the five above-mentioned inputs.

The first hidden layer has 10 units while the second hidden layer

has four units (Fig. 46). This configuration was arbitrarily

chosen and may not represent the optimal choice. The network has

two outputs: one corresponding to the decision to prune and

another corresponding to the decision not to prune.

The neural network was derived using the DESIRE/NEUNET

software (Korn, 1989) on an IBM-PC 386/25 clone. The network

converged very quickly, after about 200 iterations, requiring
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less than one minute of computer time. In the next section, this

network will be tested on the dependent and independent samples.

3.3 Neural Network Performance

The neural network was used to prune the threshold trees of

the dependent and independent cases (odd numbered Figures 7-45).

As mentioned earlier, the optimal pruning points are indicated in

these figures by a box around the terminal node in each limb. If

the neural network selection disagrees with the optimal selec-

tion, a circle is drawn around the neural network pruning point.

Thus, if the network performs perfectly, the threshold tree is

simply the optimal tree with only boxes and no circles.

The final step in Hierarchical Threshold Segmentation is to

group the regions from all of the pruned branch ends into an

overall segmentation. These segmentations for the optimally-

pruned trees are depicted immediately below the satellite image

for each case (Figures 5b & even-numbered Figures 8b-44b). Each

region is numbered to correspond to the regions on the threshold

tree. When the neural network disagrees with the optimal prun-

ing, an additional Figure "c" is added to these figures to show

the different tree segmentation. Only the regions that differ

from the optimal segmentation are numbered in these figures. For

example, the Oct. 1 case (Fig. 5a) results in the threshold tree

depicted in Fig. 7. The neural network differs from the optimal

selection in that it chooses to prune the split of region 145 at

threshold 120, while the optimal pruning is to keep the split

into regions 157 and 320 at threshold 130 (Fig. 7). In the

optimal segmentation (Fig. 5b), regions 157 and 320 are depicted.
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In the tree segmentation (Fig. 5c), region 145 is depicted and

numbered to indicate where the tree differs from the optimal

segmentation. The remaining, unnumbered regions in Fig. 5c are

identical to those in Fig. 5b. In this way, any time a third

figure appears, the exact error made by the tree can easily be

sen.

Of the 10 dependent sample cases, the tree prunes perfectly

six cases: Oct. 4 (Figs. 8 & 9), Oct. 16 (Figs. 12 & 13), Oct. 25

(Figs. 14 & 15), Oct. 31 (Figs. 16 & 17), Nov. 6 (Figs. 18 & 19)

and Nov. 30 (Figs. 26 & 27). These six cases contain a total of

63 splits. Four cases contain errors: Oct. 10 (Figs. 10 & 11),

Nov. 12 (Figs. 20 & 21), Nov. 18 (Figs. 22 & 23), Nov. 24

(Figs. 24 & 25). While these four cases contain a total of 32

splits, there are only a few erroneous splits. The Oct. 10 and

Nov. 12 cases have two errors each, while the Nov. 18 and Nov. 24

cases each have one error. Thus, out of 101 dependent sample

cases there is a total of six incorrect pruning selections by the

neural network, an accuracy rate of 94%.

In the Oct. 10 case the neural network prunes the tree

(Fig. 11) at node 93 (threshold 70) which deletes two later

splits that should be kept. In the actual case, it can be seen

that the optimal pruning segmented the cellular clouds of regions

85 and 177 as being separate from the more solid clouds of region

97(130). However, there appears to be a perceptual grouping of

these regions in that they all have a common curvature

(Fig. 10a). Thus, the tree segmentation of region 93 (Fig. 10c)

could be interpreted as correct.
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The Nov. 12 case includes two separate errors: the failure

to retain the split of region 33, threshold 70 into regions 41

and 168 (Fig. 21) and the inclusion of the split of region 83,

threshold 90 into regions 81 and 210. The former region split

was based on the different cumulus cell size to the west of the

central cloud mass (region 41) (Figs. 20a & b). It might be *

argued that this split is unnecessary. The latter split sepa-

rates the eastern portion of a warm front (region 81, Fig. 20c)

from the comma cloud system to the west (region 210). Again, the

different texture of these regions might support their separation

such that the effect of the neural network error is minimized.

A similar error occurs in the Nov. 18 case. Here, region

63, threshold 130 (Fig. 23) is erroneously split into subregions

113 and 169 (see Figs. 22b & c). In the author's opinion, these

small, ragged cloud regions should remain included in the large

cloud band 113. However, the error should not effect the classi-

fication of the cloud band and the two, small cloud regions could

easily be ignored as being insignificant by the later feature

identifier.

The final, dependent sample error occurs in the Nov. 24

case. Region 173, threshold 50 (Fig. 25) is erroneously divided

into regions 168 and 196. As can be seen in Fig. 24, the small

region 168 should probably remain included in the prefrontal

cloudiness of region 173. Again, the error does not appear to be

serious.

Of the 10 independent sample cases, the tree prunes perfect-

ly five cases: Oct. 22 (Figs. 32 & 33), Nov. 3 (Figs. 36 & 37),
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Nov. 15 (Figs. 40 & 41), Nov. 21 (Figs. 42 & 43) and Nov. 27

(Figs. 44 & 45). These five cases contain a total of 48 correct

splits. Five cases contain errors: Oct. 1 (Figs. 5 & 7), Oct. 7

(Figs. 28 & 29), Oct. 13 (Figs. 30 & 31), Oct. 28 (Figs. 34 & 35)

and Nov. 9 (Figs. 38-39). Considering that these five cases

contain a total of 57 splits, the number of erroneous splits is

quite small. The Oct. 7 case has three errors and the Oct. 1,

13, 28 and Nov. 9 cases each have only one error. Thus, out of

105 independent sample cases there is a total of only seven

incorrect pruning selections. The neural network accuracy rate

for these independent cases is 93%; nearly as good as for the

dependent sample.

As indicated earlier, the error of the Oct. 1 case is that

the neural network chooses to prune the split of region 145,

threshold 120 rather than to keep the split into regions 157 and

320 (Fig. 7). As seen in most of the previous errors, the error

results from inclusion of an adjacent area of cellular clouds

(region 320) into a region of solid clouds (region 157).

The three errors in the Oct. 7 case result from the neural

network pruning two branches too early. That region 92

(Fig. 28c) is selected rather than the two regions 103 and 110

(Fig. 28b) is probably not serious, although the image (Fig. 28a)

seems to indicate two, separate cloud bands in the stratocumulus.

Similarly, the failure to spit region 27 (Fig. 28c) into the

three subregions 21, 40 and 43 (Fig. 28b) is a judgment call due

to the complexity of this cloud pattern (Fig. 28a).
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The error in the Oct. 13 case is to prune the branch with

region 7, threshold 10 (Fig. 31) too early. This is the only

error on this case, which means that the network would have

correctly allowed the four subsequent splits in the tree. These

splits never occur because the tree is pruned from the base to

the limbs. In most cases, pruning in this direction results in

better segmentations; this case happens to be an exception. One

reason that area 7 (Fig. 30c) is not split may be due to its

location along the lower edge of the grid, which creates an arti-

ficial boundary. If the remaining cloud area south of the bound-

ary were included, the network inputs might better represent its

shape.

In the Oct. 28 case, region 8 (Fig. 34b) is split into

subregions 9 and 137 (Fig. 34c). The author's opinion was that

this feature should be segmented as a continuous cloud band.

However, the change in orientation of region 137, and its differ-

ent texture might indicate that it should indeed be a separate

feature.

Finally, the Nov. 9 case has a very complex set of cloud

lines trailing from a cold front (Fig. 38a). The neural network

fails to include the brightest of these bands (region 188,

Fig. 38c) as part of the front (region 2, threshold 50). The

majority of the front is still included in the latter area, so

this error is not serious.

It should be emphasized that, although the high accuracy of

the neural network is gratifying, it pertains only to the neural

network's ability to prune the threshold trees into the "optimal"
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classifications it was trained on. The accuracy of Hierarchical

Threshold Segmentation in terms of the methodology being able to

segment cloud features can only be judged subjectively by an

expert in the identification of cloud features on an image. The

author's opinion is that the segmentations are quite good; howev-

er, readers are invited to peruse these cases and judge for

themselves the capability of HTS. Because the neural network can

be trained on any set of cases, alternate expert opinion could be

used to provide different optimal classifications, if desired,

for training.

4. Conclusions

A new methodology, called Hierarchical Threshold Segmenta-

tion (HTS), is presented as a means to partition images of cloud

patterns into features for later icentification and interpreta-

tion. The technique involves applying a threshold to the image

at progressive thresholds of grayshadp value. The sequence of

emergent regions is depicted in a tree structure which is pruned

heuristically and with a neural network. The regions at the ends

of the tree branches are combined to form an overall image seg-

mentation.

The neural network that accomplishes the tree pruning is

trained on 101 cases of tree branch splits. Inputs to the net-

work include information about the region sizes (pixel counts),

region boundaries (boundary pixel counts), and shape complexity

in the form of a "fractal dimension" (ratio of size to boundary

length). The network accuracy for the dependent sample is 94%,

with independent sample (105 cases) accuracy of 93%. As dis-

23



cussed in the text, the few erroneous cases do not seriously

affect the segmentation.

The true performance of HTS is in determining whether the

resultant segmentations delineate cloud features of interest.

The author's subjective opinion is that it does for these cases.

Both large- and small-scale features emerge. The segmented areas

retain a large degree of boundary and internal detail; such

information will likely be crucial in the ability to identify

these regions and interpret their meteorological significance.

The ultimate test of HTS's segmentation skill will come when the

technique becomes part of a completely automated image interpre-

tation system. Most readers will agree that these segmentations

are far superior to those depicted in Peak (1991c) using Hierar-

chical Stepwise Optimization.

In future studies, the technique should be tested on other

areas such as the tropics. The system was tested here on only

open ocean cases. HTS might have difficulty if ice shelves or

land are present; however, such problems occur with region-grow-

ing or edge-detection segmentation as well.

A larger analysis area will also be necessary for the even-

tual HTS module of the automated image interpretation system.

Because HTS is not as sensitive to grayshade gradients as is edge

detection, it might even be possible to apply it to mosaiced

imagery from multiple polar-orbiter passes. Even if the emergent

regions delineate the edge between passes, the neural network

could be trained to ignore such straight-line separations. Thus,

HTS might solve the limited-swath problem that has caused this
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research effort to focus on GOES data until now rather than the

polar-orbiters that will be available through TESS(3).

The technique has the most difficulty in handling adjacent

regions of clouds with different textures. The neural network

pruning technique should therefore include textural information

about the regions to improve such decisions.

As HTS is tuned and improved, methods for ignoring small

cloud features or grouping distinct features that have a percep-

tual grouping might be explored. For example, another level of

hierarchy might be applied in which only the most significant

region is isolated, its pixels removed from consideration, and

the process repeated with the remaining pixels.

It is recommended that further HTS experiments be performed

to address some of these remaining issues. A prototype automated

image analysis system could then be built by linking an HTS

module with a feature identification module, and eventually a

SIAMES module, to perform an automated image analysis.
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Figure 1. a) Cross-section view of hypothetical mountain range
consisting of three separate mountains, and b) the same hypothet-
ical range with local maxima indicated by arrows.
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Figure 2. Hypothetical contour map of the mountain range depict-
ed in Fig. 1. Letters A-N indicates regions isolated by being
outlined by the various contours.
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Figure 3. Tree structure representing the hierarchy of closed-
contour regions from Fig. 2 (letters A-N). Regions at higher
elevations are contained in the regions at lower elevations
connected by tree limbs.
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Figure 4. Example GOES-W visual image (b) showing the location
from which the subregion used in this study (a) is taken. This
case, from January 1982, is presented only as an example and was
not used in the study.
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Figure 5. a) Subregion of GOES-W visual image for Oct. 1, 1983
used for digitization and cloud feature segmentation; b) Optimal
segmentation of the image in (a) with threshold segmentation
regions as numbered; c) hierarchical threshold segmentation of
the image in (a) using a neural network to choose the pruning
points in the threshold tree (depicted in Fig. 7). Only regions
that differ from the optimal choice (shown in b) are numbered in
(c).
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Figure 6. Image segmentation regions at grayshade thresholds
10-240 for the case depicted in Fig. 5. Regions are labeled by
numbers generated internally by the hierarchical thresholding
program; numerical value is unimportant and may or may not change
between successive thresholds.
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Figure 7. Tree depicting the spatial relationships between
regions at successive grayshade thresholds 10-250 (numbers at
left.) Region numbers outlined by boxes indicate optimal tree
pruning points (depicted in Fig. 5b), whereas those outlined by
ovals indicate the neural-network-selected pruning points.
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Figure 46. Configuration of feed-forward, back-propagation
neural network to select pruning points in hierarchical threshold
trees. Circles represent artificial neurons with inputs repre-
sented by lines converging from below. Five input nodes (bottom
row) feed to 10 nodes in the first hidden layer, four nodes in
the second hidden layer, and two output nodes.
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