OFFICE OF NAVAL RESEARCH

Contract N00014-84-G-0201

Task No. 0051-865

Technical Report #43

The Trans-Cis Isomerisation of Bis(dioxolene)bis(pyridine)Ruthenium Complexes.

By

Y.-H. Tse, P.R. Auburn and A.B.P. Lever

in

Canadian Journal of Chemistry

York University
Department of Chemistry, 4700 Keele St., North York
Ontario, Canada M3J 1P3

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of the Document Control Data-DD form 1473. Copies of the form available from cognizant contract administrator
11. TITLE (Include Security Classification)

The Trans-Cis Isomerisation of Bis(dioxolene)bis(pyridine) Ruthenium Complexes

12. PERSONAL AUTHOR(S)

Y.-H. Tse, P.R. Auburn and A.B.P. Lever

14. DATE OF REPORT (Year, Month, Day)

March 3, 1992

16. Supplementary Notation

The isomerisation of trans to cis bis(3,5-di-t-butylbenzo semiquinonato)bis(R-Pyridine)ruthenium, [Ru(R-Py)₂(DTBDiox)₂], is induced by warming with an excess of R-Pyridine, where R = 3-chloro, 4-methyl, 4-phenyl or 4-butyl. The rates of these reactions, for the species with R-Py = 3-chloropyridine, were monitored in o-dichlorobenzene by visible spectroscopy, against varying 3-chloropyridine and varying trans-[Ru(3-ClPy)₂(DTBDiox)₂] concentration. The data were found to obey first order kinetics:

\[-\frac{d[Ru(3-ClPy)₂(DTBDiox)₂]}{dt} = k_{obsd}[Ru(3-ClPy)₂(DTBDiox)₂] \]

over a considerable range of pyridine concentration. A plot of \(1/k_{obsd}\) vs. [3-chloropyridine] is linear with a positive intercept. A dissociative mechanism is proposed for the isomerisation reaction. The activation parameters were determined for the specific case of R-Py = 3-chloropyridine. Electronic and electrochemical features of these species are briefly discussed.
The Trans-Cis Isomerisation of Bis(dioxolene)bis(pyridine) Ruthenium Complexes.

Yu-Hong Tse, Pamela R. Auburn and A.B.P. Lever.*

Dept. of Chemistry, York University, 4700 Keele St., North York (Toronto),
Ontario, Canada, M3J 1P3

A.B.P. Lever
Tel: 416-736-2100 x 22309
FAX: 416-736-5516
Bitnet: BLEVER@YUSOL
The Trans-Cis Isomerisation of Bis(dioxolene)bis(pyridine) Ruthenium Complexes.
Yu-Hong Tse, Pamela R. Auburn and A.B.P. Lever.

Abstract:
The isomerisation of trans to cis bis(3,5-di-t-butylbenzoquinonato)bis(R-Pyridine)ruthenium, [Ru(R-Py)_2(DTBDiox)_2], is induced by warming with an excess of R-Pyridine, where R = 3-chloro, 4-methyl, 4-phenyl or 4-butyl. The rates of these reactions, for the species with R-Py = 3-chloropyridine, were monitored in o-dichlorobenzene by uv-visible spectroscopy, against varying 3-chloropyridine and varying trans-[Ru(3-ClPy)_2(DTBDiox)_2] concentration. The data were found to obey first order kinetics; -d[Ru(3-ClPy)_2(DTBDiox)_2]/dt = k_{obsd}[Ru(3-ClPy)_2(DTBDiox)_2] over a considerable range of pyridine concentration. A plot of 1/k_{obsd} vs. [3-chloropyridine] is linear with a positive intercept. A dissociative mechanism is proposed for the isomerisation reaction. The activation parameters were determined for the specific case of R-Py = 3-chloropyridine. Electronic and electrochemical features of these species are briefly discussed.

KEYWORDS: Ruthenium; Quinone; Isomerisation; Electrochemistry; Electronic Spectra; NMR
Introduction:

The series of complexes Ru(NN)$_2$(diox) (1-3) and Ru(NN)(diox)$_2$ (3-7) have been described, where NN may be 2,2'-bipyridine or two substituted pyridines, R-Py, and (diox) is a dioxolene ligand which may exist in the catechol, semiquinone or quinone oxidation states. These complexes form redox series whose electronic structures have been probed by a range of techniques including X-ray crystallography, NMR, ESR, magnetism and UV/Vis/FTIR, PES and resonance Raman (rR) spectroscopy. The bipyridine-bis(dioxolene) complexes are necessarily cis, while the R-Py analogues could be either cis or trans.

The previously described trans-Ru(R-Py)$_2$(diox)$_2$ series of complexes (5,7) are found to be isomerised to a cis configuration when warmed with an excess of pyridine. Here we describe studies of the isomerisation reaction and electrochemical and optical data characterising these new cis species.

Experimental Section:

Equipment. All absorbance measurements were performed on a Hitachi-Perkin Elmer microprocessor model 340 spectrometer equipped with an electrically heated cell compartment connected to a built-in thermostat for temperature measurement and control. Fourier transform infrared (FTIR) data were obtained using a Nicolet SX20 spectrometer. 1H NMR and 13C NMR spectra were obtained with a Bruker AM300FT NMR spectrometer using samples dissolved in CDCl$_3$.

Electrochemical data were obtained with a Pine Instruments RDE-3 potentiostat. Cyclic voltammetry was carried out, in dichloroethane (DCE), using platinum wires as working and counter electrodes, and a AgCl/Ag quasi-reference electrode with ferrocene (Fc) as an internal standard. The Fc/Fc$^+$ couple lies at +0.425 V vs. SCE (7).

Materials. Tetrabutylammonium perchlorate (TBAP, Kodak) was recrystallised from absolute ethanol and dried in vacuo at 50° C for 2 days. 1,2-Dichlorobenzene (DCB) (Aldrich, HPLC grade) and d$_8$ toluene were used as supplied. 1,2-Dichloroethane (DCE) was fractionally distilled from P$_2$O$_5$. 3-chloropyridine (Aldrich) and 4-methylpyridine
(Aldrich), were fractionally distilled under reduced pressure. Other substituted pyridines (Aldrich) were used as supplied without any further purification.

Syntheses. The species $\text{trans-Ru(R-Py)}_2(\text{DTBDiox})_2$ were prepared by the methods given previously (5,7).

$\text{Cis-Ru(R-Py)}_2(\text{DTBDiox})_2$: $\text{Trans-Ru(R-Py)}_2(\text{DTBDiox})_2$ (36 mg, ca 5.0 x 10$^{-2}$ mmol) was dissolved in toluene (10 mL). R-pyridine (R = 3-chloro, 4-methyl or 4-phenyl) (2.1 mmol) was added. The resulting mixture was refluxed under nitrogen for 12 h, filtered hot and then concentrated using rotary evaporation; methanol (1 mL) was then added to initiate crystallisation. The products were filtered, washed with cold methanol and air dried; yield ~ 80%. Anal: Found C 59.48; H 6.27; N 3.64. Calc. C 59.37; H 6.29; N 3.64. for R = 3-chloro; Found C 64.70; H 7.44; N 3.88. Calc. C 64.40; H 7.60; N 3.76. for R = 4-methyl, monohydrate; Found C 68.70, H. 6.86, N, 3.53. Calc. C, 69.0, H, 6.95, N, 3.21 for R = 4-Phenyl, monohydrate. The trans species used for the kinetic measurements had acceptable C, H, N analyses (7).

1H NMR data for R = 3-chloropyridine species, in CDCl$_3$. Data for the trans isomer from (7). (s = singlet, d = doublet, dd = doublet-doublet, m = multiplet) - trans-isomer 7.74 (d, J = 2.2 Hz, 2H); 7.63 (d, J = 2.0 Hz, 2H); 7.6 (dd, J = 5.4, 1.1 Hz, 2H); 7.23 (m, 2H); 6.87 (dd, J = 8.2, 5.7 Hz, 2H); 6.17 (br s, 2H); 1.62 (s, 18H); 1.35 (s, 18H). cis-isomers 8.54 (m); 8.27 (m); 8.04 (d, J = 2.2 Hz); 7.73 (m); 7.57 (m); 7.14 (m); 6.90 (m); 6.80 (m); 6.70 (d, J = 2.1 Hz); 1.77 (s); 1.67 (s); 1.37 (s); 1.36 (s); 1.33 (s); 1.20 (s); 0.89 (s); 0.88 (s).

Kinetic Studies. DCB was used as the solvent for the rate studies unless otherwise stated. The liquid 3-chloropyridine (8.40×10^{-5} mole to 1.05×10^{-3} mole) was mixed with 4 mL of a stock solution of $\text{trans-Ru(3-ClPy)}_2(\text{DTBDiox})_2$ and diluted to 5 mL $[(\text{trans-Ru(3-ClPy)}_2(\text{DTBDiox})_2 = (2.07 \times 10^{-4} \text{ M})]$. The reaction mixture was transferred to a 1 cm cell which was placed into a pre-heated cell compartment; the temperature of the solution inside the cell was measured before and after each experiment (variation = 0.25°C). Successive spectra were collected at time intervals from 2.8 min to 100 min, depending upon
the temperature and concentration range involved.

The isomerisation from \(\text{trans} \rightarrow \text{cis}-\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2 \) was monitored by observing the growth of a new absorption band lying close to 600 nm (6) observed for the \(\text{cis} \) isomer. The \(\text{trans} \) isomer possesses very weak absorption at this wavelength (Figure 1).

For the pseudo-first-order conditions, the observed rate constants (\(k_{\text{obsd}} \)) were obtained from the Guggenheim plots (8). The reactions were allowed to proceed for 3 - 4 half-lives. The delay time was about 2 half-lives.

Rate constants for isomerisation of \(\text{trans}-\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2 \) (2.07 x 10\(^{-4}\) M), in DCB, at various temperatures from 91 to 110°C are presented here as a function of the concentration of 3-chloropyridine. Values of [3-chloropyridine] are tabulated, together with \(k_{\text{obsd}} \), (all values to be multiplied by 10\(^{-4}\) s\(^{-1}\)), followed by the standard deviation in parentheses.

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>[3ClPy]</th>
<th>k_{\text{obsd}}</th>
<th>\begin{tabular}{c} \text{Temp. °C} [3\text{ClPy}] \end{tabular}</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.1</td>
<td>0.2</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>1.64</td>
<td>1.24</td>
<td>0.89</td>
<td>0.857</td>
<td>0.787</td>
<td>0.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>3.19</td>
<td>2.67</td>
<td>2.14</td>
<td>1.87</td>
<td>1.64</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5.97</td>
<td>5.33</td>
<td>3.99</td>
<td>3.71</td>
<td>3.50</td>
<td>2.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.06)</td>
<td>(0.01)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>11.4</td>
<td>9.7</td>
<td>7.4</td>
<td>6.41</td>
<td>6.16</td>
<td>4.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.19)</td>
<td>(0.1)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>18.89</td>
<td>18.1</td>
<td>14.61</td>
<td>13.3</td>
<td>12.1</td>
<td>9.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td>(0.5)</td>
<td>(0.07)</td>
<td>(0.15)</td>
<td>(0.2)</td>
<td>(0.07)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data were also obtained, at 90°C, for constant [3-chloropyridine] = 0.16 M, and varying \(\text{trans}-\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2 \) over the range from about 1 x 10\(^{-4}\) to 5.4 x 10\(^{-4}\) M, with no significant variation in \(k_{\text{obsd}} \).
The isomerisation of Ru(3-ClPy)₂(DTBDiox)₂ in d₈-toluene at 93°C was followed by
¹H NMR ([Ru(3-ClPy)₂(DTBDiox)₂] = 2.72 x 10⁻³ M; [3-chloropyridine] = 0.5 M).

Results and Discussion:
The trans-Ru(R-Py)₂(DTBDiox)₂ species are best regarded as fully delocalised
trans-Ru(III)(R-Py)₂(DTBCat(-2))(DTBSq(-1)) species (so-called (S) (starting) species in
previous discussions) (3-5,7). Their electronic spectra are typified by a very intense
absorption near 1100 nm attributed to diox (π) → Ru(dπ) + diox (π*) IL + LMCT
(Fig.1). They display only weak absorption in the visible region (near 580 nm (7)).

Synthesis of the cis complexes, and background literature:
When a trans-Ru(R-Py)₂(DTBDiox)₂ complex is warmed with a pyridine, a band near
600 nm (Table 1), grows in at a rate which depends upon temperature, concentration of
pyridine, and nature of the R substituent (Fig.2). Isomerisation proceeds within a fairly
narrow range of pyridine concentrations. If a large excess of pyridine (> 10⁴
[Ru(R-Py)₂(DTBDiox)₂]) is used, a side reaction takes place, probably forming the
tetrapyridine species, and the isosbestic point is lost. The trans isomer undergoes another
side reaction if insufficient pyridine (< 10 [Ru(R-Py)₂(DTBDiox)₂]) is used. Heating either
the cis or trans isomer in an inert solvent, in the absence of an excess of pyridine ligand, led
to eventual decomposition. Isomerisation occurs cleanly when the pyridine to ruthenium
ratio lay approximately in the range 10² - 10³.

The final electronic spectrum has the same overall band envelope as that (6) of
cis-Ru(bpy)(DTBDiox)₂ (save for the absence of the Ru --- > bpy CT transition), providing
evidence that isomerisation has occurred. The absorption near 600 nm (Table 1) corresponds
with a n → π* semiquinone transition allowed in the cis isomer but forbidden in the trans
isomer (5,7). Further, cis complexes were isolated (see expt.) and their NMR spectra (Expt.)
leave no doubt that cis-Ru(R-Py)₂(DTBDiox)₂ species have been formed. Under the
experimental conditions used to prepare the trans isomer, no cis isomer is isolated (7).
A number of cis-trans isomerisations of ruthenium complexes have been previously reported. It is revealing to contrast their behaviour. The species cis-[Ru(bpy)$_2$(H$_2$O)$_2$]$^2^+$ is photo-isomerised to the trans species by a dissociative pathway (9), but no thermal route was reported. The species trans-[Ru(dppm)$_2$Cl$_2$] (dppm = bis-diphenylphosphinomethane) can readily be thermally isomerised to the cis isomer in halocarbon solvents (at 830°C (reflux) in DCE) (10). This may be reversed (cis -- > trans) photochemically (10). Oxidation of cis-RuIIdppm)$_2$Cl$_2$ leads to isomerisation to the trans-RuIII species, and the formation of trans-Ru(dppm)$_2$Cl$_2$ upon subsequent reduction (10). The complex cation trans-[Ru(acac)$_2$(CH$_3$CN)$_2$]$^2^+$ is thermally isomerised to the cis species, at 300°C with a half-life of about 9 days (11). Data for cis and trans-[RuCl(NO)(bpy)$_2$]$^2^+$ have been reported (12), but no inter-conversion experiments were reported. Some bis(dithiocarbamate)nitrosyl complexes of ruthenium, such as cis-Ru(NO)(S$_2$CNMe$_2$)SCN can be thermally converted to the corresponding trans isomer, in the solid state, at 220°C (13). Transformations in the rather more complex Ru(AzPy)$_2$Cl$_2$ (AzPy = 2-phenylazopyridine) have also been explored (14). A very detailed contribution discusses the formation of all trans, ttt-Ru(CO)$_2$Cl$_2$(PR$_3$)$_2$ species which isomerise in chloroform at from 50°C (actual temperature depending upon the phosphine) to the all cis, ccc-Ru(CO)$_2$Cl$_2$(PR$_3$)$_2$ species which then isomerises to the thermodynamically stable cct-Ru(CO)$_2$Cl$_2$(PR$_3$)$_2$ species (15). Our systems appear to be the first ruthenium species to be reported where isomers may be isolated by addition of an external common ligand (vide infra).

Nuclear Magnetic Resonance Studies: Trans-Ru(R-Py)$_2$(DTBDiox)$_2$ complexes can exist in two forms with C$_{2h}$ and C$_{2v}$ symmetry depending upon the relative orientation of the t-butyl groups. Previously we have demonstrated (7) that for all of these complexes, only two t-butyl resonances are observed for the DTBDiox ligands indicative of a single isomer having been prepared. The X-ray data (3) for both the (S) trans-Ru(4-t-BuPy)$_2$(DTBDiox)$_2$ and the oxidised (O1) trans-[Ru(3-C1Py)$_2$(DTBDiox)$_2$]$^+$ cation show that these trans isomers in the
solid state have C_{2h} symmetry.

The cis-Ru(R-Py)$_2$(DTBDiox)$_2$ species can exist as three different geometric isomers which could give rise to eight t-butyl resonances in their 1H NMR spectra (Exot.). Four different t-butyl resonances arise from two cis isomers with same C_2 symmetry (so-called symmetric isomers). Another four different t-butyl resonances come from the third cis isomer which has C_1 symmetry (asymmetric isomer). In fact, these eight t-butyl resonances are observed for cis-Ru(3-ClPy)$_2$(DTBDiox)$_2$, although we have been unable to separate these three cis isomers.

When isomerisation of the trans-Ru(3-ClPy)$_2$(DTBDiox)$_2$ species was followed by NMR, in d$_8$-toluene, the resonances for all three cis isomers grew in at approximately the same rate (16).

Electrochemistry: The electrochemical behaviour of the cis-Ru(R-Py)$_2$(DTBDiox)$_2$ species is very similar to that of the trans analogues (Table 3). Assignments have been discussed in depth previously (6,7). Arguments have been expressed in the literature relating differences in the electrochemical behaviour of cis and trans pairs, to differences in electronic structure. Thus the ruthenium centred waves observed with the cis and trans [RuCl(NO)(bpy)$_2$]$^2^+^$ nitrosyl species (12) differ by only 10 mV, but there is a substantial difference (170 mV) in the nitrosyl reduction wave for these two isomers, implying some marked structurally dependent electronic changes localised on the nitrosyl group. The M^{III}/M^{II} potentials for the pairs of cis and trans isomers M(dppm)$_2$Cl$_2$ ($M = \text{Os, Ru}$) (10), differ by 370 mV (Ru) and 460 mV (Os) with the cis isomers being the most difficult to oxidise, the difference being attributed to the difference in π-back-bonding capability in the pairs of isomers. Where more than one π-accepting ligand is present, such as in the series [Ru(dppm)$_2$(CO)X]$^+$ and [Ru(bpy)(dppe)(CO)X]$^+$ ($X = \text{Cl, Br, I}$) (17), the trans isomer is more difficult to oxidise by up to 450 mV. In our dioxolene system, couple V (Table 3) is most closely associated with the RuIII/RuII couple (6,7). The lack of any shift in this couple between cis and trans isomer arises because at this oxidation level, the RuII is bound to the
non-\(\pi\)-accepting catechol. The remaining couples involve redox processes which are more localised on the dioxolene residues and are, accordingly, less sensitive to the geometry of the isomer.

Kinetic Studies. The kinetics of the isomerisation reactions of \(\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2\) (2.07 \(\times\) 10\(^{-4}\) M) were investigated at various temperatures with 3-chloropyridine concentrations ranging between 1.6 \(\times\) 10\(^{-2}\) M and 2 \(\times\) 10\(^{-1}\) M (see Expt.) Values of \(k_{\text{obsd}}\) were derived from a Guggenheim plot (8) (Figure 3). The reaction followed pseudo-first-order kinetics:

\[
\frac{\text{d}[\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2]}{\text{dt}} = k_{\text{obsd}}[\text{Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2]
\]

over at least for four half-lives. Values of \(k_{\text{obsd}}\) at constant [3-chloropyridine] were independent of the concentration of [Ru(3-ClPy)_2(DTBDiox)_2].

Plots of \(1/k_{\text{obsd}}\) against [3-chloropyridine] were linear (Figure 4). This linearity is consistent with the following mechanism:

\[
\begin{align*}
\text{[2]} & \quad \text{trans-Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2 \xrightleftharpoons[k_1]{k_1} \text{Ru}(3\text{-ClPy})(\text{DTBDiox})_2 + 3\text{-ClPy} \\
\text{[3]} & \quad \text{Ru}(3\text{-ClPy})(\text{DTBDiox})_2 \xrightarrow{k_r} [\text{Ru}(3\text{-ClPy})(\text{DTBDiox})_2]^* \\
\text{[4]} & \quad [\text{Ru}(3\text{-ClPy})(\text{DTBDiox})_2]^* + 3\text{-ClPy} \xrightleftharpoons[3\text{-ClPy}]{k_-} \text{cis-Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2
\end{align*}
\]

Assuming step [4] is fast and using the steady-state approximation (8) for [Ru(3-ClPy)(DTBDiox)_2], the rate of isomerisation is:

\[
\begin{align*}
\text{[5]} & \quad -\frac{\text{d}[\text{trans-Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2]}{\text{dt}} \\
& = \left(\frac{k_1 k_r}{k_1 [3\text{-chloropyridine}] + k_r}\right)[\text{trans-Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2] \\
& = k_{\text{obsd}}[\text{trans-Ru}(3\text{-ClPy})_2(\text{DTBDiox})_2]
\end{align*}
\]

The calculated \(k_1\) and \(k_-/k_r\) derived respectively from the intercept \((1/k_1)\) and the slope \((k_-/k_1 k_r)\) are listed in Table 2. An Arrhenius plot of \(\ln(k_1)\) versus inverse temperature led to an activation energy of 148 \(\pm\) 6 kJ/Mole, and, using the Eyring expression
an activation entropy of 88 ± 17 J/Mole.

The data (Figure 4) are consistent with a dissociative mechanism in which a pyridine ligand is lost to form a five coordinate intermediate which can either re-attach the pyridine ligand and return to the trans isomer, or undergo a twist, first to form two different trigonal bipyramidal intermediates (e.g. see (15)) differing in the orientation of the t-butyl groups on the dioxolene ligands. These two intermediates can be interchanged by a pseudo-rotation. When the pyridine ligand is re-attached to these intermediates, all three cis isomers are formed. Ligand loss and formation of the five coordinate intermediate lead to alternative decomposition pathways when insufficient pyridine is present to trap the intermediate.

The positive activation entropy value associated with reaction [1] is consistent with the dissociative mechanism (15, 18-21). Indeed both the activation enthalpy and entropy have values close to those reported previously for mechanisms involving the loss of a ligand from a six coordinate ruthenium(II) species (15, 20). Specifically there is a close similarity between the activation data reported here and those detailed for the isomerisation of the Ru(CO)$_2$Cl$_2$(PR$_3$)$_2$ species (15).

A mixed ligand experiment shows that the rate of isomerisation of trans-Ru(3-ClPy)$_2$(DTBDiox)$_2$ in the presence of bulk 4-methylpyridine is different from that with bulk 3-chloropyridine (and vice versa). Although additional kinetic data cannot readily be extracted because the electronic spectra of the various R-Py species do not differ sufficiently, the result supports the proposed mechanism.

Electronic spectra:

The electronic spectra of these new cis species reveal some subtle but important differences from the previously reported (7) spectra of the trans species. The NIR band in the cis-S species shifts slightly to lower energy with more electron donating pyridine ligands (Table 1), consistent with the MLCT Ru d \rightarrow semiquinone (π*) transition, previously assigned in the spectra of the analogous bipyridine species (6). The lower energy of this band
in the pyridine series, relative to the bipyridine series, arises from the greater stabilisation of
the d orbitals by the bipyridine ligand. There is no shift with pyridine substituent in the
spectra of the trans-S species (7), for the corresponding band which has little CT character.

The behaviour of the second band, near 600 nm, is more ambiguous, but does shift to
the red with the more electron accepting 3-chloro substituent. This is an \(n \rightarrow \pi^*\) transition
which evidently has some LMCT character.

The third band, near 400 nm, is evidently Ru (d\(\pi\)) \(\rightarrow\) R-Py (\(\pi^*\)), since it shifts to
lower energy in the sequence 4-methyl > 3-chloro > 4-Phenyl, this last having an especially
low energy \(\pi^*\) orbital extending over the phenyl group.

To confirm certain subtle conclusions concerning the differences in electronic structure
between the cis and trans series, some of these species were oxidised, with silver ion, to the
O1 species, to obtain their electronic spectra. These O1 complexes, which were not
isolated, have spectra closely related to the spectra of the cis-O1 bipyridine analogues (6)
rather than to their trans-O1 relatives. Thus the main band has MLCT Ru (d\(\pi\)) \(\rightarrow\)
semiquinone (\(\pi^*\)) character and shifts to lower energy with the more electron donating
pyridines. The corresponding band in the trans species (transition O1,II), (7) has LMCT
character and shifts in the opposite sense with pyridine substituent. The shifts in the second
band, near 520 nm, are too small to comment upon.

These data support previous assignments, (6,7) and indeed add useful corroboratory
evidence. The contrasting dependencies upon dioxolene and pyridine substituents, arise from
changes in the degree of mixing of metal and ligand orbitals due to the symmetry restrictions
imposed by the two geometries (7). The cis isomers are concluded to parallel the bipyridine
species in having somewhat more Ru\(\text{II}\) character than their trans analogues (7).

Conclusion:

**Trans-Ru(R-Py)\(2\)(DTBDiox)\(2\) (C\(2h\)) species are kinetically favoured products during
synthesis and are isomerised to their corresponding cis isomers by warming with an excess of
a pyridine. A dissociative mechanism for this trans \(\rightarrow\) cis isomerisation is proposed.
The electrochemical and optical data for the trans and cis isomers of Ru(R-Py)₂(DTBDiox)₂ are compared. The electronic spectra support previous assignments given for the corresponding cis-bpy complexes (6). Detailed analysis further corroborates earlier arguments (5-7, 22) concerning the degree of mixing between metal and ligand orbitals, and the formal oxidation states of these species.

Acknowledgments:

We thank Dr. Dave Thompson, Dr. Elaine Dodsworth and Prof. D. V. Stynes, for useful discussion, Mr Hitoshi Masui and Mr. Jing Li, for technical help, and the Johnson Matthey Company for the loan of ruthenium trichloride. The financial support of the Natural Sciences and Engineering Research Council (NSERC) (Ottawa) and the Office of Naval Research (Washington) is appreciated. Y-H Tse also thanks NSERC for an undergraduate scholarship during his undergraduate summer training at York University.
References:

16. This, in fact, differs from the behaviour of the corresponding bipyridine complexes, in which only two of the three possible isomers are obtained. Previously (6), we reported that all three isomers were present. This was in error - the seven peaks in the t...
region of the 1H NMR spectra being due to two isomers (C$_1$ and C$_2$ symmetry) and to water. The presence of only two isomers was clearly confirmed by TLC.

Table 1

Electronic Spectroscopic Data for \textit{cis}-Ru(R-Py)\textsubscript{2}(DTBDiox)\textsubscript{2}, (S), and \textit{cis}-[Ru(R-Py)\textsubscript{2}(DTBDiox)\textsubscript{2}]+, (O1), complexesa,b

<table>
<thead>
<tr>
<th>Complex</th>
<th>λ_{max}/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{cis}-Ru(3-ClPy)\textsubscript{2}(DTBDiox)\textsubscript{2}</td>
<td>1001 595 394</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-MePy)\textsubscript{2}(DTBDiox)\textsubscript{2}</td>
<td>1028 587 362(sh)</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-PhPy)\textsubscript{2}(DTBDiox)\textsubscript{2}</td>
<td>1009 597 412</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-BuPy)\textsubscript{2}(DTBDiox)\textsubscript{2}</td>
<td>1017 590 366</td>
</tr>
<tr>
<td>\textit{cis}-Ru(3-ClPy)\textsubscript{2}(DTBDiox)\textsubscript{2}+</td>
<td>738 519 379(sh) 305(sh)</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-MePy)\textsubscript{2}(DTBDiox)\textsubscript{2}+</td>
<td>748 511 378(sh) 315(sh)</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-PhPy)\textsubscript{2}(DTBDiox)\textsubscript{2}+</td>
<td>743 526(sh) 369(sh)</td>
</tr>
<tr>
<td>\textit{cis}-Ru(4-BuPy)\textsubscript{2}(DTBDiox)\textsubscript{2}+</td>
<td>761 513 371(sh)</td>
</tr>
</tbody>
</table>

a) solvent: DCE Data for the \textit{cis} (S) species from solid starting materials. \textsuperscript{b) Oxidised (O1) species are prepared by the oxidation of S species with Ag+ ions in DCE, followed by filtration through Celite.
Table 2 Rate Constants k_1 and k_{-1}/k_r for Isomerisation of $\text{trans-Ru(3-ClPy)}_2(\text{DTBDiox})_2$ at Different Temperatures.a

<table>
<thead>
<tr>
<th>Temp. K</th>
<th>$k_1\times10^{-4}$ s</th>
<th>k_{-1}/k_r (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>1.74(0.19)</td>
<td>12.7(2.2)</td>
</tr>
<tr>
<td>96</td>
<td>3.76(0.08)</td>
<td>12.7(0.4)</td>
</tr>
<tr>
<td>100</td>
<td>6.82(0.41)</td>
<td>10.2(1.0)</td>
</tr>
<tr>
<td>105</td>
<td>12.0(0.1)</td>
<td>9.4(1.5)</td>
</tr>
<tr>
<td>110</td>
<td>20.7(0.1)</td>
<td>6.7(0.5)</td>
</tr>
</tbody>
</table>

a Data derived from the k_{obsd} data cited in Experimental section.

Standard deviation in parenthesis.
Table 3
Electrochemical Data for Ru(NN)$_2$(DTBDiox)$_2$ Complexesa

<table>
<thead>
<tr>
<th>Complex</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-Ru(3-ClPy)$_2$(DTBDiox)$_2$b</td>
<td>+1.08</td>
<td>+0.30</td>
<td>-0.60</td>
<td>-1.51qr</td>
</tr>
<tr>
<td>cis-Ru(3-ClPy)$_2$(DTBDiox)$_2$</td>
<td>+1.01</td>
<td>+0.35</td>
<td>-0.71</td>
<td>-1.54qr</td>
</tr>
<tr>
<td>cis-Ru(bpy)(DTBDiox)$_2$c</td>
<td>+1.00</td>
<td>+0.31</td>
<td>-0.71</td>
<td>-1.42</td>
</tr>
</tbody>
</table>

a) Measurements were made using 1,2-dichloroethane solutions of the starting materials (10$^{-3}$M) containing 0.2M TBAP. $E_{1/2}$ values are obtained from the cyclic voltammetry at 100mVs$^{-1}$. qr = quasi-reversible. For assignment of the redox couples, see refs.(6,7). b) ref.(7). c) ref.(6). The assumed position of the Fe$^+/Fe$ couple used in reference (6) differed by +0.115 V relative to that assumed here. The potentials taken from reference (6) have been appropriately corrected.
Figure Legends

Figure 1. Visible-Near infrared spectra for cis-(.) and trans-Ru(3-ClPy)₂(DTBDiox)₂ (-) in 1,2-dichloroethane.

Figure 2.
A typical data set showing successive scans of the visible spectrum during the isomerisation of trans-Ru(3-ClPy)₂(DTBDiox)₂ (2.07 x 10⁻⁴ M) in the presence of an excess of 3-chloropyridine (1.0 x 10⁻¹ M) at 100°C in o-dichlorobenzene. The first scan in the experiment was not recorded on the spectrum.

Figure 3.
Guggenheim Plot using data from Figure 2 at wavelength = 600 nm for the isomerisation of the trans-Ru(3-ClPy)₂(DTBDiox)₂ complex. The delay time in the Guggenheim plots is approximately two half-lives.

Figure 4.
Plots of 1/k_{obsd} vs. [3-chloropyridine] for the isomerisation of Ru(3-ClPy)₂(DTBDiox)₂ at 100°C, in o-dichlorobenzene, at (from upper to lower), 91, 96, 100, 105 and 110°C.
TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

<table>
<thead>
<tr>
<th>Office of Naval Research (2)</th>
<th>Dr. Richard W. Drisko (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 1113</td>
<td>Naval Civil Engineering Laboratory</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>Code L52</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>Port Hueneme, CA 93043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. James S. Murday (1)</th>
<th>Dr. Harold H. Singerman (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>David Taylor Research Center</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Code 283</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Annapolis, MD 21402-5067</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Robert Green, Director (1)</th>
<th>Chief of Naval Research (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 385</td>
<td>Special Assistant for Marine Corps Matters</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>Code 00MC</td>
</tr>
<tr>
<td>China Lake, CA 93555-6001</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22217-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Eugene C. Fischer (1)</th>
<th>Defense Technical Information Center (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 2840</td>
<td></td>
</tr>
<tr>
<td>David Taylor Research Center</td>
<td></td>
</tr>
<tr>
<td>Annapolis, MD 21402-5067</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Elek Lindner (1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Code 52</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92152-5000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer (1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard E. Douda</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
</tr>
</tbody>
</table>

* Number of copies to forward
ABSTRACT DISTRIBUTION LIST

Professor Hector Abrúña
Department of Chemistry
Cornell University
Ithaca, NY 14853

Professor C. A. Angell
Arizona State University
Department of Chemistry
Tempe, AZ 85287

Professor Allen Bard
Department of Chemistry
University of Texas at Austin
Austin, TX 78712-1167

Professor Douglas Bennion
Department of Chemical Engineering
350 CB
Birgham Young University
Provo, UT 84602

Professor Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, PUERTO RICO 00931

Professor Daniel Buttry
Department of Chemistry
University of Wyoming
Laramie, WY 82071

Professor Bruce Dunn
Department of Materials Science and Engineering
University of California, Los Angeles
Los Angeles, CA 90024

Professor Andrew Ewing
Department of Chemistry
152 Davey Laboratory
Pennsylvania State University
University Park, PA 16802

Professor Gregory Farrington
University of Pennsylvania
Department of Materials Science and Engineering
3231 Walnut Street
Philadelphia, Pennsylvania 19104

Professor W. R. Fawcett
Department of Chemistry
University of California, Davis
Davis, CA 95616
Professor Harry Gray
California Institute of Technology
127-72
Pasadena, California 91125

Professor Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Professor Adam Heller
Department of Chemical Engineering
University of Texas at Austin
Austin, TX 78712-1062

Professor Pat Hendra
The University
Southampton SO9 5NH
ENGLAND

Professor Joseph Hupp
Department of Chemistry
Northwestern University
Evanston, IL 60208

Professor Jiri Janata
Department of Bioengineering
University of Utah
Salt Lake City, UT 84102

Professor A. B. P. Lever
Department of Chemistry
York University
4700 Keele Street
North York, Ontario M3J 1P3

Professor Nathan S. Lewis
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Professor Rudolph Marcus
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Professor Charles Martin
Department of Chemistry
Colorado State University
Ft. Collins, CO 80523
Professor Royce W. Murray
Department of Chemistry
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514

Dr. Michael R. Philpott
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Professor B. S. Pons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. Debra Rolison
Code 6170
Naval Research Laboratory
Washington, DC 20375-5000

Professor Donald Schleich
Department of Chemistry
Polytechnic University
333 Jay Street
Brooklyn, NY 11201

Professor Jack Simons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112

Dr. H. Gilbert Smith
TSI Mason Research Institute
57 Union Street
Worcester, MA 01608

Professor Eric Stuve
Department of Chemical Engineering, BF-10
University of Washington
Seattle, WA 98195

Dr. Stanislaw Szpak
Code 634
Naval Ocean Systems Center
San Diego, CA 92152-5000

Professor Petr Vanýsek
Department of Chemistry
Northern Illinois University
DeKalb, IL 60115