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EXECUTIVE SUMMARY

This report contains much of the technical information developed under a research

investigation sponsored by ONR Grant N00014-89-J-1586. Additional information

on various aspects of this study will continue to appear in the open literature in

conference proceeding and forthcoming journal articles.

This research investigation, entitled: Probabilistic Finite Element Analysis, fo-

cused upon the continued development of recently introduced variational based tech-

niques. Of particular interest was the development of this methodology in the general

area of structural mechanics and for ocean related structural problems. The PFE

approach holds much promise for complex science and engineering problems since,

variabilities in materials and loads can be handled in a very rational manner incorpo-

rating probability density functions. Further, the methodology is a computationally

efficient alternative to tedious Monte Carlo simulations.

Significant issues presented and addressed as part of this research investigation

include: 1.) the definition of appropriate correlation lengths for the PFE model, 2.)

the integration of random field concepts, 3.) the development of the methodology

to treat significant multi-degree-of- freedom (MDOF) models, 4.) the formulation

and computation of second order stress estimates, 5.) the comparison of zeroth order

and combined zeroth and second order response estimates for MDOF simulations

with Monte Carlo simulations, 6.) the introduction of probability density functions

to prescribe both material and load variability, and 7.) the formulation of the force

model required to handle long flexible structural members subject to oscillatory flow

field kinematics.

An interesting aspect which was demonstrated is that this PFE technology can

be incorporated as an add-on to existing finite element software.
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ABSTRACT

Probabilistic Finite Element Analysis of Marine Risers. (December 1990)

F. Vern Leder, B.S., Texas A&M University;

Chair of Advisory Committee: Dr. J.M. Niedzwecki

The finite element method has been used extensively in structural analyses.

Traditionally, the properties of the systems which have been modeled using finite

elements have been assumed to be deterministic. The uncertainties in the struc-

tural response behavior estimates which result from uncertainties in the properties

of the system have been accounted for in design using safety and reduction factors.

As structures become more complex and industry makes use of materials such as

composites, which are known to have random material properties, an alternative

approach to design which quantifies the distributions in response may be required.

Probabilistic finite element techniques, which are capable of assessing the dis-

tributions in response behavior for systems with random material properties, loads

and boundary conditions are presented in this thesis. One particular method

termed second-moment analysis is examined in detail. This method includes per-

turbation techniques and is used to compute the expected values and covariance

matrices of probabilistic response behavior. Second-moment analyses in conjunc-

tion with the finite element method require as input the expected values of the

random processes inherent to the system and their covariance matrices. Methods

are also presented to compute these parameters for local element averages of the

random processes which describe the uncertainty in the system.

The offshore industry has assessed the responses and stresses in marine drilling

risers using deterministic finite element techniques for many years. This thesis
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implements probabilistic finite element techniques as developed in the study to

predict the probabilistic response behavior of marine riser systems in which, cer-

tain aspects of the problem are considered probabilistic. Specifically, in one set

of examples the tension applied to the top of the riser is assumed to be a random

variable and in a second set of examples the unit weight of the drilling mud is

assumed to vary along the length of the riser. The probabilistic solutions are

compared to deterministic solutions for the same riser systems as published by

the American Petroleum Institute. Monte Carlo simulations are also performed

as a basis of comparison for the probabilistic estimates.

0

0
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1 INTRODUCTION

The finite element method provides engineers with the ability to model and ob-

tain computer solutions to complex engineering problems. To date, virtually all

structural finite element software packages are formulated within a determinis-

tic framework such that structural material and geometrical properties, damping,

loads and boundary conditions are considered in terms of averages, neglecting

variations about the average. Since uncertainties are inherent in all phenomena.

the effect of variation about the averages is accounted for in design t hrough con-

cepts such as the factor of safety or load factor (Nigaln 198:3). This approach has

proven adequate for many engineering problems where the level of uncertainty

is thought to be low. For many other structural problems, however, the degree

of randomness is high and the usual deterministic approaches are inadequate for

design.

A promising technique which can be used to address these types of problems

involves probabilistic methodologies in combination , . ,ilte element methods.

These require the engineer to identify excessive sources of randomness, construct

their probability models, and incorporate the probabilistic distributions into the

formulation of the problem (Nigam 198.3). Although current finite element soft-

ware packages do not accommodate this systematic treatment of uncertainty,

probabilistic analytical and numerical techniques, consistent with the finite el-

ement method, are currently under development. For most complex. probabilis-

tic, structural problems where finite element analysis is required. Monte Carlo

simulations and probabilistic, also termed stochastic, finite element methods are

suitable. In conjunction with the finite element method, these techniques are used

The following citations follow the style and format of the .Journal of Structural
Engineering, ASCE.
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to assess the probabilistic distributions of structural behavior. They require as

input knowledge of the probability distributions of the random parameters inher-

ent to the problem of interest. This includes expected values and variances of

random variables and, additionally, correlation functions of random fields. Monte

Carlo simulations are fairly straightforward and have been used to solve practical

engineering problems, whereas stochastic finite element techniques are a current

area of research and only recently, have been developed to the point where they

can be used to solve meaningful engineering design problems.

Monte Carlo simulations have been employed in structural analyses where the

level of uncertainty was high and a probabilistic distribution of response behav-

ior was required. The technique is suitable for analyses of structures with large

displacements, nonlinear material properties and arbitrarily shaped boundaries

(Astill 1972). In brief, probabilistic distributions of the sources of randomness

are used to generate sample variables or fields which describe the uncertainties;

these, in turn, are used as input for the finite element analysis. A distribution of

output describing the response behavior is then quantified in terms of statistical

parameters. The advantage of Monte Carlo simulation is that no additional formu-

lation to the governing equations of the problem is required. They are, however,

computationally repetitive due to the large number of samples of input random

variables or fields necessary to achieve statistical stability. In this respect, Monte

Carlo simulations are not an entirely attractive approach for estimating complex,

probabilistic, structural behavior.

Prob-'i:stic, or stochastic, finite element methods are also applicable tech-

niques for obtaining the probabilistic distributions of structural behavior. These

methodologies either formulate probabilistic aspects of the problem directly into

the finite element discretization, or incorporate probabilistic formulations into

4b
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existing finite element software. As a result, these methods require far less com-

putations than Monte Carlo simulations. Since the techniques are a current area

of research, only a limited number of structural problems have been addressed and

only at a very fundamental level. Extension of these methodologies, including the

numerical techniques involved, is required to develop their full potential. Thus,

further research into probabilistic finite element methods is necessary so that a

broad range of structural problems can be addressed. Many areas of structural

mechanics involve probabilistic aspects. This is particularly true of ocean struc-

tures which must routinely operate and survive harsh environmental conditions.

Generally, these structures require a dynamic analysis where the degree of uncer-

tainty in many aspects of the problem is high. Stochastic finite element methods

provide a numerical technique which quantifies this uncertainty in structural be-

havior predictions. To date, only Monte Carlo simulations have been used and

only to a limited extent in probabilistic offshore-related structural problems.

1.1 Literature Review

At present, development of stochastic finite element analysis methods is a dy-

namic area of interest in the structural mechanics field. Of particular interest is

randomness associated with structural material and geometrical properties as well

as stochastic loads, damping and boundary conditions and the overall effects of

uncertainty on response estimates. Numerous researchers have contributed to the

development of various aspects of stochastic finite element methodologies, and a

summary of the more pertinent studies is presented in Table 1. The major thrust

of their research has involved characterizing sources of randomness in terms of

their probability models and formulating the governing equations of structural
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response behavior, consistent with the finite element method, in terms of these

distributions.

Many sources of uncertainty inherent to most structures can be modeled as

stochastic processes which are functions of space rather than time. These specific

processes are the primary focus of stochastic finite element methods. They are

generally termed random fields and are explicitly defined in the context of this

study as random processes where the random parameter is a function of the spatial

coordinates over a structure. In stochastic finite element applications random

fields are generally discretized where the discrete values are taken as element

averages (Vanmarcke 1984). This requires large correlation distances as compared

with element lengths. The techniques employed to characterize these processes

as well as other sources of uncertainty found in most structures, as applied to

finite element response predictions, are relatively new and therefore the available

literature is limited.

Monte Carlo simulations in combination with finite element analyses are one

means of obtaining probabilistic solutions to complex, probabilistic, structural

problems. Astill, Nossier and Shinozuka (1972) developed a Monte Carlo method

capable of assessing structural behavior in problems with spatial variations in

material properties. The technique was shown to be completely compatible with

the finite element method and thus capable of assessing the effects of irregular

boundaries, nonlinear material properties and finite displacements. The authors

presented a method to generate digital representations of bivariate random pro-

cesses from their specified cross-spectral density or equivalent cross-correlation

matrix. A large set of conceptual test cylinders with spatially varying modulus

and material density were generated in this manner and subjected to an impact

load. A finite element analyses was performed on each to determine the stress in
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the cylinder. Useful statistics were extracted from the test results including the

mean and standard deviation in stress.

Although the Monte Carlo method is a useful technique for addressing struc-

tures with stochastic properties, it is often computationally prohibitive. For ex-

ample, the ensemble of sample structures must be sufficiently large to accurately

describe the random processes in a statistical sense. This requires extensive com-

puter time for both generating the realizations and proceeding with the finite

element analyses. Thus, other researchers have attempted to implement the prob-

abilistic aspects of structural analysis directly into the finite element formulation,

requiring far less computational effort.

Second-moment analysis, involving perturbation techniques has attracted con-

siderable attention in research involving probabilistic finite element analyses. The

method applies to both static and dynamic structural problems where stochastic

parameters are described by either random variables or correlated random fields.

In short, the second-moment analysis allows for computation of the first-order co-

variance matrix of structural response, stress, and strain and the expected values

of these parameters up to and including second-order. If the random properties

are Gaussian, then this method only requires, as input, the first two moments of

the random variables or discrete random fields (Yamazaki and Shinozuka 1986).

If the relationship between the random parameters inherent to the system and the

response behavior is linear, then the method is exact (Ma 1986). For this special

case the method is exact for any distribution of the random parameters inherent

to the system. In the event that the relationship is nonlinear, the method should

prove adequate provided the variances in the random parameters associated with

the system are small (Ma 1986). In the case of correlated random fields, the

method requires a large correlation distance as compared with element lengths.
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The random variables and the discretized stochastic fields are represented by one

random vector. The first-order means of structural behavior are obtained using

local element averages as input to the finite element analysis. Next, sensitivity

vectors are computed by differentiating the parameters of interest with respect to

each discrete element of the random vector, where the differentials are evaluated

at the mean values of the discrete random elements. For dynamic problems the

differentials of the kinematics and stresses can be obtained using implicit time in-

tegration techniques which require that the number of time integrations be equal

to the dimension of the random vector (Liu, Belytschko and Mani 1985, 1986). In

cases involving nonlinear systems or when analytical differentiation of the system

matrices is difficult, differentiation of the parameters of interest can be performed

using finite difference techniques (Liu, Belytschko and Mani 1985, 1986). At this

point, the covariance matrices of the parameters of interest are obtainable. The

second-order means, which are estimated from a truncated Taylor series expan-

sion about the mean values of the parameters of interest, are then calculated. If

the discrete random fields are uncorrelated, the procedure is simplified. In this

case the covariance matrix representing the random vector is a diagonal, thus

reducing computational effort (Liu, Belytschko and Mani 1985, 1986). In the

second-moment method, the superposition of the covariances of the response for

two different, uncorrelated (to each other) random fields of a structure is the same

as when both random fields are present simultaneously (Liu, Belytschko and Mani

1987), thus allowing for multiple uncorrelated random fields representing random

matcr.al properties, loads and boundary conditions.

Second-moment methods consistent with the finite element method have been

developed to assess a two-dimensional foundation settlement analysis with a spa-

tially varying modulus of elasticity (Baecher and Ingra 1981). In this problem the
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variation about the mean trend of the modulus was treated as one realization of

a two-dimensional, second-order stationary random field.

Second-moment analysis techniques have also been used to obtain the proba-

bilistic distributions of dynamic, transient response of truss structures (Liu, Be-

lytschko and Mani 1985, 1986). For problems of this type, consisting of discrete

structural elements, the computational procedures are simplified by assuming that

the random parameters are uncorrelated. Improved computational procedures

have been developed further which enhance the second-moment methodology.

To simplify the analysis in problems involving correlated random fields, the full

covariance is transformed into a diagonai variance matrix (Liu, Belytschko and

Mani 1987). The discretized random vector is, therefore, transformed into an

uncorrelated random vector via an eigenvalue orthogonalization procedure. Com-

putations using the second-moment analysis are further reduced due to the fact

that only the largest eigenvalues are necessary to represent the random field. It is

also possible to discretize the random field using shape functions (Liu, Belytschko

and Mani 1987). Further computational efficiency is accomplished by reducing the

probabilistic finite element equations to a smaller system of tridiagonal equations 0

using the Lanczos reduction technique (Liu, Besterfield and Belytschko 1988a).

This algorithm provides a reduced basis from the system eigenproblem. It also

provides a means to eliminate secular terms in higher-order estimates of expected

dynamic response parameters, which are known to arise in some specific problems

when using second-moment analysis.

A probabilistic Hu-Washizu variational principle formulation has also been

used in conjunction with the second-moment analysis to assess probability dis-

tributions of response (Liu, Besterfield and Belvtschko 1988a). Probabilistic dis-

tributions for the compatibility condition, constitutive law, equilibrium, domain
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and boundary conditions are incorporated into the variational formulation. Solu-

tion of the three stationary conditions for the compatibility relation, constitutive

law and equilibrium yield the variations in three fields: displacement; strain and

stress. The second-order means and first-order covariance are also computed as

above.

Another stochastic finite element method utilizes a Neumann expansion of the

operator matrix (Shinozuka and Dasgupta 1986). Again, the random geometri-

cal and material structural properties are represented in terms of a discretized

random field with a large correlation distance as compared with element lengths.

Unlike second-moment analyses, no partial differentiation is required. The au-

thors first considered the static equation where the response vector was written in

terms of a recursive formulation involving the mean response, the inverted mean

system stiffness matrix and the deviatoric parts of the corresponding elements

in the stiffness matrix. The expected values of displacement, strain and stress

vectors of any order and the covariance matrices of these variables can be as-

sessed using this method. A consistent Monte Carlo method was employed to

generate the deviatoric stiffness matrices from the normalized fluctuations of the

discretized random field about its mean (Shinozuka and Dasgupta 1986). This

methodology has also been applied to a prismatic bar with a random modulus

subjected to a deterministic static load (Shinozuka and Deodatis 1988). By as-

suming a power spectrum which described the stochastic field, the covariance

matrix of the response displacement vector was calculated analytically as a func-

tion of the number of finite elements, thereby eliminating the necessity for Monte

Carlo simulations. The method was also used to assess the probabilistic response

parameters of a structure with its modulus defined by a two-dimensional random

field (Yamazaki, Shinozuka and Dasgupta 1986). In this paper comparisons were
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made with Monte Carlo simulations and perturbation techniques.

Further approaches to the development of stochastic finite element methods

involved representation of homogeneous random fields in terms of the dimension-

less variance function and related scale of fluctuation (Vanmarcke 1984). This

approach was formulated for one and two-dimensional random fields. The vari-

ance function was shown to measure the "point variance" under local averaging

and the scale of fluctuation was defined as the element length times the variance

function as the element length approaches infinity. Although these serve as the

definitions for the two functions, other interpretations were given, as were models

of the variance function for wide-band processes (Vanmarcke 1984). These param-

eters permit computation of the covariance matrix of "element averages." A shear 0

beam with random rigidity subjected to concentrated and uniformly distributed

loads was assessed using this technique (Vanmarcke and Grigoriu 1983).

The procedures mentioned above provide a means for efficient solution of prob-

abilistic structural problems using stochastic finite element analysis. In each

method where the random fields are correlated over the structure, the element

size is required to be smaller than the maximum length over which apprecia-

ble correlation occurs. For problems involving structural dynamics, Monte Carlo

methods and second-moment analysis appear to have received the most attention.

1.2 Research Study

Current research into probabilistic finite element methodologies has resulted in

computationally efficient techniques which quantify uncertainty in structural prob-

lems. The variety of problems considered in the literature is quite limited and,

in general, assumptions concerning random structural parameters are required.

Research directed at extending and applying the methods to a broader range of
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problems would benefit the structural engineer. Of particular interest is the use of

probabilistic finite element techniques for offshore applications. Loading scenar-

ios within this environment are stochastic resulting from wind, wave, current and

foundation excitation. Uncertainty also exists in the overall damping and force

coefficients, necessary for load predictions. Furthermore, material and geometrical

uncertainties inherent to structural members also require consideration.

This study focuses on the development and application of stochastic finite

element techniques to problems involving offshore structures. A review of the lit-

erature indicates that Monte Carlo simulations and second-moment analyses are

suitable methods for obtaining the probabilistic distributions of dynamic struc-

tural behavior. The second-moment analysis technique is more efficient in terms

of computation time, but is untested in offshore related problems. This method,

therefore, requires further development where Monte Carlo simulations are useful

to provide checks in accuracy.

It is the objective of this thesis study to build upon previous theoretical de-

velopments and to implement a stochastic finite element technique which can
0 be directly applied to offshore structural analysis. The stochastic finite element

methodology is specifically formulated to address problems involving probabilistic

response predictions for an offshore drilling riser. The riser model is described in

an American Petroleum Institute (API) bulletin which compares eight industrial

riser programs (API 1977). All aspects of the problem in the API bulletin are

considered deterministic. For this study, certain parameters in the problem are

considered to be probabilistic. One set of examples examines the sensitivity in

response behavior to a random pretension applied at the top of the riser. In a

second set of examples the unit weight of the drilling mud contained within the

riser is assumed to vary along the length of the riser. Probabilistic finite ele-
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ment software is developed to estimate the second-order means and first-order

variances in responses and stresses. Monte Carlo simulations are also used for

comparison of these results. Thus, using probabilistic finite element techniques, a

quantitative assessment of uncertainty is achieved. The sensitivity of the overall

dynamic response to each of these probabilistic parameters is also obtained. Com- 0

parison of probabilistic predictions with those made using deterministic programs

developed by industry indicate the relative importance of probabilistic analyses

in riser response predictions. It is worth noting that many uncertainties exist in 0

the design and analysis of offshore risers. For this study, only those sources of

uncertainty which appear to have the most significant impact on the behavior of

the structure are selected for numerical simulations. 0

0
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2 FORMULATION OF THE SECOND-MOMENT ANALYSIS

METHOD

Probabilistic finite element methods involve application of second-moment anal-

ysis techniques in conjunction with the finite element method in order to assess

the probabilistic distributions of response behavior for stochastic systems. In this

chapter the second-moment analysis method is developed in detail and is incor-

porated into the conventional finite element formulation. The probabilistic finite

element method which results is applicable to both static and dynamic problems

where the response distributions can be predicted as functions of uncertainties

inherent to the system. Sources of randomness include geometrical and material

properties, excitation, damping and boundary conditions. Second-moment tech-

niques are exact if a linear relationship exists between the random parameters

and the predicted response behavior. If this relationship is moderately nonlin-

ear, then the method should prove adequate for coefficients of variation in the

random structural properties less than 0.2 (Ma 1987), where the coefficient of

variation is the ratio of standard deviation to the mean. Second-moment analy-

ses require information concerning the distributions of the sources of uncertainty;

more specifically the mean and variance for random variables and, additionally,

the correlation function for correlated random fields. The correlation distance

for random fields is required to be large as compared with the length of discrete

elements. Formulation for the probabilistic finite element method incorporating

second-moment analysis, as developed by Liu, Belytschko and Mani (1985), is

presented below. A probabilistic mass matrix, not addressed by these authors, is

also considered.
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2.1 Finite Element Equations

Upon completion of a finite element discretization of a structure, the n-degree of

freedom equations of motion can be written in matrix form as

M~i(t) + C.+(t) + Kx(t) = F(t), (1)

where M, C, and K represent the mass, damping and stiffness matrices. The

force vector, F(t), and the displacement vector, x(t), are functions of time, t,

where the superscript dots represent time derivatives.

If the system matrices and force vector are random functions of uncertainties

inherent to the structure, the probabilistic finite element approach may be appli-

cable. Probabilistic distributions of all sources of randomness are incorporated

into a q-dimensional random vector, b, such that the equation of motion now can

be expressed as

M(b) (b,t) + C (b) i(b,t) + K(b)z(6,t) = F(b, t). (2)

2.2 Random Vector Formulation

Formulation of the random vector can be visualized by considering Figure 1. In

Figure la the beam, whose thickness is a homogeneous random function of the

axial coordinate, is subject to a harmonic point load with a random amplitude.

The process corresponding to the beam thickness, a(z) is shown in Figure 1b,

where the mean trend is specified as E[a(z)]. If the mean trend is extracted from

the process corresponding to the beam thickness, then the constant variance is

denoted var[a] and the correlation of a(z) is represented by the function pa(r),

where r is an arbitrary correlation length. The distribution of the random force
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amplitude, A, is specified in terms of its mean, E[A], and its variance, var[A].

Once all of the significant sources of randomness and their probability models

have been identified, the random vector, b, can be formulated. The elements of b

represent correlated distributions of local spatial averages of stochastic properties

(i.e., beam thickness), or distributions of random variables (i.e., force amplitude).

From Figure 1c, the beam is discretized into n elements where the length of

element z is t,. The process representing the beam thickness is then averaged over

each element such that the variable, a, represents the distribution of the average

of a(z) over element z. If the process is assumed to be ergodic in the mean, the

expected value of a, is equal to E[a(z)].

For this example the dimension of the random vector becomes (n + 1), where

the first n elements of b represent correlated discrete distributions of the mean

beam thickness over elements (1,..., n) and the (n + 1)th element of b represents

the distribution of the force amplitude. Thus, b is equal to (bi,..., b,, bn+l) and

represents the distributions of (a,... , a,, A).

The vector, 6, is defined as a mean vector where each element of b represents

the expected value of the corresponding element in the random vector (i.e., b, =

E[b,]). A probabilistic analysis requires, in addition to b, the covariance between

the elements of b, and b.. Since the random field, a(z), is correlated with itself

and uncorrelated to the harmonic excitation amplitude, the covariance matrix,

Cov[b,, b,], becomes

I Cov[a,,aj] ifz<n n

Cov[b,, b,]= var[A] if z = . = n + 1 (3)
0 otherwise
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1 a. 4 sin(wt)

xI

Ut U
a(z)

lb. a z)

z

1C. Asin(w.t)

P(t) P(t)

Figure 1: Beam with stochastic properties.
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2.3 The Correlation Function

Intuitively, as an element length shown in Figure Ic approaches zero, the variance

in the local spatially averaged process, var[a,], approaches the variance of the

entire process, and as f, becomes large var[a,] approaches zero for an ergodic

in the mean process. Vanmarcke and Grigoriu (1983) propose a technique by

which the covariance function of discretized one-dimensional random fields may

be computed as a function of element lengths and position. Consider Figure

2 which depicts the same random field as in the previous example. Assuming

a(z) has been averaged over the same arbitrary element lengths as before, the

covariance between a, and a,, can be expressed as follows

Cov~1,a] -var[a] [Zo2%(Z 0) - Z a(Z1) + Z %a(Z2) - Z32a(Z 3 )] , (4)
Cov[al, a,,] = 2ara]2l 2(4

where -Ya(Z,) is the variance function which depicts the dependence of the vari-

ance of spatial averages on the size of the averaging interval, Z, (Vanmarcke and

Grigoriu 1983). The covariances between any of the element averages, a, and a.,

can be computed in similar fashion upon substitution of a,, a., t, and £j for al,

an, £1 and f, and consistently defining Z0 , Z1 , Z2 and Z3 as depicted in Figure 2.

The variance function is a ratio of the variance of the spatially averaged process

to the variance of the entire process and is computed as

la(Z) = 2jz (1 - )Pa(r)dr.(5)

The variance in a, can also be computed from the variance function

var[a,] = var[a]-Ya(£,). (6)

Use of the exact variance function in conjunction with Equation 4 yields exact
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a(z)

Z0

I Iz

f -z 1 -j f

H Z2  0,I

j 4 - Z 3  - .,

S

Figure 2: Definition of distances in expression for covariances between spatial

averages.
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results for the covariances of element properties (Vanmarcke and Grigoriu 1983).

Unfortunately, adequate information concerning the correlation function is seldom

available to the analyst. Vanmarcke (1983) has proposed approximate expressions

for the variance function which are exact for many wide band processes so that a

detailed description of the correlation function is not required. The methodology

has also been extended to two-dimensional random fields (Vanmarcke 1983).

It should be noted that as the element lengths are increased, the sampling vari-

ability is reduced and important information may be lost. Thus, the correlation

length, L,, which represents the maximum correlation distance over which appre-

ciable correlation occurs, is required to be large as compared with the lengths

of the elements. Several probabilistic finite element studies have examined the

sensitivity of probabilistic response estimates to the correlation length (Baecher

and Ingra 1981, Shinozuka and Deodatis 1988, etc.)

2.4 Random Field Discretization

An alternative approach to the random vector discretization involves the use of

interpolation functions to approximate the random field (Liu, Belytschko and

Mani 1987). The method can be used to predict the expected value and the

covariance functions for a continuous random field provided the expected value and

covariance function for discrete values of the random field are known. Consider

the case of a beam where the thickness, a(z), varies along the axial coordinate,

z. If the process is discretized such that a discrete value of the beam thickness is

denoted as a,, where z = 1, ... , q, then the beam thickness can be approximated

at any point using the discretization
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q

a(z) = , (z)a,, (7)
S=1

where 6,(z) represents the individual shape functions, which are independent of

those used in the finite element discretization. It follows that the expected value

of a(z) is approximated as

E[a(z)] = +a(z)p(a)da

q

= Z,(z)E[a,], (8)

where p(a) is the probability density function of a. The covariance between any

two points of the continuous process, a(zi) and a(z,), can be approximated as

Cov[a(z,),a(zm)] = (a(zi) - E[a(zi)])(a(z,) - E[a(zm)])p(a)da

q q

= ZZ f (zi) k(zm)Cov[a,,a,] (9)
t=1 1=1

Note that each discrete value of the beam thickness represents an individual

element in the random vector, b. Thus, elements which are large, as compared

with the length of the random field discretization, will contribute a large number

of components to the random vector. There is no obvious advantage to including

each discrete point in the process when developing the random vector, as opposed

to using the technique proposed by Vanmarcke, where only the local spatial aver-

ages over the individual elements are considered. In this study, the local spatial

averaging techniques, as suggested by Vanmarcke, are used to develop the random

vector.
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2.5 Taylor Series Expansion

Application of second-moment analysis in the development of probabilistic finite

element methods involves expanding all random functions about the mean value of

each element of b via a Taylor series expansion and retaining up to and including

second-order terms. For a small parameter, -y , the discrete random displacement

vector, z(b, t), is expanded about b via a second-order perturbation as follows

~(bt)~(t±y { b 8) Ab1} ± 12± { a2Xw Abt X 1 1 (10)
2- l =I1 bb bJ

where the vector t(t) is the zeroeth-order displacement given by z(b,t). The

partial derivatives a2() and t are evaluated at b and represent the first-
8h, 8bb, lutda badrprsn hefrt

order variation of displacement with respect to b, and the second-order variation

of displacement with respect to b, and b., respectively. The variable Ab, represents

the first-order variation of b, about E[b,]. Similar expressions can be developed for

velocity and acceleration vectors by taking first and second-order time derivatives

of Equation 10. The mass, stiffness and damping matrices and the stochastic force

vector can also be obtained using second-order perturbation techniques

M(b)= +yt-q am Ab, +1 _7_. q b, b, AbAb , (11)

abl b2 =I 3=1 a~b

C(b)=q c6 Ab, + 1 2{ 2C Ab, Ab, (12)

(b) =F 'y F)1 2 q q 92 Kb3 1K(b) =k + I IK1 Ab, + _' E F 0, AXb,Abjl , (13)
1=1  b Ab2j =l 3=1 b b(

F(b,t) = I M+ + 1 q q 2tA b,  (14)
"F() Ib_2 ab~bl
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The matrix functions M, C, k and F(t) represent the mass, damping and

stiffness matrices and the external force vector evaluated at b. The first-order

derivatives represent first-order variations in the matrix functions with respect to

b, and they indicate the sensitivity of the functions to fluctuations about the mean

value of random properties inherent to the system. The second-order differentials

represent second-order variations in the matrix functions with respect to b, and

b. and they indicate the sensitivity of the first-order derivatives to fluctuations

about the mean values of the random properties.

The mass, damping and stiffness matrices and the external force vector are

generally represented using analytical expressions, thus allowing the required dif-

ferentiation. For certain nonlinear systems where analytical differentiation is not

possible, the governing equations can be differentiated using finite difference tech-

niques such as the central difference method (Liu, Belytschko & Mani 1985).

Introducing Equations 10-14 into Equation 2 and segregating the resulting equa- 0

tion into terms of order 1, -/ and -t2 yields three independent equations. These

include zeroeth-, first-, and second-order equations which are used to evaluate

;i(t), '9"() and at 6. These vectors are in turn utilized to determine the 0
ab, ab,clbj

distribution of response at any time, t.

2.6 Zeroeth-Order Equation 0

The zeroeth-order equation is assessed by evaluating Equation 2 at the mean

value of all sources of randomness inherent to the system, and thus is analogous

to the deterministic approach where all deviations about the mean are ignored.

The zeroeth-order equation is expressed as

M +(t) + C (t) + K:(t) = F(t). (15)
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Solutions for the kinematics are obtained using a numerical time integration tech-

nique such as the implicit Newmark method (Bathe 1982).

2.7 First-Order Equations

To obtain the first-order equations of motion, Equation 2 is differentiated with

respect to each element of the random vector. Thus, the sensitivity in the kine-

matics to b, are computed from the following first-order equation

___ W a(t)K (t)

A abx A ab,(16)
0 bb - b =(t +

The sensitivity vectors, 8b, i' ab, b c pb, uted using the same

numerical time integration technique as employed to solve the zeroeth-order equa-

* tion. Note that the total number of first-order equations to be solved is equal to

the dimension of the random vector.

2.8 Second-Order Equation

The second-order equation is assessed to obtain second-order deviations about

the mean response, A (t), and is computed from the following equation

MrAi(t) + CAX(t) + kA:(t) = AlF(t), (17)

where
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-E11 ' Cov[b,, bi}

q q f ['9 16 + +Cl q" 6 ' , Cov[b,,b,]l=I8= b -bb 8b, b -bb ob, b

1 E q 2 a8 2C a2 K1
Sb 8 a b X ( t ) + bb x M(t) + obb t(t) Cov[b,,bj, (18)
2 =1 3=l tb

and /t(t) can be written as

t=--1 1=1

Upon substitution of the zeroeth-order kinematics, sensitivity vectors and second-

order differentials of the system matrices and force vector, all evaluated at 6, into

Equation 18, the second-order equation of motion, Equation 17, can be computed

in terms of At(t), AX(t) and Ai(t) using the same numerical time integration

scheme.

2.9 Probability Distributions of Response Estimates

After solutions to Equations 15-17 have been obtained, the expected value of the

response kinematics accurate to second-order and the covariance between elements

1 and m of the response kinematic vectors can be ascertained. As defined in Ma

(1987), the second-order accurate expected value of an arbitrary random vector,

g(b), is

E[g(b)] + g + q I 82g Cov[b,,b . (20)

Thus, the second-order response vector at time, t, can now be defined as
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E[x(b, t)] -_ t(t) + A i(t). (21)

The n x n covariance matrix for the response at degree of freecioms I and m is

computed from the following first-order formula (Liu Belytschko and Mani 1987)

COV[XL~t),Xm~t) q q 6,t 8
COV[Iqt) X )) o ) Cov[b,,b]j. (22)

v 't)t))(t)t=l j=1 i b

The variance in response at degree of freedom I is thus defined as

var[x(t)]zz (I ( a t) ( 8x,(t) Cov[b., b]}. (23)

Note that the second-order accurate expected values in structural velocities

and accelerations and their first-order accurate covariance matrices can also be

computed by taking the appropriate time derivatives of Equations 21 and 22.

2.10 Computational Aspects of the Probabilistic Finite Element Method

The computational aspects of the probabilistic finite element method are presented

in a flowchart in Figure 3. The amount of computation time required by the

analysis is reduced if the covariance matrix, Cov[b,, b,] is not full, as in the case of

uncorrelated elements in b. For example, when no correlation exists between any

of the elements of b, Equation 22 reduces to

var[xj(t)] - 1: 9 , )var[b,]}. (24)

When the correlation between a number of elements of b is high, the covariance

matrix can be reduced to a diagonal to enhance computational efficiency. This is

accomplished via an eigenvalue orthogonalization procedure where only a small

number of large eigenvalues, computed from the covariance matrix, are used to

describe the variance in the random field (Liu, Belytschko and Mani 1987). The
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dimension of b is reduced by the number of eigenvalues discarded, thus reducing

the number of time integrations. -

Further, note that the effective stiffness matrix in Equations 15-17 remains

unchanged; therefore, only one factorization of the stiffness matrix is required.

Furthermore, response kinematics and their differentials with respect to the ele- -

ments of b are used in the "force vector" of each subsequent equation, and thus

Equations 15-17 could most efficiently be solved in parallel. If analytical differ-

entiation is possible, then the entire probabilistic finite element method requires

q + 2 time integrations: one to solve the zeroeth-order equation; q to solve for the

sensitivity vectors and one more to solve the second-order equation. For certain

non-linear systems analytical differentiation with respect to the elements of b is S

impossible and explicit numerical differentiation techniques, such as the central

difference method, are required (Liu, Belytschko & Mani 1985). Similar proce-

dures can also be developed to compute the probabilistic distributions of stresses,

but this method can prove computationally expensive (Liu, Belytschko and Mani

1985).
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Structure with inherent uncertainties

I
Determine expected values and

correlation functions for
sources of uncertainty

'I
For random fields, compute local

averages and correlation functions
for local averages

Assemble the random vector

Solve the zeroeth-order equation
at the mean value of the

random vector

Solve for the
first-order

sensitivity vectors

Solve the second-order equation
to compute second-order deviations

from the zeroeth-order response

Compute the first-order
accurate covariances in

the response field

Compute the second-order
accurate

response field

Figure 3: Schematic of the probabilistic finite element method.
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3 SIMPLE ILLUSTRATIVE EXAMPLE

A random two-degree of freedom system is used to demonstrate the second-

moment analysis method. The Monte Carlo simulation technique is used to pro-

vide a means of assessing the accuracy of the second-moment predictions. The 0

problem statement as presented by Liu, Belytschko and Mani (1985) is shown

in Figure 4, where the stiffness of each spring is described by a normal ran-

dom variable. A second-moment analysis is performed to estimate the first and

second-order expected values and variance in the response vector, and a Monte

Carlo simulation is employed to assess these results.

The harmonic excitation, F(t), and masses, mn and in2 , are deterministic

parameters, whereas, the spring constants, k, and k2, are described by independent

normal distributions. The coefficient of variation for both spring constants is 0.05.

The stiffness matrix can be expressed as

K=[k 1
+ k2 - k2 ] (25)K= -k2 k2

There is some question as to how the damping matrix was computed in the 0

original paper. For this study 3% proportional damping is assumed such that the

damping matrix is equal to

C mi + [ ,+k2 -k 2  (26)
rr12 I- k2 k2

where the coefficients, a and /3, are evaluated by uncoupling the equations of

motion and computing a and /3 such that the equations 2w, = a + O3w , are

satisfied, where z = 1,2, is the proportion to critical damping and is equal to

3% and w, , .- the zth natural frequency of the system. The natural frequencies

are 5,124 rad/sec and 10,904 rad/sec. The coefficients, a and /, are computed as
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kj k

ml -2 F(t)

= 0.372 lb-sec 2 /in

M2= 0.248 lb-sec 2 /in

F(t) =25.0 x 10' sin(2000t) lb

E[ki] 24 x 106 lb/in

E[k2] 12 x 106 lb/in

2 1012 (bn)2

2 )
O~2= 0.36 x 1012 (lb/in)

Figure 4: Rtandom 2-DOF oscillator.
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209.15 and 3.7434 x 10-6, respectively.

The random vector denoted by k represents the distributions of the spring

stiffnesses. Note that the covariance between k, and k, is equal to zero. The

equation of motion for this probabilistic system is

Mi (k,t) + C(k) c(k,t) + K(k) x(k,t) = F(t). (27)

The zeroeth-order equation is evaluated at k and computed as follows

Mx(t) + Co(t) + Kj(t) = F(t). (28)

A second-moment analysis is performed to evaluate the following: 1) zeroeth-

order mean response vectors; 2) sensitivity vectors; 3) variance in response vectors 0

and 4) second-order mean response vectors. Equation 28 is evaluated to obtain the

zeroeth-order kinematics. Sensitivity vectors are obtained by differentiating both

sides of Equation 27 with respect to k,, evaluating the differentials of the system •

matrices at k, and solving the resulting differential equations. Differentiating

with respect to k, and rearranging terms such that the sensitivity vectors are on

the left-hand side of the equation, the sensitivity vectors are computed from the 0

following first-order formula

M- (t) +  (t) A + z(t) =- { -C :(t) + K k(t)l, (29)
Okk k, A, k k, k Ak,k J

where

(9K [1 
(30)49k, - 0 0

OK -1 (31) 0

Ak2
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a [ c] (32)ak, 0 0'

and

ac [ i~;] (33)Ok2 -

Zeroeth-order estimates of mean response kinematics are determined using the

Newmark time integration method (Bathe 1982). The variance in the zeroeth-

order response of xi(t) is computed from the first-order equation

var[xI(t)] 4 ±{( k var[k,]. (34)

The second-order mean response vectors are computed by solving the second-

order equation

MAX(t) + Cz i(t) + KLSk(t) =

+ var[k,] (35)
-_I C kk Ik , k'r L1

and the expected value of the response vector, accurate to second-order, is

E [x(k, t)] (t) + Ak(t). (36)

A Monte Carlo simulation is also performed to estimate the expected value

and variance in the response vectors. Two independent normal distributions of

random spring stiffnesses are generated, each with 400 samples, and each pair

of random stiffnesses is substituted into the equation of motion to compute a

distribution of response vectors. After 400 time integrations have been completed

the mean, mean squared and variance in the response of x1(t) can be computed
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as
1400

E[xi(t)] = 1 ,(t) (37)
400 =I...

400- (XI, (t)) (38)E[(,())' =400 =

var[xi(t)] = E[(xj(t))2] - E[xj(t)]2 . (39)

The results from the second-moment analysis and Monte Carlo simulations are

plotted in Figures 5-8. Figures 5 and 6 indicate the zeroeth-order and second-

order response of x, (t) and x 2 (t), respectively, and the expected response predicted

by the Monte Carlo simulation. The differences between the second-order mean

response and the mean response predicted using the Monte Carlo method are

negligible, but there is a notable difference between these two estimates of mean

response and the zeroeth-order response. The standard deviation in response

estimates of xi(t) and x 2(t) is shown in Figures 7 and 8, respectively The second-
0

moment analysis estimates tend to overshoot those obtained using Monte Carlo

simulations at large times. This phenomena is a result of resonant excitation

in the first-order equation, Equation 29, which estimates the sensitivity vectors

(Liu, Belytschko and Mani 1985). The resonant excitation is present in Equation

29 because the natural frequencies of Equations 28 and 29 are identical and the

kinematics obtained by solving Equation 28 are used in the excitation of Equation

29. The kinematics predicted by Equation 28 thus reflect the natural frequency

of the system and act as a resonant excitation.

The resonant excitation is present in all equations above the zeroeth-order.

However, it is negligible in structures with a large amount of damping and in anal-

yses which do not extend to large times where steady state response is prevalent

(Liu, Belytschko and Mani 1985). A technique based on Fourier analysis has been

0
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developed to remove these secular terms from higher-order response estimates

(Liu, Besterfield and Belytschko 1986).
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4 APPLICATION OF PROBABILISTIC FINITE ELEMENT

METHODS TO MARINE RISER ANALYSES

Marine drilling risers are an integral part of offshore drilling operations. They

are used to enclose and protect the drill string and provide a path by which the

drilling mud can reach the surface. A typical riser consists of interconnected

sections of steel pipe, kept in tension, which extend from the riser support ring

on the drill ship to the lower ball joint slightly above the sea floor. A drilling

riser is depicted in Figure 9 where the riser is modeled as a beam which is pin-

connected at both the lower ball joint and riser support ring and constrained to

respond with the vessel motions at the riser support ring. Choke and kill lines

are externally connected to the riser, and buoyant material is generally added for

deep water risers. Response and stress envelopes are generated for engineering

design of marine drilling risers, where the envelope represents the maximum and

minimum values of the riser displacements and stresses. These values are then

compared with the allowable displacements and stresses obtained from established

design codes.

Marine drilling risers are commonly analyzed using finite element techniques

(Chakrabarti and Frampton 1982). These analyses are deterministic and typically

neglect the randomness associated with the material properties and the external

loading. Specifically, uncertainties in riser analyses can include stochastic excita-

tion, tension in the riser, and structural and mud properties. Linear stochastic

techniques which incorporate random wind, wave and foundation excitation have 0

been well developed for the finite element method and are commonly employed

in riser analyses. Both linear and nonlinear frequency domain analyses have been

employed to predict the statistical moments in riser displacements and stresses.

0
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*riser support ring

wave and current
0direction

riser

lower ball joint

Figure 9: Marine drilling riser
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In linear analyses only the first-order approximation of the hydrodynamic drag

force spectra is considered and relative motion between the structure and the wave

is neglected. The numerical simulations involved in nonlinear frequency domain

analyses of marine risers are significantly more complicated than those for linear

analyses. Nonlinear stochastic analyses can include higher-order approximations

of the drag force spectra (Niedzwecki and Leder 1990) and relative motion (Sandt

and Niedzwecki 1990). Time domain analyses do not require linearization of the

equation of motion and can be used to assess the probabilistic distributions of

displacements and stresses and to estimate extreme return period events. Com-

parative studies have been performed which demonstrate the range in response

and stress predictions of analogous riser simulations using various industrial finite

element procedures (API 1977).

Sources of uncertainty related to structural properties have received far less

attention than those related to the stochastic excitation and, in general, are either

assumed small and ignored, or conservative estimates are employed thiroughout

analyses. As drilling progresses into extreme water depths these latter sources of

randomness could necessitate a probabilisic analysis of the riser, particularly if

composites which are known to possess highly random material properties become

a viable alternative to steel.

In this chapter the second-moment analysis, as developed in Chapter 2, in

combination with finite element techniques, is specifically developed for a prob-

abilistic analysis of an offshore drilling riser. Monte Carlo simulations are also

employed as a means of comparing results. An assessment of the significance

of inclusion of sources of uncertainty on the distributions of response behavior,

excluding stochastic excitation, is also made.

0
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4.1 Finite Element Model

4.1.1 Formulation of the Equation of Motion

The governing equations adapted for this study are based on those for a vibrating

uniform beam with linear variations in axial tension (Gardner & Kotch 1976).

The approach incorporates axial tension and compression effects and ignores shear

effects. Assumptions regarding the finite element solution require:

i) the angle between the riser and vertical axis remain below ten degrees;

ii) choke and kill lines externally attached to the riser do not contribute to the

bending stiffness and

iii) effects of the drill string, kept in constant tension, are ignored and variations

in top tension propagate instantaneously throughout the riser.

The finite element equations which directly follow are developed within a deter-

ministic framework and then the probabilistic formulations are incorporated.

A differential riser element of length Az is shown in Figure 10, where for

simplicity, the choke and kill lines are not shown and the element is considered

completely immersed in water and filled with mud. The water depth is denoted

as d and the mud column is assumed to span the entire length of the riser, L. The

specific weights of the water, mud, and riser pipe are defined as %, ym and 1,

respectively. The riser is attached to the lower ball joint at an elevation, z0, above

the sea floor and the displacement at any point on the riser at elevation z above

the sea floor at time t is denoted as x(z, t). Externally, the riser is subject to

hydrostatic pressure, a static current force, f,(z), and hydrodynamic wave loads,

f,(z, t). The internal walls of the riser are also subject to static pressure resulting

from the mud column. The riser is initially pre-tensioned at the riser support ring

to some value Ttop in order to support the net weight and to increase the stiffness.
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The tension in a section of riser consists of two components: a constant tensile

force, To, and a linearly varying tensile force due to an increase in tension with

elevation required to support the net weight. The linearly varying tensile force

can be visualized by considering Figure 10, where at the bottom of the differential

element the linearly varying tensile force is zero and at the top of the differential

element it has a value of (-yAp + "tmAi)Az. The variables Ap and Ai represent

the cross-sectional area of the riser material and the internal area of the riser,

respectively.

Integration of the pressures over the surfaces upon which they act, addition of

inertial loads, imposition of equilibrium equations and employment of Bernoulli-

Euler beam theory yields

1[yjA, + ymAi - (CM - 1)7YA,]i(z,t) + EI X(z t)

g (z

-T - (yIAp + -,A,)[L - (z - zo)] + -y.A(d - z)} 8x(z'i)
t"P az 2

- [(-pAp + 3(mA,) - "Amo~ax(z ' t)
a----z- - f (z) + f, (z,t), (40)

where g is the gravitational coefficient, A, is the effective hydrodynamic diameter,

E is the modulus of the pipe, I is the moment of inertia of the pipe and CM is the
added mass coefficient. Equation 40 can be simplified to the governing equation

of a vibrating uniform beam with a linearly varying axial tension

fi(z, t) + EIa 4 x(z,t) _ I(To + T'z) = f(z) + f. (z,t), (41)t)+ O, Oz (T +aTz j

where ih represents the effective mass per length of the riser and T' represents the

derivative of the linearly varying tensile force with respect to z.

0
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To + (ypAp + ymAi)A z

_- _do .---

f.(z + z,) d

I I
I I x

4- I I

I x(z,t) I

fc(z) + fw(z,t)

TO + " ,AoA z

x

Figure 10: Differential element of marine drilling riser.
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4.1.2 Finite Element Discretization

The Lagrange equations are employed to develop the discrete coupled forms of

the equations motion. The work done by the external forces on a riser element of

length e is equal to the total of the potential and kinetic energy. Thus

{[fI(z) + f,(z, t)]x(z, t)} dz =

.of {[Ox(z't)] if O~~t

1 EI[ a t) + (To + T'z)[ ]2 dz+

1 fn [(z't)]2} dz. (42)

A discrete element coordinate system, where x, represents the displacement at

degree of freedom z, is chosen as depicted in Figure 11 such that the deformation

of the riser element at z is approximated as

4

x(z,t) = 0 ,(z)x,(t), (43)

where the element shape functions, 0,(z), are defined as follows

0(z) =1-3 + 2 (44)

(z) z [- -(Z)]2

03(Z) = 3 - 2 (z) (46)

4(Z) = z 4)- (

Substituting Equation 43 into Equation 42 and employing the Lagrange equa-

tions yields the discrete coupled element equations of motion.
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Figure 11" Element coordinate system and nodal degrees of freedom.



46

4.1.3 Development of the Mass and Stiffness Matrices

The elements in the mass matrix are computed by evaluating the integral

M'3= ifnO(z)0(z)dz. (48)

The resulting symmetrical element mass matrix can be expressed as

[156 22f 54 -13t
4? 40  13t? -3 2

M T24- 156 -22t (49)
442

where fn is the effective mass per length. It is dependent upon whether or not the

element is submerged and is computed as

fnp + fn. + hfna for z < d
m= p + fn forz>d ' (50)

where the mass per unit length of the riser and mud and the added mass are 0

denoted rhp, fn, and fh, respectively.

The element stiffness matrix is divided into three components which include

contributions from the bending stiffness, the average constant tension and the 0

linear variation in tension. This can be expressed as

k, = E I ¢'(z) (z) dz

+ TO0 j (z)O,(z)dz + T' j ,(z)0,(z)z dz. (51)

The element stiffness matrix can be evaluated by integrating each of the com-

ponents to obtain the appropriate matrix expressions. Adding these together

yields the final element stiffness matrix. The element bending stiffness matrix is

found to be
S
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6 3U -6 3U

[k]E 2EI 20 -3t J (52)tkm 3 6 -3t 52

2t2

The constant tension element stiffness matrix is computed at the bottom node of

the element relative to the sea floor. Evaluating the second term in Equation 51

yields the following expression

36 3 -36 3
To 4OV2 -3t -2(

[kiT0 = 3 36 -3t (53)

402

where
whr Ttop - {(-yapA + t,A,)[L - (z - zo)]}

T +-y,,,Ao(d- z) for z < d (54)

Ttop - {(QpAp + ,.A,)[L (z - zo)]} forz > d

Finally, the element stiffness matrix accounting for contributions from the linear

variation in axial tension is computed by evaluating the third term in Equation

51 as follows

3 t 3 05 1? 5

[kIT, = T' 30o 1 0 (55)
10

where
T'= ypAp + -yA, - -y,,Ao forz<d

[YPAp + ymA, for z > d (

The total element stiffness matrix can now be assembled, that is

[k] = [k]EI + [k]T0 + [k-]T'- (57)

After evaluating the mass and stiffness matrices for all of the elements, the global

mass and stiffness matrices are assembled. The global mass matrix is denoted as
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M and the global stiffness matrix is denoted as K.

4.1.4 Development of the Damping Matrix

Structural damping is incorporated into the solution of the marine riser system by

introducing Rayleigh proportional damping (James, Smith, Wolford and Whaley

1989). The damping matrix, C, is assumed to be of the form aM +,3K. For sim-

plicity with regard to the probabilistic formulations which follow, the coefficients,

a and /3, are evaluated by predicting, in a least squared sense, the best fit to the

equation 2w, ,, = a + 13w2 where the variables , and Wn, respectively, represent

the proportion to critical damping and the natural frequency of the zth mode.

For the cases examined in this thesis, , is assumed to be constant for the first 0

four modes, and only the first four natural frequencies are used to approximate

the coefficients, a and /3. The predicted modal damping values for the first four

modes, computed using the estimates of a and /3, are approximately equal to the 0

actual values. For higher modes the predicted modal damping values are less than

the actual values.

0

4.1.5 Development of the Force Vector

If the external forces are assumed to vary linearly over the elements, then the

external force vector, F,(t), for element degree of freedom z is approximated by

evaluating the following integral

F,(t) = fo(t) k0,(z)dz + f'(t) JO (z)zdz, (58)

where fo(t) is the constant force per unit length over the element and f'(t) is

the linear variation in the force per unit length. The element force vector is thus

computed as
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2fo(t) + 0.15f 2f'(t)
12

3

Ufo(t) + f (t)
P(t) 30 (59)

'fo(t) + 0.3512f'(t)

2 O) - -f'(t)

For the analyses performed in this study, element lengths are small enough

such that all components of the external force, the current, inertial and drag

forces can be considered to vary linearly over each element. The current force per

unit length which results from a steady current is

f (z) . kDu,(z), (60)

where u,(z) is the velocity of the current and the constant, kD, is equal to

-71 , CDd, where CD is the drag coefficient and d, is the effective hydrodynamic

diameter. The inertial force per unit length is

1
f( z,t) = - CM y.rd'it(z, t), (61)

4g

where CM is the inetrial force coefficient, and the drag force per unit length is

fD(z-,t) = kD[u(z,t) - i(z,t)] u(z,t) - X(z.t)1, (62)

where u(z, t) and 1(z, t) are the horizontal velocity and acceleration components

of the wave. Note that the velocity of the structure appears in the nonlinear

hydrodynamic drag force term. This is a result of the relative motion between the

structure and wave and introduces hydrodynamic damping into the system.

Once the element force vectors have been computed by substitution of each of

the force expressions into Equation 59, the global force vectors can be assembled.
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The global steady current vector is F,. The time dependant global wave force

vector is F (t) and includes the inertial force vector, F(t), and the drag force

vector, FD(t).

The top node of the riser corresponding to the riser support ring is considered

to respond with the surge motion of the drill ship. The penalty method is used

to impose these translations (Bathe 1982, McCoy 1985). A fictitious stiffness

several orders of magnitude larger than the element in the global stiffness matrix

corresponding to the degree of freedom of the imposed top translation is added to

the element in the global stiffness matrix corresponding to the degree of freedom

of the imposed top translation. Thus, for a specified displacement at the global

degree of freedom z, the corresponding element in the stiffness matrix can be

computed as

K,, = Kit + KhA,,, (63)

where K is a large constant. The product of the fictitious stiffness and the specified

displacement are also added to the element of the force vector corresponding to

the degree of freedom of the imposed top translation. The element in the force

vector corresponding to the degree of freedom of the specified displacement can

be computed as

F,(t) = F,(t) + tcK,,f(t), (64)

where f(t) represents the specified displacement. A new global force vector is

defined which represents the horizontal force necessary to produce the specified

displacement. The new vector, F(t), is expressed as

T

F,(t) = { 00... r Kif (t) ... 00 (65)

S
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where all terms are zero except for the force expression at the degree of freedom

corresponding to the specified displacement.

4.1.6 Solution to the Finite Element Equations

The discretized finite element equation of motion can now be written as

M~i(t) + Ci (t) + Kx (t) = F, + F,(t) + F,(t). (66)

For numerical simulations the static and dynamic components in Equation 66

are segregated. The static equation is written as

Kz, = F, + F,(0), (67)

where z, is the vector representing the static offset. The equation of motion which

contains only the dynamic components of Equation 66 can be expressed as

Mid(t) + Caid(t) + Kzd(t) = F,(t) + F,(t) - F,(0), (68)

where Xd(t) represents the displacement vector resulting from the hydrodynamic

wave force contributions. The total dynamic response of the riser, z(t), is thus

Z, + Zd(t).

The Newmark method is employed to solve Equation 68 for the structural kine-

matics (Newmark 1959, Bathe 1982). As a result of relative motion, the nonlinear

drag force contributions to the wave force vector are functions of the velocity of

the structure. An iterative approach to the solutions for the kinematic vectors is

required if the governing equations are not linearized. The Newmark method can

be modified to iterate until the velocity vectors converge. The algorithm of the

steps required to compute the structural kinematics at time t, is shown below.
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1.) Compute the kinematic vectors at time t,, where the dynamic force

vector is assembled assuming that the velocity of the structure can be

computed from zd(t,-1).

2.) If the new estimate of the velocity vector converges with the old esti-

mate, then increment the time step.

3.) If the new estimate of the velocity vector does not converge with the

old estimate, then reassemble the force vector using the new velocity

estimates and recompute the kinematic vectors.

4.) Repeat steps 2 and 3 as necessary.

4.2 Applications of Response Predictions

4.2.1 Stress Estimates

The response vector, x(t), computed using the finite element method can be used

to predict the stresses in the riser at time t. The maximum bending stress in the

outer wall of the riser can be computed from the general equation a = ,where

a is the bending stress, c is the radius to the outer wall of the riser and M is the

bending moment. The bending moment, M(z, t), can be computed at elevation z

and time t using the following equation

E1
M(z,t) = z) (69)

p(Z't)'

where p(z, t) is the radius of curvature. The radius of curvature can be obtained

from the following expression

1 9 Xa (z,t) = 0 (z,t)
p(z,t) z2 Z(70)

where 9(z,t) is the rotation of the riser in the x-z plane. The expression cz

can be evaluated at the midpoint of element I using the numerical approximation



53

ao(z,t) O(zi + AzIt) - O(z - Az,t) (71)
az 2Azj 71

I ,

where z, is the vertical coordinate of the midpoint of element 1 and 2Az is the

length of element 1. The expressions O(zj + Azi, t) and O(zj - Azi, t) are the

rotations at the top and bottom of element 1, respectively. These are computed

directly in the finite element solution. The stress at the midpoint of element 1 and

at time t can now be approximated as

al(t) - Ec O(zj + AzI, t) - O(zj - Az, t) (72)
2Az(

4.2.2 Displacement and Stress Envelopes

Displacement and stress envelopes are required for the engineering design of ma-

rine risers. For this study these parameters are estimated during the steady state

response of the riser. The maximum and minimum peak displacements are com-

puted for each translational degree of freedom and the maximum and minimum

peak stresses are computed at their respective elevations.

4.3 Second-Moment Solution Procedures Specific to the Marine Riser

Problem

Once the finite element equations have been formulated, and the sources of un-

certainty in the marine riser system have been identified, the second-moment

method can be applied. The random vector, b, must be formulated as described

in Chapter 2 and then the probabilistic analysis is used to predict the first- and

second-moments and the covariances in the discrete displacement fields. From

these results, the expected values of the discrete stresses and approximations for
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the variances in the stresses can be made.

4.3.1 Zeroeth-Order Predictions

The zeroeth-order kinematics are estimated after the expected values of the el-

ements in the random vector are substituted into the appropriate finite element

expressions. An approximation of the expected stress at the midpoint of element

1 is obtained by taking the expected value of both sides of Equation 72. The

expected value for the stress at midpoint of element I is

Ec
E[a(t)] ;z: {E[O(zi + Az, t)] - E[O(zi - Az, t)]} , (73)

2Azj

where it is assumed that E and c are deterministic. If these parameters were

random then they would be replaced by their expected values in Equation 73.

4.3.2 Evaluation of the Sensitivity Vectors

The sensitivity vectors for the response kinematics are computed as described in

Chapter 2. The first-order equations are assembled by differentiating the riser

finite element equation with respect to each element of the random vector and

evaluating the resulting equations at b, where b represents a vector whose ele-

ments are the expected values of the elements in b. Each first-order equation is

solved in terms of ' (t) I and 8z(,) which represent the sensitivity in
8b. b' 86a b,

the response, velocity and acceleration vectors, respectively, to element b, in the

random vector.

Differentiation of the mass, damping and stiffness matrices with respect to each

element in the random vector is required, and the differentials are evaluated at b.

The procedure used in this study to evaluate the differentials was to differentiate
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the element mass and stiffness matrices, evaluate the resulting expressions at 6,
and assemble the global matrices aM b and 8K.1b" The corresponding expression

aC I M I K
for the global damping matrix, 2 b' was then computed as a M b + b i"

Differentiation of the steady current force vector, the hydrodynamic inertia

wave force vector, and the force vector used to produce the specified displacements

is straightforward. The element force vectors are differentiated with respect to the

elements in the random vector and evaluated at the expected values of the elements

in the random vector. The global force vectors, aE 0F/b and 0b, Care
86, b , a b,

then assembled.

Differentiation of the nonlinear hydrodynamic drag force vector is more com-

plicated. Recall that the general expression for the drag force per length, Equation

62, is

fD(z,t) = kD[u(z,t) - id(Z,t)] Iu(z,t) - id(z,t)l . (74)

The drag force per length at the top and bottom of element 1 can be expressed

in terms of their global coordinates, fD 2,.l (t) and fD,_- (t), respectively, where a

representation of the displacements and drag force in the global coordinate system

is shown in Figure 12. The horizontal velocities of the wave at the top and bottom

of element 1 are u2i+j (t) and u21- 1 (t), and the horizontal velocities of the structure

at the top and bottom of element I are i2l+I(t) and i32 1_ 1(t). The drag force per

length at the top of element I can thus be written as

fD2,+I(t) = kD[u21+l(t) - i 2t+l(t)] Iu2i+1(t) - i 21+I(t)j (75)

and the drag force per length at the bottom of element I can be written as

_,f2 _ (t) = kD[U21-1(t) - i 2 _1 (t) u2 (t)- i21-(t) • (76)
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f'2 -

X~l~r~l
X--)0

x3 'a /

f2'-1  X

Figure 12: Global coordinate system for marine riser analysis.
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Assuming kD is not a function of the random vector, the derivative of Equation

75 with respect to b, and evaluated at 6 is

Of D21+, 1 92+ (t)

Ob, ) = -2kD Iu21+x(t) - 2 t 2 +1(t) (77)
Obbb, b"

A similar expression can also be developed for differentiating Equation 76 and is

shown to be

(9fD21 , (tI M 2kD IU21-1(1) - 'i2 l-1(0) 1xiI (78)O9b, L = -- (7s)bDb b, b"

Note that first-order differentials of the hydrodynamic drag force terms are func-

tions of the sensitivity of the structural velocity with respect to the elements of

the random vector. It can be shown that the derivatives of the global drag force

vector, ab, b' can be expressed as the product of a matrix expression and the

velocity sensitivity vectors. The element hydrodynamic drag force vector, FD(t),

can be obtained by substituting the appropriate drag force terms into Equation

59, and the vector can be written as

fo,(t) + O.15 f 2 f 1 (t)

- 2 f o, (t) 3 fjt, ,)
Fv1 (t) = (79)+ f 1 (t

Ffo,(t) + 0.35 2f(t)

-- foM(t)- fJ(t)

where the constant drag force per length is

= to, _ ( ) (80)

an(d the linear variation in the drag force per length is

f It -- f ,(+,) - fD21-(t) (8F



58

Substituting Equations 80 and 81 into Equation 79 yields the following expression

for the element drag force vector

0. 3 5ffD2,_(t) + 0.15ifD2 ,+,(t)
12 -

FDT(t) fD 21 -1(t) + LfD21+1 (t) (82=D (82)
O.15e fD2, -1 (t) + 0.35efD,+, ()

t 2fD2 2 2, _ ( t) - 2 f ( t )

75 /2 -1( J L

Differentiating Equation 82 with respect to b, and evaluating the resulting

equations at b yields

0 f 2 f(t) + 0.15t fD2,+1 (t)
b, b +b, b

t20 f%2 z_(t) +L 2 i f_ 1+_ (t)

PD(t) 20 b. +6 30 , 6b (3
0b, b IA f2- t 0.3 f f2,, (t) (83)

b9, + 05 b, 6

t2 afD2 _ (t) L 2 afD2 .11 (t)
.5 6, Ib - 2 86, b

The expressions for of + (t) and fD21  in Equations 77 and 78 can be

b, 6 ab, in

substituted into Equation 83 which gives the following expression

0.35f lu 21,_(t) - i 21-1(t)l ab2l.I(t)+0.15t lIu 21+ (t)- i 21+I(t)j ai'a bj

P@

j- u2 1 (t) - - 21-(t) .2 t+ () "i2+1(t1 (t)

OPD ,(t) 6 -2kD 0.5f Iu21..(t) 21I (t)j ab, (84)

+0.351u 21-1(t) - (x2 + 1(t)I 8gt

-,35 1u2 1+(t) - 2 1+(t)I 8ab. Ib

ab, b

t2p



59

The sensitivity expressions for the velocity terms can be separated out of
Equation 84 resulting in a new expression for F which can be written as

ab, b

a8i2 l 2 (t) I

ab, lb

abb a-2+

o =tab, Ib

where the matrix [Rj](t) represents the matrix

0.35t u 21.. (t) - i 21- 1(t) 0 0.15f 1u21+i(t)- X21+1(t)l 0

To Iu2t-1(t) - i 21- 1(t) 0 30 Iu21+1(t) - i 21+1(t) 0

[Ri](t) = . (86)
O.1S u2 _ 1(t) - i 2 - 1 (t)j 0 0.35f Ju21+1(t) - i 2:+1(t)1 0

- u21-1(t) - i2l-l(t)j 0 11 Iu21+1(t) - i21+1(01l 0

Upon inspection of Equation 86, it can be shown that the element matrices, [R](t),

can be assembled into a global matrix, R(t), using the same assembly procedures

as used for the mass and stiffness matrices. The expression for the global hydro-

dynamic force vector, differentiated with respect to b, and evaluated at b can now

be written as

OFD(t) = -2kDR(t) (87)

b b = -b, l "

In the first-order equations of motion, the 'damping force' was expressed as

' az(t) b' A new damping matrix C'(t) is defined and is expressed as

C'(t) = C + 2kDP 1 (t). (88)
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The first-order equations of motion now become

(9F, aF1(t) aF,(t) + , (t) + C =K
+C t + X(t) (89)

ob, + ob, 6 ob, -A A ab, 1b

Note that the static and dynamic components in Equation 89 must be separated to

be consistent with the prescribed solution procedure. Thus, the sensitivity vectors

obtained by solving the static first-order equation include the static offset sensi-

tivity vectors, ax. 1b and the sensitivity kinematic vectors computed by solving

the dynamic first-order equations. These include the dynamic response, velocity
and acceleration sensitivity vectors, and 2 jb respectively.7 b, 1b' ab, b'a b, b epciey

4.3.3 Second-Order Response Predictions

Once the sensitivity vectors have been computed, the second-order deviations

about the zeroeth-order response predictions can be obtained. These predictions

require second-order partial differentiation of the system matrices and force vec-

tors with respect to b, and b, where the resulting expressions are evaluated at

__M_ 82C a2K a2F.b. It is not difficult to obtain expressions for 86-' 8, 6' b1' o6,16

82Fl(t) an 82F e 8(t)ab.an, b nd b However, obtaining the solution for 8b,8b 6 is compli-

cated.

The second-order derivative of the hydrodynamic force per length at the top

of element I is obtained by differentiating Equation 75 with respect to b, and b.

and evaluating the resulting expression at 6. This can be expressed as

a'fD 1 +'+ (t) = -2kD 1u21+1(t) - -i21+1(t)l 0b, i2+ M

6 8b18b, a a(9

+ 2kD sgn[u21+1 (t) - '21+1(01 89, 1 b (t) b 1 b' (90)

Ob, b Ob,
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At the bottom of element 1 this expression becomes

,92 fD.- W(t) = --2kD.u2,-.(t)- 2-(t) 2 1 (t)
ab1 abi a bab, Ib

+ 2kD sgn[u 2. 1(t) - 421.- 1(t)] ai21 1 (t) a 2 1 (t) b (91)
ab Ib c~b Ib

where for an arbitrary function, g, the operator sgn[g] is defined as

for g > 0

sgn[g]= -1 for g < 0 (92)
undefined at g = 0

Note that in the event that the relative velocity between the wave and structure

is zero, the sgn operator is undefined. The second-order differential of the drag

force vector is not a continuous function when the relative velocity is zero, and

can be shown to have two values which are equal and opposite in sign. For the

purpose of numerical simulation, when the relative velocity is equal to zero, the

operator sgnO is defined as zero. Thus, the second-order derivative of the drag

force is defined as zero.

An expression for the second-order partial derivatives of the element hydro-

dynamic drag force vector with respect to b, and b, and evaluated at b can be

obtained using an approach similar to the one used to derive the first-order ex-

pression. The final expression for the second-order partial derivative of the lth

element of the hydrodynamic force vector with respect to b, and b, and evaluated

at 6 is

82b, b

a2fDl(t)] 2 -2kD[R,(t) ,

ab~a, b8 2i~ 4~t) ba,

8b8b

8b :-8b1  b

Ib b
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86, 16 ab, lb

0
+ 2kD[R"1,](t) (93)

ah, a b,

where [R1](t) is defined by the matrix expression

r 0.35fsgn[u 2j_,(t) - i 211 (t)] 0 0.15gsgn[u2,+1 (t)- i 2,+(t)] 0
12 g

Tsgn[u 2.,_(t) - i 2 1- 1(t)] 0 Isgn[u2 1+(t) - .i21+I(t)] 0

[R'](t) =
0.15tsgn[u21.l(t) - xi2,,_(t)] 0 0.351sgn[u21+1(t) - 21+I(t)] 0

t2 t;- .--sg _(t) - i 2 1- 1 (t)] 0 -Lsgn[u 21+1 (t) - i 2l+I(t)] 0

(94)

The global matrices, R(t) and R'(t) can be assembled using the same assembly

procedure as for the mass and stiffness matrices. The second-order partial deriva-

tives of the global hydrodynamic drag force vector with respect to b, and b, and

evaluated at b can now be expressed as

D2FD, = -2kDR(t) 4abt b + 2kDR'(t)z'(t), (95)

where for an n-degree of freedom system X'(t) can be written as

0

0
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POb, lb 8, lb

0

8b, lb ab, lb
II

0

'()= •(96)
ah, Ib ' I, b

0

ab, Ib 1I

0

Recall that the second-order equation of motion as developed in Chapter 2

was shown to be

MAX(t) + CA(t) + kAi(t) = AF(t), (97)

where

I q I -F ,) C [ ++ b.]}

,=1,= J=l Ic jb b - ' O:
1 q M Ot(t) + W 8 (t)+ K Cov[b,, .

2b, b bO 0, Oh, Ob, C b
1~{ OM (t+0 2 :j 'K (tl CbIb}.(8

Upon substitution of Equation 95 into the second-order equation, the second-

order deviation about the mean drag force vector can be expressed as

I { b b q=} av2kD{ b, b b Cov[b,, b,]

_2(b 9 2,F-E 4b 9
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+ 2kDR'(t) y _ {X'(t)Cov[b,, bI}. (99)

The form of this equation can be simplified, where the new equation is

1 q q a2 FD(t) Cov[b, b -2kDR(t)A (t)

1 q q

+ 2kDR'(t) -E E {'(t)Cov[b,, b,]}. (100)

The second-order equation of motion can now be expressed as

MAX(t) + C'(t)Axi(t) + kAi(t) =

AP(t) + 2kDR'()" y Y {'(t)Cov[b,, b,} (101)
2 =1 e=l

where

I qq 1{o2(F (t) + re F,(t))bCOV[b, b21}

iM O (t) OC O(t) 9K O,() 1b
=b, ab b - ab, + O jb

'C ___ + '9 ('b]io

r q 91M a2C(a2
- E I: X(j + dc (t) + x(t) Cov[b,,b]}. (102)2 =I 1= abab a (! b,0-- ab,0abj b

Note that the static and dynamic components in Equation 102 must be sepa-

rated to be consistent with the prescribed solution procedure. The second-order

deviations in the static offset vector are obtained by solving the second-order

equation with only the static components, and the second-order static response is

written as Ax,. The second-order deviations in the dynamic response, Azd(t) are

computed by solving Equation 101 using only those components which contribute

to the dynamic response. The total expected response of the riser accurate to

second-order can now be written as

E[x(t)] = zk + A, + ;kd(t) + AXd(t). (103)
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A better approximation for the expected values in the stresses can be ob-

tained by substituting the appropriate second-order accurate expected values of

the rotations into Equation 73.

4.3.4 First-Order Accurate Covariance Predictions

The covariances for the discrete displacement fields can be computed as described

in Chapter 2. The covariance between any two displacements x,(t) and x,(t) at

time t are computed from the following formula

Cov[Xj( t), x,,( t)]

q q_ ( X, X , (t)b) ( ca( X .- +  X b ( ) Cov[b bu]} "  (104)

One method for obtaining the covariances in the stress field is to employ the

second-moment analysis techniques. The first-order equation is obtained by dif-

ferentiating both sides of Equation 72 with respect to each of the elements in the

random vector and evaluating the resulting expressions at the expected values of

the random vector. Thus, the first-order equation for the stress at the midpoint

of element 1 at time t, assuming E and c are deterministic, can be expressed as

(t) I _ ---',Ec 90(zi+ A ZIt)ob-  - --A ztt)t "(105)

O b b 2A, b, b b

The first-order accurate covariance in the stresses at the midpoints of elements

I and rn are computed as

Cov[Uj,(t), r

Y Oa, bi a ,(t) b Cov[b,,bj] . (106)

In this study, only the variances in the stresses at the midpoint of the elements

are required and a more direct method is used to compute these values. Squaring
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both sides of Equation 72 and taking the expected value of the resulting expression

yields

E[t Ec )2 E[{O(z, + Az,t) - O(zj - Az, t))']. (107)

(2AzI

Equation 107 can be expanded, and assuming the means have been removed from

the rotations, the variance in the stresses at the midpoint of element I and at time

t can be computed as

var[a,(t)] - {var[O(z, + Az,,t)] + var[0(z, - Azt,t)]}

-2 (Ec 2 {COv[0(zI + Azt),O(z, - AzI, t)]}. (108)

4.3.5 Application of Probabilistic Results

The probabilistic finite element results for the marine riser displacements and

stresses can be used to assess the displacement and stress envelopes typically

developed for design. The zeroeth-order solutions obtained in the probabilistic

analysis would represent those obtained using a deterministic approach. The

zeroeth-order displacement envelope can be estimated using the zeroeth-order

displacement solutions. The stress envelope can also be developed where the

stresses are predicted from the time histories of the zeroeth-order rotations.

Upper and lower bounds to the displacement and stress envelopes can also be

computed. An upper bound time history for the displacements and stresses may

be generated by adding the standard deviation to the zeroeth-order predicted

values at time t. Similarly, a lower bound time history is created by subtracting

the standard deviation from the time histories. Using these estimates for the

maximum and minimum displacements and stresses at time t, upper and lower

bounds for the displacement and stress envelopes can be estimated.

40
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A better approximation for the displacement envelope is obtained using the

second-order expected values of the responses. Similarly, a better approximation

for the stress envelope is obtained using the stresses computed from the second-

order rotations. These envelopes are then bounded as before. The upper bounds

are computed from the sum of the second-order time histories and the first-

order standard deviation time histories. The lower bounds are computed from the

difference between the second-order time histories and the first-order standard

deviation time histories.

4.4 Probabilistic Solutions to Marine Riser Problems

There are numerous commercial computer codes available for the analysis of ma-

rine riser systems. In an attempt to compare the predictive capabilities of the off-

shore industry, the American Petroleum Institute (API), posed a set of standard

problems to which it solicited industry solutions. API then prepared a bulletin

based upon the numerical results it received (API 1977). The bulletin contains

predictions for riser systems designed for 500, 1500 and 3000 feet of water. Since
all the models require empirical data and the computer programs covered a wide

range of solution techniques, the solutions were presented in terms of envelopes

of displacement and stress.

The probabilistic finite element method, as developed in the preceding text, is

used to predict the response behavior of marine riser systems which are considered

to have random properties. Two marine riser systems are considered, the first in

500 feet of water and the second in 3000 feet of water. The riser system in

3000 feet of water includes external buoyant material. For each water depth the

API bulletin shows a number of solutions submitted by the offshore industry in

the form of response and stress envelopes. For the purpose of comparison, the
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solutions shown in the API bulletin are presented on the appropriate graphs in

this study. The mean values of the parameters which are necessary to perform

the analyses are specified in the API bulletin and are tabulated in Table 2. The

probabilistic solutions are compared with results obtained in an API bulletin on

marine riser analyses. Monte Carlo simulations are also performed as a means of

assessing the probabilistic results.

To be consistent with the results in the API bulletin and to show results

which are meaningful to engineers who design marine riscrs, response and stress

envelopes are generated and bounded by one standard devif;on. Zeroeth-order

predictions which are analogous to the deterministic solutions predicted in the

API bulletin are shown, as are the second-order approximations. The standard

deviations in the response parameters are obtained by taking the root of the first-

order accurate variance. The bounds to the displacement and stress envelopes

computed in this study are obtained by bounding the appropriate time series with

one standard deviation computed at time t, and then computing the envelopes for

these solutions.

The finite elemcnt riser models are assembled using twenty-four elements and

fifty degrees of freedom. The models are assembled such that the individual

elements are concentrated in the regions wheic the maximum stresses are expected

to occur. These regions are dictated by the imposed boundary conditions and are

located near the top and bottom of the risers. The el-ment lengths for the 500

foot water depth case range from 10 to 30 feet and the element lengths for the

3000 foot water depth case range from 20 feet to 200 feet.
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Table 2: Riser input data specifications.

A. Constant with water depth
Riser data

Diameters, inches
riser pipe outside diameter 16.0
riser pipe inside diameter 14.75
choke line outside diameter 4.0
choke line inside diameter 2.7
kill line outside diameter 4.0
kill line outside diameter 2.7
buo:. ant material outside diameter 24.0

Modulus of elasticity of pipe, psi x 106 30
Densities, pounds/cubic foot

sea water 64
drilling mud 89.8

Hydraulic force constants
drag coefficient 0.7
added mass coefficient 1.5
effective diameter, inches 26

Weight (includes mud in external lines), pounds / foot
unbuoved 172.4
buoyed 188.1

Linear current profile:
velocity at the surface, knots 0.5
velocity at the lower ball joint, knots 0

Vertical distances, feet
mean water level to riser support ring 50
sea floor to lower ball joint

B. Varying with water depth
Top tension, kips

500 foot water depth 120
3000 foot water depth 500

Static offset, 3% of water depth
C. Dynamic

wave height, feet 20
wave period, seconds 9
vessel surge amplitude, feet 2
phase lag between vessel and wave, degrees 15
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4.4.1 Top Tension Modeled as a Random Variable
0

To demonstrate the predictive capability of the probabilistic finite element method,

two marine riser systems are examined in which the tension applied to the top

of the risers is considered to fluctuate. The water depths considered are 500 and

3000 feet and the properties of the risers are given in Table 2. The distributions

of the random top tensions are considered to be Gaussian and the coefficient of

variation in the top tension for both cases is assumed to be 0.1.

Monte Carlo simulations are performed to assess the second-moment results.

The Monte Carlo technique is identical to the one used in the Chapter 3. It was

determined that the second-moment solutions converge within 400 simulations.
9

Figures 13 and 14 show the maximum steady state response predicted by the

zeroeth- and second-order solutions and the Monte Carlo solutions for the 500

foot and 3000 foot water depth cases, respectively. For each response estimate.
9

one standard deviation in response is added. Thus the lower curve represents

the response estimate and the upper curve represents a possible 'upper bound'

to the estimate. The API response predictions are also shown. As expected, the

zeroeth-order solution falls within the bounds of the API solutions. There is some

deviation in the zeroeth-order solutions and those predicted using the Monte Carlo

simulation. The second-order solutions do converge to those predicted from the
9

Monte Carlo simulations. It should be noted that when one standard deviation

in response, predicted using second-moment techniques or by the Monte Carlo

simulation, is added to the appropriate mean response prediction, the upper bound

of the API solutions is exceeded.

Figure 15 represents the minimum steady state response for the riser in 500 feet

of water. The second-order solutions converge to those predicted in the Monte
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Carlo simulation, where these solutions are slightly different from the zeroeth-

order solution. The lower set of response curves represent the response predictions

minus one standard deviation and are shown to fall outside of the bounds of the

response predictions given in the API bulletin.

Figure 16 compares the standard deviations associated with the maximum and

minimum steady state response of the riser in 3000 feet of water, where the first-

order accurate predictions are compared with those obtained using the Monte

Carlo method. For illustrative purposes the bottom curve represents the stand trd

deviation which was subtracted from the minimum response and is multiplied by

the factor -1. The first-order solution appears to be similar to the Monte Carlo

solution, but at some depths the first-order solution overshoots and undershoots

the standard deviations predicted from the Monte Carlo simulation. It was noted

from the time series of the standard deviations that there is some overshoot of the

Monte Carlo solutions by the first-order predictions, as explained by the resonant

effects. However, this is generally small due to the large amount of hydrodynamic

damping.

Figures 17 and 18 indicate the stress envelopes predicted by the zeroeth- and

second-order solutions and the Monte Carlo simulations for the 500 and 3000 foot

water depth cases, respectively. For the 500 foot water depth case the zeroeth-

order solutions are different than the Monte Carlo solutions and the second-order

solutions converge to those predicted using the Monte Carlo technique. For the

3000 foot water depth case the second-order solution does not converge to the

Monte Carlo prediction for the peak stresses near the bottom of the riser. Perhaps

the reason the second-order solution does not converge is related to the number

and spacing of the elements. The number of elements used for this case was the

same as for the 500 foot case, where the elements were spaced closest in the areas
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where the maximum stresses were expected to occur. In this study the maximum

number of elements permitted for higher-order response predictions was twenty-

four. Both the zeroeth- and second-order predictions of the maximum stress at

the top of the riser converge to the Monte Carlo results.

Figures 19 and 20 indicate the maximum zeroeth- and second-order stresses

and those predicted using the Monte Carlo simulations for the 500 and 3000 foot

water depth case, respectively. The upper set of curves represents one standard

deviation in addition to the value of the mean estimate. The bounds from the API

solutions are also shown. For the 500 foot water depth case t is seen that the

second-order solutions converge to Monte Carlo solutions. Note that the peak

stress predicted from the zeroeth-order solution lies within the bounds of the

API solutions and that the second-order and Monte Carlo solutions are outside

the bounds. Further, note that with the addition of one standard deviation to

mean stresses, the probabilistic estimates can exceed the estimates obtained in

conventional analyses by a significant amount. For the 3000 foot case where the

variation in the stresses is much smaller than for the 500 foot case, the predictions

appear to be within the range of the ! PI solutions. •

4.4.2 Unit Weight of Drilling Mud Modeled as a Random Field

To further demonstrate the possibilities for simulation using probabilistic finite

element methods, another type of marine riser simulation is presented. In this

case a riser system in 500 feet of water, as specified in Table 2, is examined

assuming that the unit weight of the drilling mud varies along the riser according

to a definable statistical process. A first-order autoregressive model, AR(1), is

used to account for the fluctuations. Accordingly, the fluctuations in the weight

per unit length of the drilling mud, t,,(z) at an elevation z, above the sea floor
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were simulated using the AR(1) recursive formulation as

lhm(z,) = WN(z,) - ait-vm(Z,_i), (109)

where WN(z,) is Gaussian white noise and a, is the first-order autoregressive coef-

ficient (Newton 1988). The correlation function for an AR(1) process is described

by an exponentially decaying function expressed as

p[r] = (-ol) = e -(/LC), (110)

where

(Yl = -e - 1 , ( 111 )

and L, is the correlation distance. For this example p[LI = e- 1, and L, is arbitrar-

ily chosen to be 75 feet. The coefficient of variation for the process representing

the unit weight in the drilling mud is 0.2.

For this example the second-moment analysis requires as input the local spa-

tial averages of the process and the covariance matrix between the local spatial

averages. In order to predict the local spatial averages, the weight per unit length

of the drilling mud is assumed to be a stationary process so that the local spa-

tial averages were equal to the expected value of the entire process. In order

to compute the covariances between the local spatial averages, the dimensionless

variance function, which represents the ratio of the variance in the local spatial

averages to the variance in the entire process, is required (see Chapter 2). The

dimensionless variance function is computed analytically using Fq"ltion 5. The

covariances between the local spatial averages are then computed using Equation

4.

For the Monte Carlo simulations, an AR(1) model is used to simulate 400

realizations of the mud weight per unit length. Each process is averaged over
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the appropriate elements and the element averages are used in the finite element

analyses.

A comparison of the zeroeth- and second-order solutions and the Monte Carlo

predictions for the maximum displacement for the riser in 500 feet of water is

presented in Figure 21. The maximum displacement plus one standard deviation

is also shown. The zeroeth- and second-order estimates appear to be very near

the Monte Carlo solution. For the most part the API solution bounds all of the

probabilistic estimates including those which show the maximum displacement

plus one standard deviation.

The maximum zeroeth- and second-order stresses and the stresses predicted

using the Monte Carlo method are presented in Figure 22. The upper bounds for

these predictions are also shown. The zeroeth- and second-order solutions with

the addition of one standard deviation are slightly higher than the Monte Carlo

estimates of the maximum stress plus one standard deviation. Note that these

upper bounds for the maximum stress are significantly higher than maximum

stress shown in the API solution.
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5 CONCLUSIONS

The second-moment analysis method is shown to be a viable approach for estimat-

ing the probabilistic distributions in response for systems with random material

properties, loads and boundary conditions. The computational aspects of the

second-moment analysis method and the sequence in which they are to be imple-

mented is shown in Figure 3. In second-moment analyses, the distributions of the

sources of uncertainty are expressed in terms of their first- and second-moments,

where explicit knowledge of the probability density function is not required. The

correlation function must also be identified for sources of randomness which vary

over the spatial coordinates.

In general, second-moment analyses are derived presuming that a linear re-

lationship exists between the response and the sources of uncertainty. If the

relationship is linear then the solutions are exact. The method may also be ap-

plied if the relationship is moderately nonlinear, provided that the coefficient of

variation in the sources of uncertainty is small. If the relationship is linear then

the zeroeth-order response predictions and the covariance in response obtained

using the second-moment method are exact, regardless of the distributions of the

sources of uncertainty. For nonlinear systems, the approximations may be im-

proved by including higher order terms which may require that the analysis be

extended beyond second-order.

Second-moment analyses require the formulation of a random vector which

represents the distributions of all sources of randomness inherent to the system.

The elements of the random vector correspond to the distributions of sources of

randomness expressed by random variables and to the correlated distributions of

the local element averages for sources of randomness expressed as random fields.
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The lengths of the discrete finite elements must also be shorter than the distances

over which appreciable correlation occurs in the random fields.

A simple two-degree of freedom oscillator with random spring constants was

considered to demonstrate the second-moment analysis. A Monte Carlo simula-

tion was also implemented to assess the second-moment results. The zeroeth- and

second-order accurate displacements obtained using the second-moment method

were compared to the displacements predicted by the Monte Carlo simulation.

The zeroeth-order response solution was shown to differ from the second-order

solution, where the second-order solution was almost identical to the Monte Carlo

solution. The first-order accurate standard deviation predicted by the second-

moment method was also compared with the standard deviation predicted by the

Monte Carlo simulation. The first-order solution was shown to follow the same

trend as the Monte Carlo predictions and was shown to be valid for small times,

but the first-order solution overshot the Monte Carlo predictions at large times. 0

This was a result of a resonant excitation of the higher-order terms in the second-

moment analysis. For this example the advantage in the second-moment analysis

as compared with the Monte Carlo method was in the computation time. The 0

second-moment analysis required only four numerical time integrations to obtain

the same responses as those predicted by the Monte Carlo method, which required

400 time integrations to obtain stable second-moment solutions.

For analyses of marine riser systems, where aspects of the problem are known

to be random, the probabilistic finite element method was shown to provide useful

information concerning the distributions of the response behavior. Two sets of

examples were considered. In the first set of examples the tension applied to the

top of the riser was modeled as a random variable. In the second set of examples

the unit weight of the drilling mud contained within the riser was modeled as a
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random field. For both sets of examples it was observed that while in general,

the expected values of the peak second-order responses and stresses were within

the ranges of estimates obtained using deterministic solutions, the addition of

one standard deviation significantly impacted the response behavior. For the

example riser in 500 feet of water in which the pretension was modeled as a

random variable, the maximum stress shown in the API bulletin was exceeded

by a factor of 1.3 when one standard deviation was added to the second-moment

predictions of the maximum stress. The maximum stress predicted in the API

bulletin would be exceeded by 1.7 and 2.0 times if it were to be exceeded by two

and three standard deviations, respectively, of the second-moment predictions

of the maximum stress. In some cases the second-order solution exceeded the

bounds of conventional solutions. The riser analyses performed in this study have

shown that with a small amount of variation in the tension applied at the top of

the riser or with variations in the drilling mud unit weight, it can be expected

that the design responses and stresses predicted using conventional finite element

solutions will be exceeded.
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