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Weightless Neural Tools:
Towards Cognitive
Macrostructures

Igor Aleksander
Imperial College of Science, Technology and Medicine
London, UK

1 Introduction

The word "weightless" is used to stress our belief that the future of
neural nets lies in understanding the properties of nets with variable
function nodes for which the function is loaded by a local algorithm,
but not necessarily one constrained by weight variations. The ap-
proach dates back to 1965. In 1981, with the advent of inexpensive
silicon RAM, it led to the design of an adaptive pattern recognition
system called the WISARD (after its designers: Bruce WIlkie, John
Stonham, Igor Aleksander, tRecognition Device]). With the cur-
rent revival of interest in neural computing, it has been possible
to show that the RAM approach fully covers the achievements of
standard weighted approaches, with the added properties of direct
implementability with conventional VLSI techniques and sufficient
generality to represent the increasingly complex descriptions of real
neurons .

A full overview of weightless neural devices is presented in a com-
panion paper. Here we present a brief description of these systems
and concentrate on a fundamental tool we call the General Ner.-
ral Unit (GNU). This is a flexible associator that can be used rs a
building brick for advanced neural systems. Specifically, we ar' dress
interest in neural networks stimulated by Hopfield Ale' sander

and Hinton et al. which comes from the discovery that
a cluster of interconnected neurons has, as an emergent property, the
ability to enter stable firing patterns, stimulated by t'i presentation
of parts of these patterns.
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An Estimation Theoretic Basis
for The Design of Sorting and
Classification Networks 1

R. W. Brockett
Harvard University
Cambridge, Massachussets

1 Introduction

The large and growing literature related to the idea of defining sys-

tems of differential equations which, on the basis of incoming stimuli,
define categories and assign successive temporal segments to these
categories attests to the intrinsic appeal of such an idea. Systems of
this type could be used as building blocks in more complex intelli-
gent machines, especially in the lower level "unsupervised" learning
portion of such structures. However, because the differential equa-
tions which accomplish these tasks are not unique; the choice of a
particular system may be difficult to justify. In this paper we show
that, in a significant set of cases, algorithms based on the gradient
flow equation H = [H, [H, N(u)]] can be interpreted as providing a
mechanism for computing conditional probabilities. This probabilis-
tic interpretation not only shows that H(t) contains the complete
statistical summary of the past stimuli but also provides an interpre-

tation for the undetermined constants which appear.

In [] we investigated signal processing systems of the form

H , [ H.,No + uJi]

with a view toward using the results previously established for the au-
tonomous system ft = [H, [H, N]] in this more general setting. Signal

processing problems, such as that of generating a quantized version
of a signal or that of processing a quantized version of the input with

automata-like transformations, were considered explicitly. In order

to establish circumstances under which one can interpret equations

of this form as being conditional probability propagators, we con-

sider the problem of estimating the state of a finite state stochastic

process which is observed with additive white noise. The main new

results are to be found in sections [3] and [4] where it is asserted that.

under suitable assumptions, this equation does admit such an inter-

pretation and that by suitably choosing the eigenvalues of H(O) we

can use this equation as a means for generating a type of associative

memory in which the learning and operational aspects are merged.
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A Self-Organizing ARTMAP Neural Architecture for
Supervised Learning and Pattern Recognition

Gail A. Carpentert
Stephen Grossbergj
John H. Reynolds§
Center for Adaptive Systems
and
Graduate Program in Cognitive
and Neural Systems
Boston University

1 Introduction: A Self-Organizing Neural Architec-
ture for Supervised Learning

This chapter describes a new neural network architecture,
called ARTMAP, that autonomously learns to classify arbitrar-
ily many, arbitrarily ordered vectors into recognition categories
based on predictive success. This supervised learning system
is built up from a pair of Adaptive Resonance Theory modules
(ART, and ARTb) that are capable of self-organizing stable
recognition categories in response to arbitrary sequences of in-
put patterns. During training trials, the ARTs module receives
a stream {a(P)} of input patterns, and ARTb receives a stream

(b(P)} of input patterns, where b(P) is the correct prediction
given a(P). These ART modules are linked by an associative
learning network and an internal controller that ensures au-
tonomous system operation in real time. During test trials.
the remaining patterns a (P) are presented without b(P), and
their predictions at ARTb are compared with b (P) .

Tested on a benchmark machine learning database in both
on-line and off-line simulations, the ARTMAP system learns
orders of magnitude more quickly, efficiently, and accurately
than alternative algorithms, and achieves 100% accuracy after
training on less than half the input patterns in the database.

ARTMAP achieves these properties by using an internal
controller that conjointly maximizes predictive generalization
and minimizes predictive error by linking predictive success
to category size on a trial-by-trial basis, using only local op-
erations. This computation increases the vigilance parameter
p, of ARTS by the minimal amount needed to correct a pre-
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dictive error at ARTb. Parameter p, calibrates the minimum
confidence that ART, must have in a category, or hypothesis,
activated by an input a(P) in order for ART, to accept that
category, rather than search for a better one through an auto-
matically controlled process of hypothesis testing. Parameter
p. is compared witr the degree ot match between akP) and thetop-down learned expectation, or prototype, that is read-out
subsequent to activation of an ART, category. Search occurs
if the degree of match is less than Pa.

ARTMAP is thus a type of self-organizing expert system
that calibrates the selectivity of its hypotheses based upon pre-
dictive success. As a result, rare but important events can be
quickly and sharply distinguished even if they are similar to
frequent events with different consequences.

Between input trials, ps relaxes to a baseline vigilance p-j.
When F is large, the system runs in a conservative mode.
wherein predictions are made only if the system is confident
of the outcome. Very few false-alarm errors then occur at any
stage of learning, yet the system reaches asymptote with no loss
of speed. Because ARTMAP learning is self-stabilizing, it cancontinue learning one or more databases, without degrading itscorpus of memories, until its full memory capacity is utilized.



Hybrid Neural Network
Architectures: Equilibrium
Systems That Pay Attention 1

Leon N Cooper
Brown University

Attitudes toward Neural Networks have, in the short span of my
memory, progressed from skepticism through romanticism to what
we have at present: general realistic acceptance of neural networks
as the preferred - most efficient, most economic - solution to certain
classes of problems.

In this brief paper I would like to present an outline of what seem
to me to be the major issues and some of the outstanding problems
that confront us. In addition, I would like to present a brief account
of how our own thinking has progressed

Neural Networks come in several broad categories:

1. Relaxation neural networks that can be regarded as methods
of approximating non-linear dynamics.

2. Equilibrium neural networks that classify or assign probabili-
ties

3. Equilibrium hybrid neural networks that via feed-forward and/or
feed-back show some properties of relaxation of dy-namic net-
works and display such phenomena as selective attention.

In what follows, we present hybrid equilibrium neural networks
that are designed for high efficiency in classification and/or prob-
ability ranking and which further have some of the properties of
relaxation networks and display selective attention.

Neural networks, in general, do not give optimal solutions. We
may regard them in many ways as giving sometimes adequate so-
lutions, sometimes very rapidly. Even training a 3-neuron network
as has been shown by Blum and Rivest (Blum 89) is NP-complete.
Training a general network is NP-complete, even with only three ex-
amples and with two-bit inputs and in some cases they can't even
approximate well (Judd 87).
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Neural Networks for Internal
Representation of Movements
in Primates and Robots*

Roll Eckmiller, Nils Gotrke, Jdirgen Hakala
Division of Biocybernetics
Heinrich-Heine-Universit it Ddisseldorf, Germany

1 Introduction

Numerous physiological, behavioral, and theoretical studies in neu-
roscience suggest topographical arrangements of spatial and tempo-
ral information for motor control in various brain regions
Especially, the parietal cortex the cerebellum and various
parts of the precentral cortex in higher mammals have been
implicated in such internal representations of space and spatio-temporal
events (trajectories) for motor control.

In contrast to neuroscience, the exploration of neural networks for
robot motor control does not require the analysis of existing
(biological) systems, but rather the synthesis of technically feasible
systems. However, the current knowledge of neuroscience may serve
as an important 'concept source'. Afterall, the ability of a fly to
generate obstacle-avoiding flight trajectories in a green house in real
time or the motor skills of a tennis champion are not based on an
algebraic-analytical representation of the various mapping operati-
ons as in conventional, software-driven computers for robot control,
but on poorly understood geometric-topologicaJly represented func-

tions of dynamic neural networks

This paper compiles recent data on tlue internal representation of
space in the primate oculomotor system ani on artificial neural net-
works for path planning, trajectory storage, and inverse kinematics
for the motor control of a planar. redundant robot arm. The contri-
butions exemplify the need to bridge the gap between -Computatio-
nal Neuroscience' and 'Neuroinformatics' for the mutual benefit of
both neuroscience and computer science.
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Recognition and Segmentation
of Characters in Handwriting
with Selective Attention

Ktnihiko Fukushimna and Taro Imagawa
Faculty of Engineering Science. Osaka University

Keywords: Neural network, Character recognition. Segmentation,
Characters in handwriting, Selective attention.

1 Introduction

Machine recognition of individual characters in handwriting is a dif-
ficult problem. It cannot be successfully performed by a simple pat-
tern matching method, because each character changes its shape by
the effect of 'lie characters before and behind. In other words, even
the same character is scripted differently when it appears :n different
words, in order to be connected smoothly with the characters in front

and in the rear.
One of the authors previously proposed a -selective attention

model", which has tile function of segmenting patterns, as well as
the function of recognizing patterns When a composite
stimulus consisting of two patterns or more is presented. the model
focuses its attention selectively to one of them. segments it from the

rest. and recognizes it. After that. the model switches its attention to
recognize another pattern. -hie model alsc has the function of asso-
ciative memory and can restore imperfect patterns. These functions
can be successfully performed even for deformed versions of training
patterns, which have not been presented during the learning.

We have modified the model and extended its ability to be able to
recognize characters in handwriting This paper briefly introduces
the new model and offers a preliminary result of computer simulation.
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Adaptive Acquisition of
Language

A. L. Gorin, S. E. Levinson.

A. N. Gertner and E. Goldman
AT&T Bell Laboratories

1 Introduction

1.1 Problem and Goals

Automated speech recognition (ASR) technology has reached a levei of
performance such that it is commercially viable for cer -in carefully chosen

aDpications. However, for even the most elementary of tasks, capabilities

fall far short of human performance. We believe that the enormous potential
benefit of ASR will not be realized until its performance much more nearly
approximates that of humans. Indeed. active research efforts worldwide are

aimed squarely at that goal.

Preqent ASR technology is predicated upon constructing models of the
various levels of linguistic structure assumed to compose spoken language.
These models are either constructed manually or automatically trained by
example. A major impediment is the cost or even the feasibility of produc-
ing models of sufficient fidelity to enable the desired level of performance.

The proposed alternative is to build a device capable of acquiring the
necessary linguistic skills in the course of performing its task. We call this

learning byJ doinq, and contrast it with learning by example. The purpose of
this paper is to describe sc-ne basic principles and mechanisms upon which

such a device might be based. and to recount a rudimentary exreriment
evaluating their utility for that purpose.

Understanding how to construct such devices would yield valuable tech-
nological payoifs. Automated training and on-line adaptation would greatly

reduce the human labor required to engineer ASR systems for commex en-
vironments. Furthermore. w% will see that a system which learns by doing

must accept unconstrained input, detect and recover from errors. and then

learn from those errors. Such a system must deal with the world as it actu-
-ally presents itself, rather than how the system designer thouaht it wouid

be.
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What Connectionist Models
Learn: Learning and
Representation in
Connectionist Networks 1

Stephen Jos6 Hanson
Siemens Corporate Research. Inc.
Princeton, NJ

David J. Burr
Belcore
Morristown, NJ

1 Introduction

There have been historical tensions between the study of learning and the
study of representation in psychology and artificial intelligence (Al). For
over half a century behavioral psychologists addressed the problem of how
knowledge was acquired from experience but ignored the problem of how
knowledge and experience were represented internally (Skinner 1950). AI
also initially focused on learning (Rosenblatt 1962), but soon turned almost
exclusively to the study of representation/ Minsky & Papeit 1969). With
the advent of cognitive psychology (e.g., Miller 1956), internal representa.
tion was on psychology's agenda too, but most of the work was still in the
style of AL, inspired by the "computer metaphor" (Pylyshyn 1984). Mean-
while. except among behavioral psychologists, the problem of learning was
receding into the background. Recently, a new approach. connectionism
(Rumelhart & McClelland 1986), has offered not only an alternative -neu-
ral network metaphor," but a different style of computation. one that is
especially suited to learning and allows the relationship between learning
and representation to be studied directly for the first time.

According to popular accounts (Gardner 1985) and their sources (e.g.,
Miller 1987), the behavioral-to-cognitive shift that began in psychology
somewhere around 1956 took place partly because of the gradual pervasion
of psychologists' mental and personal lives by computers and partly because
none of the available answers to the question -what exactly is learned dur-
ing learning?" proved to be satisfactory. Psychological phenomena turned
out to be too complex to be expiained by existing theories. For example.
the crucial role of language in human learning far exceeded the explana,
tory scope of simple learning models, and language learning itself posed
uniquely cognitive as opposed to behavioral problems (Skinner 1957. and
Chornsky 1959). Yet even the combined resources of behavioral and cogni.
tive psychology have so far proved unable to provide an integrated theory
of learning and representation: rather, as in AL, representation is now being
studied at the expense of learning.
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EARLY VISION, FOCAL
ATTENTION, AND
NEURAL NETS

Bela Julesz
Laboratory of Vision Research
Psychology Department
Rutgers University
New Brunswick, NJ 08903
and Division of Biology
California Institute of Technology
Pasadena, CA 91125

During the Spring, Summer and Fall of 1990, I wrote five arti-
cles on early vision and focal attention for five different disciplines.
One manuscript for the ATR Workshop on Modeling Human Visual
Perception and Cognition, Kyoto, is intended mainly for engineers
in machine vision and Al. The other four manuscripts are as follows:

Representations of Vision: Trends and Tacit Assumptions in Vi-
sion Research Symposium, (ECVP, Sep. 1990, Paris) entitled Some
Strategic Questions in Visual Perception (Julesz, 1991a) is written
for my colleagues in psychology. The third is written for physicists,
the fourth for neurophysiologists and the fifth for philosophers inter-
ested in visual perception. The second article contains about forty
strategic questions for vision research in addition to some metasci-
entific ones, and I hope that with these questions I have started a
trend and other colleagues will extend my list. The third, and most
important one intended for physicists, is an elaborate review entitled
Early Vision and Focal Attention, and was written at the request
of the Editors of Reviews of Modem Physics (Julesz, 1991b). The
fourth article (Julesz, 1991c) of mine is an open peer review in which

I answer, among others, the philosopher John Searle on his recent

idea that the brain cannot have unconscious processes. This papel
will be published sometime next year in the journal Behavioral and
Brain Research and I will quote from my answer at a few places here.
My fourth article (Julesz, 1990), intended for neurophysiologists, ell'.
titled "Early vision is bottom-up except for focal attention," just
appeared in Symposium #55: The Brain celebrating the 100th an.
niversary of the Cold Spring Harbor Laboratory. These five articles
span a large audience in different disciplines, and while working on
them permitted me to ponder over the state of psychobiology from
five different perspectives.

12



I mention these articles to offer more detailed sources of my views
on vision. I will also elaborate here on some of the issues which I
discussed at the CAIP Neural Network Workshop on Oct. 16, 1990.
I think the interested reader will find in these reviews several topics
related to neural networks. Nevertheless, as a token of my appreci-
ation of being invited to this excellent workshop I will make a few
brief remarks based on my Kyoto talk, but with some modifications..

During my 32 year career at Bell Laboratories (now at Rutgers
University and CALTECH) - doing basic research in visual percep-
tion and trying to transfer some of the gained knowledge into tech.
nology - I often came across some surprising confusions by lead-
ing engineers about the state of brain research. I found it amazing
that engineers with excellent brains and great sophistication, usually
conservative in assessing technological innovations, would believe in
half-baked Al projects. Conversely, there are now interesting tech-
nological possibilities to be exploited that for various reasons have
not been attempted. A point in case, out of my expertise, is auto-
matic speech recognition, a field whose development I witnessed over
a three decades. In spite of great progress, some of the fundamen-
tal principles of human speech recognition are still an enigma, and
the prodigious feats of a human who can pick out and understand
in noisy environment a speaker of his native tongue cannot be mim-
icked by any machine at present. In visual perception the abilities of
some humans are even more enigmatic. Take for instance the art of
- cartoonist, who with a few strokes can portray a faithful image of
a face that all of us can immediately recognize.

13



Towards Hierarchical Matched
Filtering

Robert Hecht-Nielsen

HNC. Inc.
and

University of California, San Diego

1 Introduction

Traditionally, matched filtering has been used in application areas

such as communications, radar, and sonar for detecting a specific

waveform in a time series signal. In this paper we examine a new

type of matched filter which is optimized for spatiotemporal pat-

tern classification. Banks of these matched filters can be used as

high-performance classifiers for spatiotemporal patterns. Unfortu-
nately, the direct implementation of such matched filter banks for

large problems (such as large-vocabulary continuous speech recogni-

tion), while attractive, is not practical. The focus of this paper is on

a method for exploiting the inherent statistical redundancy of typical

spatiotemporal pattern sets to allow more efficient implementations

of such ma ,ched filter banks. In particular, this paper proposes a
hierarchical neural network approach to this implementation prob-

lem. Before beginning the discussion of generalized matched filtering,

some definitions are presented.

For the purposes of this paper a spatzotemporal pattern will be
taken to be a bounded, continuous function x : R - R' of compact

interval support from the real numbers (i.e.. time) to n-dimensional

Euclidean space. Compact interval support implies that the value of

the function is the zero vector except in a single closed and bounded

interval of time [a, b]. Thus, a spatiotemporal pattern is simply a tra-

jectory or path in n-dimensional space, parameterized by time. The

set of all such spatiotemporal patterns will be denoted by P[R. R",.

In spatiotemporai pattern recognition. the typical goal is to pro-

vide classifications for relatively brief spatiotemporal patterns such

as words embedded in a continuous speech stream). For simplicity,

we will assume that each such brief spatiotemporal pattern belongs

to one of M classes. For example, in the problem of recognizing

words in continuous speech. the input to the system might be a

space-time pattern consisting of the time-varying power spectrum of

the voltage output of a microphone monitoring the speech of a single

speaker. The classes in this instance are the words in the vocabuiary.

As each word ,Lteraiic has been completely entered into the speech
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classifier system. the system is expected to emit a number between

1 and M, corresponding to the vocabulary number of the word that
was spoken. We shall assume that we are dealing with an uncued
classification problem without interference and obscuration (i.e.. a
problem for which there is no significant background noise and only

one pattern is present at any time but for which the patterns appear
at unknown times and may abut one another).

Spatiotemporal pattern classification has an issue associated with
it that does not pertain to spatial pattern classification - namely.
spatiotemporal warping. The term spatiotemporal warping refers to
the action of a transformation T : S C P[R. R ] - P[R, ] that
maps each spatiotemporal pattern in a subset S of the set of all

possible spatiotemporal patterns Pi!R, RF] to another spatiotemporal
pattern in P[R,/ R'. Such spatiotemporal warping transformations
can take many forms. One common example is the time warp. A time
warp takes a pattern x(t) and transforms it into a pattern x(O(t)),
where 9 is a strictly monotonically increasing smooth scalar function
of time. Time warping has the effect of speeding up or slowing down
the movement of the pattern x along its trajectory in R' and of
translating it forward or backward in time.

Another example of a spatiotemporal warp is the change that oc-
curs to the sound power spectrum of a phonograph record when the
same record is played at different speeds. In this instance, the spa-
tiotemporal warp transformation is not a simple time warp, because
the entire path followed by the spatiotemporal pattern is changed
(each sound power feature is changed to a higher or lower frequency
channel). Notice that the power spectrum spatiotemporal warping
transformation associated with speeding up or slowing down a phono-
graph record is different from the transformation associated with
speaking faster or slower. When we speak faster or slower, our vocal
pitch changes very little, and therefore essentially the same sounds
are emitted as in normal speech. only in a faster or slower sequence
than normal. Thus, the sound power spectrum spatiotemporal warp-
ing transformation associated with speaking faster or slower is essen-
tially a simple time warp' Finally, notice that if we were consider-
ing the time-series sound signal itself as our spatiotemporal pattern
(instead of its power spectrum), these situations would be reversed
(speeding or slowing a record would be a time warp, and speaking

faster or slower would not be).
In general, spatiotemporal pattern classifiers are required to be

insensitive to a general class of spatiotemporal warping transforma-
tions. However. in the case where only spatiotemporal warping trans-
formations that are close to the identity transform need to be accom-
modated, the spatiotemporal pattern can simply be viewed as a fixed

15



path or curve in n-dimensional space. By dividing the time duratiuLl

of the pattern into small enough units. we can view the pattern as a

sequence of N closely spaced discrete points in n-dimensional space.
Alternatively, such a pattern could then be viewed as a single point

in an nN-dimensional space. Therefore. at least in principle, a spa-
tiotemporal pattern of finite duration that is not subjected to signif-

icant spatiotemporal warping transformations can simply be treated
as a spatial pattern. Alternatively, spatiotemporally warped versions
of the same pattern can be viewed as different spatial patterns (which
happen to belong to the same class). If a time window of a fixed num-
ber N of spatial samples is employed, the total pattern time duration
can sometimes be ignored (that is. we can deal exclusively with suc-
cessive time vignettes - each of which is classified individually as a
spatial pattern). This is the approach used by Waibel. et al in theji
time-delay neural network

We now define the generalized matched filter. Following this

it is shown how a bank of such matched filters can be used as *
classifier for general spatiotemporal patterns that is insensitive t
spatiotemporal warping transformations of a given class.
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Some Variations on Training of
Recurrent Networks

Gary M. Kuhn and Norman P. Herzberg
Center for Communications Research - IDA

1 Introduction

We describe some variations on training of muiti-layered recurrent
networks which overcome the need for an externaily-supplied target

function, avoid back-propagation of error derivatives in time, reduce
training time, and enhance generalization.

Applied to a speech recognition problem, these variations resulted
in as low a number of training iterations and as high a performance,
as those reported for cross-entropy trained, hidden Markov models.
However, we find that our recurrent networks have not provided a
large performance improvement over a competing non-recurrent net-
work with a similar number of weights.
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Generalized Perceptron
Networks with Nonlinear
Discriminant Functions'

S. Y. Kung
K. Diamantaras
W.D. Mao
J.S. Taur

Princeton University
Princeton, NJ 08544

1 Introduction

The objective of this chapter is to provide a systematic exploration of
the nonliner perceptron-type networks. For supervised training, the

training patterns must be provided in terms of input/output pattern

pairs. They are denoted as [XY] = {[xi,yl],[x2,y2] ... , [x ,y.Nj}.
where Al is the number of training pairs.

When applying (both single and multiple layer) supervised neural net-
works to real applications, two types of basic problem formulations may
be adopted:

e competition-based formulation:

Under this formulation. it is not necessary to have the exact values
of teachers as direct reference. Instead. the teacher only provide
information whether a correct classification is achieved for every
training pattern. In other words, the training set Y wil be simply
a set of integers labeling the correct class corresponding to each
input pattern. i.e. Y = {yt E I'}. The objective of the trainina is

to determine the weights which successfully separate different clu&.

ters of patterns and ensure the correct node wins the competition

against the rest of the nodes.

e approzzmatton-based formulation:

Under this formulation. it is assumed that the (exact) values of
teachers are available as direct reference. The teacher of the train.
ing set Y will be real-valued N-dimensional vector. i.e. yi =E RN.

In other words, corresponding to a specific input pattern each of
the N output nodes is assigned a desired value. (This is in a sharp

18



contrast to the competition-based formulation.) The objective o;
the training is to determine the optimal wezghts which mznimsze

the (least-square) error distance between the teacher's value and
the actual response.

Both formulations lead to very similar mathematical techniques in the
actual computations for training. For example. gradients of discrim-

inant functions and back-propagation recursions are useful for both
approaches. The main difference is that the approximation formula
tion can take advantage of having teachers as direct reference while the
competition formulation does not need such information.
One can convert a competition formulation into an approximation for-
mulation: Let yC = i and y' denote the teacher values for the com-
petition and approximation formulations respectively. If U = i. then
y= [-1,-1,..., .... , a vector with all elements being -1 ex-
cept the ith element which is 1.
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Neural Tree Networks

Ananth Sankar and Richard J. Mammone
CAIP Center and Dept. of Electrical Engineering
Rutgers University
Piscataway, NJ 08855-1390

1 Introduction

Pattern classification is a fairly mature subject and there have been
many books written on this field The supervised pat-
tern classification problem can be stated as: Given a set of training
feature vectors, Xi, each with an associated class label Yi, find a re-
trieval system that will produce the correct label , Yi for any feature
vector, X i The retrieval system is determined by using a training
algorithm. In recent years there has been increased interest in the
use of neural networks as pattern classifiers and associative memo-
ries Feedforward neural networks,
in particular, have emerged as one of the most successful neural net-
work architectures. The basic building block for feedforward neural
networks is a neuron which calculates a non-linear function of the
weighted sum of its inputs. Thus the neuron can be specified by
its weights and the non-linear activation function. In a feedforward
neural network these neurons are arranged in layers such that the
outputs of one layer are connected to the inputs of the next layer.
The input feature vector is fed to the first layer of neurons whose
outputs become the inputs for the second layer of neurons and so
on and finally the output of the last layer is the output of the net-
work. The last layer is called the output layer and all other layers
are called hidden layers. An n-layer network is one that has n - I
hidden layers and one output layer. The weights of such systems are
typically found by supervised training algorithms that use a training
set of labeled feature vectors. The problem of training a feedforward
network is NP-complete and therefore one must look for good
heuristic solutions. Currently the most popular heuristic is backprop-
agation which is essentially a gradient descent method
over an error surface. For networks with hidden layers, this error sur-
face is non-quadratic, and creates problems with local minima. In
addition, the exact number of hidden neurons and the connectivity
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between layers must be specirted betore learning can begin. In prac-

tice, however, one cannot guarantee that backpropagation will find

the correct weights for a given number of neurons and a particular

training set. The most common solution to this problem is to choose

the number of hidden neurons by trial and error.

Decision trees provide another popular approach to pattern clas-

sification The structure of a decision tree is

recursive in that each node of a decision tree has a set of child nodes,
each of which is also a decision tree. The terminal nodes have no
child nodes and are called leaf nodes. It has been shown that con-
stmcting a decision tree with the shortest length to solve a given
classification task is NP-complete Thus all existing algorithms
to grow decision trees are heuristic methods. The essential idea in
these algorithms is to solve the problem by using a divide and con-
quer approach. The root of the tree partitions the feature space into
subsets, assigning each subset to a child node. This partitioning is

also called splitting. The usual way to split the feature space is to
generate a list of possible splits and then search through this list to
find the best split This splitting process is continued until each
terminal or leaf node corresponds to one class. Different ways of gen-

erating the search space of partitions and evaluating the "goodness"
of a split lead to different decision tree algorithms like CART [4] and

[D3 These algorithms require an exhaustive search through a

list of arbitrarily generated splits. This search process is computa-
tionally inefficient. In addition, since the list of possible splits is

generated in an adhoc manner, the solution may not be close to the
optimal solution. Most decision tree algorithms use splits which re-

sult in regions whose boundaries are perpendicular to the feature

space axes. This is a severe limitation in cases where the problem is

linearly separable but the decision hyperplane is not perpendicular

to a feature axis since many perpendicular splits would be needed to

approximate the hyperplane. CART allows for non-perpendicular

splits but this, too, involves an exhaustive search technique.

In this paper we introduce a new neural network architecture

which is a combination of feedforward neural networks and decision

trees. The architecture is called a Neural Tree Network (NTN). The

NTN architecture is a tree with a single layer neural net at each of

its nodes. The new architecture is grown during the learning pro-

cess rather than specified a priori as in feedforward neural networks.

We show that the NTN architecture offers a substantial implemen-

tation advantage over feedforward neural networks. A new learning
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algorithm which grows the NTN is also described. The new learning
algorithm is based on the method of gradient descent and does not
require an exhaustive search as previously used in training algorithms
for decision trees. The splits are not restricted to be perpendicular
to the feature space axes and the new algorithm is guaranteed to
converge to a solution. Simulation results show that the new algo-
rithm is faster than backpropagation and produces smaller trees than
conventional decision trees.

This paper extends the results of our earlier work on two class
problems to the multi-class case. The paper is organized as fol-
lows. Section 2 discusses the new neural net architecture. In sec-
tion 3, we describe the new algorithm that grows the NTN. In the
discussion of the new architecture and algorithm, we concentrate on
the two class problem for the sake of simplicity. In section 4, we
extend the new method to multi-class pattern recognition problems.
Section 5 shows simulation results and compares the new algorithm
to backpropagation and decision trees and section 6 gives the sum-

mary and conclusions.
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Capabilities and Training of
Feedforward Nets

Eduardo D. Sontag
Rutgers University

1 Introduction

This paper surveys recent work by the author on learning and rep-
resentational capabilities of feedforward nets. The learning results
show that, among two possible variants of the so-called backpropa-
gation training method for sigmoidal nets, both of which variants are
used in practice, one is a better generalization of the older percep-
tron training algorithm than the other. The representation results
show that nets consisting of sigmoidal neurons have at least twice
the representational capabilities of nets that use classical threshold
neurons, at least when this increase is quantified in terms of clas-
sification power. On the other hand, threshold nets are shown to
be more useful when approximating implicit functions, as illustrated
with an application to a typical control problem.
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A Fast Learning Algorithm for
Multilayer Neural Network
Based on Projection Methods

Shu-Jen Yeh Henry Stark
Rensselaer Polytechnic Inst. Illinois Inst. of Technoloey

1 Introduction

Artificial neural nets shows great promise as assotlative memories
and pattern classifiers As is well known, the single

laver perceptron can yield good results as pattern classifier when the
classes are separable by hyperplanes but fails when this condition is
not met. Thus the exclusive-or problem cann- "'e solved by a single
laver neural net nor, for example, can Lhe classification of classes
distinguished by distance-from-the-origin On the other hand.
many problems of practical interest can be solved by two-layer neural
nets, including the ones cited above. To train a multi-laver neural
net there exist a number of learning algorithms of which the back-
propagation learning rule (BPLR) is the most popular. The BPLR
is an iterative gradient search algorithm desig-ed to minimize the
mean-square error between the actual output of a multi-layer feed-
forward net and the desired output. It is also we!ll known that the
BPLR shows good performance in learning but exhibits slow learning
,peed in many cases.
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