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Global Minimum Solution of Engineering Design Problems

Many important problems in engineering design lead to a geometric pro-
gramming formulation:

n
minyp(L) = Z a,w"f".zf’g’" e .n',i‘"‘ (1)
=1
subject to linear constraints and bounds on the positive design variables z, >
0. =l.....m. The exponents J;, are given and may be positive or negative.
If all @; > 0. then (1) is convex and easily solved.

If one. or more a; < 0, the problem is nonconvex. and may have many
local minima. The design engineer wants to find the global minimum (e.g.,
minimum cost or minimum weight).

Two different computational methods have been developed for solving
problems of this kind.

The first method is a stochastic approach which essentially finds all the
local minima by choosing starting points which are uniforinly distributed in
the feasible space. and the local minimumn corresponding to each. A stopping
rule is used to determine when all the local minima have been found (with a
specified probability ).

The second method initially transforins (1) to a separable function. [t then
gives a guaranteed t-approximate global minimum point. for any user specified
tolerance ¢. [t is based on a new theoretical result which gives an easily
computed sufficient condition for a global minimum of this type of constrained
problem.

(‘omputational results for both methods have been obtained for a range of
problems using the C'ray X-MP. The stochastic method is very well suited for
parallel implementation. and its nse on the CN-2 (aud possibly the CVM-X) is
being investigated.
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Solution of Large-Scale Block Structured Problems

Many large-scale constrained optimization problems possess an
inherent block structure. In earlier work, supported by this grant, an efficient
parallel method for block-angular linear programs was developed and
implemented on both the Cray-2 and the NCUBE.

More recent work has extended this parallel method to problems with
many nonlinear constraints. This extension (called the RMG method) first
solves many relatively small linear programs in parallel (one for each block),
and then improves the vaiues of the linking variable by solving a small
nonlinear reduced problem. This iterative process is repeated until an
optimality test is satisfied.

Computational results using the RMG method, for problems with
quadratic constraints, have been obtained on the Cray-2, and a 64-node first
generation NCUBE. A range of problems with up to 64 blocks have been
solved, the largest consisted of 64 blocks with a total of 3200 variables and
6400 quadratic inequality constraints. This problem took approximately 91
seconds on the Cray-2 and 548 seconds on the 64-node NCUBE.

For comparison, a set of similar problems were solved on the Cray-2,
using both MINOS 5.3 and the RMG method. The largest problem solved with
MINOS consisted of 16 blocks, 800 variables and 1600 quadratic inequality
constraints. It required 576 seconds to solve. The same problem was solved in
approximately 27 seconds using the RMG method.

These results have been presented to a group from SSI and IBM, who
have expressed an interest in incorporating this method in their mathematicali
programming software.
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Multipivot Alyorithm for Large-Scale Linear Programs with a
Special Structure

An important type of large-scale linear program with a special structure is
that with relatively few variables but many inequality constraints. For exampie,
a production problem with m production centers and K possible scenarios will
give a problem with m variables and mK inequality constraints. This structure
also represents the infinite horizon, discounted Markov decision problem.

A new solution methed for this type of problem has been discovered,
which is similar to the simpiex method but permits muitiple pivots at each
iteration. This wiil typically cause a dramatic reduction in the total number of
iterations required as ccmparec {0 the simplex methed.

The worst case tenavicr of this algerithm has been analyzed and it has
been shown that no more than 2mK iterations are required.

Computational testing nas been carried out using the Cray-2 on a range
of problems with m=10C and up to 100,000 inequality constraints. The
maximum number of iterations required was 13. The time tc solve the largest
problem (m=100, mK=100,000) was 6.6 seconds.
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