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INTRODUCTION

Methodology to substantiate helicopter fatigue life has received considerable attention dur-
ing the last decade. This interest was stimulated by the substantial variability in the results
from the study on the American Helicopter Society pitch link problem.1 Recently, further
interest has resulted from the U.S. Army’s introduction of a structural fatigue reliability crite-
rion for rotorcraft. This criterion has been interpretc:d2 as a requirement for a component
lifetime estimate to have a reliability of 0.999999.

Helicopter safe life reliability methodology has recently been the subject of several papers345
and an American Helicopter Society subcommittee round robin.

The authors® have investigated the sensitivity of high reliability estimates from simple
stress-strength statistical model computations. Results showed substantial variability in reliabil-
ity estimates even for almost undetectable differences in the assumed probability density func-
tions (PDFs) representing the stress and strength data.

In this report, the uncertainties in determining high reliability for helicopter compo-
nent safe life design are studied by introducing a simulation process to identify the effects
of a small amount of variability in the design variables for determining the lifetime esti-
mate. The reliability values are determined for a generic uniaxial steel structure loaded
in tension similar to a helicopter pitch link component by applying Miner’s Linear
Damage Rule.’ The six component fatigue test values were obtained from Arden! where
the maximum applied stress (S) on the component is tabulated with respect to cycles to
failure (N). In order to obtain an SN curve to represent the component fatigue test
results, a separate regression analysis was applied to a larger set of coupon tests of a
steel for which the results are tabulated in Bury. The assumed spectrum load used in
determining the lifetime estimate was obtained from Berens.!! Note that only the six com-
ponent fatigue test values are from Reference 1 and the remaining test values are from
References 10 and 11.

THE COUPON TEST SN CURVE

This section dcscribesothe procedure for determining an SN regression curve to represent
coupon fatigue test data,'® as shown in Figure 1. The assumed functional representation
of the data is

S=S.+ (Sy — Sw)e # (logioN " (1

where S is the maximum applied stress and N is the number of cycles required for the
coupon to fail. S, is the coupon endurance limit representing the case when N - o
and S, represents the static strength of the coupon; i.e., the strength for N = 1. The
shape of the SN curve is determined by Band y. S, Sy, 8, and y were determined from
application of an IMSL computer code!? for solving nonlinear regression problems. The
resultant SN curve is shown in Figure 1 (solid line) with the individual coupon fatigue
test valucs.
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Figure 1. Mean coupon SN curve/fatigue data.

A review of the literature on the determination of component fatigue life showed that
various functional representations similar to Equation 1 have been applied where N is the
independent variable and S is the dependent (response) variable. This is counter to the con-
veniional functional representation of test data where S would be the independent variable
in the analysis since a fixed cyclic load (stress) value is applied and a resultant (dependent)
number of cycles to failure is recorded. In order to obtain N as the dependent variable,
Equation 1 can be inverted resulting in the following:

logigN =e {log[ - 108 (S —Sw)/ (Su ~Sw))] ~logB}/y 2

Although Equation 2 is recommended in determining the functional representation of the
data, Equation 1 was applied in this study since it is commonly used in engineering fatigue
analysis, and the qualitative measure of the relative uncertainties in determining the reliabil-
ity at a specified lifetime are not affected by the SN curve assumption.

In order to simplify the analysis, the fatigue data from Refercnce 10 was normalized
with respect to the estimated S, value determined from the initial application of regres-
sion analysis. Another SN curve was then obtained from the normalized data, where 8,
v, and S, were obtained for a known S, of 1. The resultant SN(N) curve is shown in
Figure 2. The figure also shows the regression results SN(S) from the application of
Equation 2.
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Figure 2. Regression curves from coupon test results.

THE COMPONENT SN CURVE

Usually the shape of the component SN curve is obtained from a prior coupon SN(N)
curve, as shown in Figure 2. The location (ordinate position) of the curve is determined
from extrapolating the individual component values, as shown in Figure 3, to N = 108 cycles.
The original component values in Reference 1 have been rescaled so that they have scales
similar to the S values in Figure 2. The extrapolation process involves vertically positioning
the coupon SN curve (see Figure 3) to agree with the individual component values and then
extending the curves to N = 108 cycles. S; values are obtained for N = 10® and the compo-
nent curves mean stress position at N is

Sm=2Si/n, (3)

where n is the number of component test results. The solid line in Figure 4 shows the rcpre-
sentative component SN curve and component test data. Since there are usually only six
component test results available, because of the costs in component testing, the above proce-
dure is often applied. Using the more extensive, less expensive coupon test results to deter-
mine the shape of the SN curve assumes similar material, test, and environment for both
coupon and component.
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SPECTRUM LOAD

The normalized spectrum loading used in the fatigue life analysis is shown in Figure 5a. The
loading was obtained from a rainflow count of a modified combat history described in Refer-
ence 11. The spectrum was determined by the number of loads within discrete range incre-
ments. The spectrum is simplified to five loads {Ll} by expanding the size of the range
increments and including the appropriate cycle count {n,}f within each expanded range.

The normalization procedure involved dividing each L; by the smallest damaging load S, (endur-
ance limit). This simplification was adequate for identifying the spectrum effects in this study.

MINER'S RULE

In order to obtain the lifetime estimate from the simplified fatigue load (L) and the normal-
ized material strength (S) data shown in Figures 5a and 5b, the following linear damage rule’ is
applied where

n(i) -
1 N 4)

IIMu:

D=

is the damage fraction for each pass or repetition of the spectrum. This representation of opera-
tion hours is described in Reference 10. The n(i)s are the number of cycles corresponding to
the applied load L(i), as shown in Figure 5a. The N(i) values are obtained from the SN curve,
as shown in Figure Sb, where the corresponding S; values are identified in the figure by the L(i)
values obtained from the spectrum loads in Figure Sa. In addition, the rule requires that

Np - DF = 1 (5)

in order to determine the maximum number of passes (Np) that can occur prior to the
component failure.
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Figure Sb. Component mean SN curve.




SIMULATION PROCEDURES IN DETERMINING COMPONENT RELIABILITY
Bootstrap Method Applied to Coupon SN Curve Computation

The Bootstrap Method,'* a simulation process, was introduced in the fatigue life reli-
ability analysis in order to examine the effects of uncertainties used in determining the cou-
pon SN curve and the resultant component reliability. Only one reliability estimate can be
obtained from a single set of data; however, even with all conditions the same, one would
expect to determine a different reliability estimate from another set of data. The Boot-
strap Method provides a technique for estimating the variability among random sets of
data generated under equivalent conditions using data from only a single random sample.
The idea is to create arbitrarily many new datasets by sampling with replacement from the
original data. If there are n values in the original data, then a new dataset is crcated by
selecting n values from among these observed data, allowing data values to be sclected
more than once. The probability distribution of the reliability calculated from these
datasets, which are crecated by taking random samples from the single observed dataset.
provides an estimate of the actual probability distribution of reliability which could, in
principle, be determined from future datasets. -

The material fatigue testing involves obtaining the number of cycles to failure for a
specified applied load (S) shown as the individual data points in Figure 1. The Bootstrap
Method involves selecting a random set of 9 values independently with replacement from the
set of cycles to failure values {N;(i)} ?= ; for each jm applied stress from {S;} }2, as shown in
Figure 1 and obtained from Reference 12. The result is a new set {Nj‘(i)}? for each of the S
values. The new set is called the Bootstrap sample where some values can be repeated once,
twice, or more times. The new set is then used in the regression procedures described in the
Coupon Test SN Curve Section in order to obtain a new SN curve (S in Equation 1).

In Figure Al (see Appendix), the results of applying the Bootstrap show a 90% confi-
dence band on the original SN(N) curve. Results in Figure A2 show the individual SN(N)
curves obtained for the Bootstrap samples. The results from Figures Al and A2 indicate that
there is more variability for large or small N values than for the central region of the curve
which is consistent with determining confidence bands on regression curves.

For calculating the effects of coupon SN curve uncertainties, a damage fraction (DF*)
value is computed by applying the linear damage rule. The above procedure is repcated Mg
times, so that a set of {DF;(i))'le are obtained. The component reliability R can then be
obtained by counting the number (Np) times Np - DF* <1, k = 1,2,..Mp, wherc Np, the
number of passes, is specified. The computed component reliability R including uncertaintics
in the coupon testing procedure is written as

R = Ng /Mg, (6)
where Mg is the number of rcpeated applications of the Bootstrap proccdure.

Reliability Estimates from SN Component Curve Simulations

The following simulation procedure was applied in order to identify the effects of
uncertaintics in the location of the component SN. curves on the rcliability cstimates.

*Represents simulation results.




The uncertainties are assumed because of the potential differences in loading, materal, sur-
face conditions, and geometry between the coupon and component. Also contributing to

these uncertainties are: the extrapolation of the component fatigue data in determining the
Si’s, as shown in Figure 3, and the availability of only six values in computing Sy (mean of
the curve), as shown in Figure 4. Examination of potential inaccuracies in the reliability com-
putations due to assuming that the component and coupon SN curve shapes are similar was
not included in the simulation process. Introducing variability in the curve’s location was suffi-
cient for showing sensitivity in the reliability computation. In the simulation process, a ran-
dom set of M S® values were obtained. These values are normally distributed about the

Sm value in Figure 4 from the following:

S (i) =Sm(l +Vs-Z), i=12..M, (7

where the Z;j’s are values randomly selected from a standard normal distribution with a mean
of 0 and a variance of 1. The Vg value is the coefficient of variation (CV) and the mean is
Sm- In Figure A3, a representative normally distributed set of S values are shown for Vg
= 0.01 and Vg = 0.02. The newly obtained mean values (S ) are now used in vertical posi-
tioning of the component SN curve, as shown in Figure 4, so that M SN curves can be
obtained from Equation 1 by the following:

ST =S(Sw.Suhy) + AP, i=12..M, (8)

where AP;=S' (i) = Sym. M damage fraction values (DF]) are obtained from applying the
procedures described in the Miner’s Rule Section and the schematics shown in Figures Sa and
5b using the newly available S values.

From Miner’s Rule, compute Np - DF/, i = 1,2,..,M and record the number (Ns) of
times Np - DF < 1 for a given Np value, where Np represents the specified number of
passes. The component reliability R can be written as

R = Ng/M. . (9)
Note that in order to obtain 0.999999 reliability, M = 1 x 10° simulations would be required.

Load Uncertainties Effect On Reliability Computations

A simulation procedure similar to that described in the previous section was applied in
order to identify the sensitivity in computing component reliability by introducing uncertainties
in the assumed spectrum loads (see Figure 5a). There exist potential errors involved in assum-
ing a specific load spectrum.l They are the results of: an inaccurate measuring device, the
location of the device, and assuming load patterns determined from short periods of data
recording which differ from the actual loads the component would be subject to during its
operational lifetime.

Application of the simulation process involved only modeling uncertainties in the L val-
ues, with n(i)s remaining constant for a given load. Introducing the same amount of variabil-
ity in ecach {L(i)}? values was sufficient to show the sensitivity of the reliability estimates
from uncertainties in the loading.




Iniually, the simulation involves obtaining M1 sets where the jth set {Lj‘(i)} i5=1 is deter-
mined from the following:

L;(i) =L@l + VL Z)),i=12..5 (10)

where j = 1,2,.,M1 and Z; is a random value from a standard normal N(0,1) distribution.
VL is the coefficient of variation representing an assumed variability in load L(i).

For the jth simulation, the original five loads {L(i)} ?, as shown in Figure 5a, are modified
resulting in a new set {L.‘(i)}i5 from Equation 10. The distribution of Lj‘(l) for all j values,
for example, would be similar to that for Sy, as shown in Figure A3.

In the simulation process, the jth modified set L7, and its associated N |, determines a dam-
age fraction value DF}, as described in the Miner’s JRule Section and Figures 5a and Sb. In
order to obtain component reliability values from the load variability, Miner’s Rule is then
applied by recording the number (N) of times Np-DF; <1 for j = 1,2,.M1. The compo-
nent reliability R is then written as

R = N_/M1. (11)

Reliability Sensitivity from Uncertainties in Miner’'s Rule

A simulation procedure similar to thosc in the previous two sections is applicd to the
Miner’s Rule relationship in Equation 5. This was done in order to examine the effects of a
possible error in assuming the component will fail when Np-DF =1 (see Equation 5). In
order to identify the effects of this uncertainty in computing component reliability R, the fol-
lowing simulation process was performed: -

Initially, the value 1 in Equation S is replaced by a set of random numbers {CR;} ’1"2
resulting in Np-DF * < CR;, where
CRi=1+V\y-Z,i=12,..M2 (12)

and V) and Z; are the assumed coefficient of variation and standard normal as previously
defined in the above two sections.

The reliability R is determined from recording the number (N7) of times that

Np- DF* < CR;, (13)
and then defining

R = Nz /M2 (14)

where M2 is the number of simulations.




WORKING SN CURVE

The adjustment of the mean component SN¢ curve from a limited amount of component
test data results in a certain amount of variability in estimating the location of the curve. In
order to account for this variability, and in some instances other uncertainties in the fatigue
analysis process, a component SN curve reduction factor is often introduced which results in
a new working SNy, curve, as shown in Figure A4. There is no standard method for obtain-
ing a working curve in the helicopter industry.16 The working curve in Figure A4 was
obtained by a uniform reduction in all S; values. This approach maintains the same curve
shape as in the original SN, curve; i.e., the coupon SN curve shape. This approach is consis-
tent with the use of the coupon curve shape in the extrapolation process for each component
data value (see Figure 3) by which the original component curve Sy, value (see Figure 4) is
obtained. In Figure 3, a schematic of this uniformity is shown where for N = 1 and
N = 10® show an equal amount of assumed dispersion in the S; values.

Reduction Factors for Working Curves

Some of the reduction factors commonly used by the helicopter manufacturers are dis-
cussed in References 15 and 16. In some cases a multiplication factor is used to obtain work-
ing curve values, Sy; i.c.,

Sw=Sc-P-Sp (15)

where S. represents the strength values from the component curve, SN; for various P values.
Sm was previously defined in Equation 3.

Another reduction procedure involves defining

Sw=Sc-3-SD ‘ (16)

where the standard deviation (SD) is often determined from an assumed standard cocfficient
of variation for a particular material to represent the S; values shown in Figure 3 and in
Equation 3. A typical value for the coefficient of variation for steel is 7%. The SD value
is then written as SD = 0.07 - Sp. One other method involves determining SD from the
actual'Si values; i.e., SD = V S (Si - Sm)zl(n —1 and substituting the SD value in
Equation 16.

The working curve was introduced in this report in order to cvaluate its capability to
include the possible variability in the reliability estimates from the simulation results.

RESULTS AND DISCUSSIONS

In this section, results from the simulation procedures are shown in both tabulated and
graphical form. Variability is introduced in combination, as well as individually, for all of the
following four factors: the spectrum load, the mean SN Curve, Miner's Rule, and the Boot-
strap process.




In Table 1 all four factors were varied for a range of CV values (% variability) from 1%
to 5%, except for the Bootstrap simulation where the variability is obtained from coupon test
results. The component reliability results are tabulated as a function of the corresponding
CV values assumed in the simulation procedures. The results were obtained by systematically ran-
domly selecting values from each of the four factors so that 1 x 10% distinct factor combinations
are obtained for computing the damage fraction (DF) in the Miner’s Rule Section. The reliabil-
ity (R) is then obtained from the sum of all the times Np - DF* <1 divided by 1 x 108,

Table 1. RELIABILITY VERSUS FACTOR VARIABILITY: LIFETIME = 3425

% Variability* Reliability
1.0 0.999999
20 0.989676
30 0.937250
40 0.872101
5.0 0.816061

*Simultaneous variability assumed for the following: spectrum load, mean curve,
Miner's Rule = factor (1) and the Bootstrap process on defining mean curve are
applied.

In order to apply the simulation procedures, a 1% variability was introduced for each of
the factors and the number of passes (Np = 3425) was selected in order to obtain a baseline
reliability value of 0.999999. This value was selected because of the helicopter industry’s inter-
est in obtaining high component reliability of 0.999999.

The results in Table 1 show a substantial instability when comparing the reliability estimate
of 0.999999 versus 0.989676 for the respective 1% and 2% variabilities. The implication of these
results is that in one case one in a million failures could occur compared to 10324 failures in a
million in the other. This substantial difference for such a small increase in the inherent variabil-
ity in the assumed fatigue life models shows a severé sensitivity in computing high reliability
when there is a small degree of uncertainty in determining spectrum loads, SN curves, and assum-
ing a failure requirement from Miner’s Rule. The results from increasing the variability from 3%
to 5% show a corresponding reduction in reliability values. The R = 0.816061 for 5% variability
is a very large reduction from the original 0.999999 for 1% variability. The CV values shown in
Table 1 represent a range of potential parameter uncertainties in the fatigue life model.

In Table 2, reliability values are tabulated as a function of the combined and individual vari-
ability of the four factors. This was done in order to examine the effects of the individual factor
variability on computing component reliability. The 1% variability was applied to all factors result-
ing in R = 0.999999 when Np is equal to 3425 (as in Table 1 at 1%). The 2% variability was
applied to each factor individually with 1% variability for the other two factors. The Bootstrap
process was applied in all of the cases. Introducing a 2% CV in the spectrum load (SPL) shows
a substantial reduction in the reliability estimate from 0.999999 to 0.996404. The 2% variability
in the component SN; curve (MSN) shows a smaller reduction of 0.999999 to 0.999440 indicating
that, based upon the particular spectrum considered, the spectrum load uncertainties could resuit
in greater instability in the reliability values. Small variations in the Miner’s Rule assumption
(see Equation 13) do not appear to be as critical in the reliability computations. Incrcasing the
variability from 3% to 5% shows a continued decrease in reliability estimates except for the case
of Miner’s Rule variability which has a very small reduction. The 5% variability on the spectrum
load shows a value R = 0.862469 which is only 5.7% greater than the case where all factors were var-
ied simultaneously, as shown in Table 1 for 5% variability.
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Table 2. RELIABILITY VERSUS INDIVIDUAL FACTOR VARIABILITY: LIFETIME = 3425

% Variability (P) Reliability
on Individyal SPL MSN MR
10 0.999999 0.999999 0.999999
20 0.996404 0.999440 0.999998
30 0.967356 0992375 e
4.0 0.912587 0.972164 0.999997
50 0.862469 0.941979 0.999994

*1% variability is applied t~ all factors except for individual increase in factor variability (P)
in first column. Bootstrap: process also included.

In Table 3, reliabilities are obtained for the individual factors, spectrum load (SPL), and
location component SN curve (MSN). In order to obtain the R = 0.999999 value for 1%
variability on each of the factors, the number of passes (Np) was 3700 for SPL and 4425 for
MSN. The lower Np value for SPL is consistent with the results in Table 2 since the R val-
ues for SPL were lower than those for MSN when Np was 3425. In addition, it is obvious
that a lower number of cycles of operation would usually increase the reliability value. The
Bootstrap Method application resulted in a value of R = 0.999977 when combined with a 1%
variability in MSN. This indicates that the method is not introducing any substantial variabil-
ity compared to the SPL and MSN contribution in determining R. This is expected because
of the small amount of variability in the SN curves, as shown in Figures A1 and A2. In addi-
tion, the range of cycle values contributing the most in determining the damage fraction has
the least amount of variability.

Table 3. RELIABILITY VERSUS INDIVIDUAL FACTOR VARIABILITY / LIFETIME

% Variability Reliability (R)
’ SPL* MSN+
1.0 0.999999 0.999999
25 0.969376 0.965875
5.0 0.828010 0.818789

*3700 Lifetime value

14425 Lifetime value

NOTE: Application of Bootstrap process simulation resutted in R = 0.999977
with 1% variability for MSN.

Table 4 shows the reliability results from reducing the Sy, value, shown in Figure 4 and Equa-
tion 3, by the tabulated percentage in order to examine the possible material mean strength loss
from environmental effects such as corrosion. New values equal (1 - p/100)S,, where p is the
tabulated percent reduction factor. In the case where p = 0, R = 0.999999 was obtained vary-
ing the SN, curve by 1% with Np = 4425 which is in agreement with the result in Table 3.

This variability in the SN curve (MSN) was maintained for each of the reduced S, values.

When p = 1, then 0.99S;, was used in the simulation process to obtain a reliability value equal
to 0.999852 compared to 0.999999 for no reduction in Sy,. This result is not as substantial a
reduction in R as the case where the Sy value is reduced by 5% and R = 0.324206. The over-
all results indicate that loads which previously did not increase the damage fraction are now signif-
icant contributors in reducing the component reliability. If there is a potential for material
strength loss due to corrosion, for example, then high reliability estimates are substantially

reduced by small mean strength reduction.
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Tabie 4. RELIABILITY VERSUS PERCENT REDUCTION MSN:

UFETIME = 4425
% Reduction Reliability
0.0 0.999999
1.0 0.999852
20 0.995542
3.0 0.946600
4.0 0.720650
5.0 0.324206

NOTE: 1% variability on MSN

Table SA shows the deterministic fatigue lifetime values obtained from the application
of various working curves described in the Working SN Curve Section. This computation
was introduced to evaluate the curves relative effectiveness in accounting for the uncertain-
ties in estimating the component SN; curve. This evaluation involves comparing results
from Tables 5A and SB. In Table SA, P = 0.5 which is the reduction from S; in Equa-
tion 15. This shows a lifetime of 0.325, which is a very conservative estimate compared to
the 6150 passes obtained from using the original component curve without a reduction.
The least conservative lifetime estimate is 2000 which was obtained from reducing the com-
ponent curves by three SDs. SD was obtained by using the S; values in Figure 3 and
Equation 3. This estimate was less conservative than the 1225 lifetime value obtained
using an assumed CV = 0.07. The extrapolation process shown in Figure 3 may account
for the relatively low SD estimate for the case when the life value is 2000. The other
reduction factors result in a predictable decrease in the life estimate with an increase in
the reduction percent P.

Table 5A. LIFETIME VALUES FROM APPLICATION OF

WORKING CURVES
Working Curve
(Adjustment on S) Lifetime Value
0.50* 0.325
0.44 48
0.30 500
0.25 850
0.20 1355
S - 3(sd)t 1225
S - 3(sd) 2000
NA O 6150

*Percent reduction of (P) on S: where (1-P)S is location of working curve
and S is mean component stren%th at endurance limit.

+Standard deviation determined from assuming 7% coefficient of
variation for S.

O NA: No adjustment of SN curve.
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Table 5B. LIFETIME VALUES WITH 0.999999 RELIABILITY
VERSUS VARIABILITY ON MSN AND SPL

% Variability Litetime Value
1.0 3425
20 1850
3.0 875
40 350
5.0 50

In Table 5B, simultaneous variability on the component curve (MSN) and the spectrum
load (SPL) for 0.999999 reliability shows a reduction in the lifetime value with increasing vari-
ability, which is consistent with prior results. By comparing results from Tables SA and SB
the effectiveness of the working curve in obtaining 0.999999 reliability can be identified.
That is, for example, a 1% variability shows 3425 indicating that any of the working curves
could provide the required reliability although the curve obtained from the three SD reduc-
tions would be the least conservative acceptable method. Introducing 2% variability shows a
life estimate of 1850 which, in this case, requires using the three SD reduction procedure
where SD is obtained from assuming a 0.07 CV value. If the variability is assumed to be
5%, then a lifetime value of 50 is obtained which would require a working curve reduction
factor of 0.44 in order to provide the 0.999999 reliability. If a 5% variability in the loading
and SN curve can exist, then most of the working curve procedure would be an undesirable
method for obtaining high reliability.

Using Equation 7, the results of introducing a 1% uncertainty in the positioning of the
component curve is shown in Figure 6 as a probability density function for the lifetime esti-
mate (Np = 1/DF) determined from Equation 4. A 7.3% coefficient of variation was
obtained with a mean life of 6194. The inner range, Np = 3 . SD, is 4964 to 7689 when
the function is assumed to be log-normal; this is a substantial variability in the life estimate

for a very small amount of variability in the location of the SN curve.

In Figure 7, a density function for the life estimate was obtained from an assumed 5%
variability using the same procedures as described above. In this case, the CV was-37.5%
with a mean equal to 6621. The inner three SD range is 2065 to 18587 for the lifetime
value estimates. This exceptionally large dispersion in the life estimates for a moderate
amount of variability (5%) in the location of the mean curve indicates instability in estimating
lifetime values. It is noted that by taking the log of the data, a normal function was
obtained indicating that the fatigue estimate can be represented by a log-normal distribution.

In Figure 8, a computation similar to that described in Figure 6 was performed in order
to determine the difference in life values between 1% and 0.0001% points corresponding to
reliabilities of 0.99 and 0.999999, respectively. A 1% variability in the spectrum was assumed
in the computation of Np. A CV of 10.8% was obtained with a mean of 6203. Results
show a life of 4795 for the lower reliability of 0.99 and 3689 for the higher reliability of
0.999999 showing a 23% decrease in the lifetime estimate.
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Figure 8. Component fatigue life probability density function and reliabilty.

Figure 9, where a 5% variability in the spectrum load was introduced, shows a log-normal
distribution of lifetime values similar to that in Figure 7 for the SN curve variability. The
inner range of 1075 to 31956 again shows the substantial variability in the life estimate indicat-
ing a serious instability in the fatigue life computation approach when even small uncertain-
ties exist in assuming a specified spectrum load. Load spectrum and fati%ue strength CVs in
the range of 7% to 13% are being considered by the helicopter industry. T A comparison
of the reliabilities of 0.99 and 0.999999 for the respective lifetimes showed 1702 and 448
passes which is a 74% decrease in lifetime. This is a much greater percent decrease than
that of the 1% variability case in Figure 8. This assumed variability is probably more realistic
than that of 1% which was previously assumed.

Comparison of these figures show uncertainties in safe life fatigue design in terms of
changes in design lifetime for a fixed reliability, whereas the results in Tables 1 through 4
show variability in terms of changes in reliability for fixed lifetimes.

Although only a simple case has been considered, the modeling and simulation processes
are capable of dealing with more complex safe life fatigue designs. Such designs could
include more complex load spectra and additional parameters in the fatigue life model. The
value of any high reliability based analyses, whether simple or complex, appears to be in
question in view of the very substantial sensitivity of the reliability and lifetime results from
this study.
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Figure 9. Component fatigue life probability density function and reliability.

CONCLUSIONS

A small amount of variability (uncertainty) in load or strength in the safe life fatigue
model can result in a substantial reduction in high reliability values for a specified lifetime of
a component. These uncertainties can also result in very unstable lifetime estimates for a
given reliability. In contrast, the small variations assumed in the Miner’s Rule criterion, and
the variability in the SN coupon curve determination, caused a minimal amount of change in

the reliability estimates.

A small percent reduction in the strength values in the component SN curve; for exam-
ple, corrosion effects, can result in a large decrease in the reliability values.

Introducing working curves in the fatigue life computation is only effective when there is
a small amount of variability in the SN component curve or when the reduction factor was

very large.

In view of the sensitivity of the safe life reliability criterion of 0.999999 to the modest
variability considered in this analysis, it appears that the 0.999999 reliability is ineffective as a
criterion to ensure safety for a specified service life. In summary, this report has identified
a potential problem associated with obtaining a meaningful quantitative measure of reliabil-
ity for a fatigue loaded component.
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