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SUMMARY

In this memorandum we show how the method of QR decomposition (QRD) may be applied to the
adaptive filtering and beamforming problems. QR decomposition is a form of orthogonal triangularisa-
tion which is particularly useful in least squares computations and forms the basis of some very stable
numerical algorithms. When applied to the problem of narrowband adaptive beamforming where the
data matrix. in general, has no special structure, this technique leads to an architecture which can carry
out the required computations in parallel using a triangular array of relatively simple processing ele-
ments.

The problem of an adaptive time series filter is also considered. Here the data vectors exhibit a sim-
ple ime-shift invariance and the corresponding data matrix is of Toeplitz structure. In this case, the tri-
angular processor array is known to be very inefficient. Instead. it is shown how the Toeplitz structure
may be used to reduce the computational complexity of the QR decomposition technique. The resulting
orthogonal least squares lattice and “fast Kalman™ algorithms may be implemented using far fewer
processing elements. These “fast” QRD algorithms are very similar to the more conventional ones but,
in general, are found to have superior numerical properties.

The more general problem of multi-channel adaptive filtering which arises, for example. in broad-
band adaptive beamforming can also be solved using the QRD-based least-squares minimisation tech-
nique. In this case the data matrix has a block Toeplitz structure which may be exploited to generate an
efficient multi-channel fast Kalman or least squares lattice algorithm. The multi-channel least squares
lattice algorithm may be implemented using a lattice of the triangular processor arrays and so it consti-
tutes a hybrid solution which encompasses the algorithms and architectures of narrowband adaptive
beamforming and adaptive filtering as special cases.
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1 Introduction.

In this memorandum we will show how the method of QR decomposition (QRD) may be applied
to the adaptive filtering and beamforming problems. QR decomposition is a form of orthogonal trian-
gularisation which is particularly useful in least squares computations and forms the basis of some very
stable numerical algorithms.

In section 2, we show how the method of QR decomposition by Givens rotations may be applied
to the problem of narrowband adaptive beamforming where the data matrix, in general, has no special
structure. In particular, it is shown how the least squares computation may be carried out in parallel us-
ing a triangular array of relatively simple processing elements.

In section 3, we consider the problem of an adaptive time series filter for which the data vectors
exhibit a simple time-shift invariance and the corresponding data matrix is of Toeplitz structure. In this
case. the triangular processor array described in section 2 is known to be very inefficient. Instead, it is
shown how the Toeplitz structure may be used to reduce the computational complexity of the QR de-
composition technique. The resulting orthogonal least squares lattice and “‘fast Kalman™ algorithms. de-
rived in section 3, may be implemented using far fewer processing elements. These “fast” QRD algo-
rithms are very similar to the more conventional ones [12] but, in general, are found to have superior
numerical properties.

In section 4, we consider the more general problem of multi-channel adaptive filtering which aris-
es. for example, in broadband adaptive beamforming. In this case the data matrix has a block Toeplitz
structure which may be exploited to generate an efficient multi-channel fast Kalman or least squares
lattice algorithm. The multi-channel least squares lattice algorithm may be implemented using a lattice
of the triangular processor arrays discussed in section 2 and so it constitutes a hybrid solution which
encompasses the algorithms and architectures of sections 2 and 3 as special cases. The appendix con-
tains listings of the various algorithms in an ALGOL-like code.

The content of this memorandum appears, with slight modifications, as chapter 7 - “The QR Fam-
ily” - of the book entitled “*Adaptive System Identification and Signal Processing Algorithms™, edited
by S. Theodoridis and N. Kaloupsidis, and published by Prentice-Hall.

2 Narrow-band Beamforming.
2.1 QR Decomposition

A narrow-band beamformer is essentially a spatial filter and the corresponding adaptive beam-
forming problem may be formulated in terms of least squares minimisation [30]. A fundamental struc-
ture in least squares minimisation problems is an adaptive linear combiner of the type illustrated in fig-
ure 1. This may be applied directly to the problem of narrowband adaptive beamforming, resulting in
the so-called generalised sidelobe canceller [30]. The combined output from an adaptive linear combin-
er at sampie ume {, is denoted by
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Figure 1 Canonical Adaptive Linear Combiner
e) = x"(t)w +y(t) M

where x(t,) 1s the p-element (complex) vector of auxiliary signals at time ¢; and y(t;) is the corresponding
sample of the primary signal. The residual signal power at time n is estimated by the quantity

E,w) = e(n) @
where e(n) = B(n) [e(1), &2), ..., e(m)] T A3)
and the diagonal matrix

B(n) = diag [B"~ ', 8" "% ... 1] “@

constitutes an exponential window with 0 < B < 1. From equation (1) it follows that the vector of resid-
uals may be written in the form

e(n) = X(n)w + y(n) 5)

where
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xT()) {ry(l)‘
X(n) = B(n);!‘Tmi and  y(n) = B@Y?) ©
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X(n) is simply the matrix of all data samples received by the combiner up to time n, and y(n) is the cor-
responding vector of data in the primary or reference channel. For convenience, the matrix B(n) has sim-
ply been absorbed into the definition of e(n), y(n) and X(n).

The least squares weight vector w(n) is simply the one which minimises E (w) and the convention-
al approach [12] to this problem involves explicit computation of the data covariance matrix
M(n) = X"(n)X(n) and, as a result, the condition number of the problem is squared. For a given finite
wordlength, this leads to a considerable loss in performance and should be avoided if possible. Note that
the computation of w(n) is based on all data received up to time n.

An alternative approach to the least-squares estimation problem is the method of QR decomposi-
tion which constitutes a form of orthogonal triangularisation and has particularly good numerical prop-
erties. It will be generalised here to the case of complex data as required. for example, in narrowband
adaptive beamforming. An (n x n) unitary matrix Q(n) is generated such that

Q)X(m) = jR(()“); ™

where R(n) is a p ¥ p upper triangular matrix. Then, since Q(n) is unitary, we have
M) = XMmXm) = X"mQ mQmX(m) = R mRm) ®)

so that the tnangular matrix R(n) is the Cholesky (square-root) factor of the data covariance matrix
M(n).

Now. again by virtue of the unitary nature of the matrix Q(n), we have

el )
Le(n)| = Q(n)en);; = ;iiRg)!y(")+13::; o
where p(n)i = Q(n)y(n) 9

1¥(n)

It follows that the least squares weight vector w(n) must satisfy the equation




R(n)w(n) + u(n) = o an
and hence E (W) = |lv(n),.2 a2

Since the matrix R(n) is upper triangular, equation (11) is much easier to soive than the Gauss nor-
mal equations {12]. The weight vector w(n) may be derived quite simply by a process of back-substitu-
tion. Equation (11) is also much better conditioned since the condition number of R(n) is identical to
that of the original data matrix X(n), the two being related by a unitary transformation.

2.2 Givens Rotations

The triangularisation process may be carried out using either Householder transformations[10] or
Givens rotations[9]. However, the Givens rotation method is particularly suitable for adaptive filtering
since it leads to a very efficient algorithm whereby the triangularisation process is recursively updated
as each new row of data enters the combiner. Assume that the matrix X(n-1) has already been reduced
to triangular form by the unitary transformation

I v
Qn-nxm-1 = RO=1 (13)
and define the unitary matrix
Q-1 = A -De (14)
- Y l.J
Clearly.
; - BR(~-1)
Q(n- DX = Q-1 PXE-D; | | (15
Ko g |
- - L X (n) J

and hence the triangularisation of X(n) may be completed by using a sequence of (complex) Givens ro-
tations to eliminate the vector x' (n). Each Givens rotation is an elementary unitary transformation of
the form

Te S*TEO"'O'BTI"'BYK""‘=\;0"'0‘ri""rk/,"'% a6
=S cﬂ;LO... 0.x, ... x L0 0.0 ...x, .
where Zeig?=1 (17
4




and the cosine parameter is assumed to be real without loss of generality. Clearly we require

Br; X,
c= —’T and s = —T_. (18)
JB 4 %2 /8 2

The sequence of rotations is applied as follows. The p element vector xT(n) is rotated with the first
row of PR(n — 1) so that the leading element of ﬂ(n) is eliminated, and a reduced vector ;'T(u) is pro-
duced. Note that the first row of R(n ~ 1) is modified in the process. The (p-1)-clement reduced vector
x'T(n) is then rotated with the second row of BR(n - 1) so that the leading element of x'T(n) is eliminat-
ed, and so on until every element of the data vector has been annihilated. The resulting triangular matrix
R(n) then corresponds to a complete triangularisation of the matrix X(n) as defined in equation (7). The
corresponding unitary matrix Q(n) is simply given by the recursive expression

Q) = Q)Q(n-1) 19

where Q(n) is a unitary matrix representing the sequence of Givens rotation operations described above,
1e.

BR-1) R

Qm, o | = 0] (20)
| s o7
It is not difficult to deduce in addition that
_ [Bum-1), u(m) | -
Qm)|pvin~1), = [Bv(n-1) = ﬁ"“" @n
‘ Lo i lv(n),
Lym | am @ =F

and this shows how the vector u(n) can be updated recursively using the same sequence of Givens ro-
tations. The least squares weight vector w(n) may then be derived by solving equation (11). The solution
is not defined, of course, if n < p but the recursive triangularisation process may, nonetheless, be initial-
ised by setting R(0) = O and u(0) = 0.

2.3 Parallel Implementation

The Givens rotation algorithm described above may be implemented in parallel using a triangular
processor array of the type illustrated in figure 2 for the case p = 4. It comprises three distinct sections
- the basic triangular array labelled ABC, the right hand column of cells labelled DE and the final
processing cell labelled F.

At time n-1. each cell within the basic triangular array stores one element of the triangular matrix




X21 X22 X23 X% Y2 .-

X1 Xj2 X)3 X N

Figure 2 Triangular Processor Array

R(n—1) and each cell in the right hand column DE stores one element of the corresponding vector
u(n-1). On the next clock cycle, the data vector [;T(n). y(n)] is input to the top of the array as shown.
Each row of cells within the basic triangular array performs a Givens rotation between one row of the
stored triangular matrix and a vector of data received from above so that the leading element of the re-
cetved vector is eliminated. The reduced data vector is then passed downwards through the array. The
boundary cell in each row computes the appropriate rotation parameters and passes them on to the right
so that the internal cells can apply the same rotation to all other elements in the received data vector.
This arrangement ensures that as the input data vector X7 (n) moves down through the array it interacts
with the previously stored triangular matrix R(n - 1) and undergoes the sequence of rotations (}(n)
described in section 2.2, All of its elements are thereby eliminated (one on each row of the array) and
the updated triangular matrix R(n) is generated and stored in the process.

As the corresponding input sample y(n) moves down through the right hand column of cells, it
undergoes the same sequence of Givens rotations interacting with the stored vector u(n-1) and thereby
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Figure 3 Processing Elements for Triangular QRD Array

generating the updated vector u(n). The resulting output, which emerges from the bottom cell in the
right hand column, is simply the value of the parameter a(n) in equation (21).

The function of the rotation cells is specified in figure 3 and follows immediately from equations
(16) and (18). The boundary cell includes an additional parameter y which is not required for the basic
Givens rotation but will be explained in section 2.5 where the function of the final cell F is also made
clear. Since the matrix R is initialised to zero, it can be seen that the elements on its leading diagonal
(i.c. the values of r within the boundary cells) may be treated as real variables throughout the compu-
tation and so the number of real arithmetic operations performed within the boundary cell is. surpris-
ingly. less than that required for an internal cell.

For simplicity and ease of discussion, we have assumed that all cells of the array in figure 2 operate
on the same input data vector during a given clock cycle. The critical path for the array therefore in-
volves 2p+1 cells and the maximum rate at which data vectors can be input is ~ 1/((2p+1)T) where T is
the typical processing time for a single cell. When Gentleman and Kung[8] first proposed the triangular
array in figure 2. they showed how it could be fully pipelined by introducing latches to store the outputs
generated by each cell before they are passed on as inputs to the neighbouring cells. The resulting systo-
lic array can achieve an input clock rate ~ 1/T and only requires nearest neighbour cell interconnections
which is highly advantageous for VLSI implementation.

The systolic array may be generated by cutting the diagram in figure 2 along all diagonals parallel

- .



to the one indicated and introducing a storage element where each data path crosses a cut line. Note that
these cut lines also intersect the input data paths and so each input data vector enters the triangular array
in a skewed or staggered manner. Clearly, figure 2 provides a sufficient description of the paraliel algo-
rithm without including the detailed pipelining and timing aspects associated with a systolic or wave-
front array. This relative simplicity means that the parallel processor can be represented more easily in
block diagrammatic form later in this memorandum.

2.4 Square-Root-Free Version

Gentleman(7] and Hammarling[11] have derived extremely efficient QR decomposition algo-
rithms based on modified Givens rotations which require no square-root operation. The essence of these
square-root-free algorithms is a factorisation of the form

R(n) = D *n)R() (22)

where D(n) = diag ¢} (m), Zy(n). ..., 12 (n)| (23)

and R(n) is a unit upper triangular matrix. The complex Givens rotation in equation (16) then takes the
form

[¢ ¢#10... 0.Bud ... B.dF, .

7S €. 0...0,0x ... JOx, .

1o
RER 24
oot
where .,'5 represents an element in the diagonal matrix Dm(n). and ik denotes an associated off-diag-
onal element from the matrix R(n). Note that each element x, of the data vector has been expressed in
the form \@ik where § is a scaling factor which changes value as a result of the rotation.

The square-root-free algorithm may also be implemented using the type of triangular processor
array depicted in figure 2 but with the rotation cells as defined in figure 4. In this case, the boundary
cells store and update elements of D(n) (i.e. the squares of the diagonal elements of R(n)) while the
internal cells store and update the off-diagonal elements of R(n). The function of these cells may be
deduced in a straightforward manner starting from equations (24) and (17) and noting that the values of
c and s need not be computed explicitly. Note that the scale quantities & are updated only at the boundary
cells and passed diagonally from one row to the next. Note also that the parameters ¢ and & in each
boundary cell may be treated as real variables throughout the computation assuming that they are as-
signed real values initially. For the purposes of normal least squares processing, the b parameter is ini-
tialised to unity so that on input to the array. x(n) = x(n). However, as pointed out by Gentleman[7],
the 3 parameter associated with each input vector may be assigned an arbitrary initial value which serves
to weight that row of data accordingly. The square-root-free array may thus be used to perform a general
weighted least squares computation.
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Figure 4 Square-root-free Processing Elements

As with the conventional Givens rotation algonithm, cells in the right hand column perform
the same function as those internal to the triangular array. Thus, allowing for the factorisation shown in
equation (22). these cells update elements of the vector u(n). where

u(n) = D' (n)ii(n) 25)

It follows from equations (22), (25), and (11) that the weight vector w(n) is given by

R(n)w(n) +B(n) = o (26)

and may be obtained, as before. by a simple process of back substitution. Figure 4 specifies the cell func-
tions required for one particular version of the square-root-free algorithm. This version, which requires
2 multiplications and 2 additions per cycle to be performed in each internal cell, was first suggested by
Golub and reported by Gentleman([7]. We have found it to be particularly stable and accurate throughout
an extensive programme of finite wordlength adaptive filtering and beamforming computa-
tions[25]{32]. These observations are supported by the work of Ling, Manolakis and Proakis{15] who
derived an equivalent algorithm (the “error-feedback™ algorithm) based on a recursive form of the mod-
ified Gram-Schmidt orthogonalisanion procedure - see section 2.8.

The “'square-root-free™ algorithm described above is in fact an algorithm for calculating the re-




Using square-roots (SQ) Feedforward (FF)
Square-root-free (SF) Feedback of output (FB)
Feedback of stored parameter (MFB)

Table 1 Options for Implementing a Givens Rotation

quired planar rotation. In the QRD-based least squares minimisation problem these rotations also have
to be applied to various vectors. In section 2.3 the 'natural” implementation of the Givens rotation (in-
volving the computation of square-roots) was applied to various vectors in a feedforward manner: the
two components of the rotated vector are calculated independently on the basis of the two input com-
ponents. The square-root-free algorithm presented above applies the rotation in a feedback mode: one
output is now dependent on one input and the other output. It follows that there exists another feedback
algorithm where the parameter that is fed back is the stored quantity r - see figure 4 - rather than the
cell output x ..

Combined with the two methods for calculating the rotation parameters, the feedforward/feedback
choice results in six different vaniations: see table 1. The computer simulations of section 3.8 show that,
of these four possible variations. the one that is equivalent to the RMGS error-feedback algorithm
(square-root-free with feedback) performs the best in terms of numerical stability. It is worth emphasis-
ing that the basic architecture (figure 2) is not affected by the choice of rotation technique so that the
only difference between the various options is a change of PE's.

2.5 Direct Residual Extraction

In many least squares problems, and particularly in adaptive noise cancellation, the leasi-squares
weight vector w(n) is not the principal object of interest. Of more direct concern is the corresponding
residual, since this constitutes the noise-reduced output signal from the adaptive combiner[32). In this
section. we will show how the “a-posteriori” least squares residual

e(n, n) = xT(n)w(n) +y(n) @n

which depends on the most up-to~date weight vector w(n), may be obtained directly from the type of
processor array described in section 2.3 without computing w(n) explicitly[18).

In order to proceed, it is necessary to consider the structure of the nxn matrix ((n) which,
from equation (20), may be expressed in the form

TA(m) O ;(nf:
Gm=1 0 1 o ' (28)

15T) o v(m);




where A(n) is a p x p matrix, 8(n) and b(n) are p x 1 vectors and y(n) is a scalar. Now Q(n) is given by

P
Qm = [] G )

im]
where the G, are elementary nxn rotation matrices of the form

[

—_—

Gn) = ‘ c(m .. .5 (n)]‘ (i=1,2.3....p) (30)
i 1 |
i : |
o
=s{n) . .. Ci(")A

and all off-diagonal elements are zero except those in the (i.n) and (n.i) locations. It follows directly that

P
¥ = [] ¢ @3n

i=]

i.e. Y(n) is the product of the cosine terms in the p rotations represented by Q(n). Multiplying both sides

of equation (20) by O"(n) and noting that the matrix Q(n) is unitary, it is now easy to deduce that
xT(n) = a"(m)R(n) (32
and similarly. from equation (21) we have
y(m) = a¥(m)u(a) + wn)aln) (33)
Substituting equations (32) and (33) into equation (27) leads to the expression
en.n) = HR@w(n) + 2" (m)un) + vn)atn) (34)

and. from equation (11). it follows immediately that

e(n, n) = y(n)a(n) (3%)

Now. as noted in section 2.3, when the conventional Givens rotation algorithm is empioyed. the
parameter afn) is generated quite naturally within the tnangularisation process and simply emerges

11




from the bottom cell of the right hand column in figure 2; becanse of its relationship with the a-posteriori
residual e(n, n). as given in equation (35), the parameter an) is known as the angle-normalised resid-
val. The scalar (n), as given by equation (31), may also be computed very simply. The product of co-
sine terms is generated recursively by the parameter y as it passes from cell to cell along the chain of
boundary processors. The simple product required to form the a-posteriori residual as given in equation
(35) is computed by the final processing cell F in figure 2.

The direct residual extraction technique obviously avoids a lot of unnecessary computation pro-
vided that the weight vector is not required explicitly. As a result, the overall processing architecture is
greatly simplified. There is no need for a separate back-substitution processor or any sophisticated con-
trol circuitry to ensure that the contents of the triangular array are input to the back-substitution proces-
sor in the correct secquence. Consequently, it is much easier to maintain a regular pipelined data flow. A
less obvious. but arguably more important, advantage of direct residual extraction is the improved nu-
merical stability which it offers. This derives from the fact that computing the weight vector explicitly
requires the solution of a linear inverse problem which may be ill-conditioned in circumstances where
the optimum weight vector is not well defined. The least squares residual, however, is always well de-
fined and can be computed reliably. Note. for example, that the correct (zero) residual is obtained even
during the first few processing cycles when the data matrix is not full rank and the corresponding weight
vector cannot be uniquely defined. This type of unconditional stability, which may be contrasted with
that of the traditional RLS algorithm (see Haykin [12]) and avoids the need for “'persistent excitation™,
is extremely important in the context of real time signal processing.

The a-posteriori residual may be computed in a similar manner when the square-root-free algo-
rithm is employed. The square-root-free algorithm delivers from the bottom cell in the right-hand col-
umn a scalar e(n) given by

8" Aném) = am (36)

where 5'72(n) is the scaling parameter appropriate to the p'™ row at time n and it has been assumed that
8(n) is initialised to unity on input to the array. From equations (35) and (36) it follows that

e(n, n) = 1(n)8'/ *(n)é(n) 37
where y(n) is the product of cosine terms which arise in the conventional Givens rotation algorithm.
However. 8(n). as computed by the boundary processors for the square-root-free algorithm, is simply
the product of all the ¢ terms and it can easily be shown that this is equivalent to the product of the con-

ventional cosine parameters squared. Thus,

&n) = vX(n) (38)

and e(n,n) = H(n)é&n) (39)




Hence the a-posterion residual e(n,n) may also be obtained directly from the square-root-free proc-
essor array, using a final multiplier cell F as illustrated in figure 2.

A second form of residual, which occurs naturally in least squares algorithms such as the least
squares lattice (see Haykin [12]) is the a priori residual. denoted e(n, n - 1). Defined in terms of the
previously computed weight vector w(n-1) and the latest data (xT(n), y(n)), it takes the form

e(nn-1) = xYmw(n-1)+ y(n). (40)
This residual may also be obtained directly from the triangular processor array as we now show. By sub-
stituting the decomposition for Q(n) given in equation (28) in the time update relation (equation (20))
we have
b (MBR(n - 1) + Yn)x"(n) = 0 1)
Eliminating the vector x'(n) between equations (40) and (41) we find

e(n,n-1) = (=bT(MBR(n ~ Hw(n - 1) + {)y(n)) /¥(n) (42)

Agamn by using the decomposition given in equation (28). this time with equation (21). an other
relanonship can be obtained:

bT(n)Bu(n - 1) + Y(n)y(n) = a(n) (43)
By eliminating the term y(n)y(n) between equation (42) and (43) we have that
e(n.n-1) = (~b"(MBR(n - w(n - 1) + a(n) - b (mBu(n - 1) /¥(n) 44)
and. from equation (11), it follows immediately that
e(n.n-1) = a(n)/yn) 45)

Thus the a priori residual is computed from the same quantities as the a posterioni residual. It follows
immediately from equations (35) and (45) that they are related by the expression

e(n.n) = y(n)e(n,n-1) (46)
Note that by eliminating the term ¥(n) between equations (35) and (45) we find that

afn) = _;e(n, n - 1)e(n, n) 47
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so that the angle normalised residual a(n) can be viewed as the geometric mean of the a priori and the
a posteriori residuals.

From equations (38). (39) and (46) we see that

én) = e(n.n~1) 48)

so that the scalar which emerges naturally from the bottom cell in the right-hand column of the square-
root-free processor array is the corresponding a priori residual. Finally, note that

o = P = e “9)

and hence we see that &(n) is equal to the so-called likelihood variable (see Haykin [12]).

2.6 Weight freezing and flushing

It has been shown that if a data vector [x"(n), y(n)] is input to the triangular processor array
in figure 2, the corresponding a-posteriori least squares residual e(n,n) emerges from the final cell F. In
order to achieve this result, the array performs two distinct functions:

(1) It generates the updated triangular matrix R(n) and corresponding vector u(n) (or D(n), R(n)
and u(n) for the square-root-free algorithm) and hence. implhicitty, the updated weight vector
w(n).

(2) It acts as a simple filter which applies the updated weight vector to the input data according
to equation (27).

If the array is subsequently “frozen™ in order to suppress any further update of the stored values. but
allowed to function normally in all other respects. it will continue to perform the filtering operation
without affecting the implicit weight vector w(n). Thus, in response to an input of the form [x7, ], the
frozen network will produce the output residual

e=xTwn)+y (50)

Equation (50) may be verified directly by considering the frozen array as a combination of basic
matrix operators. Consider first the basic riangular array ABC in figure 2. In frozen mode, the boundary
and internal cells perform the reduced processing functions defined in figure 5. Now consider the effect
of the simplified network upon a row vector X", input from above in the usual manner. This will give
nse to a column vector z which emerges from the right. It is straightforward to verify that the input vec-
tor x is related to the output vector z by means of the matrix transformation

x=R";z (s1)
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where R is the upper triangular matrix stored within the array. For example. 1t is clear that

§ =T and 2, = (x;-152)) /1y

e X, =12 and Xy = T2y +T4y2,

Assuming that R is non-singular (i.e. no diagonal element of R is zero) it follows that

2 =RTx

(52)

(53)

(54)

and so the frozen triangular array may be regarded as an R™T matrix operator as depicted schematically

in figure 6.




Boundary Cell Internal Cell
i i i
z — 2
z — I —
ut
2 X, Xout € Xip — 12
Figure 7 Square-root-free Frozen Processing Elements

Now consider the right hand column of cells DE in figure 2. It is easy to show that. in frozen
mode. the effect of this array upon a column vector x input from the left and a scalar y input from the
top is to produce the scalar output y - xTu which emerges from the bottom cell. The vector x also emerg-
es unchanged from the right as depicted 1n figure 6. It follows immediately that if the network in figure
21s frozen at ime n, its effect upon a vector [5T.y] input from the top is to produce the scalar output
y -~ xTR"(n)u(n) which emerges from the column of internal cells DE. From equation (11). it can be
seen that this is precisely the frozen residual defined 1n equation (50).

When the square-root-free algorithm is employed, the array 1n figure 2 may be frozen very simply
by setting the forget factor B = I and initialising the parameter & to zero for any input vector which is to
be processed in the frozen mode. As pointed out in section 2.4. this has the effect of assigning zero
weight to that vector within the overall least squares computation and so the processing does not affect
any values stored within the array. This property can be verified quite easily by inspecting the square-
root-free cells in figure 4 and the resulting operations for the frozen cells are shown in figure 7. Tt fol-
lows from the discussion above that if a vector [x'. y1 is input to the top of the frozen square-root-free
array at time n. the output which emerges from the internal cell E will be y — xTR™!(n)u(n) and from
equation (26) it can be seen that this is again the frozen residual defined 1n equation (50). Note that the
parameter &, for the final processing cell must be set equal to one to avoid suppressing the output re-
sidual from the frozen square-root-free network if this technique is used.

Having established that the function of a frozen triangular array is given by eguation (50). it
15 easy to see how the least squares weight vector. if required. may also be obtained without performing
a back-substitution. Let h, denote the p element vector whose only non-zero element occurs in the it
location: it follows that the effect of inputting the sequence of “impulse” vectors [h,. 0] (i=1.2...p) to
the frozen array 1s to produce the sequence of output values w;(n) (i=1.2....p) and so the weight vector
w(n) may be extracted from the array without the need for any additional hardware. This techmque.
which amounts to measuring the impulse response of the system. is generally referred to as "weight
flushing"[32).
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2.7 Parallel Weight Extraction

The technique of weight flushing presented in section 2.6 requires that the adaptive filtering be
temporarily suspended whilst the sequence of impulse vectors is fed into the array. A p™ order system
would therefore have to suspend its data processing for p time instants. Although it is conceivable that
this weight flushing process could be carried out at a higher clock rate, in between the processing of the
data. in 2 high data rate environment this option is unlikely to be viable and an alternative technique is
required. As we show below, the weight vector can be produced in parallel with the adaption process,
in several ways, by the addition of extra hardware.

Before describing how the weight vector can be generated, we first consider an important property
of the Q matrix upon which the parallel weight extraction techniques (and also some other important
techniques like MVDR beamforming [20]) depend. We have seen, in section 2.2, that the matrix Q(n)
updates the triangular matrix R(n - 1) to R(n) by rotating in the new data vector at time n. Rather sur-
prisingly. the matrix ((n) can also be used to update the triangular mamrix R™H(n - 1) 1o R™¥(n). Con-
sider the following identity:

R -1)
o =l (55)

| !
L

- . H .
LﬁRH(“ -NO 3‘(n£Q (n)Q(n)

R Mm-1 Tm
Let Q(n) o =!0 (56)
o' 2w

so that. by means of equations (20) and (55), we have:

) 3 "“T(n).
Rm oo O =1 57
L0
and clearly. T(n) = R™M(n) (58)

Thus equation (56) becomes:

R Pm-y R Pm)
Qn) 0 ‘= 0 (59)
o
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and we see that the same rotations that update the matrix R also update the matrix R7H,

Recall from the description of the QRD systolic array in section 2.3 that the sine and cosine pa-
rameters that define the rotation matrix Q are passed from left to right across the array. Thus the matrix
R™H can be calculated by appending an array of internal processing elements to the right of the basic
QRD array: the QRD array stores R and outputs the rotation parameters that specify QasRis updated
from time instant to time instant: the rotation parameters are then used by the new array which stores
and updates the matrix rR°H by rotating it against a vector of zeros. The matrix R~ is lower triangular
and hence the new array will also be lower triangular (see figure 8).

Armed with this property of the Q matrix, we can now show how the weight vector can be calcu-
lated in paralle! with the adaption process [29]. Consider the following augmented data matrix:

X, () = [X(n) y(m) (60)
The upper-triangular matrix resuiting from a QR decomposition wiil then have the form:

R.(0) = (R wm),

T G
o]

s(n)J

where €(n) = 'v(n)! is the square-root of the filtering error power for y(n). It is easy to show that the
inverse of an upper triangular matrix is another upper triangular matrix; thus let

. "T(n) s(nﬂ

R;'(n) |
Lo )

+

62)
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where T'(n) is a (p+1)x(p+1) upper triangular matrix. s(n) is a p-dimensional vector, and t(n) is a sca-
lar. Then

I = R:l( R, (n) = T’(Tn) s(n)‘ »R(:) u(n)‘ _ ‘?T’(n);!(n) T’(nju(n) + &(n)s(n) 63)
"o Hm) o em o t(n)e(n)

K0 @R oum | R0 Sowm
i o' e (n) ' ! o' e l(m) j

hence R'(n) = (64)

where we have used equation (11) to identify the presence of the least squares weight vector w(n). Thus
we can obtain the weight vector w(n) directly from the right-hand column of the inverse of the augment-
ed triangular matrix R (n) (or equivalently. the complex conjugate of the bottom row of R:H(n)).

The matrix R:H(n) can be calculated as shown in figure 8 provided we ensure that the QRD array,
on the left-hand side of figure 8, is solving the augmented problem. This requires that the data vector
being fed into the array. at time n, is »xT(ﬂ) y(n) and hence that the QRD array is now of dimension
(p+1)x(p+1). The adaptive filtering residual is still available with this architecture since the
(p+1)x(p+1) QRD array can be thought of as consisting of a p‘h order adaptive filter processor (as shown
in figure 2) with the multiplier cell (F in figure 2) replaced by an additional circular processing element.
Clearly this additional circular processing element can be modified. if necessary, to calculate the adap-

tive filtening residual.

The parallel weight extraction technique described above is based on the fact that the rotation ma-
trix Q(n). as calculated by the basic QRD array on the left-hand side of figure 8. can be used to update
the matrix R'H(n ~1). An alternative technique for generating Q(n) {11[21][22] ieads to a different ar-
chitecture for calculating the optimum weight vector. This technique relies on the fact that the rotation
matrix Q(n) is completely specified by the relevant p rotation angles (see section 2.2) and hence may
be reconstructed from knowledge of these angles. As we show below, the relevant angles can be recov-
ered from the bottom row of the matrix Q(n): further more. this row vector can itself be calculated, in-
directly, based on knowledge of the matrix R H@-1).

From equations (28) and (29), we have
'Bn)

T
Qur, = o (65)
in)
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= r—slvn Cio - =Sp_1Cpe S50 O n <
ix2 i=]

where the ;s and ¢;'s are the sines and cosines of the relevant Givens rotations that compose Q(n) and
the “pinning” vector rt_ is an n-dimensional vector such that

- T
7, =100..01 (67)

These sines and cosines uniquely determine the matrix O(n) and can be recovered from b(n) and )
in the following orthogonal manner. A sequence of Givens rotations is used to successively annihilate
elements of b(n) starting from the top and working down until the pinning vector 71, is produced (see
equation (63)).

P
Lety = [J c,. then the first rotation takes the form
1=2

- s T
, ¥ lyg -
tes TR 0,

b (68)
S L1 YC By

and it is easy to show that

g, =ty ¢ = #c, s = 5, (69)

The ambiguity of sign is immediately resolved by recalling that in the construction of Qp(n) the rotation
angle is always chosen such that the cosine is positive. Having applied the first rotation to determine s,
and c,. the vector in equation (66) takes the form:

- T
i P P
i - - L T i
10, =85 J] € o =S5 1€p =S50 0+ [ € (70)
= im3 i=2 |

and so the next Givens rotation serves to compute s, and ¢, in a similar manner, and so on. Note that it
is also possible to recover the rotation angles that define Qp(n) from its right-hand column. In particular,
we have
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so that the sines and cosines may be recovered by applying a sequence of Givens rotations which anni-
hilated the elements of the vector a(n) starting from the bottom and working upwards. In this case the
pair (sp. cp) are generated first and (s,, ¢,) last.

Having established that the matrix Q(n) can be reconstructed from knowledge of the quantities
b(n) and y(n). we now proceed to shown how these two quantities can be calculated other than from
Q(n) itself. Note from equation (41) that

b(n) = B~ 'mR"T(n - 1)x(n) 72)

Thus given R'T(n — 1) and the new data at time n ( x(n) ). we may use equation (72) to calculate the
vector b(n)/y(n). The value of y(n) can easily be found from the fact that Q(n) is orthonormal and

hence

o) 2+ ¥(n) = 1 73)

s =2
or ¥(n) = ['bn)/y(n) " +1] )

Having calculated b(n) and y(n) by this indirect method, we can then calculate ((n) as above and
proceed to update the matrix R™H, without the need to explicitly calculate R. Clearly, the augmented
data matrix R:H(n) can also be updated in this way (with suitably redefined quantities) thus allowing
the weight vector w(n) to be calculated without the need for the triangular array that performs the QR
decomposition of the augmented data matrix. Once the optimum weight vector is known, the adaptive
filtering residual could of course be calculated using equation (27) but, since the weight vector may not
be well defined this method is less robust than the direct extraction one (see section 2.5).

Another method for extracting the weight vector without interfering with the adaption process also

relies on the structure of the Q matrix. From equation (72) we see that if a vector z(T(n) is annihilated
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by Givens rotations against a triangular matrix BR(n ~ 1) then the bottom row of the ) matrix contains
the term B~'R™T(n - 1)x(n). Now from equation (11) we have that:

w(n) = -R™'(n)u(n) (75)

Hence if we use Givens rotations to annihilate the vector u”(n) by rotation against the matrix RT(n)
then the bottom row of the composite rotation matrix will contain the term

R~ (m)u(n) = -w(n) (76)

i.e. the negative of the least squares weight vector. A systolic array for implementing this algorithm can
be found in reference [31].

2.8 Comparison with Recursive Modified Gram-Schmidt Algorithms

The square-root-free algorithm and architecture with direct residual extraction as described in sec-
tions 2.1 to 2.5 was obtained independently by Ling. Manolakis and Proakis [15] based on the method
of modified Gram-Schmidt (MGS) orthogonalisation. The MGS algorithm operates on a fixed block of
data and is essentially non-recursive. It solves the least squares problem by applying a sequence of lin-
ear combinations to the columns of the block data matrix X (n) and transforming it into a matrix
X' (n) whose columns are mutually orthogonal. The complete transformation may be represented by
means of an upper triangular matrix whose elements correspond to the triangular matrix R (n) which
would have resulted from applying a QR decomposition to the data matrix X (n) . The process is ex-
tended to include the vector of samples y(n) in the primary channel and hence extract from it the com-
ponent which is orthogonal to the columns of X (n). The bottom element of the resulting vector then
corresponds to the a-posteriori least squares residual at time n. The QR decomposition and MGS tech-
niques are clearly related except that the former applies an orthogonal ransformation to the data matrix
X (n) in order to produce an upper triangular form whereas the latter applies an upper triangular matrix
transformation to X (n) in order to produce a matrix with orthogonal columns. Also, the QRD tech-
nique may be applied in 2 convenient row-recursive manner using a sequence of elementary Givens ro-
tations. The most important contribution of Ling. Manolakis and Proakis was to show how the MGS
algorithm could also be updated one row at a time thereby generating the recursive modified Gram-
Schmidt (RMGS) algorithm which may be implemented using a triangular processing architecture sim-
ilar to that in figure 2.

Mativated by the desire to update the stored triangular matrix elements directly rather than as a
ratio of other updated terms which occur more naturally in the RMGS approach, they manipulated their
algorithm further. The resulting update equations were found to involve an important element of feed-
back which, leeds to an improvement in numerical stability. It is interesting to note that the error feed-
back RMGS algorithm derived by Ling, Manolakis and Proakis {15] is identical to the form of square-
root-free Givens rotation algorithm defined in figures 2 and 4 {14]. It was this relationship which led us
to refer 1o the basic operation in figure 4 as the square-root-free with feedback (SF/FB) Givens rotation
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and to identify the underlying feedback mechanism which is inherent to it.

2.9 Comparison with Kalman filter algorithms

The QR decomposition algorithms for recursive least squares processing as defined in figures 2, 3
and 4 operate directly on the basic data matrix X (n) as opposed 10 the data covariance matrix M(n)
and. as noted previously, this has significant numerical advantages. It was also shown in equation (8)
that the upper triangular matrix R (n) which is stored and updated within the processor array is analyt-
ically identical to the Cholesky square-root factor of the data (or information) covariance matrix. In the
nomenclature of Kalman filtering, the QRD algorithm constitutes a numerically stable form of square-
root information Kalman filter with unit state-space matrix.

It has recently been shown by Chen and Yao [5] how the algorithm and triangular array architec-
ture may, in fact, be extended to the case of a general square-root information Kalman filter with arbi-
trary state space matrix. Gaston et al [6] have also shown how the triangular QRD array may be used as
the core processor in a general square-root covariance Kalman filter. Note that in Kalman filtering no-
menclature the term “covariance” does not refer to forming or using the data covariance mamrix M (n).
Instead, it denotes an algorithm which is based on updating the matrix M~ (n) (orits Cholesky square
root factor R™! (n) in the present context) since this specifies the covariance of the weight vector esti-
mate. In the special case of unit state-space matrix the covariance Kalman filter reduces to a least
squares estimation algorithm which makes use of the well-known matrix inversion lemma to perform
successive rank-one updates of the matrix M~ (n) . This is often referred to as the “Recursive Least
Squares™ (RLS) algorithm although it is fundamentally different from the QRD-based recursive least
squares technique described in this memorandum. For example. as is often pointed out “persistent ex-
citation” is essential if the traditional RLS algorithm is to retain numerical stability due to the 1/B term
which occurs in the associated Riccati equation. However this problem does not arise with the QRD al-
gorithm described in sections 2.1 to 2.5. It would seem sensible, then. to refer to the traditional RLS and
the alternative QRD techniques as the “covaniance™ and “square-root information™ recursive least
squares algorithms respectively.

Finally. it is worth noting that several authors [1][21](22] have recently developed stable “‘square-
root covariance™ least squares algorithms and architectures based on the technique illustrated in figure
8 for updating the “‘square-root covariance” matrix R™!(n) . Their technique, however, makes clever
use of a pinning vector to avoid storing and updating the “‘square-root information" matrix R (n) ex-
plicitly and only requires a single triangular processor array as described in section 2.7. It is not clear
how their method would extend to the general “square-root covariance” Kalman filtering problem or
how it relates to the *'square-root covariance” Kalman filter architectures proposed by Gaston et al [6].

3 Adaptive FIR Filtering,
3.1 The QRD Approach.

In section 2 we saw how an adaptive lincar combiner could be applied to the problem of narrow-
band adaptive beamforming. The same linear combiner could be used to construct an adaptive FIR fil-
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ter. In this case, the combined output at time t; is given by the equation

p-1
et) = X"(Qw+yt) = T wxlt,_)+y) an
j=0

which is identical to the narrow-band beamformer case (equation (1)) except that the input vector x(t;)
now exhibire 4 high degree of time-shift invariance. This property manifests itself in the fact that the
“data matrix” (Xp(n) of equation (79)) has a Toeplitz structure i.e. each row of the matrix is obtained by
shifting the previous row one column to the right and introducing one new data sample. Various algo-
rithms have been devised that take advantage of this redundancy and so reduce the computational load,
for a p'™ order filter. from 0(p2 ) to O(p) arithmetic operations per sample time (see Haykin [12]). The
common basis for these fast algorithms is an efficient technique for solving the least squares linear pre-
diction problem. The concepts of forward and backward linear prediction must both be introduced for
this purpose. The adaptive filtering problem can then be solved using quantities already calculated dur-
ing the linear prediction stages. Unfortunately the majority of these fast algorithms exhibit some form
of numerical instability although much work has been done to overcome the numerical problems and
various rescue procedures have been developed - see [12).

As we have seen, it is possible to solve a least squares minimisation problem using the technique
of QR decomposition. Extensive computer simulations of this algorithm{32] have shown the QRD-
based least squares minimisation algorithm to have excellent numerical properties. However. since the
recursive QRD algorithm presented in section 2 is designed to solve a general recursive least squares
minimisation problem. it requires 0{p2 ) operations per sample time to generate the solutionto a p"' or-
der adaptive filter problem. A QRD-based algorithm which is designed for the special case of adaptive
filtering and only requires O(p) operations per sample time is thus of considerable interest
[13][171[26][33). In order to simplify the analysis we consider only real signals. The extension to the
complex case is straight forward and indeed the algorithms presented in the appendix are for complex
signals.

In a least squares adaptive filter of order p, the set of p weights' Wp(n) at time n is chosen in order
to minimise the sum of the squared differences between a reference signal y(n) and a linear combination
of the p samples from a data time series x(t,,.;) (0 < i € p-1). Specifically, the measure to be minimised
is Higp(n) where:

e (n) = Xy(mw (n) + y(n) 78

1. In this section we append a subscript to all variables to indicate the order of the problem being solved
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x(1) X0 ... x2-p |
Xp(n) = B(n) . x(2) X(l) e x(3 .— p) i (79)

Lx(‘n) x(n.- 1) ... x(n —.p +1)
and
y(n) = B(m) Y1) . y(n) " (80)

Compared with equations (5) and (6), we see that equations (78) to (80) constitute a standard least
squares minimisation problem except for time-shift invariance of the data. We could therefore proceed
1o solve this least squares minimisation problem via the QR decomposition technique described in sec-
tion 2.1. In order to do so we must determine an orthogonal matrix Qp(n) that transforms the matrix
Xp( n) 1nto upper triangular form? and use the same matrix Qp(n) to rotate the reference vector y(n). i.e.

Qpm Xym = "r™ 1)
o
and Qp(n) y(n) = ol (82)
Vet

It should be noted that once Qy(n) has been found, the filtering problem has effectively been
solved. Knowledge of Qp(n) means that A (n) is known. It also allows the angle normalised residual
(n) the last component of the vector v (n) - to be calculated and thus the least squar&s residual may
be found (see section 2.5). The 0(p ) QRD-based algorithm for the solution of a p ' order least squares
minimisation problem as described in section 2 has many desirable features. It operates in the “data do-
main” and has a time-recursive formulation with time-independent computational requirement and a
regular parallel architecture. However the time shift redundancy in the adaptive ﬁltenng problem can
be used to improve the method further by reducing the computational load from O(p )to O(p). The de-
velopment of fast QRD algorithms for adaptive filtering is based. aimost entirely, on the principle of
constructing partially wriangularised matrices from known quantities and then finding a set of rotations
to complete the process. We recall that this was also a key element in the derivation of the time-recursive
algorithm in section 2.2. The solution at time n was generated by rotating the new input data for time n
into the upper triangular matrix associated with the solution at time (n-1).

Recall that the set of rotations. Q(n). required to solve the adaptive filtering problem are entirely
dependent on the matrix X (n). The matrix X;,(n) can. however. be built up in an order recursive manner

2. In the following, we use shading in order to emphasise the structure of the non-zero elements of a
matnix.




by adding extra columns which. because of its Toeplitz structure. consists of one new element and a
time-shified version of the previous column. Consider the following decompositions:

x(1) ... x(2-p)
Xo(n) = B(n) : (83)
ix(n) ... x(n—-p+ 1)
= X @ y5_ ) (84)
.F n~-1 T ﬂ
- -ﬁr x(1) z @5)
‘_yp_l(n) XP-I("'I),
where? y;_,(n) = B(n-1) x(2). ..., x(m | (86)
Y2_ (0 = B0) x(-p+2). ...x(n=p+1) @7)
n=-1" T
and z=p""" x(0)....x(-p+2) (88)

Note from equation (84), that if we had already determined the rotation matrix Q;,_;(n) which triangu-
larises the matrix X,,.,(n). we could use it 10 partially triangularise the matrix X(n). In doing so we
would also have to rotate the vector y‘; _ l(n) but these are exactly the steps required in the QRD-based
solution of the (p-1)* order backward linear prediction problem.

In the (p-1)® order backward linear prediction problem at time n, an estimate of x(n-p+1) is formed
from a linear combination of the data {x(n). .... x(n-p+2)}. The solution to this problem depends on the
triangularisation of the matrix Xﬂ(n) and the transformation of the reference vector _y: _ l(n). Hence,
knowing the solution to the (p-1)* order backward problem at time n would allow us to construct the
partially triangularised matrix Qp - l(n)Xp(n) from known quantities and thus save a lirge amount of
computation. This partially triangularised matrix could then t¢ transformed into the triangular matrix
Rp(n) by a sequence of Givens rotations.

Equation (85) allows another partially triangularised version of X(n) to be constructed. this time
using quantities from the (p-1)* order forward linear prediction problem. The (p-1)* order (forward)

3. Note that the subscript ‘p’ attached to the vector y; is superfluous and that y; = y;_ | etc Tts use
is merely to preserve symmetry with the vector y: for which the subscript is necessary
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Figure 9 QRD-Based Lattice Algorithm

linear prediction problem. at time n. is defined as the esttmation of x(n) based upon the data
{x(n-1). ... x(n-p+1)}. This involves the triangularisation of the matrix Xp_,(n-1) and the transforma-

tion of the relevant reference vector y; _ ](n). We could then use the decomposition given in equation
(85) to generatc a partial triangularisation of the matrix Xp(n) from known quantities. The formation of

the triangular matrix R p(n) could then be achieved very easily using a sequence of Givens rotations.

It is clear that the two linear prediction problems of order (p-1) are intimately connected to the
problem of determining a minimum set of rotations which produce the triangular matrix Ry(n). Howev-
er. the riangularisanon of X;(n) is central not only to the adaptive filtering problem but also to the pih
order lincar prediction problems. The rotations which transform the matrix X(n) into Rp(n) are used
to solve the forward problem at time (n+1) and the backward problem at time n. With a suitable time
delay. we can therefore construct an order recursive algorithm for linear prediction and adaptive filter-
ing (figure 9).

It 1s also possible to develop another type of QRD-based fast algorithm. From the discussion above
it is clear that we have a fast method for transforming Rp _{n-1) into Rp(n) via cquation (85). This
technique allows us to transform the matrix QP -(n=1)into Qp(n) (i.e. we have a time and order up-
date). Equation (84) constitutes a method for transforming Rp(n) into Rp - 1(n) and hence Qp(n) into
Qp _4(n) (i.c. an order down-date). Thus by combining these two transformations we can achieve an
overall time update for the rotation matrix Qp (figure 10). Thus ransformation does not icad directly to
the construction of a fast algorithm since having to calculate the various Q matrices explicitly would
require O(p’) operations and does not represent a reduction in the computational requirement. However
we have already seen that the value of this matrix can be inferred from knowledge of its right-hand col-
umn (section 2.7). Clearly the transformations that update the matrix Qp will also perform a time update
for this column vector. Then. because we are now dealing with a vector rather than a matrix, the number
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Figure 10 QRD-Based Fast Kalman Algorithm

of computations required to perform this type of update is O(p) and a ““fast™ algorithm results.

Traditionally “fast™ adaptive filtering algorithms fall into two classes: the least-squares lattice al-
gorithms and the ““fast Kalman" algorithms. Both types of algorithm solve the p™" order linear prediction
problem in O(p) operations. The least-squares lattice algorithms do this by solving all of the lower order
problems in sequence, whereas the “fast Kalman™ algorithms concentrate on a problem of given order
and achieve the reduction in computational load by using the time and order update / order downdate
technique. Not surprisingly, the two classes of algorithms have tended to be quite different: the fast Kal-
man algorithms usually calculate the transversal filter coefficients explicitly, whereas the lattice algo-
nithms deal directly with the filter residuals (errors) and calculate reflection coefficients. The fast Kal-
man algorithms also tend 1o require fewer arithmetic operations than the lattice algorithms although
doth are linear in the problem order. The level at which the two different algorithms can be pipelined is
different - the lattice algorithms having a higher degree of concurrency. It is also worth noting that the
data downdating step which is implicity required by the fast Kalman algorithms gives cause for concern
with regard to numerical stability.

Based on the above classification. we refer to the two fast algorithms derived in this memorandum
as the QRD-based least-squares lattice algorithm (figure 9) and the QRD-based fast Kalman algorithm
(figure 10). It should be noted. however, that this latter algorthm does not calculate the transversal filter
coefficients explicitly; instead it generates the required filter output using the QRD-based method of
~direct residual-extraction” discussed in section 2.5. The QRD-based fast Kalman algorithm is also un-
usual in that it quite naturally produces the solution to all lower order problems whereas fast Kalman
algorithms are usually seen as being of “fixed order”. This property is a natural consequence of using
the QRD technique (see section 3.6). We begin the detailed derivation of these fast algorithms by con-
sidering the problem of determining an efficient method for the solution of the p™ order forward lincar
prediction problem.

3.2 Forward Linesr Prediction
The p“‘ order forward linear prediction problem. at time n., requires the determination of the vector
of filter coefficients win) = [wh o(n). ....wh ,_,(m)] " that minimises the towal prediction error

o —




e;(n)‘ where

f = -
e,(n) = X (n l)wp(n)+y;(n) 89

with xp (n-1) and y; (n) as defined in equations (83) and (86) respectively. In order to solve this
least squares problem via the QR decomposition technique we have to determine the rotation matrix
Qp(n-1) that triangularises the data matrix X(n-1) and then apply it to the vector yf(n) in order to cal-
culate the angle normalised residual af(n) (cf. equation (21)). We also need to be able to calculate
yp(n - 1) in order to generate the a-postenon prediction residual (see equation (35)). Note also that the
triangularisation of X(n-1) is exactly what we require in the solution of the p™ order adaptive filtering
problem at time (n-1) - see equation (78). Consider, therefore, the following composite matrix:

M, = Jy;(n) Xpn-1)yn-Dm _, (90)

From equations (14), (19) and (28). we have that

. T
Qpn=Dm,_; = Qpa=Dn,_, = Tn-1.a"ym-1) ®n

It should be clear. therefore. that the vector rr,,.; in the above matrix (equation (90)) will enable us
to calculate y p(n — 1) just as the vector y:(n) allows a;(n) to be calculated. Similarly the presence of
the vector y(n-1) will allow us to calculate ap(n -1.

Now from equations (84) and (86)we have that

M, = y;_l(n) Xp_l(n-l)y:_l(n—l)y(n—l)nn 17 92)

where we have used the fact that y‘;(n) = y; _ l(n)in order emphasise the appearance of the lower order
problem in the decomposition of the matrix M;. Hence

Qpi(n-h M, = ,p_,(n)R _,(n-l)yp @=Du_(n-1) 41,,_,(n—1)"“M2 ©3)

;_yp_,(n) 0 v o~ Dy, (n-Ng (-1

=T

where g,_,(n-1)= (pT.yp_‘(n—l) (94)

P~

It is easy to show that y; —4(n) and _v:_ ,(n = 1) must have a time recursive decomposition sim-
ilar to that given in equation (21) for Vo- ;(n~1). Hence
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@ Ry_j@~1) yp_ya~1) u,_,(0-1) a_ (-1)
My= Bvi_,n-1) O  Bvo_ =D Py,_ -2 o ©5)

o of e o~ a -1y _n-1)

Now suppose that we had already calculated a rotation matrix®, Q;(n ~ 1) say. that rotates the vec-
tor y; _,(n=2) into a form where only the top element is non-zero i.e.

Q-0

I P .M2=

Lo g

up_(M Ry (=1 pp -1 u _,(-1) a,_(a-1)

Bup_, (-1 ol B (=2 Pu,_ -2 0

BS!_,(n-1) 0 0 Bo, (-2 o
T

a;_l(n) 0 a;-l(n-l) “p-x(“_l) Yp—l(n_l)

= M3 (96)

The new quantities p;_ (=1 ﬂ;_ =1, oo (n=2). 0p_ ;(n—2)and e:_ \(n —2) are defined
by this operation and we note, by analogy with eguation (12). that sg _,{n=2) 1s the square-root of the
(p-1)* order backward prediction energy at time (n-2).

Now tn order to complete the riangularisation of the matrix X (n-1) (see equation (92)) all that is
required is the annihilation of the single element az_ ,(n—1). This can be carried out using a single

Givens rotation:

wl_ym  R,_m=-1p}_ja-1 u,_ (-1 a _,(n-1)

Ty T ® (-1 -1 a(n-1
Q:,(n) My= o (M) o (0= p_n-1) an-1) )
Bo,_,n-1 O o BY,_,m-2 o
f T _ _
ap(n) 0 0 o n-1) Y0 1) ’
Ty .
- u MR m=1u -1 a(n-1) 08)

Vim0 vm-Dgm-1

4. The notation for the rotation matrices introduced in this memorandum are somewhat arbitrary: in order
to solve the p"' order forward linear prediction problem, we must annihilate quantines from the (p-1)*'
order backward prediction problem. Following the nomenclature used for reflection coefficients, the
rotation matnices used here are labelled according to the probiem to which they relate rather than the

quantities they annihilate.




where ap(n — 1) 1s defined by this operation. The identity in equation (98). and hence the labelling of
some of the elements in the bottom row of the right-hand matrix in equation (97), follows by definition
{see equation (92)). Note from the above that the “new" quantities ﬁ;_ n— 1) and 1_3P _ l(n -2).in-
troduced in equation (96), are equivalent to existing variables. Indeed. from equations (97) and (98) we
have that

B (n-1PS__ (-2 - .
Poy-s PO = vimv (n-1) 99
af(n) a(n-1) S ]
P P =
so that. see equation (21). 19;-1(“) = y;(n) (100)
and By = v (n (101)

From the above we see that the sequence of crthogonal transformations shown in equations (93),
(96) and (97) solve the p"’ order forward linear prediction problem. Note. however, that the matrix op-
erated upon by O;(n) in equation (97) consists entirely of quantities that would be available if the
(p-1* order forward and backward problems had already been solved at time n and n-1 respectively. If
this assumption were true then we could have constructed this intermediate matrix directly. thereby cir-
cumventing the need for the operations as outlined in equations (93) and (96). Only the single Givens
rotation of equation (97) would actually need to be performed and so the number of arithmetic opera-
tions required would be independent of p: only eight elements. one of which is zero. of the left hand
matrix in equation (97) are affected by the required rotanon. Having derived a fast method for solving
the forward hinear prediction problem. we now consider a fast update method for the auxiliary (back-
ward) problem.

3.3 Backward Linear Prediction
The p'® order backward linear prediction problem. at time n, requires the determination of the vec-
tor of filter coefficients y;(n) = [w:, on . w;_ pe 1] T that minimises the total prediction error

g:(n) where
b, = b b
e (n) X (Mw () + yp(n) (102)

Again the least squares solution to this problem can be found by the method of QR decomposition.
It is necessary to determine the rotation matrix Qp,(n) that mangularises the data matrix X,(n) and then
apply it to the vector y:(n) in order to calculate a:(n) (cf. equation (21)). We also need to be able to
calculate yp(n) (sec equation (35)) in order to generate the a-posteriori prediction residual. Consider.
therefore, the following composite matrix and the illustrated decomposition which is a simple extension
of equation (85)
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- - :ﬁ"'lx(l) or 0 0
X b, =, =
P(") }'p(n) En‘ Cof ](n) Xp-l(n—]) _y;_l(n—l) En_l! M4

Yp-

(103)

In equation (103). it has been assumed that the data sequence x(n) is pre-windowed (i.e. x(n) = 0
for n < 0). Note that this is the only place in the analysis where we require this assumption®. Consider
the effect of the rotation matrix Q,,_;(n-1) on the lower part of the matrix in equation (103):

.- 1(5"“‘,((1) o’ 0 0
lQ Pty MeT Ui R =D a1 =Ms (104
Opo 1 ‘
®Np ‘ v;_l(n) 0 y:_l(n—l)gp_l(n—ll

As before, all the vectors on the bottom row of the matrix Ms may be written in terms of their un-

derlying time recursion and thus we obtain the expression:

A ORI 0 0
boyf
- U, R_0-D w_ (n-1)a _,(n-1) 105
By,_,a-) O  Bv_ (-2 o
al _ () of & -1y, (n-D

Now suppose that we have already constructed a rotation matrix Q;(n — 1) that annihilates the

vector v;_ ,(n = 1) by rotation against the element B" ~ Tx(1) ie.
af T b
Be,_ (-1 o Bu, - (n=2) 0

f b

n) R n-1) u n-1) a n-1
Vpi® Ry ym=D) w01 g, _y0-D)
o pd_,m-2) o
p=-1
T b
ap_l(n— D yp_‘(n-l)ﬂ

- )
Qpn-1) o: M=
ol 1 1 o

) 0

Now let Qz(n) be the rotation matrix that annihilates the element a; _ (n) by rotation against the
element 55; - ](n ~ 1). Application of the transformation Q‘;(n) to the above matrix yields the result:

5. Itis possible to develop a QRD-based fast Kalman algorithm in which x(n) #0 for n < 0. The
resulting algorithm is based on much of the pre-windowed version presented here but with
some extra computation - see Cioffi [4] for further details. The authors are not aware of any

similar work for the QRD-based lattice algorithm.

32




g @ o w_ -1 am

p-1
b
A Mg = bp-i® Rp @D by, D 2 0=l (107)
0 o  BY_ (-2 o
0 o’ &m0

where the new quantities ip(n), &: —1(n) and ?P _1(n) are defined by this equation. Bearing 1n mind
the underlying data matrix (see equation (103)). recall that we are attempting to create an upper-trian-
gular pxp matrix in the upper left-hand corner on the matrix in equation (107). At present this sub-ma-
trix is not quite triangular but a little thought shows that it is easy to construct a matrix (Q;(n) say )
which will complete the required triangularisation. Specifically, let (-):(n) be constructed from a se-
quence of Givens rotations such that each rotation annihilates one element of the vector y;_ ;{n) in
wmn. Provided we start with the last element of u; _1(n) and work upwards. the sequence of rotations
will not destroy the triangular structure of the mawrix R _ (n—1) although its vaiue will be changed
as aresuit. Thus

R, () u‘;(n) a(n)

Qptm) My = P
0 vm gp(n)

(108)

Note that the matrix ég(n) only affects the wpper part of the partitioned matrix on the left hand
side of equation (108). It should therefore be clear that

& _yn) = abm)  and  F,_ ) = v (109)
BoP -2
Also note that P P"(n ) = ,vg(n) (110)
a’(n)

and so the “new” quantity t}; _,{n—2). introduced in equation (106). is equivalent to an existing var-
iable. Indeed. from equation (21) we have

b - b
8, _,(n=1) = vin) (111

Hence the sequence of orthogonal rotations given in equations (104), (106), (107) and (108) solve
the p'" order backward linear prediction problem. Following the development of the solution to the for-
ward problem in section 3.2, note that the data matrix on the lefi-hand side of equation (107) could be
constructed directly given the solutions to the (p-1)* order forward and backward linear prediction
problems at time n and n-] respectively. Thus the transformations shown in equations (104) and (106)
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Figure 11 QRD-based Least-squares Lattice Section.

could be by-passed. Furthermore. assuming that we are only interested in the prediction residuals, the
transformation shown in equation (108) is not required either, since a:(n) and yp(n) are both available
in the matrix M. Thus only the Givens rotation summarised in equation (107) need actually be per-
formed and the number of arithmetic operations required is independent of p: only six elements. one of
which is zero, of the matrix Mg are affected by the rotation.

3.4 The QRD Least-squares Lattice Algorithm.

Gathering together the results of sections 3.2 and 3.3 we see that it is possible to utilise various
terms from the solution to the (p-1)* order forward and backward linear prediction problems, at time n
and (n-1) respectively to generate corresponding terms for the solution to the p™ order problems at time
n (see figure 11). Note that the processing elements shown in figure 11 are the same as those used in the
triangular systolic array described in section 2.3 (i.e. as shown in figure 3). It is possible to show that
the comresponding square-root-free implementation may be obtained very simply by substituting the
processing elements shown in figure 4.

Given that O'" order linear prediction is trivial, we can thus generate the solution to the p'" order
problem by iteration in order using a cascade of the sections shown in figure 11. The resultant architec-
ture (figure 12) has a lattice structure and, since the number of operations per stage is inczpendent of p,
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Figure 13 Equivalent Order Updates for Joint Process Residual.

O(p) operations are required to solve the p™ order problem (see appendix for algorithm listing). Note
that by including the adaptive filtering reference vector y(n-1) in the calculation of the p'" order forward
linear prediction problem (section 3.2) we automatically solve the p™" order adaptive filtering problem
for time (n-1). The solution to the adaptive filtering problem for time n can be easily derived from the
above. Note that in figure 11 the rotation parameters used (in the square processors) to calculate each
order update of the delayed joint process residual are evaluated (in the round processors) from the de-
layed backward residual. Thus by using the undelayed backward residual, we can calculate the rotations
required to update the undelayed joint process residual - see figure 13. In this form. a stage of the QRD-
based lattice can be seen to be very reminiscent of that of the standard least-squares lattice; the only
difference is that the former structure has rotation processors instead of the (reflection coefficient) mul-
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tipliers of the conventional form (see Haykin [12] figure 17.2). Although conceptually appealing, the
QRD-based lattice filter stage shown in figure 13b is inefficient because there is duplication in the cal-
culations of the rotation parameters for the forward prediction and joint estimation residuals. Any prac-
tical implementation would clearly calculate the rotation parameters only once in the joint process esti-
mation channel and store them for use in the next time instant in the forward prediction channel.

In section 2.8 we discussed the Recursive Modified Gram Schmidt (RMGS) algorithm with error
feedback. This was proposed by Ling Manolakis and Proakis [15] for the general narrowband adaptive
beamforming problem and leads to a triangular array processor equivalent to the one described in fig-
ures 2 and 4. Ling and Proakis [16] subsequently developed the technique to produce an efficient RMGS
algorithm with error feedback which requires O(p) arithmetic operations per sample time to solve a "
order adaptive FIR filtering problem. Their algorithm also has a lattice structure and, in view of the
equivalence referred to above, it is not surprising to find that it corresponds exactly to the QRD-based
least squares lattice algorithm derived in this memorandum (assuming that the square-root-free Givens
rotations in figure 4 are employed). The RMGS lattice algorithm with error feedback was the first nu-
merically stable least squares lattice algorithm to be developed and it is interesting, therefore, to note
this correspondence to an algorithm based entirely on orthogonal rotations.

3.5 The QRD “Fast Kalman” Algorithm.

In this section we expand on the remarks made in section 3.1 about the connection between the
forward and backward linear prediction problems for a fixed order and develop the QRD-based fast Kal-
man algorithm. We take as our starting point the situation where we have solved the p™ order forward
linear prediction problem for time n and are attempting to update this solution to the next time instant.
Specifically. if we could generate the matrix Qp(n) using O(p) arithmetic operations then the linear pre-
diction solution could be updated efficiently.

The original derivation of a QRD-based fast Kalman algorithm was presented by Cioffi [4] al-
though his algorithm differs somewhat from that presented here. The material presented in this section
follows that of reference (23] and leads to the same algorithm as derived by Regalia and Bellanger [27].
Both of these derivations were based on Cioffi's work and the approach presented here actually follows
the same sequence of ideas used in Cioffi's original paper. The difference in the resulting algorithms is
due to the choice of triangular matrix used in the QR decomposition. Here we use an upper, right-hand
triangular matrix to conform with the work of Gentleman and Kung [8). Cioffi on the other hand chose
to use a upper, left-hand triangular matrix. This choice results in an algorithm which is slightly more
complex than the one derived here. We refer interested readers to the original references for further de-
tails. As in the case of the lattice algorithm, the solution to the adaptive filtering problem is updated
along with the linear prediction one. In fact, since we will be calculating the matrix Qp(n) . there is clear-
ly no need to include the adaptive filtering problem explicitly in the following analysis.

Note from equations (104), (106). (107) and (108) that
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(112)

which can be viewed as a time and order update relationship for the matrix Qp(n - 1). Also from equa-
tions (93), (96) and (97) we have

r [ —":
Qp+1 9.9 (m) (113)
T

Qpot(® = Qpastn+ 1) ;
Lo L

or, given that the inverse of an orthogonal matrix is just its transpose.

-T

of . T
Qm = 1V 14, s+ 11 0, ) (114)
[} 1

which is an order down-date relationship for Qp + 1(n) . Taken together. equations (112) and (114) rep-
resent, at least in principle, 2 means of updating the matrix Qp from one time instant to the next. How-
ever we are really interested in obtaining a time update relationship for the matrix Qp(n). since the ma-
trix Qp operates on the entire data matrix and would therefore lead to an algorithm which is not time-
recursive and requires an ever increasing amount of storage. Furthermore. since explicit evaluation of
the relationships derived above would require Of ) multiplications, this approach could not lead to a

“fast” algorithm.

The observant reader will have noticed that the matrix product (-):;+ 1(n)0;+ 1(n) depends on
knowledge of the p™ forward linear prediction problem at time n (equations (107) and (108)) and thus
is. by assumption, is known; whereas the matrix Q;+ 1(n + 1) depends on the solution to the p™™ order
backward problem at time n. This is somewhat paradoxical given that one of the purposes of trying to
calculate Qp(n) is to calculate this solution! However, as we shall see, it is possible to avoid this para-
dox by doing the matrix multiplications required by equations (112) and (114) implicitly, thus comput-
ing the matrix Qp(n) efficiently and generating a fast algorithm. We do this by constructing only the
right-hand column of the matrix Qp(n) and then inferring the whole matrix from this vector (as in sec-
tion 2.7). This technique reduces the dimension of the problem (from matrices to vectors) and thus
scales down the computational requirement: in fact, the evaluation of equations (112) and (114) is ac-
tually reduced to O(p) arithmetic operations in this case. Note that the right-hand column of the matrix
Qp(n) can be considered to be the result of applying the rotation matrix Q,(n) to the pinning vector 7,
defined in equation (67). The occurrence of the pinning vector in the calculations is typical of fast Kal-
man algorithms. :

Returning to equation (112). we see that

37




r - 0
a (0 -
pei - . b (a- a(n~-1)
0 =Qp, (0in, = Q:-fl(")Q:i-l(n) Qpn(T“ Do & . (115)
Yoo ® SR PV A
P _
and, from equation (113),
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Now from equation (106). it is clear that the vector '( a:(n -Do’ YALER)) is unaffected by the

- -T
matrix Q; +1{n=1). Similarly. the vector .a:(n) o YP(“) is invariant under the action of the matrix

Q:, +1{n) (sec equation (96)). Hence. we deduce that

a (ni 0
Pl - a(m-1)
o =Qui@Qps i@ P o 17
YoM RALES)
a, ,(n): r a(n)
and 0  =Qpuiln+l) o (118)
You ,(n)A ,,Yp(")A
Finally. with reference to equation (97), we note that
¢ L ap(n() )
Qpeitn+1)) o | = Be 1 (119)
vy 0
wP Tpe 1™,

Clearly. if the rotation angle corresponding to Qp 4 \(n + 1) is © then

010 cos® sin@ O
Bpei - | €059 sin® i 120
Ype ;M -sin® cosej LY,,(“)_ (120)
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Figure 15 Fast Kalman Processors

T
and hence the rotation matrix Q,H 1(n + 1) can be calculated indirectly from the known quantities
&, 1(n) and Yo, ,(m) . Thus we can avoid the paradoxical situation of needing to know the solution to
the p'" order backward linear prediction problem at time n before Q(n) is known.

T
Thus by means of equation (117) and we can transform the vector a:(n ~1) o’ Yp(" -1) imo

T
the vector a:‘ () ol ALY in O(p) orthogonal operations. Equation (118) then provides the ba-

T -~
sis for an O(p) method for transforming this latter vector into ag(n) ol ALY and finally Qp(n) can

be calculated. again in O(p) operations. from _a:(n) ol v, ' as shown in section 2.7. The resulting
algorithm may be implemented using the paraliel computing architecture shown in figure 14 with rota-
tion processors as defined in figure 15. Note that these rotation processors are essentially the same as
those used in the triangular array and lattice algorithms. The main difference is that the processing ele-
ments in figure 15 do not store any internal variables: all variables are either passed into or out of the
processing element. In fact if these processing elements are equipped with a storage element and the
correct output variable fed back to the relevant input (as shown in the ieft-hand column of cells in figure
14) then they are essentially identical to the processing elements shown in figure 3.

An interesting consequence of using the QRD approach is that. unlike other fast Kalman algo-
rithms, the QRD-based fast Kalman algorithm not only produces the solution to a given order problem
but also that for all lower order problems. This is because the QRD-based approach to least squares min-
imisation is inherently an order recursive process (see section 3.6). For instance, consider the triangular
processor array described in section 2.3. It should be clear that the quantity being passed down to the
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boundary cells (the product of the various cosine terms from earlier rotations) is the guantity y(N) re-
quired by the lower order problems. A small amount of thought will also reveal that the angle normal-
ised residual, a(n). for a given lower order problem. is the quantity passed down 1o a boundary proces-
sor from the last internal processor of that particular column (see figure 16).

It is interesting to note that, at first glance. the algorithm pictured in figure 14 appears not to include
any quantities related to the backward linear prediction problem: however this is not true. It is possible




to show (see section 3.6) that the vector g,(n) consists of the backward prediction residuals for orders 0
to p-1 normalised by the respective prediction error energy. Indeed Regalia and Bellanger {27] derived
their algorithm using these quantities explicitly.

3.6 Physical interpretation of Fast Algorithm Parameters.

The QRD-based approach to least-squares minimisation is just one of many different ways in
which the problem can be solved. However, the quantities used in a8 QRD-based algorithm appear to be
radically different from those to be found in the more familiar approaches. Clearly because the under-
fying problem is the same, the variables in a QRD-based algorithm must be related to more conventional
quantities. In this section we point out some of these relationships along with some other interesting in-
ter-relationships between quantities found in the QRD-based approach. Indeed. the QRD-based ap-
proach to least-squares minimisation and linear prediction in particular, offers many useful insights.

We have already seen that the forward and backward prediction residual powers appear quite nat-
urally in the QRD-based lattice algorithm - albeit in terms of their square-roots: 5; and s‘; (see equa-
tions (97) and (107)). The lartice algorithm also calculates estimates of the partial correlation coeffi-
cients {12]. Consider the term p;_ , in equation (97): if the rotation angle corresponding to Q;(n) is
©and weletc = cos© and s = sin® then

¢s BUL_(a=1)Be)_(n=2) ui_(mey_ (-1

f b f azn
-sc -
Caf_m b (=D al(n) 0
ie. u;_ [(n) = Bcu;_ ((n- l)+sa;_l(n) (122)
Bsz_l(n-Z) a:_l(n-l)
where €= i and s= 4 - (123)
sp_l(n—l) ep_,(n-l)
Combining equations (122) and (123) we find. after some algebra, that
2 f
b,_ ) = B’ (n- 1)+a;_,(n- Do _ () (124)
o g2(n-m) b '
n-~
- m}":lﬁ ap_l(m- !)ap_l(m) (125)
where b, () = e:_ (- l)p;_ \(m (126)
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Now, by comparison with equation (47), we have

al_ @ = el _(nn-De,_,(nn) (127

and

a_ -1 = (-Ln-2e_,m~1Ln-1) (128)

Thus the angle normalised linear prediction residuals are identical to the so called rationalised residu-
als{19]. In particular we see that this interpretation of the angle normalised residuals implies that the
right hand side of equation (125) can be viewed as a (weighted) estimate of the crosscorrelation between
the normalised forward and backward residuals. Indeed for stationary signal statistics, once a recursive
least squares prediction algorithm has converged. the a priori and a posteriori residuals, and hence the
angle normalised residuals, are identical. Finally. as the backward residual power [e: _ l] : is effective-
ly an estimate of the mean square backward residual, we see from equation (126) that

e _(m-1n-nel _ (n
ue_ (= pd e ”) (129)
(g (n=1.n-1)

In a similar manner. it is possible to show. again from equation (97), that

[eb_ (n-1,n-1)e__ (n~1,n-1)]
(-1 P L

, _ (130)
(e5_n-1.n~1)’

and. from equation (107). that

[ef_ (n.n)e"_ (n-1.n-1)
pbp_ -1~ —p=! _ -1 g ] (131)
(e, (@.n)

Thus we see that u{,_ (), u';_ (@=1)and u__ (n- 1) are cstimates of the various PARCOR coef-
ficients.

Next we consider the order-recursive nature of the QRD approach to linear prediction. Note that
equations (97) and (98) provide a recursive decomposition of the matrix Rp(n - 1). Specifically, and
for time n rather (n-1),
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R,y ) _ ()

= |
R (n) = (132)

o p-

This shows that the diagonal elements of the matrix Rp(n) are in fact the square-roots of the back-
ward prediction residual energy terms for each of the sub-order problems. It also indicates why it is sen-
sible for the Givens rotations used in QRD-based linear prediction to ensure that the diagonal elements
of the R(n) matrix are always positive. Equation (132) also shows that the off-diagonal parts of the tri-
angular matrix are the various “y" vectors. This is not surprising considering that the linear prediction
problem could be solved using a full pxp systolic array with the time series x(n) fed in via a tapped delay
line as indicated in figure 16. It therefore serves to emphasise the fact that a QRD-based approach gen-
erates the solution to all sub-order problems as well as the target problem of a given order.

Order recursion also plays an important part in any least-squares lattice algorithm. Traditionally
the order recursion for the prediction residuals takes the form [12]

ef(n. n) = e (n, n)+kf(n)e"_ (n-1,n-1)
P p-1 prp-t } (133)

b b 1 b el
ep(n. n)sep_l(n I.n l)+kp(n)ep_t(n.n)

where k;(n) and k:(n) are the p"‘ order reflection coefficients. Unlike the conventional lattice algo-
rithms. the QRD-based one derived in section 3.4, does not explicitly calculate reflection coefficients:
instead the order update for the (angle normalised) residuals takes the form (see equations (97) and
(107
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f f f f f
o (m) =cmay_,@0)~-s,mPBu,_,(n-1) } (134
b b b
a:(n) = cp(n)a';_ (a-D- sp(n)ﬁup -2
f f f f f
uo_ (m=c(npp _.(n-1)+s(na’ _ (n)
where p-i P p-i P p-t } (135)

Ho_ (a1 = cXmBUY _ (1-2) +sXmad_ (1)

and c;(n). s;(n), c;(n) and s:(n) are the sines and cosines of the transformations Q,f,(n) and Q:(n) re-
spectively. Equation (134) appears quite different to the usual lattice equations shown in equation (133);
however, note that equation (134) is written in terms of angle normalised residuals and not a-posteriori
ones, and that the sines and cosines are functions of the residuals (see equations (97) and (107)). Con-
verting from the angle normalised residuals to the a-posteriori ones using equation (45) and evaluating
the sines and cosines we obtain, after some manipulation,

f
b,
e;(n.n)=e;_1(n‘n)— bp L—ve:_l(n—l,n-l)
sp_l(n—l)
b el (136)
Mo _,(n-
emm=el_(n-1n-N--P2l el @mn
€ _(n)
p-1
from which it follows that
f
M
k'(n)=- _P7!
P e (-1
b m-1) (137)
Mo _ (0~
K°(n) = - _"_f,L,,
€

This result is not surprising: the reflection coefficients in equation (133) are defined to be those

n n
values that minimise the terms E c;(m. m) and ): e:(m. m). In other words. the reflection coef-
m=l] m=1

ficients are the coefficients in a first order least squares minimisation problem. From section 2.1 we
know that. when using the QRD technique. the least-squares coefficients are given by

w=-R"y (138)
In the case of a first order problem, both the matrix R and the vector u are scalars and for the least-

squares minimisation problem shown in equation (133) these quantities equate to those shown in equa-
tion (137). This equality can most easily be seen with reference to figure 11. If the least-squares mini-




misation problem is one of first order. then the triangular QRD array (cf. figure 2) will be a single cir-
cular processing element and the right-hand column will reduce to a one square processing element.
These structures can easily be identified in figure 11 from which the relationships shown in equation
(133) can readily be deduced.

As remarked earlier, the QRD-based fast Kalman algorithm is also unusual in that it does not cal-
culate conventional quantities (the optimum coefficients). As described in section 3.5, the QRD-based
fast Kalman algorithm calculates the rotation matrix Qp(n). This matrix 1s then used as shown in equa-
tion (21) to compute the vector gp(n) and produce the adaptive filtering residual. However, we note that

the vector up(n) is merely a transformed version of the optimum coefficients wp(n). as discussed above.

Another unusual feature of the algorithm derived in section 3.5 is that it does not appear to make
use of any quantities related to the backward prediction problem. This is not true however since the vec-
tor a,(n) may be interpreted in terms of the backward prediction residuals. To see the equivalence. con-
sider equations (119),(120) and (123); it is clear that

} a_ @  a_m
a,_,m - | o l
an) = y _pl(n)smd = Y,_ (Mo, _ ()] = 169'1(_2'__1_1_)1 (139)
-P sﬁ_ltn) o e:_l(n)

and we see that the vector a,(n) consists of the energy normalised backward prediction residuals of order
(p-1) and below.

3.7 Weight Extraction from Fast Algorithms

The QRD-based least squares lattice and fast Kalman algorithms presented above are based on the
“direct residual extraction” technique and as such produce the adaptive filtering residual without explic-
ity calculating the optimum weight vector. This is highly desirable in an adaptive filtering context since
the residual is the quantity of interest: however in system identification the primary goal is the calcula-
iion of the weight vector. The two weight extraction techniques presented for the full QRD-based algo-
rithre - weight flushing (section 2.6) and parallel weight extraction (section 2.7) - are equally applicable
to the fast algorithms. Note, however. that neither of the fast algorithms explicitly calculates the trian-
gular matrix R so that the back-substitution method (equation (11)) is not available.

Both the lattice and fast Kalman algorithms use the same processing elements as the full triangular
QRD array and can therefore be operated in the frozen mode. If a unit impulse is fed into the frozen
filter, its output will clearly be the impulse response of the system i.e. the set of filter weights. Note how-
ever that unlike the narrow-band beamformer of section 2, the adaptive filters presented here are not
memoryless systems when operated in their frozen mode: the (implicit) tapped delay line must continue
to operate. It is therefore necessary to ensure that the tapped delay line is full of zeros before applying
the unit impulse. Thus it would require an input time series of length 2p+1 consisting of a single sample

45




of value unity sandwiched between two sets of p consecutive zero samples.

Although this operation will produce the filters impulse response, it is an invasive procedure -
again because of the fact that the system has memory. Having frozen the filter and passed the impulse
sequence through it, the state of the filter (the contents of the tapped delay-line) will have been altered
compared to the point in time when the filter was frozen. Thus it is not now possible to unfreeze the
filter and continue with the adaption process as if nothing had happened. If the system is allowed to
adapt from this incorrect filter state then the output will be in error - until sufficient data has been proc-
essed so that the error in the filter’s state has decayed away. This may well be acceptable in certain sit-
uations since this process of converging to the required solution is exactly what happens when the filter
is first started. One way in which weight flushing can be made non-invasive is for the contents of the
filter delay elements to be stored before the weight flushing begins and the restored before the adaption
continues.

Recall from section 2.7. that in order to extract the filter weights in parallel with the adaption proc-
ess. it is necessary to have available the rotation matrix Q(n). This matrix is explicitly calculated in the
fast Kalman algorithm and indeed is also available in the lattice algori*hm in a disguised form: it can be
shown that the rotation matrices Qif(n) (1<isp) are equal to the elementary Givens rotations
Gn) (1<i<p) that make up the matrix Q(n) - see equation (30). Thus it is possibie to use the ad-
ditional hardware shown in figure 8 in conjuncticn with the fast algorithm (instead of the triangular
processor array) to generate the weights. However, the utility of this approach is questionabie since the
addition of the extra processing means that the computational load of the complete algorithm rises from
O(p) 10 O(p” ) and the advantage of the fast algorithm is lost.

3.8 Computer Simulation.

Delay

x(n) .
Training 7~ Adaptive Cb
Sequence Channel L Filter z

[

Measurement
Noise

Figure 17 Channel Equaliser Experiment.

The main concern with “fast™ algorithms is that they are potentially more sensitive to numerical




errors than their generic couterparts. This is because the fast algorithms exploit some mathematical re-
lationship between various quantities in the generic algorithm in order to reduce the computational ioad.
In the case of the least-squares lattice algorithms, the assumption that the problem has already been
solved for the one order allows the solution to the next order problem to be generated efficiently. Now
in practice, the calculations can only be done to a finite accuracy so, strictly speaking, the assumptions
upon which the fast algorithms are based (e.g. the existence of the solution to the lower order problems)
are only approximately true. We can therefore expect to pay some penalty. in terms of numerical stabil-
ity. for the reduced computational load. The perceived advantage with the fast QRD-based algorithms
is, of course, that they should be more robust in the presence of numerical errors than other fast algo-
rithms.

In order to investigate the effects of finite precision on the fast QRD-based algorithms we consider
the application of an adaptive filter to a typical channe! equalisation problem (figure 17). In particular,
we consider® the case of an adaptive equaliser applied to a data channel with a “raised cosine” impulse
response (equation (140)).

1 2n -
h(n) = 2‘1+cos(w(n-—2)) n=1223 (140)
0 otherwise

By varying the parameter W, the amount of interference between a given symbol and the two either side
of it can be changed. This. in effect, controls the eigenvalue spread of the data covariance matrix (see
table 2).

An 11" order adaptive QRD-based least-squares adaptive filter is used to equalise the channel re-
sponse. In the simplest of situations. the equalise: would be trained periodically by transmitting a known
sequence and adapting the equaliser with a stored version of this signal as the “reference” signal (see
section 3.1). In between these training sessions, with the adaption frozen. the channel can be used for
the transmission of data, hopefully with the inter-symbol interference much reduced.

In our computer experiment, the transmission channel is fed with a polar (1) pseudorandom train-
ing sequence. This sequence, delayed by seven time instants, is used as the reference signal for the adap-
tive filtering algorithm. The delay is inserted to ensure that the adaptive filter has an impulse response
that is symmetrical about the centre tap. A small quantity of “measurement” noise, in the form of a pseu-
dorandom sequence with an approximately gaussian probability distribution function, is added to the
channel output. The noise sequence used has zero mean and a variance of 0.001. The “forget factor™ 8
(see equation (4)) was fixed at a value of 0.996. which implies an effective data window (i.e. the dura-
tion for which any data vector has an effect on the filter adaption) of 250 time samples.

6. Suggested by S Haykin.
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29 6.1

31 11.2

33 219

35 47.5
Table 2 Eigenvalue Spread

All calculations within the algorithm were performed using limited-precision floating point arith-
metic. Only the number of bits in the mantissa is varied during the experiments: the number of bits in
the exponent is fixed at eight. No quantities internal to the adaptive filtering algorithm are held to a
greater precision than L. . uts: the results of all arithmetic operations are immediately reduced to the
required precision. The numerical performance of most algorithms can be improved by using higher
precision for some internal calculations: however it is necessary to have a good understanding of the
algorithm and. in particular, to identify the critical intermediate quantities for this method to be used
effectively.

The performance of the equaliser is monitored by recording the ensemble-averaged, squared a-pri-
ori equalisation error (see equation (40)). This has the advantage that it shows how close to convergence
the algorithm is whilst sull showing, asymptotically. the least squares equalisation error. The ensemble
average is taken over 100 realisations of the experiment. Several experiments were performed using
various combinations of parameters and algorithms however only the main results are discussed below.
Care should be taken in the interpretation of any computer simulation experiment. In particular, when
the numerical stability of an algorithm is being investigated it should be noted [3] that instability is often
preceded by a period of apparent stability (e.g. figure 19, 8 bit mantissa plot). Thus simulation experi-
ments can only confirm lower bounds on the sequence length required to cause instability and not
“prove” that a system is stable.

Figures 18 and 19 show the basic performance of the fast QRD-based equaliser algorithms, using
the square-root, feedforward Givens rotations (SQ/FF). for different values of wordlength and eigenval-
ue spread. Figure 18 shows that, with double-precision arithmetic, the rate of convergence is more or
less insensitive to the different eigenvalue spread settings: as would be expected from a recursive least
squares minimisation process. Figure 19 illustrates how the wordlength affects the performance for a
fixed eigenvalue spread (W=2.9). There is very little discernable difference between the filters using 12,
16 and 56 (IEEE double-precision) bit mantissas and these filters appear to be well behaved for data
sequences of length up to 200. The first sign of any instability appears with a mantissa of 8 bits. Here
the filters initially show signs of converging to a stable state but then begin to diverge producing an ever
increasing emror. The 4 bit systems clearly do not behave in a sensible manner as would be expected
from such a short wordlength. Note that there is very little difference between the two fast algorithms
(the lattice and the fast Kalman).

Figure 20 shows a companson of the QRD-based lattice algorithm with the full QRD-based trian-
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gular systolic array version. Four systems are also shown in this figure: they are the “square-root-free
with feedback™ (SF/FB) forms of the lattice algorithm and the array algonthm along with the SQ/FF
versions. This figure shows the case of 4 bit mantissas and a fixed eigenvalue spread setting (W=2.9).
This may be considered to be an excessively short wordlength. The reason for this choice is that often
finite precision effect are often only manifested after the round-off errors have had time to accumulate
[3]. By using a small wordlength, the appearance of such effects occur sooner thus reducing the time

necessary to perform the simulation.

In most cases. a p™ order RLS adaptive filter will converge within 2p time instants. At this point
the a-priori residual will have reached a value primarily determined by the eigenvalue spread and not
the wordlength. As round-off errors accumulate. the a-priori error will increase indicating a loss of ac-
curacy in the algorithm. Up to a run length of 10000, the longest simulation run to date by the authors,
the SQ/FF lattice algorithm remains stable with 12 bit mantissas. In the case of the SF/FB lattice, the
same behaviour is seen using only 4 bit mantissas.

It can be seen. in figure 20. that in the SQ/FF mode the faster, lattice algorithm is only marginally
worse than the full triangular array version thus demonstrating that little penalty has been paid in reduc-
ing the computational load. As expected. the square-root-free with feedback versions of the algorithms
perform better than the basic versions. In this case, there was no discernable difference between the lat-
tice version and the array version in any of the simulations run so far. This would seem to demonstrate
the power of the feedback technique in improving the numerical accuracy of these algorithms.

The relative effect of the square-root-free and the feedback techniques can be <2en in figure 21.
This shows the performance of the lattice algorithms with 4 bit mantissas and fixed eigenvalue spread
setting (W=2.9) for the six possible Givens rotation algorithms: SQ/FF. SF/FB, square-root Givens ro-
tations with feedback (SQ/FB;. square-root-free feedforward rotations (SF/FF), square-root rotations
with the stored parameter fedback (SQ/MFB), and square-root-free rotations with the stored parameter
fedback (SF/MFB) - see section 2.4 for more details. From this it can be seen that there is indeed a nu-
merical advantage to avoiding the square-root operation but that the most significant improvement
comes about by introducing the “error feedback™ - provided that the feedback is applied properly. Figure
21 shows that there is little difference in performance between the “FF" and “MFB" versions whereas
the “FB™ versions (i.e. the “error feedback™ algorithms) are sigmficantly bette:

In conclusion. we have found that for both the triangular QRD processor in figure 2 and the least
squares lattice filter in figure 12, the best numerical performance over a wide range of computer simu-
lations was obtained using the SF/FB Givens rotations defined in figure 4. The fact that a square-root-
free algorithm performs best is not entirely surprising. A closer analysis of the conventional Givens ro-
tation algorithm defined in figure 3 shows that the square root operation is only required in situations
where we sum the squares of two numbers and then compute their square root. Avoiding this process
could certainly improve the numerical performance. The fact that the feedback form of square-root-free
Givens rotation in figure 4 performs best is contrary to the initial expectation of numerical analysts [11].
However. it is entirely consistent with the fact that the corresponding error feedback RMGS lattice al-
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Figure 21 Multi-channel Adaptive Filter

gornithm has also been found to exhibit robust numerical stability. Since Ling. Manolakis and Proakis
were first inspired to introduce the error feedback mechanism by analogy with the stability techniques
used in control. it would appear that this provides a better way of analysing the numerical stability of
other signal processing algorithms.

We have repeatec the above experiments with values of the W parameter other than 2.9 and all of
the above observations appear to hold essentially independently of the eigenvalue spread.

4 Wide-band Beamforming.
4.1 Multi-channel Adaptive Filters

In a multi-channel least squares adaptive filtering problem at time n, a set of N p-dimensional
weight vectors. !v:)(n) (0 < i < N-1). is to be found that minimises the sum of the squared differences
between a reference signal y(n) and a linear combination of N samples from each of p data time series
Xi(ty.j) (1 i< p. 0 < j < N-1). This is equivalent to adaptively filtering p separate time series in order
to form the best estimate of the reference signal (see figure 21). If the p data sequences come from: spa-
tially separate amennae then we have a spatial as well as a temporal filtering problem. In this sense. the
multi-channel adaptive filtering probiem subsumes both the narrow-band beamforming problem and the
(single channel) adaptive filtering probiem.

To be specific’. the measure E (w'y) = | ¢,(n). 2 is to be minimised. where:

en(m) = Xy(n)w'y +y(n) (141)
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AT Te-N)

Xpn) = B(n) | c (142)
XT@ ... xTn=-N+1)
xT(m) = [x,(m) x,(@ ... x(n) (143)
wi%m
(1) |
wym = ¥ M (144)
and y) = B [y(1). ... ym] T (145)

Equation (143) serves to define the new vector quantity x(n). Note that. apart from the change from
scalar 10 vector quantities, equation (143) is identical to equation (79). Indeed it would be possible to
consider the case where the reference signal y(n) is replaced by several such signals. In this case we
would have to replace the vector y(n) by a matrix. We will not pursue the idea of multichannel joint
process estimation any further here but note that a similar situation arises naturally in section 4.2 when
we consider multi-channel linear prediction.

The solution of this vector least squares minimisation problem via QR decomposition follows the
usual pattern and requires the determination of an orthogonal matrix Qp(n) that transforms the matrix
Xn{n) 1nto upper triangular form. The fact that the matrix Xy(n) is block-Toeplitz allows us to use the
ideas developed in section 3 to construct “fast” algorithms. As one might expect. it is possible to derive
both a fast Kalman and a lattice algorithm.

4.2 Multi-channel Lattice

The extension of the lattice algorithm presented in section 3.4 to the wide-band beamforming prob-
lem is relatively straight forward: the only change required is that certain scalar quantities be replaced
by vectors and some vectors be replaced by matrices{24]. The essential features of the derivation pre-
sented in section 3.4 carry over exactly. The only point where the derivation of the multi-channel case
deviates in any appreciable way from that given in section 3.4 is in the extension to p dimensions of
operations on one dimensional objects.

7. To be rigorous, we should label quantities involved with a p-channel N-tap muiti-channel least squares
minimisation problem with two indices (viz p and N). However in the following we will be consider-
ing only iterations in the number of taps and not the number of channels. Thus for notational simplicity
we will indicate explicitly only the number of tsps being considered - the number of channels being
sssumed to be fixed.
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In the solution of the p** order single-channel forward linear prediction problem it was necessiry
to determine the rotation matrix Q;(n - 1) that annihilated all but one component of the vector xp_l(n-Z)
(see equation (96)). In the N' order multi-channel forward linear prediction problem we have to deter-
mine a similar rotation matrix. However in this case, the vector v, (n-2) is replaced by a suitably de-
fined matrix Vy_;(n-2) (with p columns - one for each channel). The equivalent operation to that of
Q;( n— 1) is to convert Vyy_,(n-2) into an upper-triangular matrix i.e. to perform a QRD decomposition!
Indeed the operation in the single-channel algorithm can be considered to be a QRD decomposition on
a vector and the resulting single non-zero component to be a 1x] triangular matrix. Similarly. the next
step in the derivation (cf. equation (97)) consists of calculating the p rotations necessary to perform the
recursive QRD update on the above triangular matrix, instead of just one rotation.

The resultant architecture (see figure 22) has a lattice structure where each stage of the lattice con-
tains two triangular systolic arrays. The total number of operations necessary to solve an N order mul-
ti-channel adaptive filtering problem. with p channels. is thus O(Np’). Note that in figure 22 some of
the vector data lines have been “twisted™. This merely signifies the fact that data is fed into the triangular
arrays in the order specified by the mathematics®.

The architecture shown in figure 22 is intuitively satisfying for the following reasons. It is well
known [28] that the lattice structure of linear prediction algorithms is inherent to the problem. Indeed it
is easy to show in more general terms that a p? order linear prediction problem can be solved using a
lattice structure which, in effect, solves two least-squares minimisation probiems at each stage. These
least-squares minimisation probiems relate to the determination of the forward and backward reflection
coefficients and calculate the order-updated residuals. Specifically. for a multi-channel problem,

8. Itis easy to show that this data twist in nOt necessary since a permutation of the data does not affect
the vaiue of the residuals; however we do niot pursue this idea any further in thus memorandum.
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efnm=ef _ (nn)-Kme® (-1,n-1)
P p-1 pe } (146)

epn.n)=¢>_ (n-1,n-1)~KJme] _,(n.n)

where e;(n. n) and ;:(n. n) are the p order forward and backward a-posteriori fesidual vectors
and K;(n) and K:(n) are pxp reflection coefficient matrices, respectively. As we have shown, each of
the triangular arrays depicted in figure 22 is capable of performing a recursive least squares minimisa-
tion and calculating the residual directly. A close look at figure 22 will show that these triangular arrays
operate on the forward and backward residual vectors in precisely the manner required to solve these
problems (cf. discussion following equation (137)).

An alternative method {33] for deriving the multi-channel QRD-based lattice algorithm actually
begins with the standard multi-channel lattice algorithm and transforms it into a purely orthogonal
square-root information algorithm. In the “standard™ RLS lattice algorithm. the forward prediction re-
siduals for order p (say) are found by subtracting linear combinations (reflection coefficients) of the
(p-1)™ order backward prediction residuals from the (p-1)* order forward residuals. A similar relation-
ship holds for the p'™ order backward residuals. The calculation of the reflection coefficients requires
an inversion of the data covariance matrix which is computationally expensive and often ill-condi-
tioned. Using a Cholesky decomposition of the data covariance matrix, Lewis[13] showed how this part
of the algorithm could be transformed into a recursive. square-root information process. In this algo-
rithm the reflection coefficients are no longer calculated explicitly: quantities analogous to the vector u
in equation (11) and the vector a in equation (91) are calculated instead. Nevertheless the p™ order re-
siduals are still calculated in terms of the difference between the (p-1)* order residuals and another term
(now a function of the quantities analogous to u and a). As the bulk of the calculation is exactly the
computation of the reflection coefficients. Lewis proceeded no further with this re-formulation and ap-
parently failed to notice that the “non-orthogonal” part of his algorithm is in fact redundant. Yang and
Bohme (33] observed that the adaptive filtering residuals were effectively being produced along with
the computation of the vectors u and a - as shown in section 2.5: this observation results in the con-
struction of a purely orthogonal algorithm and is equivalent to that derived from first principles here.

4.3 Multi-channel Fast Kalman Algorithm

The derivation of the multi-channel fast Kalman algorithm is somewhat more difficult than the lat-
tice equivalent. If the various substitutions of scalars for vectors and vectors for matrices are carried out
then it is relatively easy to generate a “fast™ algorithm. However an operation count will reveal that
O(Np’) operations are required to solve a p channel Nt order problem. Assuming that N>p, this is “fast™
compared 1o the O(N’p?) operations required when using a generic miangular systolic array fed by
upped delay-lines but falls short of the O(Np? ) operations required by the lattice algorithm. It is possi-
ble{2] to generate an 0(sz ) multi-channel fast Kalman algorithm and, as in the single-channel case,
the pinning vector is used to allow the inference of a rotation matrix from vector quantities. As before
this technique reduces the problem by one dimension and produces an O(Np’) algorithm.

The “dottle-neck™ in the naive generalisation of the single-channel algorithm (with O(Np’) opera-
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tions) is the calculation equivalent to that shown in equation (108). For convenience we reproduce this
equation, in part, below:

i
o o

Qpe (B Ria=D) o Rps i) (47)
;‘ (] [0 I OO
Lo o

In the multi-channel equivalent. the vector p;(n) is replaced by an Npxp matrix U;‘(n) (say) and the
scalar e;(n) by a pxp triangular matrix (E;(n) ). The operation of annihilating this Npxp matrix - equiv-
alent to a block recursive QRD update - requires O(Np" ) Givens rotations: it requires O(p) operations

to annihilate a p-dimensional vector by rotation against a pxp triangular matrix and the matrix U;(n)
has Np rows.

An alternative procedure for annihilating the matrix U;‘(n) is to eliminate it one column at a time
rather than one row at a time as in the recursive QRD update (see section 2.2). Each column of U;,(n)
has Np components and therefore will require O(Np) operations to annihilate it. If this was all that was
required we would have a fast algorithm: U;,(n) has p columns making a total of O(Np’) operations.
However, it is not sufficient for each column of the matrix U;,(n) just to be annihilated individuaily:
the rotations that annihilate a given column must also be applied to the other columns. Columns that
have previously been annihilated clearly will not be affected by this operations but the non-zero ones
will be. Thus the rotations that annihilate the first column must be applied to the (p-1) other columns:;
the rotations that annihilate the second column will have to be applied to (p-2) other columns, and so
on. This sequence of steps clearly requires O(Np*’) operations.

In the above scheme. the column vectors of U{v(n) arc subject to, in general, several rotations. This
is exactly the situation we faced in the construction of the single-channel fast Kalman algorithm (see
equations (112) and (113)). The solution to this problem was to use the pinning vector to effectively
condense the rotations down to a single one. Using this idea in the multi-channel case leads to an O(Np?)
algorithm. The sequence of operations is then as follows: The left-hand column of the matrix U;,(n) is
annihilated (O(Np) operations) and this rotation is applied to the second column and a pinning vector
(O(Np) operations). The transformed second column is then annihilated (O(Np) operations) and the ro-
tations applied to the transformed pinning vector (O(Np) operations). The doubly transformed pinning
vector can then be “‘unrotated” (O(Np) operations) to generate a rotation that is equivalent to the com-
bined effect of the earlier pair of rotations. This combined rotation is then applied to the third column
and another pinning vector and the process continues. At each stage only O(Np) operations are required
and thus all p columns of UL(n) can be annihilated in O(Np’) operations.

A more detailed study of the multi-channel fast Kalman algorithm shows that it is. in effect. just
the application of the single channel algorithm many times. it should be clear from the above. that the
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Qu(m) Single Qotn+ 1)
g ‘ Channel |- " g
Algorithm
) i Apply @, to stored vector and to pinning
- vector.

ii  Annihilate rotated stored vector and rotate
pinning vector again.

iti Calculate Q;,, from rotated pinning
vector.

Figure 23 Multi-channel fast Kalman Algorithm

annihilation of one of the columns of the matrix Uy(n) involves the three steps: the application of a
known rotation. annihilation of a vector and subsequent calculation of the combined rotation based on
the rotated pinning vector. In the single channel algorithm, exactly the same type of operations are re-
quired: the known rotation is Qp(n) and the resultant rotation is Qp(n + 1). The multi-channel algorithm
thus has the structure shown in figure 23. Each pass of the “'single-channel" algorithm requires O(Np)
operations (since the matrix UL(n) has columns of dimension Np) and p such passes are required (be-
cause the matrix U;(n) has p columns) so the final operation count is O(NP’).
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6 Appendix

The following algorithms, written in pseudo-ALGOL. are for a narrow-band beamformer and a
single channel adaptive filter only. Two narrow-band beamformer aigorithms are presented: the first al-
gorithm uses the obvious, feedforward implementation of Givens rotations using square-roots: the sec-
ond one avoids taking square-roots by calculating transformed quantities and implements the rotations
via the feedback algorithm. Both the least squares lattice and fast Kalman algorithms are given but only
using the conventional Givens rotations using square-roots. Based on the diagrammatic representations
of the algorithms and the interchangeability of the processing elements, it should be possible for the
reader to generate any of the “missing™ algorithms. In the same spirit. it should be clear how to modify
these algorithms to include such aspects as parallel weight-extraction.

The computation count down the right-hand side of the page assumes that the signals being proc-
essed are real - although the mathematics is written assuming complex quantities. The complexity of
division has been equated to that of square-rooting and multiplication by the exponential weighting fac-
.1 B is counted as one general purpose multiply - which may not be the case if B is chosen to be of a
«imple form such as 1 — 2", Note that the algorithms are not optimised: the computational load could
be reduced by rewriting the algonthm to take advantage of intermediate quantities common to two or
more calculations: such compact forms of the algorithms are not presented here, in order that the regu-
larity of the calculation should not be obscured.

The narrow band beamformer algorithms take as inputs a p-dimensional vector of auxiliary signals
x(t) and a reference sequence y(t) and calculate the beamformer residual. The adaptive filtering algo-
nthms calculate the filter residual for a p'™ order system fed with a pre-windowed data sequence x(t)
and a reference sequence y(t).

Note: T, l(t) is the (i.j)th component of the matrix r(t):
x (¢ is the i™ component of the vector x(1).

6.1 SQ/FF Narrow-band Beamformer Algorithm
START add/ mult  sqrt/
INITIALISE {all variables := 0}: subt divide
FOR t FROM 1 DO
LET af(t):= y(t): Yt):=1:
FORi FROM 1 TOp DO

LETr, (= B [r, (= D]’ + x0 % 1 3 i
IFr () = OTHENLETc=1:  s:=0:
pr.(t~-1 X0
ELSELET ci= . " 2 gm ot _ ] 2
f. i r (U
END_IF:

FOR jFROM i+1 TOp DO
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LET x":= (cxj(t)—sri‘j(t— 1)): 1 2 -
T, j(t):= (cr, J(x ~1+s xj(t)) . 1 2 -
xj(t) =X’
END_DO;
LET a’:= (calt) - su, 1= 1)) 1 2 -
u 0= (cut— 1) +s a@): 1 2 -
aft):=a’; 1) :=cy(t) - 1 -
END_DO: {i loop}
COMMENT p™ order filtered residual COMMENT
LET eft, 1):= (Y(®)a(t)) - 1 -

END_DQO; {tloop}
FINISH

p2+2p 2p%+7p+l 3p

6.2 SF/FB Narrow-band Beamformer Algorithm

START add/ mult  sqrt/
INITIALISE {all variables := 0}: subt divide

FOR t FROM 1 DO
LET eft.t~ 1):=y(®):  d(1):=1:
FOR i FROM | TO p DO
LET 1, = (B (t-1)+d) x(0?):
IFr () = OTHEN LET c:=1: s:=0:

ELSELET ¢c:= - - =
R () AT

END_IF:
FOR j FROM i+1 TO p DO
LET x,():= (x,) =1, (1= Dx(1):

£, 0= G, (=1 +x057)
END_DO:
LET e(t,t - 1):= (e(t.t ~ D =ut-Dx,):
u 0= (g(t- )+ et t-1)):
B(t):=cd(1)
END_DO: {i loop}
COMMENT p'" order filtered residual COMMENT
LET eft, t):= (d{()e(t, t -~ 1))

END_DO: {tloop}
FINISH
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6.3 SQ/FF Lattice Algorithm

START add/ mult  sqrt/
INITIALISE {all variables := 0}: subt divide
FOR tFROM 1 DO

LET af(t) = x(): al(n) = x(1): - - -

ao(t) = y(t): yo(t) = 1.0; - - -
FOR g FROM 1 TO p DO

LETe?_ @ = B (]t~ 1+ o®_ 0™ 1 3 1
IF e'q’_l(t) = 0 THEN LET c;(:+ 1):=1 s;(n 1) := 0: - - -
Be®_ (t-1) a®_.®
ELSELET cla+1):= — 370 sfqan= 3710 ; 1 2
e, 4 g _ (0
END_IF;
= of f )
LET p{ _, (1) = cq@BR{ _ (t= D +sy ol _ ) 1 3 -
f o of f ot f —1)- -
al() = cgmal _,@ - sy 0B _ @~ 1 3
o of - - )
“q-l(') = cq(H- l)ﬁpq_l(t 1)+sq (t+ l)aq_l(t). 1 3 -
a () = cit+ Do, _ (0 =syt+ DB, _ (t=1): 1 3 -
. | .
Yo = cg(t+ Dy _,0: - 1 -

COMMENT g-th order forward prediction residual COMMENT
f — TN PR
eq(t. t) = yq(t l)aq(t).
COMMENT g-th order filtered residual COMMENT
eq(t. 1) = yq(t)aq(t):

. T T
LETE;_ I(t) = B‘(s;_l(l— 1)) +'°‘;-1(t) 2; 1 3 1
f = LYROU by .= O R N )
IF eq_ l(t) 0 THEN LET cq(t) =1 sq(t) =0
pe! _ (-1 af _
ELSE LET c2(1) := AT T e T . i 2
€1 €,
END_IF,
b = OMBRuD (1 LIPS i
LET pg_ ((t=1) 1= c(@BRg_(t=2D +s; a_ (-1} 1 3
b} = P b — 1y = <P b — 7 _
aq(t). cq(t)aq_](t 1) sq(t)ﬁuq_l(t 2). 1 3
COMMENT g-th order backward prediction residual COMMENT
b - by
e (t. t: *{q(t)aq(t).
END_DO 8 2z [
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COMMENT p'" order filtered residual COMMENT
ep(t, t) = yp(t)ap(l)'.
END_DO
FINISH

6.4 SQ/FF QRD Fast Kalman
! START
INITIALISE {all variables := 0}:
FOR qFROM 1 TOp DO

LET Cq = 1.0;
END_DO:
LETy, = 10:-

FOR tFROM 1 DO
LET ag(l) = xi):
FOR q FROM 1 TO p DO

fray o fro = f .
LET uq(t) = cqﬁuq(t 1)+sqaq_ l(t).

a:(t) =
END_DO:

f f .
a% 10~ sqﬁuq(t -1);

COMMENT p' order forward prediction residual COMMENT

f i firy.
ep(t. t) = ypap(t).

f0 e B (el im s of (02
LETel@ = . B (ele- 1)+ af) *

= 1.0: °

f b .
IF ef(t) = 0 THENLET ¢, : Spap =
gef(t-1) af(
b . P R b . P .
ELSELETc), 1= - 0 o Spa1 = f
Sp(t) ep(t)
END_IF:

. b a4 = QD .
LET 7p+1 = Cp+lyp" ap = spﬂyp.
FOR q FROM p TO 1 DO

f et e ufy 2
LET €, _ ()= /(e ,) " + u (0

f oo P 200
IF €10 = 0 THEN LET ¢g == 1.0: $q = 0.0:

f f
£ (0 . u ()
ELSELET E: = ?—9—~ M S: = 7Fq\4-:
. ,@® €q- ,®
END_IF:
. sb b
LET a,_ ) =cqa +5g aq(t 1).
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= &P Lo -
2, (0= cq(t)a (t- 1) -5yt ;

END_DO

LET a,(1) == a,:

= 2 2.
LETy = (v, )2+ a,, (0%
FOR g FROM p TO 1 DO

. ; 2 2.
LET Yoo1= (yq) +‘aq(t)‘ :

leq_l =0THENLEch:=]; sq;=0;
Yq aq(t)
ELSE LET Cqi= o — Sq = o
Yq-1 Yq-1
END_IF;
END_DO:

LET a (1) := y(1):
FOR q FROM 1 TO p DO

LET u (1) := c Bu (= 1) +s.a, _ ()

aq(t) =Cqag ,® -sqﬁuq(t =1
END_DO:
COMMENT p'" order filtered residual COMMENT
ep(t. ) = ypap(t):
END_DO
FINISH
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