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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

It takes enormous technical and financial resources and commitment to successfully

develop a long range surveillance radar. Two successful examples are the US Navy E-2C

Hawkeye and US Air Force E-3B AWACS Surveillance Radars. These airborne

surveillance radar systems are pictured in Figure 1.1-1. It is said that the success rate of a

major radar development program from conception to deployment is on the order of 1%

[1]. Therefore, when a new threat emerges, it is preferable with respect to cost and risk to

seek improvements in detection performance of an existing and proven radar system rather

than embarking on a totally new radar development program.

This report presents for the first time a detailed analysis of the Scan-to-Scan

Processing (SSP) concept which has been pursued over the past ten or more years through

several independent industrial research and development programs as a means for

improving radar detection performance.

The past efforts to evaluate performance have primarily relied on the manipulation

of raw radar data at the output of the analog-to-digital converter with a computer simulation

package. Although significant improvement has been claimed, the careful analysis and

interpretation of the results presented in this, report reveals that only a marginal

improvement can be attributed to the Scan-to-Scan Processing. Consequently, an alternate

approach which relies on scan rate reduction and noncoherent integration (NCI), in lieu of

the M of N binary post detection integration widely used today, is proposed and

investigated. It is shown that slowing down the scan rate coupled with noncoherent

integration, can potentially deliver higher performance improvement with less risk.

m =.m., ,,, lra nl m IIII~llli1



fC.

(a) USAF E-3 AWACS AEW Aircraft with Rotodome Antenna

(b) USN E-2C Hawkeye AEW Aircraft with Rotodorne Antenna

Figure 1.1-1

Examples of Airborne Surveillance Radar Systems
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In this section a description of the radar under consideration in its baseline

configuration is presented first. The constraints under which improvement is sought are

then specified. Finally, the criterion by which the improvement is measured is discussed.

1.1.1 Description of the Airborne Long Range Surveillance Radar under Consideration

A brief description of the receiver/processor portion of the radar system under

consideration in its baseline configuration is given here. Performance of this receiver/

processor will provide a basis for determining any performance improvement in the

modified configuration. The radar for which a detection improvement is sought is a high

PRF, pulse doppler radar with a superheterodyne receiver followed by an analog-to-digital

converter (ADC) and digital signal processor section. A basic receiver and processor block

diagram, common to all pulse doppler radars, is shown in Figure 1.1-2.

A superheterodyne receiver typically has two frequency down conversion stages to

reach the final intermediate frequency (IF). Not only is amplification at IF less costly and

more stable than at a microwave frequency, but the wider percentage bandwidth occupied

by the desired signal simplifies the filtering operation. In addition, the superheterodyne

receiver allows variation of the local oscillator frequency to follow any desired or

unintentional tuning variation of the transmitter without disturbing the filtering at IF. The

reference signal applied to the first mixer is provided by the STALO (stable local oscillator)

while the reference signal applied to the second mixer is provided by the COHO (coherent

local oscillator). The STALO signal has the frequency stability required for coherent

processing while the COHO can be used to introduce phase correction needed to

compensate for radar platform motion or transmitter phase variations.

A description of the flow of the received signal (target signal plus clutter plus other

interference such as jamming noise when present) is presented below. A detailed analysis

3
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leading to probabilities of detection for Swerling and Marcum target models is presented in

Chapter 3.

It is assumed that the carrier frequency of the received signal is (fo+fd+fmbc)

where fo is the carrier frequency of the transmitted signal, fd is the doppler shift of a

moving target as it would be observed from a motionless platform, and fmbc is the

doppler shift of the return from a ground patch in the direction of the main beam due to the

platform motion along the line of antenna pointing direction. The thermal noise generated

from all sources is modeled by the additive white Gaussian noise process, nl(t). In

practice, the low noise amplifier (LNA) at the receiver front end essentially determines the

noise level. The low pass filter following the first mixer separates out the signal at the

difference frequency. The frequency offset fmbc can be incorporated into the COHO signal

so as to center the mainbeam clutter spectrum about the IF frequency, fIF.

The bandwidth of the band-pass filter at fIF is equal to 2B where B is the half

power signal bandwidth. For analytic convenience, this filter is assumed to be an ideal

band-pass filter whose gain is zero outside the pass band. This filter has no effect on the

band-limited input signal but limits the bandwidth of the noise process. It forms a part of

the matched filter which also includes the two paths for the quadrature components. The

down-converter, sometimes referred to as a synchronous detector, converts the signal at IF

to baseband while preserving both phase and amplitude information.

The analog-to-digital converter (ADC) provides a means for signal processing in

the digital domain with the attendant advantage in flexibility, reliability, repeatability and

precision. Its bandwidth, linearity, and dynamic range are important factors for coherent

signal processing and is often the limiting factor in the bandwidth and instantaneous

dynamic range of the system. In a pulse doppler radar, particularly with a high PRF

5



waveform, the mainbeam clutter usually sets the system dynamic range requirements. The

clutter canceller is another critical signal processing element in a pulse doppler radar. If

not cancelled, even with an infinite dynamic range processor downstream, the mainbeam

clutter will appear as residue clutter in the otherwise clutter free doppler zone as a result of

integration through doppler filter sidelobes.

The clutter canceller in this radar is a cascade of two second order recursive digital

filter sections, each with two poles and two zeros. This is designed to provide a desired

shaped velocity response in the frequency domain. The drawback is that a significantly

long time domain transient response is generated during which signal integration cannot be

performed. Other forms of clutter cancellers are multistage delay line cancellers with

binomial coefficients as weights, and the optimum linear filter whose weights are given by

the elements of the eigen vector corresponding to the minimum eigen value of the clutter

correlation matrix. Some analysis and recommendations for further work on these filters

are given in chapter 6.

When a coded waveform having a long time-bandwidth product is transmitted so as

to increase energy without exceeding the transmitter peak power, a pulse compressor will

follow the clutter canceller. This restores the range resolution capability of the radar by

generating an equivalent narrow pulse. In effect, the pulse compressor is a matched filter

for the coded waveform. The doppler filter bank is implemented by a two rail pipeline FF1

(fast Fourier transform) and performs a 128 point discrete Fourier transform where the

input samples are windowed with a 42 dB Hamming weight. Not shown in the block

diagram is the corner turning memory before the FFT which selects all of the pulses for a

given range gate from the sequence of transmitted pulse returns where all of the range

information is contained. The receiver/processor up to this point is assumed to be linear.

6



For each range gate and each doppler filter cell the inphase channel output and the

quadrature channel output multiplied by -j are added together, and the real and the

imaginary parts are separated, squared and summed, and then square rooted to obtain the

envelope voltage. This becomes a single observation variable in the decision space. That

is, all the pulses which are passed into the coherent integrator (FF1) result in a single pulse

for each range-doppler cell in the radar detection context. Also, this is the sufficient

statistic resulting from the Bayes likelihood ratio test for well known Swerling and

Marcum target models with unknown initial phase embedded in white Gaussian noise.

For these signal plus noise statistics, the above described receiver is the optimum receiver

that maximizes the probability of detection. Its derivation is given by DiFranco and Rubin

[2]. The test is performed separately for every azimuth-range-doppler cell.

The constant false alarm rate (CFAR) circuit provides the noise average to be used

to determine the test threshold. False alarm rate is very sensitive to threshold level. For

example, one dB change in the threshold can result in three orders of magnitude change in

false alarm probability. To prevent fluctuations in the false alarm rate, actual noise

averages are used to determine the threshold. Typically a cell averaging CFAR is used

whereby envelope voltages of a predetermined number of range cells on both sides of the

range cell under test are used for averaging. The two cells immediately adjacent to the test

cell are excluded from the CFAR block. This average is multiplied by a fixed constant and

is used as a threshold to decide whether the test statistic is signal plus noise (when above

the threshold) or noise alone (when below the threshold) in the target detector.

In this radar, received radar pulses in a beam dwell are divided into three coherent

processing intervals (CPI's) each operating at a different pulse repetition frequency (PRF)

and each of which results in an observation variable for every range-doppler cell for

detection decision making. The different PRFs are used so that range ambiguities can be

7



resolved by means of the Chinese remainder theorem. Before the post detection binary

integration, filter normalization is performed to eliminate the variability in doppler

frequency for a specific doppler cell. The M of N post detection integrator used in this

radar requires that all three of the observation samples corresponding to a particular

doppler filter in a beam dwell must have exceeded the threshold before the triplet can be

declared as a candidate target with the velocity corresponding to that doppler filter.

Target report processing includes filter unfolding to resolve whether the velocity is

opening or closing, and range ambiguity resolution to determine the unambiguous range for

each candidate target. Azimuth, range and filter centroiding, deghosting to remove false

target reports when more than one detection occurs in a doppler filter, and coordinate

conversion to a stabilized coordinate system are part of the target report processing

function. The results are sent out as radar reports which can be displayed on an operator

console screen directly or after further processing by the Kalman filter tracker.

1.1.2 System Constraints

The system constraints to be observed in seeking detection performance

improvement are specified in this section. Specifically, the antenna and transmitter are not

allowed to be changed in the proposed modifications. As a result, the following system

parameters are held fixed:

1. Antenna gain and radiation pattern

2. Transmitter power and duty factor

3. Radar operating frequency (carrier frequency and its operating frequency range).

The reason for these constraints is obvious. Changes to any of the above require a

major new development with the associated cost, schedule and technical risks. Under these

constraints, the potential area for investigation that would yield detection performance

8



improvement lies in signal processing changes whose implementation has been greatly

facilitated by the recent breakthroughs in signal processing hardware and memory

devices. As a consequence, the Scan-to-Scan Processing (SSP) concept, similar to Track

Before Detect (TBD), has been promoted as a promising concept for significant detection

performance improvement. However, a detailed analysis to support the projected benefits

and associated drawbacks has not been carried out. A rigorous analysis of the SSP concept

is one of the accomplishments of this dissertation. But first, the impact of the power-

aperture product constraint is reviewed so as to provide awareness on the limits of detection

performance improvement possible when the fundamental radar asset, namely the power-

aperture product, is fixed.

A 'rule of thumb' in radar engineering is that specification of power-aperture

product, surveillance volume and the search frame time determines the detection

performance against a given target, regardless of operating frequency, ignoring the

secondary effects such as frequency dependent system losses, etc. The search frame time

is the time it takes for the antenna beam to sweep the specified surveillance volume once at

a predetermined rate. That the limit of detection performance is set by the above

parameters can be seen by applying the radar range equation to the specified surveillance

volume to be searched and utilizing the relationship between the solid angle subtended by

the antenna beam and its aperture.

To see this, a simple radar range equation is first developed for the case where the

dwell time or the number of pulses available for integration is given. If the transmitter

power Pt is radiated isotropically, the power density produced at range R is given by

power per unit) Pt
area at range R = 4-R2
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If a transmitting antenna of one way power gain Gt is used, the power density in

the direction of this gain is

power per unit area at range = Pt Gt
R in the given direction j 41R 2

The signal strength reflected toward the radar per unit solid angle from a target of radar

cross section (RCS) a illuminated by the transmitted wave at range R is

reflected power per unit solid angle_ PtG t x _a
in the direction of the radar 4nR2  4n

The reflected wave arrives back at the radar with a power density given by

unit area at the receiver- 4xR 2  49 R2

The amount of power intercepted by the receiving antenna is this power density multiplied

by the effective aperture defined by

effective 
2=A GX 2

receiving aperture4 (1.1-1)

where X is the radar wave lei.gth. The received signal power, S, is then expressed as

s , x2
S = PP3 GrX 2a

(4t)3 R4  (1.1-2)
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It is convenient to introduce a concept of equivalent input noise level, N, to arrive

at the output signal-to-noise ratio at the end of the linear portion of the receiver before

envelope detection. To facilitate this, the noise factor, NF, and effective noise temperature,

Te, of an amplifier or a receiver with a gain G are introduced. The noise factor is defined

as

NF = SN) = No,
(S/N)out kToBG

where k is the Boltzman's constant. B is the bandwidth, and To is the standard temperature

taken to be 2900K.

The noise factor can be interpreted as the ratio of the actual available output noise

power to the noise power which would be available if the receiver merely amplified the

input noise. This may be expressed as

NF = kToBG+AN = 1 + AN
kToBG kToBG (1.1-3)

where AN is the additional noise introduced by the receiver. From equation (1.1-3), AN

can be expressed as

AN = (NF - l) kToBG . (1.1-4)

When two receivers are in cascade, the output noise is due to the sum of the noise

from receiver 1 plus the noise introduced by receiver 2. Let the noise factor for the cascade

and receivers 1 and 2 be denoted by NF, NF1, and NF2, respectively. Then, the output

noise can be expressed as
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Nout = kToBNFG1G2

= kToBNF1G1G2 + AN2

= kToBNF 1G1G2 + (NF2-1)kToBG 2

Dividing by kToBG 1G2 gives

(NF2 -l)Gl~j (1.1-5)

The effective noise temperature, Te, is defined as that temperature at the input of the

receiver which would account for the noise AN at the output. It follows that

AN = kTeBG = (NF-I)kToBG ,

and

Te = (NF- I)T 0  (1.1-6)

For a cascade of two receivers, let the effective noise temperature of the cascade and

receivers 1 and 2 be denoted by Te, Tel, and Te2, respectively. Similar to the noise factor,

the noise temperature of the cascade is given by

Te = T., + Te
G 1  (1.1-7)

If the antenna can be considered to represent a source at the reference temperature,

the equivalent input noise power would be

N = kToBNr.
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In practice, the antenna will have an effective temperature, Ta which differs from To. The

equivalent input noise at the receiver front end can be expressed in terms of an effective

input temperature Tei which accounts for both the receiver and antenna aoise. Note that

N = k[T(NF-1)+Ta]B = kTeiB.

The effective input temperature is

Tei= T0(NFo-1) + Ta.

The operating noise factor is defined to be

NFO Tei
O-To. (1.1-8)

It follows that the equivalent input noise is

N = kT0 B NFo.

With the introduction of NFo, and use of Eqn. (1.1-2), the per pulse signal-to-noise

ratio (S/N)p at the input to the detector assuming no multi-pulse integration becomes

N (4n)3 R4 kTOB NFoL (1.1-9)

where the parameters are:
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Pt peak transmitted power which is actually the average power during the

pulse duration

G one way antenna power gain (Gt=Gr assumed)

R range to the target

oY target radar cross section

X :wave length at the radar operating frequency

k Boltzman's constant (1.38xl0 -23 W/IHzK)

To standard temperature (2900K)

B receiver bandwidth

NF0  operating noise factor as defined in Eqn.(1.1-8)

L total system loss factor not reflected in the operating noise factor.

The integrated signal-to-noise ratio, (S/N), is the per pulse signal-to-noise ratio,

(S/N)p, multiplied by NI the number of pulses coherently integrated. To account for

integration losses (i.e., the nonideality of the integrator) the loss factor, L, is increased

accordingly. Then,

N' (4X)3 R 4 kToB NF0 L (1.1-10)

If I/B is replaced with the pulse width, 'T, the integrated SNR is equal to the energy

over noise power density, a well known matched filter equation.

When Q, the surveillance volume in solid angle, and TF, the frame time to search

out the surveillance volume are specified, the surveillance radar range equation, (1. I-10)

can be put into a different form. First, the number of antenna beam spots, ns, to cover the

entire surveillance volume is expressed as

]I



where (o is the solid angle subtended by the antenna beam. Note that

A

where A is the effective antenna aperture. In terms of A and X, ns becomes

ns = &

Let Tr and Fr denote pulse repetition interval and pulse repetition frequency,

respectively. PA, the average power, and NI, the number of pulses available for

integration in a beam dwell, are expressed as

PA= _-T = P~

Tr B (1.I-11)

and

N = F[TE FrF 2

n. - A (1.1-12)

The peak power, Pt, can be expressed in terms of the average power, PA, from

equation (1.1-11) as

P = PABFr (1.1-13)
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The previously defined expression for the integrated SNR, Eqn. (1.1-10) can be

rewritten by substituting Eqn. (1.1-13) for Pt, and Eqn. (1.1-12) for Ni,

(.)Pt Gz 2  aNI

PAB iA2 2o F F 2
-FT X2 1R(4g)3R 4 k To B N FO L  GAF/

(PAA)aTF

4iR 4  k To B NF0 L (1.1-14)

PA A in the above equation is called the power-aperture product. Equation (1.1-14)

is an important surveillance radar equation which shows that the integrated SNR is

proportional to the power-aperture product independent of the operating frequency. It

shows that when power-aperture product is fixed, radar performance is fairly well set

unless its frame time and/or the surveillance volume is modified. The effect of varying

these parameters is described in Chapter 5.

In addition to the power-aperture product constraint, performance improvement

must be achieved without losing capability to resolve the range ambiguity inherent in a

High PRF radar, and without exceeding the allowed system false alarm rate.

In a pulse doppler radar, either a range or a velocity ambiguity or both result as the

consequence of a pulse repetition frequency (PRF) selection. The unambiguous range, Ru,

is given by
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_c(T)

kRu =-(T
2

where c is the speed of light and Tr is the pulse repetition interval (PRI). For an

unambiguous range of 400 nautical miles, the PRI, Tr, must be chosen such that

Tr > 2 x 400 x 1852/3x108 = 4.9387 milliseconds.

Hence, the PRF must be 202.4 Hz or lower.

The unambiguous radial velocity, vmax, is given by the doppler frequency

corresponding to one-half the PRF. Note that

PRF/2 = fdmax = 2vmaxA.

Therefore, vmax is determined by the PRF as well as the carrier frequency of the radar

chosen. For unambiguous measurements of both incoming and outgoing target velocities of

up to 1800 knots, the PRF at an operating frequency of 3 GHz should be

PRF > 2ffdmax = 4 x (1800 x 1852/3600)/(3x10 8/3x109) = 37 KHz.

Because of design implementation considerations some radars use PRF that is equal to just

the maximum expected doppler frequency of the target. This results in an ambiguity as to

opening or closing of the target velocity.

The superiority of a High PRF radar for detecting high speed airborne targets over a

heavy ground traffic environment has been well demonstrated as was shown in the perfor-

mance comparison between E-3 AWACS and E-2C Hawkeye radars over the European
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continent. The E2-C radar operating at p-band (UHF frequency) has a broad antenna

beam. With its low PRF waveform the largest mainbeam clutter doppler spread due to

platform motion when the antenna beam is pointed normal to the platform velocity vector

occupies almost 30% of the PRF intervaL This PRF approximately corresponds to a 200

knot target speed. Thus, the radar cannot see targets whose speeds fall in this blind velocity

zone which can be alleviated somewhat by PRF staggering. Of course, high PRF radars

suffer from eclipsed range. The real difficulty with the overland performance of the E-2C

radar, even with its scan-to-scan processing to suppress detections from ground vehicles

and discrete land clutters, is its inability to distinguish slow moving ground vehicles from

the high priority airborne threats in the portion of the PRF interval where the radar is not

blinded. The high PRF radar is much more complex to build, however.

The range ambiguity in a high PRF radar is resolved by the so called Chinese

remainder theorem [3, p19-16]. This approach permits a unique direct computation of the

true range cell, Rc, from the multiple ambiguous range cell numbers, Al, A2, -, An. In

particular, for the three PRF system Rc is given by

Rc = (CIAI + C2A2 + C3A3) modulo(mlm2m3)

where the mi's are the number of range cells in each PRI and are required to be relatively

prime. That is, Rc is the remainder of the term within parentheses, when divided by

mlm2m3 as many times as possible. The constants C1, C2, and C3 are related to ml, m2,

and m3 by the following equations:

ClI = b 1m2m3 =(1) modulo (m 1)

C2 = b2mlm3 = (1) modulo (m2)
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C3 = b3mlm2 = (1) modulo (m3)

where bl is the smallest positive integer which, when multiplied by m2m3 and divided by

ml, gives unity as a remainder (and similarly for the other b's). Once ml, m2 and m3 are

chosen, the range, Rc, can be computed by using the C values and the ambiguous cell

numbers (A1,A2,A3) in which the target is detected. For example, the Chinese remainder

theorem says that, given a triplet whose elements' maxima are 3, 5, and 7, any number

between 1 and 105 can be uniquely specified by the triplet, ( 1,1,1) corresponding to 1 and

(3,5,7) corresponding to 105.

To summarize, resolving range ambiguities in a High PRF system requires more

than one coherent processing interval (CPI) in an antenna beam dwell with the attendant

time overhead associated with each CPL This time overhead is 50% of the available time in

the example radar. This is why it is impractical, unless the scan rate is reduced to increase

the dwell time, to have more than 3 CPrs in a beam dwell even though, theoretically, more

CPI's can lead to improved performance of the binary post detection integrator.

Lastly, detection performance improvement is unacceptable if the false alarm rate is

not kept below the minimum desired or tolerable level. Therefore, needless to say, the

specified false alarm rate must not be exceeded under any condition. According to the

preferred Neyman-Pearson strategy, the improvement should be in terms of maximizing the

probability of detection for a fixed value of a false alarm probability that maintains the

system false alarm rate at or below the allowed value.
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1.1.3 Performance Improvement Criteria

Performance of the radar using the proposed modifications is compared to that of its

present (baseline) configuration. A cumulative detection probability of 0.9 in a one minute

time span for Swerling case 1 targets in the entire surveillance volume is adopted as the

Principal performance criterion under the constraint that the minimum false alarm time is 5

seconds. All suggested modifications are made within the system constraints specified in

Section 1.1.2, and the Gaussian assumption for the noise and signal plus noise is assumed

valid such that the receiver structure shown in Figure 1.1-2 is the optimum receiver which

maximizes detection probability.

The Gaussian assumption is certainly true for the Swerling and Marcum target

models in white Gaussian noise considered in this report where target doppler

frequencies fall in the clutter free doppler zone after target signals are separated from the

mainbeam clutter by their doppler frequencies and the mainbeam clutter is removed. This

is also true in the case where target doppler frequencies coincide with doppler frequencies

of sidelobe clutter. The reason for this is that the sidelobe clutter level in this radar is equal

to or less than the thermal noise due to the extremely low sidelobes of the antenna. Also

the sidelobe clutter is the sum of clutter returns from all ground patches whose doppler

frequency and range rings fall in the ambiguous radar range-doppler cell in question such

that the central limit theorem applies.

In the edge of the mainbeam clutter and in altitude.line clutter, the clutter signals can

be greater than thermal noise. Even here, experimental data shows that the marginal

probability density of clutter signals received through a coarse resolution radar is Gaussian

within the time and spatial limit bounded by a single range-azimuth resolution cell in a

beam dwell wherein a detection decision takes place. That is, even though the spatial

inhomogeneity of the terrain gives rise to non-Rayleigh density functions for the amplitude
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distribution of the clutter taken over a large surveillance area, the conditional density

function given the local mean of the clutter voltage returning from many elemental clutter

cells contained in a radar range-azimuth resolution cell is Gaussian by the central limit

theorem. This random process, however, is characterized by nonzero mean and unequal

variances between the quadrature components, and with a high degree of pulse to pulse

correlation. This is believed to be because the sample is taken from a ground patch within a

clutter spatial correlation distance and within a temporal correlation time. This is the non-

stationary characterization of the clutter. More thoughts on this and some performance

comparisons of several filter designs intended to maximize output signal-to-clutter ratio are

presented in chapter 6.

Returning to the performance criterion, cumulative detection probability, Pc, is an

important performance measure of a surveillance radar. Its definition and its relationship to

the single scan probability of detection, otherwise known as the blip-scan ratio, will now

be discussed. Consider the surveillance volume centered about the radar.platform shown in

Figure 1.1-3. The outer boundary of the horizontal coverage is defined by the range

beyond which a single scan probability of detection, Pd, is less than some minimum value.

Consider a radially approaching target with velocity VR. Once the target has penetrated the

boundary of the surveillance volume, let AR and At represent the maximum range

penetration and the maximum time elapsed, respectively, before the target is detected by

the radar at least once. Obviously, AR and At are related by

AR = VRAL

In general, several scans (say L) occur while attempting to detect the target in the interval

AR. For analytic convenience, assume that AR is small compared to the range at which AR

is measured such that the single scan detection probability (Pd) within the time At can be
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Figure 1.1-3 Surveillance Volume for an Airborne Radar
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assumed to be constant. With this assumption and the assumption of statistical

independence from scan to scan, Pc in time At is given by

Pc = 1 - (1 - Pd)L . (1.1-15)

In equation (1.1-15), Pd is the single scan probability of detecting the target. Thus,

(1 - Pd) represents the probability of a miss in any one scan and (1 - pd)L is the probability

of failing to detect the target in all L scans. Hence, Eqn. (1.1-15) gives the probability of

making at least one detection in L scans.

On the surface, examination of Eqn. (1.1-15) indicates that Pc can be increased by

using a larger value of L. However, for a specified At,

L = At 'F

where TF is the frame time allowed for searching out the entire surveillance volume. When

At is held fixed, the only way to increase L is to decrease TF. However, a reduction in TF

results in a shorter dwell time which, in turn, decreases NI, the number of pulses to be

integrated. Consequently, Pc becomes smaller as L becomes larger. It follows that there

exists an optimum value for L in Eqn. (1.1-15).

A second consideration arises for fluctuating targets. It is shown in Section 3.3

that, as the signal-to-noise ratio increases, the detection probability for a fluctuating target

relative to that of a nonfluctuating target degrades as shown in Figures 3.3-1 and 3.3-9.

For a Swerling case 1 target, a crossover occurs when Pd = 0.32 in a single slant system or

if an average beam shape loss is assumed for all slants in a multi-slant system. Otherwise,

the crossover occurs at a point where Pd is slightly less than 0.32. For Pd less than this
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value, the fluctuating target has a higher detection probability than does a nonfluctuating

target. The situation is reversed for Pd greater than this value. Barton [4] states that the

optimum number of scans, L, for a Swerling case 1 target is around 6 for Pc of 0.9. It is

around 2 for Pc of 0.5 and around 10 for Pc of 0.99. For the radar under consideration in

its baseline configuration, the specified minimum Pd is 0.32 and the maximum elapsed

time At is one minute. This gives 6 scans in At at a scan rate of 36 degrees per second and

Pc in At becomes

Pc = 1 - (1 - 0.32)6 = 0.9 (1.1-16)

This satisfies the optimum number for L of Barton.

If the range closure during the elapsed time At is not negligible, then, a different Pd

for each scan must be used to compute Pc. Let AR = LA where A is the range closure

during a single scan. Assuming a constant radial velocity, the target in a particular azimuth

drection appears in the same relative position within each increment A, as shown in Figure

1.1-4. Let p(Rm+r+iA) denote the single scan Pd at range Rm+r+i& However, depending

on the azimuth direction, r can vary anywhere from Rm to Rm+A. Assuming r is a random

variable uniformly distributed over the interval A, the mean cumulative detection

probability, P(Rm, A) is given by

P(Rm,A)- 1f - [l-p(Rm+r+iA) dr.

(1.1-17)

The integral in Eqn. (1.1-17) performs an averaging which takes into account the fact that

the target could be anywhere in the interval [iA, (i+l)A] with equal likelihood when
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intercepted by the radar beam. Analyses based on this approach which allow determination

of the optimum value of frame time is given in Sections 5.1 and 5.2. Unless otherwise

specified, the definition for Pc given by Eqn. (1.1-15) will be used in this investigation.

ion~-~ zone
F 1lativeetection Tet on

Ct l ,_ .n ta r ge t

aqProaC '

radar pl t o r AVR

Rm+,& am+ (L-1)

Figure 1. 1 -4. Detection Scenario of an Approaching Target with a Constant Radial Velocity

The relationship between Pd and Pc has been established when Pd is independent

from scan to scan. As will be shown in Section 4.4, this assumption is not valid when

scan-to-scan processing (SSP) is used. Therefore, for SSP, Pc cannot be computed by

simply using Eqn. (1.1-15). The computation of PC for SSP is developed in Chapter 4

which is entirely devoted to SSP.

Another term often used in radar detection is the blip-scan ratio (BSR). This is the

ratio of the number of scans, J, within each of which a given target is detected to the total

number of elapsed scans, L. For L large, the blip-scan ratio approximates the single scan

detection probability in accordance with the relative frequency interpretation of probability

[5]. Note that the average number of hits in L scans can be approximated by the product
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(BSR]L. This is also equal to the number of track updates in a time interval equal to L

scans.

The track update rate at the minimum critical range is another performance criterion.

This is the range at which the single scan detection probability is high such that the track

update rate approaches the antenna scan rate. By definition, the track update rate is the ratio

of Pd to TF. The track update interval is the reciprocal of the track update rate. For

successful target tracking, a minimum track update rate must be maintained at the minimum

critical range. This must be kept in mind when adjusting scan rate so as to improve

cumulative detection performance. Scan rate optimization is discussed in Chapter 5 where

it is shown that the cumulative detection probability can be increased by slowing the scan

rate. However, the track update requirement places a lower limit on scan rate.

1.2 Dissertation Outline

The description of the radar for which performance improvement is sought was

presented in Section 1.1.1. Chapter 2 contains a discussion of various considerations

needed for comparison of the baseline and modified radars. These include such issues as

the number of coherent processing intervals in a beam dwell, the number of available

pulses in a coherent processing interval, beam shape loss, false alarm probability

allocation, and target models. It is shown how two different approaches to false alarm

calculations, as proposed in the radar literature, can be used to relate cell false alarms to

system false alarms.

Performance analysis of the baseline radar is presented in Chapter 3. This forms

the basis for comparing performance improvements of the modified configurations. It is

desired to extend the range at which the specified cumulative detection probability is

achieved without changing the radar's power-aperture product and operating frequency.
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Scan-to-scan processing has been pursued by others as a promising technique for

obtaining performance improvement. However, a detailed analysis to support this claim is

not available in the literature. In Chapter 4, a careful analysis is performed and numerical

results are generated for two versions of the scan-to-scan processing concept It is shown

that only marginal improvement can be attributed to scan-to-scan processing. One

significant conclusion is that it is difficult to overcome the power-aperture product

limitation with increased signal processing.

In an effort to overcome the limitations encountered, an alternate approach is

explored in Chapter 5. This involves scan rate reduction and non-coherent integration in

place of the M of N post detection integration. Trade-offs involved with reducing the search

sector are also examined because the power-aperture product constraint leaves very few

options. A detailed analysis reveals potential improvements over the range from 3 to 10 dB

in the equivalent signal-to-noise ratio gain. The near 10 dB improvement occurs with

reduction of the search sector by a factor of two, slowing down the scan rate by the same

factor coupled with a non-coherent integration in lieu of the binary post detection

integration, and modifying the performance requirement that Pc=0.9 in a 1 minute

surveillance interval to the requirement that there be on the average one track update in a 10

second interval. The improvement, strictly according to the original performance criterion,

can be as high as 5 dB. This requires noncoherent integration with slant-to-slant frequency

agility. All these figures are for Swerling case 1 targets.

A summary of results developed in this dissertation is presented in Chapter 6. The

work is focused on improving detection of targets embedded in white Gaussian noise. In

addition, some thoughts on clutter statistics and their implication on receiver structure are

given. Quantitative comparisons of relative performances of different classes of clutter
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cancellers using actual high PRF radar data as test inputs are also included. Finally,

suggestions for additional work are included.
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CHAPTER 2

SOME CONSIDERATIONS IN PERFORMANCE COMPARISON OF

MODIFIED AND BASELINE RADAR CONFIGURATIONS

In this chapter various concepts needed for comparison of

the baseline radar configuration with proposed modifications

are discussed. After defining relevant radar terminology,

assumptions used in the analyses are presented. This is fol-

lowed by discussions of those parameters which do not remain

constant as the configuration is changed from the baseline.

2.1 Definitions of Terms

To facilitate understanding of the discussions and

analyses presented in this investigation, frequently used

terminology which may not be familiar to the nonspecialist

is defined below:

Baseline Configuration:

The radar in its present form is referred to as the

baseline configuration to distinguish it from modified con-

figurations proposed for performance improvement.

Surveillance Volume (Q):

Surveillance volume is the volume of space to be searched
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for targets of. interest. The surveillance volume of this ra-

dar was shown in Figure 1.1-3. The azimuth coverage is 360

degrees. For range less than Ri, the vertical coverage is

bounded by the antenna elevation beamwidth while beyond Ri,

the coverage is bounded by the surface of the earth and the

maximum altitude of interest. Both coverages are bounded in

range by the radar horizon and/or the maximum detection ca-

pability of the radar.

Search Frame Time (TF):

For the radar under consideration the vertical coverage

is illuminated by the single antenna beamwidth. Therefore,

the antenna scan is limited to the azimuthal dimension. The

search frame time is the time for the antenna fan beam to

sweep through the entire 360 degree azimuth sector. The ra-

dar under consideration is equipped with a mechanically ro-

tating antenna. The search frame time is more commonly re-

ferred to as a frame time or a scan time. For the radar in

the baseline configuration, the scan time is 10 seconds.

Therefore, the scan rate is 36 degrees per second or 6

revolution per minute (rpm).

Beam Spot:

For a given antenna beam, the number of beam spots re-

quired to cover the entire surveillance volume determines
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the number of beam dwells in a scan and, therefore, the

dwell time that results for a specified frame time. In an

azimuth scan only radar, there are 360 0/aB beam spots in a

3600 sector where eB is the one-way half-power azimuth

beamwidth.

Dwell Time:

For the radar under consideration the antenna is me-

chanically rotated in azimuth at a constant rate. The dwell

time is the time during a single scan that a point target in

a fixed azimuth direction is within the one-way half-power

beamwidth.

Pulse Repetition Frequency (PRF):

The pulse repetition frequency is the frequency of the

periodic transmitted pulse train. When several different

PRF's are used in order to resolve range ambiguities, the

number of pulses transmitted in a given time, assuming con-

tinuous transmission at an average PRF, is used to measure

time intervals of interest, e.g., dwell time, for conve-

nience.

Coherent Processing Interval (CPI):

CPI is the time interval spanning the number of pulses

used for coherent integration (i.e., number of FFT samples).
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The duration of the CPI is measured in terms of the average

pulse repetition frequency (PRF). CPI's in a dwell time are

not contiguous. They are interleaved with intervals for time

overhead.

Time Overhead (TH):

Time overhead is the portion of the time in a modulation

period that is not a part of the coherent processing inter-

val. This includes the round trip transit time of the trans-

mitted pulse with respect to the maximum range clutter patch

and/or a target, certain house keeping overhead such as tim-

ing and control necessary to setup the CPI, and clutter can-

celler transient response settling time during which signal

integration is prevented. In the baseline configuration,

this time overhead exceeds 50% of the modulation period.

Modulation Period (Tm):

A frame time or a scan time consists of a contiguous

train of modulation periods. A modulation period consists

of the coherent processing interval (CPI) plus the total

amount of time overhead associated with the CPI. The modula-

tion period is depicted in Figure 2.1-1. The actual received

pulses at the analog-to-digital converter output are shown

in Figure 2.1-2 for range gates 33 through 36 where the in-

teractions between first, second and multiple time around
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Figure 2.1-1 Modulation Period
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echoes are clearly illustrated at the beginning of the pulse

train. These pulses are discarded from further processing.

This transient period lasts until returns from the clutter

patch at the maximum range begins to reach the receiver.

Figures 2.1-3 (a) and (b), respectively, show the output of*

the infinite impulse response (IIR) filter used for the

clutter canceller and the steady state portion of that

waveform processed through a 128 point FFT. Figures 2.1-3

(c) and (d), respectively, are the output of the finite im-

pulse response (FIR) filter used as the clutter canceller

(2-stage delay line canceller) and that waveform processed

through a 256 point FFT. The absence of the transient re-

sponse at the output of this FIR clutter canceller is

evident and is what enables use of the longer FFT.

Slant:

A slant is synonymous with modulation period. A 2-slant

or 3-slant configuration refers to the configuration wherein

a dwell time is divided into the specified number of slants.

Integrated Signal-to-Noise Ratio (SNR or S/N):

As given in Eqn. (1.1-10) the integrated signal-to-noise

ratio involves the average signal power over N pulses.

Some authors use peak signal power over the NI pulses. Con-

sistent with DiFranco and Rubin [2] the symbol,9?, will be

employed to denote the integrated signal-to-noise ratio when
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peak signal power is used. Note that W is twice SNR. Un-

less otherwise specified, the SNR in Tables and Figures of

detection probability (Pd) will be the SNR associated with a

single CPI that would appear at the detector had all the

pulses in that CPI been received through the peak of the an-

tenna beam. Hence, the notation (S0/N) is introduced to

signify this. When this is in response to an average target

radar cross section (RCS), an overbar is placed above the

symbol, i.e., (S /N). To take into account the beam shape,

the Pd is computed by subtracting from the listed (S0/N) the

corresponding beam shape loss in dB for each of the CPI

within a beam dwell in a given processing configuration.

This allows for comparison, on a common ground, of the dif-

ferent processing configurations which have different beam

shape losses.

Reference Range (R0):

Reference range is the range at which the specified de-

tection performance is reached for a reference Swerling case

1 target in the baseline configuration. All other ranges are

normalized to this range.

Reference Signal-to-Noise Ratio (9/N)O:

Reference signal-to-noise ratio (reference SNR) is the

integrated signal-to-noise ratio received in a CPI from a
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reference target having a specified mean radar cross section

(RCS) when it is located at the reference range. All refer-

ence targets have the same specified mean RCS. When the ref-

erence target is a Swerling case 1 target, the reference SNR

results in a single scan detection probability of 0.32 in

the baseline configuration. Since the reference target is

defined only in terms of its mean RCS regardless of the tar-

get model assumed, the reference SNR has the same value for

all target models in a given configuration but gives rise to

different values of probability of detection. For configura-

tions other than the baseline, the reference SNR is the SNR

obtained in a CPI in each configuration from the reference

target located at the reference range. Therefore, the value

of the reference SNR is different for a different con-

figuration and thus reflects the change in the configura-

tion.

Single Scan Detection Probability (Pd):

By definition, single scan detection probability which is

measured after post detection integration, does not utilize

information from previous scans. Therefore, Pd is assumed

to be independent from scan to scan.

Hybrid Single Scan Detection Probability (Pd(hyb)):

In contrast with single scan detection probability, the
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hybrid single scan detection probability which arises in SSP

uses the past scan detection history. Therefore, it is not

independent from scan to scan.

Blip Scan Ratio (BSR):

Blip scan ratio is the number of scans, J, where a hit is

scored from a given target divided by the total number of

scans, K, elapsed. This approaches the single scan detection

probability when K is large assuming that Pd remains con-

stant.

Cumulative Detection Probability (P,):

Cumulative detection probability and its relationship to

single scan detection probability (P d are defined in

section 1.1.3 under performance improvement criteria. Unless

otherwise specified, cumulative detection probability over a

fixed time interval is defined assuming that single scan de-

tection probability is constant over that interval. This, in

turn, assumes that the target range closure during the in-

terval is negligible. Thus, in the absence of a scan-to-scan

processing (SSP), Pc is given by the relationship,

Pc 1-(1-Pd )L , where L is the number of antenna scans in that

time interval and Pd is assumed to be independent from scan

to scan. The computation of Pc under SSP is complex. This is

derived in chapter 4 where SSP is discussed. Unless
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otherwise specified, the time interval is taken as one

minute or L is 6 scans at 6 a rpm antenna rotation rate.

2.2 Basic Assumptions

Basic assumptions under which the results of this inves-

tigation are based are presented in this Section.

1. The probability density of signal and signal plus noise

voltages after removal of the mainbeam clutter is

Gaussian. The noise voltages which may consist of the

thermal noise and residue mainbeam clutter plus sidelobe

clutter are white Gaussian with zero mean and equal vari-

ance between their quadrature components.

2. The antenna and the receiver together, including

analog-to- digital converter and FFT before the detector,

is linear.

3. The target model of interest belongs to one of the five

Swerling and Marcum cases. In particular, the priority

target is Swerling case 1.

When assumption 1 does not hold, particularly with respect
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to the total noise remaining after the mainbeam clutter can-

cellation, the receiver structure shown in Figure 1.1-1 is

not optimum for maximizing the detection probability. Avail-

able test data shows, however, that the stated assumption

is reasonable.
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2.3 Number of CPI's in a Beam Dwell and Number of Available

Pulses in a CPI

As introduced in section 2.1 under definition of terms,

the frame time of a radar whose antenna is scanning the sur-

veillance sector at a constant rate is made up of contiguous

modulation periods. The length of a modulation period is

chosen such that there can be at least 3 modulation periods

in a beam dwell in order to allow use of different PRF's to

resolve the range and/or velocity ambiguities of targets.

Associated with each modulation period, there is a fixed

time overhead. For the baseline configuration, this is over

50% of the total modulation period. In general, for a

specified beam dwell, this limits the maximum number of

modulation periods in the beam dwell to 3. (For other ra-

dars, in which a smaller time overhead is possible primarily

because of shorter round trip transit time for surveillance

over short ranges, more modulation periods can be imple-

mented for greater effectiveness in binary post detection

integration.)

Given a system which is power limited (i.e., a transmit-

ter which is already operating at the limit of its peak

power, average power, and duty factor), the most effective

operation uses the widest pulse width at its peak power con-
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sistent with resolution requirements, and the maximum PRF

for which the average power and duty factor are not ex-

ceeded. This, in essence, sets the maximum PRF as well.

Thus, the available energy in a beam dwell is fixed for a

given scan rate and pulse repetition frequency. However,

usable energy is determined by the number of modulation pe-

riods chosen and the fixed time overhead associated with

each modulation period. The relative figures based on these

numbers are established here for the baseline and modified

configurations for convenient reference.

In practice, different pulse repetition intervals (PRI's)

are used in the modulation periods which reside in a beam

dwell. In this investigation, relative time intervals are

measured using the average PRI. For example, consider a

3-slant configuration in which the PRI's are 0.9, 1.0 and

1.1 milliseconds. (These are fictitious numbers.) Conse-

quently, a time interval of 1 second will be said to have a

duration of 1000 PRI's using the average PRI. Analogously,

since there is one pulse per PRI, time can be measured in

terms of the number of pulses. A dwell time is defined as

dwell time = (half power beamwidth)/(scan rate).

Let PRI and PRF denote the average pulse repetition interval

and average pulse repetition frequency, respectively. Of
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course, PRF is the reciprocal of PRI. A dwell time is given

in terms of a number of PRI's by

dwell time (in PRI's) = (dwell time)/PRI

- (dwell time)xPRF.

For a particular radar design, the number of modulation pe-

riods processed as a group will occupy a specified fraction

of the beamwidth. (This fraction typically varies between

0.8 and a number slightly higher than unity.) Thus, an av-

erage modulation period measured in PRI's is given by

modulation period (in PRI's) = (dwell time)x(fractional

beam width used)xPRF / (number of modulation periods).

In practice, [(dwell time)x(fractional beamwidth used)] is

also referred to as dwell time for convenience.

A coherent processing interval (CPI) available in a

modulation period is the time remaining after a fixed time

overhead is subtracted from a given modulation period. Two

different time overheads are considered in the performance

analysis: One is the normal time overhead (also referred to

as the maximum time overhead), and the other is a reduced

time overhead. The latter is based on the assumption that

under some operating conditions, where there is no clutter

beyond the radar horizon, the waiting period for the mul-

tiple time around echo from the farthest clutter patch can

44



be reduced. Another factor influencing time overhead is the

transient settling time of the clutter canceller. It appears

possible to reduce time overhead by incorporating a cancel-

ler having a shorter settling time. The expected savings

arising from the two factors are incorporated into the re-

duced time overhead. The relative figure proportional to the

number of pulses available for integration, along with re-

lated parameters, are listed in Table 2.3-1 for a radar

employing a mechanically rotating antenna with a 6 rpm scan

rate.

It is assumed that N B number PRI's occur within the an-

tenna half-power beamwidth. Because 103.6% of the beamwidth

is utilized, the total number of PRI's in a beam dwell is

1.06NB. Consequently, there are 1.03 6NB/3 = Nm3 number of

pulses in a modulation period for a 3-slant configuration

and 1.036NB/2 = Nm2 number of pulses for a 2-slant con-

figuration. Because of the large time overhead, the number

of useful pulses in a CPI is significantly smaller than the

total number of pulses in a modulation period. The reference

number of pulses per CPI is equal to (reference NI). The

relative integration gain per CPI for the various configura-

tions is defined to be

relative integration gain (dB) # of pulses in a CPI
CPI = 10log10  (reference NI)
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Table 2.3-1

Number of Pulses Available for Integration with
a 6 rpm Antenna Scan Rate

Configuration 3-slant 2-slant

Time overhead normal reduced normal reduced

No. of pulses in
3-dB beam width N B N B N B N B

% beam width
utilized for PDI* 103.6 103.6 103.6 103.6

No. of mod. periods
per beam dwell 3 3 2 2

No. of pulses in a
mod. period (MP)** Nm3 Nm3 Nm2 Nm2

time overhead .521N .348Nm3 .347Nm2 .232Nm2

CPI .479N .652Nm3 .653Nm2 .768Nm2

Relative
integration
gain/CPI (dB) Ref 1.33 3.11 3.81

Relative
gain in total
energy/dwell (dB) Ref 1.33 1.35 2.05

Baseline Modified Configurations

* PDI = post detection integration

** Nmi = (NB)(% beamwidth utilized)/(i)
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The reference number of pulses per beam dwell is 3x(refer-

ence NI). Hence, the relative gain in total energy per

beam dwell is given by

relative gain in total energy (M of pulses in a CPI)(# slants)
beam dwell (dB) = 10 log10  3x(reference NJ)

The relative integration gain/CPI is a misleading figure

of merit because the larger gain for a 2-slant configuration

is offset by the fact that there is one less CPI than for

the 3-slant configuration. Both of these factors determine

performance of the M of N binary post detection integrator.

As a result, the relative gain in total energy/beam dwell is

a figure of merit which more closely reflects system perfor-

mance.

2.4 Beam Shape Loss

Broadly speaking, beam shape loss takes into account the

variable antenna gain experienced by the transmitted and re-

ceived pulses as the antenna scans by a point target during

a CPI. Blake [7] has shown that a minimum two way, single

dimensional beam shape loss of 1.6 dB should be used to ac-

count for the actual beam shape as compared to the constant

gain over the half power beam width typically used. His
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analysis assumes that a large number of pulses are centered

around the peak of the beam over an optimum fraction of the

beamwidth. For pulses positioned outside the 84 % beamwidth,

he shows that integration results in loss of signal-to-noise

ratio because more noise is added than signal beyond this

optimum width. His analysis applies to a detection of a weak

signal with a square-law detector followed by a post detec-

tion integrator.

Since finding an appropriate average beam shape loss de-

pends on the percent of beamwidth utilized and the par-

ticular detection processing used, a more accurate method is

to compute the actual loss per CPI. Let the two-way antenna

power pattern be approximated by the Gaussian expression,

G( ) - exp(-5.55 0/) .

Assuming a train of pulses at a constant PRF, let N B denote

the number of pulses that would be received in a beamwidth.

If the pulses are centered about the peak of the beam and

0k denotes the angular position of the kth pulse, it follows

that

9k k
O -N k (2.4-1)

O- NB
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Let NI be the number of pulses actually integrated. For the

idealized situation in which the beam pattern has a constant

gain of unity, the total received power would be N times

the power in a single pulse. Assuming the N, pulses to be

centered on the beam where NI is an odd integer, the normal-

ized total power received is

(N1 -1)/2

1 + 2 E exp(-5.55 k/NB)
k=1

The beam shape loss, LBS , is defined to be the ratio of

these two powers, expressed in dB. Hence, as found in

Skolnik [9], the beam shape loss is given by

N1
LBS w 10 log10  (N-1)/2 (2.4-2)

1 + 2 E exp( -5.55 kfNB2)
k=1

For example, if there are 11 pulses to be integrated, all

lying uniformly between the half-power beamwidth, the beam

shape loss is 1.96 dB.

In the radar under consideration the set of modulation

periods (e.g., 3 in 3-slant configuration) nearest the beam

center is selected as a group, at a one slant increment on a

sliding window basis, for post detection integration. The

set nearest the beam center will result in the highest

signal-to-noise ratio. Therefore, this particular set is the

one for which the beam shape loss needs to be determined.
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Since the antenna is continually scanning, the set can be

positioned anywhere with respect to the beam center with

equal likelihood from the most favorable position (centered)

to the least favorable position which is one-half modulation

period offset left and right from the centered position. For

an offset larger than this, the next set will result in a

higher signal-to-noise ratio. Therefore, the correct beam

shape loss for each CPI in a set is the beam shape loss for

the CPI computed per Eqn. (2.4-2) adjusted for offset from

the beam center. In addition, to account for the random po-

sition of the CPI, the beam shape loss should be averaged

over all possible positions of the CPI extending from

one-half modulation period offset to the left and right. The

centered and extreme offset positions for 2-slant and

3-slant configurations are shown in Figure 2.4-1.

Analogus to Eqn. (2.4-1), it is convenient to measure an

angular offset in terms of the number of pulses that would

span the offset or length. In this sense, the following no-

tation is introduced (see Figure 2.4-1):

N : offset of a CPI measured from the beam centerline
c to the center of the CPI when the set of modula-

tion periods is centered on the beam centerline

NL : offset of a CPI measured from the beam centerline
to the leading edge of the CPI

NI  : length of the CPI
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Nmod : length of modulation period.

For a CPI offset by NL, the conditional beam shape loss of the

CPI is

L9~ - 0 081 [NI+LE exp(-5.55k/N)]

To average over the random position of the CPI, let NL be

uniformly distributed over the modulation period. It follows

that the beam shape loss, averaged over all possible posi-

tions of the CPI, is given by

IBS = 10 1lo N1+NL-1 N

D=-j(N..dGN)+NC E exp(-5.55k2/N B (2.4-3)

In the remainder of the investigation the term, beam shape

loss, refers to the loss evaluated using Eqn. (2.4-3).

Using this method, the beam shape loss for each CPI in

various 2-slant and 3-slant configurations are computed. The

results are summarized in Table 2.4-1. Because of symmetry

in the 2-slant configuration, the beam shape loss for both

CPI's are equal. For the 3-slant configuration the loss for

the center CPI is significantly less than those for the two

outer CPI's. The losses with reduced time overhead are

about the same as those for normal time overhead. Almost
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without exception, the industry computes performance

analysis using the 1.6 dB beam shape loss originally pro-

posed by Blake [7]. When several slants are involved, the

1.6 dB loss is treated as though it applies to each of the

individual CPI's. In Table 2.4-1, average beam shape losses

are tabulated which are obtained by averaging the actual

losses for each CPI. The increase in loss cver the 1.6 dB

'.gure is due to both the larger percentage of beam utiliza-

tion and the averaging over the random positioning of the

CPI's. in the analysis of the baseline configuration, the

effect of beam shape loss on the detection probability is

discussed. It will be shown that use of an average beam

shape loss in place of the losses for individual CPI's

leads to an optimistic prediction of performance. As a fi-

nal point, it is noted that the use of additional slants can

be achieved by processing CPI's positioned outside the

half-power beamwidth. The beam shape loss for those CPI's

increases dramatically. For example, if 5 slants in a

3-slant configuration are processed, the oeam shape loss for

the two outer CPI's in the 5-slant set is 7.28 dB. There-

fore, use of Blake's 1.6 dB figure for those CPI's would re-

sult in large errors.
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Table 2.4-1 Summary of Beam Shape Loss for the 2-Slant
and 3-Slant configurations

2-slants per beamwidth 3-slants per beamwidth
beam shape loss (dB) beam shape loss (dB)

CPI 1 CPI 2 (2-CPI) ave. CPI1 CPI2 CPI 3 (3-CPI)ave.

normal
time 2.55 2.55 2.55 3.43 0.30 3.43 2.12
overhead

reduced
time 2.52 2.52 2.52 3.39 0.34 3.39 2.12
overhead
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2.5 False Alarm Probability Allocation and System False

Alarm Verification

A system false alarm occurs when the target report gen-

erator following the post detection integrator erroneously

declares the presence of a target. On the other hand, a

cell false alarm before post detection integration results

when the test statistic for that cell exceeds the threshold

in the absence of a target. The allocation of a cell false

alarm probability such that the probability of system false

alarm remains below an acceptable level during actual radar

operation is a complicated procedure for modern pulse

doppler radars having range and/or velocity ambiguities

which are resolved by post detection integration of multiple

observation samples. A specification of cell false alarm

probability, which is frequently done in practice, does not

lead to a specific system level false alarm performance un-

less the underlying detection process is also specified.

Two competing processing schemes should not be compared us-

ing the same cell false alarm probability because they would

in general lead to different system false alarm performance.

Marcum (see Nathanson [10j) did the first work in false

alarm calculation. Let Pf denote the false alarm probability
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each time there is an opportunity. On the average, assume

there are n' independent false alarm opportunities in a time

T'fa* Let P denote the probability of no false alarm in n'

false alarm opportunities. Then, P0 is given by

Po 'A (1 - Pf)' (2.5-1)

If a denotes the average number of independent false

alarm opportunities per second, then, n' is given by

nq ,= aTfl.

Eqn. (2.5-1) can then be written as

Po = (1 - Pf)ea fa. (2.5-2)

Given values for Po, Pf, and a, Marcum defined the false alarm time to be

that value of Ti. such that Eqn. (2.5-2) is satisfied.

For large n', Eqn. (2.5-1) can be approximated by

-n' Pf
P0 = e

It then follows that
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P - In- ". (2.5-3)Pf n' TO.

Marcum selected a value of 0.5 for P0  With this choice,

the probability of having no false alarm is also equal to

the probability of having one or more false alarms. Conse-

quently, a complementary equation to Eqn. (2.5-1) is

0.5 = I - (I - pf)n'. (2.5-4)

Substituting Po = 0.5 into Eqn. (2.5-3) gives

69 0.69Pf -n W-F. (2.5-5)

An alternate approach was proposed by Barton (4] and

Skolnik (9]. Let na be the number of false alarms in time

t. They defined the average false alarm time, Tfa , as

Tf urn _f, - t (2.5-6)
t-.r'o a

As before, let denote the average number of independent

false alarm opportunities per second. Then, the average

number of false alarm opportunities in time t is equal to

t. From the relative frequency definition of probability,
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the false alarm probability is given by

Pf r lim a - in1nfl (2.5-7)

From Eqn. (2.5-6), it follows that

P (2.5-8)

Equating Eqns. (2.5-5) and (2.5-8), it is seen that

Tf. = 0.69 Tt, . (2.5-9)

provided Po = 0.5 and n' is large.

Now a method for deriving a cell false alarm probability

before post detection integration from a specified system

false alarm rate requirement is developed. This is done

first by using Marcum's definition for the 3 of 3 post de-

tection integration in the baseline configuration of the ra-

dar under examination. A method for general M of N post de-

tection integration is then derived using the Barton and

Skolnik approach but suitably modified to take into account

the effect of binary post detection integration, time utili-

zation, range eclipsing, velocity blanking, and

range/velocity unfolding. Finally, this is specialized for
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the 3 of 3 processing to show that the two methods give re-

sults having the same order of magnitude.

In 3 of 3 post detection integration using a sliding win-

dow, a target is declared after each modulation period if

and only if there is a detection in each of 3 consecutive

modulation periods. Let P3 denote the probability of one or

more false alarms occurring in each modulation period after

the 3 of 3 post detection integration for the entire set of

range-doppler cells after range and velocity unfolding. As-

sume there are n'm decisions made by the target report gen-

erator in a false alarm time T'fa* Following Marcum's

definition, let the probability equal one-half that one or

more false alarms will occur in n' opportunities. As in

Eqn. (2.5-4), it follows that

0.5 = I - (I - P) m  (2.5-10)

With reference to Eqn. (2.5-6), let t represent the frame

time, TF, and na denote the number of false alarms allowed

in one frame time. For the baseline radar, t = 10 seconds

and na = 2. Hence, the false alarm time is obtained as
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Tf a- . 5 seconds.

From Eqn. (2.5-9), Marcum's false alarm time is

Trf. - (0.69)(5) - 3.45 seconds.

Even though the post detection integrator requires 3

modulation periods to make a decision, a sliding window is

used such that decisions are made every modulation period

for each range-doppler cell. Hence, the number of indepen-

dent false alarm opportunities per second, o, equals the re-

ciprocal of Tm, the time duration for a modulation period.

This results in

n', - aTfr. 3.45

Let nf be the number of doppler filter cells used to de-

tect targets having specific doppler shifts irrespective of

range. Also, before post detection binary integration, let

pif denote the probability of having one or more false

alarms for each doppler filter arising in the ith modulation

period where i = 1, 2, 3. Finally, let Pr be the probabil-

ity that the resolved range falls within the target report

range. The probability Pf3 of generating one or more false
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alarms in a particular doppler filter after 3 of 3 post de-

tection integration is then given by

Pfs ' PH P2f PMf P r (2.5-11)

With respect to any 3 consecutive modulation periods, one

or more false alarms result if one or more false alarms oc-

cur in one or more of the nf doppler filters. As a conse-

quence, the probability of one or more false alarms in a

modulation period after post detection integration for the

entire set of range-doppler cells involved is given by

P3 - I - (1 - Pf3)"f (2.5-12)

Let the average number of uneclipsed range gates in a PRI

be denoted by nr. To allow for variability in the doppler

shift due either to target motion, system instability, or

noise perturbations, the threshold crossing in the (i-l)th

modulation period for a doppler cell centered at frequency

f. is correlated in the ith modulation period with threshold

crossings from doppler cells positioned within the frequency
interval, (f- Wfi/2, fj + Wfi/2 ) where the doppler filter

61



width is taken as unity and Wfj is a multiplicative constant

greater than unity. Let pf denote the single cell false

alarm probability before post detection integration of a

particular range-doppler cell. The pif's in Eqn. (2.5-11)

for i = 1, 2, 3, are then given by

P -M1 - Pf) nr (2.5-13)

P2 f ' -( - Pr'rW (2.5-14)

PSf M 1 0 ( - Pf) nrf (2.5-15)

Substitution of Eqn. (2.5-11) for P f3  and Eqns. (2.5-13)

through (2.5-15) for pif's into Eqn. (2.5-12) yields

P3  1 1- 1-[l-(I-p f) rJ11 (I-pf)flrWfZ~fj..(J..pf)frWfSJ p nf (2.5-16)

Eqn. (2.5-16) can be simplified by use of the approximation,

(IX)k -- 1-kx , for xcdl

Noting that the false alarm probabilities P f3 and Pf are

much less than unity, it follows that

P3 t- flf nr f W 2 Wf 3 Pr Pf (2.5-17)
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Since P3 is much less than unity as well, Eqn. (2.5-10)

also simplifies to

0.5- n7m P3

from which P3 is obtained as

0.5
P3 I-F .(2.5-18)

Substitution of P3 from Eqn. (2.5-18) into Eqn. (2.5-17)

and solving for pf yields

0.5 1/3 (2.5-19)

Eqn. (2.5-19) is the desired result. Given the system false

alarm specification, false alarm time is readily determined

from which the number of opportunities in terms of number of

modulation periods in that false alarm time can be deter-

mined. With n'm so determined from the system false alarm

specification and given the system parameters, nr, nf, Wf 2 ,

Wf3 , and Pr' the cell false alarm probability, pf, is

readily determined.

An alternate expression for the single cell false alarm

probability pf before M of N post detection integration is
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now developed. The single cell false alarm probability af-

ter M of N post detection integration is related to pf by

N! 1 N-(
Pfa M " i!(N-i)! Pf ) i (2.520)

The development begins by assuming a simple, continuously

operating radar where a decision is made for each range gate

sample. The resulting expression for Pfa' obtained from

Eqn. (2.5-8), is then modified to take into account the mode

of operation of a more complicated pulse doppler radar. This

enables introduction of system factors which are useful in

radar design. The resulting expression for pf from these

system parameters is shown to be consistent with Eqn.

(2.5-19) which was developed using Marcum's approach.

Consider a radar operating continuously at a constant PRF

where a decision is made for each range gate sample. Let

where the radar pulse has width r and bandwidth B. The number of range

gates in a false alarm time Tf. is given by

T- mBT .

The range gates and pulse repetition intervals within the

false alarm time are illustrated in Figure 2.5-1a. Note
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(c) time, range gate, and doppler filter utilization in a high
PRF radar

Figure 2.5-1 Process by which False Alarms Occ ur
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M slants @ one slant step

(f) sliding window

Figure 2.5-1 Procecas by which False Alarms Occur (cont'd)
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that the average number of false alarm opportunities per

second is

a =B.

Consequently, Eqn. (2.5-8) becomes

,a - 1 (2.5-21)

where the denominator equals the number of false alarm op-

portunities in a false alarm time.

Next, consider a pulse doppler radar where NI samples for

each range gate are processed through an FFT. Note that

consecutive samples are separated by a PRI. Corresponding to

the NI DFT coefficients, NI doppler filters are created for

each range gate. Thus, the number of false alarm opportuni-

ties after the FFT operation remains the same as before. The

total number of range gate samples before the FFT operation

is transformed into an equal number of range gate-doppler

filter cells. These are illustrated in Figure 2.5-lb for

one modulation period.
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In M of N binary integration the FFT samples from N con-

secutive modulation periods are jointly examined for M or

more coincidence detections for each of the range-doppler

cells. When decisions are made for every N nonoverlapping

modulation periods, the number of false alarm opportunities

in a false alarm time is reduced by this factor. As a re-

sult, Eqn. (2.5-21) is modified to read

N (2.5-22)Pfa = B Tf(.2

In addition, for a modern pulse doppler radar, the number

of false alarm opportunities in a false alarm time must be

modified to take into account time overhead, range eclips-

ing, and doppler filter blanking. The amount of time utili-

zation, range gate utilization, and doppler cell utilization

are illustrated in Figure 2.5-1c. Furthermore, the

multiplier effect of range and velocity ambiguity resolu-

tion, and the coincidence detection on a sliding window ba-

sis must be included. These factors are considered below.

Time Utilization Factor, KI:

As explained in Section 2.1, because of time overhead, only

a porti- of the modulation period generates range gate
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samples which are used for signal integration. The time uti-

lization factor, denoted by K,, is the fraction of a modula-

tion period actually used for an FFT. It is given by

(NI)(T,)
K 1 =Tm

where Tm and T are the time duration of a modulation period

m r

and the average time duration of a pulse repetition inter-

val, respectively. Thus, NITr is the average time duration

of a CPI.

Range Gate Utilization Factor, K2:

In practice, to protect against burnout, the receiver is

shut down during pulse transmission and shortly thereafter.

Therefore, a few range cells at the beginning of each PRI

are eclipsed and do not enter into further processing. Let

K2 be the fraction of range cells which are not eclipsed.

Denoting the total number of range cells in a PRI as NG, the

number of eclipsed range cells as rB, and the average number

of uneclipsed range cells as nr, K2 is given as

K NG-rB nr
2 =N

Velocity Ambiguity Factor, K3 :

To avoid velocity ambiguities the PRF should be greater
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than or equal to twice the doppler frequency corresponding

to the maximum possible target radial velocity. The radar

under examination, due to design considerations, uses a PRF

only half as large. Consequently, there is an ambiguity as

to whether an observed doppler frequency corresponds to an

opening or closing velocity. Use of different PRF's enables

resolution of this ambiguity. Hence, the number of resolv-

able doppler frequencies is actually 2NI. To account for

this effect, the multiplier

K S = 2

is introduced.

Doppler Filter Utilization Factor, K4:

A number of doppler filter cells located around the

mainbeam clutter doppler center frequency contain residue of

returns from mainbeam clutter and undesirable slow moving

ground targets. Therefore, these filters are blanked to pre-

vent detection resulting from these undesirable targets and

clutter. The fraction of unblanked doppler filters, K 4' is

given by

nf/2
K4 = NI

where nf is the total number of unblanked doppler filters
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after doppler filter unfolding and NI, the dimension of the

FFT, is the number of filter cells before correcting for the

velocity ambiguity factor, K3.

Range Correlation Factor for Range Ambiguity Resolution, K5 :

The concept of resolving range ambiguity arising from a

high PRF waveform was introduced in Section 1.1.1. A set of

M slants with distinct PRF's, each having mi number of range

cells in the respective PRI, is used in a beam dwell. The

Chinese remainder theorem allows the resolution of the range

ambiguity when the specific ambiguous range cell number in

each slant is correlated over M slants. The Chinese remain-

der theorem requires that the mi's are relatively prime num-

bers. The range ambiguity resolution process is referred to

as range unfolding and is illustrated in Figure 2.5-1d.

The unambiguously resolved maximum range span, RcM , mea-

sured in a range cell unit is

M
RcM - ml1 2 -- mM = H mii-i

Recall that NG denotes the number of range cells in a PRI. It

follows that

NG = M =M 
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Under the condition,

Ni-l << 1; i*j, i, j=

the mi's are approximately equal. RcM can then be ap-

proximated by

RCM = (NG)
M = (rB+nr)M

where nr is the number of uneclipsed range cells in a PRI.

These nr number of range cells in a particular doppler fil-

ter are correlated with nr number of range cells in the cor-

responding doppler filter in the other M-1 slants. As ex-

plained before, the doppler filter width for the ith slant

for correlation with the (i-l)th slant is widened by a fac-

tor, Wfi. Thus, the number of possible M-tuples in M slants

for correlation for a particular filter is

(ml-rB)(m 2-rB)Wf 2--- (mM-rB)WfM = 2 Wf2 -

Since there are nf number of doppler filters the number of

possible M-tuples in M slants for all filters becomes

f M NMI
nf n j=2 Wfi"

This process is shown in Figure 2.5-le.
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In particular, mi and M are chosen so that RcM is much

larger than RcT, the maximum reported target range, measured

in a range cell unit. Because detections in unambiguous

range cells beyond RcT are not reported, false alarm oppor-

tunities corresponding to these cells should be excluded

from the total count. Assuming the false reports after

correlation of M-slants occur with equal probability in any

unfolded range cell, the false alarm opportunities are ef-

fectively reduced by the factor equal to the probability Pr

that the false reports fall within the reported range:

RcT ReT

(nr+rB)

Let K5 be defined as the ratio of the number of false

alarm opportunities due to range unfolding to that where

there is no range unfolding. Since there are exactly (nfnr)

opportunities without range unfolding, K5 is given by

M
Ks =p (2.5-23)

Sliding Window Factor, K6:

The factor of N was introduced in Eqn. (2.5-22) on the

assumption that a decision is made once every N

nonoverlapping modulation periods. When a sliding window is
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used, a decision is made once every modulation period by

utilizing the previous (N-1) modulation periods along with

the current modulation period as shown in Figure 2.5-if.

Consequently, the number of false alarm opportunities in-

creases by a factor of N. To account for this effect, the

multiplier

I 1, no sliding window
K6 =

N, with sliding window

is introduced.

Introduction of correction factors, K1 through K6 , asso-

ciated with practical radars into Eqn. (2.5-22) represent-

ing an ideal radar results in

N 6 -1
Pfa =-, I__ I~ [. (2.5-24)= BTf-- - i=,

It is now shown that Eqn. (2.5-24) leads to an expression

for the single cell false alarm probability pf which is con-

sistent with Eqn. (2.5-19). Recall that Eqn. (2.5-19) was

obtained on the basis of 3 of 3 post detection integration

using Marcum's method. Letting M=N=3 in Eqn. (2.5-20), it

follows that

(- 3Pf a = P7
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Hence, Eqn. (2.5-24) can be rewritten as

SN (2.5-25)Pfa = P = BTf. K1K2K3K4KSK6 '

Substituting M=3 into Eqn. (2.5-23) gives K5 as

n=nrWf 2 Wf3
KS= nrnf  T -

Therefore, the factors which enter into Eqn. (2.5-25) are

N=3, K, K2 = 3s2, /2

n3 Wn f n r  W f 2 W f 3 l O 3
Ks = n1 nr  Ke=3.

Hence, Eqn. (2.5-25) is given by

3 3Pf = ( fa(NIT (nr () ( ,/-2 N wf2wf3Pr (3)

1TM NGII nr

With the sliding window, there is one false alarm opportunity

per modulation period. Thus, there are

nm= Im Tf a

_Tta

false alarm opportunities in a false alarm time. Substitu-

tion of

Tf.atnmTm, B _ I/r, and NG T"/T
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into Eqn. (2.5-27) gives

Pf = 3 1 (2.5-28)fnmnfnr Wf2Wf3Pr

or, equivalently,

Pf =''r nrrtW; 2We3Pr] 1/3 (2.5-29)

Since

T;. - 0. 69Tf.

it follows that

nm = O. 69n m

Therefore, Eqn. (2.5-19) can be rewritten as

1r 0.5/0.69 1/3 (2.5-30)
Pf =-nrL nmnfWf 2Wf 3Pr

=4r[ 0. 725 1 /3
tn mrflWf 2Wf3Pr ./3

Note that Eqn. (2.5-30) and Eqn. (2.5-29) are consistent in

the sense that they yield approximately the same values for

Pf. It can be concluded, therefore, that the two different

approaches by Marcum and Barton produce equivalent results.

For M of N post detection integration, substitution of
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Eqn. (2.5-20) into Eqn. (2.5-24) yields

N N! N-i N
Si=M i!(N-i)! Pf ) BTf K1K2KK 4K 5K 6  (2.5-31)

From a system designer's point of view, this equation is

convenient for evaluating pf, the cell false alarm probabil-

ity before M of N post detection integration. The results

obtained using Eqn. (2.5-31) are summarized in Table 2.5-1

for the 3 of 3 3-slant baseline configuration, a 2 of 3

3-slant configuration, and a 2 of 2 2-slant configuration.

Relative to the 2 of 3 3-slant configuration, the value of

Pf is maintained the same as that determined for the

baseline configuration. This is equivalent to holding the

threshold fixed for both configurations. As a result, the 2

of 3 configuration is able to achieve more detections at the

expense of a higher false alarm rate. This is indicated by

the larger value for Pfa and the smaller value for Tfa*

With respect to the 2 of 2 configuration, the false alarm

time is maintained at the same value found for the 2 of 3

configuration. This allows comparison of detection perfor-

mance for the two configurations on the basis of having the

same false alarm performance. The comparison is presented

in Chapter 4 where it is used in conjunction with

scan-to-szan processing.
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As a check, it is now shown that the numerical value de-

termined for pf for the baseline 3 of 3 post detection in-

tegration is consistent with the baseline system requirement

that there be on the average 2 false alarms per scan. Given

that pf=7.6xl0 " , it follows that

Pfa , Pi = 4.39x10"1 •

The total number of false alarm opportunities per scan is

given by
P TF

nrWf2 Wf 3nfP( rim"s-iE )

- (42)0(2.2)(2)(1 95JA!.73 40)

= 4.48xl0p .

The average number of false alarms per scan equals the prod-

uct of P fa and the total number of false alarm opportunities

per scan. This yields

(4.39x10-%)(4.48x]09) = 2

which is the expected result.

77



Table 2.5-1 False Alarm Probability for the Processing
Options Evaluated

3-slant 2-slant

M of N 3 of 3 2 of 3 2 of 2

time normal reduced normal reduced normal reduced
overhead

FA/scan 2 2 4.15x10 3 4.60xl10 3  4.15xl10 3 4.60x10 3

N fMP's/ 1040 1040 1040 1040 6993 693

scan)

T fa (sec) 5 5 2.41xl0 3 2.17x103 2.41xl0 3 2.17x103

B(MHz) 1.25 1.25 1.25 1.25 1.25 1.25

K 1  0.479 0.652 0.479 0.652 0.653 0.768

K 2  0.933 0.933 0.933 0.933 0.933 0.933

K3  2 2 2 2 2 2

K4  0.762 0.762 0.762 0.762 0.762 0.762

K 5  533 533 282 282 282 282

K 6  3 3 3 3 2 2

P fa X10-- 4.39x10 a- 3.23 x100 a- .73x1 4 1.41x104 Wl .27x104 Zl.20x4

Pf'1O 4  7.60x10 0  6.86x10 0  7.60x10 0  6.86x10 0 l.13xl10 1 1.09x10 1

Notes:

1. For computing K 5 the following parameters are used:

n -42, r -3, R cT 61 73 , W f1 =2.2, W f2=2.0
3 .

2. Explanations for the numbers under columns labeled 2 of 3 and 2
of 2 with normal time overhead are given in Section 4.3. The
numbers with reduced time overhead can be found similarly.
However, it should be noted that the number of range gate
samples no longer matches with the total number of
range-doppler cells. It is because zero filling is required
to generate FT samples when the input time samples in a CPI
are not equal to integer powers of 2.
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2.6 Target Models Assumed

Before presenting the target models used in the analysis

of detection performance, the concept of target radar cross

section (RCS) is reviewed. Target RCS is related to the ra-

tio of received power from a target to the power incident

on the target. The received power is expressed in terms of

the cross sectional area of an isotropic scatterer which,

for a given incident power, would produce the same received

powe as the actual target. From this concept, the radar

cross section, 0., is given by

a = 4r power reflected toward source/unit solid angle

incident power density

=47rR
2 I. 12

where the parameters are

R: range to the target, assumed to be large enough such
that the target is in the far field from the transmit-
ting antenna

E r: reflected field strength at the radar

Ei: incident field strength at target.

It follows that the RCS of an isotropic reflector, e.g., a

sphere, is equal to its projected area normal to the direc-

tion of radar illumination. Most targets are not isotropic

79



and exhibit directional preference. Objects with the same

physical projected area can have considerably different val-

ues for RCS. For example, at S-band, the RCS at nose-on as-

pect of a cone-sphere is 30 dB smaller than the RCS of a

sphere with the same projected area while a corner reflector

can have an RCS 30 dB greater than that of the sphere, all

having the same projected area of 1 m2.

Skolnik (9] and Nathanson [10] each have a good summary

of work by various investigators on target RCS and commonly

used statistical target models.

The RCS of a large complex target may be approximated by

assuming that the target is composed of individual reflec-

tors such that the total value of a is related to the vector

sum of the individual cross sections, k' in the follov.ing

manner:

a= I EZ-ae4 _{',) 1 2

where dk is the distance from the radar to the kth reflector

with RCS, Tk"

The RCS of a complex target is a strong function of the

aspect angle. Since the precise aspect angle is unknown in a
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given situation, the RCS is best described statistically. A

summary of the frequently used target models is presented

below:

1. Marcum case (nonfluctuating target):

For nonfluctuating targets, Ois a deterministic constant.

Let A denote the envelope amplitude of the received signal

voltage. Since the average power during the duration of the

pulse, A2/2, is proportional to a, it follows that

K a = A 2

where Ka is the constant of proportionality. A constant

value of a implies a constant value of A.

2. Swerlina case 1:

This model assumes that a target is composed of many

reflectors where none is dominant. For this case, c remains

constant over all N slants within a scan. However, - varies

randomly from scan to scan. The probability density func-

tion of the RCS is given by

{exp >i, 0
p(a) (2.6-1)

c<O

where av denotes the expected value of a To represent the
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variation of signal-to-noise ratio from scan to scan due to

a target's RCS fluctuation, it is convenient to have an ex-

pression for the probability density function of the inte-

grated signal-to-noise ratio, (S/N). It is the ratio of the

received time averaged signal power to the mean noise power

during the duration of the received pulse train integrated

in a slant. Let S0 denote the received signal power assuming

no beam shape loss. Since the mean noise power is assumed to

be constant, (So/N) is directly proportional to RCS. It

follows that

(J Kba. (2.6-2)

Averaging over the fluctuations from scan to scan, the aver-

age signal-to-noise ratio is

- = Kb'7& . (2.6-3)

Therefore, Eqn. (2.6-1) can be transformed according to

P(so) = P(a) do a

N S

( exp , S 0/N>O
(SO/N) So/N

= (2.6-4)
0, So/N <.
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The probability density function for the envelope ampli-

tude can be similarly derived using the transformation,

K~a = A2

from which it is found that

-- 2A A 2  (2.6-5)

Then, p(A) becomes

a)I do -LA exp -A) ,
a A 2 .,/K , 2 2

p(A) - (2.6-6)

0, A<4.

3. Swerling case 2:

This target model is assumed to be composed of many re-

flectors where none is dominant as with Swerling case 1.

Therefore, the probability density function for 0 is identi-

cal to that in Swerling case 1. However, now the RCS is as-

sumed to fluctuate from slant to slant while the amplitude

of the received pulses within a CPI remains constant. This

rapid fluctuation is not encountered with practical targets.

However, it can be induced by slant-to-slant frequency agil-

ity.
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4. Swerlina case 3:

This target model is assumed to be composed of many equal

size scatterers plus one dominant reflector which fluctuates

slowly from scan-to-scan. As with Swerling case 1, a remains

constant over all N slants within a scan. The probability

density function of this model's target RCS is given by

4a, ex - 0 2

p(a) = 1(2.6-7)

where, as before, rav denotes the expected value of c. The

probability density function for the integrated

signal-to-noise ratio , p(S0/N), is obtained from Eqn.

(2.6-7) with the transformation given by Eqn. (2.6-3). Mak-

ing the substitution, Idr/d(So/N)=l/Kb, into Eqn. (2.6-3)

gives

4(So/N) C -2(So/N) S IS/N O

(So/N) 2 ('o/ N)
PL () = / (2.6-8)

The probability density function for the envelope

amplitude A is again obtained from Eqn. (2.6-7) with the
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variable transformation

Kao = A2, and Kcv =A. (2.6-9)

Use of , Idr/dAI, and or, given by Eqn (2.6-5), yields

SA 3  &xi( A-)

p(A) 0(2.6-10)
0O, A<O.

5. Swerling case 4:

Swerling case 4 has the same probability density function

for V as Swerling case 3. As in case 2, the RCS is assumed

to fluctuate from one slant to the next while the amplitude

of the pulses in a CPI remains constant. Swerling case 4 is

related to Swerling case 3 as Swerling case 2 is related to

Swerling case 1.

These probability density functions are used for deter-

mining detection probabilities in the baseline and modified

radar configurations described in the Chapters to follow.
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CHAPTER 3

PERFORMANCE OF THE AIRBORNE SURVEILLANCE RADAR IN ITS

BASELINE CONFIGURATION

Detection probabilities in the baseline configuration for the five target

models introduced in Chapter 2 are determined in this chapter. This is done by

taking into account the number of pulses available for integration in each

slant, the beam shape loss, and the cell false alarm probability also estab-

lished in Chapter 2.

3.1 Sufficient Statistic and the Likelihood Ratio Test (LRT)

With reference to the receiver/processor block diagram of Figure 1.1-2, it is

assumed that the analog-to-digital converter (ADC) and the clutter canceller are

both ideal with their characteristics as shown in Figure 3.1-1 (a) and (b), re-

spectively.

output magnitude

input -r0tfmnF

frequency

(a) ADC response (b) clutter canceller response

Figure 3. 1-1 Assumed ADC and clutter Canceller Characteristics
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Let v(t) denote the received waveform at the IF filter output. Then, v(t) is

given by

n(t) Ho

V(t) = (3. 1-1)
s(t-t')p(t-t )+n(t) HI

where Ho and H, denote the null hypothesis (target absent) and the alternate

hypothesis (target present), respectively. Under Ho, v(t) consists of the noise

n(t) alone. The rectangular gating function p(t) in the expression of v(t) un-

der H, is of unit amplitude and duration r. The clutter c(t) is not included

in Eqn. (3.1-1) since the clutter spectrum is assumed to be confined in the stop

band of the clutter canceller. Therefore, the detection problem under consider-

ation is for target signals with doppler frequencies greater than fdrin

which are .embedded in thermal noise. The delayed signal s(t-ta) can be

written as

s(t-t ) = Acos[(wMF+d)(t-t ) + 0( t-t'd) + 0] (3.1-2)

where A is the signal amplitude, 6(t) is the signal phase modulation, 0 is the

unknown initial phase, and t' is the round trip delay for a point target

located at range R. The time delay is given by

2R
td c

where c is the speed of light.

Corresponding to the received signal with delay t', there is a time gat-

ing pulse p(t-td) which effectively multiplies the incoming signal. In general,
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t' is not equal to td. The mismatch between td and td gives rise to

a range gate straddling loss, the average value of which is included in the sys-

tem loss factor. Having accounted for the straddling loss in this manner, it

is assumed in the subsequent analysis that td=td. Since the integrator

following the multiplier (mixer) is synchronized to td and performs the inte-

gration over the duration of p(t-td), p(t-td) equals unity during the entire

integration period and can be dropped without effect. For the radar under consid-

eration, there is no phase modulation. Hence, 0(t) = 0. The radar receiver un-

der consideration implements the Bayes strategy by performing the likelihood

ratio test (LRT) in each range, angle, and doppler frequency resolution

cell. Thus, without loss in generality, the delay in the expression for s(t) can

be dropped. Then, v(t) becomes

n(t) : under Ho
v~)=; Qct_.<r. (3.1-3)

s(t)+n(t) : under H,

The expression for s(t) can be written in terms of its quadrature compo-

nents s(t) and sQ(t) as

s(t) = Acos[(M'F+Wd)t+O]

= Re( ((t) eU wI~t+O)]}

= Re { [s(t)+jsq(t) ] expLKjwFt+O)])

= s( t)Cos(IFt+O) - sq(t)sin(ujIFt4#) (3.1-4)

where

S = A eJldt = si(t) + jsq(t) - Acostwdt + jAsinwdt
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is the complex envelope of s(t). The narrowband noise process n(t) can

also be expressed by its quadrature components as

n(t) = nl(t)cOSwlFt - nq(t)sinFt. (3.1-5)

The receiver that maximizes the output signal-to-noise ratio is the correlation

receiver as shown in Figure 3.1-2. This also maximizes the probability of detec-

tion when v(t) is Gaussian distributed.

N. 4 Ast N(FFT

yE Q(e, mq(kj)

2 Asin lFt  Xk

v(t). E 4(Reo},2Im,Mo) r >

Y,(-r, Yl
XI(k)

tl")dt . N -FFT

2

ti

2 Acos4Ft

Figure 3. 1-2 Equivalent Receiver block diagram
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In Figure 3. 1-2, the constant 2A in the reference signal going into the product

mixer is chosen such that the variancesof yI(r, t1) and yQ(', ti) ate unity where No/2

is the two sided noise power spectral density and N is the single pulse

peak signal-to-noise ratio. The noise power contained in a video bandwidth B is

equal to NOB. Thus, the single pulse signal-to-noise ratio (S/N) at the input

to the FFT before correction for the loss factor is

(- a(l1/2)A ( 1/ 2 316
N NOB No T

The multiplier l/,4"Nfx before the FFT in Figure 3.1-2 is introduced so that

the variances of Xx(k) and XQ(k), appearing at the FFT outputs, are each unity.

Returning to Figure 3.1-2, the output of the product mixer is described by

first considering the signal and noise separately. Let the constant K represent

K= 2A

In each of the I and Q channels, repectively, the output of the product mixer for the

signal is

Ks(t)cos(tiFt) = K(sI(t) -[cosO+cos(2uzpt+O)]

-Sq(t) -[sinO+sin(2wxFt-0)] (3. 1-7)

and
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Ks(t)sin(wL.t) - K(s,(t) I -sinObsin(2uvt+O)]

-S'Q(t) -2[coO cos(2ukLgt4O)]} (3. 1-8)

Similarly, the output of the product mixer for the noise is

Kn(t)COs( Ft) =K( -2n1( t)[1+cos( 2
1a4Ft) ] - -fnQ(t)sin(24Ft)) (3.1-9)

and

I IKn(t)sin(MFt)-K(- -2nQ(t)[l-cos( 2 IFt)J + -2nI(t)sin(2 jFt)) (3.1-10)

The sampled output of the integrator is obtained by recognizing that the double

frequency terms integrate to zero while the narrowband signal and noise do not ap'-

preciably change during the integration period r. Thus, the sampled output of the

integrator is closely approximated by

Kfti' s(t)cos(at)dt = Kr { sI(tl)cosO-sq(tl)sinO)

-- Ar ( COS(Wdti)cosO-sin(wtl)sinO4

K=-tA cos(wdt1 ) (3.1-li)

and

91



Kf' s(t)sin(UlFt) dt = -- , (si(t)sinO+s(t)cosO)

1K

-K Ar { cos(wdtl)sinO+sin(wdtl)COSO)

-K Ar sin(wdt/,$) (3.1-12)

The sampled output of the integrator for noise is

tI+d Kr
Kf t n(t)cos(MFt)dt - n,(tl) (3.1-13)

and

K " I n(t)sin(UtFt)dt - -I- nQ(t/) (3.1-14)

Thus, the sampled output of the integrator is

K rn,(tl) . under Ho

yi(r, t/) -
(3.1-15)

Ar cos(wdt/41)KI rnl(tj) under H1

and

- K2 rr,(tl) under H0
yQ (r, td) = (3.1-16)

~ 1) K K-- Ar sin(wdt,4+)- - rnQ(tl) under H(
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The mean and variance of y, and yQ are

Yi(r, t/) :

under Ho:

mean = 0

(2Ar 2
variance 2NOA{-J n,(ti) 1

under H1:

29kmean r COS(Wdt/+4 )  COS(W~dtj4 )mean = 2N----t,-I = o~aht 4

2NO -N-

variance = I

YQ(r, tl)

under Ho:

mean = 0

variance = I

under Hi:

mean = -4F sin(wdt+4 )

variance = I .

As shown in Figure 3. 1-2, let

XIMl =-L yI( r , ti)

and

XQ - y(r, t)-
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It is convenient to consider the FFT process for noise and signal separately.

Let n([) and n (I) denote the eh in-phase and quadrature noise sample in a

sequence for 1 - 0, 1, - -, NI-1

nl(1) - nl( lTrr )

and

n (/) = Kr," I
2 L[N'In(Ir

The kth output coefficient Ni(k) of the NI-point FFT in response to the input

sequence n'(1) is given by

N1-1 2WI

NI(k) - E n'(1) e" N, k = 0, 1,--,NI-I. (3.1-17)
1=0 1(.-7

Note that nj(l) is a zero mean white Gaussian noise sequence. Hence,

E[nj(/ = 0 and E[nI(l)n,(m) ] =- 1 "

The first and second moments of NI(k) are given by

S2zk1NI-1 _j -"k1
E[NI(k) E[n,(l)] eNI = 0 (3.1-18)

and

NI-1 NI-1 2wkl .2 pm

E[N I(k)N(p)] = E E[n'(/)n'(m)] e" -  - (3.1-19)
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respectively. Note that the variance of n'(1) is .2 = N' . Letting k=p, the

variance of Ni(k) is given by

N1-1 N1-1 _j 2xk(l-m)NE N e' N1
var [Ni(k)]= E I=8-N1  e N

NI-1= N',=1.

For k*p, Eqn. (3.1-19) becomes

Iep 27rk-p) ]NE[NI(k)No(P)] = I  -exp _ 27r(k-p)

= 0 for k'p

Identical results apply to the quadrature component NQ(k). Hence, the noise outputs

in different doppler cells are orthogonal. Because they are also zero mean, they

are uncorrelated. NI(k) and NQ(k) are also Gaussian random variables because they

are each linear combinations of jointly Gaussian random variables. Therefore, N1(k)

and N(p) as well as Nq(k) and Nq(p) are independent for klp.

The expected value of the cross term, E[N,(k)N;(p)], is given by

N-2*k- .2pm'1 NI-1 -J'j +J- -
E[N1 (k)NE(p)] = E E[nj(l)n4(m)] e eE[NI~) N; =0 m=O

A property of a stationary narrowband noise process of bandwidth B is that

the crossspectral density SNINQ(f) of its quadrature components is purely imaginary

and is given by [13]
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SNJNq(f) - -SNQN(f)

j[SN(f+fo)-SN(f-fo)] -B < f <B

0 ; elsewhere

If the bandpass noise n'(t) is Gaussian with zero mean, and its power spectral

density SN(f) is locally symmetrical about the midband frequency _+fo, then' SNjNQ(t)

equals zero. It follows that the in-phase noise n (t) and the quadrature noise n4(t) are

orthogonal, i.e., E[n(0n4(m)] = 0 for all 1, m. Therefore, NI(k) and NQ(p) are

also orthogonal. Since both are zero mean Gaussian distributed, they are statistically

independent.

Next, the kth output coefficient S(k) of a DFT in response to the input

signal sequence s (/)+js4(1), I = 0, 1, - -, N-1, is considered where I denotes the

signal sample taken at t = Tr - i/Ft.. From Eqns. (3.1-15) and (3.1-16) and Figure

3. 1-2, observe that

Sj(l) = K Ar cos(21lrfd/Fr+)

s4(1) - K Ar sin(27rlfd/F, 4)

Let s'(1) denote the weighted sum

s'() =

= K Ar e j ej2 dfd/Fr

Sd ej e j2 wfd/Fr (3.1-20)
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where

d -KAr.

Tne DFT output SMk coresponding to the input sequence s'(1), 1 =0, 1, --

N1-l, is

S(k) E (E jOe -
l=0

= 0e 1 - ei2xfd/Fr-k/N)NI
1 -J e j2xfd/Fr-k/Ni)

-d ejo eji(fd/Frrk/N)(I-1) 5f(d/r4CN)I(.-1
sinl(fd/Fr-k/Nl) (.-1

Let a and denote

o:- 7ir~f/ k/N 1 )

= 7r"fd/Fr+ k/N1 )

Note that the DFT outputs, SI(k) and SQ(k) corresponding to input sequences,

si(l and sV(), respectively, are

-[ jecN1 snct+ eC'eAI1 siC, (3.1-22)

2sinNa sinN1l

SQ(k) = -4 [e-~' r- - Ce-e'ANI- 1I (3.1-23)

Clearly, the sum, S1(k) + JS() is equal to S(k).
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When fd/F, - k/Ni, a - 0, N1,6 m 2xk, and the DFT becomes the

matched filter for the corresponding doppler frequency. Under this condition, the

DFT outputs become

S(k)fd/Fk/N d N, ej o (3.1-24)

d N I ej#
SI(k)fd/Fr=k/N -TN e

d N
=--N (cosO + jsino) (3.1-25a)

S ~ d NI1 ejSQ(k)I fd/Fr=k/N 2j

d N1 (cos4 + jsino) . (3.1-25b)
-2j

With reference to Figure 3.1-2, the output X(k) of the summer following the

FFT's is given by

X(k) = X1(k) + jXQ(k)

INI(k)+jNQ(k) = N(k) : under H(
- (3. 1-26)

Si(k)+IQ(k) + NI(k)+jNQ(k) = S(k)+N(k) : under H,

For the remainder of the discussion, it is assumed that fd/Fr = kN. The real and imaginary

parts of S(k) are determined from

S(k) = SI(k) + JSQ(k)

= Re(S,(k))-Im(Sq(k)) +jj Im(SI(k)+Re(SQ(k))]

- d N, cosO + jid N, sin.

Hence, the real and imaginary parts of X(k) are
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Re(N1(k) - Im(NQ(k)) :under H0

Re(X~k) d N, cosq$ + Re((N1(k)) - Jm(NQ(k)) :under H, 312a

and

(lm((N1 (k)) + Re(NQ(k)) :under H

lm(X~k)) d N, sin4' + Im((N1 (k)) + Re(NQ(k)) :under H,.(312b

It will now be shown that X(k) under H., which is given by

X(k) -N(k) - Re(N(k)) + jlm(N(k))

is a zero mean complex Gaussian random variable. To prove this, the following

must be verified-

1) Re(N(k)) is a zero mean Gaussian random variable

2) Im(N( k)) is a zero mean Gaussian random variable

3) Var[Re(N(k))] = Var4Im(N(k))]

4) E[Re(N(k))Im(N(k))] - 0.

From Ecjn.(3.l-27), Re(N(k)) and Im(N(k)) are given by

Re(N(k)) - Re(N,(k)) - Im(NQ(k))

N1 -1 2,x ) id 21
Z~ L n'(1)co N1' + (3.)si 1-28a)

and

Im(N(k)) - Im(NI(k)) + Re(NQ(k))

= E n'(I)sin-7r + n4(oc~ . 3.I-8b
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Since n1(l), n'(1) are both zero mean jointly Gaussian random variables, Re(N(k)) and

Im(N(k)), which are linear combinations of n!4(l), n4(I), are zero mean Gaussian random

variables. In particular,

IE[Re(N(k))] = E[Im(N(k))] - 0 .(3.1I-29a)

From Ecjn. (3. 1-28), the variance of the Re(N(k)) can be written as

NJ-i 2irkl - 2rkl] 12
var[Re(N(k))] - E[ ( E ni(lOcos +~ n(l)sin N]

Since E[ni(On'(m)] - 0 for l*m and E[n1(1n'(m)] - 0 for all 1, m, var[Re(N(k))]

becomes

NI-1 92 2(2k)) NI-i si tW 21k
var(Re(N(k))] - E IE~ni (1)]Cos 2 -NJ + E~n4 2(i)] 2'sin l

-1 . (3.1l-29b)

Similarly, var[Im(N(k))] can be shown to be 1. To prove that Re(N(k)) and Im(N(k))

are orthogonal, E[Re(N(k))Im(N(k))I is carried out as follows:

E[Re(N(k))lm(N(k))]

-E( ( Re(N1 (ic)) - Im(NQ,(k)) ) Im(N(ic)) + Re(NQ,(k)1

E E Enl(l)n'(m)1 cot - sin ,-

N- 1 N- 1  27rkl 27rkmn
+ E E E1(n4() cot - cot-

N1-1 N1-1 21rk/l 27ikm
- E E E[ni~~ () sin - sin--

N1-1 N-1 i 21rkl 2ikm
+ E E En(n4m si- cot-

1-- M= : 4IO4mJ 1  N
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Since E[n'(l)n,(m)] = E[n4(l)n4(m)] = 0 for lI:m, E[nj(l)n4(m)j = 0 for all I and m,

and E[nQ2(/)] _ E[n4 2(1)], the above quantity evaluates to zero. Thus,

E[Re(N(k))Im(N(k))] = 0 . (3.1-29c)

It is concluded that N(k) is a zero mean complex Gaussian random variable.

With the above preliminaries, the mean and variance of the real and imaginary

parts of X(k) under both hypotheses are given as follows:

Re(X..:))

under HO:

mean = 0

variance - I
under Hi:

mean f AJT cosO = ,-s cosO

variance = 1

Im(X(K))

under HO:

mean = 0

variance = I

under HI:

mean = 4-% sinO

variance = I .

Recall that st - N1%P = 2N,(S/N)p is the integrated peak signal-to-noise ratio.
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Define the envelope voltage r and the phase angle v such that r and v are re-

lated to Re(X(k)) and Im(X(k)) by

r _ ,] [Re(X(k))] 2 + [Im(X(k))] 2 . (3. 1-30a)

v = tan-, Im{X(k)) (3.1-30b)
Re(X(k))

It follows that

Re(X(k)) = r cos" (3.1-31a)

Im(X(k)) = r sinv , (3.1-31b)

Note that Re(X(k)) and Im(X(k)) are statistically independent due to the indepen-

dence of Re(N(k)) and Im(N(k)).

Under H., the joint probability densty of Re(X(k)) and Im(X(k)) is

p(Re(X), Im(X)) - p(Re(X)) p(Im(X))

"Tvlr exp -(Re(X) )2 +(Im(X}) )

e (3.1-32)
Tr

By the transformation of variables given in Eqn. (3.1-31), the joint probability

density p(r, v) can be shown to be

p(r, v) =-r exp(--2 ) (3.1-33)

The marginal density function p(r) is obtained by integrating Eqn. (3. 1-33) over
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, which becomes

r2

p(r) r- e 2 dv = r exp- (3.1-34)

Under hypothesis H1, the joint probability density function of Re(X(k)) and

Im(X(k)) given 0 and 9t is

p(Re(X), Im(X)JI,9t) - - r exp ( (Re(X) - 4-t CosO) 2 + (IM(X} + 4"N sin))

(3.1-35)

By the transformation of variables given in Eqn. (3.1-31), p(r, &JO, 9 can be

obtained as

r r2 + 9t _ 2r - cos(- W) (31-6

p(r, 140, 91) = T r exp[ 2 "( ] (3.1-36)

Integration of Eqn. (3.1-36) with respect to V gives the conditional marginal

density function p(rlO, 9t) as

p(rI#, 91) = re - (r 2+ 9 / 2 I r. r e r .gt cos(*+Y) dv

=re "(r=+ / 2 lo(r'-9) , (3.1-37)

where Io is the modified Bessel function of the first kind, zero order. Note

that Eqn. (3.1-37) is not a function of 0. Assuming 0 is uniformly distributed

between 0 and 2r, the conditional density function of r given 9t is

p(rl ) o p(r,OCt)dO f. JTo' r p(r1O,'t)dO

= re-(r2 +/2 i0(r-t) . (3.1-38)
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The envelope voltage r is the sufficient statistic. Under the null hypothesis,

the probability density function for r, p(r 9§, is Rayleigh as agiven by

Eqn. (3.1-34). Under the alternate hypothesis, p(r49) is Rician as given by

Eqn. (3.1-38), for all target models assumed. The likelihood ratio test (LRT)

decides that a target is present when the test statistic r exceeds the threshold

rT. Otherwise, it decides that a target is not present

H1

r < rT •
Ho

The detection probability arising from the probability density of r given t

must be properly averaged over target RCS fluctuations which is carried out in the

next Section.
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3.2 Detection Threshold and Probabilities of Detection

The detection threshold is determined from the cell false

alarm probability pf prior to the binary post detection in-

tegration, and the probability density function p(r) for

the test statistic r under the null hypothesis H0 .  The

false alarm probability is determined in Section 2.5 from

the given system false alarm rate and the specific post de-

tection integration involved. The probability density func-

tion for the test statistic under H0 is Rayleigh as given by

Eqn. (3.1-34). Hence, the cell false alarm probability pf

is

Pr- r -2/2=exp(- ) (3.2-1)

The detection threshold rT follows from Eqn. (3.2-1) and is

rT  . 2 in~ (3.2-2)
f

The probability of detection Pdi in the ith slant condi-

tioned on the integrated peak signal-to-noise ratio for the

ith slant, denoted by 9i' is obtained by integrating the

probability density function p(rIRi) under hypothesis H1 .

Let (S/N)i = NI(S/N) pi denote the integrated signal-to-noise

ratio for the ith slant. Since i . 2Ni(S/N)pi'
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Let (S0/N) = ?0/2 denote the integrated signal-to-noise ra-

tio assuming all pulses are received through a rectangular

beam at its peak gain. Taking into account, LBSi, the beam

shape loss for the ith slant, the integrated signal-to-noise

ratio for the ith slant is expressed as

The actual beam shape losses, in dB, are determined and

tabulated in Section 2.4.

The conditional density function p(rl1i) is Rician for

all Swerling and Marcum target models assumed. Thus, for a

specified value of i' Pdi is given as

Pdi f r exp(-r 2+%/2 I0(r4 .dr - Q(rT, 4) (3.2-3)

where Q(.) is Marcum's Q function [2].

For specified value of i; i=l,2,--,N, the detection

probability PId(M,N) after M of N binary post detection in-

tegration is a function of Pdl' Pd2' - - PdN' M, and N. This

is written as
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P;(M,N) - f(pd Pd2,--,PdN, M,N); I<M<N. (3.2-4)

For an idealized rectangular antenna beam where Pdi = Pdj'

i = j, P'd(MN) is given by

Ps , N N! i N-i
P(MN) = r=EM i!(N-i)! p  . •

In general, Pdi * Pdj because the antenna beam is not

rectangular and LBSi * LBSJ . Then, Eqn. (3.2-4) consists of

product terms of the form

N-i1I 1 P d ij)) ,  M - 32-a
k=1 Pdk j=1 d 4 /I(.-a

or

N
kl P i = N. (3.2-5b)

k=1 dk

The unconditioned detection probability Pd is obtained by

averaging P'dCMIN) over the random variations of (S/N)1,

(S/N)2, - - (S/N)N. This process is illustrated in Figure

3.2-1. The unconditioned detection probability is given by

P [P M7N) ] (3.2-6)

where the overbar indicates an N-dimensional expectation
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ist slant Pdl P(MN
ianF Pdi M of N average

i over Pd =P (MN)
post RCS

detection fluctuationI
integrator

I Nth slan d

Figure 3.2-1 Process for Determininv Probabilities of De-
tection after M of N Post Detection Binary Integrator

1ist sla Intj d l

Sith slan Pdi M of N P
3 post

detection =Pa(Pdl,Pd2,-,PdN,M,N)integrator
Nth slant- dN I

Figure 3.2-2 Process for Determining Probabilities of De-
tection after M of N Post Detection Binary Integrator

(slant-to-slant RCS fluctation)
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with respect to (S/N)1 , (S/N)2, - - , (S/N)N.

For scan-to-scan fluctuation, the signal-to-noise ratio

remains constant over each slant and Eqn. (3.2-6) can be

written as

Pd = [PdW4,N )] = f' PA(M,N) p(So/N) d(SWN) . (3.2-7)

For slant-to-slant fluctuations, the signal-to-noise ratio

varies from one slant to another. Assuming the variations to

be statistically independent, each factor in Eqns. (3.2-5a)

and (3.2-5b) can be averaged separately. The N-dimensional

expectation of Eqn. (3.2-6) then involves product terms of

the form

N-i i N-i
11p 11(1-p )= f-P "r'A 0 _ M<N- I

k=1 dk j1 - d (i+j) k = dk j= d(i+j)

and

N

[k01 Pdk
] - k]=[ dk N,

respectively. Hence, the expression for Pd corresponding to

slant-to-slant fluctuation can be written as
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1d , 2d - dN )  • (3.2-8)

The detection process for slant-to-slant fluctuating target

cases is redrawn in Figure 3.2-2.

The probability of detection for the five target models

introduced in section 2.6 is developed below for the

baseline 3 of 3 post detection integration. For this pur-

pose, the center slant is designated with a subscript 1, and

each of the two outer slants is designated with a subscript

2.

1. Marcum (Nonfluctuating) case:

For this model, the probabilities of detection in the

center and outer slants are:

p = Q(rT4") (3.2-9a)
dI

pd2 = Q(rTT4 ) (3.2-9b)

where

i = 1, 2.
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Since this model assumes no fluctuation, there is no averag-

ing with respect to RCS fluctuation. Thus, the detection

probability after 3 of 3 post detection integration becomes

P (3,3) f Pd =p Pd 2  (3.2-10)

2. Swerling case 1:

For this model, Pdi' and P'd(3,3) are identical to the

Marcum case given above. Pd is obtained by averaging

PId(3',3) over the scan-to-scan variations of (S0/N). Hence,

Pd is given by

Pd f~ [P (3,3)jI p(S0 /N) d(S0,/N)
0 0 /

" fo[Pd(3,3)] exp - N) d(So/N) (3.2-11)
SWN S0/N

where (S0/N) is the mean integrated signal-to-noise ratio

corresponding to the mean target radar cross section.

Further simplification is not possible and the integrand

must be evaluated numerically.

3. Swerling case 2:

For this model, Pdi is the same as for the Marcum case.

Hence, Eqns. (3.2-9a,b) are applicable. Pdi for the ith

slant is obtained by averaging Pdi over the slant-to-slant
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variations of (S/N)i due to target RCS fluctuation:

d= J0i[Pd ] p([S/N]i) d([S/N)i] . (3.2-12)

Substitution of Eqn. (3.2-3) for Pdi in Eqn. (3.2-12) re-

sults in

= j~o ( fr exp [-(rl+2(S/N)(LBs)/2]

•Io [r. S N)(i~7)] dr )P(S/N)d(S/N)

where p(S 0 /N) is given by Eqn. (2.6-4). Interchanging the

order of integration transforms the above to a product of a

gamma function and a confluent hypergeometric function [2].

Using the power series expansion of the confluent

hypergeometric function leads to a simple closed form solu-

tion given by

In p
di exp ( I ) ; i = 1, 2, (3.2-13)l+(S7~ql)

where (SN) i = (S 0 /N)(LBsi)" The probability of detection

Pd after post detection integration is

Pd = [PI(3,3)] = gp'PdM,N) = -d d 2  (3.2-14)
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4. Swerling case 3:

The procedure in this case is exactly the same as that

used for Swerling case 1 except the density function for

(S0/N) corresponds to one dominant plus Rayleigh (exponen-

tial power) scatterers. As with Swerling case 1, Pdi and

Pd (3,3) are identical to the Marcum case. Pd is given by

Pd Jo [P;(3,3)] p(SWN) d(So/N)

= 0 '(34S /N (2S 0 /N d SO/N) (3.2-15)

(SoN)Z SWN

The above integral must be evaluated numerically.

5. Swerling case 4:

Exactly the same steps are used for this model -as in

Swerling case 2. However, the form of the probability den-

sity function for the variation of (So/N) is identical to

that of Swerling case 3. From DiFranco and Rubin (2], Pdi

for this case is given by

--d d] p([S/N]i) d([S/N)i]

1  1I + In I+f exp In Pf

1+ NS'L (52N) + 1+

(3.2-16)

where (SI') i equals (S-0/N) (BSi ) • The detection probability

after 3 of 3 post detection integration is
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1 M,N) D2 (3.2-14)

Plots of Pd versus (90/N) for the baseline configuration

are shown in Section 3.3 for the five target models.
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3.3 Detection Performance for the Baseline Configuration

The detection performance for the baseline configuration

is presented in this section by developing probability of

detection versus (S0/N) plots. To accomplish this, a cell

false alarm probability before 3 of 3 post detection inte-

gration corresponding to the given system false alarm

specification is first required. Procedures for obtaining

this are presented in Section 2.5. Next, the detection

threshold is determined per Eqn. (3.2-2). For each slant in

a beam dwell, the beam shape loss given in Section 2.4 is

then subtracted in dB from the stated (T0/N) before the con-

ditional detection probability, Pdi' is computed for each

target model. The number of pulses available for integration

for the baseline and modified configurations were determined

in Section 2.3. Finally, the detection probability after

post detection binary integration is determined according to

the procedures outlined in Section 3.2.

Figure 3.3-1 shows the probabilities of detection aver-

aged over the respective target fluctuations assumed for the

five target models described in Section 2.6. For these de-

tection probabilities, the threshold is set such that the

resulting system false alarm rate is 2 per each antenna scan

which takes ten seconds. When (S0/N) is 12.2 dB, the
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baseline yields the single scan detection probability of

0.32 for a Swerling case 1 reference target when it is lo-

cated at the reference range. Note that this is equivalent

to the cumulative detection probability of 0.9 in 6 antenna

scans as explained in Section 1.1.3. The cumulative detec-

tion probability curves for the five target models are shown

in Figure 3.3-2. Given single scan detection probabilities

of Figure 3.3-1, the cumulative detection probabilities of

Figure 3.3-2 for 6 antenna scans arise as a natural conse-

quence. Therefore, the curves of Figure 3.3-2 are those to

which performance under scan-to-scan processing using 6

scans should be compared. It is evident from these figures

that fluctuating target models yield poorer detection per-

formance than a nonfluctuating target model in the region of

high SNR. Also evident is the influence of correlation

properties on detection performance. Swerling case 1 and

Swerling case 3 are more alike in their detection perfor-

mance than those for Swerling case 1 and Swerling case 2

even though Swerling case 1 and 2 have the same probability

density function for their RCS fluctuations.

Figures 3.3-3 through 3.3-7 are detection performance

plots for Swerling cases 1, 2, 3, 4, and the Marcum model,

respectively, for various cell false alarm probabilities.

With reference to Eqn. (2.5-25), note that an increase by a
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Cumulative Detection Probability
of i te anmk

SL 12162

12 16rn ca1e 24

®Swerling case 3
Swerling case 2

MHarcum

-4
cell false alarm Probability: 7.6xl0

normal time overhead: 5 milliseconds

individual beam shape losses: 0.3/3.43 dB

reference SWR: 12.2 dB

Figure 3.3-2 Cumulative Detection Probabilities for Swerling
and Marcum Target Models - Baseline
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factor of 10 in the cell false alarm probability results in

an increase of 1000 in the system false alarm rate because

Pa = . Consequently, one must be careful in lowering the

threshold in an attempt to enhance detection. The baseline

performance presented here will provide the basis for mea-

suring performance improvements in the modified configura-

tions discussed in the next two Chapters.

It should be noted that a separate beam shape loss is

used for each slant in the computation of (S/N)i. It is a

common practice in radar engineering to evaluate Pd by using

for each slant the average value of (S/N)i obtained by com-

puting an average value of beam shape loss. However, this

yields optimistic results for Pd of 0.7 dB for Swerling case

1 and 0.4 dB for Swerling case 2 in the vicinity of (S0/N) =

12 dB. These numbers were obtained by comparing two sets of

detection performance results where individual beam shape

losses were used in one set and one average beam shape loss

was used in the other. The results for Swerling case 1, 2,

and Marcum target models are plotted in Figures 3.3-8 and

3.3-9 for individual and average beam shape losses, respec-

tively. This is very important in comparing the performance

of the modified configurations to the baseline performance.

The performance of the modified configurations would appear

pessimistic by the respective amount if one average beam
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shape loss had been used in the evaluation of the baseline

performance.

It should also be noted, in Figures 3.3-1 through 3.3-9,

that the normal time overhead per each slant of 5 millisec-

onds was used in the performance evaluation. When a

modified configuration includes a reduction of time over-

head, unless this reduction is a direct consequence of a

certain unique feature of the modification, the measure of

improvement should be by comparison of its performance to

the baseline performance which also includes the reduction

of time overhead. This is so that the improvement imparted

by the specific processing modification can be quantified

separately. For this purpose, plots of the baseline perfor-

mance with a reduced time overhead to 3.5 milliseconds per

each slant are shown in Figure 3.3-10 for Swerling case 1,

2, and Marcum target models.

Additional details on how the two different approaches to

beam shape loss affect detection probability estimates are

included in Section 3.4. What happens to the beam shape

loss when the 3 of 3 post detection integration is changed

to a-2 of 3 post detection integration all within a 3-slant

configuration is also discussed in Section 3.4.
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3.4 Effect of Beam Shape Loss on Detection Probability

In the analysis of detection probabilities for the

baseline 3-slant configuration, it was found that a notice-

ably different performance prediction results when a single

average beam shape loss is used instead of the individual

beam shape loss for each slant. When one average beam shape

loss is used, the resulting detection probability for (90/N)

in the neighborhood of 12.0 dB is more optimistic by 0.4 dB

for Swerling case 2 and by 0.7 dB for Swerling case 1. This

is with the threshold for cell false alarm probability of

7.6x10-4 which, in conjunction with the 3 of 3 post detec-

tion integration, yields the system false alarm rate of 2

for each antenna scan covering a 360 degree azimuth sector

in 10 seconds.

The above result is illustrated for a Swerling case 2

target below. A comparison for Swerling case 1 developed

using numerical integration is included in Section 3.3. The

actual beam shape losses of 0.3 dB for the center slant and

3.43 dB for the two outer slants can be converted to one av-

erage loss by first converting these dB's to equivalent

power levels referenced to a unit power level, obtaining the

average of these power levels, and taking the ratio with re-

spect to unity. The average beam shape loss so computed for
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the 3-slant configuration is 2.12 dB.

The actual SNR in each CPI, given (S0/N)=12.0 dB is 12.0

dB minus the respective beam shape loss. These are 11.7 dB

for the center slant and 8.57 dB for each of the two outer

slants. When the average loss is used instead, it is 9.88

dB. The corresponding detection probability in the ith

slant for a Swerling case 2 target can be obtained from Eqn.

(3.2-13).

Let the detection probabilities in the center slant and

the two outer slants by Fdl' and 9d2' respectively. Also,

let the detection probability in any slant when the average

beam shape loss is used be denoted by Pd" Letting (S/N)i =

10 §-(dB)/1 0 and using 7.6xi0 -4 for pf in Eqn. (3.2-13)

yields the following detection probabilities:

d - 0.635

Pd2 = 0.416

-Pd = 0.518.

With these probability values, Pd' the overall detection

probability after post detection integration is computed for

the two cases: one using the actual beam shape loss for

each individual slant, and the other using one average beam
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shape loss for all 3 slants for 2 of 3, and 3 of 3 post de-

tection integration.

2 of 3 Post Detection Integration:

Let Pd(2/3) and Pd(2/3) denote the detection probability

after post detection integration with actual beam shape

losses and with an average beam shape loss, respectively.

Then, Pd(2/3) and Pd(2/3) are given by

Pd(2/3) - 2Pdi Pd2 (-Pd2) + Pd2 2(l-p ) + -d? d2 2 (3.4-1a)

and

P;(2/3) _ 3p2(l -pd) + D3 . (3.4-1b)

dd d d

Substituting values of Pdl' Td2' and Pd previously deter-

mined into the above equations yields

Pd(2 / 3 ) = 0.482

Pd(2/3) = 0.527

Using the average beam shape loss resulted in a detection

probability which is more optimistic by 0.4 dB than the one

with actual losses as explained below. This was determined

by substituting for the (S/N)i in Eqn. (3.2-13) a value 0.4
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dB less than the one based on the average beam shape loss

and obtaining a Pd value of 0.484. Next, substituting this

value for Pd in Eqn. (3.4-1b) yields a value that is the

same as the one obtained by Eqn. (3.4-1a) using actual

losses.

3 of 3 Post Detection Integration:

Let Pd(3/3) and P*(3/3) denote the detection probability

after 3 of 3 post detection integration with actual beam

shape losses and with an average beam shape loss, respec-

tively. These probabilities are given by

PP/ d3) dld 2  - 0.11, (3.4-2a)

and

P;(2/3)= -D - 0.139 (3.4-2b)
d

where use was made of the values for Pdl' Pd2' 1d previously

determined. Again, the result based on the average beam

shape loss is optimistic by an amount of 0.4 dB. This was

determined by following the same procedure used for the 2 of

3 post detection integration example.

Thus, a simplification in computing by use of an average
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beam shape loss resulted in an optimistic prediction by 0.4

dB for Swerling case 2 targets. An optimistic prediction by

an amount of 0.7 dB resulted for Swerling case 1 targets

when the detection evaluation is based on 3 of 3 post detec-

tion integration. This difference is obtained by comparing

the numerical integration results of Eqn. (3.2-11) for

Swerling case 1 with two different approaches to the beam

shape loss. The difference in detection prediction was also

computed for the Marcumtarget model. These results were

plotted in Figures 3.3-8 and 3.3-9 in Section 3.3 using in-

dividual and average beam shape losses, respectively.

Next, the following questions is considered: What happens

to the beam shape loss when the post detection integration

rule is changed from 3 of 3 to 2 of 3 in a 3-slant con-

figuration? There is a common misconception that the beam

shape loss would be reduced under a 2 of 3 rule. This notion

is based on the observation that if the binary post detec-

tion rule requires only two hits, the two contiguous slants

that could provide these hits would be found more favorably

centered about the peak of the antenna beam than would be

for 3 slants. While this observation is correct, the detec-

tion rule under this situation approaches a 2 of 2, not a 2

of 3 rule since the 3rd (and the 4th) slant is too far from

beam center to contribute significantly. The detection
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probability based on a 2 of 2 rule with less beam shape loss

is inferior to a 2 of 3 rule with slightly higher beam shape

loss. Alternatively, one can correctly observe that there

are two 3-slant sets on a sliding window providing 2 of 3

detection opportunities when 4 slants are symmetrically

situated about the peak of the beam even though the beam

shape losses for the two outer slants are high. This obser-

vation is again correct. But, the 4 slants with higher beam

shape loss produces inferior performance, as will be shown,

to that produced by 3 slants symmetrically situated about

the peak of the beam.

Fortunately, the differences can be readily quantified.

To this end, a snap shot of the train of modulation periods

passing by a point target at an instant of the most

favorable placement for 3 slants, and 2 (or 4) slants are

depicted in Figure 3.4-1 (a) and (b), respectively.

Q of beam Q of beam
toward a oint target toward a point target

LBSi1) 3.40 0.30 3.40 7.29 1.08 1.08 7.29

Pdi Pd2 Pdl Pd2 Pd2 Pd2 Pdl Pd2

(a) 3 slants (b) 2 or 4 slants

Figure 3.4-1 Beam Shape Loss for 2 of 2, 2 of 3 and 2 of 4
Processing given 3 Slants in a Beamwidth
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The beam shape loss for each slant is computed according to

the method described in Section 2.4 and is indicated under

the slant for which it applies in the Figure.

As before, the detection probability in each slant for

the 3-slant case is denoted Pdl for the center and Pd2 for

the two outer slants. For the 4-slant case, they are denoted

Pdl for the two inner slants and Pd2 for the two outer

slants. The Swerling case 2 model is again used for simplic-

ity to determine the detection probabilities based on the

calculated beam shape losses so as to establish which place-

ment of the slants results in the minimum loss. We are

still dealing with a 3 slant configuration meaning there are

only 3 slants in a half power beam width and the detection

rule is 2 of 3 hits from a set of 3 contiguous slants se-

lected on a sliding window which advances at one slant in-

crement. An overall detection probability given 4 slants

and using a 3-slants at a time sliding window with a 2 of 3

rule is first established. Since the two 3-slant sliding

windows are overlapping, the probabilities of detection are

not independent, and a careful sorting is required before

determining the overall detection probability. This is best

accomplished by establishing the matrix of all possible com-

binations of only 2 of 4, only 3 of 4, and 4 of 4 detection

possibilities within the 4 slants given, and eliminating the
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ones which do not have the 2 or 3 required hits within the 3

slant sliding window. Note that an M of N means M or more

hits in N trials while only M of N means exactly M hits in N

trials. This matrix of hits and misses along with the slid-

ing window is shown in Figure 3.4-2.

Now, the expression for the probability of detecting 2

of 3 in 4 slants on a 3-slant sliding window can be written

down by inspection of the matrix of Figure 3.4-2. The num-

ber of ways a detection can occur is all the possible combi-

nations shown in the Figure less those excluded by the

3-slant sliding window test. The sum of different numbers

of ways a detection can occur multiplied by the correspond-

ing probabilities gives the overall detection probability:

Pd(2 / 4 ) (on a 3-slant sliding window)
+-d - p 2 ) + f 21

diPd2 ( 1 dl)(|Pd2  I d2  d 2 d2  d2  1 d 2

Obviously, the probability of detecting 2 of 2 from a

2-slant set is

- 2
Pd(2/2) =, i 2

The probability of detecting 2 of 3 in a 3-slant set was de-

rived before in Eqns. (3.4-la,b).
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center line
of beam

I
outer slants case rejected by
inner slants 3-slant window

I I i I
1 way to get

4 hits in 4 slants x x x x

x x x 0
4 ways to get x x o x x

3 hits and 1 miss x o x x x
in 4 slants 0 x x x

x x 0 0
x 0 x 0

6 ways to get x 0 0 x x
2 hits and 2 misses o x x o

in 4 slants o x 0 x
0 0 X X

prob. of detection Pd2 Pdl Pdl Pd2

I I

3-slant sliding windows

Figure 3.4-2 Matrix of Possible Combinations of 2 of 4
Detections on a 3-Slant Sliding Window
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The probabilities of detection after 2 of 2, 2 of 3, and

2 of 4 binary post detection integration are computed as a

function of (S0/N) according to the equations derived for

the Swerling case 2 model. The results are listed in Table

3.4-1. It can be seen from the table that the detection

probability based on the 2 of 3 rule with 3 slants centered

about the beam center is superior to the result based on 2

of 2 or 2 of 4 rules using 2 slants or 4 slants centered

about the peak of the beam. This is in spite of the smaller

beam shape loss for the center 2 slants in these cases. As a

final point, it is noted that the average beam shape loss

depends on the number of slants within a half power

beamwidth. It has nothing to do with the values of M and N

selected for M of N binary integration. Those slants fall-

ing outside of the half power beamwidth contribute very

little to detection performance in the small signal region.

Actually, Blake [7] determined that the optimum beam utili-

zation is 84 % of the half power beamwidth.
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Table 3.4-1

Detection Probabilities with 2 of 2, 2 of 3, and
2 of 4 Processing for a Swerling Case 2 Target

10.4 .222717 .308167 .312528

10.5 .236682 .328043 .332856

10.8 .250970 .348318 .353562

11.0 .265551 .368923 .374578

11.2 .280395 .389785 .395834

11.4 .295472 .410828 .417259

11.6 .310748 .431975 .438782

11.8 .326191 .453147 .460333

12.0 .341769 .474263 .481840

12.2 .357450 .495247 .503239

12.4 .373202 .516021 524463

12.6 .388994 .536512 .545452

12.8 .404797 .556649 .566148

13.0 .420580 .576367 .586496

13.2 .436315 .595605 .606448

13.4 .451976 .614308 .625959

13.6 .467538 .632429 .644990

13.8 .482975 .649925 .663504

* 2 of 4 on a 3-slant sliding window as explained

in the text.
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CHAPTEL 4

SYSTEM PERFORMANCE WITH SCAN-TO-SCAN PROCESSING

A description of scan-to-scan processing (SSP) and a de-

tailed analysis of the modified radar configuration with

scan-to-scan processing is presented in this Chapter. A

considerable amount of effort has been spent in industry in

seeking a detection performance improvement by means of

scan-to-scan processing. Surprisingly, however, there is

little written material on scan-to-scan processing in the

open literaturelin spite of more than a decade of industrial

independent research and development efforts that went into

investigation of the concept. Evidently, the only documenta-

tion that exists are proprietary internal company

reports not available to the general public. These reports

document interim results of trials with various flight test

samples and some simulations. Optimistic improvement claims

as much as 12 dB in equivalent signal-to-noise ratio are

made without accompanying analytical verification Similar

work named Track before Detect (TBD) [11, 12] was carried

out under the auspices of RADC.3 This is not to be confused

with the TBD term used in the moving target indication

algorithm in infrared imaging [13].

1. as applies to airborne surveillance radars
2. Upon careful examination, this 12 dB includes improvement projections

arising mostly from other radar processing changes not directly
attributable to SSP.

3. for a ground surveillance radar
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In view of the primarily experimental nature of

industry's investigation, a need for' an independent

theoretical review of the concept arose as a consequence.

This investigation provides one such review. The analysis

presented will show that only a marginal improvement is di-

rectly attributable to SSP when correct comparisons are

made.

4.1 Description of Scan-to-Scan Processing

As the effective range of avionics systems continually

increases, so does the need for increasing the effective

range of sensor systems. Because of the enormous cost and

risk involved in developing and deploying a new radar

system, increasing emphasis is being placed on improving a

proven existing system capitalizing on recent technology

breakthroughs in signal processing. Thus, scan-to-scan pro-

cessing became one of the most appealing concepts for

improving performance. The improvement sought is to maintain

the same detection capability for targets whose radar cross

section (RCS) is continually being reduced. Equivalently,

an alternate aim is to extend the detection range for

conventional targets.
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As described in Chapter 3, detection performance is di-

rectly related to the threshold setting. The philosophy

behind SSP is to lower the threshold to enhance detection.

The resulting increase in system false alarm is expected to

be managed through data processing over many radar scans

whereby detection histories of true and false targets in

past scans are correlated and those detections which do not

result in realistic trajectories are rejected as false

targets. According to this notion, there is no limit as to

how much the achievable improvement can be. It is only a

matter of how much data processing is to be performed to be

able to reject all false targets.

On the other hand, there is a theoretical approach for

determining the upper bound on performance improvement which

is possible through SSP. Recall Barton's result on

surveillance radar performance quoted in Section 1.1.3 when

the surveillance objective is to detect a target within a

specified interval of time with a high probability of

success. Given the total number of pulses available for

integration during this time interval and an option to

adjust the scan rate, Barton compared the resulting

performance between using the available pulses all in a

single scan with a slow scan rate and, alternatively,

dividing these into many scans with a faster scan rate. He
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considered the integration loss, scan distribution loss, and

target fluctuation loss, and concluded that it was more ad-

vantageous to use more than one scan to achieve the goal.

However, his analysis is based on some ideal assumptions,

e.g., a stationary target which falls in the same radar

resolution cell in every scan, and operation of the radar in

a low PRF mode sudhAthat division of the available number of

pulses into many scans does not increase the total time

overhead.

Barton's integration loss is the loss incurred in video

integration when compared to what can be achieved in an

ideal coherent integration. His scan distribution loss is

the additional number of pulses that are required for a

nonfluctuating target using many scans to achieve the same

detection probability as for a nonfluctuating target using a

single scan. The fluctuation loss is the additional

signal-to-noise ratio required, on the average, for a fluc-

tuating target in a single scan to achieve the same level of

detection probability as for a nonfluctuating target. In

Barton's multi-scan strategy, detection probability in each

scan is assumed independent from any other scan.

Suppose now a storage device is introduced to accumulate

the results of several successive scans and a hit is
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declared when the same target is detected in the same

resolution cell in J out of K successive scans. This, then,

would reduce the scan distribution loss. This, in essence,

is the scan-to-scan processing concept. In terms of math-

ematical expressions, given a total number of K scans in the

baseline without SSP, the cumulative detection probability

Pc, that is the probability of detecting the same target in

one or more scans, was given as

PC M _-(l-pd) K  (4. 1-1)

where Pd is the single scan detection probability assumed to

be independent from scan to scan. With SSP, the cumulative

detection probability, that is the probability of detecting

the same target in J out of a total number of K scans, is

given by

K K! Pi(l-Pd)K (4.1-2)
P J fi i i(K-i)l

Of course, both detection rules should be subject to the

same system false alarm requirement. For J>l, the effect of

SSP is to lower false alarms relative to the J=l case.

Therefore, for maintaining the same levels of system

false alarms, the detection threshold can be lowered with

SSP thus enhancing the detection probability.
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The extent to which the threshold can be lowered for a

moving target, with the resulting large increase in interim

system false alarms per scan prior to SSP, depends on the

size of the correlation window which determines the number

of cells per scan where reports are correlated with those of

other scans. If sufficient information about the target

trajectory is known such that correlation could be performed

on a single resolution cell for each scan over the number of

scans in which correlation is performed, false alarm sup-

pression by the J of K integrator in SSP would be great.

However, the likelihood is small of correctly estimating the

resolution cell for each scan in which the target is lo-

cated. To account for the radar platform motion and target

maneuver during the scan-to-scan correlation period, the

correlation window for each scan is made larger for succes-

sively earlier scans as shown in Figure 4.1-1.

Note that, even with SSP, M of N post detection integra-

tion still takes place within each scan so as to resolve

target range ambiguity at least partially in each scan. Oth-

erwise, target range (and velocity) information would not be

available and there would be no basis to correlate present

scan detections with those of the past scans.
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correlation window for
the Kth scan

correlation window for
the ith scan

resolution cell in which target
is reported in the current scan

Note: Azimuth and range correlation windows only are shown.
Velocity correlation window is not shown.

Figure 4.1-1 Correlation Windows for Successively Earlier
Scans
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Two specific SSP concepts are examined in this investiga-

tion. One uses the 3-slant configuration, as in the

baseline, and employs a modified version of scan-to-scan

processing. As a result, this approach is referred to as

the modified J of K SSP. The other is based on a 2-slant

configuration and uses conventional J of K SSP. In both

versions, a sliding window is used with respect to the K

scans such that a decision is made after each scan.

In the modified J of K SSP, the threshold level is kept

the same as in the 3 of 3 baseline configuration and a full

success is declared when threshold crossings occur in all 3

slants of a given scan. All range and velocity ambiguities

can be resolved and operation is the same as for the

baseline configuration. Hence, SSP is bypassed for a scan in

which a full success occurs for the given target in that

particular resolution cell. A partial success is declared

within a single scan if and only if 2 threshold crossings in

any of the 3 slants in a particular doppler filter occur.

Note that this constitutes a failure in the baseline 3 of 3

post detection rule. In the modified J of K SSP rule, a

detection is declared when either a full success occurs in

the present scan, which is the same as the baseline, or both

a partial success occurs in the present scan and (J-l) or

more partial or full successes have occurred in the past

147



(K-i) scans. For J=3 and K=8, this SSP is referred to as

the modified 3 of 8 SSP. For the modified J of K SSP, the

probability of detection at the end of each scan is called a

hybrid single scan detection probability since it can arise

from either a full success which is independent from

scan-to-scan or from partial successes in a number of scans

which makes the Pd based on them no longer independent from

scan-to-scan. Since the threshold level is kept the same as

in the 3 of 3 baseline configuration, the 2 of 3 post detec-

tion integration generates in each scan an increase in false

alarms of more than 3 orders of magnitude. The association

from scan-to-scan is an attempt to reduce the false alarms

to an acceptable level.

The conventional J of K SSP concept is based on a 2-slant

configuration. By using 2 slants within a scan, it is pos-

sible to integrate more pulses per slant although the number

of slants is reduced. In this concept, the threshold level

is adjusted to maintain the same false alarm rate per scan,

before SSP, as in the modified J of K SSP described above.

This is done so that the two concepts can be compared on a

common basis. When there are only 2 slants, 1 of 2

detections cannot be considered as a partial success because

range and velocity information is unavailable for

correlation purposes due to unresolved ambiguities. Also,
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2 of 2 detections cannot be treated as a full success be-

cause the false alarm rate would be too high and the range

ambiguity could only be partially resolved. For conventional

J of K SSP, J or more partial successes in K scans are

required to declare a detection. Because of the sliding

window, a decision is made after each scan. However, the

detection probability associated with these decisions should

be compared with a cumulative detection probability based on

K scans as opposed to a single scan detection probability.

4.2 The Scan-to-Scan Correlation Window

The size and position of the correlation window allocated

for each scan is a function of the target parameters. In

particular, the correlation window for each scan is designed

to be large enough such that a maneuvering target appears

within the window. For this purpose, it is necessary to

account for the target's tangential velocity and

acceleration. In determining the window size, it is assumed

that the maximum linear acceleration is 1-g (i.e., 9.8

m/sec.) along the radial velocity vector, and the maximum

tangential velocity is given by
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VT . {5V
R  5VR<Vmx

Vmax 5V>Vmax

where VR is the measured radial velocity in the present scan

and Vmax is the maximum possible velocity assumed.

The geometry for the correlation window in the ith scan

is shown in Figure 4.2-1. The procedure consists of

selecting a candidata target report which has the potential

of being included in the window, constructing the window

ussing its position and that of the present target report

under test, rejecting the candidate target report if it

falls outside of the window, and retaining the candidate

target report if it falls inside. This procedure is repeated

for all candidate target reports in the ith scan. With ref-

erence to Figure 4.2-1, define the following notation:

WR: range correlation window width along the radial direction

WT: cross range correlation window measured normal to the
radial direction

VR: measured target radial velocity

VA: platform velocity

al: linear acceleration of the target along its radial
velocity vector

0i. measured target azimuth angle in ith past scan
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candidate target report

target trajecto

present target report under test
with measured range and velocity
in the present scan

platform latform position in the ith past
flight path -san -

present platform position with velocity

VA

Figure 4.2-1

Correlation Window for the ith Scan
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e0 : measured target azimuth angle in the present scan

R, measured range to the target in the present scan

RA: - radial distance from the platform position to the point
where the radial lines to target positions in the present

scan and ith past scan intersect

i AR: estimated difference in range to the target between the

present scan and ith past scan (AR=iTFVR)

Also, introduce the notation:

ar: range measurement error

a.,: azimuth angle measurement error

ap : platform position error

For the ith scan,

iAR = iTFV R

where TF is the frame time. From the law of sines, the dis-

tance RA is related to target azimuth angles by

RA VA(iTF)

sin(ir-Oi) - sin(Oi_90) ; i>0

RA VA(iTF)
sini f sin(Oi-e0 ) ; i

For the ith scan, the spatial size of the correlation window

extends over
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± WR =[(ai(iTF)'/2)2 + 2(oR)2  + 2(') 2  + 2jR+RA+i AR)oesin4el-0) 2] 1/2

± WT h[(VT(iTF))2 + 2[(R+RA+iAR)a
, 2 + 2(ap) 2 ]1/2

Because of variations and uncertainties in the present

target velocity, it is necessary to extend the correlation

window into the velocity domain. The correlation window size

for the velocity is

± WV =[(a(iTF))
2 + (V jrsi e-e)2 ] 1/2

Having determined the (K-l) correlation windows related to

the present target report, the next step is to calculate the

false alarm multiplier associated with these windows. Let ni

denote the number of resolution units in the correlation

window for the ith back scan. The false alarm multiplier

for the (K-l) correlation windows is given by

Mk = (nl)(n 2)- - - (nK-1)

With SSP the total number of false alarm opportunities

equals MK times the conventional number of false alarm op-

portunities for a radar without SSP.

To determine a realistic value for MK, it is necessary to

specify a typical target maneuver For this purpose, con-

1. as worst case
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sider a target making a 6-g coordinated turn with a speed of

450 knots at a range of 150 nautical miles. The maneuver

scenario is illustrated in Figure 4.2-2. Also, let

VA - 360 knots

a = 0.8 nmi

a- 0.003 radians

01- 0.04 nmi

For this maneuver, the flight path is circular and a1 = 0.

The corresponding correlation window size, in terms of

azimuth angle expressed in degrees and the number of range

and doppler cells, is listed in Table 4.2-1. On the

average, there are 3 slants contained in 1 degree azimuth.

The number of resolution units, ni, for the ith scan is

listed in the column labeled ni(l) where a resolution unit

is 1 slant by 1 range cell by 1 doppler cell. The false

alarm multiplier for K scans, K = 2,3,--,8, is listed in the

column labeled M(I).

If it were possible to estimate past target positions

down to a single resolution cell for each back scan, then,

the false alarm multiplier arising from SSP would be unity.

As shown in Table 4.2-1, the false alarm multiplier in-

creases dramatically as the window size is made large enough

so as to yield a high likelihood of covering the target.
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2
Turn Radius: r V /a

Centripetal Acceleration: a

Turn Rate: y - Vt/r

Target Position: X- X0 - r cos y
Maneuver Y - Yo + r sin TCenter

/(Xo.Yo) Target Range: R * ((X - Vat) 2 + y2 h

Range Rate: R(t) A R(t) - R(t At)
At

Maneuver
Range

a- -- '-X (Longitude)
.. platform moving @ 360 kts

Figure 4.2-2 Maneuver Scenario used for testing the SSP
Correlation Window

155



-H-
V v- LN o% 40i Coi r c,

C14 0. 0% (-. O ~ j 0% 0(A~
0 %.& 0I - I 4 % 0

0- -P4 m m * n r:

V4 04

0. w- .. 0 0

Ln C-~. -4 v-I v-I v v v-I

~IH 044 OD V n t

.4 ~ ~ . v~ U7 N N In vi

o- 0~ r-4 0 I 0 r- 4

0 0 tr eI N mn 04 r- CI 0
-H r. I m* vt- %o r Nm

oq %o r . o . -

0 0W

6w4 .- Ic 4 m 0 v n %D r. c

-H I' rv*f Nw I n 0 r,!
4 0 ~ 0 4 vtoNo

(a - *.

* Q q ~ I v44 00156 0



Because this number is unacceptably large, a bigger resolu-

tion unit composed of 3 azimuth slants by 10 range cells by 6

doppler cells will be used in this analysis. (Any grouping

which is reasonable for the particular application can be

used.) Multiple threshold crossings in this larger resolution

unit now count as one. The corresponding number of resolution

units is listed under the column labeled ni(2) and the result-

ing multiplier is listed under the column labeled MK(2). Ob-

26 11serve that M8(1) = 8.28x02 while M 8(2) = 1.35x1011 Even

though M8(2) is 15 orders of magnitude smaller than M8(1), it

is still a very large numbnr.
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4.3 Determination of threshold Setting and Depth of Scan

from False Alarm Considerations

The procedure for determining the cell false alarm prob-

ability pf from the system false alarm specification was de-

veloped for a general M of N post detection integrator in

Section 2.5. This procedure requires determination of the

false alarm time, which follows directly from the system

false alarm specification, and the determination of false

alarm opportunities which takes into account utilization

factors for time, range cells, and doppler cells, and cor-

relation factors due to range and velocity unfolding for am-

biguity resolution, and use of sliding windows for M of N

binary integration. From the false alarm time Tfa and the

number of false alarm opportunities in a false alarm time n,

the false alarm probability after post detection integration

Pfa is determined. From the knowledge of the specific binary

post detection rule, the cell false alarm probability before

the post detection integration pf is then determined from

P fa '

In the modified J of K SSP in a 3-slant configuration,

SSP is invoked if and only if a threshold crossing occurs in

2 of the 3 slants. This is called a partial success. When

threshold crossings occur in all 3 slants, which constitutes
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a full success, SSP is bypassed. The modified J of K pro-

cessor then becomes identical to the baseline processor.

For this bypass feature to perform as in the baseline, the

threshold setting for each slant should remain the same as

that set for the 3 of 3 processing in the baseline. This is

equivalent to a lowering of the threshold for the 2 of 3

processing such that the false alarm rate per scan before

SSP increases by 3 orders of magnitude, as shown in Table

2.5-1.

To demonstrate the 3 orders of magnitude increase in the

false alarm rate before SSP and to facilitate evaluation of

the false alarm rate after SSP, the following events

relative to false alarm occurrences are defined:

Fl: false alarms occur in all 3 slants of a scan

F2: false alarms occur in 2 of the 3 slants of a scan
with no false alarm in the remaining slant

F3: false alarm occurs in at most one of the 3 slants of

a scan with no false alarm in the remaining slants

F4: event F1 for the present scan

F5: event F2 for the present scan

F6: event Fl or F2 for J-1 or more of the past K-1
scans and event F3 in the remaining scans

F7: intersection of event F5 and F6.
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Let n(Fl) and n(F2) denote the number of false alarm op-

portunities in a false alarm time associated with F1 and F2,

respectively. The average number of false alarms per scan

before SSP is then given by

FA/scanibefor, sSp P(F1)n(F )Z. + P(F2)n(F2) T- (4.3-1)
f a'l- f S2

The first term in Eqn. (4.3-1) is the average number of

false alarms in a scan for the baseline which is specified

to be 2. The second term results by allowing partial suc-

cesses to also be counted. Note that

P(F2) -T-I! p (l-pf) -3f 2.  (4.3-2)

In Section 2.5 it is shown that the cell false alarm rate,

pf, equals 7.6xi0-4 for the baseline. Consequently,

P(F2) = 3p2 =1.73x0 "6 
. (4.3-2a)

f

Analogous to the derivation of Eqn. (2.5-32), the total num-

ber of false alarm opportunities per scan for event F2 is

F T F nr(frWf2)nfPrnms
f 2

rW ReT TF

(nr+rB) -fa
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For the system under consideration

N-42, Wf2=
2 .2, nf=195, RT-6173, rB- 3 , n T=n F- =1040.

f 2

It follows that

F -= 2.40x10 . (4.3-2b)

Hence,

TF

P(F2)n(F2)T- T (1.73x10")(2.40x109) -4.15x10 . (4.3-2c)

The large predicted number of false alarms before SSP agrees

with the flight test result illustrated in Figure 4.3-1.

Having introduced the false alarm multiplier MK(2 ) in

Section 4.2 to account for the expanding correlation window

as a function of scan depth, the analysis can be carried out

by 1) considering correlation between single resolution

units over K scans for which the false alarm multiplier is

unity, and 2) applying M(2) to account for the actual cor-

relation window. With respect to step 1, the size of the

correlation window in each scan is one resolution unit. The

corresponding SSP process can be thought of as a combined

experiment of K identical and independent subexperiments

where the kth subexperiment, k = 1, 2, - - , K, consists of
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Curr ent display is ~jEtde,
Scans I through 57 tumber oF reports 47
224522 to 22:5!50
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.
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21,134 false alarms / 57 scans
= 371 false alarms / scan over a 34 degree azimuth

sector

(371 x 360/34)
= 3,928 false alarms per scan before SSP

predicted number of false alarms / scan before SSP
= 4,150

Figure 4.3-1

Flight Test Verification of the Prediction of False Alarms
before SSP with 2 of 3 Post Detection Integration
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a detection trial in the kth scan for the resolution unit in

question. The sample space S for the combined experiment

can be represented by the product space

S = S1 X S2 X S3 X -- X SK (4.3-3)

where the kth sample space, Ski can be partitioned into the

three mutually exclusive events, Fl, F2, and F3. Let the

outcome of the kth experiment be denoted by the event

Ak where Ak is either Fl, F2, or F3. Then, the outputs of

the X subexperiments can be represented in the product space

as

A1 x A 2 x A 3 x -- x AK

For the case of statistical independence,

P(A1 x A 2 x A 3 x -- x AK) = P(A1)P(A2) -- P(AK) (4.3-4)

That is, with independent experiments, the probabilities for

events defined on S are completaly determined from prob-

abilities of events defined in the subexperiments [5].

By the rule established, a 'hit' in the modified J of K

SSP is a union of events F4 and F7. The probabilities of

these events are
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P(F4) = P(F 1) (4.3-5a)

P(F7) = P(F5 n F6) -P(F2)P(F6) ,(4.3-5b)

respectively. Note that

P(F 1) = p3  (4. 3-6a)
f

P(F2) -4 P(-f 3P 3-3ps = 3p2 432

K1i (K-i1)! --
P(F6) - i!K Ej),P(F 1) +P(F2j [P(F3) K-i (4.3-6b)

The equivalent cell false alarm probability after SSP is

given by

P foafe S = P(F4 UF7) .(4.3-7)

Since events F4 and F7 are mutually exclusive,

P "aferSS 2 P(F4) + P(F7) = P(F4) + P(F5)P(F6)

- P(F1) + P(F2)P(F6) . (4.3-8)~

P aarSP is referred to as an equivalent cell false

alarm probability because it applies to the situation in

which the size of the correlation window in each scan is one
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resolution unit. The system false alarms after SSP are now

determined by suitably modifying Eqn. (4.3-1). The first

term remains unchanged since this accounts for the SSP by-

pass. The second term is modified by replacing P(F2) with

P(F7) and multiplying the result by the false alarm multi-

plier MK(2). Consequently, the average number of false

alarms in a scan after SSP becomes

FA/scan1ar SSP = P(F1)n(FI)T E + P(F7)MK(2)n(F2TfE (4.3-9)
Tf . 1  f &2

The first term in Eqn. (4.3-9) is equal to 2 false alarms

per scan. Recall that it is required to be 2 or less by the

baseline specification. For the modified J of K SSP to meet

the same specification, the second term in Eqn. (4.3-9) must

be negligible. With pf=7.6xl0-4 , it follows from Eqns.

(4.3-5b), (4.3-2), and (4.3-6b) that

I.08x10"16  for J=3, K-8
P(F7) =

15.18x10-17 for J=3, K=6

The number of false alarm opportunities, [n(F 2 )TF/Tfa ], was

found in Eqn. (4.3-2b) to be 2.40xi09 . From Table 4.2-1,

the false alarm multiplier MK(2) is

I.35x10 1' for J=3, K=8

I 2.79x106  
for J=3, K=6
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Thus, the second term in Eqn. (4.3-9) yields

(1.08x10")(I.35x10 1 )(2.40xl09 ) = 3.49xO0Ifor J=3, K=8
P(F7)MK(2)[n(F2) Tf

f 2

(5.18x10- 17 )(2.79xl0 6)(2.40xId9 ) = 0.345
for J=3, K=6 .

The above results indicate that a suitable choice for the

target scenario described in Section 4.2 and the modified J

of K SSP is J=3, and K=6.

The conventional J of K SSP is considered next. For this

SSP, the number of slants in a beam dwell is changed from 3

to 2 in the hope of enhancing detection probability. This

change is intended to increase the SNR per slant by increas-

ing the number of pulses coherently integrated. The overall

time overhead per each beam dwell is also reduced because of

one less slant. The threshold is set, somewhat arbitrarily,

such that the resulting false alarms in a single scan before

SSP are equal to those arising from the 2 of 3 post detec-

tion integration used with the modified J of K SSP, as given

in Eqn. (4.3-2c). This enables comparison of the two SSP's

on a common ground.

The average number of false alarms per scan before SSP in
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the modified J of K SSP with 2 of 3 post detection integra-

3tion is approximately 4.15x10. This is equivalent to the

false alarm time of

TF = 2.41XI0- $ secondsTfs = FA/Scanbefore SSP

Now, two additional false alarm events are introduced:

F8: false alarms occur in a scan in both slants of a
2-slant configuration

F9: event F8 in J or more of the K scans.

A false alarm occurs after SSP only if event F9 occurs.

An expression for Pfa(M/N) is given by Eqn. (2.5-24).

Letting M = N = 2, it follows that

Tf,,B eI( i
P-. = P(F8)- T- r (K1f -N j=1

Substituting the numerical values found in Table 2.5-1 gives

P-1= (2.41x10-3(l.25x10 6) (0.479) (0.933) (2) (0.762) (282) (2)
fa 2

- 7.89x10 .

-6. 2Hence, P(F8) equals 1.27xi0 - . Since P(F8) = pf, pf equals
-3

1.13x10 .
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Let n(F8) denote the number of false alarm opportunities

in a false alarm time associated with event F8. The average

number of false alarms per scan, which is equal to 4.15x10 ,

can be written as

FA/S~fl~.tr. -TF

FA/scan, before SSP - P(F8)fn(F8)].T- - 4.15x10 3

It follows that the number of false alarm opportunities in a

scan is

[n(F8)TF 3.27xi09 . (4.3-10)

On the other hand, the number of false alarms per scan after

SSP is

FA/scani ft.r SSP - P(F9)MK(2)[n(F) • (4.3-11)

P(F9) is given by

K W1K-P(F9) = K P(F8)'(1-P(F8)) K '

2.41xl-"n for J=2, K=6

4.09x10 -  for J=3, K=6

From Table 4.2-1, the false alarm opportunity multiplier for

6a scan depth of 6 is 2.79X106. Substitutions of these num-

bers into Eqn. (4.3-11) yields
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2.19xlO for J=2, K=6
FA/scanj.ft. s = .90.37 for J=3, K 6

It is evident that 2 of 6 SSP does not meet the system

false alarm requirement. Suitable values of J and K for the

target scenario described in Section 4.2 and the conven-

tional J of K SSP are J = 3, K = 6.
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4.4 Detection Performance under Modified J of K SSP

Detection performance under the modified J of K SSP using

a 3-slant configuration with 2 of 3 post detection integra-

tion is evaluated in this Section. The performance evalua-

tion is based on the cumulative detection probability under

a one minute time constraint. Let L denote the number of

scans within this constraint. For a 6 revolution per minute

antenna rotational rate for 360 degrees azimuth coverage,

the value of L equals 6. Recall from Sections 4.2 and 4.3

that extending the depth of correlation in SSP beyond 6

scans results in the average number of false alarms grossly

exceeding the system specification when adaptive correlation

windows are designed to accommodate target maneuvers up to

6-g coordinated turns at moderate speeds. Thus, even with-

out the time constraints, associating targets beyond 6 scans

would be impractical if not impossible, when ordinary target

maneuvers are considered. In addition, the problem that

arises in a dense target environment is the possibility of

incorrect correlation of target tracks.

As with the computation of system false alarms presented

in Section 4.3, the following events are defined to fa-

cilitate the analysis:
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Dl: detections occur in all 3 slants of a scan

D2: detections occur in 2 of the 3 slants of a scan
with no detection in the remaining slant

D3: detection occurs in at most one of the 3 slants of
a scan with no detections occurring in the remain-
ing slants

D4: event Dl for the present scan

D5: event D2 for the present scan

D6: event Dl or D2 for J-1 of the past K-1 scans

D7: intersection of event D5 and D6

D8: event Dl in one or more of the L scans

D9: event D2 without event Dl in J or more scans of a
K scan deep sliding window where the window is one
or more subsets of the L scans

D10: complement to the union of events D8 and D9

DI1: event D2 without event D1 in J or more of the
L scans

D12: complement to the union of events D8 and Dll

D13: J or more partial successes occurring in L scans
without the occurrence of a full success but these
partial successes do not occur within a K scan
deep sliding window.

The probability of detection is a conditional probability

which is conditioned on the hypothesis that a target is

present. Consequently, it is assumed for SSP that the

resolution cell occupied by the target in each scan is known

a priori. Therefore, the correlation window used in false

alarm calculations is not applicable to evaluation of the

detection probability.
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As was done for false alarms in Section 4.3, cumulative

detection can be viewed as an event in a combined experiment

having a sample space S. The combined experiment without

SSP consists of L independent and identical subexperiments,

each with its sample space SL, where the Ith subexperiment

is a detection trial in the Lth scan for the resolution cell

in question; = , 2, --, L. The combined sample space is

given by

S=S! X S2 X X xSL.

The Lth sample space can be partitioned into the three

mutually exclusive events Dl, D2, and D3. Let the output of

the Jth experiment be denoted by the event Bt where B4 is

either Dl, D2, or D3. Then, the outputs of the L subex-

periments can be represented in the product space as

BI xB2 x -- x BL.

For the case of statistical independence,

P(Bi xB2 x -- x BL) = P(B1)P(B2) -- P(BL) .

That is, with independent experiments, the probabilities for

events defined on S are completely determined from prob-

abilities of events defined in the subexperiments.
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Without SSP the detection in each scan is independent

from scan to scan. Let Pd denote the detection probability

for a single scan. The cumulative detection probability Pc

is defined to be the probability of detecting a target in

one or more of the L scans. Assuming that the range closure

during this time span is negligible, Pc is given by

PC = I-(1-Pd) L . (4.4-1)

With the modified J of K SSP the cumulative detection

probability cannot be determined from the single scan detec-

tion probability since correlations are involved with detec-

tions in previous scans. As a result, independence no

longer exists from a detection in one scan to the next. Un-

der the modified SSP rule, recall that a 'hit' is declared

in a scan if the event (D4 U D7) occurs. However, because

of the above mentioned dependence between detection trials,

the cumulative detection probability over L scans is not

readily determined in terms of P(D4 U D7). The latter prob-

ability is referred to as the hybrid detection probability

after SSP and is given by

Pd(hyb) = P(D4) + P(D7) . (4.4-2)

A little thought leads to the conclusion that the cumulative
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detection probability for the modified J of K SSP is the

probability of the event (D8 U D9). Note that events D8 and

D9 are mutually exclusive events. Hence,

D8 n D9 = 0 (4.4-3)

where 0 denotes the null set. Also, because D10 is the

complement of D8 U D9,

D8 U D9 U DIO =S .

In addition, note that Dl, D2, and D3, which form a parti-

tion of the sample space Sj, are also mutually exclusive.

For convenience, P, p, and q will be used to designate the

probabilities P(Dl), P(D2), and P(D3), respectively. It fol-

lows that

P = P(DI) = Pd( 3/ 3 ) (p) (4.4-4a)
di d2

p - P(D2) =-2pP(1-P ) + p2 (-P (4.4-4b)
p dl d2 d2 d;2 'drs(44b

q = P(D3) = [(I-Pdl)(-Pd2) 2+2pd2(I-Pdl)(I-pd2)+Pdl( -Pd2)1]

= 1 - P -p . (4.4-4C)

where the overbar denotes averaging with respect to target

RCS fluctuations. The detection probability in the ith

slant Pdi and the method of averaging are developed in Chap-
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ter 3.

From the above discussion, the cumulative detection prob-

ability for the modified J of K SSP is

PCIW/ SSP P(D8 u D9)

= I - P(DlO) (4.4-5)

Since D8 and D9 are mutually exclusive, Eqn. (4.4-5) becomes

Pc Iw/ P = P(D8) + P(D9) . (4.4-6)

Observe that

LL

P(D) - 1 - Pd(3/3)) =1 - (P + qL. (4.4-7)

This corresponds to the cumulative detection probability for

the baseline configuration. Therefore, the second term in

Eqn. (4.4-6) is recognized as the SSP gain. While Eqn.

(4.4-6) reveals some insight into performance, it is simpler

to use Eqn. (4.4-5) for computing P cw/ SSP where P(DI0)

represents the probability of failure (i.e., missing the

target). A failure can arise by having either 1) less than J

partial successes and no full success occurring in L scans

(event D12), or 2) J or more partial successes occurring in

L scans without the occurrence of a full success but the

partial successes do not occur within the K scan deep slid-
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ing window (event D13). Since event D12 and Dl3 are mutu-

ally exclusive, it follows that

P(DlO) = P(D12) + P(D13).

Note that the probability of event D12 is given by

J-1

P(D12) = ( piqL-i (4.4-8)

To count the number of ways to fail in the second case for

l<J<K, J<K<L, the outcomes in events D11 and D9 are consid-

ered for each J, K, and L as appropriate. The difference in

the number of outcomes in D11 and D9 when there are i>J par-

tial successes is denoted by NL(JK). This difference is the

number of ways to fail when at least J partial successes oc-

cur in L scans without the occurrence of a full success.

For each J and given L, P(Dll) is given by

L L
P(D|I) .= ( ) piqL-

This shows, for a given J, that there are exactly

L!/(i!(L-i)!), i = J , -- , L, possible ways for a partial

success to occur in i scans with neither a partial nor a

full success occurring in (L-i) scans. Event D9 is clearly

a subset of event DlI. For i J, the number of elements in

DlI but not in D9, which we have denoted by NLI(J,K), is most

readily counted by forming a table of all possible outcomes
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for event DlI and applying the K scan deep sliding window to

identify those which do not belong to the event D9. Such

tables for J=2 and K<L=6,- and J=3 and K<L=6 are shown in

Tables 4.4-1 and 4.4-2, respectively. Having determined

N J(JK), the probability of event D13 is

L

P(D13) f E N(J' K)piqL1 (4.4-9)

An example illustrates the procedure for computing

Pclw/ SSP when J=3 and K=L=6. From Eqn. (4.4-8), the number

of ways to fail when i<3 is L!/[i!(L-i)!], i = 0, 1, 2. The

corresponding probabilities of failure for these values of i

are

i-l: 6pq5

i --Z. 15p2q4

From Table 4.4-2, the number of ways to fail when i=3 and

i=4 are:

i=3: 0

i=4: 0.

It is obvious that the number of ways to fail when partial

successes occur in 5 or more scans is zero. Hence, P(DlO) =

P(Dll) for i>5. Using the above results in Eqn. (4.4-5)
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Table 4.4-1 Vaws to Fail in J=2 of sL=6 SSP

Combinations of 1.2 Partial Successes and 4 Failures over L=6

Seems (15 possible ways for the paq 4 teruj

Scan No.
1 11111 0 0 0 0 0 0 0.0 0 0
2 1 0000 1 1 1 1 000000
3 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
4 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
5 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
6 0 0 0 0 1 0 0 0 1 0 0 1 0 11 A (2,K)

Scan Number of Ways
Depth (K) to Fail

2 x x x x x x x x x x 10
3 x x x x x x 6
4 x x x 3
5 x 1

6 or more 0

Combinations of 1.3 Partial Successes and 3 Failures over Ln6

Scans 120 possible ways for the pq3 tru)

Scan No.
1 1111111111 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
3 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0
4 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1
5 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 16 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 N 3(K

6 0 1 10 0 0
Scan Number of Ways

Depth (K) to Fail
2 x x x x 4

3 or more 0
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Table 4.4-2 Ways to Fail In J=3 of M=6 SSP

Combinations ot l.3 Partial Successes and 3 Failures over L=6

Scan 20 possible ways for the p~q3 term)

Scan No.
1 I I I I I I I I I 1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
3 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0
4 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1
5 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1
6 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1  l1-6(3K)

Scan Number of Ways
Depth (K) to Fail

3 x x xx x x x x x x X x x xx x x 16
4 x x x x x x x x x x 10
5 x x x x 4

6 of more 0

Combinations of 1.4 Partial Successes and 2 over Lw6 Scans

US possible ways for the pVq2 term)

Scan No.
1 I I I I I I I I I 1 0 0 0 0 0
2 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0
3 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1
4 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1
S 0 1 0 1 0 1 1 0 I 1 1 0 1 1 1
6. 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 N4(3,K)

Scan Number of Ways
Depth(K) to Fail

3 x x x xx x 6
4 x 1

5 or more 0
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yields

PC ,/ P = I - P(DIO) = I - (q646pq5+15p 2q4 ) . (4.4-10)

The alternate form of Pcjw/ SSP by Eqn. (4.4-6) is

PC [w/ SSP P(D8) + P(D9) = I - (l-P)L + P(D9)

= 1 - (I - P)6 + [ 20p3 q3+15p 4q2+6p~q4p6/]/ " (4.4-11)

That the above two expressions yield the same numerical re-

sult is illustrated in Table 4.4-3. In this example, it is

assumed that Pdl = Pd2 for simplicity such that the detec-

tion probabilities in all 3 slants are identical. This is

equivalent to using one average beam shape loss for each of

the 3 slants. The result of the example is of course ex-

pected. That Eqns. (4.4-10) and (4.4-11) are identical can

be shown by substituting (p+q) for P in Eqn. (4.4-10) and

carrying out the algebra:

PCjW/ ssP M P(D8) + P(D9) = 1 - (I-p)L + P(D9)

= 1- E p6 46p'q+15p4q2+2op3qS+15p 2q4+6pq4q]

+ [ 20p3q3+15p 4q2+6p5q+p6]

- I - (q6+6pq5+15p 2q4) .

Following the same procedure, the expressions for

Pc w/ SSP for J=2 and for J=3, and k<L=6 are determined.
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Table 4.4-3

An Illustration for Computing P IV/ SSP by Two Formulas

(3-Slant Configuration with 6-Scan Deep SSP)

p P(D8) P iw/ SSP P 1w/ SSP

Egn.4.4-5 Ean.4.4-6

0.1177031 0.0664269 0.0902742 0.6902744
0.1406250 0.0901633 0.1280342 0.1280342
0.1644844 0.1184709 0.1744983 0.1744984
0.1890000 0.1514509 0.2294627 0.2294628
0.2138907 0.1890810 0.2920931 0.2920930
0.2388750 0.2312025 0.3609468 0.3609468
0.2636719 0.2775120 0.4340711 0.4340711
0.2880000 0.3275578 0.5091608 0.5091610
0.3115782 0.3807418 0.5837611 0.5837610
0.3341251 0.4363300 0.6554816 0.6554816
0.3553594 0.4934678 0.7222001 0.7222000
0.3750000 0.5512050 0.7822266 0.7822268
0.3927657 0.6085276 0.8344148 0.8344150
0.4083750 0.6643983 0.8782052 0.8782053
0.4215469 0.7177992 0.9136057 0.9136057
0.4320000 0.7677816 0.9411144 0.9411142
0.4394531 0.8135140 0.9616017 0.9616016
0.4436250 0.8543281 0.9761709 0.9761709
0.4442344 0.8897591 0.9860174 0.9860175
0.4410001 0.9195747 0.9923041 0.9923042

-proQram used for computation:

10 P1 - .2
20 PRINT "  P PC PCi PC2"
30 FOR I = 1 To 20
40 P1 = P1 + .025
50 PP - P1^3
60 p = 3*P1^2*(1 - P1)
70 Q= 1 -P -PP
80 PCi = 1 - (Q6 + 6*P*QA5 + 15*PA2*QA4)
90 PC = 1- (1 - PP)^6
100 PC2 = PC + 20*PA3*QA3 + 15*PA4*QA2 + 6*PA5*Q + P 6
110 PRINT USING " 1.####f##"; P, PC, PCI, PC2
120 NEXT
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The results are listed in Table 4.4-4. Using these formulas

and Eqn. (4.4-4), cumulative detection probabilities as a

function of scan depth K for the 5 target models are com-

puted by numerical integration. The results are shown in

Table 4.4-5 (a) through (f) for Swerling cases 1 through 4

and Marcum target models.

Recognizing that the baseline configuration corresponds to

a scan depth of unity, it is evident from Table 4.4-5 that a

only a modest improvement is achieved by SSP. In an attempt

to explain more optimistic projections by other investiga-

tors, both the interim detection probabilities arising from 2

of 3 post detection integration before SSP and the hybrid de-

tection probabilities after SSP, defined by Eqn. (4.4-2) are

computed. The former is given by

Pd(3/3) = P(DI) + P(D2)

while the latter is given by

Pd(hyb) = P(D4) + P(D7).

Values of J=3 and K=8 were used for evaluating Pd(hyb) in or-

der to get more optimistic results. Numerical results for

these quantities are shown in Table 4.4-6 (a) through (e) for

Swerling cases 1 through 4 and Marcum target models. Cumula-

tive detection probabilities under the scan limit of L=6 for

both with and without SSP are also shown. These results are
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Table 4.4-S. Cumulative Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead, as a Function of Scan Depth Used

a. Swerling Case 1

c W/ hssp In 6 scans for 2 of X SSP Pc w/ sspin 6 scans for 3 of K SSP
-oN scan depth used scan depth used

(d) Pd(3/3).l 2 3 4 5 S 2 3 4 S

10.6 .163 .66 .71 .74 .7S .77 .77 .6i .66 .67 .67 .58 .63
19.2 .17S .69 .74 .76 .78 .79 .80 .63 .69 .69 .70 .71 .72
10.4 .188 .71 .76 .79 .80 .81 .32 .71 .71 .72 .73 .74 .75
10.6 .201 .74 .79 .81 .83 .83 .84 .74 .74 .75 .76 .77 .77
10.1 .215 .77 .81 .83 .9S .85 .5i .77 .77 .M7 .78 .79 .80
11.9 .229 .79 .83 .85 .86 .87 .69 .79 .79 .80 .81 .81 .82
11.2 .243 .81 .85 .87 .88 .89 .89 .81 .81 .82 .83 .83 .84
11.4 .257 .83 .87 .89 .S0 .90 .91 .83 .83 .84 .85 .A5 .86
11.6 .272 .85 .89 .90 .91 . 2 .92 .As .85 .86 .87 .97 .08
11.0 .297 .87 .90 .91 .92 .93 .93 .87 .87 .88 .88 .89 .89
I'.6 .302 .99 .91 .93 .S3 .94 .94 .98 .88 .89 .90 .90 .91

12.2 .310 .9 93 .94 .94 .9s .35 .90 .90 .91 .91 .92 .V2
12.4, .333 .91 .94 .95 .95 .96 .35 .91 .91 .92 .92 .93 .93
12.6 .349 .92 .95 .95 .96 .96 .96 .92 .92 .93 .93 .94 .94
12.8 .36S .93 .95 .96 .97 .97 .97 .93 .93 .94 .94 .95 .95
13.6 .381 .94 .96 .97 .97 .97 .97 .94 .94 .95 .95 .9 .6

b. Swerling Case 2

Pc w/ ssp in 6 scans for 2 of KSSp Pc w/ ssp in 6 scans for 3 of KSSP

So/N scan depth used scan depth used
(dB)Pd(3/3) 1 2 3 4 s 6 1 2 3 4 5 6

10.6 .037 .2" .39 .47 .sZ .s .57 .N0 .29 .24 .28 .31 .. 3
16.z .642 .23 .43 .S1 .Ss .S9 .61 .23 .23 .27 .32 .35 .3-
16.4 .848 .2S .47 .Ss .60 .63 .6S .25 .25 .31 .35 .39 .42
10.6 .054 .28 .S1 .60 .64 .61 .69 .28 .28 .34 .39 .43 .46
10.8 .so .31 .55 .64 .68 .71 .73 .31 .31 .3- .43 .49 .50
11.6 .067 .34 .59 .68 .72 .75 .7i .34 .34 .41 .47 .52 .55
11.2 .075 .37 .63 .71 .7S .78 .86 .37 .37 .4S .S1 .56 .59
11.4 .683 .49 .67 .75 .79 .81 .93 .40 .40 .49 .5 .60 .63
11.6 .A1 .44 .70 .79 .82 .84 .9 .44 .44 .M .S9 .i4 .61
11.9 .160 .47 .74 .91 .94 .87 .8 .47 .47 .Si .63 .6a .71
12.6 .110 .50 .77 .84 .87 .89 .90 .50 .SO .60 .67 .72 .75
12.2 .120 .54 .9 86 .89 .91 .92 .SA .S4 .64 .71 .75 .78
12.4 .131 .S7 .03 .88 .91 .92 .93 .57 .S7 .67 .74 .79 .81
12.6 .142 .66 .9s .90 .92 .94 .94 .69 .60 .71 .77 .92 .94
12.8 .1S4 .63 .87 .92 .94 .95 .96 .63 .63 .74 .80 .84 .87
13.6 .166 .66 .89 .93 .95 .96 .96 .66 .66 .77 .93 .97 .59
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Table 4.4-5 Cumulative Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead, as a Function of Scan Depth Used

(Continued)

c. Swerling tase 3.

Pc w/ ssp in 6 scans for 2 of K SSP PQB / sspin 6 scans for 3 of K SSP

f/N scan depth used scan depth used
(dB)Pd(3/3) 1 2 3 4 S 6 1 2 3 4 5 6

1.9 .139 .59 .69 .73 .75 .77 .78 .S9 .S9 .61 .63 .6s .66
13. .153 .63 .72 .76 .79 .8 .81 .63 .63 .As .67 .69 .78
11.4 .198 .97 .76 .88 .82 .83 .84 .67 .67 .69 .71 .73 .74
16.6 .184 .71 .79 .93 .84 .86 .96 .71 .71 .73 .75 .76 .77

16.3 .201 .74 .82 .As .87 .99 .9 .74 .74 .76 .78 .79 .90
11.6 .219 .77 .es .88 .9 9 . .1 .77 .77 .79 .81 .82 .83
11.2 .237 .89 .97 .99 .91 .92 .82 .8 .88 .82 .84 .As .as
11.4 .256 .83 .89 .92 .93 .93 .94 .83 .3 .As .9 .97 .98
11.6 .27S .86 .91 .93 .94 .95 i5 .96 .96 .97 .e9 .90 .So
11.9 .295 .88 .93 .94 .95 .96 .96 .98 .89 .89 .91 .91 .92
12.6 .316 .96 .94 .96 .96 .97 .97 .93 .96 .9l .S2 .S3 .94
12.2 .337 .92 .95 .96 .97 .97 .98 .92 .92 .93 .94 .94 .95
12.4 .3S8 .93 .96 .97 .98 .98 .98 .93 .93 .A4 .95 .96 .96
12.6 .380 .94 .97 .99 .99 .9 .99 .94 94 As .S A9 .97
12.0 .462 .95 .98 .9 9 .99 .9 .95 .95 .96 .S7 .97 .97
13.6 .424 .96 .99 A9 .99 .99 .99 .96 .96 .97 .98 .AS .98

d. Swerling Case 4

Pc w/ ssp in 6 scans for 2 of K SSP Pc w/ sSpin 6 scans for 3 of K SSP
So/N scan depth used scan depth used
(dB) Pd(3/3) 1 2 3 4 S 6 1 2 3 4 S 6

10.. 04S .46 .S5 .68 .63 .5 .24 .24 .30 .34 .38 .41
16.2 .053 .29 .S .60 .6S .69 .70 .29 .28 .34 .39 .44 .46
16.4 .061 .31 .57 .65 .70 .73 .74 .31 .31 .38 .44 .49 .A,
16.6 .670 .35 .62 .70 .75 .77 .79 .35 .35 .43 .So .55 .so
14.8 .903 .39 .67 .7S .79 .81 .83 .39 .39 .48 .SS .60 .63
11.6 .691 .44 .71 .79 .83 .85 .86 .44 .44 .S3 .6 .65 .69
11.2 .103 .48 .76 .93 .96 .98 .89 .48 .49 .58 .65 .7 .73
11.4 .116 .52 .90 .86 .99 .91 .92 .52 .52 .63 .70 .75 .79
11.6 .130 .57 .83 .89 .91 .93 .94 .S7 .57 .68 .75 .79 .82
11.9 .146 .61 .86 .Al .93 .A5 .As .61 .61 .72 .79 .83 .86
12.6 .162 .A5 .89 .93 .95 .96 .96 .AS .6S .77 .93 .86 .89
12.2 .179 .69 .91 .95 .96 .97 .97 .69 .69 .89 .96 .89 .91
12.4 .197 .73 .93 .96 .97 .99 .99 .73 .73 .94 .89 .92 .93
12.6 .217 .77 .9 .97 .98 .99 .9 .77 .77 .87 .91 .94 .9s
12.9 .237 .90 .96 .98 .99 .99 .99 .80 .80 .90 .93 .9S .96
13.0 .257 .83 .97 .99 .99 .99 .99 .83 .93 .2 .95 .S7 .97
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Table 4.4-5 Cumulative Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead, as a Function of Scan Depth Used

(Continued)

e. Marcum (Non-Fluctuating Case)

Pc w/ ssp In 6 scans for 2 of K SSP Pc w/ ssp in 6 scans for 3 ofK SSP

9'o1N scan depth used scan depth used
(dB) Pd(3/3) I 2 3 4 5 6 I 2 3 4 5 S

13.3 .iS2 .28 .54 .64 .69 .72 .73 .28 .28 .35 .42 .47 .51
12.2 .364 .33 .62 *.71 .75 .78 .86 .33 .33 .42 .49 .5 .58
14.4 .379 .39 .69 .78 .82 .84 .85 .39 .39 .SO .57 .63 .56
13.6 .As .4S .78 .83 .87 .89 .90 .45 .45 .57 .65 .71 .74
13.8 .115 .52 .82 .88 .91 .92 .93 .S2 .S2 .65 .73 .78 .81
11.9 .137 .59 .87 .92 .94 .95 .96 .s9 .59 .72 .79 .84 .86
I 1.2" .162 .65 .91 .95 .96 .97 .98 .S .65 .79 .85 .89 .91
11.4 .191 .72 .94 .97 .S8 .98 .99 .72 .72 .85 .98 .93 .94
11.6 .223 .78 .96 .98 .99 .99 .99 .78 .78 .89 .93 .96 .97
11.8 .258 .83 .98 .99 .99 1.31 1.63 .83 .83 .93 .96 .97 .98
12.6 .296 .88 .99 1.6 1.36 1.0 1.80 .88 .88 .96 .98 .99 .99
12.2 .336 .91 .99 1.9 1.03 1.00 1.00 .91 .91 .97 .99 .99 1.09
12.4 .379 .94 1.63 1.00 1.00 1.00 1.06 .94 .94 .99 .99 1.03 1.00
12.6 .425 .AS 1.30 1.360 1.313 1.60 1.03 .96 .98 .99 1.06 I ' 1.30
12.8 .471 .98 1.33 1.33 1.00 1.66 1%0 .98 .98 1.90 1.36 1.00 L.O0
13.0 .519 .99 1.3, 1.36 1.33 1.03 1.1o .99 .99 1.00 2.88 1.00 1.18
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Table 4.4-6

Probability of Detection vs. SNR, 3-Slant,

Normal Time Overhead

Pfa Pf rT(dB) LBS1 (dB) LBS1 (dB)

0.339xI0 - 9  0.760xI0-3  8.5626 0.296 3.429

a. Swerling Case 1 PC PC
Pd Pd- Pd wo w

S/ (3/3) (2/3) (hyb) ssp ssp

10.00 .16 .33 .28 .6s .69
10.20 .18 .34 .30 .69 .72
1e.40 .19 -3s .32 .71 .75
10.S .20 .37 .34 .74 .77
10.80 .21 .39 .3s .77 .80
11.00 .23 .40 .8 .7S .S
11.20 .24 .4: .40 .81 .84
11.40 .n6 .44 .41 .83 .86
11.60 .27 .45 .43 .95 .86
11.80 .29 .47 .45 .87 .AS
12.00 .30 .48 .47 .8s .!I
12.20 .32 .50 .49 .90 .97
12.40 .33 .5i .50 .91 .93
32.60 .35 .53 .62 .9 .94

12.80 .36 .54 .53 .93 .95
13.00 .38 .56 .53 .94 .96

b. Swerling Case 2 Pc
w/o

(B (3/3) (2/3)(hyb) ssp ssp

1o:0o .04 .Z7 .18 .20 -.33
10.20 .04 .29 .21 .23 .37
10.40 .As .31 .L3 .2s .:
10.S .as .33 .:6 .28 .46
10.90 .06 .3s .29 .31 .S
11.00 .07 .37 .31 .34 .SS
11.20 .0 7 .40 .34 .37 .53
11.40 .08 .42 .37 .40 .63
11.S0 .09 .44 .46 .44 .s
11.80 .10 .4S .43 .47 .71
12.00 .11 .4s .45 .sa .7S
1!.20 .12 .SO .48 .54 .78
12.40 .13 .s .s1 .S7 .81
32.60 .14 .SS .s3 .60 .84
12.80 .Is .57 .Ss .63 .87
13.00 .17 .S9 .sa .66 .89
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Table 4.4-6

Probability of Detection vs. SNR, 3-Slant,

Normal Time Overhead (cor.t'd)

c. Swerling Case.3

Sro/N Pc PcLA) Pd(3/3) Pd(2/3) Pd(hyb) w/ossp w/ ssp
10.00 .13901 .34330 .5998 .59S4 .SS821
10.Z .15332 .37020 .31661 .63159 .6978s
10.40 .1684S .3913S .3S342 .66341 .73s57
10.60 .18444 .41Z68 .38 11 .70S73 .77043
10.80 .20120 .43411 .40634 .74021 .802761l.00 .21873 *4SSSa .4326 .772S9 .83210
11.20 .23697 .47702 .45805 .80264 .8864
11.40 .2S588 .49836 .48294 .830Z2 .88209
11.60 .27540 .S19S4 50718 .85325 .90263
11.80 .Z9S47 .5405 .-3072 .87770 .92079
12.00 .31602 .6118 .E354 .89761 .93Ss
12.20 .33700 .581 3 .57563 .91507 .94834
12.40 .35832 .60149 ,Sa701 .93019 .9500
12.60 .37992 .62103 .6176 .94315 .96779
12.60 .40171 .64010 .63760 .95414 .9749Z13.30 .42363 .65867 .5683 .96234 .9865S

d. Swerling Case 4

So/N Pc PC(d.B Pd(3/3) Pd(2/3)Pd(hyb) w/ossp w/ ssp
10.00 .04S10 .31140 .25ee .24329 .40765
10.20 .85270 .33725 .26435 .27735 .4s:6410.40 .06087 .36390 .29999 .31397 .51890
10.60 .06997 .39120 .33646 .35287 .57526
10.90 .08003 .41902 .7321 .3S37 .630S:
11.00 .09108 .44721 .40979 .43617 .6235311.20 .10317 .47562 .44578 .47965 .73327
11.40 .I1629 .50409 .46088 .52374 .77919
11.6 .13048 .S3247 .51485 .56779 .81986
11.80 .14571 .56060 ,54757 .61127 .85578
12.00 .16197 .58834 .57894 .65361 .996S8
12.20 .17924 .61554 .60893 .69430 .91240
12.40 .19746 .64208 .63755 .73297 .9335712.60 .21665 .66784 .65481 .76893 ,85054
12.80 .23668 .69273 69075 .90219 .96385
13.00 .25750 .71663 .71537 .83243 .97406
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Table 4.4-6

Probability of Detection vs. SNR, 3-Slant,

Normal Time Overhead (cont'd)

e. Marcum (Non-Fluctuating Case)

So/N Pd Pd Pd P'o PC
(dB) (3/3) (2/3) (hb.) ssp .ssp
10.00 .0S .36 ;29 .25 .53
10.20 .A6 .40 .35 .33 .Sa
10.40 .08 .44 .40 .39 .6i
10.60 .10 .49 .46 .45 .74
10.80 .11 .s53 .51 .S .81
11.00 , 14 . .. 7 .= .8
,.20 .16 .6: .6i .63 .S1
1.40 .19 .69 .66 .7: .94

11.60 .22 .71 .70 .78 .97
I1.80 .26 .75 .74 .A- .96
12.00 .30 .78 .78 .88 .99
12.20 .34 .8: .62 .91 1.00
12.40 .3s .85 .As .94 1.00
12.50 .42 .86 .98 .96 1.00
1:.S0 .47 .90 .80 .Sj 1.00
1 .00 .52 .92 .9. .9 1.00
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also plotted in Figures 4.4-1 through 4.4-5. The measure of

improvement can be obtained by drawing a horizontal line

passing through the ordinate at 0.9 and comparing the differ-

ence in (S0/N) for cumulative detection probabilities with

and without SSP for each of the models. The improvement mea-

sured this way is 0.2 dB, 2.0 dB, and 0.9 dB for Swerling

case 1, case 2, and Marcum target models, respectively. A

larger improvement can be claimed if a similar comparison is

made between Pd(3/3) and Pd(2/3) or Pd(hyb) at a level of

0.32 probability or at any other level. Even a larger im-

provement can be claimed if the cumulative detection prob-

ability with SSP is compared against Pd(3/3).

A set of computations were also made using the reduced

time overhead. The result for Swerling case 1 is given in

Table 4.4-7. The difference in detection performance be-

tween the two cumulative detection probabilities, one with

and the other without SSP, is almost identical to that based

on the normal time overhead as expected.
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Table 4.4-7 Probability of Detection vs. SNR, 3-Slant,

Reduced Time Overhead, Swerling Case 1

-9-0IN PC PC
JdE) Pd(3/3) Pd(2/3J P4Whb)w/O Asp w/ ssp

9.50 .08526 .21392 .14460 .41414 .43747

8.70 .0937S .22749 .16027 .44602 .47107

8.90 .10276 .24140 .17671 -.47827 .50490

9.10 .11229 .25562 .19384 .51066 .53865

S.30 .12234 .27012 .21)57 .54296 .S7213

9.50 .13290 .28487 .22990 S574S7 .60504

S.70 .14396 .29984 .24843 .603647 .63716

9.90 I1SSSO .31500 .26738 .6372S .66828

10.10 Tr67S0 .33032 .29653 .6671" .6e'970

10.30 .17996 .34577 .30S79 .69591 .72676

10.50 .19285 .36132 .32509 .72348 .7S393

10.70 .20614 .37693 .34434 .74971 .77929

10.90 .21982 .39258 .36346 .77449 .8030e

11.10 .2338S .40823 .38240 .79775 .82515

11.30 .24819 .4:6387 .40111 .81944 .8450

11.50 .26294 .43946 .41953 .83954A .86412-

ti.70 .27775 .4S497 .4376S .95805 .8810

11.90 .292-99 .47039 .4AS S44 A7499 .89526

12.10 . 3 0822 .48568 .A74182 .89040 .91013

12.30 .32373 .50083 .48986 .90434 S"&:37

12.S0 .33937 S515al S506513 .91687 .933:6

11.70 .35511 .53061 .5276 .92907 .942971

1S.e .37092 .54521 SUEZ6 .93802 .95)3-0

13.1 .38677 -S5953 SZ-409 .94682 .95966

13.30 .40253 S57373 .5S317 SS4SS .96504

13.50 .41847 .08763 .S8387 .9513-& .970SS

13.70 .43426 . 60 1 27 .59918 .9672 1 .97530

13.90 .44997 .51465 .6 1212 .97231 .97935

14.10 .4G5S8 .6Z774 .625S69 .97670 .98291

14.3e .498107 .64055 .63899 .99047 .995T3

14.50 .40641 .65308 G61730 .98369 .92620

14.70 .51158 .66530 .66422 .99642 .990:7

14.90 S52657 .5?772 .67636 S98874 .99:00

15.10 .54134 .6as8A .68816 .99069 .9534

15.30 .53590 .70016 .6B96) .992t33 .9946S

15.50 S57e2l .71116 .71073 .99370 .99564

15.70 .58429 .712187 .72153 .99484 .99646

15.90 .598 .7322S .73199 .99578 .99714

16.10 .61160 .741235 .74214 .99657 .99769

16.30 .62485 .75214 .75198 .99721 .99814

16.50 .63780 .76163 .76150 .99774 .99850

16.70 .65045 .770182 .77072 .99818 .99880

16.90 .66291 .77972 .77964 .99853 . 99904

17.10Q .67486 .7863"2 .7827 .99821 .99923

17.30 .68659 .79665 .79661 .99905 .999--s

17.50 .6980'" .80470 .90466 .99924 .99951
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4.5 Detection Performance under Conventional J of K SSP

Finally, detection performance using conventional J of K

SSP is examined where K equals the number of scans L. This

is based on 2-slant, 2 of 2 post detection integration for

the reasons stated in Section 4.3. In addition to the

events introduced in Sections 4.3 and 4.4, the following two

are defined:

D14: detections occur in both of the 2 slants in the 2-
slant configuration

D15: event D14 occurs in J or more of the K=L scans

The single scan detection probability P(D14) is given by

P(DI4) - Pd(2/2) 2 (4.-1
(4.5-1)

where Pdl denotes the single slant detection probability and

the method for averaging with respect to target RCS fluc-

tuation is as described in Chapter 3.

The cumulative detection probability is

Pei w/ P = P(D15)
K (K~p

E p Pd) K  (4.5-2)

Results for the single scan detection probabilities P(D14),
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obtained by numerical integration, are listed in Table 4.5-1

and are plotted in Figure 4.5-1 for the 5 target models.

The cumulative detection probabilities P(D15) for J=2 and

J=3 with K-6 are shown in Table 4.5-2 for the same target

models. They are plotted in Figures 4.5-2 and 4.5-3 for J=2

and J=3, respectively. Recall from Section 4.3 that the

choice J=2 and K-6 results in increased false alarms beyond

an acceptable level. Therefore, comparison with the

baseline configuration is made for the case where J=3.

The above results are based on using the reduced time

overhead. Hence, they should be compared with the baseline

results which are also based on the reduced time overhead.

Because the integrated signal-to-noise ratio is configura-

tion dependent (i.e., depends on the number of slants in a

beam dwell), it is necessary to introduce a reference range

so that a common reference point in signal-to-noise ratio

can be established for different configurations. The refer-

ence SNR for the baseline is 12.2 dB. This means that the

received So/N from the reference target located at the ref-

erence range is 12.2 dB for the baseline. When the reduced

time overhead is assumed in the baseline, the number of

pulses for integration increases such that the received S0/N

from the reference target at the reference range increases

to 13.5 dB. In the 2-slant configuration, SNR per slant is
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Table 4.5-1 Single Scan Probability of Detection vs. SNR,

2-Slant with a Reduced Time Overhead

Pfa -6 Pf . 3fl N rT LBS
1.197x0 1.-o94X10 2 2 8.Z74 2.S28

So/N (dB) SUl SW2 SW3 SU4 MARCUM
------------ -------------
11.00 .311 .177 .329 .222 .315
11.20 .326 .189 .348 .248 .354
11.40 .342 .202 .369 .260 .395
11.60 .358 .215 .391 .280 .438
11.80 .373 .229 .412 .30 .483
12.00 .389 .243 .434 .322 .529
12.20 .405 .258 .456 .343 .57S
12.40 .420 .272 .477 .365 .621
12.60 .436 .287 .499 .389 .666
12.80 .452 .302 .528 .410 .710
13.00 .4S7 .318 .542 .433 .751
13.20 .483 .333 .5G2 .456 .790
13.40 .498 .349 .583 .478 .825
13.60 .513 .364 .603 .501 .957
13.80 .528 .380 .623 .523 .885
14.00 .543 .396 .642 .545 .909
14.20 .557 .412 .661 .567 .930
14.40 .571 .427 .679 .58 .947
14.60 .585 .443 .696 .609 .961
14.80 .599 .459 .713 .630 .971
15.00 .612 .474 .730 .649 .980
IS.20 .626 .489 .746 .669 1.000
15.40 .638 .50O .761 .67 1.000
15.60 .651 .520 .775 .705 1.800
15.8 .663 .535 .789 .722 1.800
16.00 .675 .549 .802 .739 1.000
16.20 .687 .564 .815 .755 1.000
16.40 .699 .578 .827 .770 1.00
16.60 .710 .592 .838 .785 1.00
16.80 .728 .605 .949 .799 1.00
17.00 .731 .619 .959 .812 1.00
17.29 .741 .632 .968 .824 1.800
17.40 .751 .644 .877 .836 1.80

17.68 .760 .657 .986 .847 1.00
17.980 .770 .S69 .894 .58 1.00
18.00 .779 .681 .981 .868 1.00
18.20 .787 .693 .909 .877 1.000
18.40 .796 .704 .915 .96 1.00
18.60 .804 .71S .921 .894 1.00
18.80 .811 .725 .927 .902 1.000
19.0 .819 .736 .933 .909 1.888
19.20 .826 .746 .938 .916 1.000
19.40 .833 .755 .942 .922 1.000
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Table 4.5-2 CUMULATIVE PROBABILITY OF DETECTION VS. SNR. 2-SLANT,
PULSE NORMAL WITH A REDUCED TIME OVERHEAD

2 of 6 SS 3 of 6 SSP
(dB) .5w.2 SW3.. -SW4 MOJM SWi . SW2 S43 5W4 MARCW4

C.O .1492 .09 -6976 .62S8 .0141 .6244 .6619 .6122 .915t .Sees0.26 .179S .6346 .1162 .6329 .6196 .6304 .6624 .6163 .0622 .00101.40 .1934 .6410 .1306 .6418 .6269 .6372 .6033 .6226 .6033 .66160.66 .2199 .GS82 .1643 .G517 .0370 .94S7 .0943 .0295 .004S .60288.80 .2472 .0608 .1934 e065s .6517* .0560 .9858 .0372 .0068 .00459.60 .2761 .6722 .22S9 .009 .68S '.967S .6676 .0482 .691~ .00719.20 .3054 east1 .2592 .9999 .9915 .9902 .6191 .9607 .0126 .01119.4" .3373 .1009 .2956 .1262 .1292 .9S2 .9138 .9759 .0172 .017"t
2.60 .3692 .1182 .3348 .1429 .156 .Ills .0167 .6946 .0227 .92S]
9.80 .4035 .1365 .3766 .1799 .2093; .1369 .6211 .1156 .0364 .039S16.866 .4359 .1579 .4205 .2326 .2529. .1494 .6267 .1406 .9402 .657910.20 .4768 .1799 .4637 .2353 .3127 .1726 .0330 f1679 .0516 .083619.40 .5636 .2049 .5692 .2713 .3915 .1955 .0419 .1989 .0655 .118"10.60. .5379 .2306 .5513 .3127 .4542 .2213 .0499 .2329 .936 .161619.90 .5711 .2S68 .594S .3545 .5S334 .2483 .0597 .2698 .1939 .2179

11."0 .6033 .2993 .6392 .3986 .6116 .2763 .6727 .3091 .1277 .283911.26 .6342 .3176 .6772 .4422 .6994 .3952 .99 .3489 .1539 .36i011.40 .6667 .3496 .7194 .4996 .7S89 .3368 .1014 .3915 Jes56 .445311.60 .9957 .3915 .752S S53SS .9212 .3691 .1182 .4370 .2196 S534111.90 .7224 .4159 .7849 .S799 .6739 .39S8 .1377 .4996 .2557 .623912.00O .7492 .4494 .8259 .6261 .9i55 .4329 .155 .5259 .2974 .7099
12.20 .7744 .4849 .8437 .6676 .9463 .4669 .1823 .5766 .3389 .794512.48 .7965 .5174 .0675 .7093 .9679 .4971 .2957 .6122 .3834 SASS512.60. .810S .5513 .9997 .7476 .9920 .530 .2326 .6544 .4399 .899212.80 .9399 S5S41 .9093 .7919 .9907 .5625 .2S94 .6936 .4764 S93--
13.90 .9565 .6179 S9252 S9I4S .99S4 .5925 .29S7 .7313 .5239 .9913.26 .9739 .6402 .9306 .8437 .999O .6239 .3199 .7642 S5796 .979813.46 .3897 .6796 .1566 .686 .9992 .6525 .3509 .796S .6141 .989613.60 .9623 .7965 .9664 .0916 .9997 .6993 .3914 .9249 .6591 .99s;13.60 .9147 .7343 .9607 .9107 .9999 .7072 .4143 .9511 .6993 .997814.00. .9259 .7604 .97S2 .9274 1.0090 .7330 .4"74 .8737 .7364 .999114.26' .9354 .7949 .9907 .9416 1."G99 .7562 .496 .0942 .772_91 .999"?14.46 .9440 .9064 .9850 .9532 )100 .7783 S51is .9116 .9938 .999914.60 .9517 .9276 .9994 .9630 1.9600 .7994 .5443 .92r13 .9336 1.999614.39 .95S6 .9473 .9911 .9712 1.6966 .8t94 .5756 .9394 .9596 1.00015.60 .9643 .8643 .9933 .9774 1.1966 .6370 .6063 .9569e .9915 1.9999
5S.20 .9698 .8800 9956 .9927 1.9990 .8548 .6354 .9663 .9622 1.96
15.40. .9749 .8952 S9963 .9967 1.61969 .9691 .6656 .9679 .91B7 1.0669
I 5.go'970 .903 .9972 .9999 1.9996 .9837 .6936 .9741 .9334 1.09915.96 .9912 .9261 .9979 .9923 1.199 .81162 .7194 .9794 S94SS 1.000
16.006 .9041 .9301 .9995 .9943 1.9909 .9979 .7431 .9936 .9S63 1.9960
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higher because of one less slant into which the available

number of pulses must be divided and the reduction of the

number of fixed time overheads from 3 to 2. The net effect

.is that S0/N for the reference target at the reference range

increases to 16.0 dB. To make a performance comparison at a

specific cumulative detection probability level, e.g., at

0.9, the SNR margin for each of the competing configurations

is first determined. The margins are compared and the con-

figuration having the larger positive margin is superior by

an amount equal to the margin difference. Figure 4.5-4 il-

lustrates this procedure using some fictitious numbers.

configuration A configuration B

.o0.9 L-- --- ----------.-ao.9---------- -------
0 0

margin 0 margin
V 3.5dB 7.0dB

* 0

10 13.5 9.0 16.0

reference SNR reference SNR

Configuration B is superior to configuration A by

marginif . B - margin 1 config. A m 7.0 -3.5 - 3.5 dB

Figure 4.5-4

Illustration of Performance Comparison Method
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The SNR margin for Pc=0.9 for the baseline using reduced

time overhead is 1.3 dB for a Swerling case 1 target.

Similarly, for the conventional SSP with J=3, K=6, the SNR

margin is 0.1 dB as can be seen from Table 4.5-2. There-

fore, the performance under the conventional 3 of 6 SSP is

inferior to the baseline performance by 1.2 dB!

A totally different conclusion can be drawn if the cumu-

lative detection probability under SSP is compared with the

single scan detection probability of the baseline. In the 3

of 6 SSP, Pc=0.9 was reached at S0N= 15.9 dB for a

Swerling case 1 target giving the margin of 0.1 dB. The

values of S0/N required to reach Pd = 0.9 in a single scan

of the baseline for Swerling case 1 target is 23.0 dB. The

SNR margin is 13.5 less 23.0 dB, or -9.5 dB. The difference

between the two is 9.6 dB in favor of the 3 of 6 SSP. This

form of comparison is made by some investigators. Ob-

viously, this results in an erroneous conclusion.

The correct assessmentlis that there is marginal improve-

ment with SSP. This conclusion confirms Barton's assertion

that the simple single scan approach is preferred even for a

stationary target when the scan depth used for correlation

is less than 6 (4). Scan depth beyond 6 is impractical

in most realistic target environments where targets can pop

1. for the cases examined in this report
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in and out of terrain masking and move in and out of blind

velocity doppler cells or eclipsed range cells either inad-

vertently or intentionally by clever maneuvers. Target ma-

neuvers at 6-g level at a moderate speed would require a

large correlation window which results in false alarm rates

far greater than the baseline specification if the scan

depth used for correlation is larger than 6 as shown in Sec-

tion 4.3.
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CHAPTER 5

PERFORMANCE IMPROVEMENT WITH SCAN RATE REDUCTION AND

NONCOHERENT INTEGRATION

The radar range equation was introduced in Section 1.1.2.

When the transmitter power P, wavelength at the radar

ooperating frequency X, antenna gain G, target RCS a, number

of pulses for coherent integration NI and system losses are

specified, the SNR in the coherent processing interval (CPI)

for a target at range R is proportional to the ratio of the

energy received in a single pulse to the noise power density

multiplied by the number of pulses coherently integrated.

This is indicated by Eqn. (1.1-10). Of course, the number of

pulses available for integration in a CPI and the number of

CPI's in a given antenna beam direction within a scan is

proportional to the dwell time of the antenna beam over a

point target. This in turn depends on the frame time TF.

To resolve the range ambiguity in a high PRF radar, mul-

tiple looks with distinct PRF's are required in each beam

dwell in a scan. For the radar under consideration, 3 looks

are required for the bandwidth chosen. Because of the prac-

tical fixed time overhead associated with each slant, it is

not beneficial to form more than 3 slants for post detection

integration within the given scan rate constraint even
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though, in theory, 8 slants with 3 of 8 processing would

perform better. A performance comparison of 2 of 2 post de-

tection integration in a 2 slant configuration, and 2 of 3

and 3 of 3 processing in a 3 slant configuration showed that

the baseline 3 of 3 post detection integration was a good

choice when time overhead, scan rate constraint and range

resolution requirements were taken into account. An im-

provement on the order of 1 dB in equivalent signal-to-noise

ratio can be associated with 2 of 2 or 2 of 3 processing

when the respective cell false alarm probabilities are ad-

justed to yield the same level of system false alarms. How-

ever, the cost for a 3 fold range ambiguity with these pro-

cessing options must be weighted in the comparison.

Under a careful examination (see Chapter 4), scan-to-scan

processing also failed to show the performance improvement

that was hoped for. When the dwell time specification is

expressed in terms of the solid angle n subtending the

search volume and the frame time TF needed to completely

cover the volume once, Eqn. (1.1-14) shows that the SNR for

a target at range R is proportional to the power-aperture

product independent of the operating frequency. When the

power-aperture product is held fixed, it follows that the

variation of TF for a given a is the only remaining option

for additional performance improvement.
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In Section 1.1.3, and in the introduction of Chapter 4,

the concept of cumulative detection probability Pc is intro-

duced. Because of the loss associated with target RCS fluc-

tuations, it is explained there that it is more efficient

to achieve one or more detections with high probability by

using several scans rather than a single scan. According to

Barton [4], about 6 scans are optimum for detecting a fluc-

tuating target at Pc - 0.9 if the pulses available in a scan

are noncoherently integrated. DiFranco and Rubin [2] show

that the number is 4 for Swerling case 1 and 2 or 3 for

Swerling case 3 when the available pulses in a scan are co-

herently integrated. These results assume that the change in

target range is negligible during the cumulative detection

period. In this chapter the optimum frame time needed to

maximize the range at which the specified Pc is achieved for

a radar with a uniformly scanning antenna is determined for

a target approaching with a constant radial velocity.

First, the classical works by Mallett and Brennan [6) and

DiFranco and Rubin [2] are examined. Based on their re-

sults, a performance test with a slow scan rate (TF=50

seconds) was tried with the consequence that the range was

extended at which Pc - 0,9. The equivalent sensitivity im-

provement was 7 to 8 dB. It is very significant that the

cumulative detection probability for a low observable target
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whose RCS is less than the reference target by 7-8 dB can be

detected at the same range as the reference target by in-

creasing the frame time. This is a result of a trade-off

between detection and track update. Their work is then ex-

tended in this chapter for a high PRF radar application

where the frame time affects both the SNR per slant and the

system false alarm rate.

Finally, because of the track update requirement, the ex-

tension of the frame time is limited to twice that of the

baseline. 3 and 6 slant configurations with either the bi-

nary or noncoherent post detection integration are then

analyzed. The performance relative to Pc - 0.9 is determined

for detecting a target within time durations of 60, 20, and

10 seconds. Performance, in terms of track update rate, for

targets both in the outer and inner range with respect to

the reference range is also examined. With noncoherent inte-

gration of 3 slants and slant-to-slant frequency agility,

significant improvement is achieved in terms of P c and track

update rate in the outer range. Compared to the baseline,

the track update rate suffers degradation in the inner

range.
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5.1 Scan Rate Optimization

The surveillance radar equation relating SNR to the radar

power-aperture product when the surveillance volume 0 and

search frame time TF are specified was presented in Section

1.1.2 as

S - PAA TF (1.1-14)
-& 4R 4 kTo NFo L 0

When the target approach velocity VR and the desired cumula-

tive detection probability PC are specified instead of TF,

Eqn. (1.1-14) can be put into a form suitable for scan rate

optimization. The optimization is in the sense of

maximizing the range at which the specified Pc is achieved.

Let Rz  denote the range at which (S/N) becomes unity.

Then, setting (S/N) = 1 and R = Rz in Eqn. (1.1-14) and

solving for Rz gives

R PA T PA A T F
= 0 kT o NFo L l

Let a denote the range interval traversed in TF by a tar-

get closing in with a constant radial velocity VR. The sce-

nario is shown in Figure 5.1-1.

211



CAUjtj-7edetet
0o Zone~

a9'Proahu9tre

Figure 5.1-1

Detection Scenario of an Approaching Target with a constant
Radial Velocity

Note that

A =VR T1 . (5.1-2)

Expressing T F in terms of VR and A from Eqn. (5.1-2) and

substituting into Egn. (5.1-1) yields,
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P A a A (5.1-3)"(4w kTo NFo L V "

Let R, be defined such that R. is expressed in terms of R, and A by

R ARIA. (5.1-4)

In terms of R,, Eqn. (5.1-3) becomes

PA A aRI - 4, kTo N 0o L 0 VR (5.1-5)

R3 represents the fixed set of radar parameters (PA, A, kTo , NF o , L, 0) and

target characteristics (a, VR).

For determining the cumulative detection probability, let

L denote the number of times a target will be illuminated

(i.e., the number of scans) during the period in which it is

to be detected one or more times before it reaches the range

Rm. The first illumination of the target is assumed to occur

in the range ring extending from Rm+(L-1)4 to Rm+L4. Let

Rm+(L-l)a+r denote the range to the target when it is first

illuminated where O<r<&. By Eqn. (5.1-2), the target will

be at the range Rm+ia+r when it is illuminated while in the

range ring extending from Rm+iA to Rm+(i+l)A ; i=0,--,(L-l).

The position of the target during each scan when illuminated

is indicated in Figure 5.1-1.
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Let Pd(R) denote the probability of detecting the target

in a single scan at range R. The cumulative detection prob-

ability Pc of detecting the target by the final range (Rm+r)

is given by

L-1
PC M - 11i [ l-Pd(Rm+r i) ]  (5.1-6)

Assuming r is uniformly distributed between (RP, Rm+), the

average cumulative detection probability Pc can be written

as

.11-.fi [ I-Pd(Rm+r+iA)])dr . (5.1-7)

Given that the power-aperture product of the radar is fixed,

for a specified target velocity VR and search angle n, it is

sought to optimize the search frame time TF so as to

maximize R, the range by which the target is detected at

least once with a probability of 0.9.

Mallett and Brennan [6, 10] normalized all distances in

Eqn. (5.1-7) with respect to R1 . For different values of Pc'

they solved Eqn. (5.1-7) by numerical evaluation for all

possible pairs of A/R1 and Rm/Rl while letting L and, hance,

the outer range limit get large enough for each trial such

that Pd(Rm+r+(L-1)A) becomes negligibly small. For a given
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Pc' the A/R1 which corresponds to the maximum Rm/Ri is the

optimum A/RI . Their result shows, for a given target veloc-

ity, that the larger the detection range the longer the

frame time should be. Eqn. (5.1-4) can be written as

where

- Rl(S/N)Z= •

In general, the range R is related to Rz by

R4 (S/N)z 1
- (S/IN) - (S/N)

As a result, Rm can be expressed as

Rj R

where (S/N) is the SNR per scan for a target located at Rm .

Assuming all the pulses in a beam dwell are coherently inte-

grated, Mallett and Brennan solved numerically for the opti-

mum values of 4/R1 and R.R 1 for Pfa = lxlO6 for different

values of Pc" The optimum values for P c 0.9 for a

Swerling case 1 target are

AA-i -0.042

V . 0.155
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Using these optimum values in Eqn. (5.1-2) gives TF as

T? (A/R)R 1  (A/R,)Rm

= VR(Rm/Rl)

- 0.27R , (5.1-8)
VR

Typical values for R. and VR are 200 nautical miles and

1600 knots, respectively. The optimum frame time according

to the above equation is then 121 seconds. This contrasts

with the baseline frame time of 10 seconds.

Because the above results suggest that an improvement is

possible by slowing down the scan rate, many detection per-

formance trade-off analyses are carried out in this investi-

gation using a frame time longer than that of the baseline

and either M of N binary or noncoherent post detection inte-

gration as options. The same fixed time overhead as in the

baseline is used for each slant and the cell false alarm

rate was adjusted so that the system false alarm rate is the

same as in the baseline. One sample run with the frame time

close to 50 seconds and a post detection processing consist-

ing of 6 slants of signals noncoherently integrated is

shown in Figures 5.1-2 and 5.1-3 for the single scan and cu-

mulative detection probabilities, respectively. In this

simulation, VR - Mach 1 was assumed and the maximum range

where the cumulative detection process began was 400 nauti
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cal miles. The time limit of 1 minute to achieve the cumula-

tive detection probability was ignored in this case. The

cumulative detection probability comparison indicates that a

performance improvement equivalent to an increase of ap-

proximately 7 to 8 dB SNR is achieved by slowing down the

scan rate by a factor of approximately 5. If P., were the

only performance criterion, the longer frame time would be

very beneficial.

DiFranco and Rubin [2] followed a slightly different ap-

proach. For a given Rm, they solved for values of A and L

which minimize the power-aperture product. To mae the solu-

tion to Eqn. (5.1-7) more tractable, they let r = A/2 and

Ri - Rm +4/2 + iA. It follows that Pd(Rm+r+iA) - Pd(Ri) .

They also normalized a such that

d VRTF (5.1-9)

Then, carrying out the integration in Eqn. (5.1-7), Pc can

be approximated as

L-
I jL Pd iR,.jI~d(2i+1)])] . (5.1-10)
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Swerling [2, 13] has shown that the detection probability

for noncoherent integration of an incoherent pulse train

can be approximately expressed as

exp(-x) ; for Swerling case I

P (1+2x) exp(-2x) ; for Swerling case 3

where

x = f(Pf,, NI)f

and - is the expected peak SNR per pulse. Let R2 be the range at which

x = 1 = f(Pf , N1)/(N) 2 . Then, from the radar range equation

and

R) f(Ptf,, Q

Consequently, x can be expressed as

x f(Pf., NI)IIA, (_1 ffi

With the above identity, Pd is approximately given by
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exR[2(k ; for Swerling case I

Pd 1+2 B(5.1-11)

I[1+2 - )JR exp[- 2 (- .) J ; for Swerling case 3.

DiFranco and Rubin substitute Eqn. (5.1-11) into Eqn.

(5.1-10) to obtain the following expression for Pc

VC-Y ( I- [(1+2 (k) 4 (14d(2i+l) )411-

-exp[-I - (1+d(2i+1) )41) (5.1-12)

where 1-1 and 1-i2 applies to Swerling case I and 3, respectively.

Note that Eqn. (1.1-14) can be rearranged to obtain an

expression for the power-aperture product. Substituting

.f(PN 1 ) (R)4(N) k- , T r A2Rmd and R =Rm

into Eqn. (1.1-14), where kI is a constant, and rearranging

for PAA yields
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PAA - k(R 2/Rm) 4irRkToN FoLn
o(2R.d/VR)

= k ( 2irkTO L VaRR2)

2(R2/Rm)" 
(5.1-13)

where all of the terms in coefficient k 2 are constants that

must be specified for a search radar.

For a specified Rm, DiFranco and Rubin find values of d

and L which satisfy Eqn. (5.1-12) for a specified Pc and

also minimize PAA in Eqn. (5.1-13). Their steps are:

1. For a specified Vc, select values of d and L, L=l, 2,

3, --, and solve Eqn. (5.1-12) for R2/Rm . A plot of R2/Rm,

as a function of d, is generated for each integer value of

L.

2. For each value of L, solve Eqn. (5.1-13) for PAA using

pairs of d and R2/Rm as obtained from step 1. A plot of PAA

as a function of d is then plotted for each value of L.

3. Select that pair of values for L an d which yields the

minimum value of PA A .

Minimizing the power-aperture product for a specified Rm

is equivalent to maximizing Rm for a specified
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power-aperture product. It follows that the values of L and

d which yield a minimum power-aperture product for a

specified Rm also result in a maximum value of Rm when

that minimum power-aperture is specified. The system frame

time is then given by

2RdTF =-v (5. 1-14)

Their results show that the approximate optimum frame
time and the number of scans to achieve the required P are

such that the cumulative detection zone is equal to Rm .  In

particular,

LVRT, - R. (5.1-15)

That is, the detection zone is equal to the minimum detec-

tion range. Thus, once the optimum L is known, the optimum

TF follows. From the work of DiFranco and Rubin the optimum

L for different P levels are given in Table 5.1-1.
c

Table 5.1-1 Optimum L for the Pc Level Specified
Pc=0.9 P =0.95 Pc=0.99

Swerling 1 4 5 6

Swerling 3 2 3 4
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Returning to the previous example where 1c=0.9, Rm=20 0

nautical miles and VR=1600 knots, the optimum TF becomes

Rm (200)(36) 112.5 seconds

Vj TL (1600)(4)

This is almost the same result as obtained earlier using the

Mallett and Brennan approach.

Both the Mallett and Brennan and DiFranco and Rubin teams

assume that there is no radar line of sight limit and,

therefore, L can be as large as necessary. Also, without

stating it, the radar is assumed to be operating in a low

PRF mode so that the time overhead, assuming it is entirely

due to the round trip transit time for the radar wave with

respect to the target at the maximum range of interest,

does not affect the division of the available radar energy

into M number of slants and L number of scans.

In the next section, scan rate optimization is carried

out for a high PRF radar. To effectively utilize the

various slants needed to resolve the range ambiguity associ-

ated with the high PRF radar under consideration, post de-

tection processing, either an M of N binary integration

where M>3 or a noncoherent integration where N>3 is required

in each scan. Unlike the low PRF radar studied by others,
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in a high PR? radar, there is a fixed time overhead associ-

ated with each of the N slants and L scans which includes

one round trip transit time for the entire pulse group in a

slant. This affects in a nonlinear way the SNR and cell

false alarm probability and complicates determination of the

optimum frame time. Imposing a line of sight limitation or

time constraint in achieving the stated Pc further compli-

cates the problem.
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5.2 Scan Rate Optimization for a High PRF Radar

In this Section, scan rate optimization for a high PRF

radar is carried out by extending the work of the Mallett

and Brennan team. The extension is in the form of taking

into account the effect of a fixed time overhead on the co-

herent integration gain and the cell false alarm probability

allocation as a function of antenna scan rate. As the scan

rate decreases, it will be shown that the variation in de-

tection performance due to the fixed time overhead can be

ignored once the coherent integration gain and the cell

false alarm probability allocation in a multi-slant system

are properly assigned taking into account the effect of the

fixed time overhead for the particular post detection inte-

gration chosen at its maximum antenna scan rate assumed.

The procedures for computing integration gain, allocating

the false alarm probability, and translating these to the

single scan detection probability after the post detection

integration are developed in Chapters 2 and 3.

To take into account the effect of the fixed time over-

head, the following reference parameters for the baseline

system are introduced:

TF -frame time in the baseline
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VRo - 450 knots
VR0

&0 - T oV o  •

The optimization is carried out for the 3 of 3 post detec-

tion integration scheme as used in the baseline. Let TH

denote the fixed time overhead. In the baseline with

TFo 10 seconds

and
TH -0.52 Tm

where Tm is the time duration of a modulation period, an in-

crease in dwell time proportional to an increase in TFo by

a factor of cI results in an increase in SNR per slant by

the ratio, c2, as given by

(c1-TH/Tm) T m
C. - (1_TH/T,.)Tm

Consequently, Eqn. (1.1-14) is modified to read

PA A v TFO
S) -c4wR4 kT o NF o Lfl

As before, let Rz denote the range at which (S/N) becomes

unity. Recalling that TFo - do/VRo, it follows that

R rkT0 PAAa

R -, C2 4 kTo, NF o L fn V. A ° - c2 R1 AO

- R3 (cITH/Tm) (5.2-1)
I(I-THTm)
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Substitution of TH/Tm = 0.52 in the above equation yields

R4 M (1-0.52/c) c(5-R,=R-~-----~-k~'J(5.2-2)

Since A = CIAO, Eqn. (5.1-4) can be written as

R R 3CIAO - R 4'-"IAO) (5.1-4)

Note that Eqn. (5.2-2) differs from Eqn. (5.1-4) only by the

factor of

C2  (1-0.52/c,

Hence, the range at which SNR becomes unity is extended by

the factor of c2/cI.

To correct for the cell false alarm probability change as

a result of an increased dwell time, note that, once the

cell false alarm probability corresponding to the system

false alarm rate specification has been determined, the cell

false alarm probability is affected only by the time utili-

zation factor K1 according to Eqn. (2.5-25). The effect of

this change on Rz depends on the particular post detection

integration chosen.

The detection probability after post detection integra-
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tion for Swerling case 1 and 3 targets is given in Section

3.2 as

Pd " joP;(M,N) p(S/N)d(S/N) • (3.2-7)

This is in the same form as Eqn. (3.2-12), the single slant

detection probability before post detection integration for

Swerling case 2 and 4 targets. For Swerling case 2, Pdi is

given by

Inp
p. -exp ( ) . (3.2-13)

14{S7N)i

Therefore, for a Swerling case 1 target we try for the

purpose of approximating Eqn. (3.2-7) an equation of the

form

Pd exp [f](5.2-3a)
where Pfa' the cell false alarm probability after 3 of 3

post detection integration, is given by

Pfa - Pf3

and (90/N) is the signal-to-noise ratio per CPI if all the

pulses are received through the antenna beam at its peak

gain. Taking the natural logarithm of Eqn. (5.2-3a) and re-
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arranging yields

i (5.2-3b)

The value of c4 can be obtained from Eqn. (5.2-3b) and a

point from a Pd versus (S0/N) plot for a given value of pf.

Referring to Figure 3.3-3, the following values for two

points, each for two different values of pf, are read off

from the plots of Pd versus (90/N) for Swerling case 1 after

3 of 3 post detection integration

(S 0 /N) @ Pd-0. 3  (S0/N) @ Pd=0.5

* Pf-7.6xl0 - 4  15.85 (12.00 dB) 28.31 (14.52 dB)

@ Pf-7.6xl0 - 5  20.61 (13.14 dB) 36.64 (15.64 dB)

For pf-7.6xlO- 4  substitution of (S0/N)=15.85 and Pd= 0 .3

into Eqn. (5.2-3b) gives c4=1.062. Inserting this value of

c4 and (g0 /N)-28.31 into Eqn. (5.2-3a) yields Pd=0 .5. This

agrees with the plot of Figure 3.3-3 which is obtained by

numerical integration. Trying still other values of (S0/N)

-4for pf-7.6xl0 reveals that Eqn. (5.2-3a) is an excellent

approximation for Pd as a function of (S0/N) and pf. How-

ever, a different value of c4 is required for each value of

Pf. The value of c4 corresponding to pf=7.6xl0
-5 is 1.0935.
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Since what is sought is an approximate equation for in-

terpolation between two values of (S0/N) at a given value of

Pd due to a change in pf, an expression that is slightly

different from Eqn. (5.2-3b) which is less sensitive to

changes in pf is tried. The equation is of the form:

Pd =C . xp1 In _3ra I (5.2-3c)
1*(So/N)

Associating points from the plots of Figure 3.3-3 with the

corresponding terms in Eqn. (5.2-3c), the value of c5 cor-

responding to pf=7.6xl0-4 and pf=7.6x10 -5 at a Pd level of

0.3 becomes 1.078 and 1.119, respectively. Using the aver-

age of these two values for c5 in Eqn. (5.2-3c) is found to

give accurate results relating changes in pf to the corre-

sponding changes in (S0/N) for a fixed value of Pd over a

range of change in pf by a factor of 10. This relation-

ship can be expressed as

Pd =C. expI- In]f1 mc.exp~ I-I Pf

1 + (pI/N), I + (So/N)2

Dividing both sides of the above equation by c5 and taking a

natural logarithm gives

F 1n(pfi [ 3 1
]n(p f 2 ) 3

L 'SO/N) j L I(So,/N),

or
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(Pf) 3  In Pf&I 1+(So/N) 1  (S3/N)I
3, -for (S0/N),, (SO/N)z>1 . (5.2-3)

_ ( pf 2)s in Pf'' = 1+(So/N) 2  (S/N) 2

Note from Eqn. (2.5-25) that the ratio of false alarm prob-

abilities after 3 of 3 post detection integration equals the

inverse of the ratio of time utilization factors. Since the

optimization is to determine how much to slow down the an-

tenna scan rate with respect to the scan rate in the

baseline, pf must be reduced to maintain the same system

false alarm rate as the scan rate is reduced and, therefore,

the time utilization factor is increased.

In the vicinity of (S0/N)=12.2 dB and pf=7.6xl0- , ade

crease in pf by a factor of 10 results in a corresponding

decrease in the detection probability. This is equivalent to

maintaining pf at 7.6xi0-4 and reducing SNR by 1.2 dB, a

factor of approximately 1.32 as can be seen in Figure 3.3-3.

Another way of putting it is that an increase in SNR by a

factor of 1.32 is required to maintain the Pd level the same

as before. This can be verified by substituting these pf

values into Eqn. (5.2-3).

As mentioned previously, the ratio of false alarm prob-

abilities after 3 of 3 post detection integration equals the
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inverse of the ratio of time utilization factors. Note that

c 2 is equal to the ratio of time utilization factors. Sub-

stitution of (1/c 2 ) for (Pfa /P fa) in Eqn. (5.2-3) yields

In P fl ~_ °IN ) , A C 3 a (5.2-4)

In -cl Pfa1) - N)z

For values of c1 equal to 1.1 and 10, the values of c2 are

1.098 and 1.975, respectively. The corresponding values of

c3 are 0.996 and 0.969. These values are the ratios by which

SNR is effectively reduced. Or equivalently, SNR must be

increased by the inverse of these values to maintain the

original level of Pd" Thus, it is seen that once the cell

false alarm probability is determined for the particular

post detection integration according to the procedure estab-

lished in Section 2.4, the false alarm probability change as

a consequence of an increase in dwell time has a small ef-

fect on the SNR. Hence, as a first approximation, it can be

ignored in the scan rate optimization using 3 of 3 post de-

tection integration. The effect of time overhead on other

post detection integration can be determined in the same

way.

When the dwell time is increased by a large factor, the

time overhead becomes a negligible portion of the modulation

period. Returning to Eqn. (5.2-2), note that
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lr(1-0.52/cl)=.8cj-o 0.48 i 2. 08.

Its impact on R is (2.08)1/4 = 1.2 in the limit. This rep-

resents a 20 % increase in the detection range. However, the

maximization peaks are very broad. As a result, this factor

can be dropped for simplicity from Eqn. (5.2-1). Even so,

the effect of time overhead in the multi-slant processing is

included in evaluation of the detection and false alarm

probabilities for a specified post detection integration.

With respect to Eqn. (5.1-10) for Pc' all range units are

normalized by R1 which includes all fixed radar and target

parameters. Note that Pd(SO/N) can be converted to Pd (R/Rz)

by using the relationship

(R )4 (O/N),
(SO/N)

Using Eqn. (5.1-4) R/Rz can be converted to R/R1 once A/RI

is specified:

and
R, 4 = II

(So/N),

Hence, when R= Ri,
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The above conversion allows the computation of Pd as a

function of the normalized range, R/RI . A set of values for

Pd(R/Rl) is computed according to the procedure outlined in

Chapter 3 for the normalized range increment, A/R1 , ranging

from 0.01 to 0.1. Pc(R/R1 ) is then computed for each value

of the normalized range increment chosen. From a set of

these values, the optimum A/RI and the corresponding Rm/Ri

are selected for Pc 0.9.

These optimum values for P -0.9 are listed in Table 5.2-1
C

for Swerling case 1 through 4 and Marcum target models.

Table 5.2-1

Optimum Values A/R1 and the Corresponding Values of

Rm/R1 - 3 of 3 Post Detection Integration

PC = 0.9; P = 4.39x10 10

Swerling case Marcum
1 2 3 4 nonfluctuating

A /R1  0.050 0.058 0.060 0.080 0.078

Rm/R1  0.157 0.132 0.171 0.171 0.223
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The optimum values derived by Mallett and Brennan are

listed in Table 5.2-2 for Pc=0.9 for easy comparison.

Table 5.2-2

Optimum Values A/R and the Corresponding Values of
Rm/R1 iy Mallett and Brennan

ml6
PC = 0.9; P = ix10 6

Swerling case Marcum
1 2 3 4 nonfluctuating

A/R 1  0.042 --- 0.053 --- 0.080

RmR 1  0.155 --- 0.169 --- 0.196

Note that the referenced values assume a single slant system

for which computation of Pd is fairly straightforward. It

should be observed that in a single slant system there is no

difference between a Swerling case 1 and a Swerling case 2

(nor a Swerling case 3 and a Swerling case 4). Hence, their

result does not show values for Swerling cases 2 and 4.

Still, the optimum values determined here for a system with

a particular post detection integration are found to be very

close to the corresponding values found by Mallett and

Brennan even though they are evaluated at different false

alarm probabilities. Therefore, performance improvement

based on cumulative detection probability at a level of 0.9
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for a radially approaching target with a speed of Mach 1 can

be 7-8 dB as shown by an example in Section 5.1 when the an-

tenna scan rate is reduced by a factor of approximately 5.

In this example, note that the one minute time constraint is

not observed. Instead, the outer boundary of the cumulative

detection zone is taken as 400 nautical miles.
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5.3 Detection Probability with Noncoherent Integration in

Lieu of Binary Integration

The Bayes likelihood ratio test for detecting targets

based on noncoherent integration of multiple observations in

white Gaussian noise is discussed in Radar Detection by

DiFranco and Rubin (2]. Specific forms of integral expres-

sions for the probabilities of detection resulting from bi-

nomial post detection integration were derived and presented

in Chapter 3. The integral expressions describing the prob-

ability of false alarm and probabilities of detection under

noncoherent integration are summarized below following the

work by Difranco and Rubin.

The optimum receiver structure in the region of small

signal-to-noise ratio is the matched filter for each pulse

followed by a square law detector and a noncoherent summer

or a video integrator for all four Swerling cases and Marcum

target models. Let Y denote the sufficient statistic. The

sufficient statistic, Y, is one half the sum of the square

of the envelop voltage ri,

N
Y I (1/2)r

where N is the number of observation samples noncoherently

integrated. For the kth doppler cell, note that the DFT co-

efficient X(k) which arises from an Ni-point FFT constitutes

a single sample for the noncoherent integration.
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In the absence of the signal, the probability density of

Y under hypothesis 0 (target absent) assumes the form,

yN-1 e-Y / (N-I)!, Y>O
P(YIO) = (5.3-2)0, Y<0.

This is a chi-square density with 2N degrees of freedom.

It arises because Y is the sum of 2N statistically indepen-

dent squared Gaussian random variables. That is, it is the

sum of N pairs of squared in-phase and quadrature Gaussian

noise components each having zero mean and unit variance

(i.e., normalized). Thus, the probability of false alarm is

given by

Pfa" 1 _Y -1 e-y/(N-1)!dY - I - I(Yb/I4 , N-i). (5.3-3)

where Yb is the threshold and I(u,s) is the incomplete gamma

function defined by

I(u,s) = (e-v vS/s!)dv.

The probability of detection is given by

Pd 4P(Yl)dY (5.3-4)

where p(Y1l) is the probability density of Y for Y>O under

hypothesis 1 (target present) with peak SNR per pulse, %p.

The relationship of the peak SNR to the envelope amplitude

A, and the probability densities of A and 5p for Marcum and

Swerling target models were given in Section 2.6.
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The probability density of Y, p(YI1), and the probability

of detection for Marcum (nonfluctuating) and Swerling target

models are:

Marcum (nonfluctuating)

for Y>O

p(YIl) = (2 Y/NTP)(N-1)/2 e- Y - N /2 IN_1 ( 2 NV ), (5.3-5)

Pd= 1 - (2Y/ P) (N-1)/2 e-Y-N 5/2 IN_1("I N'Y)dY

= I - T A (2N-1,N-,j1 N P/2). (5.3-6)

IN_(x) is the modified Bessel function of the first kind,

order N-1 and TB(m,n,r) is the incomplete Toronto function,

TB(m,n,r) = 2rn-m+l e- tm -n e-t In (2rt)dt.

Swerling case 1

for Y>O

(1 + l/Nt2)N- 2 e-Y/(I+N F/2)
p(Y1 ) -

Y
I[ I )  N-2]0, (5.3-7)
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Pd-1 - I(YW4ITNi,N-2) + (l+lN;,/2)N-1 e-Y) /(1+Nlv/2)

.I[Ybl(TN-1(1+11NV%/2)),N-2). (5.3-8)

Swerlins case 2

for Y>O

p (y11) 1/ ll 4 zN (N-1)!JYNl eY/ (1+ tf2) (5.3-.9)

p (x e X)/(N.1)!dx

I I[Yb1(ofN(+tP12)),N-1]. (5.3-10)

Skwerling. cae 3

for Y2 O

1+1N4) 2  -i e( ' (1N / 4/4

-[(Y/ (1+1/Ni,/4) ArN-Fi) , N-2)+ (-!(1N/42

- W -1

(5.3-11)
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Pd Pf p(Y) dY.

Swrling 4

for Y_>O

yN-1 e-Y/(1+ 4 ,4) N! ,

p(YI1) = 2

y k
•k (5.3-12)

k! (N+k-1) ! (N-k)!,

I[ (Yb / ( 1-(R4 )i+) , N+k-i ]

=1 - N!/(l+-p7/4)
N k(/4)k

Pd (IP/4)k:(N-k) :
(5.3-13)

Numerical integration of above equations is used in Sec-

tion 5.4 to determine the threshold and probabilities of de-

tection under noncoherent integration.
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5.4 Probabilities of Detection with Slower Scan Rate

In this section, M of N binary post detection integration

is compared with noncoherent integration (NCI) along with a

2 to 1 increase in dwell time as a means for detection en-

hancement. The 2 to 1 increase in dwell time is achieved by

reducing the antenna scan rate by a factor of 2. Enhancement

options examined include slant-to-slant frequency agility

and back-to-back antennas. When used, the back-to-back an-

tennas are assumed to be switched to the single receiver/

transmitter one at a time every 180 degree rotation of thR

rotodome so that the azimuth coverage is reduced from 360 to

180 degrees and the same 180 degree azimuth sector is cov-

ered with twice the dwell time. It was shown in Section 5.1

and 5.2 that scan rate optimization called for a consider-

ably slower scan rate. Reduction of the scan rate by more

than a factor of 2, however, is prevented by track update

considerations for near-in targets. For post detection inte-

gration, it is well known that noncoherent integration is

more efficient than binary integration. Only recent advances

in signal processing hardware make it feasible to implement

NCI in a high PRF radar.

The single scan detection probabilities for 3 of 3, and 3

of 6 post detection binary integration, and noncoherent in-
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tegration with 3 and 6 observation samples, all within the

same false alarm time constraints but with the antenna scan

rate at 3 rpm, are first determined for the Swerling case

1, 2, and Marcum target models. The false alarm constraint

is such that the system false alarm rate is 2 or less in a

10 second interval on the average. It should be noted that

Swerling case 2 results apply to Swerling case 1 when

slant-to-slant frequency agility is used in the radar op-

eration. Under this condition, Swerling case 1 is trans-

formed to Swerling case 2. The single scan detection prob-

abilities for the four processing options are plotted for

the Swerling case 1, 2 and Marcum target models in Figures

5.4-1 through 5.4-4. The numerical results with the same

processing options for Swerling case 1 and 2 along with the

baseline performance are also shown in Table 5.4-1. For gen-

erating these results, an average beam shape loss is used

for all cases, first, to facilitate the detection probabil-

ity evaluation with NCI where equal signal-to-noise ratios

are assumed for all samples, and second, to generate results

on the same basis for all processing options considered.

The same reference target located at the reference range,

as was used previously, is employed in this chapter for es-

tablishing the reference SNR for the particular processing

configuration. For the baseline 3-slant configuration with a
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?able 5.4-1 Single Scan Detection Probabilities 13 rpa iatena Scan late vith lorsal live Overhead

4444..4leference SRI 17.IdB# ........................... Reference SKI : 12.2 dB ------------
.....-.. 3 ICI ----- sus 3 Of 3sts 6 IC -------- 3 Of 6 ----- 3 of 3 / 6 rpm

(baseline)

(So/1) Si-i S1-2 SI-i SI-2 SI-I Si-2 SI-i SI-2 SI-i SI-2

3.00 0.128 0.074 0.090 0.011 0.337 0.376 0.263 0.189 0.094 0.012
8.20 0.139 0.086 0.093 0.013 0.354 0.11 0.284 0.212 0.103 0.014
8.40 0.151 0.099 0.109 0.015 0.370 0.448 0.300 0.236 0.113 0.016
6.60 0.164 0.113 0.119 0.018 0.386 0.485 0.316 0.261 0.123 0.019
8.80 0.177 0.128 0.130 0.021 0.403 0.522 1.332 0.287 0.134 0.022
1.00 0.190 0.145 0.141 0.024 0.419 0.558 0.348 0.315 0.146 0.026
3.20 0.204 0.164 0.153 0.028 0.435 0.594 0.364 0.343 0.158 0.029
9.40 0.218 0.183 0.165 0.032 0.451 0.628 0.380 0.373 0.170 0.034
9.60 0.232 0.204 0.178 0.036 0.467 0.662 0.397 0.403 0.183 0.038
9.80 0.247 0.226 0.191 0.041 0.483 0.594 0.413 0,433 0.196 0.043

10.00 0.262 0.249 0.204 0.046 0.499 0.724 0.429 0.463 0.210 0.049
10.20 0.278 0.273 0.218 0.052 0.514 0.753 0.445 0.494 0.224 0.055
10.40 0.293 0.298 0.232 0.059 0.529 0.780 0.461 0.524 0.238 0.062
10.60 0.309 0.324 0.247 0.066 0.544 0.305 0.477 0.554 0.253 0.069
10.80 0.325 0.351 0.262 0.073 0.559 0.828 0.492 0.584 0.268 0.076
11.00 0.341 0.377 0.277 0.081 0.574 0.849 0.508 0.613 0.283 0.085
11.20 0.358 0.405 0.292 0.090 0.588 0.868 0.523 0.641 0.299 0.093
11.40 0.374 0.432 0.308 0.099 0.602 0.885 0.538 0.668 0.314 0.103
11.60 0.390 0.460 0.324 0.109 0.616 0.900 0.553 0.694 0.330 0.113
11.80 0.406 0.488 0.340 0.119 0.629 0.914 0.568 0.719 0.346 0.123
12.00 0.423 0.515 0.355 0.130 0.842 0.926 0.582 0.743 0.362 0.134
12.20 0.439 0.542 0.372 0.141 0.655 0.937 0.596 0.765 0.378 0.146
12.40 0.455 0.569 0.388 0.153 0.667 0.946 0.610 0.786 0.394 0.158
12.60 0.471 0.595 0.404 0.165 0.679 0.955 0.623 0.806 0.410 0.170
12.80 0.487 0.621 0.420 0.1 8 0.691 0.962 0.636 0.824 0.426 0.183
13.00 0.502 0.645 0.436 0.191 0.702 0.968 0.649 0.842 0.442 0.197
13.20 0.517 0.669 0.452 0.205 0.714 0.973 0.662 0.858 0.458 0.210
13.40 0.533 0.692 0.467 0.219 0.724 0.978 0.674 0.872 0.473 0.225
13.60 0.548 0.714 0.483 0.234 0.735 0.951 0.686 0.886 0.489 0.239
13.80 0.562 0.735 0.499 0.248 0.745 0.985 0.697 0.898 0.504 0.254
14.00 0.577 0.755 0.514 0.263 0.755 0.987 0.709 0.909 0.520 0.269
14.20 0.591 0.774 0.529 0.279 0.764 0.990 0.720 0.919 0.535 0.285
14.40 0.605 0.792 0.544 0.294 0.774 0.991 3.730 0.929 0.549 0.300
14.60 0.618 0.809 0.558 0.310 0.782 0.993 0.740 0.937 0.564 0.316
14.80 0.632 0.825 0.573 0.326 0.791 0.994 0.750 0.945 0.578 0.332
15.00 0.645 0.840 0.587 0.342 0.799 0.995 0.760 0.951 0.592 0.348
15.20 0.657 0.854 0.601 0.358 0.807 0.996 0.769 0.9W7 0.606 0.364
15.40 0.670 0.867 0.614 0.374 0.815 0.997 0.778 0.963 0.619 0.380
15.60 0.682 0.879 0.628 0.390 0.823 0.998 0.787 0.967 0.633 0.396
15.80 0.693 0,890 0.641 0.407 0.830 0.998 0.796 0.971 0.645 0.413
16.00 0.705 0.900 0.653 0.423 0.837 0.998 0.804 0.975 0.658 0.429
16.20 0.716 0.909 0.666 0.439 0.844 0.999 0.812 0.978 0.670 0.445
16.40 0.726 0.918 0.678 0.455 0,850 0.999 0.819 0.981 0.682 0.461
16.60 0.737 0.926 0.689 0.471 0.856 0.999 0.827 0.984 0.694 0.476
16.80 0.747 0.933 0.701 0.486 0.862 0.999 0.834 0.986 0.705 0.492
17.00 0.757 0.940 0.712 0.502 0.868 0.999 0.840 0.988 0.716 0,507
17.10 0.760 0.943 0.717 0.509
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Table 5.4-1

Single Scan Detection Probabilities 13 rpm lntena Scan late uith lortal Tine Overhead (cont'd)

+... ++Reference SIB 17.ldB++ ....4 .........------------l eference Sit : 12.2 dB ---------------
-------- 3 ICI .--- s-s33 3 01 3s:ssts 6 ICl ------- 3 0! 6 ----- 3 of 3 / 6 rpu

(baseline)
(*/l) S-1 SI-2 Si-i SU-2 SI-1 S-2 S1-1 SI-2 Si-i SI-2

17.20 1.788 0.048 0.723 0.517 1.873 1.000 1.147 1.990 0.727 0.523
17.40 0.775 0.952 0.733 0.532 1.879 1.000 1.853 1.991 0.137 0.538
11.60 0.784 0.957 0.743 0.547 1.884 1.000 6.859 1.992 0.747 0.553
17.80 0.793 0.961 0.753 0.562 1.189 1.000 0.865 0.993 0.757 0.567
18.00 0.801 0.965 0.763 0.576 1.893 1.000 0.871 0.994 0.766 0.581
18.20 0.809 0.969 0.772 0.590 1.898 1.000 0.876 0.995 0.775 0.595
18.40 0.817 0.972 0.781 0.604 3.902 1.000 0.881 0.996 0.784 0.609
18.60 0.824 0.975 0.789 0.618 0.906 1.000 0.886 0.996 0.793 0.623
18.80 0.831 0.978 0.198 0.631 0.910 1.000 0.891 0.997 0.801 0.636
19.00 0.838 0.980 0.806 0.644 0.914 1.000 0.896 0.997 0.809 0.649
19.20 0.845 0.983 0.814 0.657 0.918 1.000 0.900 0.998 0.816 0.661
19.40 0.851 0.984 0.821 0.669 6.922 1.000 0.905 0.998 0.824 0.673
19.60 0.857 0.986 0.828 0.681 0.925 1.000 0.909 0.998 0.831 0.685
19.80 0.863 0.988 0.835 0.693 0.928 1.000 0.913 0.999 0.838 0.697
20.00 0.869 0.989 0.842 0.704 0.931 1.000 0.916 1.199 0.845 0.708
20.20 0.874 0.990 0.849 0.715 0.934 1.000 0.920 0.999 0.851 0.719
20.40 0.880 0.992 0.855 0.726 0.937 1.000 0.923 0.999 0.857 0.729
20.60 0.885 0.992 0.861 0.736 6.940 1.000 0.927 0.999 0.863 0.740
20.80 0.890 0.993 0.867 0.746 1.942 1.000 0.930 0.999 0.869 0.750
21.00 0.894 0.994 0.872 0.756 0.945 1.000 0.933 1.000 0.874 0.759
21.20 0.899 0.995 0.877 0.765 0.947 1.000 0.936 1.000 0.879 0.769
21.40 0.903 0.995 0.883 0.775 1.950 1.010 0.939 1.000 0.884 0.778
21.60 0.907 0.996 0.888 0.783 5.952 1.000 0.941 1.000 0.889 0.787
21.80 0.911 0.996 0.892 0.792 0.954 1.000 0.944 1.00 0.894 0.795
22.00 0.915 0.997 0.897 0.800 6.956 1.000 0.946 1.000 0.899 0.803
22.20 0.919 0.997 0.901 0.808 6.958 1.000 0.949 1.000 0.903 0.811
22.10 0.922 0.998 0.905 0.816 6.960 1.000 0.951 1.000 0.907 0.819
22.60 0.925 0.998 0.910 0.823 1.962 1.000 0.953 1.000 0.911 0.826
22.80 0.929 0.998 0.913 0.831 0.963 1.000 0.955 1.000 0.915 0.833
23.00 0.932 0.998 0.917 0.837 0.965 1.000 0.957 1.000 0.91t 0.840
23.20 0.935 0.999 0.921 0.844 5.966 1.000 0.959 1.000 0.922 0.846
23.40 0.938 0.999 0.924 0.851 0.968 1.000 0.961 1.000 0.925 0.853
23.60 0.940 0.999 0.927 0.857 1.969 1.000 0.962 1.000 0.929 0.859
23.80 0.943 0.999 0.930 0.863 1.971 1.000 0.964 1.000 0.932 0.865
24.00 0.945 0.999 0.933 0.868 1.972 1.000 0.966 1.000 0.935 0.870
24.20 0.948 0.999 0.936 0.874 0.973 1.000 0.967 1.000 0.937 0.876
24.40 0.950 0.999 0.939 0.879 1.974 1.000 0.969 1.000 0.940 0.881
24.60 0.952 0.999 0.942 0.884 1.976 1.000 0.970 1.000 0.943 0.886
24.80 0.954 0.999 0.944 0.889 1.977 1.000 0.971 1.000 0.945 0.891
25.00 1.956 1.000 0.947 0.894 1.978 1.000 0.973 1.000 0.948 0.895
25.20 0.958 1.000 0.949 0.898 1.979 1.000 0.974 1.000 0.950 0.200
25.40 0.960 1.000 0.951 0.903 1.110 1.000 0.975 1.000 0.952 0.904
25.60 0.962 1.000 0.953 0.907 1.981 1.000 0.976 1.000 0.954 0.908
25.80 0.964 1.000 0.955 0.911 0.981 1.000 0.977 1.000 0.956 0.912
26.00 0.965 1.000 0.957 0.915 0.982 1.000 0.978 1.000 0.958 0.916
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scan rate of 6 rpm, this results in a single slant reference

SNR, (S0/N)0 , of 12.2 dB. Note that the reference SNR for

a 6-slant configuration with a scan rate of 3 rpm is also

12.2 dB. For a 3-slant configuration with a scan rate of 3

rpm, (S0/N)0 equals 17.1 dB. The increase in (S0/N)0 when

the scan rate is reduced by a factor of 2 is more than 3 dB

because the number of pulses integrated increases without an

increase in the time overhead.

The analysis result shows that a considerable improvement

is possible in the single scan detection probability with

NCI and slant-to-slant frequency agility when they are ac-

companied with an increased dwell time. Frequency agility

renders a rapid fluctuation to Swerling case 1 (and case 3)

targets such that they behave as Swerling case 2 (or case 4)

targets. Single scan detection probability with NCI im-

proves rapidly for Swerling case 2 targets in the high SNR

region. Increased dwell time, as a consequence of slower

scan rate, places the returned signal from the reference

target at the reference range in the higher SNR region.

Since a different processing configuration gives rise to a

different level of SNR per slant for a given target situa-

tion, the reference SNR for each configuration is used to

identify one point in the Pd versus (S0/N) curve to a

I252



particular detection range, namely, the reference range of

the reference target. Then, the remaining values of (S0/N)

can be converted to the corresponding range using the radar

range equation.

Improvements in single scan detection probabilities with

an increase in dwell time are, of course, expected since SNR

is proportional to the dwell time. Whether the improvement

in single scan detection probability with slower revisit

rates leads to improvement in cumulative detection probabil-

ity and track update rates is the real question. Since a

slower scan rate results in fewer opportunities for the cu-

mulative detection process and track updates, a back-to-back

antenna configuration is also included as an option which is

used to cover a reduced surveillance sector of 180 degree

azimuth. In the following investigation, the target is as-

sumed to be an aircraft whose RCS fluctuates according to

the Swerling case 1 model. Results for other target models

can be determined in the same manner.

The improvement in cumulative detection performance is

determined on the basis of achieving Pc = 0.9 in 60, 20, and

10 seconds using the single scan detection probabilities

shown in Table 5.4-1. The track update performance is deter-
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mined on the basis of the average number of 'hits' in a 5

minute time interval. It will be shown that the slower scan

rate improves performance in both cumulative detection prob-

ability and track update rate for the outer ranges at the

expense of a poorer track update rate in the inner ranges

when compared to the result with normal scan rate used in

the baseline. This is because update rate can never exceed

the antenna scan rate.

Assuming that target range closure is negligible during

the interval over which a specified value of Pc is achieved,

PC is given by

PC l-(l-Pd ) L

where L is the number of revisits to or scans by the target

in question during the cumulative detection interval. It

follows that the necessary level of Pd to achieve a

specified value for Pc can be expressed as

Pd = l-exp[(l/L)ln(l-Pc)] . (5.4-1)

The required Pd that yields Pc = 0.9 is calculated from

Eqn. (5.4-1) as a function of L and is listed in Table

5.4-2.
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Table 5.4-2

Required Pd to achieve Pc = 0.9 in L scans

L P

1 0.900

2 0.683

3 0.535

4 0.437

5 0.369

6 0..318

The improvement in dB is the differential margin in SNR

relative to the baseline for the reference target located at

the reference range for each processing option. By defini-

tion, the SNR margin is the amount by which the reference

SNR is higher than the SNR required to yield a level of Pd

that will translate to the specified Pc. This method of per-

formance comparison was also used in Section 4.5. The

concept is illustrated in Figure 4.5-4.

At an antenna scan rate of 3 rpm, the number of scans in

20 and 60 seconds are 1 and 3, respectively. These values of
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L require Pd levels of 0.9 and 0.535, respectively, to yield

PC = 0.9 in 20 and 60 seconds. As an illustration of the

margin computation, it is seen from Table 5.4-1 under 3 NCI

for Swerling case 2 (which would apply to Swerling case 1

when slant-to-slant frequency agility is used) that the re-

quired (S01 N) for Pd = 0.9 and Pd - 0.535 is 16.0 dB and

12.1 dB. These translate to SNR margins relative to the ref-

erence SNR of 17.1-16.0=1.1 dB and 17.1-12.1=5.0 dB. In the

baseline with 3 of 3 post detection integration and with the

antenna scan rate of 6 rpm, the required Pd for PC = 0.9 in

20 and 60 seconds is 0.683 and 0.318, respectively, with the

corresponding (S0/N) requirement of 16.4 dB and 11.4 dB. The

SNR margin in each case is 12.2-16.4=-4.2 dB and

12.2-11.4-0.8 dB. By comparing these margins to the margins

under 3 NCI with frequency agility at an antenna scan rate

of 3 rpm, the improvement is seen to be 5.3 dB and 4.2 dB,

respectively, for PC = 0.9 in 20 and 60 seconds.

Performance improvements obtained in this manner for sev-

eral signal processing options considered for a Swerling

case 1 target are summarized in Table 5.4-3. The options in-

clude with and without frequency agility and with and with-

out back-to-back antennas. Note that the degree of improve-

ment depends on the performance criterion adopted.
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Table 5.4-3

Summary of Performance Improvement with the Antenna
Scan Rate of 3 rpm for a Swerling Case 1 Target

a. antenna scan rate of 3 rpm (360 coverage in azimuth)

P in 60 sec. P in 20 sec.
req'd P 0.535 0.90d SNR(dB) margin gain* SNR(dB) margin gain*

(w/o frequency agility)
3 NCI 13.4 3.7 2.9 21.2 -4.1 0.1
3 of 3 14.3 2.8 2.0 22.1 -5.0 -0.8
3 of 6 11.4 0.8 0.0 19.2 -7.0 -2.8
6 NCI 10.5 1.7 0.9 18.4 -6.2 -2.0

(w/ frequency agility) -
3 NCI 12.1 5.0 4.2 16.0 1.1 5.3
3 of 3 17.4 -0.3 -1.1 25.4 -8.3 -4.1
3 of 6 10.5 1.7 0.9 13.8 -1.6 2.6
6 NCI 8.9 3.3 2.5 11.6 0.6 4.8

b. anteana scan rate of 3 rpm with a back-to-back antenna
(180 coverage in azimuth)

PC in 60 sec. Pc in 20 sec.
req'd Pd 0.535 0.683

SNR(dB) margin gain* SNR(dB) margin gain*
(w/o frequency agilility)

3 NCI 10.8 6.3 5.5 15.5 1.6 5.8
3 of 3 11.5 5.6 4.8 16.4 0.7 4.9
3 of 6 8.6 3.6 2.8 13.5 -1.5 2.7
6 NCI 8.0 4.2 3.4 12.7 -0.5 3.7

(w/ frequency agilility)
3 NCI 10.6 6.5 5.7 13.3 3.8 8.0
3 of 3 14.7 2.4 1.6 19.6 -2.5 1.7
3 of 6 9.0 3.2 2.4 11.5 0.7 4.9
6 NCI 7.8 4.4 3.6 9.7 2.5 6.7

c. antenna scan rate at 6 rpm

PC in 60 sec. Pc in 20 sec.
req'd Pd 0.318 0.683

SNR(dB) margin gain SNR(dB) margin gain

3 of 3 11.4 0.8 ref 16.4 -4.2 ref

*compared to the corresponding SNR margin with 3 of 3 pro-
cessing @ antenna scan rate of 6 rpm
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If the criterion is the track update rate instead, which

is defined as the blip scan ratio multiplied by the number

of scans in a specified time interval, improvement figures

different from those shown in.Table 5.4-3 result. For ex-

ample, at the range-where Pc = 0.9 is reached, the average

number of track updates (hits) in 5 minutes for Pc intervals

of 20 and 60 seconds at the antenna scan rate of 3 rpm are

13.5 and 8, respectively. The corresponding average numbers

of track updates at the antenna scan rate of 6 rpm are 20.5

and 9.5.

To yield the same level of track update rate at 6 rpm, a

Pd level of only 0.45 and 0.27 is required for Pc intervals

of 20 and 60 seconds, respectively. Corresponding values of

the required (S0/N) are 13.1 dB and 10.8 dB. Again, by com-

paring SNR margins, the improvement figure is determined to

be 2.0 dB and 3.6 dB for Pc intervals of 20 and 60 seconds,

respectively. Even though the improvement figures are

smaller, it is significant that the track update rate is im-

proved at this range by slowing down the scan rate. This im-

provement increases at ranges further out and decreases at

ranges closer in. This subject is further discussed at the

end of the Chapter.
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Now assume that the azimuth coverage is reduced from 360

to 180 degrees. With a back-to-back antenna configuration

where the receiver/transmitter set is switched to one or the

other antenna every 180 degrees of the rotodome rotation sr

that the same 180 degree azimuth sector is covered by both

antennas, the revisit rate at 3 rpm for the covered sector

is the same as that provided by a single antenna at a scan

rate of 6 rpm. Therefore, the performance improvement mea-

sure based on Pc is the same as that based on the average

number of hits. Following the same procedures as above, the

equivalent dB improvement figures with frequency agility and

3 NCI with the back-to-back antenna are 8.0 dB and 5.7 dB

based on 0.9 Pc in 20 and 60 seconds, respectively.

These results demonstrate the efficiency of NCI in the

region of high SNR or high probability of detection rendered

by the slower scan rate when used in conjunction with fre-

quency agility. The improvement would be even greater had

the highly desirable track update rate of once every 10 sec-

onds been required. This would require a single scan Pd of

0.9. With two back-to-back antennas rotating at 3 rpm and

slant-to-slant frequency agility, this level of performance

is achievable at a range equal to 1.06(R0 ) for a 3 NCI and

at 0.96(R 0) for a 6-NCI where (R0 ) denotes the reference
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range. This results from the the direct conversion of

one-fourth power of the SNR margin available at (R0 ), which

are 1.1 dB and -0.6 dB, respectively, for 3 NCI and 6 NCI.

In che baseline 3 of 3 post detection integration, Pd = 0.9

is rarely reached due to range eclipsing even when a target

is at a close range. Ignoring range eclipsing for ease of

comparison of other effects on detection performance, the

SNR margin for 0.9 Pd at the reference range is -9.9 dB.

Thus, the equivalent dB improvement is 11.0 dB and 9.3 dB

for 3 NCI and 6 NCI, respectively.

To facilitate the performance comparison, Pc values for

20 and 60 seconds are plotted in Figures 5.4-5 anC 5.4-6,

respectively, as a function of the mean normalized SNR, x,

defined as (S0/N) divided by the respective (S0/N)0 . This

eliminates the need for computing SNR margins. Comparison

on the basis of track update rate can be generated

similarly. Let u denote the average number of hits in a

specified time interval, say 5 minutes. Since there are 15

and 3t antenna scans in a 5 minute interval for 3 and 6 rpm

antenna scan rates, respectively, u as a function of the

normalized SNR, x, is qiven by

u(x) =(15)Pd(X)(So/N) o]: antenna scan rate at 3 rpm

(30) [Pd(x) (So/N)o]: antenna scan Late at 6 rpm.
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The plots of the average number of track updates in a 5

minute interval with 3-NCI at 3 rpm for Swerling case 1 and

2 targets together with the same in the baseline 3 of 3 pro-

cessing at 6 rpm for Swerling case 1 targets are shown in

Figure 5.4-7. These figures clearly demonstrate that not

only is the Pc range extended with a slower scan rate but

the track update rate is also improved in the outer range.
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CHAPTER 6

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Summary

This report presents results of an investigation

into the effectiveness of (a) scan-to-scan processing and

(b) scan rate reduction in improving the detection perfor-

mance of an existing airborne surveillance radar subjected

to power-aperture product and system false alarm con-

straints. As background, considerations involved in a per-

formance comparison of the baseline and modified radar con-

figurations were clearly explained where the primary

performance criterion was the cumulative detection probabil-

ity. Following an introduction in Chapter 1 of the radar

system under investigation together with basic concepts as-

sociated with the detection problem in a long range airborne

surveillance radar, those parameters which go through

changes with the system modification were identified and

methods for quantifying those parameters were developed in

Chapter 2. These included the number of coherent processing

intervals in a beam dwell given the search frame time, the

number of available pulses in a coherent processing inter-

val, beam shape loss, false alarm probability allocation,

and target models. It was shown how two different approaches

to false alarm calculations, one proposed by Marcum and the

other by Barton and Skolnik, could be used to relate cell
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false alarm to system false alarm in a complex high PRF ra-

dar.

The baseline radar configuration was then analyzed in

Chapter 3. Probability density functions for the sufficient

statistic appearing in the likelihood ratio test were devel-

oped. Expressions for the detection probabilities after M of

N post detection binary integration were derived. These re-

sults were then averaged with respect to the assumed target

radar cross section fluctuations to obtain the expected de-

tection probabilities for five different target models.

Graphs of detection probability versus signal-to-noise ratio

were generated and presented for the five target models.

The scan-to-scan processing (SSP) was dealt with on a

theoretical basis (as opposed to simulation) in Chapter 4.

The baseline radar configuration was modified by incorporat-

ing two different versions of scan-to-scan processing: One

was a conventional J of K SSP while the other was a modified

J of K SSP. The philosophy is to lower the threshold to en-

able detection of extremely weak targets or extend the de-

tection range for conventional targets. This results in a

drastic increase of false alarms. These are suppressed by

requiring J detections in a K scan wide correlation window

associated with L total scans. The size of the correlation

window was determined by imposing limits consistent with

realistic target maneuvers. An analysis was carried out to
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relate cell false alarm probability to system false alarm

rate when scan-to-scan processing is incorporated. The cor-

responding cumulative detection probabilities are derived.

It is shown, contrary to widely held optimistic projections,

that only a very marginal improvement results over the cumu-

lative detection probability of the baseline radar.

With a power-aperture product constraint, the only ad-

justable system parameter available for improving perfor-

mance is the scan rate over the surveillance volume. In

Chapter 5 previous work on scan rate optimization for a low

PRF radar is reviewed. The results suggested that improve-

ment could be achieved by slowing down the scan rate for a

given surveillance volume. An example was worked out in the

investigation to show that slowing down the scan rate in the

baseline radar could result in significant improvement. As

a result, the previous scan rate optimization for the low

PRF radar was extended to the high PRF case. Because of

track update requirements, scan rate reduction was limited

to a factor of two compared to what was specified for the

baseline radar. Both binary M of N and noncoherent post de-

tection integration were compared in conjunction with the

reduced scan rate in the analysis. Noncoherent post detec-

tion integration combined with a reduced scan rate was shown

to give rise to significant detection performance improve-

ment.
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6.2 Recommendations for Future Work

The main body of this investigation dealt with detection

of Swerling and Marcum target models embedded in white

Gaussian noise. This is a problem encountered in a well de-

signed high PRF radar where the majority of targets of in-

terest fall in the clutter free doppler zone. The solution

to this problem is generally assumed in the literature to be

well known. However, the problems posed and the concepts and

methodology developed in this investigation while critical

in addressing the issues facing modern surveillance radar

problems today, cannot be readily found in the literature.

One of the major areas of radar research activity over

the past decade appears to center on optimum detection in

non-Gaussian interference, the principal source of the

non-Gaussian interference being clutter. Frequently, the in-

stantaneous power of radar returns from land clutter is

characterized as lognormal [10] or Weibull distributed [16),

while that from sea clutter is K-distributed [17]. This led

to a flurry of research activity into detection schemes

based on stochastic estimation, which is an extension of the

optimum detection theory [18], or Locally Optimum Detector

(LOD) [19) or Asymptotically Optimum Detector [20] on the

one hand, and adaptive clutter cancelling techniques on the

other [21, 22].
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While these topics are interesting, detection approaches

under non-Gaussian clutter may be irrelevant to a majority

of the detection problems in clutter. It is indeed true

that the aggregate of returned clutter power observed over

the entire surveillance volume can assume lognormal,

Weibull, or K-distributed density. However, the conditional

density given the local mean of the clutter power taken from

one radar resolution cell over the time period during which

each detection decision is made within a radar scan is

likely to be either exponential or Rician. The assumption of

exponential or Rician density in turn depends on whether or

not the entire sequence of radar pulses is transmitted at

the same carrier frequency [23].

Describing the probability density of the entire set of

returned clutter power in a surveillance sector as an inte-

gral of the conditional probability density of the clutter

given its local mean multiplied by the probability density

of the mean using the mean as the variable of integration

(see Eqn. 6.2-1, p276) is based on the point of view arising

from the nonstationary characterization of clutter (24, 25,

26, 27]. Not only does this approach provide a means to ex-

plain a more complex form of clutter distribution, but more

importantly it allows the correlation property of the clut-

ter to be correctly modeled. Stating it differently, the

voltages associated with the in-phase and quadrature compo-

nents of the clutter returns during a beam dwell from a
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given range-azimuth resolution cell is likely to be

Gaussian, albeit nonzero mean, when the radar resolution

cell intersects the ground patch which contains many elemen-

tal clutter cells. An elemental clutter cell is that clut-

ter patch bounded by its spatial correlation distance. Re-

turns from elemental cells of a ground patch may be also

Weibull (23] or Lognormal distributed [28]. However, when

the radar resolution cell encompasses many elemental cells,

the central limit theorem evidently is at work to render the

distribution of the received clutter power to be exponential

or Rician conditioned on its mean taking a certain value.

The assumption of multiple elemental cells will fail to hold

eventually as the radar resolution cell is made sufficiently

small as in a synthetic aperture radar (SAR) used for ground

imaging. Some authors report that the Gaussian assumption

also fails to hold at very low grazing angles.

Thus, for the majority of practical situations the detec-

tion problems in Weibull, lognormal, or K-distributed clut-

ter usually break down to problems of detection in Rayleigh

or Rician clutter (for the envelope voltage after combining

the in-phase and quadrature components) during each decision

interval (25]. The detection decision is made with an adap-

tive threshold that yields the desired constant false alarm

rate throughout the surveillance volume. The expected detec-

tion probability over the entire surveillance volume is ob-

tained by averaging the local detection results over the
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variation of the clutter mean. Note that this process is

exactly the same as the procedure for obtaining the expected

detection probability after post detection integration of

Swerling case 1 and 3 targets (slowly varying with respect

to a CPI) in white Gaussian noise. This process was ex-

plained in Chapter 3. Totally irrelevant detection predic-

tions would result for Swerling case 1 and 3 target models

when a method appropriate for Swerling case 2 and 4 were ap-

plied to these models. Similarly, an optimum detector under

non-Gaussian interference produces an incorrect result when

the local interference over the detection decision interval

is Gaussian.

A preliminary analysis of clutter samples collected with

a high PRF radar is presented in Section 6.2.1. The result

tends to support the nonstationary characterization approach

to clutter. In particular, the mean and variance of the

clutter samples are found to vary significantly from one

range cell to the next.

As for the adaptive clutter canceller, which is an adap-

tive implementation of an optimum filter in the sense that

it maximizes the output signal-to-clutter-plus-noise ratio,

its predicted performance in comparison to that of a conven-

tional processor (MTI followed by a windowed FFT) is usu-

ally based on artificially simple assumptions which may be

irrelevant to the real situation encountered. Much of the
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recent adaptive clutter canceller work which is of sig-

nificance is contained in MTI RADAR edited by Schleher [21]

and Optimized RADAR PROCESSORS by Farina [22]. Simplistic

assumptions typically made are:

1. The interference is a zero mean Gaussian random pro-

cess.

2. The interference has an exponential autocorrelation

function and the covariance matrix can be normalized

such that it is a positive definite hermitian matrix

with unity diagonal elements.

3. The number of pulses used for processing is small

(usually 8 or 16 pulses).

4. Adjacent range gate samples are independent and iden-

tically distributed so that the signal free sample

covariance matrix can be obtained by averaging a num-

ber of adjacent range gate samples.

While assumptions 1 and 2 are reasonable for an adaptive

array design in the presence of sidelobe clutter interference

[29), the mean of mainbeam clutter samples over a CPI is

hardly ever zero, and the sample correlation matrix does not

have identical diagonal elements (i.e., nonstationary). As-

sumption 3 is valid for a very simple low PRF radar. In a me-

dium or high PRF radar the number of pulses integrated is

much larger which, when coupled with the fact that the
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clutter correlation matrix is almost singular (i.e., clutter

returns are highly correlated between pulse-to-pulse), makes

it difficult to invert or decompose the correlation matrix of

a large dimension. As for assumption 4, the clutter returns

in adjacent range cell samples taken with a high PRF radar

show that they are not identically distributed. In fact, the

mean and variance of the clutter samples exhibit significant

variations from one range cell to the next so that they can-

not be used to form a sample correlation matrix. This is

also reported to be true for a low PRF radar. the sample

correlation matrix can be formed from temporal samples in the

same range cell. The signal free. correlation matrix would be

difficult to obtain by this means, however.

A performance comparison of different clutter cancellers

is given in Secton 6.2.2. An infinite impulse response (IIR)

filter giving shaped velocity response, a finite impulse re-

sponse (FIR) filter using binomial coefficients as its

weights and and an FIR filter that derives its weights from

the eigen vector corresponding to the minimum eigen value of

the clutter correlation matrix are compared using actual high

PRF clutter data as inputs. No one approach was found to be

superior to the others tried.

In view of the lack of noticeable improvement in perfor-

mance of the optimum linear clutter canceller with real clut-

ter data, it seems reasonable to consider an option alternate

273



to the classical approach examined. This alternate approach

views the clutter as an a priori unknown, but deterministic,

process. Observation of a time sequence of clutter returns

reveals a slow monotonic variation of clutter amplitude over

a CPI. There is no random jump in amplitude or phase from

pulse to pulse. One possible explanation for this phenomenon

can be that the mainbeam clutter is dominated by a few

discrete scatterers whose signal amplitudes are slowly

modulated by the antenna scanning and platform motion. A

smooth curve fit to, or a low pass replica of, the clutter

amplitude and phase variation over a CPI can be made after

reception of the data and subtracted from the original data,

which in effect adaptively takes out a majority of the unde-

sirable clutter returns leaving uncancelled target signals

separated from the clutter doppler. Limited trials with col-

lected clutter data show good results when the smooth curve

chosen for curve fit is a third or fourth degree polynomia'.

The topics discussed briefly in this section require further

studies.

6.2.1 Clutter Model

The result of a preliminary investigation of the distri-

bution of clutter power received through a high PRF airborne

pulse doppler radar is presented in this section. The char-

acteristics of the radar used to collect the data and the

sample size are described in Table 6.2-1.
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Table 6.2-1 Radar Characteristics and Clutter Sample Size

no. of pulses per range cell 175

no. of range cells per azimuth sample 
40+

no. of azimuth samples 4

size of terrain covered

range 50-210 nmi

cross range 7.6 nmi at 210 nmi range

waveform high PRF

receiver bandwidth 1.25 MHz

carrier frequency S-band

Since the radar employs a high PRF wavaeform, the clutter

returns from over 200 nautical mile range swath are folded

into one approximately 3 nautical mile range interval which

is divided into some 40 or so range cells on the average. In

addition, these returns are modulated by the antenna beam

shape and the two way range attenuation on the one hand, and

by the antenna scanning and the platform motion on the

other. The platform is assumed to move at a speed of 360

knots at the altitude of 30,000 feet. Of the range cells

available, only samples from every other range cell are used

for analysis.

The objective of the investigation is to determine how
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well the actual received clutter sample can be fit to the

nonstationary clutter model. The conventional view giving

rise to Weibull or lognormal distribution for clutter is

based on representing the clutter process as a wide sense

stationary random process. An alternate view, which is the

nonstationary characterization adopted in this investigation,

is modeling the clutter process as a time varying process

whose parameters are stationary within a radar detection de-

cision interval within a beam dwell.

This nonstationary characterization is described math-

ematically as follows: Let the instantaneous scattered clut-

ter power, which is proportional to the mean radar cross

section of the clutter patch or the clutter reflectivity, be

denoted by a random variable z, and the local mean of z be

denoted by another random variable u. Let p,(zlu) and P2 (u)

denote the conditional density of z given u and the prob-

ability density of u, respectively. The probability density

pl( ) corresponds to the short term or a local density for a

scattered clutter power while p2 ( ) corresponds to the

variation of u over time or space (entire terrain in the

surveillance volume).

The unconditioned density of z is given by

p(z) = fP l (zlu)P2 (u)du. (6.2-1)
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Lewinski (24] has proposed gamma densities for the density

functions of both z and u which are expressed as

(k) kzk-l exp (-kz/u)pl(ZtIU) = r k(6.2-2)
r(k) (u) k

and

(m)mum-1 exp(-mu/u)
P 2 (u) - P(m) (U)m (6.2-3)

where overbar signifies the expected value, ( ) is the

gamma function, and k and m are the inverse of the normal-

ized variance of z and u (the square of the mean divided by

the variance), respectively. The parameter k is also known

as the shape factor while u is known as the scale factor.

Substituting the above expressions into Eqn. (6.2-1) yields

2(ki) (k+m)/2 (z) (k+m-2)/2
p(z) = f(k)P(m) (u) (k+m)/2 Km62)

where Kp(.) is the modified Bessel function of second kind

of order p. When k = 1, p(z) becomes the density of the

K-distribution and when k = 1 and m = 1/2, p(z) becomes a

Weibull density with Weibull parameter equal to 1/2 [24).

The gamma density encompasses a large class of density

functions. When k = 1, it represent the exponential density

used in the Swerling case 1 and 2 models (see Section 2.6).
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When k > 1, it represents the Rician density [29]. Actually,

it is slightly different from the Rician density commonly

used in the literature [10, 21, 23] for representing the re-

flected clutter power which is given as

p(z) = (l+a)/u] exp[-a-(l+a)z/u] Io(2[a(l+a)z/u]l/2)
(6.2-5)

where a is the DC to AC power ratio and Io(. ) is the

modified Bessel function of the first kind of order zero.

The random variable u, the mean of z, is best obtained by

taking the mean of the sample values taken from multiple

carrier frequencies with the frequency spacing equal to or

larger than the waveform bandwidth. Since a single frequency

is used in the sample at hand, the average value of 175

pulses for each range cell is taken as the mean for that

range cell. It is assumed that a sufficient platform motion

and antenna scan occurred during the duration of the pulse

group to give a representative estimate of the mean.

The approximate density function for P2 (u) is obtained by

finding the value of m that gives a good fit between the

plot of Eqn. (6.2-3) (after multiplication by a number equal

to the area under the histogram) and the histogram of the

mean of each range cell in the test set. The approximate

density function for p(z) is similarly obtained by finding

the value of k that gives a good fit between the plot of
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Eqn. (6.2-4) and the histogram of individual pulse returns

from all range-azimuth samples in the test set treated as a

single population. Note that knowing the value of k also

gives the conditional probability density function pl(zlu).

It is convenient for plotting purposes to use the normal-

ized gamma density according to the variable transformation,

u * u/u = y. Then, p(y) is given by

mm ym-i exp(-my)
p(y) = - . (6.2-6)r(m)

The histogram of the normalized mean value of the clutter,

u/5, is shown in figure 6.2-1. The plots of Eqn. (6.2-6)

versus y = u/i for m = 1, and 2 are shown in Figure 6.2-2.

It can be seen that the gamma density with m = 2 is a good

fit to the histogram although the computed m is close to 1.

The histogram of individual pulse returns from all

range-azimuth samples in the test set, when matched to the

plot of a scaled version of Eqn. (6.2-4) represeenting p(z)

would allow the determination of k and pl(z/u). Unfortu-

nately, a way of plotting Eqn. (6.2-4) for a non-integer or-

der of the modified Bessel function of the second kind was

not found within the time constraint of this investigation

and the k value needed for pl(zlu) was not established by

this means.

An alternate approach was taken based on the assumption
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that the distribution of returns in each range cell all be-

long to a gamma density. The distribution of clutter returns

in individual range cells should reflect the conditional

density. Histograms of the normalized values of clutter re-

turns for a few range cells are shown in Figures 6.2-3 (a)

through (d). It is obvious that additional samples are

needed to give them a recognizable form. With the assump-

tion that returns in all range cells belong to a family of

gamma density, it can be conjectured that the histogram of

normalized clutter returns for a single range cell can be

approximated by averaging the same from all range cells.

The normalization is accomplished by dividing the variable

by its local mean (i.e., z/u) for each range cell. This is

done and the result is plotted in Figure 6.2-4. The result

reasonably matches with a Rician density of DC/AC ratio

equal to 40 which is plotted in Figure 6.2-5. The gamma den-

sity with the shape factor k equal to that computed from the

samples used (k - 27.5) is also plotted in Figure 6.2-5.

Based on visual inspection, it can be seen that a better

match is possible if a shape factor somewhat less than that

computed is used.

The most significant findings are that the mean and vari-

ance of the clutter returns vary significantly from one

range cell to the next. This contrasts with the frequently

used conventional assumption. The values for samples from

one azimuth look are listed in Table 6.2-2 for illustration.
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Table 6.2-2

Range Cell to Range Cell Variation of Clutter Statistics

clutter power statistics

range cell # mean variance max. value min. value

7 136,383 2.2xi0 0 9  254,530 86,725

9 2,528,749 5.8xi01 1  3,257,461 939,497

11 464,083 3.5xi01 0  914,689 197,640

15 382,682 6.9xi00 9  517,985 153,493

17 90,185 1.7x100 9  141,520 13,253

19 1,706,289 1.6x101 0  1,946,404 1,566,850

21 338,809 1.3x101 0  472,066 122,509

23 1,225,326 7.7xi00 9  1,376,500 1,116,757

25 1,677,916 9.0x101 0  2,002,568 1,081,825

27 229,145 4.0x100 9  322,592 117,625

29 581,995 2.8xi01 0  941,845 411,956

33 458,439 2.2x101 0  862,948 332,100

35 2,431,334 1.8x101 1  3,075,201 1,667,818

37 3,427,057 6.2xi01 0  3,686,800 2,877,200

39 668,303 5.1x101 0  1,118,617 388,145

43 751,256 5.8xi0 I0  1,039,725 273,320

45 277,727 7.2x10 0 8  327,625 242,045

47 166,344 2.2xi00 9  238,954 113,074
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6.2.2 Clutter Cancellation Techniques

In this section a performance comparison of three types

of clutter cancellers is made using live data collected from

a high PRF airborne pulse doppler radar. The three types of

clutter cancellers compared are

a. Velocity shaped IIR filter.

b. Delay line canceller with binomial coefficients as

its weight.

c. Optimum linear filter whose weights are derived from

the eigen vector corresponding to the minimum eigen

value of the clutter correlation matrix.

The velocity shaped IIR filter consists of two sections

of 2-pole, 2-zero recursive digital filters in cascade whose

coefficients are chosen so as to give a flat magnitude re-

sponse above its cutoff frequency which can be selected for

either 70 or 90 knots.

The filters of (b) and (c) above are known also as trans-

versal filters whose outputs are a weighted sum on a sliding

window of the input sequence or the input vector. The out-

put sequences of these filters are weighted and summed again

to produce a specific doppler filter output. A representa-

tion of the above processes in terms of matrix multiplica-

tions is given by Andrews (30].
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According to linear optimum filter theory, the above pro-

cess can be performed by one operation. This is expressed

mathematically as

x = W*Y (6.2-7)

where x is the scalar output, Y = Z+S is the input column

vector consisting of the clutter plus thermal noise inter-

ference vector Z and the signal vector S, and W* is the

transpose of the complex conjugate of the weight vector W

defined as

w M M -is (6.2-8)

and M is the correlation matrix of the interference process

assumed to be zero mean [31].

One difficulty with this approach is that the signal vec-

tor is a priori unknown. In this case the signal vector, in

particular its doppler frequency, is assumed to be equally

likely to be anywhere within frequency interval correspond-

ing to one PRF. Then, the optimum weight is given by the

eigen vector corresponding to the minimum eigen value of the

interference correlation matrix (32, 33].

The real difficulty with this optimum filter is that the

interference correlation matrix is also unknown and cannot

289



be approximated from the adjacent range gate samples as as-

sumed by others [31, 34, 35]. This is because the clutter

statistics are different from one range cell to the next as

shown in the previous sectione Furthermore, in a high PRF

radar the dimension of the correlation matrix is large

typically on the order of 128 or larger; and the operation

indicated by Eqn. (6.2-7) and (6.2-8) is extremely diffi-

cult, if not impossible, to carry out. While M is a positive

definite Hermitian matrix in theory, an examination of real

clutter data shows that it-is highly ill conditioned. The

difficulty arises due to the high degree of clutter correla-

tion from pulse to pulse. At the same time, the correlation

is not perfect enough with the result, when binomial coef-

ficients are used as the weight, that the performance of the

delay line canceller deteriorates rather than improves as

the number of canceller stages increases beyond two. In ad-

dition Hsiao [37] shows, even under ideal assumptions such

as a known exponential auto-correlation function for the

clutter, that the increase in the clutter canceller improve-

ment factor diminishes rapidly as the number of stages is

increased beyond 7 or 8. These considerations limited the

number of stages for transversal filters examined in the

performance comparison to 7 making it an 8 pulse canceller

at the maximum.

In the data sample examined, there are approximately 175

pulses available for processing after the multiple time

290



around echoes settle down in each CPI (see Figure 2.1-2).

With the velocity shaped IIR filter, a 128-point FFT follows

the clutter canceller after those pulses in the early por-

tion of the filter output are discarded during which the

filter goes through a transient period (see Figure 2.1-3).

For the transversal filters, there are no transient periods.

Thus, (175-N) output pulses are zero padded for a 256-point

FFT where N is the number of canceller stages.

The frequency span equal to one PRF of the data set cor-

responds approximately to a velocity span of 0 to 2,454

knots. In each trial, a synthetic target is injected with

varying amplitude at a doppler frequency corresponding to a

specific target velocity. The results with the velocity

shaped IIR filter are shown in Figures 6.2-6 (a) through

(d) together with those for a 2-stage delay line canceller

with binomial coefficients as its weights for comparison.

The two humps appearing near the right edge in the figure

correspond to (from left to right) the altitudeline clutter

and the first sideobe clutter, repectively. Different adap-

tive constant false alarm rate (CFAR) thresholds are used in

these range-doppler zones in the actual radar implementa-

tion. The results obtained using delay line cancellers with

binomial coefficient weights for canceller stages of 2, 3,

and 4 are shown in Figure 6.2-7. The canceller transfer

function (gain as a function of frequency) is superimposed

on the figure for visual aid. Increasing the number of

291



__ _ -rcc
U t~ I__ ~H i l

S.4

31

zk I
~2

C - ~ U M41

-l on a 0

0 I I0 a
E H~ ~ _

llo -,

II0. F 0~ X

4A.

-00

1--96

crZ

292



-- III E *NitIme

CL IZE

cc, o- o- a a =n - -

04

0 -P

At! :c -P4 r

MA1 04 u

S C

96 Z
I...

.rC ON

=66' EP

.0 04 0aa a

ZGD. l~V M'm0fl~ (Df) 3aaflfl Lwz~s~od ZUrl

293



CLa 6

I 03

Le I I - - ga

we1 we

U, L lI I, W
tI V

iU C4

()3OLM(gp) 3GD.io'vx A c~

4

{1k- p
I V4 ~r

1H'L~a~ IIo-

*4 0

294



stages beyond two resulted in performance degradation. This

is due to imperfect pulse-to-pulse clutter correlation. A

comparison of 2-stage and 7-stage cancellers is shown in

Figure 6.2-8. The performance deterioration is even more

evident.

The above results are for samples from range cell 33 at a

particular azimuthal direction. The results for different

range cells in the same azimuth set with the eigen vector

obtained from the estimated clutter correlation matrix as

filter weight are shown in Figures 6.2-9. Also shown in the

figure in parallel is the corresponding results with the IIR

filter. The transfer function for the transversal filter is

shown in Figure 6.2-10 for each of the range cells examined.

In computing the eigen vector, a sample correlation matrix,

which is an average of a set of 8x8 correlation matrices

each formed by the outer product of 8 pulses taken at 16 or

32 pulse interval from the received pulse train for the test

cell, is first obtained. The eigen values and eigen vectors

for the sample correlation matrix for each range cell sample

are then computed using the EISPACK computer program devel-

oped by Argonne National Laboratory on a mini VAX computer.

Without exception, in all trials some eigen values turned

out to be negative. The eigen vector corresponding to the

minimum positive eigen value was used to provide filter

weights for each range cell sample.
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These results can be compared by visual inspection (the

best knowledge based detector). While subjective, it is ap-

parent that no one technique is noticeably superior to the

other for discriminating the injected synthetic target from

the clutter. As a matter of fact, performance of the opti-

mum filter (filter with the eigen vector as its weight)

seems inferior to that of conventional filters used almost

exclusively in radar systems operating today. However, a

higher degree of reduction in amplitude of the altitudeline

and the first sidelobe clutter away from the mainbeam clut-

ter is quite evident when the optimum filter is employed.
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