
IFREPORT DOCUMENTATION PAGE FWA 07ao

A 4etcm 4"00 tosm aaUe Maw" .0mw 6"9WMA~D -4247 039 "t "a"a-&W~* ~ CJa
L REPORT 0ATU 1 REPORT TYPE AND GATES COVERED

1 / 3final technical 12/l/90-11/30/91
S. PUNDING NUMBERS

%k Research into the Design and Implementation of
Knowledge-Base Systems If 5IO

Jeff rey D. Ullman I

7. PIWuMG QGAMTM~ NAMI(S) AND AO011SS(ES) L.P ORGAISIZATION
Computer Science Department

Stanford University
Stanford, CA 94305 ROSR rR-

IL SFONSOPJIING/MONTORING AGENCY NAME(S) AND AOOSESS(ES) 6. SONSOmAMOIORNG
AFOSR/NM RPS nE
Building 410AFo tk 0 (c
Bolling AFB DC 20332-6448 D T IC A c g r

13&. O1SlUWIONMI AVAILAIUI STATIMENT 12u OSSTMIIION cowE

Approved for public release: distribution unlimited. C

M) AISTRAC (AWam 200 w*rd)

A working prototype of the NAIL! system was implemented. This system
extends SQL, providing a general purpose computing capability. The two
elements of NAIL! consist of GLUE, a logical rule formulation of SQL, and
NAIL, a declarative language which generates GLUE code. Applications
have been demonstrated that implement a building construction schedule
and a VLSI CAD logic simulator. Various query optimization algorithms
have been studied and implemented in NAIL.

14. SUSI Tim 15. NUER OF PAGES'
4

M7 SHQITY CLASSWICATMO S EUT LSIIAIN Lt SICURM CLASGSW 2L UNU EION OfTA5STM

Sn4 Form In (Rev 2-S9

Final report on Grant AFOSR-90-0066
Dec., 1990 - Nov., 1991

Jeffrey D. Ullman, PI 92-05653

NAIL System Implementation iiii11Il1I1~"1ll
We developed a working prototype of the NAIL system. We implemented a number of
application programs and, and our experience with these programs has enabled us so far
to improve system performance by a factor of 6. A description of the earliest version of
the system appears in Phipps, Derr, and Ross [1991].

We are just beginning the process of optimizing the system and hope for much better
performance next year. The following are the principal components of the system and the
authors thereof.

* The GLUE language is by Geoff Phipps. This language can be thought of as SQL
statements connected by conventional flow of control, procedures, and modules. How-
ever, the statements themselves are written as logical rules, rather than with the
algebraic SQL syntax. The GLUE manual is available: Phipps [1991].

* The Iglue intermediate language has been implemented by Marcia Derr. This language
consists of single operations of relational algebra, but like GLUE it uses a logical
syntax. Derr is beginning to optimize the storage structures for the relations that
represent the values of logical predicates. A key optimization that is not analogous
to the "standard" code optimization tricks is detection of relations whose values are
singletons and the resulting simplification of operations on these relations.

* The NAIL front end has been implemented by Ashish Gupta, Ken Ross, and Kate
Morris. This language is fully declarative logic with negation, using the well-founded
semantics (an idea developed under a predecessor grant and recently journal-published
as Van Gelder, Ross, and Schlipf [1991]). It implements the algorithm described in
Ross [1991b], which applies the magic-sets optimization and generates GLUE code.

Applications

We have also developed a number of applications. The first significant application was
a scheduler for building construction by Ashish Gupta and Sanjai Tiwari. This program
gave us the measurement for speed up of the system as the implementations of GLUE and
Iglue improved. The largest program, by Geoff Phipps, is an equivalent of the Thor logic
simulator used by the VLSI CAD group at Stanford; this program is 1500 lines of GLUE.

Theory of Deductive Databases

There are a number of other ideas, not directly related to the system, that have been
developed and/or published by the NAIL group over the past year.

* Gupta and Mumick [1992] shows that the magic-sets optimization, which was de-
veloped for recursive logic, can be applied to nonrecursive programs as well. The
problem was that there are examples where nonrecursive programs become recursive

1

92 3 03 114

when magic-sets is applied. These students show that the resulting rules can always be
safely modified to eliminate the introduced recursion. In earlier work, Mumick demon-
strated that magic-sets applied to nested, nonrecursive queries is at least as good as
the best of the previously known methods for dealing with such queries, so there is
reason to believe that magic-sets will be the method of choice for all nonrecursive
queries now.

Hakan Jakobsson [1991, 1992] has developed new main-memory algorithms for com-
puting transitive closuLes of large, sparse relations, and for a family of operations
generalizing transitive closures as well. It is difficult to claim that some algorithm
is "best" for transitive closure on arbitrary graphs, because one can always invent
an algorithm that looks for graphs of a special type, say chains, and spews out the
transitive closure for those graphs as fast as possible but does something expensive
on all other graphs. However, Jakobsson's algorithms can be compared with a family
of algorithms that are "data independent" in a formal sense he defines; this class of
algorithms includes all the usual combinations of path doubling and depth-first search.
He then shows that he is never worse than the best of these algorithms, and beats all
the known ones by a factor that is at least the square root of the number of nodes.

* Ross [1991a] generalizes the techniques called "regular recursions" that beat magic-
sets algorithms when they are applicable. He shows that regular recursions are but
one example of how to eliminate tail recursion in logic programs.

* Brodsky and Sagiv [1991] develops further the theory of when one can show that
top-down search (as in Prolog) for solutions to a logical query will terminate.

Mumick and Pirahesh [1991] deal with the fact that sometimes queries in which "too
much" is specified require more work than if less were specified. The most common
example of this phenomenon is in graph algorithms, where it is accepted that to answer
a point-to-point reachability problem (can I get from a to b), you need to forget about
b and ask the more general question "where can I get to from a?" These authors study
algorithms for optimizing queries that have this property of more bound arguments
than can be used productively.

* Chaudhuri [1991) gives algorithms for detecting two opportunities for optimizing
cacheing of relations during a query. First is the "emptiness" property, where a tuple
not used in one round of a recursive query evaluation will never again be used. The
second, "used-at-most-once," is that a tuple which is used on a given round is guar-
anteed never again to be needed. These properties appear in many common recursive
queries.

" Ullman [1991a] demonstrates certain incompatabilities between the deductive (logical)
and object-oriented database paradigms. In particular, deductive databases cannot
regard object-identity as an inviolate principal and cannot support dynamic types in
a nontrivial way.

" Ullman [1992b, c] are surveys of optimization techniques for conjunctive queries and
of techniques for parallelizing logical queries, respectively.

2

Theses Completed

There were three doctoral theses completed this year with support of the grant or previous
AFOSR grants to the NAIL project: Morris [1991], Mumick [1991], and Ross [1991c].

Bibliography

Brodsky, A. and Y. Sagiv [1991]. "Inference of inequality constraints in logic programs,"
Proc. Tenth ACM Symposium on Principles of Database Systems, pp. 227-240.

Chaudhuri, S. [1991]. "Detecting redundant tuples during query evaluation," Proc. Tenth
ACM Symposium on Principles of Database Systems, pp. 115-126.

Chaudhuri, S. and M. Y. Vardi [1992]. "On the equivalence of datalog programs," submit-
ted to PODS, Dec., 1992.

Gupta, A. and I. S. Mumick [1992]. "Magic sets transformation in nonrecursive queries,"
submitted to PODS, Dec., 1992.

Jakobsson, H. [1991]. "Mixed approach algorithms for transitive closure," Proc. Tenth
A CM Symposium on Principles of Database Systems, pp. 199-205.

Jakobsson, H. [1992]. "On tree-based techniques for query evaluation," submitted to
PODS, Dec., 1992.

Morris, K. [19913. "Subgoal order for query optimization in logic databases," Doctoral
thesis, Dept. of CS, Stanford Univ., Aug., 1991.

Mumick, I. S. [1991]. "Query optimization in deductive and relational databases," Doctoral
thesis, Dept. of CS, Stanford Univ., Dec., 1991.

Mumick, I. S. and H. Pirahesh [1991]. "Overbound and right linear queries," Proc. Tenth
ACM Symposium on Principles of Database Systems, pp. 127-141.

Phipps, G. [1991]. GLUE Manual, STAN-CS-91-1379, April, 1991.

Phipps, G., M. A. Derr, and K. A. Ross [1991]. "Glue-Nail: a deductive database system,"
ACM SIGMOD International Conf. on Management of Data, pp. 308-317.

Ross, K. A. [1991a]. "Modular acyclicity and tail recursion in logic programs." Proc.
Tenth ACM Symposium on Principles of Database Systems, pp. 92-101.

Ross, K. A. [1991b]. "On negation in HiLog," Proc. Tenth ACM Symposium on Principles
of Database Systems, pp. 206-215.

Ross, K. A. [1991c]. "The semantics of deductive databases," Doctoral Thesis, Dept. of
CS, Stanford Univ., Sept., 1991.

Ullman, J. D. [1991a]. "A comparison between deductive and object-oriented database
systems," invited paper, Proc. Second Intl. Conf. on Declarative and Object-Oriented
Databases, Munich, Germany, Dec., 1991, pp. 263-277.

3

I|

Ullman, J. D. [1991b]. "Fast algorithms for deductive database queries," to appear in
Proc. NEC ConL on Algorithms and Architectures, Tsukuba, Japan, Aug., 1991.

Ullman, J. D. [1991c]. "The interface between database theory and language theory," in
Theoretical Studies in Computer Science, a volume in honor of Seymour Ginsburg's 64th
birthday, pp. 133-152, Academic Press, Cambridge.

Van Gelder, A., K. A. Ross, and J. S. Schlipf [1991]. "The well-founded semantics for
general logic programs," J. ACM 38:3, pp. 620-650.

Accesion i-or L
NTIS CRA&I

DIIC TAE;UnanInoL; :ed :

By............
Distribtticn /

J-Dist

4

