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ABSTRACT

This report is about the effects of non-normality on the efficiency of the

Kalman filter, particularly when the distribution of measurement errors is still

symmetric but the tails are extended, which means that the observations are outlier-

prone.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been

made, within the time available, to ensure that the programs are free of

computational and logic errors, they cannot be considered validated. Any application

of these programs without additional verification is at the risk of the user.
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I. INTRODUCTION

Most contemporary automatic target trackers use a Kalman filter in their

kernels. One of the main assumptions behind the Kalman filter algorithm is that the

errors in the observations of the target are normally distributed. This report is about

the effects of non-normality on the efficiency of the Kalman filter, particularly when

the distribution of measurement errors is still symmetric but the tails are extended,

which means that the observations are outlier-prone.

Chapter II explains the bases of digital filters (in particular the Kalman filter)

and the Integrated Ornstein-Uhlenbeck motion model, which are the tools for this

study. Chapter III describes the three models that will be used in the experiments. A

fourth model is presented to demonstrate the data fusion of two sources of

information. Chapter IV describes the experiments and analyses the results and

Chapter V summarize the conclusions.

The "real world" situation that is inspiring our model can be described as follows:

a station equipped with an Electronic Support Measure (ESM) equipment is trying to

track a target by measuring its bearing and signal intensity. Those two measures have

different inherent error, intrinsically characteristic of the equipment and of the

physical conditions. The signal intensity provides the "range measurement" based on

emission characteristics (such as transmission power, frequency, etc.) and propagation

conditions. The conversion of signal intensity into range is certainly the largest source

of error for the target state estimate. The bearing is measured directly in the
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equipment, and we expect it to be more accurate than range measurement; the exact

precision is an equipment attribute (Figure 1).

Figure 1 - Hypothetical situation

In the situation described, large relative range errors and small bearing errors

should be expected.
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.BACKGROUND

This chapter was inserted in the thesis to help the reader who is not familiar

with the Kalman filter and the Integrated Ornstein-Uhlenbeck model. For the reader

who is already familiar with these subjects, this section is optional. The following is a

synopsis of various documents [Ref. 1 through 4].

A. DIGITAL FILTERS1

A sequence of bearings and ranges is produced when periodic measures of a

target are made by a Radar, Sonar or other detection device. Those observations carry

in addition to their inaccuracy an associated uncertainty which is usually represented

by additive noise [Ref. 5].

The algorithms used to process those measurements are called Digital Filters.

If we call the inputs IN(t) and the outputs OUT(t), Equation 1 represents a digital

filter

OU() = c, IN(,-i) + D, OUM-i) (2.1)

Where the C,'s and D,'s are constants. The formula says that the filter is a linear

combination of measures and previous values obtained in the filter. If all coefficients

Di are null, the filter is called non-recursive. In this thesis we are interested in a

recursive filter, the Kalman Filter, which uses the last measurement and a

combination of all the previous ones.

' This section is an adapted translation of Reference 1.
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The name "filter" comes from the analogy with the idea of a filter in electronics,

where for example, when we want to eliminate high frequency signals we use a "Low

Pass" filter, and only slow changes in the signal are allowed to go through (Figure 2).

Low pass characteristics are obtained on the filter in Equation 2.1 when Di > > C,.

WW PAN

Figure 2 - Electronic filter

Analogously, our filter will compare the measure with the previous state of the system,

allowing the last measure to have more or less influence on the system state change,

according to the gain established.

1. Recursive Filters

As mentioned previously, a recursive filter uses the last measurement and

a combination of the previous measures that is in the system state. As an example of

a recursive algorithm, look at the equation

OUl(t) =( - -) IN(t) + I- OUT(t-) 4-.2)
K

Considering the input at t = 0 as IN(O) and OUT(t) = 0 for t <0, then tL, sequence of

values will be generated at each unitary time step:
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O(MO) = IN(O)

OmT() = (I - IN(1) , I/W(O)

K K

1 1 (2.3)

0(12 1 IN(2) 1 - 0( N(1) +1/N0OM )= (I - I() + -(2 71)(23

K K 2

Note that the value IN(0) is never forgotten and can have more or less influence in the

present state depending on the value of K. Note also that the value of OUT(t-1)

economically condenses all the previous information up to time t-1.

a. Fersa_ and aLP_y

Consider a stationary target (order zero system) for which measures

of one coordinate are being taken. One filter that might be used to represent the

system is

OUT(t) = a IN(t) + (1-a) OU7(t-1) (2.4)

= OUT(t-I) + a(IN(t) - OUT(t-I))

In this case the actual state (target position) is obtained by combining the previous

state with the difference between the measurement and the previous System state,

multiplied by the gain a. If the gain a = 1 total confidence is placed in the measure and

the previous state is forgotten. Conversely a = 0 will not use the measure, keeping the

previous state. This is called the a filter.

Consider now a target with constant velocity (first order system)(Figure

3). The filter now has to predict the position at the time t of the measure before

comparing it with the estimate. For that system, calling X the target position and V.
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the target velocity, using the same idea as for the previous filter the equations are:

PREDICTION Xt) = X,(t-At) + V. At (2.5)

ESTIMATION X,(t) = X,(t) + a(X (t) - X (t)) (2.6)

where XP = predicted position

X= = measured position

X, = estimated position

a = filter gain

That means the estimated position is placed somewhere between the predicted

position and the measured position, using a linear combination.

-Madded

Figure 3 - Prediction Step.

It is possible now, using the previous estimated position and the measured position,

to calculate the measured velocity. Then a linear combination of the measured and

predicted velocities is formed using a new weighing parameter, the gain P, to achieve

a better estimate of velocity. Remember that the predicted velocity at time t is equal

to the estimated velocity at time t-At by assumption. The equation for the estimated
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velocity is:

V(t) = V(* + p(V.(t) - Vp(t)) (2.7)

or, in a continuous time formulation

-d '(0) -= (t-'t) + - (X(t) - X1,Q)) .(2.8)

di dt At

Note that when the measure is greater than prediction, the correction in the

estimated velocity is positive (as it should be). The parameter P is the filter velocity

gain and the filter is called a_p. In the same way a filter for a system with constant

acceleration (second order system) might be derived. A new gain factor will appear and

the filter will be called a_p_y [Ref. 11.

Looking at the filter aj, it is intuitive that the first measures will

have a high value in the target state determination, since they are the only

information the filter has. It is also intuitive that the choice for the gain value will

affect the speed of convergence of the filter to the correct estimates of position and

velocity. We now seek a way to calculate the "best" (in some sense) gain to be used in

the filter at each measurement. That is the work performed by the Kalman filter.

b. The Kalman Filter

Consider a system of order zero (stationary target) from which two

measures X, where i is the time, are obtained. Knowing that the true position is Xo,if

the measures are corrupted by a Gaussian noise and the errors are independent, the

first two measures are:
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X i = X 0 + el

(2.9)
and X 2 =Xo+e 2

Estimating the target position by a linear combination of the measures, the estimate

and its error are:

X, = aX, + bX2
(2.10)

e X. - X0 ,

where a and b are the linear coefficients. The criteria chosen to select the "best"

estimate are minimum average error and minimum square error. In that case the

equation for a null average error, using the facts that the mean for the errors is null

and E[Xo] = Xo, is:

E(] = EaX, + bX2 - Xo]

= E[a(Xo + e) + b(Xo + e2) - X] (2.11)

= aXo + bXo- X0 = O

:a+b=1

The equation for the average square error using the result of Equation 2.11 is:

E[c] = E[[(a+b-1)Xo + ae1 + be2] ]

(2.12)

= E[(ae, + be2) ]  as (a+b) = 1
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Which can be also written as:

E( 62] = E[a2e2 + 2abele + b2ej

=a a2 E~e, + V-Ee 2' (2.13)

a2 a 2 2a 20 2 + (I 21a'02
1ao + 2  +

After differentiating and equating to zero to find the minimum, the gains and the

minimum square error will be:

1

2 2
02 01

2 + 0 2 +2 1 1
2 2

01 02
(2.14)

1

2 2
b 01-F

2 2 1 1
01+02 

2 2
01 02

2 2
O102 12[2 +f a 2 + (2.15)

2 2
0 1  02

Note that the minimum square error is smaller than the variance for the two

measures, which means the variance for the estimate is better than the variance of the

two measures. Note also that if

0 2 > a 1 then a>b , (2.16)

which means that more weight is given to the more precise measure. These results

will be applied for the minimum mean square error in a recursive filter that also
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combines two values, the measure and the prediction. The best gain for each step is

given by Equation 2.14.

2u = (2.17)
2 2

a + Op

2where o= = variance of the measure

O = variance of the prediction

For a first order system (constant speed) the process of estimation has

to be preceded by a prediction (Figure 3 and Equations 5 and 6). The intent now is to

calculate a and P3 following a minimum mean square error criteria of optimization that

is

E[e., is minimum .. ais the best

E[Ev 2] is minimum .. i zs the best

where ex. = X,- X error in estimated position

C = V1 - Vx  error in estimated velocity

Vx = true velocity

X = true position

At the instant of the measurement a prediction operation is performed. The values for

the position and the error in predicted position are:
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X (t+At) = X(t) + Vz At
(2.18)

C= Lx, + EvXAt

The equations for the velocity and velocity error are:

V,(t+t ) = VX(t)

(2.19)
Lv., =LCv,

The equations for the mean square errors are:

EEx 2]= EOex 2 + 2xev + Ovx 2

(2.20)
=o a Z. + 2Ox.v 2 + 9 2

ETv,2] = E I ] =av 2 *(2.21)

2 22

At time t a measure is obtained and a new estimate is constructed. The equations for

position and variance of position can be derived as vRef. 1e:

11
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X= X, + a(X.-Xp)

o 2  (l- - , -- o 2 )a 2 _ 2 2 (2 .2 3 )
X. 2+o 2 A o 2 2

ap -T a 0XP +

The equations for velocity and variance of velocity after estimation can be derived as

[Ref. 11:

Vjr. = vX, + A(<xg - xP)
(2.24)

E[ev 2] = + 2Po, 2 + p2al + p202

After differentiating the last equation and equating it to zero, the equation for the

velocity gain is:

o 2
P= ,v,2.)

2 2 (2.25)
01 + 02

So, after the operation of estimation, the variance will be

a 2 = EreVX = 2 - Pa 2 (2.26)

To complete the algorithm it is necessary to determine the covariances between

position and velocity for the operations of prediction and estimation. Those can be

derived after some computation as [Ref. 1]:

O 2 ExVeE[(eX+ e VV axV 2 +O 2

(2.27)

"Vie2= = (1 - a v,2

The equations described are used sequentially in predictions (or

movements) and estimations (or measurements) to update the state vector and
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covariance matrix. The system condition is then revised recursively at each time step

either by a movement and a measurement or just by a movement when no observation

is available.

"All of Kalman's computations can be thought of as manipulations of

(multivariate) Normal probability distributions" [Ref. 6]. The attractive feature of the

linear plant model is that normality is preserved.

The Kalman filter, in the way it was described in this section, works

for targets with constant course and speed. If the target maneuvers after the filter has

settled with an optimal gain, the measures will not affect the gain and the filter will

not follow the maneuver. To prevent that "disconnection from reality" the realistic

deviation of the target from a precisely straight, or other deterministic track is

modeled by a random process.

It is important not to confuse the model noise, also called plant noise,

with the measure noise. The measure noise appears due to the inaccuracy and

uncertainty in the measurement and is simulated by a random number generator. The

plant noise is placed in the model to reflect reality and is achieved by the plant noise

covariance matrix Q.

To simplify the calculation, the Kalman filter can be represented in

matrix notation. The operations performed are the same, but the manipulation is

much easier. A primer for the subject is Reference 6, from where the notation will be

borrowed.

The process can be divided in two steps, the measurement step that

corresponds to the prediction, and the movement step that corresponds to the

estimation. The equations for the steps, omitting the time index, are:

13



movement step

P = IL + Pw (2.28)

= OE, r + Q

measurement step

K = EHT(HE T + (2.29)

p= p + K(Z-DL-Hp)

= (I,-KR)

where

$ is the plant matrix

(p..Q) is the mean and covariance of the plant noise

H is the measurement matrix

(pvA is the mean and covariance of the measurement noise

(p') is the mean and covariance of the state of the system

z is the measurement vector

K is the Kalman gain matrix

I is the identity matrix

14



B. MOTION MODELS

When tracking a target, detection equipment will make observations at intervals

of time, which may or may not be equal. Between those measures, the tracker will

have to draw inferences about the target's position. For that, the tracker must assume

that the target is moving in a certain way, which is called the motion model (Figure

4).

COOSANr OOUME AN OP TAQ

ON. STATION TA R ,)

TRA4UTOP TARM

EANEi~mS TANUMAT TAMUE

Figure 4 - Motion Model Examples.

The motion model reflects the way the target is expected to behave. It forecasts

the position, compares with the observation, and reveals the likely or unlikely track.

The simplest motion model is the constant course and speed model, when the tracker

assumes the target is moving in a straight line with constant velocity. But many other

possibilities exist. For example the GST (Generic Statistical Tracker) uses four motion

models [Ref. 41. The GST keeps track of both the target position (in two dimensions)

and velocity. By changing some parameters in the tracker one can obtain the motion

models described in Figure 4. As can be deduced, target's position prediction is as good

as the coincidence of the motion model used and the target real motion.

15



Many motion models are not physically realizable by any ship. One model that

is physically realizable is the random tour where the target moves at constant speed

and executes random (uniform from 0 to 2n) course changes at exponentially

distributed random times. The random tour can be approximated by a Gauss-Markov

process called Ornstein-Uhlenbeck process. This approximation is actually very good,

under certain assumptions and tha process can be used as a motion model with many

advantages [Ref. 3].

1. The Ornstein-Uhlenbeck Processe

The Ornstein-Uilenbeck is a special case of the Generalized Langevin

Model which is a model based in linear stochastic differential equations and can be

described by the equations:

dXQt) = Vx(t)dt
(2.30)

dVx(t) = -BVX(t)dt + K(x,t) dt + CdW(t)

where X(t) = X coordinate at time t

Vx(t) = X coordinate of velocity at time t

K(x,t) = an acceleration produced by an external force field

dW(t) = white noise (Wiener differential)

C= scale parameter

B = parameter

The Langevin model is used to describe the motion of a particle subjected

to a frictional damping force with coefficient B > 0, an external force field and random

shocks described by a white noise. The Ornstein-Uhlenbeck process is defined when

there is no external field (K(x,t) = 0 ) and it roughly corresponds to an unconstrained

random walk without drift.

2 This section is an adapted transcription of Reference 2.
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The O.U. model becomes:

dX(t) =Vit) dt (.1(2.3 1)

dY(t) = Vy.Q) dt

dVx(t) = -BV()dt + C dW(t)( (2.32)

dVQ) = -B 2V(t)dt + dW2 (t)

where B,,B2,C, and C2 are positive constants

dW(t) and dW2(t) are white noise

The O.U. process becomes I.O.U. (Integrated Ornstein-Uhlenbeck) process

when Equations 2.31 and 2.32 are integrated to compute the values for position and

velocity. Looking at the velocity expression (Equation 2.30) one can see that the

velocity component satisfies a stochastic differential equation that reflects

deterministic and random influences. The first term decelerates the target at a rate

proportional to its velocity, B being the constant of proportionality, and is the

deterministic part. Additionally, the target undergoes a rapidly varying random

acceleration which is idealized as a white noise. After a time, the first term will decay

to zero and the random term will dominate. That means the ability to predict the

velocity at a future time will decay asymptotically to zero, with B as the parameter

that controls the rate at which the deterministic part becomes dominated by the

random component. Although the differential equation characterization of the O.U.

process is not hard to solve it will not be derived in this work. The computation

developed in this report will use a discretized version [Ref 4]. The equations for the

I.O.U. process in matrix notation will appear later in Chapter III.
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It is important to understand the exact meaning of the parameters C and

B of the I.O.U. motion model. The I.O.U. process involves white noise and, in the

technical terminology of filtering theory, is non-realizable. No ship of any kind,

merchant or warship, that has ever been built can move as required by the O.U. or

I.O.U. stochastic differential equations models. By contrast, the Random tour family

of models are all physically realizable by actual ships. The approximation of a R.T. by

an I.O.U. motion model is actually very good and a correspondence between the

parameters can be established. The Random tour is generated by a target moving with

constant velocity V and changing course at intervals of time exponentially distributed

with mean time between course alterations 1/1. The courses are chosen independently

from a uniform distribution [0,2 i]. Thus the average number of course changes in (O,t]

is It. It can be shown that the correspondence between the R.T. and I.O.U. parameters

is

B--I

(2.33)
B

so the parameters B and C can be described as:

B = effective average rate of target course

change per unit time

- RiffS target speed

The I.O.U. process will be used in this work to provide a motion model for targets with

random behavior as will be described.

18



I. MODEL DESCRIPTION

When we talk about target tracking, normally a single filter will not respond

perfectly to all situations. We will now describe four filters for three different motion

models. These filter- will be developed to accomplish our test purpose which is to

examine the effects of non-normal outlier-prone observational errors on Kalman

filtered tracks. They are not optimal for all situations. The test will be performed with

three tracks: Inbound constant course and speed target; Crossing constant course and

speed target; and Random Tour target. The fourth filter will be developed to

demonstrate the use of two sources of information tracking a single target.

A. DESCRIPTION OF THE ONE SOURCE (SINGLE TARGET) MODELS

1. The Range, Bearing, Radial and Angular Velocity Model (Filter

Model 1)

The problem geometry is defined by the observations on range and bearing

of a target from a stationary source, positioned at the origin of a Cartesian coordinate

system (Figure 5). It seems natural to keep the same orientation for a model. The

state vector for that case would have four components; range, bearing, radial and

angular velocity and can be represented as:

1 =(PA, 19, PV V (3.1)

19



This approach tries to keep the measurement as a linear function of the state vector

and thus to avoid the use of an extended Kalman filter.

V MinT.Wl

Figure 5 - Problem Geometry.

The equations for the Kalman filter in matrix notation, were described in

Chapter II (Equations 2.28 and 2.29). Those equations will be employed to derive the

matrix to be used in the model. This model will be used on experiment 1 (inbound

CCS target).

The movement step

The state vector and the covariance matrix are updated at each

movement step. First the Kalman filter "moves" the target in accordance with the

plant model, estimating the position just before the next measurement (just like a

dead reckoning would do using the last position course and speed). Second it computes

the expansion that the time elapsed between steps causes in the target's region of

uncertainty. To find the plant model matrix (0) we look at the equations of that model:

20



PR(t+At)= PO(t) + PV,(t)At + noise

pe(t+At)= P(t) + i.L(t)At + noise
(3.2)

it.(t+AO t)iv,(t) + noise(32

ov.(t+At)= xv.(t)+ noise

These equations represent a target movement from time (t) to time

(t + A), using the velocity computed in the previous state and adding a plant noise that

will be null in this model. The plant matrix has to satisfy the equations described,

which can be summarized as p(t+ A) = 0 p(t) + noise. The result for the plant matrix

is:

1 0 At 0

0 1 0 At (33)
0 0 1 0

0 0 0 1

The plant noise covariance matrix Q, is defined for this model as a null matrix.

b. Measurement Step

The measurement step will first compute the Kalman gain matrix K.

The Kalman gain determines how seriously the new measured value will be taken and

how extensively the estimate will "bounce"; a small K makes the filter lethargic. The

state vector and the state covariance matrix are then updated. The first gives the best

estimate of the target at the moment and the second shrinks the area of uncertainty.

The state covariance matrix reflects the uncertainty of the state vector components
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and with the state vector, condenses all the information in the system state. The

measurement matrix H relates the 2 measurements to the state vector by the equation

Z=HX + V (3.4)

where V is the measurement noise. In our model H will be a 2X4 matrix of the form

H =1 0 O 01 (3.5)
1=0 1 0 01

2. The (X, Y, V., Vy) Simple Model (Filter Model 2)

A model using the Cartesian coordinate system has some general

advantages over the previous model such as: the transition to a model with two sensors

is sometimes less complicated than for one in polar coordinates; a target with constant

course and speed has constant velocities in X and Y; the process is independent for the

coordinates X and Y, so the computation can be easily divided for parallel processing.

The only problem is to keep the observational variables (range and bearing) a linear

combination of the state vector (X,Y,V and Vy). A conversion of coordinates from polar

coordinates to Cartesian coordinates is used prior to the application of the data into

the filter, making the filter believe that everything is in coordinates X and Y [Ref. 71.

The equations that relate range and bearing with the coordinates X and Y are well

known to be:
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X = R sin(O) (.6)

Y = R cos(O)

"On account of the non-linear transformation (Equation 3.9), the measurement errors

on the Cartesian coordinates are non-Gaussian distributed and the optimal filter would

be non-linear" [Ref. 71. In order to avoid this difficulty, assume as a reasonable

hypothesis that the errors in polar coordinates are small compared with the true target

coordinates. Under this assumption the Cartesian errors are obtained by

differentiation of Equation 3.9 and the relationship between the errors in both

coordinates system is linear and the Gaussian probability distribution is maintained.

It is also necessary to convert the variances in range and bearing to variances in X and

Y. The formulas are:

2=_ S(O) 42+ 2 COS2(6) o2

2 =2 2 2

Oxy = 0( -R 2b sn cos( .

A model using those transformations can be easily derived in a way similar to that

done for the first model.

a. Movement Step

The state vector is composed of the coordinates X and Y and the

respective velocities. The notation used is:

p = (pXIPr,1Lv,, p) T  (3.8)

To define the plant matrix it is necessary to look at the equations of the plant model
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lx(t+At) = px(t) + j.v&(t)At + noise

= + i$t)At + noise
pv&,(t+At) = i.vit) + noise

pv,$t+At) = pv&4t) + noise

A plant matrix 0 equal to that of the previous model (Equation 3.3) will satisfy these

equations. The plant noise for the purpose of the test (CCS target) will be null.

b. Measurement Step

The measurement covariance matrix R uses the converted variances

from range and bearing to X and Y (Equation 3.7). As the matrix H simply extracts the

first two components of the state vector and the conversion from the measurement in

range and bearing to X and Y is prior to the use of the data, the matrix H is the same

for all models (Equation 3.4).

3. The (X, Y, V., VY) Model Using I.O.U. Process (Filter Model 3).

As mentioned in Chapter II, the I.O.U. motion model may be a good

approximation to the Random Tour motion model, still allowing one to remain within

the class of Gaussian approximations to target motion. The modifications from the

previous model are only in the movement step, so we will not explain the

measurement step.

a. Movement Step

To derive the plant model matrix (0) for the model we first look at the

equations that describe the motion model:
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X(t+At) = X(t) + _.(I-C-BA) Vx AtBAt

Y(t+At) - Y(t) + - (1-e -BA ) V( .t
BAt(3.10)

VX(t+A) = e-BA VY()

V,(t+At) = e -BAt V,(t)

So the plant matrix is:

1 0 bi 0

0 1 0 bi (3.11)

0 0 b2 0

0 0 0 b2

where

bi = 1(1-e-BA)
B

b2 = e-IAt

The plant noise to be injected in the system hrs mean zero and covariance matrix Q

defined as [Ref. 41:

cl 0 c2 0

0 el 0 c2 (3.15)
c2 0 c3 0

0 c2 0 c3

where
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c = l( )2 [2At )(3 - 4e -BA9 + e-MA)

c2 = 1[(1) (1 - eB-I)]2 (3.16)
2 B

c3 = -(-) (1-e-2A)
2 B

A Fortran code for this model is presented in Appendix A.

B. DESCRIPTION OF THE 2 SOURCES (SINGLE TARGET) MODEL.

Considering the same type of sensor, two sources of information will normally

give more information than just one. When more than one source is available and they

are separated in space, the necessary link and information fusion may degrade the

system reliability. Sometimes the second source is not available at all and the problem

has to be solved for just one platform, optimizing the information available. "The

combination of 2 sources of information can be realized in a track selection fusion, in

which the tracker with the best solution is selected and no real fusion is computed,

or in a state vector fusion, in which the associated state vectors are combined in a

linear estimator to derive a central-level state estimate" [Ref. 8]. The estimator in this

case must consider sensor-specific parameters and can be implemented in a fashion

similar to the Kalman filter to form a minimum mean square estimate. Another

possibility is measurement fusion that uses the measures to compute a central estimate

of target state. In this case we have to consider if the measures are synchronous or

not, as that changes the way we combine them before the application into the filter.

In this work a state vector fusion using a Kalman filter with the I.O.U. motion

model is implemented. In this case only one fused state vector and fused covariance
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matrix is employed to represent the system. The problem geometry is shown in Figure

6. The sources are assumed to have the same orientation (positive X axis is to the

right). Note that the error ellipses for each individual source's observations don't have

the same orientation, so the measurement covariance matrix R is different for each

source. However, conversion of the variances from range and bearing to X and Y

(Equation 3.10) before using the data in the filter, allows the matrix R, although

reflecting measures with different orientations, can be used by both sources with no

distinction to update a unique fused state vector. The good part is that the Kalman

filter will not just combine measures with different orientation but will also take into

account the precision reflected in the values of the matrix R and will give more weight

to the better measure.

true source I measure
true /"

position
target path

source, 2'',
/ measure

source 1 source 2 x

Figure 6 - Two sources problem geometry
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IV - MODEL EVALUATION

A. TARGET MOTION GENERATOR

Evaluation of a tracker requires a target motion generator to create possible

paths that a target could produce. Noise must be added to simulate the observed track.

The observations arrive as a sequence of bearings and ranges of the target, so after

computing the X and Y coordinates of each motion step, we calculate the range and

bearing from the tracker unit and then add the noise. This is an attempt to represent

actual measured physical conditions, specifically by assuming a range error with mean

zero and standard deviation equal to a percentage of the current target real distance,

and a normal bearing error with mean zero and constant standard deviation. A Fortran

code of the motion generator is presented in Appendix B, and a more detailed

description follows.

1. Target Measurement Error

The target motion generator has 2 different measurement noises that can

be used, a Normal noise and a non-Normal, outlier-prone noise simulated by

sculpturing a Normal distribution. The normal noise is generated using the method

of Box-Muller [Ref. 91. The bearing standard deviation is 0.01 radian, and that for the

range is a constant percentage of the actual target range (input for the program).

Those figures can, of course, be modified to any desired value.
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A sculptured noise [Ref. 101 is a modification that stretches the tails of the

normal noise to any desired value of kurtosis3. This device models the situation when

the noise is not normal but still symmetric. It represents the occurrence of gross

errors or outliers. The process of distributional sculpturing, described in Reference 6,

suggests two shaping functions for stretching symmetric distributions:

(i) S(Z) = 1+ hZ2  h>O
(4.1)

(it) S(Z) = eA2 2 h>0

If Z is a random variable normally distributed with mean 0 and standard deviation o,

then Y = ZxS(Z) resembles the distribution of Z for small values, but lengthens the

tails of the distribution for large Z.

To obtain the desired kurtosis in the sculptured distribution it is necessary

to analyze the moments (particularly the second and fourth) of that distribution. They

are represented (Equations 4.2 and 4.3) in terms of those for the original Z for each

transformation.

(i) Y = Z(1+hZ2)

m1(Y) = ml(Z)+h m,(Z) = 0
(4.2)

m2(Y) = m2(Z) +2h m4(Z)+h 2m6(Z)

m4(Y) = m4(Z)+4h m6(Z)+6h 2m,(Z)+4h 3 m1o(Z)+h' mt2(Z)

3 It is also possible to sculpture for skewness, but this is
not done in this work.
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(is) Y = ZeZl (4.3)

M20 a_ h<1 (4.4)
(1 -4ho)2) 402

m ) 304 h<- 1  (4.5)
( -ghq2) 82

Where o2 is the variance of Z [Ref. 10]. Those formulas are applicable to any Normal

distribution. If h exceeds the indicated limits (Equations 4.4 and 4.5) the moments

become infinite; even so the models may be of interest. The moments for the Gaussian

distribution with mean 0 and standard deviation a can be found by expanding both

sides of the equality

1, (4.6)

and comparing the terms with same degree in 0. It can be seen that the odd moments

are null and the even moments are given by the formula

E[ZWI= - 3 n 2
(2)IM2,) a2(4.7)

(!!)1 2 2
2

The tail extension can be measured by the kurtosis, obtained by dividing

the fourth moment by the square of the second moment ,and then subtracting the

constant factor 3. Calculation of the fourth moment for transformation (i) needs all the

even moments up to the twelfth of the original distribution (Normal in our case).
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EIZ 2] = 02

E[Z4] = 304

E[ZI] = 15o( (4.8)

E[Z s] = 105o

E[Z'] = 945o

E[Z' ]J = 10395o2

The purpose of this work is to compare the behavior of the tracker when

using an observational error noise that is Normal with mean 0 and standard deviation

a, with the performance when the error noise is sculptured with the same mean and

standard deviation but with a given kurtosis. The procedure is to start with a normal

distribution that, after the transformation, will be sculptured with standard deviation

of a and a given kurtosis. An algorithm that carries this on is as follows:

1. Generate a random variable Z that is N(O,1).

2. Pick an appropriate value of sculpturing parameter h.

3. Apply the transformation to the random variable Z to get Y. Divide by

the transformed standard deviation and then multiply by the desired standard

deviation oR.

Y

ZT = SD[ R  (4.9)

After those steps the variance of 7,r is OR and the kurtosis is

E[ZJ
Y2(Zr) -3 (4.10)

31



The attractive feature of the outlined solution is that the original distribution is

N(0,1), simplifying the calculation of the moments for the sculptured distribution.

Applying the solution to the first transformation:

1. Define a N(0,1) random variable Z

2. Define a random variable W and a random variable ZT as

W - Z(I +hZ2)

VVAF4Z(l +hZ2)] (4.11)

Z7 W G0

At this point the variance of Zr is oR2 and the kurtosis is:

4

y1zrl oR R] _3- = E[J - 3
(02 EW W) 2  1

(4.12)
E [ [Z(I +hZ2)] /-3

After some computation the Kurtosis can be expressed in terms of h as:

Y21Z] = 10395h' + 4(945)h3 + 6(105)h 2 + 4(15)h + 3 _ 3 (4.13)

(15h 2 + 6h + 1)

The appropriate solution for Equation 4.13 will give the correct value for

h to be used in Equation 4.11. The results of solving the equation numerically for

different values of kurtosis are presented in Table 1.
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TABLE 1 - SOLUTIONS FOR EQUATION 4.12

Kurtosis h

1 0.0347

2 0.0622

3 0.0867

4 0.1097

5 0.1319

6 0.1537

7 J 0.1755

Similarly, solutions for the second transformation can be found. The values for h, for

both transformations, were confirmed by a simulation using APL2/32.

2. Target Motion Pattern.

The target motion generator has 4 different motion patterns, each with a

particular characteristic to test. All 4 patterns have the same output to the file

MOTIOx RES (the 'x' is the motion model number) containing 9 variables described

below:

- TIME - Simulation time (hours).

- X - Target x true coordinate (nautical miles).

- Y - Target y true coordinate (nautical miles).
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- RANGE - Target true range (nautical miles).

- BEARI - Target true bearing (degrees with 000 being the positive x axis).

- XN - Target x coordinate with normal error (nautical miles).

- YN - Target y coordinate with normal error (nautical miles).

- RANGEN - Target range with normal error (nautical miles).

- BEARIN - Target bearing with normal error (as in BEARD.

Only the 2 patterns that will be used in the experiments will be described.

a. Motion Pattern 1 - Constant Course and Speed Target

This pattern accepts as input the target initial position (coordinates X

and Y in nautical miles), course and speed. It then updates the target position at each

time step by using the Equation 4.14. The result is a straight path with the course

computed counterclockwise from the positive X axis and constant speed.

X(t+At) = X(t) + Vz A t
(4.14)

Y(t+At) = Y(t) + Vr A t

Where Vx and Vy are the velocities in X and Y respectively.

b. Motion Pattern 4 - Random Tour Target

This motion model was described in Chapter II. The inputs are the

target initial coordinates, speed, and the parameter I, for the exponential distribution

(the input is 1/1).
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B. EVALUATION.

To gain an insight into the problem, which is to examine the effect of non-

normal outlier-prone observational error distributions in the Kalman filter track, we

will perform 3 experiments using a 2 level factorial design [Ref. 71. In a 2 level factorial

design a set of orthogonal dummy variables is created and a linear regression is

performed. Each dummy variable has 2 possible values (+ 1 or -1) that correspond to

the high and low level of the factors. The model used for the linear regression of the

dummy variables on the response variable being analyzed is

RESP = no+nidi+nA+nA+n~did2+ndd3+ltd3+nldd

WHERE

RFSP is the response variable, (4.15)

d, are the dummy variables for K, SD and AT and

il are the regrasion coefficients.

The computed regression coefficients will possibly indicate how the response variable

will behave when we change the factors from low to high level (for further information

see Box, Hunter and Hunter [Ref. 111). Three factors will be used in the design:

1. Kurtosis of the range error distribution.

2. Standard deviation of the range error distribution.

3. Time interval between observations.

One experiment consists of 2' combinations of factors and levels. A certain

number of runs (500 or 1000) is performed for each combination. Each run consists of

a sequence of observations. For each observation, the squared distance between the

true position and the estimated position, )2, is computed. The distances for one
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complete run are then averaged, and that will be used as the experiment response

variable. So, the response variable is the expected value for D2 (EID2 ) for one run that

will be called ED2 . The sample variance for the response variable is also computed in

the simulations. The levels for the factors are presented in Table 2.

TABLE 2 - FACTORS AND LEVELS

FACTOR - LEVEL + LEVEL

KURTOSIS (K) 0 (Normal) 2 (3 for the first

experiment)

SD 5% OF RANGE 10% OF RANGE

TIME INTERVAL (AT) 0.005 0.01

The standard deviation for bearing errors is constant and has the value 0.01

Radians.

1. Experiment 1: Inbound Target

An inbound target is running at constant course 2250 (000' is the positive

X axis) and constant speed 10 and is tracked by filter model 1. A run starts at 60 miles

from the source and stops at 40 miles. A number of these runs is performed until we

reach a total of 200,000 observations for each combination. That means 500 runs of 400

observations each for AT= .005 and 1000 runs of 200 observations each for AT= .01. The

state vector is initialized for each run with the first observation and null velocities.

The covariance matrix is also initialized at each run with the values:
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100 0 0 0

0 0.01 0 0 (4.16)

0 0 50 0

0 0 0 0.1

The results are presented in Table 3. Note that the response variable has small values,

considering that the mean distance of the target from the source is 50 miles. As we

are using a null plant noise covariance matrix, after a short while the filter tracks with

precision and gives a very small weight to the observations.

TABLE 3 - RESULTS FOR EXPERIMENT 1

K SD AT ED2  VAR[EDJ ]

0.284 0.0098

+ - 0.282 0.0117

- + - 1.005 0.1433

+ + 0.996 0.1835

+ 0.503 0.308

+ + 0.498 0.377

- + + 1.753 0.436

+ + + 1.741 0.5901
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The pooled sample variance is defined as [Ref. 7]:

r2 = 2l +  2S + r 25 . ......... + 2s ( . 7

s2 rA S; rA(4.17)r, +r2 +r3 ........ .r,

with r = r, r2 . .....+ (4.18)

where r, = df. for the esaimate of variance for set of runs i

= # of runs - 1

After computation the pooled variance is 0.18045. Since each main effect

is a subtraction of two averages, with each average containing eight observations, the

variance of each effect is:

1 2_ S 2
V ft = V(X_ - X.) + ( ! )s 2_ = S'1

+ 8) 4 (4.16)

= 0.045

The main effects and interactions were computed and the results are

presented in Table 4. The values found in Table 4 can be related to the regression

coefficients (Equation 4.15) after the inclusion of a scale factor [Ref. 11].

The conclusions to be extracted from this experiment are: there are no

significant (more than 2 STD. ERROR) interaction effects, so the main effects can be

considered separately; for the levels and variations between levels used, the standard

deviation of the measured errors affects the track significantly (as we should expect),

and the effect of kurtosis and interval between observations are not significant. As will

be seen in the third experiment (I.O.U. model) the levels used affect the result of the

experiment.
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TABLE 4 - EFFECTS AND INTERACTIONS (EXPERIMENT 1)

EFFECT ESTIMATE STD. ERROR

K -0.0072 0.21

SD 0.9820 0.21

AT 0.4818 0.21

K SD -0.0034 0.21

K AT -0.0019 0.21

SD AT 0.2645 0.21

K SD AT -0.0004 0.21

2. Experiment 2: Crossing Target

A crossing target is running at constant course 3150 and constant speed 10

and is tracked by filter model 2 ( X,Y,VxVy simple model). A run starts at coordinates

X = 26 miles and Y = 42 miles, stopping 2 hours later. A total of 500 runs of 400

observations each for AT=0.005 and 1000 runs of 200 observations each for AT=0.01

is performed. The state vector is initialized, for each run, with the first observation

converted by Equation 3.6 and null velocities. The covariance matrix is also initialized

for each run with the values:
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100 0 0 0

0 100 0 0 (4.17)

0 0 50 0

0 0 0 50

The results are presented on Table 5.

TABLE 5 - RESULTS FOR EXPERIMENT 2

K SD AT ED' VAR[ED 2]

0.272 0.0104

+ - 0.284 0.0126

+ - 1.736 0.2206

+ + - 2.000 0.56

- - + 0448 0.033

+ - + 0.467 0.0423

+ + 2.325 0.723

+ + + 2.565 1.031

The response variable values are also small, but this comes as no surprise

since this filter is also optimal for a CCS target. After computation the pooled variance

for the response variable is 0.34 and the variance of each effect is 0.086. The main

effects and interactions the results are presented in Table 6. The conclusions to be

extracted from this trial are the same as for the previous experiment. A few number
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of runs high value of ED2 were observed on the eighth combination, signifying that

the track was bad on those runs.

TABLE 6- EFFECTS AND INTERACTIONS (EXPERIMENT 2)

EFFECT ESTIMATE STD. ERROR

K 0.13 0.29

SD 1.79 0.29

AT 0.37 0.29

K SD 0.12 0.29

K AT -0.004 0.29

SD AT 0.19 0.29

K SD AT -0.008 0.29

We repeated the experiment and counted the number of runs with ED2

greater than 7.5 (heuristically assumed as a threshold to consider that the track was

lost) and none of the runs in all sets of runs reached that value.

3. Experiment 3: Random Tour Target

a. Single Source Model

A target performing a Random Tour starts movement at coordinates

X= 39 and Y= 39 with constant speed 10 and is tracked by filter model 3 ( X,Y,V,VY

I.O.U. model). A set of 1000 runs with 200 observations each is performed for each

combination of factors and levels. The state vector and covariance matrix are initialized
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as in experiment 2. The number of runs with ED2 greater than 7.5 are computed. The

results showed that for combination number 3 (line 3 of Table 7) the tracker lost track

4 times (out of 1000). The track was also lost for combination 4 (42 times), for

combination 7 (7 times) and for combination 8 (80 times). The variances for

combinations 4 and 8 (consequently the pooled variance) were so big that significant

results could not be extracted. We eliminated those runs where the track was lost and

performed the experiment again until 1000 good runs were reached4 . The results are

presented in Table 7.

TABLE 7 - RESULTS FOR EXPERIMENT 3 (ONE SOURCE)

K SD AT ED2  VAR[ED 2 ]

0.571 0.037

+ - - 0.593 0.052

- + 2.112 0.704

+ + 2.356 1.036

+ 0.838 0.059

+ + 0.873 0.079

- + + 2.88 1.011

+ + + 3.113 1.291

4 Although this procedure is not easily statistically
interpretable, it was used for the sake of comparison with the
other experiments (bad runs will be considered later).
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The pooled variance for the response variable is 0.53 and the variance

of each effect is 0.1315. Results of computation of the main effects and interactions

are presented in Table 8. The standard deviation of range error is the only effect that

is significant, at the levels and level variations used.

TABLE 8 - EFFECTS AND INTERACTIONS (EXPERIMENT 3, ONE SOURCE)

EFFECT ESTIMATE STD. ERROR

K 0.13 0.36

SD 1.89 0.36

AT 0.52 0.36

K SD 0.10 0.36

K AT -0.004 0.36

SD AT 0.245 0.36

K SD AT -0.007 0.36

The experiments gave insight into the problem. We discovered that the

tracker is losing track in a number of runs for the sets of runs that have high levels

of K and SD. To quantify the percentage of runs in which the track is lost, we decided

to run two more simulations; one at 5% and other at 10% of SD. The program will now

vary the kurtosis from 0 to 5, counting the number of tracks lost in 3 categories. The

interval between observations is fixed at 0.01 and the bad runs will be considered in

the computations. For 5% SD no single run lost track for all values of kurtosis.
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For 10% SD the results are summarized in the Table 9. The fields LOST 1, LOST 2

and LOST 3 are the number of runs ,out of 1000 runs, with ED2 between 7.5 and 10,

10 and 50 and greater than 50, respectively. The field EDN2 is the average squared

difference between the measured and the true positions.

TABLE 9 - EFFECT OF KURTOSIS VARIATION (ONE SOURCE)

K 0 1 2 3 4 5

LOST 1 7 27 41 51 41 41

LOST 2 0 7 29 50 80 94

LOST a 0 0 1 8 14 24

ED2  2.92 3.24 3.87 5.21 7.39 9.79

EDN 2  31.37 31.41 31.45 31.48 31.50 31.53

VARED 1] 1.12 1.93 10.59 119.6 501.58 1088.95

As we increase kurtosis the following happens:

1. The values for ED 2 are not increasing much (for small values of SD

they even decrease), and in the worst case we are still improving when considering the

estimated position compared with the measured position (in average values).

2. What is not apparent in the average values presented is that we will

lose track in some runs, and that the number of tracks lost increases rapidly with the

kurtosis.
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3. The variances are growing very fast as the number of tracks lost

increase. This is the reason why we could not get a reasonable pooled variance to

compare with the mean effects when the levels of kurtosis and SD were high.

4. The values for EDN 2 are increasing very slowly.

b. Two Sources Model

We now want to access the impact of non-Normal errors on the model

that uses two sources of information by observing how the results obtained in the

previous section will change. A simulation similar to the last one performed on the

previous section was executed using the 2 sources model described in Chapter II.

Another source was positioned at coordinates X = 78 and Y = 0, and alternate

observations are made (each source performs an observation at .01 hour interval).

Observations from both sources had the same range error distribution. The results are

presented in Table 10. The inclusion of an additional source of information does not

prevent the tracker from loosing track, but there is a large reduction on the number

of tracks lost and a considerable improvement on the track quality.
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TABLE 10 - EFFECTS OF KURTOSIS VARIATION (TWO SOURCES)

LOSTi1 0 0 1 2 2 4

LOST 2 0 0 0 2 5 q 8

LOST 3 0 0 0 0 1 4

ED 2  0.68 0.73 0.79 0.89 1.1 1.58

EDN2  31.33 31.37 31.39 31.42 31.L44 31.45

VA[DJ 0.07 0.11 0.20 0.65 5.39 38.39
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V - CONCLUSIONS AND RECOMMENDATIONS.

The conclusions presented in this section reflect the results of the experiments

performed in Chapter IV. The values obtained and the conclusions extracted are for

the models and levels used.

There is no significant change in the response variable when we switch from the

lower to the higher level of kurtosis, keeping constant the other factors. For small

values of range error standard deviation (less than 5%), the effect of tail extension in

the error distribution is not noticeable in all three models. For larger values of range

error standard deviation, as we increase the value of kurtosis the trackers will start to

lose track (threshold of 7.5) at the percentages presented on Table 11 for filter model

3. In an attempt to visualize the reasons why the tracks were lost, the seeds for the

bad runs were recorded and some of the tracks were reproduced and plotted in

GRAFSTAT. A number of plots showed that the first observation was an outlier and

the tracker took a long while to recognize this fact. No other apparent reason for track

loss (other than bad observations caused by the long tail error distribution) was found.
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TABLE 11 - PERCENTAGE OF TRACKS LOST

KURTOSIS PERCENTAGE OF

RUNS LOST

1 3.4%

2 7.1%

3 10.9%

4 13.5%

5 15.9%

AL SUMMARY

Kalman filtering is an extremely broad subject. The models presented can be

embellished to account for multiple targets, false echoes and clutter, targets with

random acceleration and many other issues that appear in the real world. The two

(and multiple) sources model is another area for research. Comparison between

different fusion methodologies: track selection fusion, state vector fusion, and

measurement fusion models to find the best solution for an issue is certainly a

challerging and practical area for further study.
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APPENDIX A - FORTRAN PROGRAM FOR FILTER MODEL 3

PROGRAM KALXY3

* THIS PROGRAM SIMULATES THE OPERATION OF A KALMAN FILTER
* USING THE COORDINATES X AND Y AND THE I.O.U. PROCESS
* AS A MOTION MODEL.

********* DESCRIPTION FOR SOME VARIABLES ***
* BETA PARAMETER IN THE IOU PROCESS
* B1,B2,C VARIABLES DEFINED IN THE IOU PROCESS
* C1,C2,C3 VARIABLES DEFINED IN THE IOU PROCESS
* DELTAT INTERVAL TIME BETWEEN OBSERVATIONS (HOURS)
* IJ AUXILIARY VARIABLE
* LL,CC AUXILIARY VARIABLE
* ID IDENTITY MATRIX (4X4)
* K KALMAN GAIN MATRIX (4X2)
* MU STATE ESTIMATE (4X1)
* R COVARIANCE MATRIX OF THE MEASUREMENT NOISE (2X2)
* SIGMA PARAMETER IN THE IOU PROCESS
* SIG COVARIANCE MATRIX ESTIMATE (4X4)
* SIZE NUMBER OF POINTS TO BE GENERATED IN THE SIMULATION
* TIME SIMULATION TIME (HOURS)
* Z OBSERVATION (2X1)

INTEGER SIZE,I,J,LL,CC
REAL BETA,B1,B2,C1,C2,C3,C
REAL DDAR(2,2),DELTAT,H(2,4),HT(4,2),HSIGHT(2,2),HMU(2,1)
REAL AUXSIG(4,4),Q(4,4),ID(4,4),IDMIKH(4,4),SCX,SCY
REAL SIGMASIGHT(4,2),SIG(4,4),SIGPLUS(4,4),SCOREX,SCOREY
REAL K(4,2),KH(4,4),KZMHIMU(4,1),RANGE,BEARI
REAL MU(4,1),MUPLUS(4,1),PERC,PHI(4,4),PHIT(4,4),PHISIG(4,4)
REAL TIME2,XNYN,Z(2,1),ZMIHMU(2,1),R(2,2),RADD(2,2)

* INITIALIZATION
PARAMETER (PI = 3.141593)
DATA H/1.,0.,0.,1.,4"0./, ID/1.,4"0.,1.,4"0.,1.,4"0.,1./
SIZE = 200
DELTAT = .01
SIGMA = 10. * 2. **.5
BETA = 2.
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PERC = .30
DO 120 LL =1,4

DO 130 CC = 1,4
PI(LL,CC) = 0.
Q(LL,CC) = 0.
IF (LL .EQ. CC) THEN

PH(LL,CC) = 1.
ENDIF

130 CONTINUE
120 CONTINUE

P111(3,3) = EXP(-BETA * DELTAT)
P111(4,4) = P111(3,3)
P111(1,3) = (1 - P111(3,3)) / BETA
P111(2,4) = P111(1,3)
Q(1,1) = .5 *((SIGMA / BETA)**2) (2.*DELTAT - ((3.- 4.

C PHI(3,3) + EXP(-2*BETA*DELTAT)) / BETA))
Q(2,2) = Q(1,1)
Q(1,3) = .5 * ((SIGMA/BETA) * (1-P111(,3)) **2
Q(2,4) = Q(1,3)
Q(3,1) = Q(1,3)
Q(4,2) = Q(1,3)
Q(3,3) = .5 * (SIGMA**2 / BETA) * (1- EXP(-2* BETA * DELTAT))
Q(4,4) = Q(3,3)
OPEN(UNIT = 12,FILE = 'D:\APL2\MOTIO4.RES',STATUS = 'OLD')
OPEN(UNIT = 11,FILE = 'D:\APL2\KALXY3.RES',STATUS = 'NEW')
W((3,1) =0.

MU(4,1) =0.

SCOREX =0.

SCX =0.
SCOREY =0.

SOY = 0.
DO 170 LL =1,4

DO 180 CC=134
SIG(LL,CC) = 0.

180 CONTINUE
170 CONTINUE

SIG(l,l) = 100.
SIG(2,2) = 100.
SIG(3,3) = 50.
SIG(4,4) = 50.
DO 200 I= 1,SIZE
***************S*MEASUREMENT STEP **************

* WITE(11,*)
* WRITE(1 1,)MEASUREMENT STEP ',I

READ(12,1 10) TIME2,X,YXN,YN,RANGE,BEARI
110 FORMAT(1X,F5.2,2(1X,F6.2), 19X,2(1X,F8.4), 1X,F1O.6, 1X,F1 1.6)

BEARI = BEARI * PI /180.
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TRANSFORMATION OF COORDINATES
Z(1,1) = RANGE * COS(BEARI)
Z(2,1) = RANGE * SIN(BEARI)
RUM,1 = (SIN(BEARI)* PERO * RANGE)**2 +

C (RANGE * COS(BEARI) * .O1)**2
R(2,2) = (COS(BEARI)* PERC * RANGE)**2 +

C (RANGE * SIN(BEARI) * .O1)**2
R(1,2) =((PERC* RANGE )**2 - (RANGE* .O1)**2)

C SIN(BEARI) * COS(BEARI)
R(2,1) =R(1,2)

**INITIAL STATE VECTOR
IF(I.EQ.1) THEN

MU(1,1) = Z(1,1)
MJ(2,1) = Z(2,1)

ENDIF
COMPUTATION OF THE KALMAN GAIN WK

CALL TRANSP(H,2,4,HT)
CALL MATMUX(SIGHT,SIG,4,4,HT,4,2)
CALL MATMUX(HSIGHT,H.2,4,SIGHT,4,2)
CALL MATADD(RADD,HSIGHT,R,2,2)
CALL INV2X2(RADD,DDAR)
CALL MATMUX(KSIGHT,4,2,DDAR,2,2)

* WRITE(i1,*)'K'
* WRITE(1 1,*)((K(LL,CC),CC = 1,2),LL = 1,4)
SCOMPUTATION OF THE STATE VECTOR "MUPLUS"

CALL MATMUX(HMU,H,2,4,MU,4, 1)
CALL MATSUB(ZMIHMU,Z,HMU,2, 1)
CALL MATMUX(KZMIHMU,K.,4,2,ZMIHMU,2,1)
CALL MATADD(MUPLUS,MU,KZMIHfMU,4,1)

* WRITE(11,*)'MUPLUS,
*WRITE( 11,*)((MIUPLUS(LL,CC),CC = 1, 1),LL = 1,4)
SCOMPUTATION OF THE COVARIANCE MATRIX -SIGPLUS-

CALL MATMUX(KH,K,4,2,H,2,4)
CALL MATSUB(IDMIKH,ID,KH,4,4)
CALL MATMUX(SIGPLUS,IDM~iH,4,4,SIG,4,4)

* WRITE(11,*)'SIGPLUS'
* WRITE(1 1,*)((SIGPLUS(LL,CC),CC = 1,4),LL = 1,4)

***********MOVEMENT STEP ** * *

* WRITE(11,*)
*WRITE(11,)'MOVEMENT STEP'
SCOMPUTATION OF THE STATE VECTOR "MU"

CALL MATMUX(MIU,PI,4,4,MUPLUS,4, 1)
*WRITE(11,*)'MU'

*WRITE( 1,')((MU(LL,CC),CC=- 1, 1),LL = 1,4)
SCOMPUTATION OF THE COVARIANCE MATRIX 'SIG'

CALL TRANSP(PHI,4,4,PHIT)
CALL MATMUX(PHISIG,PHI,4,4,SIGPLUS,4,4)
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CALL MATMUX(AUXSIG,PLIISIG,4,4,PFHT,4,4)
CALL MATADD(SIGAUXSIG,Q,4,4)

* WRITE(11,*)'SIG'
* WRITE(1 1,*)((SIG(LL,CC),CC =1,4),LL =1,4)

XE = MU(1,1)
YE = MU(2,1)

* W.RITE( 11,890)XYXNYNXEYE
*890 FORMAT(6(lX,F1O.4))

SCOREX = SCOREX + (X-XE)**2 /SIZE
SOX = SCX + (X-XN)**2 /SIZE
SCOREY = SCOREY + (Y-YE)**2 /SIZE
SCY = SCY + (Y-YN)**2 /SIZE

200 CONTINUE
PRINT*,SCOREX,SCX,SCOREY,SCY
STOP
END

SUBROUTINE MATMUX(RESUL,MULTP,LINP,COLP,MULTR,LINR,COLR)
*SUBROUTINE FOR MATRIX MULTIPLICATION

INTEGER LINP,COLP,LINR,COLR,KI.L,M
REAL MULTP(LINP,COLP),MULTR(LINR,COLR),RESUL(LINP,COLR),SOMA
DO 120 K= 1,LINP

DO 130 L= 1,COLR
SOMA = 0.
DO 140 M = 1,COLP

SOMA = SOMA + MLJLTP(KM) *MULTR(M,L)

140 CONTINUE
RESUL(KL) = SOMA

130 CONTINUE
120 CONTINUE

RETURN
END

SUBROUTINE MATADD(RESADD1,ADD2,NROW,NCOL)
*SUBROUTINE FOR MATRIX ADDITION

INTEGER NROW,NCOL,KL
REAL RES(NROW,NCOL),ADD1(NROW,NCOL)XADD2(NROW,NCOL)
DO 150 K= 1,NROW

DO 160 L = 1,NCOL
RES(KL) = ADD 1(KL) + ADD2(KL)

160 CONTINUE
150 CONTINUE

RETURN
END
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SUBROUTINE MATSUB(RES,SUB1,SUB2,NROW,NCOL)
*SUBROUTINE FOR MATRIX SUBTRACTION

INTEGER NROW,NCOIL,K.,L
REAL RES(NROW,NCOL),SUB1(NROW,NCOL),SUB2(NROW,NCOL)
DO 170 K= 1,NROW

DO 180 L =1,NCOL
RES(K,L) = SUB(KL) - SUB2(KL)

180 CONTINUE
170 CONTINUE

RETURN
END

SUBROUTINE TRANSP(AAROWACOL,T)
SURUTN FOR MATRIX TRANSPOSITION

INTEGER AROWACOL,KL
REAL A(AROWACOL),T(ACOLAROW)
DO 190 K = 1,AROW

DO 195 L =1,ACOL
T(L,K) = A(&L)

195 CONTINUE
190 CONTINUE

RETURN
END

SUBROUTINE INV2X2(MAT,MATINV)
*SUBROUTINE FOR 2X2 MATRIX INVERTION

REAL MAT(2,2),MATINV(2,2),DET
DET = (MAT(1,1) * MAT(2,2)) - (MAT(1,2) * MAT(2,1))
IF(DET .EQ. 0.) THEN

PRINT,'MATRIX IS NOT INVERTIBLE'
STOP

ENDIF
MATINV(1,1) - MAT(2,2) / DET
MATINV(1,2) = - MAT(1,2) /DET
MATINV(2,1) = - MAT(2,1) /DET
MATINV(2,2) = MAT(1,1) /DET
RETURN
END
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APPENDIX B - FORTRAN PROGRAM FOR THE MOTION GENERATOR

PROGRAM MOTION

" THIS PROGRAM SIMULATES 4 TARGET MOTION PATTERNS, USING THE
" NORMAL RANDOM GENERATOR OF THE PCSIMUTIL PACKAGE FROM PROF.
" MIKE BAILEY. THE RANDOM NUMBER GENERATOR IS FOR A 32 BITS PC.
" THE OUTPUT FOR FILE E:\MOTION.RES, WHERE THE 'N' IS
" SUBSTITUTED BY THE TARGET PATTERN, SHOWS 9 VARIABLES IN THE
" FOLLOWING ORDER:
" 1)TIME 2)X 3)Y 4)RANGE 5)BEARI 6)XN 7)YN 8)RANGEN 9)BEARIN

VARIABLES *
" ALIr RANDOM TIME TO NEXT COURSE ALTERATION ON MODEL 4
" AL7TIME TIME OF NEXT COURSE ALTERATION ON MODEL 4 (HOURS)
" ALPHA 1/MEAN TIME BETWEEN COURSE ALTERATION ON MODEL 4
" BCOURSE TARGET BASE COURSE (DEGREES)
" BSPEED TARGET BASE SPEED (KNOTS)
" BEARI BEARING FROM OBSERVER TO TARGET (RADIANS)
" BEARIN BEARING FROM OBSERVER TO TARGET WITH ERROR NOISE
• (RADIANS)
* CHOICE TARGET MOTION MODEL CHOICE (1 TO 4)
* COURSE TARGET COURSE (RADIANS)
* CTIME CORRECTED TIME TO BE USED AS AN ANGLE IN RADIANS
* DELTAT INTERVAL TIME BETWEEN OBSERVATIONS (HOURS)
* DSEED SEED FOR RANDOM NUMBER GENERATOR
* H SCULPTURING PARAMETER
* I AUXILIARY VARIABLE
* MBCD MAXIMUM BASE COURSE DEVIATION
* MBSD MAXIMUM BASE SPEED DEVIATION
* MEASDEV VECTOR OF MEASURES STANDARD DEVIATION (NM,RAD)
* NOICE NOISE ERROR CHOICE (1 OR 2)
* NORM VECTOR WITH NORMAL RANDOM VARIABLES
• PERC PERCENTAGE OF ACTUAL RANGE USED TO COMPUTE RANGE S.D.
* PI AS ITSELF
* RANGE TARGET RANGE (NAUTICAL MILES)
* RANGEN TARGET RANGE WITH ERROR NOISE (NAUTICAL MILES)
* SPESD STANDARD DEVIATION FOR SPEED NOISE (KNOTS)
* SPEED TARGET SPEED (KNOTS)
• SPEEDX TARGET SPEED IN THE X AXIS (KNOTS)
* SPEEDY TARGET SPEED IN THE Y AXIS (KNOTS)
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* SIZE NUMBER OF POINTS TO BE GENERATED IN THE SIMULATION
* TIME SIMULATION TIME (HOURS)
* U AUXILIARY VARIABLE
* X TARGET X TRUE COORDINATE (NAUTICAL MILES)
* XN TARGET X COORDINATE WITH ERROR NOISE (NAUTICAL MILES)
* Y TARGET Y TRUE COORDINATE (NAUTICAL MILES)
* YN TARGET Y COORDINATE WITH ERROR NOISE (NAUTICAL MILES)

* ************ ** * ****** ** **** * ** ****** ****** ******************

* INITIALIZATION

INTEGER SIZE,I,CHOICE,NOICE
DOUBLE PRECISION DSEED
REAL ALTTALTTIME,ALPHA
REAL BCOURSE,BSPEED,BEARI,BEARIN,COURSE,CTIME,DELTAT,H
REAL MBCD,MBSD,MEASDV(2),NORM(2),PI,PERC,SPEED,SPEEDX
REAL SPEEDYSPESD,RANGE,TIME,X,Y,XNYN,U(1)
PARAMETER (PI = 3.141593)
DATA DELTAT/.01/, SIZE /200/, H /0.1097466/
TIME = 0.
ALTTIME = 0.
DSEED = 2332.

* USER CHOICE OF TARGET PATTERN
WRITE(6,*)' TARGET MOTION GENERATOR'
WRITE(6,*)

10 WRITE(6,*)'PLEASE INPUT THE DESIRED MEASUREMENT NOISE'
WRITE(6,*)' 1 - NORMAL NOISE'
WRITE(6,*)' 2 - SCULPTURED NOISE'
READ(6,*) NOICE
IF((NOICE.LT.1).OR.(NOICE.GT.2)) GOTO 10
WRITE(6,*)

20 WRITE(6,*)'PLEASE INPUT THE DESIRED MOTION PATTERN NUMBER'
WRITE(6,*)' 1 CONSTANT COURSE AND SPEED'
WRITE(6,*)' 2 SINUSOIDAL TRANSITOR TARGET'
WRITE(6,*)' 3 SECOND ORDER GAUSS MARKOV TARGET'
WRITE(6,*)' 4 RANDOM TOUR TARGET'
READ(6,*) CHOICE
IF((CHOICE.LT.1).OR.(CHOICE.GT.4)) GOTO 20
GOTO (100,200,300,400),CHOICE

******** GENERATION OF A MODEL 1 TARGET *

100 WRITE(6,)'INPUT TARGET INITIAL X-Y POSITION (E.G., 0. 0.)'
READ(6,*) X,Y
WRITE(6,)'INPUT TARGET BASE COURSE AND SPEED'
READ(6,*) COURSE, SPEED
COURSE = COURSE * PI / 180.
SPEEDX = SPEED * COS(COURSE)
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SPEEDY = SPEED * SIN(COURSE)
WR[TE(6,*)YINPUT RANGE STANDARD DEVIATION, PERCENTAGE OF
WRITE(6,*)' ACTUAL RANGE (E.G. 5% IS 5)
READ(6,*) PERC
PERC = PEUC / 100.
OPEN(UNIT=-08, FILE ='D:\APL2\TEST.RES', STATUS ='NEW')

*MAIN LOOP FOR MODEL 1
DO 190 I= l,SlZE

X = X +SPEEDX *DELTAT
Y = Y + SPEEDY *DELTAT

TIME = TIME + DELTAT
RANGE = SQRT(X**2 + Y**2)
BEARI = ATAN2(YX)

*GENERATION OF 2 NORMAL RANDOM BEARING AND RANGE
CALL LNORPC(DSEED,NORM,2)
MEASDV(l) = PERC *RANGE
MEASDV(2) = .01
rF(NOICE.EQ.1) THEN

RANGEN = RANGE + NORM(1) * ME.ASDV(1)
BEARIN = BEARI + NORM(2) *MEASDV(2)

ELSE
RANGEN = RANGE + ((NORM(1) *(1. + H * NORM(1) ** 2))

C / ((1. + 6*H + 15* H**2)*.5)) * MEASDV(1)
BEARIN = BEARI + ((NORM(2) * (1. + H * NORM(2) ** 2))

C / ((. +6fl1 + 15* H**2)**.5)) * MEEASDV(2)
ENDIF
XN = RANGEN *COS(BEARIN)
YN - RANGEN * SIN(BEARIN)
WRITE(0B,115) TIMXYRANGE,180.*BEARI/PI,XNYN,RANGEN,

C 180.*BEARIN/Pl
115 FORMAT(1X,F5.2,3(lX,F6.2), 1X,F1 1.6,2(1.X,F8.4),

C 1X,F10.6,1X,Fll.6)
190 CONTINUE

GOTO 900

GENERATION OF AMODEL 2 TARGET q

200 WRITE(6,*)INPUT TARGET INITIAL X-Y POSITION (E.G., 0. 0.)'
READ(6,*) XY
W~RITE(6,*)'INPUTT TARGET BASE COURSE AND SPEED'
READ(6,*) BCOIJRSE,BSPEED
BCOURSE = BCOURSE * PI / 180.
WRITE(6,)INPUT MAXIMUM DEVIATION FROM BASE COURSE (E.G., +/

C 45 IS 45)'
READ(V,) MBCD
MBCD =MBCD * PI / 180.
WRITE(6,*)'INPUT MAXIMUM DEVIATION FROM BASE SPEED (E.G., + /- 2
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C KTS IS 2)'
READ(6,*) MIBSD
WRITE(6,*)'INPUT RANGE STANDARD DEVIATION, PERCENTAGE OF
WRIT(6,*)' ACTUAL RANGE (E.G. 5% IS 5)
READ(6,*) PERC
PERO = PERC / 100.
OPEN(UNIT =09, FILE ='D:\APL2\MOTIO2.RES' , STATUS ='NEW')

DO 290 1=1, SIZE
CTLME =AMOD(TlME,2*PI)

COURSE = BCOURSE + MB3CD * SIN(SPEED*CTIME)
SPEED = BSPEED + MIBSD * SIN(CTIME)
X = X + SPEED *COS(COURSE) *DELTAT
Y = Y + SPEED *SIN(COURSE) * DELTAT
RANGE = SQRT(X**2 + Y**2)
BEARI = ATAN2(YX)

*GENERATION OF 2 NORMAL RANDOM BEARING AND RANGE
CALL LNORPC(DSEED,NORM,2)
MEASDV(l) = PERC * RANGE
MEASDV(2) = .01
IF(NOICE.EQ.1) THEN

RANGEN = RANGE + NORM(1) * MEASDV(1)
BEARIN = BEARI + NORM(2 * MEASDV(2)

ELSE
RANGEN = RANGE + ((NORM(1) * (1. + H * NORM(1) ** 2))

C / ((1. + 6*H + 15* H**2)*.5)) *MEASDV(l)
BEARIN = BEARI + ((NORM(2) * (1. + H * NORM(2 ** 2))

C / ((1. + 6*H + 15* H**2)*.5)) *MEASDV(2)
ENDIF
XN = RANGEN *COS(BEARIN)
YN = RANGEN * SIN(BEARIN)
WRITE(09, 115) TIME,X,YRANGE, 180. *BEI/PI,X,YNJ,PAGEN,

C 180. *BEARIN/Pl
TIME = TIME + DELTAT

290 CONTINUE
GOTO 900

****S******GENERATION OF A MODEL 3 TARGET

300 WIRITE(6,)'NPUT TARGET INITIAL X-Y POSITION (E.G., 0.0.)'
READ(6,*) XY
WRITE(6,*)'INPUT TARGET INITIAL COURSE (DEGREES) AND SPEED (KTS)'
READ(6,*) BCOURSE,BSPEED
BCOURSE = BCOURSE * PI / 180.
WRrTE(6,*)'INPUT SPEED STANDARD DEVIATION FOR NORMAL NOISE'
READ(6,*) SPESD
WRITE(6,*)'INPUT RANGE STANDARD DEVIATION, PERCENTAGE OF
WRITE(6,*)' ACTUAL RANGE (E.G. 5% IS85)

57



READ(6,*) PERC
PERC = PERC / 100.
SPEEDX = BSPEED *COS(BCOURSE)
SPEEDY = BSPEED * SIN(BCOURSE)
OPEN(UNIT = 10, FILE ='D:\APL2\MOTIO3.RES' , STATUS =NEW')
DO 390 I = 1,SIZE

CALL LNORPC(DSEED,NORM,2)
SPEEDX = .8 *SPEEDX + NORM(1) *SPESD

SPEEDY = .8 * SPEEDY + NORM(2) *SPESD

X = X + SPEEDX DELTAT
Y = Y + SPEEDY *DELTAT

RANGE = SQRT(X**2 + Y**2)
BEARI = ATAN2(YX)

*GENERATION OF 2 NORMAL RANDOM BEARING AN]) RANGE
CALL LNORPC(DSEED,NORM,2)
MEASDV(1) = PERC * RANGE
MEASDV(2) = .01
IF(NOICE.EQ.1) THEN

RANGEN = RANGE + NORM(l) * MEASDV(1)
BEARIN = BEARI + NORM(2) * MEASDV(2)

ELSE
RANGEN = RANGE + ((NORM(1) * (1. + H * NORM(1) ** 2))

C / ((1. + 6*H + 15* H**2)**.5)) * MEASDV(l)
BEARIN = BEARI + ((NORM(2) * (1. + H * NORM(2) **2))

C / ((1. + 6*H + 15* H**2)*.5)) * MEASDV(2)
ENDIF
XN = RANGEN * COS(BEARIN)
YN = RANGEN * SIN(BEARIN)
WRITE(10,1 15) TIMXY,RANGE,180.*BEARI/PIXNYN,RANGEN,

C 180.*BEARIN/PI
TIME = TIME + DELTAT

390 CONTINUE
GOTO 900

***~~**GENERATION OF A MODEL 4 TARGET

400 WRITE(6,)'YINPUT TARGET INITIAL X-Y POSITION (E.G., 0. 0.)'
READ(6,*) X,Y
WRITE(6,*)'INPUT MEAN TIME MHRS) BETWEEN COURSE CHANGES'
READ(6,*) ALPHA
ALPHA = 1. / ALPHA
WRITE(6,*)'INPUT TARGET SPEED (KTS)'
READ(6,*) SPEED
WRITE(6,*)'INPUT RANGE STANDARD DEVIATION AS A PERCENTAGE OF'
WRITE(6,*)' ACTUAL RANGE (E.G. 5% IS 5)
READ(6,*) PERC
PERC = PERC / 100.
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OPEN(IJNIT =08, FILE = 'D:\APL2\MOTIO4.RES' , STATUS ='NEW')
*MAIN LOOP FOR MODEL 4

DO 490 I= 1,SIZE
IF(ALTTIMvE .LE. TIME) THEN

CALL LRNDPC(DSEED,U,1)
COURSE = 2 *PI * UM1
CALL EXPOPC(DSEEDALrITALPHA)
ALTTIMYE = ALTTIME + ALTr
SPEEDX = SPEED * COS(COURSE)
SPEEDY = SPEED * SIN(COURSE)

ENDIF
X = X + SPEEDX DELTAT
Y = Y + SPEEDY DELTAT
TIME TI7ME + DELTAT
RANGE = SQRT(X2 + Y**2)
BEARI = ATAN2(Y,X)

*GENERATION OF 2 NORMAL RANDOM BEARING AND RANGE
CALL LNORPC(DSEED,NORM,2)
MEASDV(l) = PERC * RANGE
MEASDV(2) = .01
IF(NOICE.EQ.1) THEN

RANGEN = RANGE + NORM(1) * MEASDV(1)
BEARIN = BEARI + NORM(2) MEASDV(2)

ELSE
RANGEN = RANGE + ((NORM(1) * (1. + H *NORM(1) ** 2))

C / ((1. + 6*H + 15* H**2)**.5)) * MEASDV(l)
BEARIN = BEARI + ((NORM(2) * (1. + H *NORM(2 ** 2))

C / ((1. + 6*H + 15* H**2)*.5)) * MEASDV(2)
ENDIF
XN = RANGEN * COS(BEARIN)
YN = RANGEN * SIN(BEARIN)
WRITE(08,115) TIME,XYRANGE,180. *BEARI/PI,XYJyN,ANGEN,

C 180.*BEARIN/PI
490 CONTINUE
900 STOP

END

* THIS SUB3ROUTINE WILL GENERATE A VECTOR OF NORMAL RANDOM
* VARIABLES ACCORDING TO THE SINE-COSINE METHOD

SUBROUTINE LNORPC(DSEEDAN)
INTEGER N,I,IND
REAL A(N),U(2),SW,Ul,XSTAR
DOUBLE PRECISION DSEED,PI
DATA P1/3.14 159265358979D0/
IND = 1
DO 100 I= 1,N
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IND = -IND
IF (IND.GE.0) GOTO 20

10 CALL LRNDPC(DSEED,U,2)
S = SQRT(-2*ALOG(U(1)))
W = 2*PPU(2)
XSTAR = S*COS(W)
AMI = S*SIN(W)
GOTO 100

20 AMI = XSTAR
100 CONTINUE

RETURN
END

SUBROUTINE LRNDPC (DSEED,U,N)
INTEGER N, I
REAL U(N)
DOUBLE PRECISION D31M1, DSEED, D31

C D31M1=2**31 -1

C D31 =2**31
DATA D31M1/2 147483647.DO/
DATA D31 /2147483648.DO/
DO 5 I= 1,N

C DSEED =DMOD(950706376.DO*DSEED,D3IMI)

DSEED =DMOD(16807.DO*DSEED,D3lMl)

5 U(I) = DSEED / D31
RETURN
END

*TillS SUBROUTINE GENERATES 1 EXPONENTIAL(LAMBDA) RANDOM
* NUMBER

SUBROUTINE EXPOPC(DSEED,EXPO,LAMBDA)
DOUBLE PRECISION DSEED
REAL EXPO,LAMBDAUNI( 1)
CALL LRNDPC(DSEED,UNI, 1)
A = 1.0 -UNI(1)
EXPO = - ALOG(A) / LAMBDA
RETURN
END
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