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ABSTRACT

The basic aims of this research program have been to study the mechanical

properties and constitutive relations of granular materials that support the applied loads

througil interparticular frictional contacts, and to relate these to the granular fabric, both

stress-induced and inherent. To this end a coordinated experimental and theoretical

program was followed in order to identify:

1. Effective parameters that measure the fabric of granular masses.

2. The difference between inherent and induced fabric, and the influence of each on the

constitutive response of the material

3. Parameters which measure the evolution of fabric in the course of a given overall load

or deformation history

4. the relation between fabric and the overall stress and deformation

5. Constitutive relations which directly involve fabric measures and the measure of their

evolution, and hence, are based on the fundamental microstructural events which give rise

to nonlinear material response

The experimental work included tests on large hollow cylindrical samples of granular

materials (sands), where a true three-dimensional stress state can be produced iii the

sample. Accurate measurements of forces and associated displacements were made in tile

unique state-of-the-art testing facilities of the Principal Investigator, at the University of

California, San Diego (UCSD). Parallel to this, a series of model experiments on two-

dimensional photoelastic rods with oval cross section was also performed. By means of

photoelastic procedures, the history of the evolution of the microstructure was recorded for

simple shear loading paths. Using the existing image analysis facilities, the photoelastic

pictures were analyzed, major microstructural features were identified, and were related to

the overall stress and deformation histories, using stereological techniques, as well as by

direct measurement of fabric parameters. The experimental studies were closely

coordinated with the micromechanical modeling. This report includes the scientific

findings of this research program.



1.1 INTRODUCTION

A fundamental approach was followed in this program in order to de-,elop

physically-based constitutive relations for granular materials. The program included the

following steps:

1. Micromechanical observations, in order to identify the major microscopic features that

produce the overall nonlinear macroscopic response and associated failure modes;

2. Micromechanical modeling of the identified mircroscopic features on the basis of

rigorous mechanics principles and systematic mathematical deduction of the macroscopic

consequences of the model;

3. Systematic experiments on carefully prepared and reproducible samples, in order to test

the validity of the model results, and hence, the model's basic assumptions;

4. Macroscopic constitutive models which encompass the experimentally verified

micromechanical features; and

5. Systematic experiments to test the validity of the constitutive results and to quantify the

constitutive parameters of the model.

Theoretical modeling at both the microscopic and macroscopic levels was pursued,

guided by systematic experimental observation at both the microscale and macroscale,

which provided vital information on the physics of the process.

The micromechanics of granular flow was studied in simple shear and in biaxial

loading by using photoelastic, rod-like granules with circular and oval cross sections.

Based on these observatons, overall stress and deformation measures were calculated

using fabric tensors which characterize the microstructure of the granular mass, and

relations between the overall stress and various measures of the fabric have been carefully

studied. These results have been summarized in Mehrabadi et at. (1988) and in Subhash et

al. (1991). Of particular importance are two major findings which contradict some

commonly held views. They are: (1) in general, a second-order tensor which represents

approximately the distribution of contact normals is not coaxial with the stress tensor,

altbough i:s principal airections follow those of the, stress tensor in a determinable manner;
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and (2) in general, the distribution of contact normals or unit branches cannot be adequately

represented by a second-order tensor.
Furthermore, under this project, we have studied several alternative theories for

quantifying the incremental measures of local (micro) deformation and forces, and related

them to the relative sliding and rolling of granules, their frictional contact forces, and the

statistical classes that encompass a set of granules associated with a particular orientation of

either contact normals or unit branches. This study has produced a fundamental and

definitive representation of incremental deformation measures and stress measures at the

microlevel, based on subdividing contacts into classes with common contact normal

orientations, and identifying each class as a micro-element; see Mehrabadi, Loret and

Nemat-Nasser (1991).

In collaboration with Professors B. Loret of Grenoble, France, and M. Mehrabadi

of Tulane University, a new approach has been developed, based on a general tensorial

.Niation between local kinematical quantities and global ones, including the effect of overall

stress and fabric. The basic framework for a general theory in two dimensions has thus

been established. Based on it, and the Taylor averaging scheme, the overall rate-

constitutive relations have been developed; Mehrabadi, Loret and Nemat-Nasser (1991).

Parallel with the theoretical work and micromechanical experimental validation, we

have studied the effect of fabric (both inherent and induced) on the strength, and the

liquefaction and densification potentials, of cohesionless granules. This experimental work

involved both deformation-controlled and stress-controlled cyclic testing under complete

computer-controlled conditions. It has resulted in several new observations which correct

some (incorrect) commonly held views that were based on experimental results obtained by
means of less advanced experimental techniques and facilities. In particular, we have

found that preliquefaction does not necessarily result in a sample highly susceptible to

reliquefaction: it may, in fact, strengthen the sample, depending on the residual fabric;

Okada and Nemat-Nasser (1991).

In the course of the above-mentioned experimental study, we have obtained some

interesting results which seem to suggest a unique relation between the pore pressure

buildup and the associated energy input, at least for virgin samples in strain-controlled

tests; Okada and Nemat-Nasser (1991). Attachment 6 contains these results. The strain

amplitude ranges from 0.2 to 4.0%, in cyclic strain-controlled tests. They lead to a unique

pore pressure-energy relationship. The effects of initial fabric were included by

prestraining and/or preliquefying the samples. Based on micromechanics, a physically-
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based model has been developed for this phenomenon, including the effects of fabric; see

Attachment 6.

1.2 PUBLICATIONS COMPLETED UNDER GRANT AFOSR 87-0079

LIST OF PAPERS PUBLISHED

Mehrabadi, M.M., S. Nemat-Nasser, H.M. Shodja and G. Subhash, "Some Basic

Theoretical and Experimental Results on Micromechanics of Granular Flow",

Micromechanics of Granular Materials, M. Satake and J.T. Jenkins (eds), Elsevier (1988),

253-262.

Nemat-Nasser, S., "Effect of Fabric on Liquefaction and Densification of Saturated Soil:

Experiments and Theory," Micromechanics of Granular Materials, M. Satake and J.T.

Jenkins (eds), Elsevier (1988), 202-205.

Nemat-Nasser, S., "Anisotropy in Response and Failure Modes of Granular Materials,"

Yielding, Damage and Failure of Anisotropic Solids (EGF5), Proceedings of the

IUTAM/ICM Symposium, August (1987), Mechanical Engineering Publications, J.P.

Boehler (ed.), London, (1990), 33-48.

Subhash, G., S. Nemat-Nasser, M.M. Mehrabadi and H.M. Shodja, "Experimental

Investigation of Fabric-Stress Relations in Granular Materials", Mechanics of Materials,

Vol. 11, No. 2 (1991), 87-106.

LIST OF PAPERS SUBMITTED

Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "Incremental Constitutive Relations for

Granular Materials Based on Micromechanics," Proceedings of the Royal Society of

London, submitted 5/91

Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "A Constitutive Model for (3ranular

Materials Based on Micromechanics,"presented at the Second US-Japan Seminar on

Micromechanics of Granular Materials, Clarkson University, NY, August 5, 1991,

submitted 9/91
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Nemat-Nasser, S. and B. Balendran, "Micromechanics of Flow and Failure Modes of

Particulate Media Over a Wide Range of Strain Rates", presented at the 2nd US-Japan
Seminar on Micromechanics of Granular Materials, Clarkson Univ., NY, August 5, 1991.

Okada, N. and S. Nemat-Nasser, "Energy Dissipation in Inelastic Flow of Cohesionless
Granular Media", Geotechnique, submitted 12/91

1.3 ABSTRACTS OF PUBLICATIONS

1.3.1 Mehrabadi, M.M., S. Nemat-Nasser, H.M. Shodja and G. Subhash, "Some Basic
Theoretical and Experimental Results on Micromechanics of Granular Flow",
Micromechanics of Granular Materials, M. Satake and J.T. Jenkins (eds), Elsevier
(1988), 253-262.

In order to establish guidelines for modeling the macroscopic behavior of granular
materials, an experimental study of the evolution of the microstructure of an
assembly of granular materials under a uniform confining pressure and subjected to
a pure shear was conducted. The granular material used in the study consisted of
photoelastically sensitive rod-shaped particles of oval cross-sections. It was found
that (i) the distribution of branches and contact normals are almost identical, (ii) the
second-rank fabric tensor does not adequately describe the microstructure of highly
anisotropic samples, (iii) the density of contacts whose normals lie along the major
and minor principal stress axes, varies sharply initially and then approaches a
constant value in the course of deformation, and (iv) the density of contacts with
planes parallel to the maximum shear stress plane remains practically constant
throughout the deformation.

1.3.2. Nemat-Nasser, S., "Effect of Fabric on Liquefaction and Densification of Saturated
Soil: Experiments and Theory," Micromechanics of Granular Materials, M. Satake
and J.T. Jenkins (eds), Elsevier (1988), 202-205.

It has been known that the inherent and induced anisotropy or fabric has
considerable influence on the response and failure modes of granular masses.
Some definitive recent experiments which clearly demonstrate this phenomenon in
relation to the densification and liquefaction potential of saturated san,.s, are briefly
reviewed, together with associated micromechanically based theoretical
observations.

1.3.3. Nemat-Nasser, S., "Anisotropy in Response and Failure Modes of Granular
Materials," Yielding, Damage and Failure of Anisotropic Solids (EGF5),
Proceedings of the IUTAM/ICM Symposium, August (1987). Mechanical
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Engineering Publications, J.P. Boehler (ed.), London, (1990), 33-48.

This review addresses some recent experimental and theoretical studies of the
mechanical properties of particulate media which support applied overall loads
through individual contact resistance. We emphasize the inherent and induced
fabric or anisotropy and its influence on the response and failure modes of this class
of materials. The experimental studies include: (1) model experiments on
photoelastic granular rods with circular and elliptical cross-sections, in biaxial as
well as simple shear cyclic loading; and (2) dilatancy, liquefaction, and the overall
stress-deformation relations studies on simple shearing apparatus and also on large
hollow cylindrical samples of sand under complex, three-dimensional monotonic as
well as cyclic stress paths. These experiments are designed in coordination with
theoretical micromechanical models in order to bring out the major
micromechanisms that are responsible for the observed highly path dependent
behaviour of granular materials. The issues of inherent and induced anisotropy or
fabric and their effects on the overall response of the material are of particular
interest in these experiments. The theoretical studies emphasize recent
micromechanically-based models of granular flow, which specifically seek to
understand and quantify relevant measures of anisotropy or fabric, and the relation
between fabric measures and the overall stress tensor.

1.3.4. Subhash, G., S. Nemat-Nasser, M.M. Mehrabadi and H.M. Shodja,
"Experimental Investigation of Fabric-Stress Relations in Granular Materials",
Mechanics of Materials, Vol. 11, No. 2 (1991), 87-106.

A brief summary of some relevant theoretical and experimental results on the
microscopic aspects of the response of granular masses is presented. The results of
a series of experiments involving simple shearing under a constant confining
pressure, performed on photoelastic rod-like granules (plane strain) are reported.
In these experiments, the components of various fabric tensors are measured, and
their variations over one cycle of shearing are examined and compared. The
orientations of the principal axes of all commonly used fabric tensors are observed
to change sharply with the reversal of the shearing direction. It is also concluded
that, in general, second-order fabric tensors are not adequate to accurately describe
the distribution of fabric measures such as the distribution density function of unit
contact normals or unit branches which are unit vectors along line segmtnts
connecting the centroids of adjacent contacting granules. This is particularly so
when the response of the granular mass is highly anisotropic. Finally, the
expression for the macroscopic stress in terms of the contact forces and other local
quantities, is reviewed and its experimental verificatien is discussed.

1.3.5. Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "Incremental Constitutive
Relations for Granular Materials Based on Micromechanics," Proceedings of the
Royal Society of London, submitted 5/91

Micromechanically-based constitutive relations for two-dimensional flow of
granular materials are presented. First, the relations between the overall stresses
and the relevant microscopic quantities, namely, the interparticle forces, the density
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and orientation of contact unit normals, as well as the average size of the particles,
are obtained. Then, the kinematics is examined, and the overall velocity gradient is
related to measures characterizing the relative sliding and rotation of granules. A
significant concept underlying all these developments is the notion of the class of
contact unit normals with a continuously evolving distribution function, even
though individual members of various classes may change discontinuously, as
contacts are lost and new contacts are developed in the course of granular flow.
Then, simple local constitutive relations are introduced for the rate of change of the
contact forces, the evolution of the contact normals, the mechanism of local failure,
and the density of contacts in a particular class. This leads to macroscopic rate
constitutive equations through a Taylor averaging method. Due to the nonlinearity
of the rate constitutive equations, the response is computed by an incremental
procedure. As an illustration, the overall response of a two-dimensional assembly
of disks subjected to an overall shearing deformation is determined. In addition,
explicit results are presented for the evolution of fabric, contact forces, and the
history of active and inactive classes of contacts. The stress-strain relations and the
evolution of fabric and contact forces are in excellent qualitative agreement with the
observed behavior of granular materials. In light of these results, the mechanisms
of failure and inelastic deformation of dense, as well as loose granular, materials are
discussed.

Although most features of the model could be readily generalized to three
dimensions, for simplicity, the discussion is limited to planar deformation.

1.3.6. Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "A Constitutive Model for
Granular Materials Based on Micromechanics,"presented at the Second US-Japan
Seminar on Micromechanics of Granular Materials, Clarkson University, NY,
August 5, 1991, submitted 9/91

A recently proposed constitutive model for two-dimensional flow of granular
materials is briefly reviewed and some numerical results are presented in this paper.
First, the concept of fabric and the relations between the overall stresses and the
relevant microscopic quantities are reviewed. Then, the kinematics is briefly
examined. A significant concept underlying all these developments is the notion of
the class of contact unit normals with a continuously evolving distribution function,
even though individual members of various classes may change discontinuously, as
contacts are lost and new contacts are developed in the course of granular flow.
Next, local and macroscopic constitutive relations are discussed and the evolution
of the density of contacts in a particular class is considered. As an illustration, the
overall response of a two-dimensional assembly of disks subjected to an overall
shearing deformation is determined. The stress-strain relations and the evolution of
fabric are in excellent qualitative agreement with the observed behavior of granular
materials. In light of these results, the micromechanisms of failure and inelastic
deformation of dense, as well as loose granular, materials are discussed.

1.3.7. Nemat-Nasser, S. and B. Balendran, "Micromechanics of Flow and Failure Modes
of Particulate Media Over a Wide Range of Strain Rates", presented at the 2nd US-
Japan Seminar or Micromechanics of Granular Materials, Clarkson Univ., NY,
August 5, 1991.
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A basic framework is proposed for the systematic micromechanically-based
constitutive modeling of the flow of granular matexials, over a broad range of sain
rates, from quasi-static to high stain rates. Frictional effects, pressure sensitivity.
and coupling between shearing and volumetric strain are included. Stress-induced
anisotropy in elastic and inelastic instantaneous material response is incorparated.
The model is flexible enough to account for both rate-independent -and rate-
dependent frictional sliding and rolling of the grains. For illusmion, typical results
for biaxial and simple shearing of granular materials with various void ratios are
calculated in monotonic, as well as cyclic, loading, and they are shown to
accurately correspond to actual observations.

1.3.8 Okada, N. and S. Nemat-Nasser, "Energy Dissipation in Inelastic Flow of
Cohesionless Granular Media", Geotechnique, submitted 12/91

The results of a systematic study of energy cissipation in cohesionless granular
media are presented. First, the relation between the excess pore water pressure,
accumulated in a water-saturated granular mass, and the corresponding e7ternal
work in cyclic loading is studied experimentally. Second, a micromechanical model
of internal energy dissipation due to slip between contacting granules is introduced,
and the results are compared with experimental measurements.

A series of undrained experiments is carried out using water-saturated large hollow
cylindrical specimens. Most experiments are performed under displacement-
controlled conditions. The imposed cyclic angular displacement which produces
the applied shear strain, has a triangular time variation with constant strain rate over
each quarter cycle. The specimens are subjected to two sequences of loading in
order to simulate the reliquefaction phenomenon. External work per unit volume is
calculated from the experimental results, and its correlation with the excess pore
water pressure is examined. In the first loading, a unique nonlinear relation is
observed to exist between the excess pore water pressure and the external work per
unit volume. This relation is found to be independent of the shear strain amplitude.
In the second loading, however, this relation is a function of strain amplitude. The
cyclic shear strength is seen to have increased in the second loading, because of the
strain history of the first loading.

External work supplied to cohesionless granular media is mainly consumed by the
frictional slip between contacting granules. A micromechanical model is developed
and validated by the experimental results. It is shown that the internal dissipation
per unit volume in cohesionless granular media, can be expressed in terms of the
time-history of the applied effective pressure and a single scalar parameter which
depends on the density and strain amplitude. The model is further validated by
torsion tests with random variation in the applied strain amplitude. The theoretical
predications are in excellent agreement with the experimental results.
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1.4 PROFESSIONAL PERSONNEL ASSOCIATED WITH THE
RESEARCH EFFORT; DEGREES AWARDED (AFOSR SUPPORT)

Principal Investigator: S. Nemat-Nasser

Postdoctoral Research Associates and Research Engineers (Visiting):

Benjamin Loret (Professor, Domaine Universitaire, Institut de Mechanique de
Grenoble, France), 5/86 - 12/86

Zong-Lian Qui (Associate Professor, Qinghua University, Beijing, China),

6/87 - 2/88

Staff Research Associates:

I-LM. Shodja (Graduate Student, Department of Civil Engineering, Northwestern
University, Evanston, I1), 11/86 - 9/87

Visiting Scholars:

Benjamin Loret (Professor, Domaine Universitaire, Institut de Mechanique de
Grenoble, France)

Morteza M. Mehrabadi (Professor, Department of Mechanical Engineeering, Tulane
University, New Orleans, Lousiana)

Muneo Hon (Professor, Department of Civil Engineering, Tohoku University,
Sendai, Japan)

Graduate Students: Degree Awarded

A. Azhdari - Research Assistant, 7/90 - 4/91

B. Balendran - Research Assistant, 11/89 - 4/91

J. Y Chang - Research Assistant, 10/86 - 8/88

H. Deng - Research Assistant, 7/90 - 4/91

S. Ghatuparthi - Research Assistant, 7/87 - 9/89, 12/89 - 6/90 M.S., UCSD

M. Hon - Research Assistant, 10/86 - 12/86, 5/87 - 8/87

N. Okada - Research Assistant, 10/86 - 6/16/91

Engineering Aid (Undergraduate Students)

R. Sugimae, 8/87 - 10/89

B. Crafts, 6/89 - 8/89
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1.5 INTERACTIONS (Coupling Activities)

A. PARTICIPATION OF PRINCIPAL INVESTIGATOR AT MEETINGS, PAPERS
PRESENTED; LECTURES AT SEMIN XRS.

"Mechanics of Failure in Compression," Tohoku University, Sendai, japan, June 27,
1986.

"Surface Instability," University of Southern California, May 8, 1987.

"Anisotropy in Response and Failure Odes of Granular Materials," IUTAM/ICM
Symposium: Yielding, Damage and Failure of Anisotropic Solids, Villard-de-Lans, France,
August 24-28, 1987.

"Constitutive Modeling Based on Micromechanics," ICES 88, Atlanta, GA, April 10-14,
1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Rensselaer Polytechnical Institute, New York, NY, May 12, 1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Alicia Golebrewska Herrmann Memorial Lecture in Applied Mechanics,
Stanford University, Stanford, CA, November 3, 1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Naval Research Laboratory, Washington, DC, December 16, 1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Plenary Lecture, ICF7 Conference on Fracture, Houston, TX, March 23-29,
1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," MIT Applied Mechanics Seminar Series, Boston, MA, May 15, 1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Civil Engineering Seminar, Ohio State University, May 19, 1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials," Keynote Address, Twelfth Canadian Congress of Applied Mechanics --
CANCAM, May 28 - June 2, 1989, Ottawa, Ontario, Canada, May 28, 1989.

"Micromechanics of Deformation for Granular Materials," Plenary Lecture, ASME Winter
Annual Meeting, San Francisco, CA, December 10-15, 1989, December 14, 1989.

"Paradoxes, Facts and Fiction in Material Failure under Compression," University of Utah,
May 4, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," South Dakota
School of Mines and Technology, Rapid City, SD, May 24, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," The Continuum
Damage Mechanics Workshop at Sandia National Laboratories, Pleasanton, CA, June 12,
1990.
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"Paradoxes, Facts and Fiction in Material Failure under Compression," The Department of
Civil Engineering, Tohoku University, Sendai, Japan, September 25, 1990.

"Strain Localization in Granular Flow," Invited Lecture The Japan Society of Civil
Engineering Convention, Annual Meeting on Strain Localization and Bifurcation of
Geomaterials, Niigata, Japan, September 29, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," Kyushu
University, Fukuoka, Japan, October 3, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," Tulane University,
New Orleans, LA, November 29, 1990.

"Micromechanics of Flow and Failure Modes of Particulate Media Over a Wide Range of
Strain Rates", Invited Lecture, 2nd U.S. - Japan Seminar on Granular Materials, Potsdam
NY, August 4 - 9, 1991.

B. CONSULTATIVE AND ADVISORY FUNCTIONS WITH OTHER AGENCIES,
LABORATORIES AND UNIVERSITIES.

DARPA Panel Meting, 10/89 Member of DARPA Panel on
Material Modeling and Large
Scale Computations

Society of Engineering Sciences (SES) Conference Member of SES
Ann Arbor, Mich, 9/89 Organizer of "Computational
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GRANULAR FLOW
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SUMMARY
In order to establish guidelines for modeling the macroscopic behavior of

granular materials, an experimental study of the evolution of the microstructure of
an assembly of granular materials under a uniform confining pressure and
subjected to a pure shear was conducted. The granular material used in the study
consisted of photoelastically sensitive rod-shaped particles of oval cross-sections. It
was found that (i) the distribution of branches and contact normals are almost
identical, (ii) the second rank fabric tensor does not adequately describe the
microstructure of highly anisotropic samples. (iii) the density of contacts whose
normals lie along the major and minor principal stress axes. varies sharply
initially and then approaches a constant value in the course of deformation, and
(iv) the density of contacts with planes parallel to the maximum shear stress plane
remains practically constant throughout the deformation.

INTRODUCTION

A microscopir study of the evolution of the microstructure of an assembly of

granular materials under a uniform confining pressure and, in addition, subjected

to a pure shear is reported here. The granular material used in the study consistCd

of photoelastically sensitive rod-shaped particles of oval cross-sections.

The purpose of the experimental study, in general terms, was to establish

guidelines for modeling the macroscopic behavior of granular materials

Specifically. the objective of this work was to investigate the correlation among

certain microscopic fabric measures such as the diiribution of contact normal.

unit branches. etc.. and to study the evolution of these quantities in the course of

deformation.

Experiments on assemblies of photoelastic particles were pioneered by Dintu

(ref. I). Weber (ref. 2) and Wakabayashi (rcf. 3), and later followed by several other
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and Image Tool from Imaging Technology, a powerful program for obtaining

histograms of several microscopic quantities was developed. After digitizing thc

photographs of the isochromatic fringe pattern obtained at each stage of loading.

the program was employed to find the corresponding distributions of (i) contact

normals. (ii) branches, and other related quantities.

REPRESENTATION OF DISTRIBUTION DENSITY FUNCTION

In works on crystallography, it is customary to represent the distribution

density function of an orientation by spherical harmonic functions. Another

alternative is the invariant formulation by Kanatani (ref. 17) which for two

dimensions, is given by

E(n) =1(1 + Jijninj + Jijklninjnknl +. ... ()

where E(n) is the distribution density function of the unit vector n. and where

Jij=4[<nInj>- L.j]. (2)

Jijkl = 16 [<nilnjnknl>- E(ij <nknl)> + L EijE~l]. (3)

The angular brackets denote averages taken over all orientations. The symmetric.

traceless second-rank tensor Jij is closely related to various fabric or anisotropy

tensors (ref 18) previously introduced in the literature The fourth-rank tensor

Jijkl is completely symmetrtc and traceless. The components of these two tensors

can be represented. in two dimensions, in terms of four parameters, A. B. C and D.

defined by

A = <sin0cos6>, C = <cos 2 0>,

(4)

B = .zincos 30>. D = <cos4 0>.

where 0 is the orientation of n measureo from the vertical Note that the

parameters A and C are related to the degree of concentration. J. and the preferred

orientation. 0, introduced by Konishi (ref 6).

j2= L Jijjij = 4A2 + (1.2C) 2. (5)
8
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that of the inclination of the principal axis of stress at or immediately after the

peak stress.
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Fig. 1. Variation of (a) stress ratio, (b) volumetric strain, (c) degree of

concentration, and (d) orientation of the major principal axis of the second-rank
fabric tensor. Jij, with shear strain.

The observed distribution of contact normals as well as its second and fourth

order approximations (see Eqs. (7)) are shown in Fig. 2. Consistent with earlier

observations, it is seen here also that some contacts with unit normals along the

minor principal stress axis are lost while new contacts with unit normals along the

major compressive principal stress axis are continually generated.

Clearly, the basic features of the actual distribution are well represented by

the fourth-order approximation. In fact, it can be shown that the error in

calculating E(n) by excluding the fourth- and higher-order terms can be more

than ±30% along the major and minor principal stress axes. Thus, for a highly

anisotropic microstructure, the second-rank tensor Jij does not appear to be

adequate, and, for a more reasonable representation of the microstructure, one

must, at least, retain the fourth-order term involving the fabric tensor Jijkl.
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the expression for E(n% (see Eqs. (7)), the sine terms (i.e., those involving the odd

functions of 8) vary substantially in the course of shearing deformation, while the

cosine terms (i.e.. those that are even functions of 8) are practically constant

throughout the deformation process.

The variation of A. B, C and D with the stress ratio is also found to be similar to

the change of these parameters with the shear strain, shown in Fig. 3.
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Fig. 3. Evolution of parameters A, B. C and D with shear strain.

As a corollary of the above observation, we can see that when the sine ternis

in the expression for E(n) are zero, i.e., when

sin 2n0 = 0 (n=l,2,...)

or when 0=00, 900..... then

cos 2nO = (-)n

and hence E(0° ) and E(90 0 ) are practically constant. Note that for 0=450, 1350 ... we

have

sin 2nO = (-I) n + l . cos 2n0=0

Therefore. E(45 0 ) anC E(135 0 ). which are the distribution densities of contact

normals along the major and minor principal stress axes, vary initially and then

approach a constant value in the course of deformation: see Fig. 4.
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EFFECT OF FABRIC ON LIQUEFACTION AND DENSIFICATION

OF SATURATED SOIL: EXPERIMENTS AND THEORY

S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, La Jolla, California 92093

SUMMARY
It has been known that the inherent and induced anisotropy or fabric

has considerable influence on the response and failure modes of granular
masses. Some definitive recent experiments which clearly demonstrate this
phenomenon in relation to the densification and liquefaction potential of
saturated sands, are briefly reviewed, together with asiociated
micromachanically based theoretical observations.

INTRODUCTION

Cohesionless granular materials support the applied forces through

contact friction. Therefore, the nature and distribution of the contacts

are expected to have considerable influence on the overall mechanical

response of the granular mass. The term "fabric" has been used to

characterize this kind of microsrructure. It relates to the distribution of

the particles, their sizes and orientations, and, in particular, to the

distribution of the contact normals and contact areas (which reflect the

magnitude of the contact forces), as well as other geometrical entities. In

this summary we shall not deal directly with the characterization of fabric,

since the matter has been fully examined in other articles within this

volume; see, e.g. the paper by Mehrabadi ec al. (ref. 1). What is of

concern here is to show how seemingly minute variations in a given loading

history can change the iabric of the granular mass to such an extent that

the load-bearing capacity of the sample is changed by orders of magnitude.

In particular, we shall examine the effect of pre-straining on the

liquefaction potential of saturated sands, and point out the results of

recent experimetnts by Nemat-Nasser and Tobita (ref. 2) and Nemat-Nasser and

Takahashi (ref. 3), which clearly have brought into focus the effect of

induced fabric on the potential to failure by liquefaction of undrained

samples.

RESULTS AND DISCUSSION

Iz. has been shown by Finn et al. (ref. 4) and confirmed by Ishihara er
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al. (ref. 5), and other investigators, that, once a saturated undrained

sample of sand is liquefied in simple shearing, it will have essentially no

resistance to reliquefaction in subsequent tests. These tests were all

performed under a load-controlled condition, so that, with the confining

pressure held fixed, the tests were terminated after liquefaction

initiation, by reducing the shear stress to zero.

Faced with the above experimental facts, in the late seventies the

present writer became very interested in this phenomenon, and sought to: (1)

develop a micromechanical model which might clarify the phenomenon; and (2)

seek to check the experimental results independently end in light of the

micromechanics of the procees. The work on the micromechanics of this

phenomenon was reported in Nemat-Nasser (1980, ref. 6), and the experimental

effort was done in collaboration with Dr. Tobita and Mr. Takahashi; see

(ref. 2 and ref. 3).

Hicromechanical Model:

The model considers two-dimensional shearing of a layer of a granular

mass under uniform applied normal compressive stre-r, o, and uniform shear

stress, r, which is viewed positive when clockwise. The macroscopic shear

flow is the result of the microscopic motion (rolling and sliding) of grains

relative to each other at active contact points. Fig. 1 shows this.

(a)

(b) (c)

Figure 1

The angle v is called the (micro) dilatancy angle. It varies from active

contact to active contact, and when there is a very large number of such

contacts, one may assume a continuous change and introduce a distribution-

density function p(P) in such a manner that p (v0) dv represents the volume

fraction of active granules whose dilatancy angles are between vo and Yo +

d. v Is positive when ic produces volume expansion. By considering the

balance of forces transmitted across each active contact, and by equating



203

the rate of frictional dissipation at active contacts within a unit volume

to the rate of the overall stress-work, Nemat-Nasser (ref. 6) obtains the

following dilatancy equation:

1 ~~v ~ p(0~ cos (0, + Y) sin vdv(1

in which A, - "grain-to-grain" friction angle; and the Mohr-Coulomb failure

criterion is used to characterize the local (at the micro-level) flow

process.

Nemat-Nasser (ref. 6) points out that upon shearing and under normal

pressure, granules with negative dilatancy angles are activated first,

leading to a distribution-density function, p(v). which initially is biased

toward negative dilatancy angles. Intuitively, this follows from the

physical observation that the local normal force N hinders the motion of an

active granule with positive dilatancy angle v, whereas it assists when v is

negative (Figs. l(b) and(c)). Hence, upon shearing under confinement, an

initial densification is expected and is invariably observed.

As shearing proceeds, the distribution-density function p(,) tends to

become biased toward positive dilatancy angles, and this leads to subsequent

dilation. During this stage, a greater number of active contacts has

positive dilatancy angles, and this number increases with increasing shear

strain amplitude, up to the strain corresponding to the peak stress. Now,

if, after a microstate of this kind is attained, unloading begins, then some

of the granules with suitably large dilatancy angles may actually start a

downward motion under the action of the normal force N, which leads to some

densification. However, it is reasonable to expect, and our experiments on

photoelastic granules confirm (see ref. 7), that at zero shear stress there

still exists a strong bias toward positive dilatancy angles for clockwise

shearing. Now, upon load reversal (i.e., upon shearing in the

counterclockwise direction), the previously positive dilatancy angles behave

now as negative ones. Thus, a strong tendency toward densification would be

expected during load reversal. Hence, prestraining to suitably large shear

strain amplitudes in drained conditions should lead to immediate

liquefaction when load reversal occurs under undrained conditions.

Experimental Results:

To test the liquefaction potential of a preliquefied sample in light of

the micromechanical model, Nemat-Nasser and Tobita (ref. 2) compared the

reliquefaction potential of two similar samples which were liquefied by
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cyclic shearing under constant confining pressure. The difference between

the two tests was the state at which the initial liquefaction was terminated

during the final cycle: (1) In one test the final cycle in the initial

liquefaction was terminated at zero shear stress. (2) In the second,

otherwise similar, sample, the final cycle was terminated at zero shear

strain. It was found that, during reliquefaction, the first sample (which

was stopped at zero shear stress) showed essentially no resistance to

reliquefaction, whereas the second sample (which was stopped at zero shear

strain) was essentially as resistant to liquefaction as a virgin sample.

These and related results were reconfirmed in a series of carefully planned

experiments by Nemat-Nasser and Takahashi (ref. 3).

Another related phenomenon is prestraining under drained conditions and

its effect on the liquefaction potential of the saturated undrained sample.

Guided by the micromechanical model, Nemat-Nasser and Tobita (ref. 2) showed

that, If prestraining at a suitably large shear strain is terminated at zero

shear stress, then the sample will have strong induced anisotropy and hence,

in subsequent undrained cyclic shearing, will liquefy during the first

cycle. On the other hand, if the prestraining is terminated at zero shear

strain, the sample will be left with essentially no induced anisotropy, and

will be at least as resistant to liquefaction as the corresponding virgin

sample.

In an effort to further verify these facts and, in addition, to examine

the influence of the sample preparation on the mechanical response of

cohesionless sands in cyclic shearing, Nemat-Nasser and Takahashi (ref. 3)

have made a series of strain-controlled tests on Monterey No. 0 sand

samples. The same apparatus as the one used by Nemat-Nasser and Tobita

(ref. 2) is employed, except that the horizontal shearing device is modified

in such a manner as to control the horizontal stroke, and to measure the

corresponding resulting horizontal force. Two sample preparation techniques

are used: moist tamping and pluviating dry sand through air. The basic

conclusions of these experimental results are as follows:

1. In cyclic simple shearing, the resistance to reliquefaction (undrained)

or densification (drained) of a preliquefied sample actually increases,

because of the concomitant densification, if the preliquefaction is

terminated at zero residual shear strain, but this resistance becomes

very small if the preliquefaction is terminated at zero residual shear

stress.

2. The inherent anisotropy associated with sample preparation techniques

affects both the densification and liquefaction potential of the sample.
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3. Within each cycle of simple shearing, the induced anisotropy is

essentially wiped out in the neighborhood of zero shear strain, and the

anisotropy that exists at this state is basically due to the sample

preparation techniques (i.e., it is the Inherent anisotropy), provided

that the sample is not very loose and the strain amplitude is not very

large. (Note that the state of zero shear strain is essentially the

same as that of the state of zero dilatancy which is, indeed, the basic

underlying factor.)

4. For simple shearing, the distribution of the dilatancy angles

characterizing the fabric may be related to the shear strain and, in

this manner, the densification pattern may be estimated.

Since the simple shearing experiments are performed on small circular

cylinders, the state of stress in the sample is quite complicated. In order

to verify the validity of the results, a new series of tests has now been

initiated at the author's laboratory. These tests are being performed on a

large hollow cylindrical sample under carefully controlled conditions so as

to ensure a uniform state of stress and deformation in the sample. The

results of these experiments will be reported soon after they are completed.
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ABSTRACT This review addresses some recent experimental and theoretical studies of the
mechanical properties of particulate media which support applied overall loads through
individual contact resistance. We emphasize the inherent and induced fabric or anisotropy and
its influence on the response and failure modes of this class of materials. The experimental
studies include: (1) model experiments on photoelastic granular rods with circular and elliptical
cross-sections. in biaxial as well as simple shear cyclic loading: and (2) dilatancy. liquefaction.
and the overall stress--deformation relations studied on simple shearing apparatus and also on
large hollow cylindrical sampies of sand under complex. three-dimensional monotonic as well as
cyclic stress paths. These experiments are designed in coordination with theoretical micro-
mechanical models in order to bring out the major micromechanisms that are responsible for the
observed highly path-dependent behaviour of granular materials. The issues of inherent and
induced anisotropy or fabric and their effects on the overall response of the material are of
particular interest in these experiments. The theoretical studies emphasize recent
micromechanically-based models of granular flow. which specifically seek to understand and
quantify relevant measures of anisotropy or fabric, and the relation between fabric measures and
the overall stress tensor.

Introduction

A fundamental understanding of the mechanical behaviour of granular masses
which support the overall applied loads through contact friction is essential for
many applications, from powder metallurgy, ceramic processing, and food
processing, storage, and transportation, to the proper design of soil foun-
dations to withstand earthquake-induced vibration. A dominant feature of
materials of this kind is their strong anisotropic behaviour. Generally speaking,
two types of anisotropy are identified. They are: (1) inherent anisotropy
produced essentially by the process of deposition (natural or artificial); and (2)
induced anisotropy. produced in the course of deformation in response to the
overall applied loads. Both types of anisotropy can have a most profound
influence on the response and failure modes of granular masses. Hence,
attempts have been made to identify microstructural parameters which charac-
terize these anisotropies, and relate these parameters to the overall measures
of stress and the associated deformation.

The purpose of this article is to summarize some recent fundamental
developments in the characterization of the mechanical properties of granular

* Universit of California. San Diego. Department of Applied Mechanics and Engineering

Sciences. Mail Code R-011. La Jolla. CA 92093. USA
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masses, emphasizing the effects of anisotropy or fabric on the overall mechan-
ical response. No attempt will be made to provide a comprehensive review of
the literature in the field, since the reader can easily obtain the relevant
references by consulting, for example, the proceedings of the US-Japan
seminars which are cited in references (6) and (14).

This paper is organized as follows. In the next section the relation between
the overall stress tensor and the contact forces is developed, and the import-
ance of fabric is discussed. Various measures of fabric are identified, and some
major issues relating to the stress-fabric relation are examined in the light of
recent experiments by the author and co-workers on biaxial deformation as
well as on pure shearing of samples made of photoelastic rods of oval cross-
section. The statistical description of the fabric and stress tensors is presented.
In the third section the micromechanics of granular flow in cyclic simple
shearing is examined in some detail, and the effects of fabric on the dilatancy
(or densification) potential of the granular mass are demonstrated in terms of
the failure modes of saturated cohensionless sands subjected to cyclic shearing
under confining pressure. In particular, it is shown that the resistance to failure
by liquefaction can be increased or reduced to almost zero by seemingly minute
alterations in the fabric of the granular mass.

Representation of stress and fabric

General comments

Consider a collection of granules with overall volume V and overall surface S.
Let self-equilibrating tractions T be applied on the boundary surface S,
producing contact forces at contacting granules. Assume that there are such a
large number of granules contained in V that both a continuum and a statistical
representation of the overall stress & are permissible. Furthermore, assume
that the granules are so stiff relative to the applied loads, that they may be
regarded as essentially rigid. A fundamental problem is to relate the overall
stress & o the corresponding internal contact forces and the microstructure of
the graaular mass.

Let u(x) be a variable stress field in equilibrium with the applied traction T,
in the absence of any body forces. This stress field may vary discontinuously
from granule to granule, but it is required to produce continuous tractions
across the contact area of any two contacting granules. Using a fixed rectangu-
lar Cartesian coordinate system, with coordinate axes xi, i = 1, 2, 3, we then
have

ij 1j = 0 in V
acivj = Ti on S

where v is the exterior unit normal on S. The overall average stress is now
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defined as the simple volume average of this self-equilibrating stress field

&- VIv4o(x) dV (2)

Note that the continuity of the tractions across any two contacting granules,

say, granules A and B, requires

[uij]n j = 0 (3)

where n is the unit normal on the contact area, which points from A to B, and
the brackets indicate the 'jump' across the area, [oij] _uj - uij, and where the
superposed + and - denote the value of stress, respectively, in A and B at the
contact point. Equation (3) simply implies that the contact force exerted by
granule A, on its adjacent contacting granule B, is equal in magnitude but
opposite in direction of the force exerted by B on A.

Overall stress

In the absence of any pore fluid or gas pressure, equation (2) may be written as

MCf MG

V u~x dV a &a(4)
a=i Va a=l

where c' is the volume fraction of the ath granule, i.e., ca = Vs/V, MG is the
total number of granules in volume V, and & is the average stress over the ath
granule. In view of equations (1) and (3)

Jv(Xjik),k dV = fvJijdV = fsXj'i dS (5)

and hence one has

M

xi- V (6)
a1

where Ms is the number of points on the outer boundary S at which concen-
trated forces Fa are applied. It is important to note that this representation of
stress does not involve the contact forces at the interior contacting granules. In
(2.6) x" is the location on the overall surface S at point a, where the
concentrated external force P is applied. Hence, representation (6) does not
involve the microstructute..

An alternative representation which does include the microstructure, has
been given by Christoffersen et al. (1), using the principle of virtual work. In
this approach, one considers virtual relative displacement Aa at a typical
contact a, compatible with the virtual surface displacement u. Then the virtual
work yields
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M

Z i' zMi =ui 71 dS (7)
a=1

Choosing a virtual displacement field

ui = 95ijxj + ai  (8)

with arbitrary constant qij and ai, we obtain

M
1Sj = V l.j = N~flj) (9)

a=1

where lj' is a vector which connects the centroids of the two granules which are
in contact at a. The symmetry of the overall Cauchy stress then yields

(l i) = (6l) (10)

In (9), N = M/V is the number of contacts per unit volume, and

N

a= 1
We note that representation (9) can also be obtained if one considers average

transactions transmitted across three mutually orthogonal planes. This
approach was originally suggested by Weber (16) in examining the forces
transmitted within a collection of glass rods with circular cross-section. Mehra-
badi et al. (3) considered a similar approach and showed the relation between
the statistical calculation of average transactions and the virtual work method;
see their equations (27) and (29), p. 101.

Expression (9) may also be obtained by applying (5) to a single typical
granule of, say, volume Va and surface Sa, and then summing the results over
all granules. Indeed, from (4) and (5), it follows that

1 MG M(
1 aI, I=x Njl

where Ma is the number of contacts of the ath granule, 3' is the position of the
centroid of this granule, and we have used the fact that the sum of all contact
forces acting on the granule a must vanish.

Stress-fabric relation

There are a number of ways that the overall stress tensor can be related to
certain measures of the microstructure or fabric of a granular mass. One
alternative proposed by Nemat-Nasser and Mehrabadi (7) is to associate with a
typical contact a a symmetric second-order tensor t', such that
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if = a'tanj (a not summed) (11)

where aa may be regarded a measure for the contact area. Then (9) can be
written as

aij = (tikhkj) (12)

where
h nkmj, - Naala, l. = lama (a not summed) (13)

where ma is a unit vector in the direction of 1a. The geometric quantity

Hij = (hij) (14)

is a measure of the fabric of the granular mass. Other measures can be
introduced, and some are briefly discussed later on in this section. If the
granules are spherical (circular in two dimensions), ther the unit vector ma
coincides with the unit normal na , and the fabric tensor H becomes symmetric.
Furthermore, the symmetry of the overall stress, equation (10), requires

(tikhkj) = (tjkhki) (15)

If we now set

Tik (tik) (16)

assume that tk and h' are uncorrelated, and that the tensor T does not depend
on any other tensor-valued quantities than H, it follows from the symmetry
condition (15) that the three symmetric second-order tensors &, H, and T are
coaxial, in the sense that they share the same principal directions. An
immediate consequence of this then is the following stress-fabric relation:

N = A06ij + AiHij + A2HikHkj (17)

where the coefficients A 0, A 1, and A 2 are functions of the basic invariants of H.
Equation (17) is the simplest stress-fabric relation that emerges under the

rather restrictive assumptions that: (1) granules are spherical (or circular); (2)
the quantities ta and h' are uncorrelated, so that (tkhkj) = (tik)(hkj); (3) there
are no other tensorial measures that are involved in expression U = TikHkj; and
(4) the overall stress tensor is symmetric. Experiments on the biaxial defor-
mation of photoelastic granules seem to support (17), although the granules
involved were cylinders with oval cross-section; see Fig. 13 of Oda et al. (12).
Expression (17), however, clearly shows that the ratio of the principal stresses
in two-dimensional deformation cannot be proportional to the corresponding
ratio of the principal values of the fabric tensor H. Hence, equation (4) and the
linear approximation of Fig. 13 of Oda et al. (11) (which were reported on the
basis of triaxial compression tests on two S6ma sands by Oda (10)), cannot
have general validity. Indeed, recent experiments on pure shearing of photo-
elastic granules have revealed that while the principal axes of the fabric tensor
tend to follow the principal axes of the stress tensor, in general, they, do not
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coincide with the latter. The apparatus, constructed in the author's laboratory,
is shown in Fig. 1(a) and sketched in Fig. 1(b). A typical example is given in Fig.
2(a). The corresponding stress-strain relations are displayed in Fig. 2(b). The
apparatus produces a two-dimensional flow of the granules, which is very close
to pure shearing under uniform confining pressure. The results of extensive
experiments and their thorough analysis will be reported elsewhere. Suffice it
to say here that, upon shearing, the principal directions associated with the
distribution of contact normals immediately change toward the principal
directions of the stress, but do not coincide with them. Indeed, the orientation
of the principal directions of the stress and the distribution of the contact
normals remain distinct and fixed, as the shearing continues monotonically in a
fixed direction. On the other hand, if the fabric tensor is weighted by the
intensity of the contact forces which can be represented by the magnitude of the
corresponding contact area through the parameter Ea in equation (132), then
our tentative analysis seems to suggest that the corresponding fabric tensor and
stress tensor have a tendency of becoming coaxial.

Fabric tensors

In the literature', a number of second- and higher-order fabric tensors have
been introduced by different authors. These tensors are, by necessity, of even
orders, and, in one way or another, seek to define the distribution of contact
normals or unit branches. Some of these tensors are (ninj), proposed by Satake
(14); Ni (mimiC, proposed by Mehrabadi et al. (3); and the non-symmetric

Fig 1(a) Equipment for simple shear deformation of photoelastc granules
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4. weights for lateral loading
5. weights for vertical loading
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at A, B, C, D, E, F, G, and H
Fig l(b) A schematic diagram of the simple shear apparatus (University of California, San Diego)

tensors (nimj) and (Enin ), proposed by Nemat-Nasser and Mehrabadi (6), who
also considered (enin j) and (emimj). Higher-order fabric tensors also emerge in
the micromechanical modelling of granular materials; for example, (ninjnknl) of
Mehrabadi et al. (3), as well as (ninpmkmI). It is clear that the information
contained in higher-order tensors regarding the details of the distribution of
contact normals or branches, will, in general, be lost, if only lower-order fabric
tensors are employed; see Mehrabadi et al. (4).

If the fabric is characterized by the distribution of, say, the contact normals
or the unit branches, then one introduces a distribution density function and
seeks to quantify this directly. Representation of the distribution function in
terms of spherical harmonics (in three dimensions) or Fourier series (in two
dimensions) then naturally leads to various even-ordered tensors which can be
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Fig 2(a) Distribuzion of contact normals at the seven stages of loading indicated in Fig. 2(b)
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Fig 2(b) Variation of stress ratio with shear strain

used to characterize the fabric. A rather complete summary and a detailed

discussion, of the connections among various representations can be found in

Kanatani (2); a brief review of some of the results is also given by Onat (13).

As an example, consider the distribution of contact normals, and let E(n) be

the density function for this distribution. Then

E(n) = E(- n), /E(n) df = 1 (18)

II

where f) is the unit sphere, and E(n) dfl is the number of contacts with the unit

normal falling in the solid angle dfl, about the direction n. Expanding E(n) in

spherical, or circular harmonics, one may write

E(n) = A[1 + JJnitn + J,jkjninjnknj + • • .] (19)

where A = MT: in two dimensions, and =j4r in three dimensions, and the

tensors J are all deviatoric. They can easily be expressed in terms of vario'.

even-order moments of the distribution of the unit vectors n. For exanple, if
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these moments are denoted by M, and their deviatoric parts, by M', one
obtains

2r+ 1 2rM , . (20)ji...i - 2r  ( r] 11'"

where r is even.
Recent experiments by the author and co-workers on two-dimensional

shearing of photoelastic granules have clearly shown that, in general, one must
include at least the fourth-order fabric tensor, in order to capture both the
inherent and the induced anisotropy of the granular material. This and related
points are discussed elsewhere. In Fig. 3, however, we have shown a typical
example with an actual distribution of contact normals and its second- and
fourth-order approximations.

Fabric in simple shear

Simple shearing of granular materials can be attained in a large hollow circular
cylindrical sample of relatively thin wall. (The special cell used in the author's
laboratory has a 25 cm outside-, 20 cm inside-diameter, and is 25 cm high.) The
shearing is produced by the torsion of the sample about its cylindrical axis. If we

ACTUAL

FOURTH ORDER

SECOND ORDER

Fig. 3 Actual distribution of contact normals and its second- and fourth-order approximations
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assume that during such shearing the wall thickness remains constant, then the
volumetric change is associated with the change in the sample's height. In this
case, a dilatancy theory for simple shearing developed by the author (5) can be
applied to study the influence of fabric on the dilatancy and the liquefaction
potential (saturated undrained samples) of the granular mass. While this
theory has been experimentally verified using a small circular cylindrical
sample 2 cm high and 7 cm in diameter, in cyclic horizontal shearing, the state
of stress in such a test is very complex and clearly not simple shear; see Nemat-
Nasser and Tobita (9) and Nemat-Nasser and Takahashi (8). In the following
we shall give a very simple and straightforward derivation of the basic dilatancy
equation and then discuss its consequences in relation to the simple cyclic
shearing of saturated granular materials.

Dilatancy equation for simple shearing

Consider a column of granular material of height, h, measured along the y
direction, and of unit area, being sheared in the x direction; Fig. 4(a). Assume
that this shearing does not change the cross-sectional area of the column and
therefore, volumetric changes occur due to the change in height. The volu-
metric strain rate, /V, then is

V//V = h/h (21)

where the superimposed dot denotes time rate of change. While the overall
shearing is in the x direction, the flow of the granules actually occurs over the
wavy lines, such as SS, shown in Fig. 4(b). The motion of a typical granule, say,
granule i, relative to its neighbouring granules, contributes to the overall
volumetric expansion, if the dilatancy angle, vi, associated with this granule is
positive. The dilatancy angle vi defines the direction of the motion of granule i,
along SS, in relation to its neighboring granule. This motion occurs under the
action of resultant forces T and Ni, which act on granule i; see Fig. 4(c). Define
the angle 0i such that

T = Ni tan 0i (22)

As a basic assumption, we regard the relative motion of granule i to be
governed by the Mohr-Coulomb criterion, as sketched in Fig. 4(d). The mean
force Pi (positive in compression) is then defined by the abscissa of the centre of
the Mohr circle, as shown. In Fig. 4(c), x* defines the direction of the relative
motion of granule i. The resultant forces in the x*,y* coordinates then are

Ti* = T cos v, - N, sin vi (23)

N* = T, sin vi + Ni cos v,

As a second basic assumption, we introduce a constant friction angle 0,,, and
consider the friction law

T,*= N* tan (24)



44 YIELDING, DAMAGE, AND FAILURE OF ANISOTROPIC SOLIDS

y a

% X

(a)

cx

(b)

Y Ni Ni

V1 X0

yN (Positive) T

x

V, (Negative)

(d)

Fig. 4



ANISOTROPY OF GRANULAR MATERIALS 45

to relate the tangential (positive in the direction of sliding) force Ti* to the
compressive (positive) force Ni* when the granule i is active. From (22), (23),
and (24) it follows that

tan , = tan (q, - vi) (25)

Hence, under compression, granules with negative dilatancy angles are the first
to attain the critical sliding condition (25).

Consider now the rate of frictional work associated with the ith granule. Let
li be the rate of sliding of this granule in the x* direction. The rate of frictional
work then is

f = T~li , = Ti sin , (26)Wf T* 1i sin (0,, - vi) sin vi (6

when/A = !?' sin vi. The rate of frictional work must be balanced by the rate of
stress work which consists of a part due to shearing, Tji, and a part due to
volumetric expansion, -Piki. We hence have

TA1 - PAh = Ti

from which it follows that

Cos( + Vi) sin vi (27)

Cos 0.,

note that li is the slip-rate in the x direction.
Let pi be the fraction of active granules with dilatancy angle vi

=i a(28)

where there are a total of n active dilatancy angles in a unit volume. The total
rate of volumetric expansion then is

V I/ Cos ( + vi) sin vi 2i (29)
= PiL i A Pi (29)q
Vz-.hiL Cos 0

where hi is the length, measured in the y direction, associated with granule i,
and - li/h, is the rate of shearing contributed by the sliding of granule i.

We now make the third assumption (after Taylor (15)) that the local 2,, is the
same as the global rate of shearing 2, arriving at the dilatancy equation

1 - cos (0, + v,) sin v,V -Cos (30)

When there are a very large number of granules, we introduce a density
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function p(v) for the distribution of the dilatancy angles, and replace (30) by

1Ip (v)cos (0 + v) sin v dv (31)V vCos¢ 0

where p(v) dv is the fraction of granules with dilatancy angle between v and
v + dv, and v- > -;r/2 and v+ < a/2 define the range of the dilatancy angles.

A number of interesting observations emerge from equations (31) or (30), as
follows:

(1) Even if the distribution of the dilatancy angle, p(v), may be initially
symmetric with respect to v = 0, since 0. is positive, initial shearing under
compression is always accompanied by an initial compaction. For
example, if p(v) is uniform for ivi -- v0, simple calculation immediately
reveals this fact from equation (31).

(2) Since p(v) is the distribution function of the dilatancy angles at active
granules, it is intuitively clear that, for an isotropically formed sample,
this distribution tends to be biased toward negative dilatancy angles,
under uniform confining pressures. This observation again suggests a
greater tendency toward initial densification in shearing for an otherwise
isotropic sample.

(3) As the sample is monotonically sheared, the distribution function p(v)
tends to become more biased toward positive dilatancy angles, eventually
leading to positive dilatancy. This is intuitively clear, since the granules
tend to be engaged by the neighboring granules in a monotonic shearing,
up to the peak stress. Furthermore, experimental observation on rod-
shaped granules supports this.

(4) Suppose a sample has been sheared monotonically, say, in the positive x
direction, until a strong bias toward positive dilatancy angles has been
developed. Upon reversal of the shearing, the distribution of the dila-
tancy angles will ther. be strongly biased toward the negative dilatancy
angles, leading to a strong tendency toward densification. Hence, pre-
shearing to large strain amplitudes (less than the strain associated with the
peak stress) renders the sample strongly susceptible to densification
(drained) or liquefaction (undrained) during load reversal.

The above observations have been systematically verified by the author and
co-workers (Nemat-Nasser and Tobita (9) and Nemat-Nasser and Takahashi
(8)) for a solid circular cylindrical sample of sand subjected to cyclic shearing.
In particular, after a series of careful experiments, Nemat-Nasser and Taka-
hashi (8) report the following conclusions, taken directly from p. 1305 of their
paper.

(1) In cyclic simple shearing, the resistance to re-liquefaction (undrained) or
densification (drained) of a pre-liquened sample actully increases, be-
cause of the concomitant densification, if the pre-liquefaction is termi-
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nated at zero residual shear strain, but this resistance becomes very small,
if the pre-liquefaction is terminated at zero residual shear stress.

(2) The inherent anisotropy associated with sample preparation techniques
affects both the densification and liquefaction potential of the sample.

(3) Within each cycle of simple shearing, the induced anisotropy is essentially
wiped out in the neighbourhood of zero shear strain, and the anisotropy
that exists at this state is basically due to the sample preparation tech-
niques (i.e., it is the inherent anisotropy), provided that the sample is not
very loose and the strain amplitude is not very large.

(4) For simple shearing, the distribution of the dilatancy angles characteriz-
ing the fabric may be related to the shear strain and, in this manner, the
densification pattern may be estimated.

Since the state of deformation in the sample used to arrive at the above
conclusions is very complex and is clearly not simple shearing, a new series of
tests on large, hollow, circular, cylindrical samples has been initiated in the
author's laboratory at the University of California at San Diego. Preliminary
tests Clearly support the basic conclusions listed above. However, in complex
cyclic loading, where all three principal values of the deformation rate tensor
may be non-zero, and hence there are, in general, three non-zero principal
shear strains, some of the above notions will have to be generalized.
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A brief summary of some relevant theoretical and experimental results on the microscopic aspects of the response of
granular masses is presented. The results of a series of experiments involving simple shearing under a constant confining
pressure, performed on photoelastic rod-like granules (plane strain) are reported In these experiments, the components of
various fabric tensors are measured, and their variations over one cycle of sheanng are examined and compared. The
orientations of the principal axes of all commonly used fabric tensors are observed to change sharply with the reversal of the
shearing direction. It is also concluded that, in general, second-order fabric tensors are not adequate to accurately describe the
distribution of fabric measures such as the distribution density function of unit contact normals or unit branches which are
unit vectors along line segments connecting the centroids of adjacent contacting granules. This is particularly so when the
response of the granular mass is highly anisotropic. Finally, the expression for the macroscopic stress in terms of the contact
forces and other local quantities, is reviewed and its experimental verification is discussed.

1. Introduction Nasser, 1983, 1988). These models seek to include
the essential ingredients of the underlying micro-

A granular mass which consists of rigid cohe- mechanical features. They have led to the descrip-
sionless granules carries on the microscopic scale, tion of the overall stress, fabric, overall deforma-
the overall macroscopic stresses through forces tion rate, and the evolution of the corresponding
transmitted across contact regions. It is essential rate constitutive relations in terms of various mi-
to understand the micromechanics of the overall croquantities.
behavior of materials of this kind under various The present study is concerned with the micro-
loading conditions. To this end, triaxial tests, bi- mechanical modelling of the behavior of granular
axial compression, and shear tests have been per- materials, and with the understanding of their
formed on these materials (see, e.g., Parkin et al., overall mechanical response under shearing in the
1968; Roscoe et al., 1967; Arthur and Menzies, presence of an overall confining pressure. The
1972; Oda, 1972a, 1972b, 1978; Oda and Konishi, main objectives are (1) to measure the components
1974a, 1974b; Ochiai, 1975; Nemat-Nasser, 1980; of various fabric measures and compare them with
Oda et al., 1982; Konishi et al., 1983; Mehrabadi each other, (2) to relate the overall stress and
et al., 1988). In addition, theoretical models have fabric measures and verify the results expenmen-
been proposed in the literature in order to quan- tally, (3) to observe how the orientations of the
tify from a fundamental point of view the experi- principal axes of each tensonal fabric measure
mental observations (Christoffersen et al.,. 1981; change over a cycle of deformation, (4) to examine
Oda, 1975; Konishi, 1978; Mehrabadi et al., 1982; the representation of the corresponding dtstribu-
Mehrabadi and Nemat-Nasser, 1983: Nemat- tion density functions and to establish the re-

0167-6636/91/S03.50 C 1991 - Elsevier Science Publishers B V
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quired accuracy in the order of their harmonic Table I

expansion, and finally (5) to study the relation Size Max. dia. Aspect Weight (g)

between the macroscopic stress and the local (mm) ratio

quantities such as the contact forces. large 14.95 1.14 3.3

To accomplish the above objectives, experi- medium 9.7 1.1 1.5

ments have been performed on photoelastically small 6.4 1.1 0.7

sensitive rod-shaped particles of oval cross sec-
tions with different sizes. Microscopic quantities
such as the orientations of unit contact normals
and unit branches have been measured and their ments were relatively dense with an initial void
evolution during a cycle of shearing has been xatio of about 0.18. The average coordination
observed, number of the packing was around 1.27.

Results of these experiments show that fabric is
closely related to stress. Though many fabric 2.1. Experimental procedure
tensors have been proposed in the literature (Oda
et al., 1982; Mehrabadi and Nemat-Nasser, 1983), The equipment and the experimental procedure
our experimental results seem to suggest that the have been briefly described earlier by Mehrabadi
off-diagonal terms in all these tensors closely fol- et al. (1988).
low the overall stress-strain relation. It is also The testing equipment consists of a rigid outer
found that in the representation of the distribu- frame and an internal frame (Fig. 1) which can be
tion density functions of contact normals and unit deformed in shear while allowing for volumetric
branches, the second-order terms alone are not straining. On this internal frame, two horizontal
adequate to capture accurately the involved ani- and two vertical bars are mounted which could be
sotropy. Hence, the fourth-order terms must be moved in parallel on the internal frame. These are
included. The tensor, ((mf) + (mf))/2, has denoted by HB1, HB2, VB1, and VB2, respec-
been shown to be indeed proportional to the mac- tively, in Fig. 2. The granules can be packed inside
roscopic stress. (Here, m, are the components of the frame formed by these bars. The confining
the unit center-to-center vector of two contacting pressure is applied on the sample by means of
granules, called the branch, and f, are the compo- weights P. The bar HB1 is lifted up by springs to
nents of the force acting at the corresponding balance its weight. An additional weight W is
contact point; the symbol (... ) denotes the un- applied on HB1 and HB2 to balance the weights
weighted volume average.) The diagonal terms, of these bars and the granules, and the tension in
(n 1fl) and (m 2f 2), remain constant, repre- the springs.
senting the constant confining pressure; the off-di- To assess the influence of the friction of the
agonal terms, ((mzl2) + (rmfl))/2, follow the apparatus on the measured forces, an experiment
variation of the applied shear stress. This is also was performed where the granules are replaced by
the case for the fabric tensors to be discussed equivalent weights, keeping the rest of the experi-
later. mental conditions the same. The horizontal shear

force is then applied to the frame and the fric-
tional resistance of the frame is measured over one

2. Material and apparatus cycle.
A linear least-squares approximation is fitted

The granular materials tested are composed of through the points obtained from the friction test
cylindrical rods of oval cross sections. Three dif- and these values are subtracted from the corre-
ferent sizes are used to obtain a dense packing; see sponding horizontal shear forces applied to the
Table 1. These granules have been cast using granules. Note that the friction test and the actual
polyurethane rubber of photoelastic constant 82.5 test on the granules are performed in the same
mm/kg. The samples considered in the experi- direction and the same sequence over one cycle.
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IW

Fig. 1. Testing equipment.

The granules are packed in the internal frame confining pressure of 1200 g and is sheared hori-

of 20 cm by 20 cm, formed by bars HB1, HBI, zontally by incremental displacements. The ap-

VB1, and VB2. To minimize the effect of the plied load on the granules is measured by a load

boundaries, analyses are performed on granules cell, Lc. The horizontal and vertical movements of

within a central part which constitutes the sample, the bars are measured by the transducers P1 to P8.

see Fig. 3. The granular mass is subjected to a The shear strain is recorded by an LVDT, Lv.
The loading frame is placed in the field of a

circular polariscope consisting of a monochro-
matic light source, a polarizer, two quarter wave

v plates, and an analyzer. After the packing is com-

Al P A. P, 4 P3region of analysis

8B S V 2 / B3

P64

C2 C3

U Fig. 3 Central region of the granular mass Mhuch constitutes

Fig. 2 Schematic of the experimental apparatus the sample for analysis
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plete, under a confining load, the shearing is ap- 3. Fabric elements and their effect on overall prop-
plied incrementally. At each stage of loading, pho- erties of granular masses
tographs of the isochromatic fringe pattern in the
stressed assembly are taken. These photographs Granular masses carry overall applied loads
are later analyzed using a digital image analysis through contact friction. The description of the
system consisting of a PC AT, a frame grabber overall mechanical response of these materials re-
(PC vision plus) from Imaging Technology Inc., a quires description of the overall stress, fabric, de-
Vidicon camera (C1000) from Hamamatsu TV formation rate, their evolution, and the overall
Co., and a Trinitron color video monitor from rate constitutive relations, in terms of various rele-
Sony. With the aid of software "Imlab" and "Im- vant microquantities. We will not address the
tool" from Imaging Technology, a powerful pro- question of constitutive relations here, since this is
gram for obtaining several microscopic quantities available elsewhere in the literature (see Nemat-
was developed. With this program one can mea- Nasser and Mehrabadi, 1983).
sure the number of fringes, length of major axes, Fabric refers to the spatial arrangement of par-
orientation of contact normals and branches, and ticles and associated voids (Oda, 1978). This may
other needed parameters. One can also produce include (1) orientation fabric, and (2) packing
the actual, and the second- and fourth-order ap- which is concerned with the mutual relation of
proximations of the distribution density functions individual particles.
of the unit contact normals, the unit branches, and The fabric measures are used to establish the
their weighted averages which are given by the anisotropy of a granular mass. Arthur and Menzies
product of the particular unit vector and the num- (1972), in their paper, state that Casagrande and
ber of fringes multiplied by the force per fringe Carrillo (1944) were probably the first to dis-
factor. This factor is measured in a separate ex- tinguish between two forms of anisotropy in soils,
periment to be 27 g/fringe for the granules used which they called the inherent and the induced
in this experiment. In this manner a wealth of anisotropies, suggesting that anisotropy may be
microscopic measures is efficiently obtained. These present before the soil is strained or it may be
results are then used to compute the tensorial induced by the straining process. They defined the
components of various fabric measures which have inherent anisotropy as "a physical characteristic
been proposed earlier in the literature, and to inherent in the material and entirely independent
check their relation to the overall stress and defor- of the applied strains", and the induced ani-
mation measures. sotropy as "a physical characteristic which is ex-

To understand the response of the equipment clusively due to the strain associated with an ap-
under the loads applied to the granular mass, and, plied stress". Inherent anisotropy is produced es.-
in particular, to establish whether simple or pure sentially by the process of deposition (Arthur and
shearing is involved, a separate test is performed Menzies, 1972; Oda, 1972a). This is because every
on the equipment under actual test conditions. A particle tends to rest in the most stable position
fixed reference point was chosen on the rigid and preferred orientation, with respect to the
frame, and the movement of the hinge points Al gravitational or other relevant force. Induced ani-
to C4 is recorded over one cycle of deformation, sotrop is produced in the course of deformation
see Fig. 2. The following conclusions are obtained: in response to overall applied loads. Both types of
(1) there is no relative movement of points Al to anisotropy can have a profound influence on the

A4 throughout the entire cycle, and response and failure modes of granular masses.
(2) points BI to B4, and C1 to C4 do not undergo Arthur and Menzies (1972) concluded that any

any appreciable motion in the vertical direc- general formulation of stress-strain relations for
tion. noncohesive soils must account for the large in-

Therefore, it is concluded that the granular mass is fluence of inherent anisotrop . Arthui et al. (1977),
subjected to simple shear rather than pure shear. and Oda et al. (1985) studied induced anisotropy
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in sand. A major difficulty in such a study is the ous tractions across the contact area of any two
controlled rotation of the principal stress during contacting granules, say A and B. Therefore,
shear. In some tests, rotations have been imposed [oJ n, = 0, (43)
by cutting cohesive soil samples at chosen orienta-
tions from larger blocks of the soil (Bishop, 1966). where n is the unit normal on the contact area,
In granular soils, Oda (1972b) made measure- which points from A to B. The symbol [.. ]
ments of changes in particle packing at various indicates the "jump", i.e.,
stages of shearing with constant principal stress a (
directions. Oda and Konishi (1974) observed the ,]= - , (4.4)
rotation of the principal stress directions in simple which is the difference of stress in A and B at the
shear. Similar observations made under the pres- contact point. In the absence of any pore fluid or
ent experimental work will be discussed later in gas pressure, (4.2) may be written as
this paper. M, MG

1 a(x) dV= , c"0a, (4.5)

a-a
4. Stress and fabric in granular masses where c' is the volume fraction of the ath gran-

ule, i.e., ca = V/V, M. is the total number of
Stress is a continuum concept. Mny authors granules in volume V, and a" is the average stress

have defined stress in terms of average contact within the ath granule. From (4.1) and (4.3), it
forces (see e.g., Christoffersen et al., 1981; follows that
Mehrabadi et al., 1982; Nemat-Nasser and Tobita,
1982; Oda et al., 1982). Nemat-Nasser (1988) has (X^J, )dV= fa dV fx, dS =-j
summarized some of these results within the V s
framework of continuum mechanics. Consider a 1 Al,
collection of granules with overall volume V and -- E xaf, (4.6)
overall surface S, subjected to self-equilibrating ""

tractions T applied on its boundary S. This pro- where M, is the number of points on the outer
duces contact forces at the contacting granules. If boundary S at which concentrated forces F are
we assume a large number of granules in V, both applied. Since this representation does not involve
continuum and statistical formulations of the the contact forces at the interior contacting gran-
overall stress are permissible. If o(x) is a variable ules, it does not involve the microstructure. Alter-
stress field in equilibrium with the applied trac- nate representations which include the microstruc-
tions T, and if body forces are zero, then we must ture have, therefore, been proposed.
have Christoffersen et al. (1981) showed that the

overall stress may be defined in terms of the
J =0 iV, volume average of the tensor product of the con-

oJ J = T, oil S, (4.1) tact forces and the associated branch ,ectors. They
used the principle of virtual work to show that the

where P is the exterior unit normal on S. The overall average Cauchy stress, a, in a representa-

overall stress is the simple volume average of this tive sample of a granular mass can be written as

self-equilibrating stress field, y 1 1 dLv=N(If 1 ), (4.7)

j f (x)dV. (4.2) where
1N

The stress field may vary discontinuously from (1f 1)- E /"fja. (4.8)
granule to granule, but it must produce continu- a=
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Here, V is the volume of the sample, a,, is the Another fabric measure considered by Nemat-
variable stress in equilibrium with the applied Nasser and Mehrabadi (1983) is
loads, N is the number of contact points in the
sample, f" is the contact force at the typical H,J =N(almnj), (4.12)
contact a, and 1 is the corresponding branch, i.e.
the center-to-center vector of two contacting gran- whraistecnctra.W noehtteules. choice of a particular fabric measure is a matter ofMany fabric measures have been introduced in convenience and its suitability is judged by com-the literature. For spherical granules, Oda et al. parison with experimental observation.(92 piterop osherica t nes OFrom our experimental data, many of the abovetensors can be calculated. We have considered the
FJ = Nf(n,nJ), (4.9) tensor (mjf), where f has been interpreted as

the weighted fringe bias which is given by the
and, for nonspherical granules, the tensor product of the unit fringe bias and the number of

N(m,m, (4.10) fringes as measured on the digitized picture multi-plied by the force per fringe. The average of the
where [ is the average value of the branch lengths, off-diagonal terms has been scaled so that its
and n, and m, are the components of a typical range is the same as that of the applied shear
unit contact normal and a unit branch, respec- stress. The graph is then translated to match the
tively. Satake (1978) defined an "anisotropic stress at the extreme points, see Fig. 4. This does
tensor" by not change the shape of the curve, but determines

a scale factor to relate the overall stress to the
, = (n,nj). (4.11) corresponding average quantities.

0.40 -7-
Stress Ratio c/p

(.m, f>+<m, f,>)/2-.

0.30 .

8 9 1

-0.0 2 ,"' '

627
-0.204

-0.30

-0.40 - ,-r-Ir-r I - - -1 I-I-r-r-r-r-r-rI1-T-r-Ir- " r 1I i l I r I I IIIII '-5 -4 -3 -2 -1 0 1 2 3 4 5

Shear Straini
Fig. 4 Plot of stress ratio and the average of the off-diagonal terms of the tensor (rn~f,) vs. shear strain. There is a very good
agreement between the above two quantites.
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Fig. 5. The diagonal terms of the tensor (m,fi) remain almost constant throughout the deformation process.
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Fig 6. The off-diagonal terms of the tensors (n,n,) and (re,m,) correspond %,ell ,ith the o~eiall stress
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The weighted fringe bias is not an exact repre- 5. Mechanism of strain hardening
sentation of the contact force. It may however, be
taken as a good measure of this force. The diago- A typical plot of stress ratio vs. shear strain is
nal terms in the tensor (m,fj) remain almost shown in Fig. 8. When a granular medium is strain
constant, representing the constant confining pres- hardening, its plastic deformation is accompanied
sure, see Fig. 5. The off-diagonal terms of the by a stress increment. When the granular medium
tensors (m,m,) and (n,n.), plotted in Fig. 6, deforms under increasing stress ratios, rearrange-
have very good agreement with the overall stress ment of particles occurs to withstand the increas-
ratio. Figure 7 is the plot of diagonal terms (nlnl) ing stress ratio. Therefore, contact normals tend to
and (mlml) vs. the shear strain. It is clearly concentrate in the direction of the principal stress
apparent that these quantities remain almost con- axis, as is clearly observed in the form of chains of
stant throughout the deformation. (Note that heavily stressed particles. The average direction of
(n2n2) and (m 2 m 2) also remain almost constant these "chains" tends in the direction of the major
because (nlnl) + (n 2n2) = 1 and (mlml) + principal stress axis. As a result of this concentra-
(m 2m 2) = 1.) Thus, it can be concluded that the tion, a strong fabric anisotropy develops, see Oda
diagonal terms in each tensor are proportional to (1974, 1978).
the confining pressure and the off-diagonal terms It is also observed that the principal stress axes
are proportional to the applied shear stress. Also, of each tensor rotate with a change in the magni-
note that the corresponding components of the tude and direction of applied shear stress. This
tensors associated with the branches and contact can be clearly observed from the rose diagrams of
normals are almost identical. unit contact normals and unit branches, Figs. 9(a)

0.55

<in, in,)
0.53 - <n,n, > -

0.50 ,

27

0.485
27 3333

0.45 ",

0.43

0 .4 0 ... 1, 1, ...1 ... '1 ' , 1, ,' ., ,', ,' . . .. 'T,' ,' . .
- -4 -3 -2 '1. .0 1 2 3 4 5

Shear Strain
Fig 7 Plot of the diagonal terms of the tensors (nmm)) and (n,n,) which remain almost constant throughout the deformation
process.
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Fig. 8. Strain hardening behavior of granular materials can be clearly observed in the first quarter cycle of the experiment.

and 9(b). The distributions of both contact nor- ric strains. An initial densification is seen to be
mals and branches and their evolutions are quite followed by dilation, typical of almost all granular
similar. The orientation of the major principal axis materials.
vs. the shear strain is plotted in Fig. 10 for tensors The dilatancy equation proposed by Nemat-
(m,f ), (m,nz), and (n,n,). In all three cases, it Nasser (1980) is,
is observed that the orientations of the corre-
sponding principal axes change rapidly during the 1, I
early stages of deformation, approach constant V = cos --, + v) sin v dv,
values in the range 130*-140*, and remain con-
stant thereafter. Once the direction of shearing is (6.1)
reversed, a rapid change by 90* in the orienta-
tions of the principal axes of the fabric occurs. where v is the angle between the contact unit
Their orientations then remain constant until a normal and the vertical axis, p(v) is the distribu-
further change in the direction of shearing occurs. tion function for the angle of active contacts,
This process repeats in each cycle. v < r/2 and v- > ff/2 define the range of varia-

tion of the dilatancy angles, and (A, is the angle of
sliding friction.

6. Dilatancy In (6.1) it is assumed that the local ', is the
same as the global rate of shearing 5, where 5, is

Granular materials exhibit volume changes the rate of shearing contributed by the sliding of
when sheared under confining pressure. Figure 11 granule 1. Nemat-Nasser makes a number of inter-
shows the relation between the shear and -,olumet- esting obser,,ations from (6.1), hch explains the
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stage Actual Fourth-order Second-order Angle of maj.
no. distribution distribution distribution princ. axis

i

.129.9

5. cs 136.3

F .9140.1

Fig 9a Rose diagrams of unit contact normals
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stage Actual Fourth-order Second-order Angle of maj.
no. distribution distribution distribution princ. axis

8. 140.9

9. 136.9

10. -C130.2

it. Z L143.1

"WI

Fig. 9a. (continued)
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stage Actual Fourth-order Second-order Angle of maj.
no. distribution distribution distribution princ. axis

24. t 65.5

2. 52.3

29. /h -__ 54.0

3 14 80.72

33. 112.7

Fig. 9a. (continued).

dilatant behavior of granular materials. The ob- positive dilatancy angles has been developed.
servations are summarized below. Upon reversal of shearing, the distribution of the

Under uniform confining pressure, the distribu- dilatancy angles will then be strongly biased to-
tion density function of the dilatancy angles at ward the negative dilatancy angles, leading to a
active granui,:. p(,), tends to be biased toward strong tendency toward densification. Hence, pre-
negative dilatancy angles, leading to initial densifi- shearing to a large strain amplitude (less than the
cation in shearing. As the sample is monotonically strain associated with the peak stress) renders
sheared, the jistribation function p(v) tends to the same strongly susceptible to densification
become biased tov ard positive dilatancy angles, ,drained) or liquefaction (undrained) during load
eventually leading to positive dilatancy. Suppose a reversal. The above observations have been veri-
sample has been sheared monotonically, say, in fied by Nemat-Nasser and Tobita (1982) and
the positive x-direction, until a strong bias toward Nemat-Nasser and Takahashi (1984). for a cir-
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0. 176.0
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UUj
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3. ( h 133.96
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4. _ 144.6

5. _____ 142.8

6. _____ XI) _______ 147.6

7. 148.0

Fig 9b Rose diagrams of unit branches
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Fig 9b (continued)
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stage Actual Fourth-order 'Second-order Angel of maj.
no. distribution distributionj distribution princ. axis

I I
29.__ 47.2

£Q1C 67.11

33.1D 147.6

LL
Fig. 9b. (continued).

cular cylindrical sample of sand subjected to cyclic (n,n) and Nl(m,m.) which are symmetric, and
shearing. The same is also verified in the present (,m) which is nonsymmetric. Higher order
experiments on photoelastic rods. fabric tensors, like (n,n mnin) and (n,nn,1),

may also be considered. The inclusion of higher
order tensors provides more information regarding

7. Fabric tensors and representation of distribution the details of the anisotropy involved in each
density functions distribution: Kanatani (1984).

Let E(n) be a distribution density function of
Distribution of directional .ta is characterized contact normals. Then

by what is termed "fabric tensors". In our analy-
sis, "direction" or "orientation" means "axis",
and the direction is indicated by a unit vector n. E(n) = E( -n) and JE(n) dS2 = 1, (7.1)

Several fabric tensors have been discussed in
Section 4. These tensors are, by necessity. of even
orders. They define the distribution of contact where S2 is the unit sphere, and E(n) dQ is the
normals. n, or unit branches. m. Examples are number of data points falling in the solid angle
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Fig, 10. Plot of orientations of the major principal axes of the tensors (re,f), (m,m ). and (n,n.). The orientations of the principal

axes change rapidly and reach a constant value between 1300 and 140', until further change in the direction of shearing occurs.
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Fig 11 Plot of volumetric strain vs shear strain in granular materials when subjected to shear under confining pressure
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d9, about the direction n. Expanding E(n) in where 0 is the orientation of n or m, measured
spherical or circular harmonics, gives from the horizontal. The distribution density func-

E(n) = A [I + Jnn +J nn~n + ~'(7.2) tion in terms of these parameters now becomes

E 2 )(n)=I+ [2A sin 28 + (2C- 1)cos 20],

where A = 1/(2,;T) in two dimensions, and 1/(4T) (4) 1 1 [2A sin 20 + (2C - 1cos
in three dimensions. Ji, and J are all deviatoric (n) = + s 20
and are expressed in two dimensions as + (1 - 8C + 8D)cos40

Juj=4[(nn)- 8-I I +4(2B - A)sin 40], (7.5)

Jjk = 16[knn n n) 8 (,lkf, + XkI
Jk kn -kj)) + () where the superscript on E indicates the order of

(7.3) terms included in the expansion of E(n). Note

The angular brackets denote averages taken over that the parameters A and C are related to the

all orientations. J,, and ,jkI are symmetric and degree of concentration, J, and the preferred

traceless. J,, has been related to various fabric orientation, P, introduced by Konishi (1978),

tensors in the literature, where

The components of the above two tensors can j2 = J, .it = 4A 2 + (1 - 2C ) 2, (7.6)
be represented in two dimensions, in terms of the
four parameters A, B, C, and D defined by and

A = (sin 0 cos 0), B = (sin 0 cos 30), (7.4) tan 2/3 J- 2 22 - 2(
C = (COS 20), D = (cos40), J I -J 2 2 I (7.7)

0.6 1

27-- - - -- -

0.4 

-

J .33 ---- -----
27 

----

D of branch
0.2 D of normal

C of branch --
C of normal -^.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Shear strain

Fig 12 The parameters C and D. hiI.h are the diagonal terms in fabn tensors J,) and J, remain almost .onbtant throughout the
deformation process
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Here, /3 is the same as the angle of the principal of A, B, C, and D, for unit branches as well as
axis of tensor (m,m,) or (n,n,), which is plotted unit contact normals, are almost the same. Also,
against shear strain in Fig. 10. the distributions of the unit contact normals and

The parameters A, B, C, and D have been the unit branches which are shown in Figs. 9(a)
measured at each stage of the experiment. A and and 9(b), and the orientations of the principal
C represent the terms (nln 2), and (nln 1) or axes which are shown in Fig. 10 for both the
(n 2n2) in the fabric tensor (n,n,), respectively above tensors, are similar. So, for all practical
(or the corresponding terms in (m,m,)), as dis- purposes, the consideration of either one of them
cussed before. The parameters C and D are the seems sufficient for the analysis of fabric. This
diagonal terms in the fabric tensors J/, and Jukl, was also observed in earlier experiments by
respectively, and from Fig. 12 they seem to remain Mehrabadi et al. (1988). Figures 9(a) and 9(b)
almost constant throughout the deformation pro- show the actual, fourth-order and second-order.
cess, representing the constant confining pressure. distributions of the contact normals and unit
The off-diagonal terms, for example A and B, branches at various stages throughout the experi-
behave similarly to the applied shear stress. The ment. It is clear that the fourth-order approxima-
parameter A vs. the shear strain is already plotted tion reveals the inherent anisotropy much more
for both unit normals and unit branches in Fig. 6, accurately than does the second-order approxima-
and B vs. shear strain is shown in Fig. 13. Also tion.
the parameters B and D behave similarly to A
and C, respectively. Therefore, in the distribution
density function, even terms like (cos 28> and
(cos 40), or (sin20) and (sin 4o) relate to the ap- 8. Conclusion

plied confining pressure, and odd terms involving
both sine and cosine, like A and B, relate to the A summary of some theoretical and experimen-
overall applied shear stress. Note that the values tal developments on granular materials is pre-
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Fig 13 The parameter B behaves similarIN to the apphed o~erall shear stress
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sented. The results of a series of experiments pleted at Northwestern University was supported
performed on photoelastic granules in simple by the National Science Foundation under Grant
shearing under confining pressure, are discussed. No. CEE-83-13663 to Northwestern University.
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ABSTRACT

Micromechanically-based constitutive relations for two-dimensional flow of granular materials
are presented. First, the relations between the overall stresses and the relevant microscopic quantities,
namely, the interparticle forces, the density and orientation of contact unit normals, as well as the average
size of the particles, are obtained. Then, the kinematics is examined, and the overall velocity gradient
is related to measures characterizing the relative sliding and rotation of granules. A significant concept
underlying all these developments is the notion of the class of contact unit normals with a continuously
evolving distribution function, even though individual members of various classes may change
discontinuously, as contacts are lost and new contacts are developed in the course of granular flow.
Then, simple local constitutive relations are introduced for the rate of change of the contact forces, the
evolution of the contact normals, the mechanism of local failure, and the density of contacts in a
particular class. This leads to macroscopic rate constitutive equations through a Taylor averaging
method. Due to the nonlinearity of the rate constitutive equations, the response is computed by an
incremental procedure. As an illustration, the overall response of a two-dimensional assembly of disks
subjected to an overall shearing deformation is determined. In addition, explicit results are presented for
the evolution of fabric, contact forces, and the history of active and inactive classes of contacts. The
stress-strain relations and the evolution of fabric and contact forces are in excellent qualitative agreement
with the observed behavior of granular materials. In light of these results, the mechanisms of failure and
inelastic deformation of dense as well as loose granular materials are discussed.

Although most features of the model could be readily generalized to three dimensions, for
simplicity, the discussion is limited to planar deformation.



1. INTRODUCTION

A fundamental issue of considerable scientific and technological importance in the mechanics of

granular materials is the development of their overall macroscopic constitutive relations on the basis of

simple and reasonable micromechanical assumptions. Many topics which either directly or indirectly bear

on this fundamental issue, have been dealt with by many researchers over the past several decades,

leading to considerable progress in this area, and better understanding of the major parameters involved.'

A systematic approach to this problem inevitably would include considerations of: 1) a description

of the overall macroscopic stresses in terms of contact forces, their distribution, and some relevant

geometric measures of the microstructure; 2) a description of the overall measures of incremental

deformation in terms of quantities that characterize micromechanisms of relative sliding or sliding and

rolling of granules; 3) a description of the time rate of change of the overall stress measure in terms of

the overall deformation-rate measures, based on simple models which characterize the corresponding rate

of change in contact forces in terms of suitable local deformation-rate measures.

A stumbling block that seems to have hindered achieving all of the above-mentioned goals is the

fact that, in the course of deformation, new contacts are constantly being generated as some of the

existing contacts are being lost. This precludes analytic identification of the history of individual contacts,

unless one approaches the problem numerically, using a large-scale computer program (see, e.g., Petrakis

and Dobry, 1989). On the other hand, in the course of continuous deformation of a granular mass, one

expects that suitable measures of the distribution of contacts can be employed, which characterize a

certain class of contacts and, therefore, undergo continuous change. This is the viewpoint adopted in the

present paper.

In this work the microstructure is identified with the "fabric" of the granular mass. There are

For some recent contributions see the proceedings of the three U.S.-Japan Seminars (Cowin and

Satake, 1978; Jenkins and Satake, 1983, Satake and Jenkins, 1988).
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various tensorial measures that can be used for describing the fabric of a granular mass; see

Nemat-Nasser and Mebrabadi (1983) for a discussion of some of these fabric measures. Here, following

Oda (1972), the tUbric is represented by the distribution of the unit contact normals. Accordingly, based

on the observed evolution of fabric, we introduce local constitutive equations directly for the probability

density function of the contact normals rather than for various fabric tensors which are defined by means

of the distribution density function.

Based, in spirit, on our earlier work (Nemat-Nasser and Mehrabadi, 1984), we introduce simple

constitutive models at the microlevel, which relate the change (or the rate of change) in the contact force

associated with a given class of contacts to the corresponding micro-deformation increment (or rate)

produced by the corresponding changes in the microstructure. Such an approach (which deals with classes

of contacts rather than with individual contacts) bypasses the difficult issue of continuous loss of contacts

and formation of new ones. As mentioned earlier, here the fabric is represented by the distribution of

contact normals. Each orientation corresponds to a large number of contacts which, while individually

may undergo abrupt changes, collectively evolve in a continuous manner during the course of the

continuous flow of the representative granular sample. In this manner, one can, for example, identify an

initial and a current orientation for a given class of contacts, while clearly the same identification may

not, in general, be possible for an individual and specific contact.

After a discussion of the concept of stress in granular materials in Section 2, a description of the

kinematics is presented in Section 3. At the local level, the description of kinematics corresponds to the

double shearing model of Spencer (1964, 1982). The local constitutive assumptions for the time rate of

change of contact forces, the local yield criterion, the time rate of change of the local nominal stress, and

the evolution of the probability density function of contact normals are presented in Section 4.

Macroscopic constitutive equations are found, in Section 5, by employing a Taylor averaging scheme.

Due to the nonlinearity of the rate constitutive equations, the response must be computed b) an

incremental procedure. Instead of using a scheme of subincrementation, %%e introduce another simpler
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method based on the first-order approximation of the local yield function. This procedure is described

in Section 6, where local and overall constitutive equations are written in incremental form.

Owing to the simplicity of the local rate constitutive equations introduced in Section 4, an

analytical integration is possible and is carried out in Section 7, whereby explicit relations are derived,

including ihose for the contact forces and contact normals. Using these relations, the overall nominal

stress can be computed in two alternative ways which are described in Sections 6 and 7.

For boundary value problems on granular materials, with prescribed initial overall confining

stresses, it is necessary to determine the initial equilibrium distribution of contact forces for each class

of contacts. Hence, in Section 8, a relationship is developed between the local contact force

corresponding to an individual class, and the overall confining stress and the initial fabric. Boundary

conditions for the numerical examples are also considered in this section.

As an illustration, the response of a two-dimensional assembly of rigid cylindrical disks of

circular cross section subjected to shearing deformation is determined in Section 9. Two numerical

examples are presented, one of which simulates the response of dense and the other corresponds to the

behavior of loose granular materials. The mechanism of strain hardening and failure followed by strain

softening which is a characteristic response of densely packed samples of granular materials, and the

inelastic deformation mechanism corresponding to the loosely packed samples are discussed in light of

the model predictions of the evolution of fabric, contact forces, and the history of active and inactive

contacts. In so far as the shearing deformation is concerned, the result-ig stress-strain relations and the

evolution of fabric, and the evolution of contact forces are in excellent qualitative agreement with the

observed behavior of granular materials. However, the volumetric response of the model in cyclic shear

is not realistic because the model predicts a net dilatancy rather than a net densification at the conclusion

of a cycle of deformation. A further study of this point and the generalization of this model to three

dimensions are left for future investigations.
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2. DESCRIPTION OF STRESS AND ITS TIME RATE OF CHANGE

A granular mass is modeled as a continuum whose material points are endowed with the overall

macroscopic characteristics of a typical sample which contains a representative set of granules. The

typical sample must be large enough to be statistically representative of the properties of the granular

material. The stress at a material point in the model continuum is then represented by .he average stress

in the typical sample of the granular mass.

An expression for the overall average stress tensor in the sample of the granular body, in terms

of microscopic quantities such as contact forces and branches (which are vectors joining the centroids of

adjacent contacting granules), can be obtained by applying the principle of virtual work. The following

derivation is based on the work of Christoffersen, Mehrabadi, and Nemat-Nasser (1981).

Consider a representative sample of a granular mass which at time t has a volume V bounded by

a surface S. The reference configuration of the sample has a volume Vo and a surface So. The sample is

subjected on its boundary to a uniform traction T' measured per unit reference area. Choosing a fixed

rectangular Cartesian coordinate system, denote the corresponding components of the local asymmetric

nominal stress tensor by v . , and require that this nominal stress and its time rate of change remain in

equilibrium with the applied tractions and their time rates of change, i.e., the spatially variable nominal

stress and its rate are introduced in such a manner that the following equilibrium equations are satisfied

at all times (body forces are absent and quasi-static problems are considered):'

v °N =T,0  , =T' onSo (2.1)

a xk _ ,1  -0 in 0 (2.2)
axi  axt

where X is the position of a point of the granular mass in the reference configuration, N' is the normal

to the boundary So, and where a superimposed dot designates the time-rate of change. The introduction

of the (variable) nominal stress and its rate in equilibrium with the prescribed boundary tractions and their

rates is in agreement with similar concepts used in developing overall macroscopic properties of

Here and throughout the paper, summation over the appropriate range of repeated indices is in

force.
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polycrystalline solids and composite materials in terms of their microscopic properties; Hill (1965, 1972).

In this context, the overall average nominal stress and its time rate of change are simply given by the

unweighted volume averages of the local quantities, i.e.,

Nv-f v ad , (2.3)
00

and

f dVo. (2.4)
Vo V,

Following the procedure outlined by Christoffersen et at. (1981), letf stand for the components

of the contact force exerted by a typical granule on its neighboring granule over a contact point. At each

contact point we identify ore such contact force. We consider a spatially varying velocity field v; which

is kinematically admissible, and which produces at typical contact points relative virtual separations

denoted by A . Then the virtual work principle requires

I&, -0fO (VN vjdSO

(2.5)

I v 'vtdVO

where M, is the number of contacts per unit volume in the reference configuration, and where the

equilibrium equations (2. 1), and (2.2), and the divergence theorem are used.

As pointed out in the introduction, in developing rate constitutive relations, we may deal with

classes of contacts and the evolution of these classes, rather than with specific individual contacts which

may be lost or generated in the course of deformations. This idea will be further discussed later on.

Here, it suffices to comment that wve actually use the current configuration as the reference configuration,

which circumvents this problem.

Let the virtual velocity \,, be linear, so that the velocity gradient is constant, i.e.,

- .
(2 .6 )

A compatible virtual relative separation velocity, A,, at a typicai contact is then of the form
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o (-7)

where tP is the associated branch, i.e., the vector joining the centroids of two typical contacting granules;

Christoffersen, Mebrabadi and Nemat-Nasser (1981). Note that there are two such branches associated

with each contact point, I°i and -.t. For each contact point we identify only one contact force, J,, and

one associated branch, 1o; see Mehrabadi, Nemat-Nasser, and Oda (1982).

Substitution from (2.7) and (2.6) into (2.5) now yields

rty1  - fdV. o- (2.8)

Since *0, is arbitrary, we obtain

N,

(2.9)

II
C-i

where t' is the branch length, and W, is a unit vector referred to as the "unit branch".

Following Mehrabadi, Nemat-Nasser, and Oda (1982), the group of M. contacts per unit

reference volume of granular mass is divided into, say Q classes, each with a common branch direction

defined by the corresponding unit branch vector. If there are M., (a = 1,2... Q), contacts which belong

to class a with common unit branch W, then

1 =I. (2.10)

a0- MO

Let ct, denote a typical contact in class a. In obtaining the average quantities in Eq. (2.9), one must first

calculate the corresponding average over each class and then sum the results over all classes. Since, for

a typical class a, there are Ma, contributing contacts,

Q UONij 7 E . fi. ,o
a-I e*1i

For the sake of simplicity, we assume that the contact forces f, are not correlated with the branch
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length, io-. With this assumption, it follows that

NlU = E>- ; (211

where

o;m0 Fea no*,

and where the angular brackets, < > denote averaging over all the classes. The subscript zero of the

angular brackets is to indicate that the average is taken over the reference unit volume. A superposed

hat in (2.11) designates averaging over the force-bearing contacts in a class. Bearing in mind that the

contact force and the branch length are average quantities over a class, and that these quantities and the

unit branch vary from one class to another, to make the notation somen*at simpler, the superposed hats

and the superscripts a will not be showrn in the sequel. For example (2.11), in the simplified notation,

becomes
Q Mo= E va < ? (2.12)

U a-I MO0

where

v= MO o mo f . (2.13)

We now take the reference configuration to be the instantaneous current configuration, and obtain

from (2.12) and (2.13)

(2.14)

where

ol/ = M 9 mif 1 , (2.15)

and the angular brackets, < >, denote averaging over all the classes in the current

volume, EY=<o,> is the average (overall) Cauchy stress, and M and M are, respectively, the total

number of contacts per unit current olume and the number of contacts in class a per unit current volume
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Note that although the average of ot is the symmetric overall Cauchy stress, the local quantity o is

not symmetric, in general.

When the number of classes, Q, is very large, we can introduce the distribution density function

E(m) to describe the angular distribution of unit branches. In this case (2.10) becomes

fE(m)df2 = 1, (2.16)

where E(m) = E(-m), and where dQ is an elemental angle of the unit circle 0. With (2.16), the average

of any quantity p(m) is given by

1M (2.17)

= JE(m) p(m)dQ

In particular,

NU  <v >o = Mo<e"Mjj>o = Mof E(mo)tmofjdQ , (2.18)

and

<0 u> = M<r, = Mf E(m)fm,fjdO . (2.19)

The macroscopic Cauchy stress, Ej, is defined by the relations

E u= _L G, V(.0Q detG aN ,(.0

where G, the average deformation gradient, is related to the local' deformation gradient, g, by

G .f V > (2.21)

Hill (1984) has shown that under homogeneous macro-boundary conditions the average and macroscopic

Cauchy stresses are equal, i.e.,

The term "local" is used interchangeably with the term "class", so that g, or more explicitly g",

defines the contribution of the typical class a to the overall deformation gradient.
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<a -[V OdV = Z, (2.22)

Expressions similar to (2.19) for stress have been derived by many investigators beginning with

Cauchy in 1822 (see Love, 1927, Note B) who derived an expression for stress in an anisotropic linearly

elastic material on the basis of a molecular theory. Assuming that forces between the atoms are centric,

Cauchy derived an expression of the form'

Z, =M<IfmIm? . (2.23)

Since the current configuration is used as the reference one, the nominal stress N, equals the

Cauchy stress E6. The same, however, is not true for the corresponding rates. The advantage of working

with the nominal stress of the form (2. 10), is that one may employ a procedure similar to the one outlined

above, and show that

> o Mo m,!f>o (2.24)

When the current and the reference configurations are chosen to be coincident, Eq.(2.13) reduces

to

Nu= M<m,? . (2.25)

This eliminates the need for a transport-type equation which, generally speaking, relates the time rate

of change of the average of a quantity to the average of its time rate of change. The relation between the

nominal stress rate and the Cauchy stress rate will be examined in Section 5 after the necessary

kinematical quantities have been introduced.

I Cauchy's derivation of the form of the elasticity moduli on the basis of (2.23) yields only 15
independent moduli (rather than 21) for the least degree of symmetry (i.e.,triclinic). The six "Cauchy
relations" between the 21 elastic moduli are generally attributed to the centric force assumption. It is
interesting to note that even when the tangential component of the force is non-zero and the stress is given
by (2.14) and (2.15), under certain conditions, the six Cauchy relations cannot be avoided.
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3. KINEMATICS

The flow of a granular mass which consists of rigid granules under the action of an overall

applied load occurs through sliding and rolling of grains over each other. As pointed out earlier, in this

process, some contacts are lost, and new contacts are continually deveioped. The overall deformation rate

is the result of local relative motion of the grains over active contact points. The grains, however, are

constrained by the neighboring grains during their relative motion, so that a compatible overall

configuration is maintained. In the course of such flow, the microstructure or fabric changes;

consequently contact forces and, hence, the overall stresses also change.

As mentioned before, in dealing with the evolution of the microstructure of a granular sample,

it is more effective to consider a distribution of suitable measures of microstructure and its evolution in

the course of deformation, rather than the changes of specific and individual local quantities. One such

suitable measure of microstructure or fabric is the distribution of contact unit normals (Oda, 1972).

Another, equally effective measure is the distribution of unit branches which are unit vectors in the

direction of the branches. Both measures, or a combination of the two, have been discussed in the

literature; see Nemat-Nasser and Mehrabadi (1983), and Mehrabadi et al. (1988). Here, we select to

work with the distribution of contact normals, simply because it is easier to relate frictional sliding to this

quantity. Also, for simplicity, we limit our discussion to circular disks in a plane or spherical granules

for which the unit normals and the unit branches are of course, identical.

Hence, in what follows, the microstructure of a typical sample of a granular mass is characterized

only by the distribution of contact unit normals. Each orientation in this distribution corresponds to a

class of contacts. As the sample deforms, the distribution of unit normals changes and this change

characterizes a corresponding change of the fabric or microstructure. The overall deformation is viewed

as a suitable average of the local deformations associated with each class of contacts. Here, by "local

deformation rate", we mean the deformation rate corresponding to a given class of contacts which

includes contributions from a large number of specific individual contacts that are represented by a given

orientation.

The local deformation rate associated with a given class of contacts comprises contributions from

(i) the relative motion of individual grains which leaves their associated orientation and, therefore, the

microstructure of this class unchanged, and (ii) an accompan) ing part associated with the fabric change
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which renders the resulting velocity gradient for this class compatible and which induces a change in the

contact force associated with the class. For example, if contacting granules undergo rigid rotation without

sliding or rolling, the contact orientation and the contact force change, leading to a change in fabric. On

the other hand, if contacting granules simply slide and roll in such a manner that the orientation of the

contact normal is unchanged, no contribution to the change in fabric is made. In general, however, a

compatible deformation is obtained only if both contributions are present. It should be noted that, for

certain classes of contacts, this formulation allows nonzero velocity gradients solely due to fabric change,

even when the granules are rigid.

Let I,', (a =1,...,Q), denote the components of the velocity gradient associated with a typical

class of contacts, a. Then

l7 = l + 1", (a1.....Q) , (3.1)

where I** is the velocity gradient corresponding to the fabric change, and I" ' is the velocity gradient

stemming from the relative sliding motion of the grains, which leaves the fabric unchanged. The

part l"'* in (3.1) is the counterpart of the slip-induced velocity gradient in single crystals, and the

part I** is the counterpart of that associated with the elastic lattice distortion. Note that, in a granular

material which is modeled by rigid granules, no elastic deformation can be involved, it is the change in

fabric that produces the change in the overall stress.

The part l' is resolved into a symmetric and a skew-symmetric part, as

1=d' + , (3.2)

where

- (IV + '7) and w =41" -J1), (3.3)

are, respectively, the local inelastic deformation rate and spin; and where, for ease in writing, the

dependence on the class of contacts is not shown explicitly in (3.2). Similarly, the accommodating

velocity gradient, I , associated with the fabric change, is decomposed as

1, = d * 4- , (3.4)

where
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d; (1; - ) and w 2 Y;l-l0,(3.5)

are the corresponding deformation rate and spin tensors.

The overall velocity gradient, deformation rate tensor, and spin tensor, are respectively defined

byL = < , (3.6)

and

D (LV + L,,) = <dV>, WV =!(L, - L,) <w,> (3.7)

where whr + ), )= d;+ d;" (3.8)

and where
w -( -l)= w + w . (3.9)

4. LOCAL CONSTITUTIVE EQUATIONS

The local constitutive assumption for the time rate of change of the contact force is considered

in Section 4.1. The local yield criterion and the local inelastic part of the velocity gradient (i.e., I- )

associated with this yield condition are described in Sections 4.2 and 4.3, respectively. The rate of

change of the local nominal stress is derived in Section 4.4, and the evolution of the probability density

function of contact normals is considered in Section 4.5.

4.1. Time Rate of Change of Contact Force

To arrive at macroscopic constitutive relations for the nominal stress-rate given by Eq. (2.25),

we proceed to relate the time rate of change of the contact force to the local kinematic measures.

Following Nemat-Nasser and Mehrabadi (1984), the contact force is written , without loss in generality,

in the form

A =CT V1m (4.1)

where c with the dip, --ision of area is a parameter representing a measure of the total contact area and,
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consequently, the number of contacts in a particular class a; and where r . are the components of a local

stress associated with a class of contacts'.

Recall that in the decomposition of the microscopic measure of the velocity gradient 1, in the

manner of Eq. (3.1), only the contribution 1" is responsible for the change of fabric and, therefore, the

change in the magnitude and orientation of the corresponding contact force. Accordingly, it seems

reasonable to write local constitutive relations for r V , mI , s (components of a unit vector normal

to m and in the sliding direction), and r , in terms of the rate of fabric change, quantified here

by 1. In particular, to keep the formulation as simple as possible, we set

,w- m /j=O , 1,-w;sj=0 , (4.2)

U- W  IV +'C w, = jd , (4.3)

and choose for Illustration an isotropic relation for Sft,

S(4.4)

and set b d, (4.5)

where X, u, and b are constants; and where 8. , are the components of the Kronecker delta.

Assumption (4.2) defines the spin of a contact normal representing a typical class, and not the spin of

individual contacts which form that class. It is consistent with earlier formulations of elasto-plastic

theories for crystalline materials (Hill and Rice, 1972; Havner and Shalaby, 1977; Nemat-Nasser,

Mehrabadi, and lwakuma, 1981; Nemat-Nasser, 1983; and Nemat-Nasser and Mehrabadi, 1984), in

which m, , and s, would define the crystal lattice. Here, since m, and si characterize a class of

contacts which define the corresponding local fabric, it is reasonable to require that the time rate of

' This local stress is related to the local nominal stress given by (2.13), and the local quantity a,,
defined by (2.15), as follows:

=M°P° ct Mk and au=MPmiTitm
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change of these quantities, measured with respect to an observer rotating with the fabric, vanishes.

Expressions (4.2-4) are based on the starting assumption that the time rate of change of the local

stress and the parameter e are affected by the rate of change of the fabric only.

It is convenient to resolve the contact force f into its components, P") along the contact normal

and Pa) along the direction of sliding, i.e.,

f, =fP)m, f(S)s, (4.6)

where, using (4.1),

M,,n,(4.7)

Differentiating (4.7) with respect to time and employing (4.2-5), we obtain

pm=)=A V(Nd*A jgs)d ,o)(4.8)

where

A t"1' = bfm)b 1+c(.6 1+2p'mm,) , (4.9)

and

A/)c=bf(')6 i*(m1sj ms I) • (4.10)

Upon use of (4.8), (4.9), (4.10), (3.4), and the definition of v U according to (2.13), the local

nominal stress rate becomes
[Moe~lm(io~ f (,, 1J (4.11

0+Au s,) + 2(V L5 fl- u JI)l'm

where, consistent with (2.24), we have written

, V = MoPO mO/j . (4.12)

Eliminating 1 in (4.11) using (3.1), we obtain

Y'q=[Afo¢°m,°(A('")M +, "s ) % +  (v 6 8t-v ,t .jkll(/ ;*ld) .(4.13)
S1
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It should be emphasized that the isotropic relation (4.4) is used here for illustration only, and that,

in general, one must use a relation which reflects the corresponding local conditions. However, since

the contact force associated with a class is defined in terms of the yet unspecified tensor TV and since

(4.3) relates the rate of change of this tensor to the rate of change of the local fabric, assumption (4.4)

ought to be adequate.

In order to calculate r" in terms of the local velocity gradient I , a local yield criterion is

developed in the sequel.

4.2 The Local Yield Criterion

In the absence of cohesion, a simple model for the yielding mechanism is a Mohr- Coulomb-type

condition written in terms of the normal and tangential components of the contact force associated with

a given class. In addition to this, we require here that the normal contact force remains compressive,

i.e., negative, if the granules associated with the corresponding class are to remain in contact. These

conditions may easily be generalized to include an allowable tensile contact force due to cohesion or other

phenomena. Hence, for no inelastic deformation to be present we must have

f() 1 ,0 , f()< 0 , (4.14)

where I I stands for the absolute value of the quantity it encloses, and 11(>0) is the coefficient of

interparticle friction. Introducing a scalar parameter u which takes on values, -1, 0, and +1, the

conditions represented by (4.14) can be deduced from the three yield functions

y() = uf (s) + lf ) , (u=-1,O,+1) , (4.15)

where the superscript (u) stands for (+), (0), or (-) corresponding to positive ( f(')>O ), "null"

( f() !50 ), or negative slip ( f')<O ), respectively. As shown in Figure (1), the plane of f() , f s)

is divided into six regions by the three lines defined by the yield functions (4.15).

If the average contact force for a class falls in region E, there is no inelastic deformation. On

the other hand, if the force falls within regions S"') or S", the contacts in that particular class will be

undergoing, in an average sense, an inelastic deformation consisting of either a single positive slip or a

single negative slip, respectively. In the region designated by DS' +) , the two yield functions Y' and

Y are both non-negative and the inelastic deformation will take place by double slip. Similarly in the
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region designated by DSO the two yield conditions derived from Y" and Y(,) are violated and double

slip is possible. Finally, since f () =0 is outside the domain of Y') and Y(), normal tensile contact

forces will cause local inelastic volumetric deformation consisting of a single "null slip". Hence,

the fo() -axis is designated by S" in Figure 1.

The local inelastic velocity gradient, 1" , corresponding to (but not "associated" with) the yield

functions Y(") for various regions in Figure (1) are as follows:

E: 1;0 =0,
s(4): =*" - 0'[+ smj +¢CO> M.M,
S O+: 1;0 i (-)'[- Inm +C('>m IMAJ (4.16)
S(O: 1;" =-!()mj, ,,

DS+.+4: 1;0 =t(.'+S1mJ+C ('>m,j +* mI,, s t
DS()'): 1;0 = ?€'1[s1j + V') mI',,s + t°'>ratas,

where t(*) , (u = +,0,-) is the magnitude of the inelastic strain rate, and C(,) is the coefficient of

dilatancy. It can be shown (see, Anand, 1983) that the local inelastic velocity gradient in (4.16) are

similar in form to the relations obtained for the velocity gradient in the double shearing model proposed

by Spencer (1964, 1982) and later extended to dilatant materials by Mehrabadi and Cowin (1978, 1981).

The above relations can be written in compact form by making use of the scalar "u". For

example, for single slip, Se"', we have

1;0 = i(a)[Usimj+C(k)mmj] (u = -I,0,+1), (4.17)

while for double slip, DS .u), we find

l = r )[u s,m+ C(&)Mm ). + (0)rMimi , (u=-l,+l , u*+0) .(4.18)

Note that since C(O) can be lumped with ,(o) , without any loss in generality, its value can be taken to

be unity.

The local inelastic deformation rate and spin for the case of single slip, S"'), are found to be

d - (.,)p() , w =(K)r , (u=-l,O,+1) (4.19)

where
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2  (4.20)

(U) U

and where (3.3) and (4.17) have been employed. Notice that for S"O, the inelastic spin vanishes.

Similarly for the case of double slip, DS("' ), from (3.3) and (4.18), it follows that

d r()4 0)+(O)p (U) , w; N) , (u-1,41 , u00) ,(4.21)

where pQ , pq , and ru are given by (4.20).

The magnitude of the inelastic strain rate j,(,) , appearing in the expressions for r" , can now

be calculated by employing the local yield condition described above. A derivation is given in the next

section.

4.3. Calculation of j(')

In order to calculate *(') in terms of the local deformation rate du, , the yield functions (4.15)

are employed. The flow rules are:

() = 0 if Y(")<0 , (4.22),

i(M) =0 if Y(u) =0 and ixU)<0 , (4.22)2

j ,('•0 if Y() = 0 and ix '0 (4.22)3

Various cases are considered below.

(a) Single Slip, S)

The consistency relation is obtained from (4.15) and (4.22), as

y (M) R u/(S) + jY(M) = 0 , (u=-1,0,+1) . (4.23)

Substituting for j(s) and /") from (4.8) into (4.23), we find

( M)€) • (4.24)

(uAt,( A, )d =0,

or using (3.8) and (4.19)1,
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(uAOI+M1))(du ()p ( 0 (4.25)

The required expression for j(a) is obtained by solving (4.25), to arrive at

(4.26)

where x(')(>O) satisfies the relation

I = (uA h)1 p ). (4.27)

(b) Double Slip, DS"-' )

The two consistency relations are obtained from (4.15) and (4.22) as

(4.28)

Hence, employing (4.8), (4.28) implies

A ')d* =0 , A(')d =0 (4.29)

or using (3.8) and (4.21),,

Q # (4.30)

A "'kd - - .(O)p(O)) 0

Solving the above equations for j,, and ti(o) , we find

()(11 ) d >O = "Z( ) - ( )z a> >  , u -,l (4.31)

where

=l - I (U)(A (s) A") A(s) m). (O)
(u -1,+1) , (4.32)

19



and where

1(0
(A ,(N)A(.) - (jN)A U, (.). (U--,) (4.33)

4.4. Time Rate of Orange of Local Nominal Stress

To find an expression for the time rate of change of the local nominal stress rate in terms of the

local velocity gradient, we substitute for the local inelastic velocity gradient, I'" , from (4.17) or (4.18)

into (4.13), making use of Eqs. (4.26) and (4.27), or (4.31) and (4.32). We find that

IC Ut 1& (4.34)

where

J ,+ coy for single slip, S

C = (4.35)

c +H(i' ())c jt) for double slip, .

Here H(i,()) is the Heaviside step-function, i.e.,

(. J for t (4.36)
I for t'")>O

and

0 (4.37)

cy)= u IOAk(" )[vrk _MoPm (A, )m! Asj () , (4.38)

c~.= (= . s.() (),,). (M() + s 4.8

ki -i s )tv r, p. + (4.39)
(0)

+ t0 m0 ( m) +_ A , . .). q (,) P
MO  ip,, )]
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Equations (4.34) with (4.35-39) and (4.9-10), are the desired constitutive relations at the local

level.

4.5. Evolution of Distribution of Conac Normals

As seen from (4.35-4.39) , the local moduli ic., depend in a complicated manner on the

microstructure through the unit contact normal, m . An explicit calculation of the overall moduli (see

Section 5) would be possible only when the distribution density functions E(m) or M.1M are known.

Since the number of contacts in each class is strongly influenced by the magnitude of the contact force

for that particular class as well as by the local volumetric change, we relate the density of contacts in each

class to the magnitude of the corresponding contact force and the associated volumetric strain rate (see

(4 .5)) by M . 2 o Q (4.40
Ca=l: e aS' =E C2e ."  (4.40)

M 0-1

where # is a macroscopic constant, and ! is a nordimensional quantity related to the magnitude of the

contact fcrce for class a, i.e., f' , as follows

Me0If (4.41)

-(1/2) tr2E

Note that the Fjperscript a is omitted in (4.41), as in ail other equations starting with (2.12).

Employing (4.41), the average of any local quantity can be found in the manner of (2.17) after

the values of Le magnitude of the contact force and the parameter c are calculated by integrating the

rate equations (4.5) and (4.8). In quantitative crystallography, it is customary to expand the density

function of the orientational data in a series of generalized spherical harmonics. In works on granular

mat-rials, it has also become customary in recent years to describe the distribution density in terms of

"fabric tensors" of various ranks (Mehrabadi, Nemat-Nasser, Oda, 1982; Nemat-Nasser and Mehrabadi,

1983; Kanatani, 1984). Note that here, to characterize the fabric, we have made a constitutive

assumption for the density distribution function itself, rather than for various approximations of it in the

rorm of macrosccpic "fabric tensors".
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5. MACROSCOPIC CONSTITU7VE EQUATIONS

To obtain the overall constitutive equations, we substitute for the local rate of nominal

stress, i • from (4.15) into (2.24), to arrive at the corresponding overall quantity,

(5.1)

where the local moduli x., , i.e. those associated with a typical class, say a, are given by (4.35)-(4.39).

Next, we have to make assumptions concerning the dependence of the local velocity

gradient ,, on the microstructure. In self-consistent theories for polycrystalline materials (Hill, 1965)

and in earlier work on granular materials (Nemat-Nasser and Mehrabadi, 1984), a fourth-rank

(concentration) tensor, A., , is introduced which depends on microstructure and which relates the local

velocity gradient in a typical micro-element, e.g. a single crystal, to the macroscopic uniform velocity

gradient (see Nemat-Nasser and Mehrabadi, 1984; and Iwakuma and Nemat-Nasser, 1984, for more

details). This concentration tensor must then be calculated using an appropriate model. lwakuma and

Nemat-Nasser (1984) use a fully nonlinear self-consistent model proposed by Hill (1965, 1972), and

actually calculate the corresponding concentration tensor for plane problems. It can, however, be shown

that this type of self-consistent calculation breaks down when the density of voids or cracks is suitably

large. For the granular materials, voids are connected through contact zones which may be viewed as

cracks. Hence, the application of the self-consistent method is problematic, leading to unrealistic

estimates of the overall instantaneous moduli. Here, to achieve our goal of developing the simplest

micromechanical model that exhibits the basic features of granular material behavior, a Taylor-averaging

method is adopted, i.e., it is assumed as a first approximation that the concentration tensor is the identity

tensor, leading to

lu = Lo . (5.2)

Nemat-Nasser and Obata (1986) present a discussion and comparison between the Taylor averaging

scheme and the self-consistent method for polycrystals. With assumption (5.2), (5.1) now reduces to

Nt V = <K ijk>L ak = - vi ,9 Lat (5.3)

where _9_,, are the overall moduli defined by
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. 9-u= <1CK>. (5.4)

The relationship between the Jaumann rate of macroscopic stress, i.e.,

S U .. (5.5)

and the rate of deformation, D , , is obtained by differentiating (2.20) and taking the initial and final

configurations coincident. It is found that

, DmV, #-I DuD ,V+, WV - (5.6)

Substituting for *, from (5.2) into (5.6), we obtain

if + DJI V, = [.YVU + 1 (a H] V +8 2E I -f 8a n- 8fl] O)]Lik -(57I (5.7)

However, employing (5.4), (4.35), (4.37), (4.38), and (4.39), it follows that the quantity in brackets on

the right-hand side of (5.7) is symmetric in the indices I and k, because

-r,,a +8 j JA = .91'"va +  8 ,nit . (5.8)

Using (5.8), (5.7) can be written as

/,+ DAj, Ij 8aE )Dua  (5.9)

Requiring the "continuing" symmetry of the Cauchy stress, we must also have

.".u -& a HE ', = Krio + IJA. . (5.10)

Equations (5.9) subjected to the constraint (5.10), with the overall moduli defined by (5.4),

(4.35), (4.37), (4.38), and (4.39) are the macroscopic constitutive relations of the model.

As mentioned before, in order to calculate an overall quantity from the corresponding local

quantity, the expression for the probability density function of the contact normals. namely (4.40), is used

in (2.17). In particular, the overall moduli are calculated from the following relation:
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Q M -- -- w-(5.11I)

where the index a denotes the corresponding class, and the summation is over all existing classes.

Finally, we assume an expression for the evolution of the coefficient, MI , which is required

for calculating various stresses and stress-rates from expressions given in Section 2 (e.g., (2.15)).

Recalling that M is the number of contacts per unit volume and that I is the branch length, the

quantity MI , with the dimension of (area)*', is intimately related to the volumetric strain and strain rate

represented by the quantities detG , and trD . The calculations presented in this paper are based on

the following relation

MI = Moto ei"nd G), (5.12)

where n is a negative constant, and where

f,

f trD dt = (t,-to)trD(t), (5.13)
to

where to < " *tI ; for the numerical illustration given in Section 9, we have used t= ( F 4 to). An
2

equation resembling (5.12) has been introduced by Jagota, et al. (1988), for the evolution of the

coordination number, in connection with the sintering and compaction of powder packings. The relation

(5.12) follows from the assumption that the rate of change of (Mo) per its own unit is proportional

to (detG)(trD) , i.e. (M /I(MO) = n(detG)(trD) . Upon integration over the time increment and

using the value of detG at the start of time step (i.e., retaining only linear terms in (tF-to) ), we

obtain (5.12) and (5.13).
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6. CONSTITUTIVE RELATIONS IN INCREMENTAL FORM

Due to the nonlinearity of the local constitutive relations, the material response must be computed

by an incremental procedure. In an incremental loading process, a part of the load increment may

actually cause an elastic-plastic behavior while the remaining part may lead only to an elastic response.

Instead of using a scheme of sub-incrementation, we introduce here another simpler method based on a

first-order approximation of the local yield function.

Let the loading process be measured by the time-like parameter t which takes the values h at the

beginning of the increment under consideration and t4 at the end. Furthermore for any quantity x, Ax

- x(tF) - x(lo). Instead of seeking the time te for which the yield condition is satisfied, i.e., Ylu'(t') = 0,

we make the following approximation:

YV)(tg) - Y(*)(to) + y)()) At , to t s , , (6.1)

or using (4.23),, (4.8), and (4.19)', for single slip, S10), (u = -1,0,+ 1), we have

Y( )(tA)=Y(')() [uA($)  _y(E)p ",. , : to t,, (6.2)

while for double slip, Da"', (u = -1, +1), it follows from (4.28), (4.8), (3.8), and (4.21), that

Y~rF ,Y4o)+ ]. [Ada - A ' 9U, - Afop~ ,
(6.3)

Y~0ktF)-Y1')(t)+ iA [,7', Ada - A y(-)pi)- ,

In order to define the magnitudes of the inelastic strain increment A&yo and A-y , we proceed as

follows. In a first step, the behavior is assumed to be elastic and for a given strain increment Ad.j, the

elastic response is computed. Let us denote by t; the corresponding (fictitiois) value of the time

parameter t'. It is important to make the distinction between the time-like parameters t and t' (see the

footnote on the next page). Then for single slip, Sul, the relations (4.22) and (4.26) will take the

incremental form
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For Y()(t;)<O , Ay(')O, (6.4)

For Y')(tI;) o , A&y()=K(")()[Y)(td+(uA()+pA  .  ,

where, ') is defined by (4.27). Similarly, for double slip, DSC"u) (u = -1, + 1), (4.28), (4.31), and

(4.32) take the incremental form'

A (O) = 0For JI(')(t;)0 and Y()(t)<~0 , [y=0'

(6.5)

For Yu)(t;) 0 and Y()(t;) ,0

where

s= Un( )[Y(Oy(uA'+) + jA"') --')t,(o) (u = -1,q) , (6.6)

s _u+()[Y A) Y)(to)A(d ()p

and where z' ) and v(") are defined by (4.32) and (4.33), respectively.

Employing (6.4) or (6.5) and following the same procedure that led from (4.26) and (4.31) to

(4.34), it is found that the incremental form of the stress-strain relation is of the form,

Avu = Av(I-4Av), (6.7)

where

Av(I)= K VuA lk, (6.8)

and where, for single slip, "), (u=-l,0,+ 1),

'According to (6.2), Y)(t,) f)(d+[,uA +AV ,.Ad,. Hencewe assume IH(Y(I))=II(Ay).

26



For Y(&')(t;):O , At(81-O (6.4)

For Y(N(,;),O , Ay u ..Kwu)()[Y(u)(td +(uA(')+ML;"~i,.c~du

where, e ) is defined by (4.27). Similarly, for double slip, DS('-u) (u = -1, + 1), (4.28), (4.31), and

(4.32) take the incremental form'

For Y( ")(t;) !0 and Y )(t,;) <

=yO) 0

(6.5)

For Y ')(t;)>o and Y)(t;)20 Ad,
(0 €) =S ( z )(E) Ad

where

(= Ur"(")[d~wo) () (M , -+ u)(t.)IP (0)
, (u=-1,I),(6.6)

S() = -un(')[Y(D')(d(u4 + -.A Y')(

and where z" and n are defined by (4.32) and (4.33), respectively.

Employing (6.4) or (6.5) and following the same procedure that led from (4.26) and (4.31) to

(4.34), it is found that the incremental form of the stress-strain relation is of the form,

()= A V ,) (6.7)

where

AV ) = KuA III , (6.8)

and where, for single slip, S"U), (u=-l,O,+ 1),

'According to (6.2), Y1(:)=. Yu)(to) +IuA,!' +,xiAI' j , . ( Ad,,. Hence we assume IJ(Y(I)) It(A-y).
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the present model in that the numerical evaluation of the overall response, in particular, the overall

nominal stress, can be performed via two methods: In the first method, the overall nominal stress and

the overall stiffness are directly computed, respectively, from (2.18) and (5.4), using the results of the

integration presented in Section 7. In the second method, the nominal stress is computed from (6.12)

which is obtained from rate constitutive relations through the incremental procedure described above and

by using the overall moduli derived by the first method. Note that if the velocity gradient is given, then

the material response is deduced without any need for computing the overall stiffness. On the other hand,

if the boundary conditions are mixed or are expressed in terms of the stress-rates, then the overall

stiffness must be computed.

7. ANALYTICAL INTEGRATION OVER A TIME INTERVAL

The local constitutive equations, (4.2), (4.5), and (4.8) are amenable to analytical integration over

a small time interval [to , t,=to + At] , assuming that the velocity gradient, I , remains constant over

the interval. The integration is performed in two steps, as described in Section 6. In thefirst step, the

material is assumed to remain elastic under a total increment of loading Al=(tF-to)l. In the second

step, the plastic deformation allowing for the yield condition to be satisfied is obtained. Hence, it is

supposed that the yield criterion is satisfied in the second step, if it was not already satisfied at the end

of the first step. Consistent with (3.1), the superposition of the two steps will correspond to I' =1-1"

7.1 Th7e First Step of Integration

The integration of the evolution equations (4.2), (4.5), and (4.8) for m, e, and f, respectively,

are performed between the initial time to and t; . As mentioned earlier, the material is assumed to

be elastic in this step. Details are given below.

(a) Integration of the evolution equations for m and s

Since in the first step the magnitude of the inelastic stiain rate, j' , is zero, Eqs. (4.2) can be

written as

h m , s1=.w1s1 , (7.1)

where (3.9)2, (4.19)2, and (4.21). are used. The solution of the above equations can be written in terms
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of an angle 0, defined by

s w 2 = w .(7.2)

Integrating between ro and 1,

to

or

0"= 0 -Aw1 2 , (7.4)

where 0 =O(t;) and 0 =e0(t o) . Notice that at any time t; , we have

m(t;) = R(t , to) r(to) , t;) =R(t;,t o) S(to) , (7.5)

where
R~t' "[cos (0"- 0o) -sin (O"-Oo)]

R(t;, to) = co(W 60 s (e -eo) "
FO sin (e -- e) Cos(0 00 )]

Hence, since

m(to) =cosO0 e +sinO0 e, (7.6)

s(to)=sinOoej -cOSOoe 2 ,

where e, and e2 are unit vectors along the coordinate axes, it follows from (7.5) that at the end of the

first step, the components of m and s are as follows:

M1(t ; ) =CoS(8 o - Aw2 ) I M2(t) =sin(0o - Aw12),

sl(t;) =m2(t,) s2() = -mI(t)

(b) Integration of the evolution equation for c

Again, since in the first step, " is zero, Eq. (4.5) can be written as
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dA . (7.8)

Integrating this equation from to to 1; , we have

f f b (trd)dt, (7.9)
t t o

or

In (t ) =b(trd)(t;-to) s b (trAd) . (7.10)

C(to)

Hence, at the end of the first step of integration,

c(t ) = c(to)e( O'A' ~ .(7.11)

(c) Integration of the evolution equations for the contact force f

The evolution equations for the contact force are given by (4.8-10). Substituting for c(t) from

(7.11) and for m and s from (7.7), and (7.7), into (4.9-10), using (7.4), it then follows from (4.8) that

bAO =b(trd)f "' ) + (t) e b(t,)(s-to) [X trd+ (7.12)

+2'(dlcoM2 O . 2d 2 sinOcosO + d2sin2 0)],

and

b =b(trd)f ) 4 2p" c(t) e btrd o)[d sn cosO +(7.13)

+ dl2(sin2 0 -cos2 0) -d22sin 0cosO]

where, since j' is zero, d =d . Now let

'~~~~~~ (t) = fl'")(t) e " a -, B(t) = fr)(t) e- ,, ., ,(14

then
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A = () 1(;" + ')trd+ '[(d,, -d2)cos2O +2d1 2sin20])
(7.15)

B = e(to) p [(c,1 -d2 )sin20-2dr2cos201 .

The above relations can be integrated by noting that all the quantities that appear in these equations

remain constant over the interval except for 0 which varies with time according to (see Eq. (7.3))

0(t) 0o -w12(t - tQ (7.16)

Proceeding with this integration (see Appendix A for details) and substituting for A(t) and B(t) into Eqs.

(7.14), we find that when w =0,

f n)(t;) - ebrAdjf()(to) + e(t)[.'tr Ad +21,' AdVm I(to) m n(to)) .
(7.17)

fl,)(,;) -- e" +[<)(o 2 ." e (td) & du MI(to) sp(o)],

and when w 20 0,

fPM)(t) v ebtrAd (f<)(to) + e(to)[(X + p)tr Ad +p(ala3 +a2a4)] }

(7.18)

fI$)(t;) = e"' Ad[fs)(to) +l"(to)(a2a aa4)],

where

al =m(to)m2(to)-mI(t;)m2(t;)

2.a Mj(t;)-M2(to),

Ad - A d2 2  
(7.19)

= A W12

2A d1 2
a4 = ___

A w12

Equations (7.17) and (7.18) give the values of the normal and tangential components of the contact force

at the intermediate time t; , i.e., at the end 6^ the first step of integration.
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72 7he Second Step of Integration

Integration of the evolution equations for m , # , t ,and f are performed between the

intermediate time, t; , and the final time t, . Accordingly, in the second step, the yield condition is

enforced if it was not already satisfied at time t; .

(a) Integration of the evolution equations for m and s

Recalling the definition of angle 0, namely, (7.2),, we have

-W" = w " (7.20)

The components of the local inelastic spin are given by Eq. (4.19)2 for single-slip, S(u), and by Eq.

(4.21)2, for double-slip, DSl ."). Employing these relations together with (4.20), we have

Uu)W.12 =y ,- (7.21)

where, u = -1, 0, + I for single-slip, S(u); and where u = -I, + I for double-slip, DS(' ."). Substituting

from (7.21) into (7.20) and integrating between t; and t.,

0 U Ay (7.22)
2

where O. = (t F) and where, as in (7.4), 0* '6(t) = 00- Aw12 . Following a procedure similar to that

described earlier for step one, we find

m(tr) =cos (0' + A Y()), m2(tF) = sin (0' + 2A y
2 2 (7.23)

sI(t r ) = m2(QF) , s2(tF) = -ml(tF) .

Given the magnitude of the local inelastic strain increment, Ay(') , the final orientations of fabric

vectors, m and s , can be calculated from the above relations. The values of Ay(u) are calculated

by imposing the appropriate yield criterion. This is done in Section (7.2d), after the evolution equations

for the contact force are integrated in Section (7.2c).

(b) Integration of the evolution equation for c

In the second step of integration the evolution equation for c can be written as
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- b d", (7.24)

where the local inelastic rate of volume change, dj' , must be calculated from (4.19)t for single-slip,

Sfu), and from (4.21), for DS"-". Performing this calculation and integrating (7.24) from t; to t,

yields

IF

f -b(')t')dt , for S(N), (u=-1,0, +I),

f'de = ; (7.25)
f -b(((')j (' ) + ((O°t for DS ( 'u), (u - -I,+1),

or

or C tF) = bC(u)Y(')(t -t;) w-bCa()A y(r), (7.26)

e(t;) 1_b(C(U)Y() + C(D°)0 ))(1, - <01) y ( "') .u) + () y(o)), for DS(0°." .

Hence, -. the end of the first step of integration,

Je(t;),/"bCAY) , for S(') , (u=-1,0,+1)

OFr) (7.27)

I C(t;)eb()aY') AT' %) , for DS( ° ' ) , (u = -I, +I).

(c) Integration of the evolution equations for the contact force f

In the second step of integration, since l - -l" , the evolution equations for the contact force,

i.e., equations (4.8), become

ji-)= bd.9f(A)-e(X. d" 2p' d" m-rn)
(7.28)

(S)= -bdu'f(0 - e(2Wi' d'*s,ni) ,

where, (4 9) and (4.10) have been used in writing (7.28). Again the local inelastic strain rate, dC"
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must be calculated from (4.19), for single slip, S('), and from (4.21 11 for DS ()'u). Performing this

calculation and substituting the result into (7.28), we find that

(7.29)

where (7.27) has been employed, and where

b()j.(N) , for S(') ,

C, = (7.30)

l b(C(N)i() + ((t) , for DS(" ')

(X" 2p')e(t) ()~~';, t , for S',

C2 = (7.31)

(k" 2 't~t)((")('  'i(°) , for D$ (°')'

C3uP'e(tr)Uty ,, for S(') , and for DS('-) , (u--,0,+1). (7.32)

Integrating (7.29) between t; and t. , we find that

fl'A)(e - [f<x)(t;) - C2 A t) e-c,
(7.33)

P)(tF) = [-&)(I; ) -CV& 11t e -C At

Hence, for single slip, S"), at the end of an increment we have,

.(")(gj). [f("n)(t;) -0," "2 ')c(t;)()t, y(')J e "'')

(7.34)
gl)(t ) = [ '( )- ." t(,) y()] bc")c ') ,

while, for double slip, DS(-"), we find
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(7-35)
^11,) =*0 t,- FO,,) ~l ,,.,,

4) Cdaainu Of flw Mapiiuk of ihie Imiir Strain Imaww &?*

Fir a sinje slip sysem, sV, the ir of inls -s a s clcuI byi r t ivid

Y ' pJ'(t) = - (7.36)

Sbituting firm (7-34), into (736) and SO-ing for AT* , we find dig

Av .  .UP(t;).jJ(, 4-37

For the double slip system, DS04, substituting from (7-35) into the yield conditions,

]iO = aJaftF) 4 t -0,

(7.38)
Y(M = Pf(. (t,) =o,

and solving for the magnitudes of the inelastic strain increments, we obtain

(f;)" l" ') .(7.39)

and

Ay =,, ) (7.40)
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L IMTIL APMD BO(QMARY CONMOnS

in OWe MMM&21k cakulaUfinm k s Often nessXY so oIbiai the inkw al dtributic of CDmC=

fmc sv & e inifia cwfmnft itrs 1 de inta f*tic An expresion riafti the conta frces

to the macroumpst su nd fabric is dtreoped in Section 9-1. Bomiday condkis ame desribed in

Section 82.

81 Intialomwaar Forces

An expression for the average (initial) contact force in each class cold be obtied by assming

that this quantity is related to the contact normal which identifies that particular class, by nmans of a

polynomial expression; the coefficients of the polynomial are macroscopic quantities, i.e., they are class-

independent- For simplicity, following Mebrabadi, Nemat-Nasser, and Oda (1982), we assume that

M.oef =A j,,, , (8.1)

where A, are global quantities independent of class. The distribution of contact forces given by (8.1)

must be compatible with a symmetric Cauchy stress, P' , defined by (2.19) and (2-22). Thus,

substituting from (8.1) into (2.19), using (2.22), we must have

EU = <m ,'m*>A,. (8.2)

Introducing the traceless second-rank fabric tensor, J], defined by the relation

= ,>- ) (8.3)

in'o (8.2), the initial macroscopic Cauchy stress is found to be

ol -1.,4+ A~r,+a..(8.4)
N#2 11 4j

To calculate the contact force from (8. 1), one has to solve (8.4) for A,, in terms of the given initial values

of the stress and fabric and then substitute the result in (S. !). To this end, define the symmetric and skew

parts of Ab by
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so at

A#=A;-AV (-6)

Using the .de,,ties

AJ+JA = (trA)J+(rJA " trJA- 0 (8.7)

where 8 is the unit tensor, in (8-4), one can show that

A-= I(JA -A J)
4

Now employing (8.3) and the ide.ntities

JA-J=-[2QrJA )J -(tJ)A + (rAl(trJ 2 ) 6J , J2 =-(tJ 2 ) 8 (8.9)
2 2

in (8-4), we obtain the following relation

16 , = (8 -trJ 2)A'4 [2(trA) + (trJA )]J + I [4(trJA) + (trA ) (Ir 2 )] 8 . (8.10)
2

Note that the identities (8.7) and (8.9) are limited to two dimensions. Solving (8. 10) for A4 , one obtains

A*= 4 [4E,°-(trE.°)J-(trEnJ)l] . (8.11)
8 - trj 2

Substituting from (8.11) into (8.8) yields

A 4 (JIo-IJ). (8.12)
8 -rJ2

Finally, the expression for Ai, is obtained by adding (8.11) and (8.12) according to (8.6).

Note that for an initially isotropic sample,
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=O , A =2E*, (813)

er( 3), (217), (8.1 ), (8.12), and (86) hae been used. .rploying (8. i3) in (8.1), it then follows

that

M& Ooff-= 2 .Ifif(8.14)

Hence, when the initil confining stress is also isotropic, there is no shear force present at any contact

point.

82 Boundary Conditions

To assess the predictive capability of the model, the incremental procedure described in the

previous section is employed to calculate the response of the model to shearing deformation (Fig.2). In

the initial configuration, the sample which is in the shape of the unit square shown, is assumed to be in

equilibrium under constant confining loads P, and P2. Keeping the vertical force (P9 constant, an

increment of shear strain AL,2 is then applied to the sample. Requiring that the side A'1" remains

parallel to the horizontal side AB and that A'B' = AB = OC at all times, the volume change of the

sample is calculated from

AN2 =0 , L11 =0. (8.15)
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9. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations corresponding to the two-dimensiona behavior of the model under

monotonic and cyclic shear are presented in this section. In these calculations 48 discrete orientations

are used between 0 and 360" to define 48 classes of contacts. The initial conditions and material

constants for the monotonic loading (Section 9.1) are chosen so that the behavior of the model

corresponds to that of densely packed granular materials; while for the cyclic loading (Section 9.2), the

initial conditions and constants are chosen so that the model behavior corresponds to a loosely packed

sample. The material constants and initial conditions used in the two cases are summarized in Table I.

Table I Material constants and initial conditions

Monotonic Shear Cyclic Shear

X*p, 200.0 200.0

i'lp, 200.0 200.0

0.40 0.40

0.36 0.36

b -100.0 -1.0

0.01 0.1

n -10.0 -10.0

a.Ia2  0.048 0.048

MO 10at 10.0 10.0

"-2.0 0.0 [-1.0 0.0
10.0 -4.01 0.0 -1.-01

AL12  0.0010 (50 Increments) +0.0015 (100 Increments)

In this Table, p. and a. are reference stress and area, respectively, and ao is the initial value

of a defined by (4.40)2. The initial orientational distribution of contact normals is assumed to be

isotropic for both cases. As shown in Table 1, except for the constants b and f , the remaining constants

have been chosen to be identical for both cases. Examination of (7.11) and (7.12) reveals that the

constant b which was first introduced in (4.5), governs the value of the parameter t and the volumetric

behavior of the material. On the other hand, it can be verified from (4.40) that the parameter c and the
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constant f6 strongly affect the orientational distribution of contact normals. Notce that the chosen values

of b and 0, in the two cases, differ by two and one orders of magnitude, respectivazly. We shall find out

that the model bel:aves like densely packed materials for a large absolute value of b, while it behaves

similarly to a loosely packed material for a relatively large value of fl. A thorough study of the

interrelationship among the various constants has been left for future investigation.

9.1 Behavior of the Model Under Monotonic Shearing

(a) Stress-Strain-Voluntric Behavior

The stress-strain behavior of the model under monotonic loading is depicted in Fig.3, where the

ratio of shearing stress to the mean normal stress is plotted versus the magnitude of shear strain. The

volumetric strain versus shear strain is plotted in Fig.4. The data points indicate the beginning of an

increment of loading. The numbers 5, 20, 30, 40, and 50 appearing on the plots identify the increments

for which the orientational distribution of contact normals and other microstructural quantities are

presented here for discussion. At increment 5, the behavior is Still elastic (with no slip taking place at

any contact) and no significant change in volume occurs anywhere. This linear elastic behavior continue.

until about increment 14, when slip occurs at certain contacts and when a change in volume starts to take

place. Failure occurs at about increment 30 at which time the material starts to soften up until increment

50 when large deformations can take place under a constant stress ratio. The volumetric and stress-strain

behavior of the model with the constants and initial conditions given in Table 1, clearly correspond to the

observed behavior of dense granular materials.

(b) Evolution of Contact Normal Distribution

When the sample is isotropic, there are an equal number of contacts in all classes. Hence, it

follows from (2.16) tnat

E(m) - 2i_ (9. I)
21t

so that the distribution of the number of contacts in various classes, represented by the quantity 27r E(m)

in polar coordinates is a unit circle. The distribution of the quantity 27r E(m) at increments 0, 5, 20, 30,

40, and 50 is compared to this unit circle in Fig.5. There are 48 data points in each plot of Fig.5
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co-responding to the 48 classes.

No significant change in the number of contacts occurs in the elastic regime up until increme,

14 when a few contacts become active. As a class of contacts becomes active, the magnitude of the

average contact force corresponding to that class increases (see the next section for details). The increase

in this contact force then leads to an increase in the number of contacts in the active classes (see Fig.5,

increment 20). Since the total number of contacts in the sample changes only slightly, the increase in

the total number of contacts for active classes is accompanied by a decrease in the number of contacts

in all the inactive classes including the class of contacts whose normal is in the maximum compressive

stress direction. As more classes of contacts become active, the number of contacts in the class whose

normal is in the direction of maximum compressive stress decreases to a critical value at the peak strength

(increment 30; see Fig.3) when further shearing of the sample causes a collapse of the load-bearing

columns formed by the contacts belonging to this class. The collapse of these columns leads to the loss

in strength and the softening of the sample. This point is further discussed in the next section in

connection with the evolution of the contact force magnitudes and active contacts.

(c) Evolution of the Contact Force Magnitudes and the Critical Contacts

The distribution of the contact force magnitudes and the status of various classes of contacts in

terms of whether they are critical or not, is considered in Figs. 6a and 6b. The 48 data points in each

plot of these figures correspond to the 48 classes of contacts. The magnitudes of the contact forces are

represented by the non-dimensional quantity Mt f/p, where p = -(112) tr E; while the status of the

contacts is represented by the non-dimensional quantity -f/pf,. This latter quantity varies between -I and

+ 1. It equals -1 or + I for active contacts undergoing negative or positive slip, respectively. The

intermediate values correspond to non-critical contacts where there is no slip.

Sirice the initial confining pressure on the horizontal plane is -4 and on the vertical plane is -2,

the distribution of the magnitudes of the contact forces (see Fig.6a, Increment 00) is such that the

maximum and minimum contact fvrces are carried by the classes of contacts whose normals are,

respectively, along the vertical and horizontal axis. The initial directional distribution of -f,.4f, (Fig.6a,

Increment 00), indicates that there are no critical classes of contacts and the sample is indeed initially at

,oquil!brium. As might be expected, however, this distribution is biased so that several classes whose
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normals are making angles of about 40' or 220" are close to becoming active with a positive slip.

Similarly, those classes whose contact normals are making an angle of about 135" or 325* with the

horizontal axis, have the potential to become active and undergo a negative slip.

As the sample is sheared to the right, the maximum compressive stress rotates in a clockwise

direction causing the contact force distribution to rotate accordingly (see Fig.6a, and 6b). In the elastic

regime, no significant change in the shape of the distribution of the magnitudes of the contact forces

occurs (see Fig.6a, Increment 05). As the distribution of the magnitudes of the contact forces rotates,

however, the normal components of the contact forces, f,,, (which have a distribution very similar to the

magnitudes of the contact forces,J) decrease for nearly critical contacts. This decrease inf, leads to an

increase in the absolute value of -f/p,. Eventually this value increases to unity and the nearly critical

contac; become active (see Fig.6a, Increment 20).

The 'nitiation of slip at critical contacts, causes mostly a change in the shape (and little or no

rotation) of the distribution of the contact force magnitudes, as can be verified by comparing the plots

of increments 20, 30, 40, and 50, in Figs.6a and 6b. As a class of contacts becomes active, the local

slip-induced dilatancy causes an increase in the magnitude of the contact force. This can be verified by

inspecting Eqs. (7.34), noting that the final values of the components of the contact forces are exponential

functions of the slip-induced dilatancy and that the constant b is negative. At the peak strength, i.e., at

about increment 30, the magnitudes of the contact forces of an active class becomes comparable with the

magnitudes of the contact forces corresponding to the class whose normal is along the maximum

compressive stress direction. This causes an instability, as mentioned earlier, in the form of buckling

or collapse of the load-bearing columns, as can be seen by comparing the plots of increments 20 and 30.

This behavior is consistent with the experimental results of Oda (1972). After the peak strength and

buckling of the load-carrying columns, the sample gradually softens until a critical stress state is reached.

9.2 Behavior of the Model Under Cyclic Shearing

(a) Stress-Strair -Volumetric Behavior

The stress-strain and volumetric behavior of the model under cyclic shear is shown in Figures

7 and 8, respectively. Once again, the data points indicate the beginning of an increment of loading.

The transition from linear elastic behavior to ineiastic behavior begins just after increment 5, when the
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sample volume begins to increase. Unlike the previous example, there is no loss in strength or softening

of the material in this case so that the behavior resembles that of a loosely packed granular material.

At increment 25 and 75 the strain-rate direction is reversed. The stress-strain behavior of the

model is in good qualitative agreement with the observed behavior of loosely packed granular materials.

However, the volumetric behavior is not in good agreement with the observed behavior because the model

predicts a net dilatancy rather than a net densification at the end of the cycle.

(b) Evolution of Contact Normal Distribution

The distribution of the quantity 27r E(m) at increments 0, 5, 25, 39, 50, and 75 is represented

in Fig.9. Again, there are 48 data points in each plot of Fig.9 corresponding to the 48 classes. Since

the sample is assumed to be initially isotropic the distribution of normals is a unit circle at increment 0.

In this example, there is a slight change in the number of contacts within a class in the elastic

regime (see, Fig.9, Increment 05). As the sample is sheared, even at the very beginning of the loading

in the course of elastic behavior, the fabric adapts itself to the rotation of the principal stress axes so that

there are more contacts along the maximum compressive stress (Fig.9, Increments 5, etc.). This should

be contrasted with the evolution of contacts in the previous example where a reduction of contacts led

to the buckling and collapse of the load-carrying columns along the maximum compressive stress direction

which in turn led to a loss of strength or softening of the material. Another interesting point is that the

distribution of contact normals at increments 39 and 92 (not shown), when the stress ratio is zero, is

nearly isotropic and hence it is similar to the initial distribution of contact normals.

(c) Evolution of the Contact Force Magnitudes and the Critical Contacts

The distribution of the contact force magnitudes and the history of active and inactive classes of

contacts are considered in Figs. 10a and 10b. Again, the magnitudes of the contact forces are represented

by the non-dimensional quantity Mff/p, while the status of contacts is represented by the non-dimensional

quantity -f,/pf .

Since the initial confining pressure is isotropic, the distribution of the magnitudes of the contact

forces (see Fig. 10a, Increment 00) is the same for all classes of contacts. As mentioned earlier in section

8.1 (see, Eq. 8.14), since the ;nitial confining stress and the initial fabric are both isotropic, the
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component of the shear force vanishes for all the classes of contacts and hence, the quantity -f/ltf= is

initially zero; see, the initial directional distribution of -f/itf., (Fig. IOa, Increment 00).

As mentioned earlier, during shearing, the rotation of the maximum compressive stress causes

the contact force distribution to rotate accordingly (see Figs. 10a, and 10b). After the initial rotation and

a significant redistribution of contact forces in the very beginning of loading during the elastic regime

(Fig.10a, Increment 05), no significant rotation occurs up until increment 39 when a stress reversal

oc-urs. At about increment 39, the distribution of contact forces is only slightly anisotropic, and hence

approximately similar to the initial distribution of contact forces. Note, however, that there are several

active classes of contacts at increment 39, while the sample is initially in a state of equilibrium.

10. SUMMARY AND CONCLUSIONS

A micromechanically-based model for the two-dimensional behavior of granular materials is

presented in this paper. The model is systematically formulated as follows:

I. The relationship between the overall stress and the microscopic quantities is examined. These

microscopic quantities include the interparticle forces and the number and orientation of contacts, and the

average size of the particles.

2. The relationship between the overall velocity gradient and the microscopic deformation

measures characterizing the relative frictional sliding and rotation of the granules is considered.

3. Local constitutive equations are introduced for the rate of change of the contact forces, the

evolution of contact normals, the mechanism of local failure, and for the number of contacts in a

particular orientation. The local constitutive relations are simple enough to permit an analytical

integration over a small time interval. This is an important feature of the present model because the

overall nominal stress can be computed directly by employing the relationship for the overall stress,

mentioned in (I) above.

4. Macroscopic rate constitutive relations are developed for the stress rate by adoptir, , a Taylor-

averaging method and by writing explicit relations between the number of contacts per unit volume and

the incremental change in volume. The analytical integration of the local constitutive relations mentioned

in the previous step are used to obtain the overall stiffness from (5.13).

5. Due to the nonlinearity of the local constitutive relations, the material response is computed
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by an incremental procedure. B, employing this procedure, the nominal stress can also be computed by

incrementally integrating the expression for the overall nominal stress rate.

6. The predictions of the model in the case of shearing deformation were obtained by means of

two numerical examples. in addition to the overall stress and strain diagrams, explicit and detailed results

are presented for the evolution of fabric, contact force, and the history of active and inactive classes of

contacts. By examining these results it has become possible to clearly explain the mechanism of failure

and softening of densely packed materials as well as the mechanism of the inelastic deformation of loosely

packed materials. In so far as the shearing deformation is concerned, the stress-strain behavior of the

model is in excellent qualitative agreement with the observed behavior of granular materials. However,

the volumetric response of the model in cyclic shear is not realistic because it predicts a net dilatancy

rather than a net densification at the conclusion of cyclic deformation.
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APPENDIX A. DERIVATION OF RELATIONS (7.17) AND (7.11

Writing (7.16) in the form

8a) = - (A")

where Oo = 0,+w,2 . isaconstntwenotethtwhenw,, =0,

fc20 d = co2O(,-(
.( (2)

4[, (to) - n4Q)m(I - to) -

Similarly,

fs26 dt= sin2 0 Q-ot,) (A 3)

= 2m, (t)M 2 t0) (t- 0 ) -

Integrating (7.15), using (A 2) and (A 3), substituting the result into (7.14), and solving for the normal

and tangential components of the contact force, Eqs. (7. 17) will be obtained.

When w,2 ;4 0, we have

S Ifc2e d fos220 -w,,od

=-[sinOecosOo -sinOcosO ]  (A 4)
1'2
1

-[m(tdm 2(d-m()m 2 )J .
WI2

Similarly, 1

Again, integrating (7.15), using (A 4) and (A 5), substituting the result into (7.14), and solving for the

normal and tangential components of the contact force, Eqs. (7.18) will be obtained.
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FIGURE CAP'nwoS

Figure 1: Sdch36 reqremblk ef &he kOCA yid cvmifio Eq; (4.14).

Figure 2: Dila sheat defob of a m=Ve of Vrmdw =ffffia-.

igure 3: Preffiewd stress-stram sp Of tbe inoeii under mnonic she..

Figur 4: Preacted viumetrij behavior of t material r mowoi shear.

Figure5: Dof nW msincn f m curve of Fig. I

FiTure 6:- Disbtion of manitudes of comtmt force; nd the directina distribution of the rafto of

shear to normal forces at -- rious fremeuls marked on the stress-strin curv-e of Fig. I

Figure 7: Stress-strain respone of the model under cyclic shear.

Figure 8: Volumetric behavior of the model uader cyclic shear.

Figure 9: Distribution of contact normals at increments indicated on the stress-strain curve of Fig. 7.

Figure 10: Distribution of magnitudes of contact forces and the directional distribution of the ratio of

shear to normal forces at various increments marked on the stress-strain curve of Fig. 7.
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Abstract
A recently proposed constitutive model for two-dimensional flow of granular materials is

briefly reviewed and some numerical results are presented in this paper. First, the concept
of fabric and the relations between the overall stresses and the relevant microscopic
quantities are reviewed. Then, the kinematics is briefly examined. A significant concept
underlying all these developments is the notion of the class of contact unit normals with a
continuously evolving distribution function, even though individual members of various
classes may change discontinuously, as contacts are lost and new contacts are developed in
the course of granular flow. Next, local and macroscopic constitutive relations are discussed
and the evolution of the density of contacts in a particular class is considered. As an
illustration, the overall response of a two-dimensional assembly of disks subjected to an
overall shearing deformation is determined. The stress-strain relations and the evolution of
fabric are in excellent qualitative agreement with the observed behavior of granular
materials. In light of these results, the micromechanisms of failure and inelastic deformation
of dense as well as loose granular materials are discussed.

1. INTRODUCTION

Development of overall macroscopic constitutive relations for granular materials on the
basis of simple and reasonable micromechanical assumptions is of great interest. A
systematic approach to this problem inevitably would include considerations of: I) a
description of the overall macroscopic stresses in terms of contact forces, their distribution,
and some relevant geometric measures of the microstructure; 2) a description of the overall
measures of incremental deformation in terms of quantities that characterize
micromechanisms of relative sliding or sliding and rolling of granules; 3) a description of
the time rate of change of the overall stress in terms of the overall deformation-rate and the
overall moduli. A procedure for achieving all of these goals is described in [1]. A brief
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After a brief review of the concept of stress and fabric in granular materials in Section
2, knematics is reviewW in Section 3. At the local level, the desciption of kinematics
ceizesponds to the double shearing model [3-4] and its extension to dilatant materials [5-6].
The local constitutive assumpfions, the evolution of the probability density function of
contact normals, and the constitutive relations are summarized in Section 4.

As an illustration, the response of a t no-dimensional assembly of rigid cylindrical disks
of circular cross section subjected to shearing deformation is described in Section 5. Two
numerical examples are presented, one of which simulates the response of loose and the
other conesponds to the behavior of dense granular materials. The mechanism of strain
hardening and failure followed by strain softening which is a characteristic response of
densely packed samples of granular materials, and the inelastic deformation mechanism
corresponding to the loosely packed samples are discussed in light of the model prediijons
of the evolution of fabric. The resulting stress-strain relations and the evolution of fabric
and the evolution of contact forces are in excellent qualitative agreement with the observed
behavior of granular materials.

2. DESCRIPTION OF FABRIC AND STRESS

We consider an ideal granular material composed of rigid, dry particles. For simplicity,
particles are assumed to be spherical or cylindrical with circular cross-section. Following
Oda [j, the fabric is represented by the distribution of the unit contact normals. Each
orientation corresponds to a large number of contacts which, while individually may undergo
abrupt changes, collectively evolve in a continuous manner during the course of the
contipious flow of the representative granular sample. In this manner, one can, for example,
identify an initial and a current orientation for a given class of contacts, while clearly the
same identification may not, in general, be possible for an individual and specific contact.

The group of M contacts per unit volume of a representative sample of granular material
is divided into, say Q classes, each with a common contact plane defined by the
corresponding unit contact normal. Let M,, (a = 1, 2, .. , Q), be the number of contacts
which belong to class a with common unit contact normal Wn. Then

SM _)
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When the number of classes, Q, is very large, we can introduce the distribution density
fucmtion E(m) to describe the angular di tribution of unit branches. In this case (1) becomes

fE(i)dO 1, (2)

where E(W) = E(-m), and where d9 is an elemental angle of the unit circle . With (2),

the aYMg of any quantity ,(Q) is given by

<,> S- f EuY- p (1m) =IfE(m) y(ma)dL .- 3

.1. M . (n)(3

The primary microscopic quantities associated with a typical contact er. in class a are
shovmn in Fig. 1. In this figure, fI" is the interparticle contact force aqd I " is the branch
length. Denoting the average of these quantities by fi and la , respectively, the Cauchy
stress is given by

" (4)
M

The nominal stress-rate is described by (see, [1) for details)

M<t M, -j. (5)

3. KINEMATICS

Under the action of an overall applied load, the flow of a granular mass consisting of
rigid granules occurs through sliding and rolling of grains over each other. As the sample
deforms, the distribution of unit normals changes and this change characterizes a
corresponding change of the fabric or microstructure. The overall deformation is viewed as
a suitable average of the local deformations associated with each class of contacts. Hence,
denoting by I, (a =l,...,Q), the components of the velocity gradient associated with a
typical class of contacts, a, the overall velocity gradient is written as

L Y = <1e>. (6)

The local velocity gradient is resolved into two parts as follows:
= l " + I a , (a=l,...,Q) ,(7)

where 1" is the velocity gradient corresponding to the fabric change, and l" is the
velocity gradient stemming from the relative sliding motion of the grains, which leaves the
fabric unchanged. The part l"* in (7) is the counterpart of the slip-induced velocity gradient
in single crystals, and the part r ° is the counterpart of that associated with the elastic lattice
distortion. Note that since, in a granular material which is modeled by rigid granules, no
elastic deformation can be involved, it is the change in fabric that produces the change in
the overall stress.
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4. CONSTITUTIVE RELATIONS

Constitutive assumptions are made at the local level for the time rate of change of the
average contact force for each class, and for the evolution of the distribution density function
of contact normals. These relations are then used in conjunction with a local yield criterion
to arrive at the time rate of change of local nominal stress; see [I] for details. Using this
local nominal stress-rate and (5), the overall constitutive relation is obtained in the form

*q=<,ile>- (8)

where the local moduli -4 , i.e., those associated with a typical class a, explicitly depend
on the fabric, the local contact force, and the material constants [1].

Next, we have to make assumptions concerning the dependence of the local velocity
gradimit I,, on the microstructure. In self-consistent theories for polycrystalline materials
[8] and in our earlier work on granular materials [9], a fourth-rank (concentration)
tensor, A.M , is introduced which depends on microstructure and which relates the local
velocity gradient in a typical micro-element, e.g. a single crystal, to the macroscopic uniform
velocity gradient (see, [9-10] for more details). This concentration tensor must then be
calculated using an appropriate model. Iwakuma and Nemat-Nasser [10] use a fully nonlinear
self-consistent model proposed by Hill [8,11], and actually calculate the corresponding
concentration tensor for plane problems. It can, however, be shown that this type of self-
consistent calculation breaks down when the density of voids or cracks is suitably large. For
the granular materials, voids are connected through contact zones which may be viewed as
cracks. Hence, the application of the self-consistent method is problematic, leading to
unrealistic estimates of the overall instantaneous moduli. In order to develop the simplest
micromechanical model that exhibits the basic features of granular material behavior, a
Taylor-averaging method is adopted in [I], i.e., it is assumed as a first approximation that
the concentration tensor is the identity tensor, leading to

1! =L (9)

With assumption (9), (8) now reduces to

= (10)

where .Jru are the overall moduli defined by

Q Mo 4 (11)Y --l '~l = E Jk
a-1 M

Denoting the spin tensor by W, the Jaumann rate of macroscopic Cauchy stress, i.e.,
-.u _ _W&F , .a v€ (12)

and the rate of deformation, D., ,are related as follows [1]:

Y + D a E 1 = .I ( ,1YU + J 'qP + 8 UE 4 + 6 Y)D U a . (4 3 )

4



Equations (13), subject to the stress symmetry constraint and with the overall moduli defined
by (11), are the macroscopic constitutive relations of the model.

In order to calculate an overall quantity from the corresponding local quantity (e.g., the
overall moduli from (11)), an expression for the distribution density function of the contact
normals is needed. Since the number of contacts in each class is strongly influenced by the
magnitude of the contact force for that particular class as well as by the local volumetric
change, the density of contacts in each class is related to the magnitude of the corresponding
contact force and the associated volumetric strain rate by the relation [1]
Ma I 2e 0 Q(14)

where is a macroscopic constant, e is a local quantity with the dimension of area, and I is
a nondimensional quantity related to the magnitude of the contact force for class a, i.e., f,
as follows

M0Q#f (15)
-(112) trM.

Note that, for ease in writing, the superscript a is omitted in (14) and (15). Employing (14),
the average of any local quantity can be found in the manner of (3). In quantitative
crystallography, it is customary to expand the density function of the orientational data in
a series of generalized spherical harmonics. In works on granular materials, it has also
become customary in recent years to describe the distribution density in terms of "fabric
tensors" of various ranks [12-14]. Note that here and in [1], to characterize the fabric, we
have made a constitutive assumption for the density distribution function itself, rather than
for various approximations of it in the form of macroscopic "fabric tensors".

Finally, an expression for the evolution of the coefficient M0 is assumed in [1]. This is
required for calculating the stress and stress-rate from (4) and (5), respectively. Recalling
that M is the number of contacts per unit volume and that 0 is the branch length, the
quantity MO with the dimension of (area)', is intimately related to the volumetric strain and
strain rate represented by the jacobian detG and by trD , respectively. Hence, it is
assumed that

Me = M0 90 e (16)

where n is a negative constant, and where

il f trD dt = (t-t 0 )trDQ-); (17)
to

here to < t" < t , and for the numerical illustration given at the end of this paper, we have
used t = (1/2)(t+to). An equation resembling (16) has been introduced by Jagota, et al.
[5], for the evolution of the coordination number, in connection with the sintering and
compaction of powder packings. The relation (16) follows from the assumption that the rate
of Thange of (Mg) per its own unit is proportional to (detG)(trD) , i.e.,
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(M)'/(M9) = n(detG)(trD) . Upon integration over the time increment and using the
value of detG at the start of time step (i.e., retaining only linear terms in (t-to) ), we
obtain (16) and (17).

Due to the nonlinearity of the rate constitutive equations, the response must be computed
by an incremental procedure. This procedure is described in detail in [1], where local and
overall constitutive equations are cast into an incremental form by using a first-order
approximation of the local yield function.

Owing to the simplicity of the local rate constitutive equations, an analytical integration
is possible and is carried out in [1], whereby explicit relations are derived, including those
for the contact forces and contact normals. Hence, using these relations, the overall nominal
stress can be computed in two alternative ways, either using the analytical integration
procedure or the incremental procedure described in the previous paragraph.

5. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations corresponding to the two-dimensional behavior of the model under
simple dilating shear are presented in this section. In these calculations 48 discrete
orientations are used between 00 and 3600 to define 48 classes of contacts. Two cases are
considered. In case (1), the initial conditions and material constants are chosen so that the
behavior of the model corresponds to that of loosely packed granular materials; while for
case (2), the initial conditions and constants are chosen so that the model behavior
corresponds to a densely packed sample. The material constants and initial conditions used
in the two cases are summarized in Table 1. In this Table, X, A are Lame-type constants
governing the rate of change of local stress (due to the fabric distortion); p. and a. are
reference stress and area, respectively; p is the interparticle friction coefficient; r is the
dilatancy coefficient; b is a constant that governs the value of the parameter 8 and the
volumetric behavior of the material [1, Eq. (4.5)]; f3 and n which appeared first in (14) and
(16), respectively, strongly affect the orientational distribution of contact normals as well as
the total number of contacts; a. is the initial value of a defined by (14)2; E0 is the initial
confining overall stress on the sample. The initial orientational distribution of contact
normals is assumed to be isotropic for both cases. As shown in Table I, except for the
constants b and fl, the remaining constants have been chosen to be identical for both cases.
Notice that the chosen values of b and 0, in the two cases, differ by two and one orders of
magnitude, respectively. The model behaves like densely packed materials for a large
absolute value of b, while it behaves similarly to a loosely packed material for a relatively
large value of fl.

The stress-strain behavior of the model in the two cases are depicted in Fig.2 and 4,
where the ratio of shearing stress to the mean normal stress is plotted versus the magnitude
of the shear strain. The volumetric strain versus shear strain is plotted in Fig.3 ard 5. The
data points indicate the beginning of an increment of loading in shear equal to 0.001. The
stress-strain and volumetric behavior of the model are in good qualitative agreement with the
observed behavior of granular materials.

The orientational distribution of contact normals at increments identified on the plots of
Fig.2-5 are presented in Fig.6. Since the samples are assumed to be initially isotropic the
initial distribution of normals is a unit circle at increment 0. For the loose sample, as the
sp.mple is sheared (to the right), the fabric immediately adapts itself to the rotation of the
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principal stress axes so that there are more contacts along the maximum compressive stress
(Fig.6, Increments 5). This is in contrast with the evolution of contacts in the dense sample
where a gradual reduction of contacts leads to the buckling and collapse of the load-carrying
columns along the maximum compressive stress direction which in turn leads to a loss of
strength or softening of the material.

Table 1
Material constants and initial conditions

Dense Loose

X'PtR 200.0 200.0

/tL*PR 200.0 200.0

0.40 0.40

0.36 0.36

b -100.0 -1.0

f 0.01 0.1

n -10.0 -10.0

c 01ax 0.048 0.048

Mo01aR 10.0 10.0

[;/pt-2.0 0.01 -1.0 0.01
°0.0 -4.01 I 0.0 -1.01
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Abstract

A basic framework is proposed for the systematic micromechanically-based constitutive
modeling of the flow of granular materials, over a broad range of strain rates, from quasi-
static to high strain rates. Frictional effects, pressure sensitivity, and coupling between shear-
ing and volumetric strain are included. Stress-induced anisotropy in elastic and inelastic
instantaneous material response is incoporated. The model is flexible enough to account for
both rate-independent and rate-dependent frictional sliding and rolling of the grains. For illus-
tration, typical results for biaxial and simple shearing of granular materials with various void
ratios are calculated in monotonic, as well as cyclic loading, and they are shown to accurately
correspond to actual observations.

1. INTRODUCTION

The resistance of a granular mass to plastic flow is strongly influenced by the
corresponding interparticle friction and the void ratio. In addition, existing experimental
results suggest that the fabric structure and its changes play an important role in the mechani-
cal behavior of granular materials. As an implicit measure of the granular fabric, the statistical
distribution of contact normals is widely used. In a virgin sample, the distribution may be
isotropic. However, during a course of shearing, the distribution of contact normals may
develop a strong bias, leading to a strong anisotropy.

A number of experiments has been conducted using photoelastic cylindrical granules to
study the variation of the distribution of the contact normals, in a course of deformation; see
Konishi et al. (1982), Oda et al. (1985), and Subhash et al. (1991). In these experiments, it
has been observed that the distribution of the contact normals changes in such a manner as to
produce a greater concentration of contact normals along an orientation which parallels the
direction of thelmaximum principal compressive stress.

During the course of granular flow, on a microscale, grains override each other, resulting
in sliding on planes which pass through active contact points. We denote by v the angle that
the microscopic plane of motion at a typical contact point makes with the macroscopic shear-
ing direction. If the angle v is positive as in Fig. la, then the normal force transmitted to the



granules tends to hinder their sliding and rolling motion, resulting in an increase in the

effective resistance to the macroscopic shearing. On the other hand, if the angle v is negative
as in Fig. lb, the motion of the granules is assisted by the normal force, and hence, the
effective resistance to macroscopic shearing is reduced. When sliding occurs, the motion of
the granules with positive angles of dilatancy tends to contribute to the overail dilatancy,
whereas the granules with negative angles of dilatancy tend to produce densification.

N N

N N

(a) (b)

Figure 1. Active contacts with (a) positive angle of dilatancy (b) negative angle of dilatancy.

During the course of deformation, more and more contacts with positive dilatancy angles,
v, are formed, while contacts with negative v are continually lost. This process tends to
increase the resistance to continued loading and decrease the material resistance in unloading
and reverse loading. In this manner, the potential for dilatancy in continued loading, and for
densification in unloading and reverse loading, is increased.

In addition to the resistance due to interparticle friction and the fabric, the confining
pressure affects the material resistance to flow. This is an isotropic effect, depending on the
density of the granular mass. This resistance increases with the density of the granular mass.

We consider the planar deformationt of granular materials in the x1 ,x2-plane. Based on
the above observation, we write the sliding criterion, a variant of Coulomb's criterion, for
granular flow in a direction s, in a plane with unit normal m, as follows:

f -rn + an tan L - p tan 2 < 0, for loading,

f2 -- n + o;n tan44 -p tanO2 < 0, for unloading, (1)

where rn and an are the shear and normal stresses on the sliding planes, given by

,, = o:(mDs), an = :(mom), p = - tr(a)/2, (2)

with the usual sign convention of continuum mechanics in which tensile stress components are
positive. Here dyadic notation is used and : denotes a double contraction, e.g.,
a:(mes) ijmisj, with a denoting the Cauchy stress with rectangular Cartesian

t Planar deformation corresponds to two-dimensional flow of cylindrical granules.
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components, asii, and repeated indices are summed.

In the sliding criterion (1), the angles, *f and 4f , represent the effective frictional
resistance to sliding by the interparticle friction as well as the fabric structure, while the angle
02 represents the resistance due to the isotropic interaction of particles. The angle of is for
continued loading, whereas 4Of corresponds to unloading and reverse loading. Based on com-
ments made at the beginning of this section, the angle of is always positive and greater than
the angle 44 which may be either positive or negative, depending on the local granular
fabric, where a negative value corresponds to the collapse of voids upon unloading and load
reversal. This has been observed in photoelastic experiments as well as in numerical model-
ling, and is an important ingredient of the present theory. The energy equation then ensures
that the process is in fact dissipative.

The resistance to flow due to the interaction of particles, increases as the material
densifies and decreases when the material dilates. Hence, the angle 02 varies with the void
ratio.

L al L
82 0,1

0U nA+ /)LU
2 (7V4 + 1 /2\ /(t4+4 /2) 01

Figure 2. Sliding planes in loading and unloading.

Sliding takes place on planes wheref, given by (1), is maximum and non-negative. There
are two planes on which f attains maximum values. These planes are symmetrical about, and
make angles of ir/4+O)/2 (Of, OL-planes for loading) and 7r/4-44'/2 (O, 0-planes for

unloading), with the direction of the greater principal stress, cl; see Fig. 2. Therefore, the
sliding criterion, (1), can be expressed in terms of pressure, p, and the effective shear stress,
q, in the form,

-Mup < q < MLp, q = (h o":o")h, (3)

ML = sin(I + 42)/cos42 , Mu = sin(44 + 02)/cos0 2. (4)

Denote by 8 the angle that the effective microscopic plane of motion makes with the
corresponding sliding plane. From the energy equation for the frictional loss on the effective
microscopic plane of motion, the angle of dilatancy, 8, is related to the microscopic, 0, and
macroscopic (44, o4, and ), angles of friction by (see Nemat-Nasser, 1980),



+ (2 _ for loading.

5 = 44' + 42 - for unloading. (5)

2. CONSTITUTIVE EQUATIONS

We seek to obtain the phenomenological constitutive relations implied by the double-
sliding theory, in line with the flow mechanism discussed in Section 1. To this end, we
assume that the kinematics of the instantaneous granular flow is expressed by the velocity gra-
dient L = v/ ax, consisting of a symmetric part D, the deformation rate tensor, and an
antisymmetric part W, the spin tensor. Each of these rates are separated into elastic and plas-
tic parts as follows:

D = DW + DP,  W=W * + WP, (6)

where superscript p denotes the plastic part which is due to the shearing along the sliding
directions, and the superscript * denotes the elastic part; note that W* also includes the rigid
spin.

S 2X 2 S , 2

nt/4±4/2G

xi

Figure 3. The unit vectors in the direction and normal to the direction of sliding

In plane flow, there are two preferred sliding lines, symmetrically situated about the prin-
cipal stress directions. The first, the 01-line, makes an angle 01 = 4- rd4 T 01/2, and the
second, the 02-1ine, makes an angle 02 = Ay + n/4 ± 41/2, with the positive x -axis. Here and
in the sequel, both loading and unloading are considered together, superscripts L and U are
omitted, and the symbols ± and T are used where necessary, with the upper and lower signs
corresponding to the loading and unloading, respectively. Assuming that the plastic deforma-
tion is due to the shearing on the sliding lines, and denodng the rate of shearing on the 0 -
sliding system by f" (a = 1,2), we write the plastic part of the velocity gradient as



= + fpe. wP, = ± (l, (a S,zm d). (7)

= -(sW' + Mn ) ± mag an,
2

±(~ - m). (S)

l-lme and ma are uni vectors in tf direction and nomal to tbe direcdo of di oft
a-sliding system, and the angle V is the orientin ci the smallst (c r ) pnipal
stress direction with the xl-axis (see Fig. 3).

In the present model, it is assune that the faErc is nm 2fecd by the plastic sianAg
deformation along the active sliding planes, and that oaly the elasuc pan of ft velocaiy a-
dient, L = W + W, is responsible for the change in falxic, giving rise to stress chang
To describe the local elastic response, we consider the objective Jaann rat of stress,
8 = & - WoF + aW,

and relate it to the elastic deformation rate by

8 = C:D" = C:(D - DP), (9)

where C is the instantaneous elasticity tensor. Further, based on the experimeuad absmm-
ions that the fabric (defined by the distribution of contact normals) rotes with the principal

stress directions, we assume,

w2= - = (o'Hd 2 - oI26"1)l2q2 .  (10)

Denoting the unit deviatoric stress tensor by pL, and in view of (10), the plastic part of the
velocity gradient, DP", can be rewritten in the form,

Dfi=+yB W12 =±(-'-),

D'P =Wa L + , It= -a, a- cos)

*cos(O. 1 -8) B ______
_ = u + (11)

coss cos(01-8)

where a is the noncoaxiality coefficient, characterizing the deviation of the plastic strain rate
orientation from the orientation of the stress deviator, B is the dilatancy parameter, and I is
the effective inelastic strain rate.

The elastic response of a granular mass, in general, is anisotropic when the stress state is
anisotropic. Many authors, however, have used isotropy to simplify the corresponding results.
If the elasticity is assumed to be isotropic, (see Balendran and Nemat-Nasser (1991) for a dis-
cussion of the general case), with bulk modulus, K, and shear modulus, G, then the constitu-
tive equations reduce to

, = 2K(D, TjB),

' = 2G D, P -+ j ):D :t" ,G13 cc (12)
q T G xa

For rate-independent sliding, the average slip rate, y, is related to the deformation rate
through the rate form of the sliding criterion as,



H = + G -±MKB , h(13)

Tne hfrowmik is sexbac co~ to -for rzmd sidin ubich will be dis-

Eqcaiw~s(12) cremdto te usuAl i7-pbsiczy. except foir two vesy u~a

fth. dilz y p B, and second, dh tam associaed wiih P in (12) renders the pbstic
so-Ain mm n a v ft ,F4 n e -, m A has beeni - out by many ahoxs (
Spencr, 1964, 1982; - and Rim 1975; Mebabadi and Cos-in, 197& Ner-NAsSr ef
aL, 1981; and Nenwa-Nasser, 1983) this is due to the presence of friction and is removed
only if 61 =5, Le., when the ficdm coefficient is equal to the diLaancy anglie-. This however,
canno, in genezL be u,'

3. HARDENING AND SOFnIG

Consider now the evolution of the effective frictional i in loading and in unload-
ing. It is convenian to write the evolution equations in terms of the frictional coefficients
defined by,
Al' - O -,  A2 -tank-(14)

We consider a very simple model where the rate of change of the effective frictional resis-
tance due to fabric, with respect to the rate of shearing, is linearly related to its deviation from
the maximum saturation value, It, = tanot. We also assume that the resistance to inelastic
shearing due to pressure becomes very large as the void ratio reaches its smallest value;
Nemat-Nasser and Shokooh (1979). In this manner, we write the evolution equations for the
frictional resistances as follows:

a(e--mY (ece,), .-] (15)

b for continued loading, i.e., 4 -ML > 0,

- =b (js-pf), for reverse loading, i.e., 4 +MU1; < 0, (16)

where e is the void ratio, ec is the critical void ratio, and e. is the minimum void ratio. We
further assume that both sliding conditions are always met, both in loading and in unloading.
This results in,

q =MLp =-Mup, of + =-202. (17)

This assumption also implies that when a granular mass (in present illustration) is subjected to

only hydrostatic stress, the microstructure is isotropic and the macroscopic angles of friction
are related to the void ratio by,
O = = -2) (18)



4. EXAMPIES

We now cDisdr several flusuative examples in oder to bring out the f.atures embed-

ded in our geneal constiuuve relations. We start with a hydrostarx state of stress and set the

ina values of the angles of Mcdon from (18) for the given void ratio of the sample In all

examples e use G = 100po. K = 2 0 , a = 5, b =20, n = 5, * 400, = 15*
e. = O.2 and e = 0.6, what po is the inital pressum.

We consider the application of the proposed modcl to simple shearing of a granular
material at constant confining pres, (611 = 6 2 =0, LI =L21 = 0), and biaxial shearing
of a granular manial at constant lateral stress, (61, = 0, L = L21= 0). The results of thes
sinmlations are given in the form of reiations between the stress ratio, (ay2/p in simple shear
and o'/p in biaxial compression), void ratio, e, and shear strain (F 1212 in simple shear and
(FlI- F22),2, in biaxial compression) where F is the deformation gradient. In Fig.4, the

results from the simulation of monotonic shearing are given. They correlate very we.l with the
following experimentally observed phenomena:

(1) Ther is always an initial desification, the magnitude of which decreases as the initial
void ratio approaches its minimum value.

(2) If the sample is dense, then the initial densification is followed by dilatancy which con-
tinues until a critical void ratio is attained asymptotically. The stress ratio increases
monotonically in densification and reaches its peak value during dilatancy and then
asymptotically drops to a critical value as the critical void ratio is reached.

(3) If the sample is loose, it densifies continually until the critical void ratio is reached
asymptotically. The stress ratio increases monotonically and asymptotically reaches a
critical value.

The results from the simulation for five cycles of shearing deformation are given in
Fig.5. They show:

(1) When the shearing is reversed, the material tends to densify, resulting in a net
densification at the completion reversed shearing.

(2) If the shearing is continued in the opposite direction, the sample tends to dilate.

(3) Upon completion of each cycle of defox.nation. there is a net densification.

(4) The amount of net densificaion per cycle decreases with the number of cycles.

5. CONCLUSION

A physically-based elastoplastic constitutive model is presented for dilatant, pressure-
sensitive, workhardening materials. The model is applied to simple shearing and biaxial defor-
mation of granular materials, both in monotonic and in cyclic deformation, and it has been
shown to predict all the basic features of the shear deformation of granular materials.

7
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ABSTRACT

The results of a systematic study of energy dissipation in cohesionless granular

media are presented. First, the relation between the excess pore water pressure, accu-

mulated in a water-saturated granular mass, and the corresponding external work in

cyclic loading is studied experimentally. Second, a micromechanical model of internal

energy dissipation due to slip between contacting granules is introduced, and the

results are compared with experimental measurements.

A series of undrained experiments is carried out using water-saturated large hol-

low cylindrical specimens. Most experiments are performed under displacement-

controlled conditions. The imposed cyclic angular displacement which produces the

applied shear strain, has a triangular time variation with constant strain rate over each

quarter cycle. The specimens are subjected to two sequences of loading in order to

simulate the reliquefaction phenomenon. External work per unit volume is calculated

from the experimental results, and its correlation with the excess pore water pressure is

examined. In the first loading, a unique nonlinear relation is observed to exist between

the excess pore water pressure and the external work per unit volume. This relation is

found to be independent of the shear strain amplitude. In the second loading, however,

this relation is a function of strain amplitude. The cyclic shear strength is seen to have

increased in the second loading, because of the strain history of the first loading.

External work supplied to cohesionless granular media is mainly consumed by the

frictional slip between contacting granules. A micromechanical model is developed and

validtetd by the experimental results. It is shown that the internal dissipation per unit

volume in cohesionless granular media, can be expressed in terms of the time-history

of the applied effective pressure and a single scalar parameter which depends on the

density and strain amplitude. The model is further validated by torsion tests with ran-

dom variation in the applied strain amplitude. The theoretical predictions are in excel-

lent agreement with the experimental results.
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1. INTRODUCTION

Liquefaction is a complex phenomenon in which fluid-saturated granular media

may momentarily behave like fluids. It is an important aspect of earthquake-resistant

foundation design of many structures, especially those located in coastal areas, which

are often built on sand with high underground water levels. As liquefaction takes

place under seismic loading, saturated sand behaves more like a fluid, and therefore

fails to support the applied loads of the building. Severe damage to the structure is

often the result. Damage resulting from liquefaction has been observed in the after-

math of many earthquakes; the Loma Prieta earthquake (1989), the Niigata earthquake

(1964), and the Alaska earthquake (1964) are a few examples.

The mechanism of liquefaction is closely related to the dilatancy of granular

media. Dilatancy was first studied by Reynolds (1885). It is defined as the rate of

volume expansion in granular media per unit rate of shearing. The granules are rear-

ranged during shear deformation, and this results in a change in the total volume. If

the granular medium (e.g. sand) is water saturated, a tendency toward densification

(negative dilatancy) results in an increase in pore water pressure and hence a decrease

in the corresponding frictional resistance of the contacting granules. Consider a sam-

ple of sand which is saturated with water while contained in a flexible rubber mem-

brane, and is subjected to a hydrostatic pressure denoted by P,. Static equilibrium

requires that the total internal pressure be Po. The iricmal pressure may be divided

into two separate parts: pore water pressure Pi which is carried by the water, and the

effective pressure P which is carried by the sand as contact stresses at granule/granule

and granule/boundary interfaces. Upon externally applied cyclic shearing, the granules

are rearranged, resulting in a tendency towards a decrease in the water volume. This

results in an increase in the pore water pressure, Pi, and a corresponding decrease in

the effective pressure, P. In continued cyclic shearing, the pore water pressure at the

termination of each cycle increases until it reaches a value close to the applied hydros-
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tatic pressure, Po. When this occurs, the contact resistance of the granules is essen-

tially negligible, leading to loss of load-bearing capacity of the sand mass. The sample

then ceases to behave like a solid body. This is what is meant by liquefaction, in the

present paper, see Casagrande (1975) and Seed (1979).

Liquefaction has been experimentally treated extensively by a number of

researchers; see, for examp 1e, Silver and Seed (1971), Castro (1975), and Ishihara and

Yasuda (1975). Parameters influencing the onset of liquefaction of the sand within a

control volume are identified and measured. These parameters typically include

overall density, initial packing conditions, and granule size distribution; see Seed

(1979), Miura and Told (1982), and Tatsuoka et al. (1982). In addition to these inter-

nal characteristics, the applied loading also affects the onset and nature of liquefaction;

see Ishihara and Tcwhata (1983, 1985), and Symes et al. (1984).

Previous work has, in general, studied liquefaction from the experimental point of

view. Theoretical work has focused more on phenomenological considerations of this

topic rather than a micromechanical approach. A unified energy model for densification

and liquefaction of cohesionless sand was proposed by Nemat-Nasser and Shokooh

(1979) who compared its prediction with experimental results of Peacock and Seed

(1968), Youd (1970, 1972), and DeAlba et al. (1976), and obtained excellent agree-

ments.

The present work correlates the results of an experimental program with a

theoretical model based on micromechanics and energy principles. Models of this kind

seek to relate the overall response of granular materials to the response of their micro-

coastituents Examples of micromechanical analyses of densification and liquefaction

phenoumiena, which are also coordinated with experiments, are Nemat-Nasser (1980),

Nemat-Naser and Tobita (1982), and Nemat-Nasser and Takahashi (1984).
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2. EXPERIMENTAL SETUP

2.1 Motivation and Background

Cohesionless granular materi ls suppor general exteirn t p- comwe

friction. An experimental program must include and shaing of

cible samples in a fully controlled manner with reliable dam. The study of granulr

material behavior requires complex experimert facilities, with a closed-loop feedback

system to control the experiment and to monitor the specimen deforation. The speci-

men geometry used for the prest investigation is a large hollow cylider, 25cm high,

with inner and outer diameters of 20cm and 25cm, respectively. This geometry is such

that in torsion, the shear stress remains (approximately) homogeneous timmghout the

thiclaiess of the specimen; see Hight e a!. (1983) for a detailed examination of this

and related iss.es The specimen is supported by a triaxial load frame; see Figure 1.

The axial and torsional deformations ?re conwzoled through an MT S servohydraulic

loading system. In addition, the specimen is subjected !o late al hydrostatic pressure,

cn both its inside and outside cylindrical surface. In this manner, m 1axiql states of

stress can be imposed on the material tider controlled conditicns with complete data

acquisition capability. This load frame to our knowledge is one of four that have been

constructed to date. Our load frame is fully computer-controlled, where either the

stress- or the strain-path can be preprogramed with mode switching capabilities.

2.2 Specimen Preparation and Installation

The granular material chosen for this study is Silica 60 manufactured by U.S. Sil-

ica. This sand is chosen for its fine particle size. This is necessary in order to avoid

membrane penetration phenomena that would otherwise invalidate the test results. The

particle size distribution is shown in Figure 2. The mean particle diameter is 220Wn
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and e ift pztiay of f t snd is 2-645. Nepmmng co the ksgcafios
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Special fixnures e used t psepa hoHow cyidndul sand specimens. These

fixtures nclude inner and owwe moids to vwhach rubber membranes mre attadhed. 7he

sand is iitay stppored on the bounxn by a ring of porous metal with six evenly

spaced fins, called the pedeszai, tha in conbinariwr wit a mating top ring, called the

cap, applies the tosional load to the specimen. Thm inmr mold with attached rubber

membrane is shown in Figure 3. Ie pedestal (with associated fins) is attached to the

bottom support plat-e. The oue membne is then slid over the inner membrane and

fixed to the pedestal with o-rings. The outer mold is bolted in place and the top of the

outer membrane is draped over the outer mold and held in place by o-rings. A separate

fixture is installed on top of the outer mold (Figure 4) to prevent sand spillage on the

rest of the triaxial load frame. This fixtue also allows for an overfill amount of sand

so that a desired packing condition can be obtained. The excess sand is removed later.

The tube extending from the outer mold in Figure 4 is used to create a vacuum

between the outer mold and outer membrane, thereby holding it securely in place.

It is well known that the initial packing condition of the sand has a noticeable

effect upon the material response of the specimen; see Arthur and Menzies (1972),

Oda (1972), and Mit;-a and Toki (1982). The specimen preparation method must

therefore achieve a consistent initial packing condition so that experiments are repeat-

able. To this end, a technique has been adopted in the soils community that is known

as the rodding method. This method consists of pouring an approximately 2cm deep

layer of sand into the mold and then inserting a rod into the latest layer approximately

1-1.5cm deep. The rod is moved around the circumference of the sand in an up-and-
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down minion for 2-3 revolutions. This procedure is continued until the mold is filled.

We have used 10 layers to obtain loose packing conditions and 14 layers for dense

packing conditions. Experiments performed with loose conditions use the sand in a wet

form. Hre th sand has been air dried and then mixed with 8 weight percent water

before pouring in the mold. The %axer is needed to prevent non-homogeneous initial

packing conditions in the loose form. The void ratio for this condition varies between

0.865 and 0.874. Experiments performed with dense conditions use only air-dried

sand with the void ratio varying between 0.708 and 0.725.

The fixture that was attached to the top of the outer mold is then removed and the

amount of overfilled sand is 'cut' away. The cap is insta!ed next; it consists of the

same porous metal as the pedestal and also has six fins. A second vacuum sysem is

connected to the cap and pedestal. The purpose of this vacuum system is to make the

specimen rigid under atmospheric pressure. The vacuum level is maintained at

29.4kNlm2. The first vacuum system that keeps the outer membrane affixed to the outer

mold is then released. TI- outer mold is then removed, followed by the inner mold. A

torque load cell unit is first bolted onto the ram of the triaxial load frame (Figure 1),

and then bolted onto the cap. Next, a potentiometer is attached to the load frame (Fig-

ure 5). The potentiometer measures the twist angle during the experiment. A plexiglass

chamber with steel bands is installed over the entire specimen, and a top plate is

installed. The top plate is affixed to the bottom plate via stainless steel tie bars. The

bars hold the chamber firmly in place. The purpose of the chamber is manyfold. First,

it provides confinement of the experiment if the sand mold loses integrity. Second, it

holds the water that is used to apply hydrostatic pressure to the specimen. Finally, it is

used as a viewport to observe the progress of the experiment.

The entire specimen assembly is now complete. The assembly is then raised to

the level of the MTS load frame via a forklift. A special work frame has been built

onto the MTS load frame. This work frame allows attachment of all connections to the
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specimen assembly as well as providing a railway for installation and removal of the

specimen into and from the MTS load frame. The overall assembly is shown in Figure

6.

The MTS load frame used for this experiment has an axial capability of 89 kN

(20,000 Ib), and a torsional capability of 565 N-m (5,000 lb-in) which can be used

independently. This system uses a Digital Equipment Corporation PDP-11 computer to

control the servohydraulic actuators. The system is closed-loop so that feedback from

any selected transducer can be used to control the test.

Once the triaxial load frame has been rolled into place over the ram of the MTS

load frame, it is secured in place by both vertical and horizontal clamps (Figure 1).

The hydraulics for the MTS system are turned on and the MTS ram is raised to the

level of the universal joint (Figure 7), using displacement control. An air clamp (Fig-

ure 8) that is fixed to the top of the MTS ram is then actuated and grips the universal

joint on the bottom of the ram of the triaxial load frame. The universal joint is

required to accommodate any misalignment between the ram of the MTS load frame

and the ram of the triaxial load frame.

The first step in the experimental procedure is to fill the plexiglass chamber with

water until the specimen is completely submerged. The remaining space above the

specimen is pressurized with air to 29.4kN/M 2, which is the same value as the vacuum

inside the specimen. During this operation the vacuum in the specimen is released and

water pressurized in such a manner as to keep the effective pressure in the specimen

constant, 29.4kN/rm2.

The specimen is then water saturated in the following manner. To attain full

saturation, first the specimen is saturated with C02 gas through the porous metal in the

pedestal and cap. The flow of gas is continued until all air is removed from the speci-

men. C02 gas is used because of its high solubility in water. A fixed amount, 4 liters,

of de-aired water is used to saturate the specimen. The small amounts of air and C02
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gas remaining in the specimen must then be removed as much as possible. The pore

water pressure is then increased to 196kNIm 2 as back pressure, using a buret system,

while at the same time the external hydrostatic pressure is increased to 225.4kN/M2 so

as to keep the effective pressure constant (29.4kNIm2) during this procedure. This pro-

cedure reduces the volume of the excess gas in the specimen due to the relatively high

pore water pressure.

To perform experiments of this type, it is required that the specimen be highly

saturated. The degree of saturation is measured by the B-value. To measure the B-

value the specimen must be in the undrained condition. This condition is met by clos-

ing the valve to the buret, ensuring that the specimen remains at a fixed volume. The

specimen is said to be perfectly saturated (B=I) if an incremental increase in external

hydrostatic pressure has the effect of increasing the pore water pressure in the speci-

men by an identical amount. The B-value is defined as the ratio of the incremental

increase of pore water pressure to the incremental increase of hydrostatic pressure. The

values for all of our experiments are in excess of 0.99.

The last step of specimen preparation is to increase the effective pressure to

196kN/m 2. To do this, the valve to the buret is reopened, allowing water to drain from

the specimen. The external hydrostatic pressure is thereby increased to 392kN/m 2,

where pore water pressure is 196kN/m 2. A schematic diagram of the pressurization

system is shown in Figure 9. Finally, the specimen is left undisturbed in this condition

to isotropically consolidate for a period of 3 hours.

2.3 Experimental Procedure and Data Acquisition

The MTS load frame has a computer-operated controller system. The computer

operates three independent controllers. Each controller has three independent feedback

channels. Controller number one is associated with the vertical movement of the
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MTS/triaxial load frame ram assembly; channel one is used to monitor the load from

the torque load cell, whereas channel two is used to monitor the vertical displacement

of the specimen. Channel three is not used with any controller. Controller number two

is associated with the pressure; channel one is used to monitor the chamber pressure,

P,, and channel two is used to monitor the pore water pressure, Pi. Controller number

three is associated with the twist of the ram assembly; channel one monitors the torque

from the torque load cell and channel two monitors the angle of twist from the poten-

tiometer.

The experiment is conducted by using two closed-loop feedback systems. System

one uses channel one of controller one in load control to keep the specimen in a state

of hydrostatic compression in accord with the external pressure, P.. The second feed-

back system uses channel two of controller number three in displacement control to

cyclically twist the specimen to desired shear strain amplitudes and at desired shear

strain rates. The imposed cyclic angular displacement which produces the applied shear

strain, has a triangular time variation with constant strain rate, 2/3 %/minute over each

quarter cycle. Shear strain amplitudes are 0.2%, 0.5%, and 1.0% for both loose and

dense specimens. Tests at 0.4% and 2.0% shear strain amplitudes are performed on

dense specimens. All tests are continued until the excess pore water pressure reaches

95% of the initial effective pressure, i.e., 186.2kN/m2. In actuality, the tests are

stopped at the end of the cycle after which transducer two of controller two (pore pres-

sure transducer) reaches a value of 382.2kN/m 2. This entire process is defined as the

first loading.

The valve to the buret is then opened and the pore water pressure, P,, is reduced

to its initial value of 196kN/m 2. The specimen is not disturbed for three hours for

reconsolidation purposes. The valve to the buret is closed and then the exact pro-

cedure for the first loading is repeated. This is then called the second loading. After

the second loading, the experiment is disassembled. Care is taken to remove the sand
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from the specimen and place it in an oven for drying. The sand is dried for 24 hours

and then weighed.
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Figure 3. Inner membrane and pedestal
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Figure 4. Overall figure of built-up molds

Figure 5. Specimen under applied v uum with torqut load cell and potentiometer
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Figure 6. Overall assembly of MTS and triaxial load frame
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Figure 7. Universal joint

Figure 8. Air clamp



- 16-

Compressed Air Vacuum

(3 Regulator

O Air Filter

o Pressure Gage

®Valve

Figure 9. Schematic diagram of air pressure and water supply system
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3 EXPERIMENTAL RESULTS

3.1 First Loading

The results of the first loading for both loose and dense samples are jswd in

this section. First, we discuss the cyclic shear deformaion - - of wzr

saturated specimens in stiain-controlled conditioas Second, w amine the relation

between the external work, measured per unit volume, and the co n excess

pore water pressure.

All our experiments are under a strain-controlled condition. This is in contrast to

most other researchers who have conducted the undrained cyclic shear tests under

stress-controlled conditions; see, for exampe Tch-.iha mad Yasuda (1975), Seed

(1979), and Tatsuoka er at. (1982). Figure 10 shows the relation between the shear

strain and the effective pressure for loose samples, for two strain amplitudes, 0.2% and

1.0%. It is seen that the effective pressure decreases during each cycle. The reduction

after the first cycle is especially large. It is also seen that the number of cycles

required for the excess pore pressure to attain 95% of the initial effective pressure,

depends on the employed strain amplitude: 27 cycles are needed for 0.2%, and only 2

cycles for 1.0% strain ampiitude. tlgure 11 shows the relation between the shear

stress and the effective pressure, while Figure 12 is for the corresponding shear stress

vs. the shear strain. It is seen that the peak shear stress (and the secant modulus)

decreases after each cycle.

The energy supplied through the external work is mainly consumed by the fric-

tional loss at contacting granules, resulting in a change of the microstructure in the

granular mass. Therefore, the external work may be used to measure the history of

fabric change in a granular mass.

The rate of external work per unit volume, < liE >, ca.- be evaluated in terms of

the applied boundary tractions, r, and the boundary velocity field, i,
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Since, for the mpessire lvels used here, sand patrcies ard water can be assumed to be

incompressible, -" is zero durin- the indrained extiriment if the sample is completely

saturated. The rate of external work per unit volume then becomes

< >= <o-> <'> (34

The pressure term does not contribute to the rate of external work for incompressible

materials, as is evident at the outSeL The external work per unit volume, < wE >, up to

time i can then be evaluated by the rime-integration of (3.4),

<WE > = J < (:> < "t' e > dt (3.5)

where to denotes the time at which the experiment is started.

The external work is calculated from the experimental results, and correlated with

the accumulated pore water pressure for both loose and dense specimens. The relation

beween the external work per unit volume and the excess pore water pressure for the

loose specimens is shown in Figure 13. Three strain amplitudes, 0.2%, 0.51 and

1.0%, are used here. The data at the end of each cycle in each experiment are plotted

in Figure 13. It is clearly seen that there exists a unique nonlinear relation between
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the external -avk and thbe pore waxer pressure; this relation is independent

of th= employed skr-stmin amplitude, but the number of c)cles to the 95% initial

effective peessmr does depend on the strain amplitude.

11e: relation between external vwk per unit volume and t excess pore wame

pressur for dense specimens is shown in Figure 14. Five different strain amplitudes,

0.2%, 0O4%, 0.5%, 1_0% and 20%, are employed- It is clearly seen that here again a

unique nonlinear relation exists between the external work and the accumulated pore

vwte pressure

To further explore this interesting phenorenon, randomly varying shear-srai.

amplitudes up to 1.0% are applied to a specimen. The relation between the shear strain

and the effective pressure is shown in Figure 15. The relation between the external

work and the excess pore water pressure for this random loading Js also included in

Figure 14, where the accumulated pore pressure at zero shear strain is plotted against

the corresponding external work. It is seen thua dhe randomness in loading does not

affect the unique nonlinear relation between these two quantities.

The effect of specimen density on the above-studied relation is now considered.

It is seen that both thc !Jose and dense specimens in first loading display a unique

relation between the external work and the corresponding excess pore water pressure.

The two curves are compared in Figure 16. They essentially coincide up to 130k/m 2

pore water pressure, i.e., 65% of the initial effective pressure. A significant difference

appears thereafter, with the loose samples developing higher pore pressure, as should

be expected.

3.2 Second Loading

The experimental results for the second loadine for both loose and dense speci-

mens are presented in this section. After the first loading discussed in the previous
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subsection, specimens are reconsolidated under the same initial effective pressm,

196l'Im2, as in the first loading. The second loading is then applied to the speimens.

First, w discuss the results where the strain amplitude in the second loading is the

sane as that in the first loading. Then, we examine the results where the strain ampli-

tud in the second loading is different from the one in the first loading.

The shear deformation characteristics in the second loading are compared with the

results of the first loading. Figure 17 shows the first two cycles of the relation between

the shear strain and the effective pressure in both the first (solid curve) and second

(dotted curve) loading for a dense specimen deformed at a strain amplitude of 0.5%. It

is seen that the excess pore water pressue accumulated during the second loading is

much less than that in the first loading, and the number of cycles required to reach

95% of the initial effective pressure in the second loading is much greater than that in

the first loading.

Figure 18 is a direct comparison of the pore water pressure variation in loose and

dense specimens, deformed at a strain amplitude of 0.5%. It is clearly seen 'hat it

takes a greater number of cycles for the pore water pressure to reach a specified level

in the second loading than it does in the first loading, for both cases. This is due to the

ordered arrangement of the granules, attained upon the completion of the first loading.

Specifically, the contact normals tend to be orientcd after the first loading such that the

specimen is better able to resist a similar shearing. Another trend to notice is that the

pore water pressure builds up faster during the first loading of the dense specimen

than it does in the second loading of the loose specimen. This is also explained by the

oriented contact normals, despite the large difference in densities. These trends are

seen in all our results when we compare the behavior of loose and dense specimens

deformed at a constant strain amplitude. It should be noted, however, that, in a
-trin-c-nntrl d t,ct thp AP1f.%rrn-it;rn of th, - ;r 1; - - *, . i.. ...4i-

strain amplitude. This prevents extensive particle rearrangement which often occurs in
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stress-controlled tests, once sufficiently high pore pressures are attained; see Nemat-

Nasser and Tobita (1982).

The relation between the external work per unit volume and the excess pore water

pressure in the second loading will now be presented. Figures 19 and 20 show this for

loose and dense specimens, respectively. There are no significant differences up to

half the initial effective pressure. However, after that, the relation in the second load-

ing seems to depend on the employed strain amplitude, although this same relation in

the first loading does not. Figures 21 and 22 show the relation between the excess

pore water pressure and the employed strain amplitude for loose and dense specimens,

respectively.

To undersiand why the relation between the pore water pressure and the supplied

work per unit volume is independent of the strain amplitude in the first loading but not

in the second loading of the same sample, we observe that for the same density, the

sample packing is the same for all samples at the start of the first loading, whereas at

the start of the second loading each sample has experienced a different stress and

strain history during its first loading with a strain amplitude different from the other

samples. It is still not clear whether the strain amplitude used in the first loading

affects the relation between external work and the excess pore water pressure in the

second loading. In order to investigate the true effect of the strain amplitude during

the second loading, the specimens are subjected to cyclic loading at several different

strain amplitudes, and then the second loading is performed for each specimen at the

same common strain amplitude. The results are shown in Figures 23 and 24. It is

clearly seen that the stress and strain history in the first loading does not affect the

relation between the external work and the excess pore water pressure in the second

loading, i.e., this relation in the second loading dependF on the strain amplitude
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4. THEORETICAL MODELING

4.1 Energy Dissipation in Granular Media

In the present context, the external work that is supplied at constant temperature

to a material sample is either dissipated through friction or is stored in the material as

strain energy. The relation between the external work and the internal dissipation pro-

vides a basic constitutive constraint for the flow of granular media; Rowe (1962). For

stress levels considered in our experiments, essentially the entire external work is dissi-

pated by slip between contacting granules, and, hence, very little is stored in the

granules and the fluid as strain energy; Schofield and Wmth (1968). In this section,

energy dissipation in granular media is micromechanically modeled, and is related to

the pore pressure built up in cyclic shearing of saturated undrained samples.

We consider the low-strain-rate shear loading of a granular mass that occupies

spatial region D of volume V. The region Q within D is occupied by the granules,

whereas D - Q is occupied by water (the specimen is saturated). The rate of external

work per unit volume is expressed in terms of the boundary tractions r, and the boun-

dary velocity field i, by

< 1, () > = 7L z (x, v, t) • i(x, t) dS (x) . (4.1)

The tractions r relate to the exterior unit normal v on DD by

'r(x, v, t) = o(x, t) • v(x, 1), (4.2)

where a is some stress field in equilibrium with the applied tractions; Hill (1967).

Using (4.2) in (4.1), we have

< VEWt > = _L ( o;(x, t) • v(x, ) ) •6(x, t) dS(x) . (4.3)

To apply the Gauss theorem, we note that for granular materials, slip at contacting

granules renders the velocity field discontinuos there. Therefore, the Gauss theorem

cannot be directly applied to (4.3). The velocity jumps at contacting granules must be
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included. Suppose that there are N slip surfaces in D at contacting granules at time t.

Let s" be the area on which the a'th slip occurs. Then, the velocity field is discontinu-

AV
ous on Y sa where velocity jumps [ i ] take place; here we define the jump by,

EW1

[i ,)] im i( It ) - im i( 3r,). (4.4)

N

The velocity field is therefore differentiable everywhere except on Y s". Now, we

N
consider a surface S shown in Figure 25, which included the slip surface E s' in D at

N M

time t, i.e., we let s3 c S, and which divides region D into M subregions Y DP = D.

We apply the Gauss theorem to each subregion to arrive at

f i ds= f ((V. - ). i+o: Vi)dV, (4.5)

where aDP denotes the boundary of subregion D. Using the equilibrium equation with

no body and inertia forces, we have

V. Cr = 0. (4.6)

The symmetry of the stress tensor gives

G = ( (4.7)

Then (4.5) yields

f , dS f a: dV (4.8)

where

'S4

1 V + ( V T (4.9)
2

is the strain-rate tensor.

We consider the left-hand side of (4.8), and note that

M
f D(x, v, )= D(x,v, i ) + S+(x,v, t ) + S-(x,v,t ), (4.10)
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where S* and S- are opposite faces of the same surface S, i.e.,

S (x,v,t )= S-(x,- v,t ). (4.11)

Using (4.10), the left-hand side of (4.8) becomes

j i dS =-j z. adS+fx dS+ fr. z idS). (4.12)

Since the surface tractions z satisfy

r(x, V, t) =--E( x,- V, t), (4.13)
N

the second and the third terms in (4.12) cancel out for any x E (S - sc ), where the
0=1

velocity field is continuous. Equation (4.12) then becomes

V ' Y .f dS:--( . dS - Y, -z [iIdS) (4.14)

I=1 aDlA CC=l

and (4.8) reduces to

" * dS i dV + f x [iI dS). (4.15)

The first and second terms in the right-hand side of (4.15) are the strain energy and the

frictional energy terms, respectively. The strain energy in (4.15) can be decomposed

to the strain energy for granules and for water, leading to

IN
r -' dS= (cr: dV+ Ju:idV+Fr T. [i]dS), (4.16)

JI ID a =Isa'C

which is the energy dissipation equation for saturated granular media.

4.2 Formulation of Frictional Energy Loss

In this section, we formulate the frictional energy term in (4.16) as a linear func-

tion of the effective pressure P. The unit contact normal to a slip plane and the unit

vector in the slip direction are denoted by n and s, respectively. The traction r on the
N

slip surface s' in D, is decomposed as
a.=l
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x (x, ,t ) =er(x,t )s(x, t ) + (x, t )BnCx, t1) (4.17)

where TO and t* are the normal and shear components of the tractions, respectively.

Now, we assume that the velocity jump has only a shear component,

[ i]( x, t ) = [ i l(x,t ) s(x, t ). (4.18)

Using (4.17) and (4.18), the frictional energy term in (4.16) becomes

E 00(x, t) [, ](x, t) dS(x). (4.19)
V 011sa.A aV ,

N
Denote the effective frictional coefficient on Y sa by g. (x, t). Then the shear com-

0=1

ponent z is expressed in terms of the normal component t" and the effective frictional

coefficient as

.e( x, t ) = i( 1,t) O( x, 1). (4.20)

Substitution from (4.20) into (4.19) yields

" 0 I f0 (x , t) • x, t) dS (x)

= "t(x, t) (x, t) [,i l(x, t) as(x). (4.21)

0=1 sa(z.a,:)

Since the granules carry the effective pressure through intergranular frictional contacts,
N

it is reasonable to assume that the normal tactions TO at a slipping contact in I sct, are
0=1

linearly dependent on the effective pressure P,

TO( x, t ) = 'T( x, t ) P( t ) , (4.22)

where 'T is a scalar-valued function defined at points where slip occurs. In general, 'P

depends on the size of the granules, the packing, the loading condition, and other

relevant factors. Then (4.21) yields

E J r(x,:) [lC](x, t) dS(x)
a=l :0(1.3,:)

f t(x, t) '(x, t) P(t) [ 4 ](x, t) dS(x). (4.23)

Ssot f (xoxwb)

Since the effective pressure PQt) is not a function of x, we obtain
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1N

= j g(x, t) '(x, t) [ ](x, t) dS(x)) P () (4.24)
1 gU(r~g)

< 6)> NO), (4.25)

where

< i(t) > Z jI I . x, t) T(x, t) [ i ](x. t) dS (x) . (4.26)

Gzl $*(".I)

Since a negligibly small part of the rate of external work is stored in the granules

and water at stress levels considered in our experiments, the strain energy terms for

granules and water in (4.16) is negligibly small compared with the friction term. We,

therefore, set

<i>=-I( a:iaV+ i a:idV). (4.27)V i D-0l

Then, the energy dissipation in granular media becomes

- i dS =< 6 > P + <i >. (4.28)

4.3 Cyclic Torsional Loading

The energy dissipation for a cyclic torsion test performed on a hollow cylindrical

specimen is now considered. Experiments are performed under undrained conditions.

The shear strain is cyclically applied to the isotropically consolidated specimen, as

described in Section 3. The rate of external work per unit volume under these condi-

tion is expressed i. terms of the average stresses and strains as

V7 j "(x, V, 0 i(x, t) dS = < ao(t) > < Yo() >. (4.29)

Equation (4.28) yields

< a18o(t) > < Yze(t) > = < 6(t) > P(I) + < i(t) >. (4.30)
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Consider the energy per cycle. Integrating (4.30) over the n'th cycle, we have

ta
f < a.G(t) >< 789(t) >dt= f < 6(t) >P (t) & + f <i(t)>dt, (4.31)

'.-I '*-Ia-il I.it-

where t, denotes the time at which the n'th cycle is completed. Decomposing (4.31)

by pulling P outside of the integral and accounting for the resulting error by the addi-

tion of a term denoted by e., we arrive at

ta t, ta

f < 080)><, 0(t)>dt =. f <Q(t)>dt + E. + f <e(t)>dt , (4.32)

where T. is the average effective pressure in the n'th cycle given by

1 , P(t) d. (4.33)

If the effective pressure changes only slightly in the n'th cycle, the error ,., is small.

Summing (4.32) over all cycles up to the k'th cycle, we now have

k ta k t t

f, < <.O~(t)> < hO(t)> dt= I (F j <(t)>dt + .,+ J <e(t)>dt ). (4.34)
a_1 X=iaI a-I

Finally, (4.34) is written as

'k t tk k

f < a,0(t)> < y.0(,) > dt =_ f < 6(t) >dt if P(t)dt + c.+ f < (t) >dt, (4.35)
to k O0o to n to

l

= Ck f P(t) dt, (4.36)
to

where

t k k ' k t

-.- f--- J<c > di + ( F, + f <e >dt )/f P d. (4.37)
=k o to  A=l0t o  to

Equation (4.36) represents the energy dissipation up to the k'th cycle. C will be

called the energy dissipation coefficient. It is regarded as representing the microstruc-

tural arrangement of the granular mass at each instant.

The coefficient Ck in (4.36) can be estimated experimentally. Its variation is plot-L ted against the number of cycles in Figures 26 and 27 for loose and dense specimens,



- 43 -

respectively, and against the excess pore water pressure in Figures 28 and 29. These

results show that Ck is nearly constant throughout the experiment when a constant

strain amplitude is cyclically applied to the specimen. There is only a small difference

in the C-value between the first and second loading, even though there exists a large

difference in the corresponding number of cycles. These results suggest that C does

not depend on the strain history, but does depend on the strain amplitude. The relation

between Ck and the strain amplitude for both loose and dense specimens is gi,,en in

Figure 30. It is seen that CA depends on the strain amplitude and density, but not on

the strain history.

From these results, it seems reasonable to assume that, at constant density and

strain amplitude, Ck is a constant, say, C, related to the internal work per unit volume

of a given granular mass. It can be evaluated experimentally, as long as the same

strain amplitude is cyclically applied to the specimen. The C-values shown in Figure

30 are used to calculate the internal work per unit volume at the end of each cycle,

and these results are plotted in Figures 31 - 34 along with the corresponding external

work. Clearly, the data points match closely in each case.

These results show that energy dissipation in granular media for cyclic torsional

loading can be expressed in terms of the time history of the effective pressure, along

with a constant C-value which depends on the strain amplitude and density only.

4.4 Random Torsional Loading

Energy disspation for a torsional loading test in which the shear strain is applied

randomly (rather than cyclically), is studied as an application of the above results. The

experiments are performed using dense specimens. Shear strains are applied to a

specimen at randomly varying strain amplitudes, but at a constant shear strain rate over

each quarter cycle. The relation between the shear strain and the effective pressure in

the first loading is shown in Figure 15 ar "1 examined in Section 3.2. The same
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relation in the second loading is shown in Figure 35.

Since C-values are essentially independent of the strain history, as discussed in

Section 4.3, the energy balance for a random torsional loading gives, upon modifying

(4.36),

-. m

f <cr.e(t)>< eq(t)>dt:XCi f P d, (4.38)
to i= i

where t is the time of the i'th zero shear strain, and C is the i'th C-value. The value

of C, is determined as follows. First, the maximum shear strain between ti1 and t, is

found. Then, the C-value corresponding to the shear strain is obtained from Figure 30

which shows the relation between the C-value and the shear strain amplitude (dashed

line).

The internal work per unit volume is calculated from the right-hand side of

(4.38), using experimental results. It is displayed in Figure 36 along with the external

work per unit volume. These two quantities are in excellent agreement, which tends to

support the validity of (4.38).
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5. DISCUSSION

Energy dissipation in the flow of cohesionless granular media is considered in this

report. A theoretical formulation is proposed in Section 4 based on a simple

micromechanical modeL The internal work for cyclic torsional loading is shown to

depend on the time history of the effective pressure and an experimentally obtainable

parameter C. Tht- results of a series of experiments show that C depends on the strain

amplitude and density, but is essentially independent of the stress or strain history. On

the other hand, the effective pressure clearly depends on the strain history, as shown

by the large difference in the number of cycles between the first and second loading

required to attain the same pore water pressure. Therefore, the right-hand side of

1,

(4.36) consists of a strain-history-dependent part, f P di, and a strain-history-
:0

independent part, C.
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