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ABSTRACT

The bssic aims of this research program have becn to study the mechanical
properties and constitutive relations of granular materials thai support the applied loads
through interparticular frictional contacts, and to relate these to the granular fabric, both
stress-induced and inherent. To this end a coordinated experimental and theoretical
program was followed in order to identify:

1. Etfective parameters that measure the fabric of granular masses.

2. The difference between inherent and induced fabric, and the influence of each on the
constitutive response of the material

3. Parameters which measure the evolution of fabric in the course of a given overall load
or deformation history

4. the relation between fabric and the overall stress and deformation

5. Constitutive relations which directly involve fabric measures and the measure of their
evolution, and hence, are based on the fundamental microstructural events which give rise
to nonlinear material response

The experimental work included tests on large hollow cylindrical samples of granular
materials (sands), where a true three-dimens:onal stress state can be produced in the
sample. Accurate measurements of forces and associated displacements were made in the
unigue state-of-the-art testing facilities of the Principal Investigator, at the University of
California, San Diego (UCSD). Parallel to this, a series of model experiments on twe-
dimensional photoelastic rods with oval cross section was also performed. By means of
photoelastic procedures, the history of the evolution of the microsiructure was recorded for
simple shear loading paths. Using the existing image analysis facilities, the photoelastic
pictures were analyzed, major microstructural features were identified, and were related to
the overall stress and deformation histories, using stereological techniques, as well as by
direct measurement of fabric parameters. The experimental studies were closely
coordinated with the micromechanical modeling. This report includes the scientific
findings of this research program.



1.1 INTRCDUCTION

A fundamental approach was followed in this program in order to develop
physically-based constitutive relations for granular materials. The program included the
following steps:

1. Micromechanical observations, in order to identify the major microscopic features that
produce the overall nonlinear macroscopic response and associated failure modes;

2. Micromechanical modeling of the identified mircroscopic features on the basis of
rigorous mechanics principles and systematic mathematical deduction of the macroscopic
consequences of the model;

3. Systematic experiments on carefully prepared and reproducible samples, in order to test
the validity of the model results, and hence, the model's basic assumptions;

4. Macroscopic constitutive models which encompass the experimentally verified
micromechanical features; and

5. Systematic experiments to test the validity of the constitutive results and to quantify the
constitutive parameters of the model.

Theoretical modeling at both the microscopic and macroscopic levels was pursued,
guided by systematic experimental observation at both the microscale and macroscale,
which provided vital information on the physics of the process.

The micromechanics of granular flow was studied in simple shear and in biaxial
loading by using photoelastic, rod-like granules with circular and oval cross sections.
Based on these observat.ons, overall stress and deformation measures were calculated
using fabric tensors which characterize the microstructure of the granular mass, and
relarions between the overall stress and various measures of the fabric have been carefully
studied. These results have been summarized in Mehrabadi et a!. (1988) and in Subhash et
al. (1991). Of particular importance are two major findings which contradict some
commonly held views. They are: (1) in general, a second-order tensor which represents
approximately the distribution of contact normals is 1ot coaxial with the stress tensor,
althnugh i:s principal directions follow those of the stress tensor in a determinable manner;
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and (2) in general, the distribution of contact normals or unit branches cannot be adequately
represented by a second-order tensor.

Furthermore, under this project, we have studied several alternative theories for
quantifying the incremental measures of local (micro) deformation and forces, and related
them to the relative sliding and rolling of granules, their frictional contact forces, and the
statistical classes that encompass a set of granules associated with a particular orientation of
either contact normals or unit branches. This study has produced a fundamental and
definitive representation of incremental deformation measures and stress measures at the
microlevel, based on subdividing contacts into classes with common contact normal
orientations, and ideniifying each class as a micre-element; see Mehrabadi, Loret and
Nemat-Nasser (1991).

In collaboration with Professors B. Loret of Grenoble, France, and M. Mehrabadi
of Tulane University, a new approach has been developed, based on a general tensorial
r¢lation between local kinematical quantities and global ones, including the effect of overall
stress and fabric. The basic framework for a general theory in two dimensions has thus
been established. Based on it, and the Taylor averaging scheme, the overall rate-
constitutive relations have been developed; Mehrabadi, Loret and Nemat-Nasser (1991).

Parallel with the theoretical work and micromechanical experimental validation, we
have studied the effect of fabric (both inherent and induced) on the strength, and the
liquefaction and densification potentials, of cohesionless granules. This experimental work
involved both deformation-controlled and stress-controlled cyclic testing under complete
computer-controlled conditions. It has resulted in several new observations which correct
some (incorrect) commonly held views that were based on experimental results obtained by
means of less advanced experimental techniques and facilities. In particular, we have
found that preliquefaction does not necessarily result in a sample highly susceptible to
reliquefaction: it may, in fact, strengthen the sample, depending on the residual fabric;
Okada and Nemat-Nasser (1991).

In the course of the above-mentioned experimental study, we have obtained some
interesting results which seem to suggest a unique relation between the pore pressure
buildup and the associated energy input, at least for virgin samples in strain-controlled
tests; Okada and Nemat-Nasser (1991). Attachment 6 contains these results. The strain
amplitude ranges from 0.2 to 4.0%, in cyclic strain-controlled tests. They lead to a unique
pore pressure-energy relationship. The effects of initial fabric were included by
prestraining and/or preliquefying the samples. Based on micromechanics, a physically-
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based model has been developed for this phenomenon, including the effects of fabric; see
Attachment 6.

1.2 PUBLICATIONS COMPLETED UNDER GRANT AFOSR 87-0079
LIST OF PAPERS PUBLISHED

Mehrabadi, M.M,, S. Nemat-Nasser, H.M. Shodja and G. Subhash, "Some Basic
Theoretical and Experimental Results on Micromechanics of Granular Flow",
Micromechanics of Granular Materials, M. Satake and J.T. Jenkins (eds), Elsevier (1988),
253-262.

Nemat-Nasser, S., "Effect of Fabric on Liquefaction and Densification of Saturated Soil:
Experiments and Theory," Micromechanics of Granular Materials, M. Satake and J.T.
Jenkins (eds), Elsevier (1988), 202-205.

Nemat-Nasser, S., "Anisotropy in Response and Failure Modes of Granular Materials,"
Yielding, Damage and Failure of Anisotropic Solids (EGFS5), Proceedings of the
IUTAM/ICM Symposium, August (1987), Mechanical Engineering Publications, J.P.
Boehler (ed.), London, (1990), 33-48.

Subhash, G., S. Nemat-Nasser, M.M. Mehrabadi and H.M. Shodja, "Experimental
Investigation of Fabric-Stress Relations in Granular Materials", Mechanics of Materials,
Vol. 11, No. 2 (1991), 87-106.

LIST OF PAPERS SUBMITTED

Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "Incremental Constitutive Relations for
Granular Materials Based on Micromechanics," Proceedings of the Royal Society of
London, submitted 5/91

Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "A Constitutive Model for (Granular
Materials Based on Micromechanics,"presented at the Second US-Japan Seminar on
Micromechanics of Granular Materials, Clarkson University, NY, August 5, 1991,
submitted 9/91



Nemat-Nasser, S. and B. Balendran, "Micromechanics of Flow and Failure Modes of
Particulate Media Over a Wide Range of Strain Rates", presented at the 2nd US-Japan
Seminar on Micromechanics of Granular Materials, Clarkson Univ., NY, August 5, 1991.

Okada, N. and S. Nemat-Nasser, "Energy Dissipation in Inelastic Flow of Cohesionless
Granular Media", Geotechnique, submitted 12/91

1.3

1.3.1

1.3.2.

1.3.3.

ABSTRACTS OF PUBLICATIONS

Mehrabadi, M.M., S. Nemat-Nasser, H.M. Shodja and G. Subhash, "Some Basic
Theoretical and Experimental Results on Micromechanics of Granular Flow",

Micromechanics of Granular Materials, M. Satake and J.T. Jenkins (eds), Elsevier
(1988), 253-262.

In order to establish guidelines for modeling the macroscopic behavior of granular
materials, an experimental study of the evolution of the microstructure of an
assembly of granular materials under a uniform confining pressure and subjected to
a pure shear was conducted. The granular material used in the study consisted of
photoelastically sensitive rod-shaped particles of oval cross-sections. It was found
that (i) the distribution of branches and contact normals are almost identical, (ii) the
second-rank fabric tensor does not adequately describe the microstructure of highly
anisotropic samples, (iii) the density of contacts whose normals lie along the major
and minor principal stress axes, varies sharply initially and then approaches a
constant value in the course of deformation, and (iv) the density of contacts with
planes parallel to the maximum shear stress plane remains practically constant
throughout the deformation.

Nemat-Nasser, S., "Effect of Fabric on Liquefaction and Densification of Saturated
Soil: Experiments and Theory," Micromechanics of Granular Materials, M. Satake
and J.T. Jenkins (eds), Elsevier (1988), 202-205.

It has been known that the inherent and induced anisotropy or fubric has
considerable influence on the response and failure modes of granular masses.
Some definitive recent experiments which clearly demonstrate this phenomenon in
relation to the densification and liquefaction potential of saturated sanus, are briefly
reviewed, together with associated micromechanically based theoretical
observations.

Nemat-Nasser, S., "Anisotropy in Response and Failure Modes of Granular
Materials," Yielding, Damage and Failure of Anisotropic Solids (EGFS),
Proceedings of the [UTAM/ICM Symposium, August (1987). Mechanical
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1.3.4.

1.3.5.

Engineering Publications, J.P. Boehler (ed.), London, (1990), 33-48.

This review addresses some recent experimental and theoretical studies of the
mechanical properties of particulate media which support applied overall loads
through individual contact resistance. We emphasize the inherent and induced
fabric or anisotropy and its influence on the response and failure modes of this class
of materials. The experimental studies include: (1) model experiments on
photoelasiic granular rods with circular and elliptical cross-sections, in biaxial as
well as simple shear cyclic loading; and (2) dilatancy, liquefaction, and the overall
siress-deformation relations studies on simple shearing apparatus and also on large
hollow cylindrical samples of sand under complex, three-dimensional monotonic as
well as cyclic stress paths. These experiments are designed in coordination with
theoretical micromechanical models in order to bring out the major
micromechanisms that are responsible for the observed highly path dependent
behaviour of granular materials. The issues of inherent and induced anisotropy or
fabric and their effects on the overall response of the material are of particular
interest in these experiments. The theoretical studies emphasize recent
micromechanically-based models of granular flow, which specifically seek to
understand and quantify relevant measures of anisotropy or fabric, and the relation
between fabric measures and the overall stress tensor.

Subhash, G., S. Nemat-Nasser, M.M. Mehrabadi and H.M. Shodja,
"Experimental Investigation of Fabric-Stress Relations in Granular Materials”,
Mechanics of Materials, Vol. 11, No. 2 (1991), 87-106.

A brief summary of some relevant theoretical and experimental results on the
microscopic aspects of the response of granular masses is presented. The results of
a series of experiments involving simple shearing under a constant confining
pressure, performed on photoelastic rod-like granules (plane strain) are reported.
In these experiments, the components of various fabric tensors are measured, and
their variations over one cycle of shearing are examined and compared. The
orientations of the principal axes of all commonly used fabric tensors are observed
10 change sharply with the reversal of the shearing direction. It is also concluded
that, in general, second-order fabric tensors are not adequate to accurately describe
the distribution of fabric measures such as the distribution density function of unit
contact normals or unit branches which are unit vectors along line segments
connecting the centroids of adjacent contacting granules. This is particularly so
when the response of the granular mass is highly anisotropic. Finally, the
expression for the macroscopic stress in terms of the contact forces and other local
quantities, is reviewed and its experimental verificaticn is discussed.

Mehrabadi, M.M., B. Loret and S. Nemat-Nasser, "Incremental Constitutive
Relations for Granular Materials Based on Micromechanics," Proceedings of the
Royal Society of London, submitted 5/91

Micromechanically-based constitutive relations for two-dimensional flow of
granular materials are presented. First, the relations between the overall stresses
and the relevant microscopic quantities, namely, the interparticle forces, the density
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1.3.6.

1.3.7.

and orientation of contact unit normals, as well as the average size of the particles,
are obtained. Then, the kinematics is examined, and the overall velocity gradient is
related to measures characterizing the relative sliding and rotation of granules. A
significant concept underlying all these developments is the notion of the class of
contact unit normals with a continuously evolving distribution function, even
though individual members of various classes may change discontinuously, as
contacts are lost and new contacts are developed in the course of granular flow.
Then, simple local constitutive relations are introduced for the rate of change of the
contact forces, the evolution of the contact normals, the mechanism of local failure,
and the density of contacts in a particular class. This leads to macroscopic rate
constitutive equations through a Taylor averaging methed. Due to the nonlinearity
of the rate constitutive equations, the response is computed by an incremental
procedure. As an illustration, the overall response of & two-dimensional assembly
of disks subjected to an overall shearing deformation s determined. In addition,
explicit results are presented for the evolution of fabric, contact forces, and the
history of active and inactive classes of contacts. The stress-strain relations and the
evolution of fabric and contact forces are in excellent qualitative agreement with the
observed behavior of granular materials. In light of these results, the mechanisms
of failure21 and inelastic deformation of dense, as well as loose granular, materials are
discussed.

Although most features of the model could be readily generalized to three
dimensions, for simplicity, the discussion is limited to planar deformation.

Mehrabadi, M.M,, B. Loret and S. Nemat-Nasser, "A Constitutive Model for
Granular Materials Based on Micromechanics,"presented at the Second US-Japan
Seminar on Micromechanics of Granular Materials, Clarkson University, NY,
August 5, 1991, submitted 9/91

A recently proposed constitutive model for two-dimensional flow of granular
materials is briefly reviewed and some numerical results are presented in this paper.
First, the concept of fabric and the relations between the overall stresses and the
relevant microscopic quantities are reviewed. Then, the kinematics is briefly
examined. A significant concept underlying all these developments is the notion of
the class of contact unit normals with a continuously evolving distribution function,
even though individual members of various classes may change discontinuously, as
contacts are lost and new contacts are developed in the course of granular flow.
Next, local and macroscopic constitutive relations are discussed and the evolution
of the density of contacts in a particular class is considered. As an illustration, the
overall response of a two-dimensional assembly of disks subjected to an overall
shearing deformation is determined. The stress-strain relations and the evolution of
fabric are in excellent qualitative agreement with the observed behavior of granular
materials. In light of these results, the micromechanisms of failure and inelastic
deformation of dense, as well as loose granular, materials are discussed.

Nemat-Nasser, S. and B. Balendran, "Micromechanics of Flow and Failure Modes
of Particulate Media Over a Wide Range of Strain Rates", presented at the 2nd US-
Japar Seminar or Micromechanics of Granular Materials, Clarkson Univ., NY,
August 5, 1991.




1.3.8

A basic framework is proposed for the systematic micromechanically-based
constitutive modeling of the flow of granular materials, over a broad range of strain
rates, from quasi-static to high strain rates. Frictional effects, pressure sensitivity,
and coupling between shearing and volumetric strain are included. Stress-induced
anisotropy in elastic and inelastic instantaneous material response is incorporated.
The model is flexible enough to account for both rate-independent and raie-
dependent frictional sliding and rolling of the grains. For illustration, typical results
for biaxial and simple shearing of granular materials with various void ratios are
calculated in monotonic, as well as cyclic, loading, and they are shown to
accurately correspond to actual observations.

Okada, N. and S. Nemat-Nasser, "Energy Dissipation in Inelastic Flow of
Cohesionless Granular Media", Geotechnique, submitted 12/91

The results of a systematic study of energy cissipation in cohesionless granular
media are presented. First, the relation between the excess pore water pressure,
accumuiated in a water-saturated granular mass, and the corresponding e:ternal
work in cyclic loading is studied experimentally. Second, a micromechanical model
of internal energy dissipation due to slip between contacting granules is introduced,
and the results are compared with experimental measurements.

A series of undrained experiments is carried out using water-saturated large hollow
cylindrical specimens. Most experiments are performed under displacement-
controlled conditions. The imposed cyclic angular displacement which produces
the applied shear strain, has a triangular time variation with constant strain rate over
each quarter cycle. The specimens are subjected to two sequences of loading in
order to simulate the reliquefaction phenomenon. External work per unit volume is
calculated from the experimental results, and its correlation with the excess pore
water pressure is examined. In the first loading, a unique nonlinear relation is
observed to exist between the excess pore water pressure and the external work per
unit volume. This relation is found to be independent of the shear strain amplitude.
In the second loading, however, this relation is a function of strain amplitude. The
cyclic shear strength is seen to have increased in the second loading, because of the
strain history of the first loading.

External work supplied to cohesionless granular media is mainly consumed by the
frictional slip between contacting granules. A micromechanical model is developed
and validated by the experimental results. It is shown that the internal dissipation
per unit volume in cohesionless granular media, can be expressed in terms of the
time-history of the applied effective pressure and a single scalar parameter which
depends on the density and strain amplitude. The model is further validated by
torsion tests with random variation in the applied strain amplitude. The theoretical
predications are in excellent agreement with the experimental results.



1.4 PROFESSIONAL PERSONNEL ASSOCIATED WITH THE
RESEARCH EFFORT; DEGREES AWARDED (AFOSR SUPPORT)

Principal Investigator: S. Nemat-Nasser
Postdoctoral Research Associates and Research Engineers (Visiting):

Benjamin Loret (Professor, Domaine Universitaire, Institut de Mechanique de
Grenoble, France), 5/36 - 12/86

Zong-Lian Qui (Associate Professor, Qinghua University, Beijing, China),
6/87 - 2/88

Staff Research Associates:

H.M. Shodja (Graduate Student, Department of Civil Engineering, Northwestern
University, Evanston, 1), 11/86 - 9/87

Visiting Scholars:

Benjamin Loret (Professor, Domaine Universitaire, Institut de Mechanique de
Grenoble, France)

Morteza M. Mehrabadi (Professor, Department of Mechanical Engineeering, Tulane
University, New Orleans, Lousiana)

Muneo Hori (Professor, Department of Civil Engineering, Tohoku University,
Sendai, Japan)

Graduate Students: Degree Awarded
A. Azhdari - Research Assistant, 7/90 - 4/91

B. Balendran - Research Assistant, 11/89 - 4/91

J. Y Chang - Research Assistant, 10/86 - 8/88

H. Deng - Research Assistant, 7/90 - 4/91

S. Ghatuparthi - Research Assistant, 7/87 - 9/89, 12/89 - 6/90 M.S., UCSD
M. Hori - Research Assistant, 10/86 - 12/86, 5/87 - 8/87

N. Okada - Research Assistant, 10/86 - 6/16/91

Engineering Aid (Undergraduate Students)
R. Sugimae, 8/87 - 10/89
B. Crafts, 6/89 - 8/89



1.5 INTERACTIONS (Coupling Activities)

A.  PARTICIPATION OF PRINCIPAL INVESTIGATOR AT MEETINGS, PAPERS
PRESENTED; LECTURES AT SEMIIFARS.

"Mechanics of Failure in Compression,” Tohoku University, Sendai, japan, June 27,
1986.

“"Surface Instability,” University of Southern California, May 8, 1987.

"Anisotropy in Response and Failure Odes of Granular Materials," IUTAM/ICM
Symposium: Yielding, Damage and Failure of Anisotropic Solids, Villard-de-Lans, France,
August 24-28, 1987.

"Constitutive Modeling Based on Micromechanics," ICES 88, Atlanta, GA, April 10-14,
1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” Rensselaer Polytechnical Institute, New York, NY, May 12, 1988.

“Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” Alicia Golebrewska Herrmann Memorial Lecture in Applied Mechanics,
Stanford University, Stanford, CA, November 3, 1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,"” Naval Research Laboratory, Washington, DC, December 16, 1988.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” Plenary Lecture, ICF7 Conference on Fracture, Houston, TX, March 23-29,
1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” MIT Applied Mechanics Seminar Series, Boston, MA, May 15, 1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” Civil Engineering Seminar, Ohio State University, May 19, 1989.

"Compression-Induced Ductile Flow of Brittle Materials and Brittle Fracturing of Ductile
Materials,” Keynote Address, Twelfth Canadian Congress of Applied Mechanics --
CANCAM, May 28 - June 2, 1989, Ottawa, Ontario, Canada, May 28, 1989.

"Micromechanics of Deformation for Granular Materials," Plenary Lecture, ASME Winter
Annual Meeting, San Francisco, CA, December 10-15, 1989, December 14, 1989.

"Paradoxes, Facts and Fiction in Material Failure under Compression," University of Utak,
May 4, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," South Dakota
School of Mines and Technology, Rapid City, SD, May 24, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," The Continuum

Damage Mechanics Workshop at Sandia National Laboratories, Pleasanton, CA, June 12,
1990.

-10-



"Paradoxes, Facts and Fiction in Material Failure under Compression,” The Department of
Civil Engineering, Tohoku University, Sendai, Japan, September 25, 1990.

"Strain Localization in Granular Flow," Invited Lecture, The Japan Society of Civil
Engineering Convention, Annual Meeting on Strain Localization and Bifurcation of
Geomaterials, Niigata, Japan, September 29, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression,” Kyushu
University, Fukuoka, Japan, October 3, 1990.

"Paradoxes, Facts and Fiction in Material Failure under Compression," Tulane University,
New Orleans, LA, November 29, 1990.

"Micromechanics of Flow and Failure Modes of Particulate Media Over a Wide Range of
Strain Rates", Invited Lecture, 2nd U.S. - Japan Seminar on Granular Materials, Potsdam
NY, August 4 - 9, 1991.

B. CONSULTATIVE AND ADVISORY FUNCTIONS WITH OTHER AGENCIES,
LABORATORIES AND UNIVERSITIES.

DARPA Panel Meting, 10/89 Member of DARPA Panel on
Material Modeling and Large
Scale Computations

Society of Engineering Sciences (SES) Conference Member of SES

Ann Arbor, Mich, 9/89 Organizer of "Computational
Mechanics" and
"Micromechanics of Damage
and Failure" Sessions.

2nd U).S.- Japan Seminar On Micromechanics of Seminar Participant
Granular Materials, Clarkson University,
Potsdam, NY, 8/91

Tulane University, Department of Mechanical Engineering,
New Orleans, LA (to collaborate with Professor M. Mehrabadi)

Domaine Universitaire, Grenoble, France  (to collaborate with Professor B. Loret)

Tohoku-Gakuin University, Department of Civil Engineering

Tagajyo, Japan (to collaborate with Professor M. Satake)

Tohoku University, Department of Civil Engineering,

Aoba, Sendai, Japan (to collaborate with Professor Y. Kishino)

Hachinohe Institute of Technology, Department of

Civil Engineering, Hachinohe, Japan (to collaborate with Professor Y. Tobita)
-11-



Micromechanics of Granular Mater:als, edited by M. Satake and J.T. Jenkins 253
Elsevier Science Publishers B.V., Amsterdam, 1988 — Printed in The Netherlands

SOME BASIC THEORETICAL AND EXPERIMENTAL RESULTS ON MICROMECHANICS OF
GRANULAR FLOW

M. M. Mchrabadi,! S. Nemat-Nasser,2 H. M. Shodja,3 G. Subhash?

IDepartment of Mechanical Engineering, Tulane University,
New Orleans, Louisiana 70118

2D::panmc:nt of Applied Mechanics and Engineering Sciences, University of
California, San Diego, La Jolla, California 92093

3Depaniment of Civil Engincering, The Technological Institute, Northwestcrn
University, Evanston, Illinois 60201

SUMMARY

In order to establish guidelines for modeling the macroscopic behavior of
granular materials, an experimental study of the evolution of the microstructure of
an assembly of granular matenals upder a umform confining pressure and
subjected to a purc shear was conducted. The granular material used in the swdy
conststed of photoelastically sensitive rod-shaped panicles of oval cross-sections, It
was found that (i) the distnbution of branches and contact normals arec almost
idenucal, (ii) the second rank fabric tensor does not adequately describe the
microstructure  of highly antsotropic samples, (ii1) the density of contacts whose
normals lic along the major and minor pnincipal stress axes, varies sharply
imually and then approaches a constant value in the course of deformation, and
(1v) the density of contacts with planes parallel to the maximum shear stress planc
remains practically constant throughout the deformauon.

INTRODUCTION

A microscopic study of the evolution of the microstructure of an assembly of
granular matenals under a uniform confining pressure and, in addition, subjccted
1o a pure shear is reponed here. The granular material used in the study consisicd
of photoelastically sensiuve rod-shaped particles of oval cross-sections.

The purpose of the cxperimental study, in general terms, was to establish
guidelines for modeling the macroscopic behavior of granular matenals
Specifically, the objective of this work was 1o invesugate the correlation among
certain microscopic fabric measures such as the disinbution of contact normual,
unit branches. etc., and to study the evolunion of these quanuties in the course of
deformation.

Experiments on assemblies of photoelastic particles were pioneered by Duantu
(ref. 1). Weber (ref. 2) and Wakabavashi (ref. 3), and later followed by several other
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and Image Tool from Imaging Technology, a powerful program for obtaining
histograms of several microscopic quantities was developed.  After digiizing the
photographs of the isochromatic fringe pattern obtained at cach stage of loading.
the program was employed to find the corresponding distributions of (i) contact
normals, (ii) branches, and other related quantities.

REPRESENTATION OF DISTRIBUTION DENSITY FUNCTION

In works on crystallography, it is customary to represent the distribution
density function of an orientation by spherical harmonic functions. Another
alternative is the invariant formulation by Kanatam (ref. 17) which for 1wo
dimensions, is given by

1
E(n):z(l + Jijniny + Jijkininjngny + ....) (1)

where E(n) is the distribution densuty function of the unit vector n, and where
1
Jij=4[<n.nj>-5&j]. (2)

1
Jijkl = 16 [aunjnkni>- &ij qknly> + g &ijdD)- (3)

The angular brackets denote averages taken over all onentations. The symmetnc,
traceless second-rank tensor ljj is closely related to vanous fabrnic  or amsotropy

tensors (ref 18) previously introduced n the literature The fourth-rank tensor
Lijk1 is completely symmeinc and traceless. The components of these two tensors

can be represented, in two dimensions, 1n terms of four parameters, A, B, C and D,
defined by

A = <sinbeost>, € =<cosio>,
(4}
B = <inbeos36>, D = «cos?8>,

where 0 is the onentation of n measurca from the verncal Note that the

parameters A and C arc related to the degree of concentrauion, J. and the preferred
ontentation, B, introduced by Komeshi (ref 6),

12=L =442+ 02002, (5

L
8



that of the inclinatton of the principal axis of stress at or immediately after the
peak stress.
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Fig. 1. Variauon of (a) stress ratio, (b) volumetric stramn, (c) degree of
concentration, and (d) oricntation of the major principal axis of the second-rank
fabnic tensor, Jjj, with shear strain.

The observed distribution of. contact normals as well as s second and fourth
order approximations (see Eqs. (7)) are shown in Fig. 2. Consistent with earher
observations, it is scen here also that some contacts wiuth unit normals along the
minor principal stress axis arc lost while new contacts with unit normals along the
major compressive principal siress axis are continually generated.

Clearly, the basic features of the actual distribution are well represented by
the fourth-order approximation. In fact, it can be shown that the error 1n
calculating E(n) by excluding the fourth- and higher-otder terms can be more
than #30% along the major and minor principal stress axes. Thus, for a highly
anmisotropic mucrostructure, the second-rank tensor Jijj does not appear to be
adequate.  and, for a more reasonable representation of the microstruciure, onc
must, at least, retain the fourth-order term involving the fabnc tensor Jyjkl.
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the expression for Z(n' (see Eqs. (7)), the sine terms (i.c., those involving the odd
functions of 8) vary substantiaily i the course of shearing deformation, while the
cosine terms (i.c.. those that are even functions of 6) are practically constant
throughout the deformation process.

The variation of A, B, C and D with the stress ratio is also found to be similar to

the change of these parameters with the shear strain, shown in Fig. 3.
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Fig. 3. Evolution of parameters A, B, C and D with shear strain.

As a corollary of the above observation, we can sec that when the sine ternis

in the expression for E(n) are zero, i.e.. when

sm2n6=0 (n=12..),

or when 6=00, 900,..., then
cos2n8 = (-1)1,

and hence E(0°) and E(90°) are practically constant. Note that for 8=450, 1350,...., we

have

sin 200 = (-HI*1 | cos 2n6=0

Therefore, E(459) ancd E(1359), which arc the distnbunon densies of contuct

nommals along the major and munor principal siress axes, vary mually and then
approach a constant value in the course of deformauon: see Fig. 4.
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EFFECT OF FABRIC ON LIQUEFACTION AND DENSIFICATION
OF SATURATED SOIL: EXPERIMENTS AND THEORY

S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, La Jolla, California 92093

SMMHARY

It has been known that the inherent and induced anisotropy or fabric
has considerable influence on the response and failure modes of granular
masses, Some definitive recent experiments which clearly demonstrate this
phenomenon in relation to the densification and liquefaction potential of
saturated sands, are briefly reviewed, together with asjociated
micromechanically based theoretical observations.

INTRODUCTION

Cohasionless granular materials support the applied forces through
contact friction. Therefore, the nature and distribution of the contacts
are expected to have considerable influence on the overall mechanical
rasponse of the granular mass, The term "fabric" has been used to
characterize this kind of microstructure. It relates to the distribution of
the particles, their sizes and orientations, and, in particular, to the
distribution of the contact normals and contact areas (which reflect the
magnitude of the contact forces), as well as other geometrical entities. In
this summary we shall not deal directly with the characterization of fabric,
since the matter has been fully examined in other articles within this
volume; see, e.g. the paper by Mehrabadi ec al. (ref. 1l). What {3 of
concern here is to show how seemingly minute variations in & given loading
history cau change the fabric of the granular mass to such an extent that
the load-bearing capacity of the sample is changed by orders of magnitude.

In particular, we shall examine the effect of pre-straining on the
liquefaction potential of saturated sands, and point out the results of
recent experiments by Nemat-Nasser and Tobita (ref. 2) and Nemat-Nasser and
Takahashi (ref. 3), which clearly have brought into focus the effect of
induced fabric on the potential to failure by 1llquefaction of undrained

sanples.

RESULTS AND DISCUSSION
1. has been shown by Finn et al. (ref. &) and confirmed by Ishihara ec
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al. (ref. 5), and other investigators, that, once a saturated undrained
sample of sand is liquefied in simple shearing, it will have essentlally no
resistance to reliquefaction in subsequent tests. These tests were all
performed under a load-controlled condition, so that, with the confining
pressure held fixed, the tests were terminated after liquefaction
initiation, by reducing the shear stress to zero.

Faced with the above experimental facts, in the late seventies the
present writer became very interested in this phenomenon, and sought to: (1)
develop a micromechanical model which might clarify the phenomenon; and (2)
seek to check the experimental results independently and in light of the
micromechanics of the process. The work on the micromechanics of this
phenomenon was reported in Nemac-Nasser (1980, ref. 6), and the experimental
effort was done in collaboration with Dr. Tobita and Mr. Takahashi; see
(ref. 2 and ref. 3),

Micromechanical Model:

The model considers two-dimensional shearing of a layer of a granular
mass under uniform applied normal compressive streer o, and uniform ghear
stress, r, vhich {s viewed positive when clockwise. The macroscopic shear
flow is the result of the microscoplic motion (rolling and sliding) of grains
relative to each other at active contact points. Fig. 1 shows this,

v

o
!

(a)

\

(b)

Figure 1

The angle v s called the (micro) dilatanecy angle. It varies from accive
contact to actlve contact, and when there is a very large number of such
contacts, one may assume a concinuous change and {ntroduce a distribucion-
density function p(v) in such a manner that p (v,) dv represents the volume
fraccion of active granules whose dilatancy angles are between vg and vo +

dv. v Is positive when It produces volume expansion. By considering the

balance of forces transmitted across each active contact, and by equacing
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the rate of frictional dissipation at active contacts within a unit volume
to the rate of the overall stress-work, Nemat-Nasser (ref. 6) obtains the

following dilatancy equation:

+
v _ 1 g
% " é;;-;p Iv; p(v) cos (4, + v) sin vdy 1)

in which 4 = "grain-to-grain” friction angle; and the Mohr-Coulomb fajilure
criterion is used to characterize the local (at the micro-level) flow
process,

Nemat-Nasser (ref. 6) points vut that upon shearing and under normal
pressure, granules with negative dilatancy angles are activated first,
leading to a distribution-density function, p(v), which initially is biased
toward mnegative dilatancy angles. Intuitively, this follows from the
physical observation that the local normal force N hinders the motion of an
active granule with positive dilatancy angle v, whereas it assists when v is
negative (Figs. 1(b) and(c)). Hence, upon shearing under confinement, an
initial densification is expected and {s invariably observed.

As shearing procaseds, the distribution-density function p(v) tends to
become biased toward positive dilatancy angles, and this leads to subsequent
dilation. During this stage, a greater number of active contacts has
positive dilatancy angles, and this number increases with increasing shear
strain amplitude, up to the strain corresponding to the peak stress, Now,
i1f, after a microstate of this kind is attained, unloading begins, then some
of the granules wirth suitably large dilatancy angles may actually start a
downward motion under the action of the normal force N, which leads to some
densification. However, it {s reasonable to expect, and our experiments on
photoelastic pgranules confirm (see ref, 7), that at zero shear stress there
still exists a strong bias toward positive dilatancy angles for clockwise
shearing. Now, upon load vreversal (i.e., upon shearing in the
counterclockwise direction), the previously positive dilatancy angles behave
now as negative ones. Thus, a strong tendency toward densification would be
expected during load reversal. Hence, prestraining to suitably large shear
strain amplitudes in drained conditions should lead to immediate

liquefaction when load reversal occurs under undrained conditions.

Experimencal Results:
To test the liquefaction potential of a preliquefied sample in light of

the micromechanical model, Nemat-Nasser and Tobita (ref. 2) compared the

reliquefaction potential of two similar samples which were liquefied by
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cyclic shearing under constant confining pressure. The difference between

the two tests was the state at which the initial liquefaction was terminated

during the final cycle: (1) In one test the final cycle in the initial
liquefaction was terminated at zero shear stress. (2) In the second,
otherwise similar, sample, the final cycle was terminated at zero shear
strain. 1t was found that, during reliquefaction, the first sample (which
was stopped at zero shear stress) showed essentially no resistance to
reliquefaction, whereas the second sample (which was stopped at zero shear

strain) was essentially as resistant to liquefaction as a virgin sample.

These and related results were reconfirmed in a series of carefully planned

experiments by Nemat-Nasser and Takahashi (ref. 3).

Another related phenomenon is prestraining under drained conditions and
its effect on the liquefaction potential of the saturated undrained sample.
Guided by the micromechanical model, Nemat-Nasser and Tobita (ref. 2) showed
that, if prestraining at a suitably large shear strain is terminated at zero
shear stress, then the sample will have strong induced anisotropy and hence,
in subsequent undrained cyclic shearing, will 1liquefy during the first
cycle. On the other hand, if the prestraining is terminated at =zero shear
strain, the sample will be left with essentially no induced anisotropy, and
will be at least as resistant to liquefaction as the corresponding virgin
sample,

In an effort to further verify these facts and, in addition, to examine
the influence of the sample preparation on the mechanical response of
cohesionless sands in cyclic shearing, Nemat-Nasser and Takahashi (ref. 3)
have made a series of straln-controlled tests on Monterey No. 0 sand
samples. The same apparatus as the one used by Nemat-Nasser and Tobita
(ref. 2) is employed, except that the horizontal shearing device is modified
in such a manner as to control the horizontal stroke, and to measure the
corresponding resulting horizontal force. Two sample preparation techniques
are used: moist tamping and pluviating dry sand through air. The basic
conclusions of these experimental results are as follows:

1. 1In cyclic simple shearing, the resistance to reliquefaction (undrained)
or densification (drained) of a preliquefied sample actually increases,
because of the concomitant densification, 1if the preliquefaction |is
terminated at zero residual shear straln, but this resistance becomes
very small if the preliquefaction is terminated at zero residual shear
stress.

2. The inherent anisotropy associated with sample preparation techniques
affects both the densification and liquefaction potential of the sample.



205

3. Within each cycle of simple shearing, the induced anisotropy is
essentially wiped out in the neighborhood of zero shear strain, and the
anisotropy that exists at this state is basically due to the sample
preparation techniques (i.e., it is the inherent anisotropy), provided
that the sample is not very loose and the strain amplitude is not very
large. (Note that the state of zero shear strain is essentially the
same as that of the state of zero dilatancy which is, indeed, the basic
underlying factor.)

4, For simple shearing, the distribution of the dilatancy angles
chatacéerizing the fabric may be related to the shear strain and, in

this manner, the densification pattern may be estimated.

Since the simple shearing experiments are performed on small circular
cylinders, the state of stress in the sample is quite complicated. In order
to verify the validity of the results, a new series of tests has now been
initiated at the author’s laboratory. These tests are being performed on a
large hollow cylindrical sample under carefully controlled conditions so as
to ensure a uniform state of stress and deformation in the sample. The

results of these experiments will be reported soon after they are completed.
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GENERAL LECTURE

S. Nemat-Nasser®

Anisotropy in Response and Failure
Modes of Granular Materials

REFERENCE Nemat-Nasser. S. Anisofropy in response and failure modes of granuiar
materials, Yielding. Damage. and Failure of Anisotropic Solids. EGF5 (Edited by J. P. Boehier)
1990, Mechanical Engineering Publications. London. pp. 33-48.

ABSTRACT This review addresses some recent experimental and theoretical studies of the
mechanical properties of particulate media which support applied overall loads through
individual contact resistance. We emphasize the inherent and induced fabric or anisotropy and
its influence on the response and failure modes of this class of materials. The experimental
studies include: (1) model experiments on photoelastic granular rods with circular and elliptical
cross-sections, in biaxial as well as simple shear cyclic loading: arnd (2) dilatancy. liquefaction.
and the overall stress—deformation relations studied on simple shearing apparatus and also on
large hollow cylindrical sampies of sand under complex. three-dimensional monotonic as well as
cyclic stress paths. These experiments are designed in coordination with theoretical micro-
mechanical models in order to bring out the major micromechanisms that are responsible for the
observed highly path-dependent behaviour of granular materials. The issues of inherent and
induced anisotropy or fabric and their effects on the overall response of the material are of
particular interest in these experiments. The theoretical studies emphasize recent
micromechanically-based models of granular flow. which specifically seek to understand and
quantify relevant measures of anisotropy or fabric. and the relation between fabric measures and
the overall stress tensor.

Introduction

A fundamental understanding of the mechanical behaviour of granular masses
which support the overall applied loads through contact friction is essential for
many applications, from powder metallurgy, ceramic processing, and food
processing, storage, and transportation, to the proper design of soil foun-
dations to withstand earthquake-induced vibration. A dominant feature of
materials of this kind is their strong anisotropic behaviour. Generally speaking.
two types of anisotropy are identified. They are: (1) inherent anisotropy
produced essentially by the process of deposition (natural or artificial); and (2)
induced anisotropy. produced in the course of deformation in response to the
overall applied loads. Both types of anisotropy can have a most profound
influence on the response and failure modes of granular masses. Hence,
attempts have been made to identify microstructural parameters which charac-
terize these anisotropies. and relate these parameters to the overall measures
of stress and the associated deformation.

The purpose of this article is to summarize some recent fundamental
developments in the characterization of the mechanical properties of granular

* University of California. San Diego. Department of Applied Mechames and Engineering
Sciences. Mail Code R-011. La Jolla. CA 92093, USA
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masses, emphasizing the effects of anisotropy or fabric on the overall mechan-
ical response. No attempt will be made to provide a comprehensive review of
the literature in the field, since the reader can easily obtain the relevant
references by consulting, for example, the proceedings of the US-Japan
seminars which are cited in references (6) and (14).

This paper is organized as follows. In the next section the relation between
the overall stress tensor and the contact forces is developed, and the import-
ance of fabric is discussed. Various measures of fabric are identified, and some
major issues relating to the stress—fabric relation are examined in the light of
recent experiments by the author and co-workers on biaxial deformation as
well as on pure shearing of samples made of photoelastic rods of oval cross-
section. The statistical description of the fabric and stress tensors is presented.
In the third section the micromechanics of granular flow in cyclic simple
shearing is examined in some detail, and the effects of fabric on the dilatancy
(or densification) potential of the granular mass are demonstrated in terms of
the failure modes of saturated cohensionless sands subjected to cyclic shearing
under confining pressure. In particular, it is shown that the resistance to failure
by liquefaction can be increased or reduced to almost zero by seemingly minute
alterations in the fabric of the granular mass.

Representation of stress and fabric
General comments

Consider a collection of granules with overall volume V and overall surface S.
Let self-equilibrating tractions T be applied on the boundary surface S,
producing contact forces at contacting granules. Assume that there are such a
large number of granules contained in V that both a continuum and a statistical
representation of the overall stress & are permissible. Furthermore, assume
that the granules are so stiff relative to the applied loads, that they may be
regarded as essentially rigid. A fundamental problem is to relate the overall
stress @ ‘o the corresponding internal contact forces and the microstructure of
the graaular mass.

Let o(x) be a variable stress field in equilibrium with the applied traction T,
in the absence of any body forces. This stress field may vary discontinuously
from granule to granule, but it is required to produce continuous tractions
across the contact area of any two contacting granules. Using a fixed rectangu-
lar Cartesian coordinate system, with coordinate axes x;, i = 1, 2, 3, we then
have

0;;i=0mnV

o (1)

Uijvj = T, onS

where v is the exterior unit normal on S. The overall average stress is now
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defined as the simple volume average of this self-equilibrating stress field
=1 f o(x) dV %)
Viv

Note that the continuity of the tractions across any two contacting granules,
say, granules A and B, requires

[oiln;=0 (3)
where n is the unit normal on the contact area, which points from A to B, and
the brackets indicate the ‘jun.p’ across the area, [0;] = 6;} — 0f;, and where the
superposed + and — denote the value of stress, respectivelv, in A and B at the
contact point. Equation (3) simply implies that the contact force exerted by

granule A, on its adjacent contacting granule B, is equal in magnitude but
opposite in direction of the force exerted by B on A.

Overall stress

In the absence of any pore fluid or gas pressure, equation (2) may be written as

M M
_1e S L
0=‘—,;Lﬂg-(x)dV=;ca" @

where c® is the volume fraction of the ath granule, i.e., ¢® = V,/V, Mg is the
total number of granules in volume V, and ” is the average stress over the ath
granule. In view of equations (1) and (3)

J (xj0u) x AV = J o;dV = J xT;dS (5)
v v S
and hence one has
M
;= v XK (6)
a=1

where Mg is the number of points on the outer boundary S at which concen-
trated forces F* are applied. It is important to note that this representation of
stress does not involve the contact forces at the interior contacting granules. In
(2.6) x* is the location on the overall surface S at point a, where the
concentrated external forée F® is applied. Hence, representation (6) does not
involve the microstructuje.

An alternative representation which does include the microstructure, has
been given by Christoffersen et al. (1), using the principle of virtual work. In
this approach, one considers virtual relative displacement A“ at a typical
contact a, compatible with the virtual surface displacement u. Then the virtual
work yields
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M
Z ASfE = f T, dS )
a=1 S

Choosing a virtual displacement field
u, = ¢,le + a; . (8)

with arbitrary constant ¢;; and 4;, we obtain
) M
5 =VZ1;?1;‘ENW,-> 9)

where /' is a vector which connects the centroids of the two granules which are
in contact at a. The symmetry of the overall Cauchy stress then yields

(filj> = (fjli> (10)
In (9), N = M/V is the number of contacts per unit volume, and
) N
(e '»ENZ(° a

We note that representation (9) can also be obtained if one considers average
transactions transmitted across three mutually orthogonal planes. This
approach was originally suggested by Weber (16) in examining the forces
transmitted within a collection of glass rods with circular cross-section. Mehra-
badi et al. (3) considered a similar approach and showed the relation between
the statistical calculation of average transactions and the virtual work method;
see their equations (27) and (29), p. 101.

Expression (9) may also be obtained by applying (5) to a single typical
granule of, say, volume V, and surface S, and then summing the results over
all granules. Indeed, from (4) and (5), it follows that

MG Ma
Gi=5 ). 3. G =% =N

a=1 =1

where M, is the number of contacts of the ath granule, Xj' is the position of the
centroid of this granule, and we have used the fact that the sum of all contact
forces acting on the granule a must vanish.

Stress—fabric relation

There are a number of ways that the overall stress tensor can be related to
certain measures of the microstructure or fabric of a granular mass. One
alternative proposed by Nemat-Nasser and Mehrabadi (7) is to associate with a

typical contact @ a symmetric second-order tensor #), such that
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fi=a°6n? (a not summed) (11)

where a® may be regarded a measure for the contact area. Then (9) can be
written as

Ty = (tihi) (12)
where
&=engm?, =Na®l®, If=1°m{ (o notsummed) - (13)

where m’ is a unit vector in the direction of 1°. The geometric quantity
Hij = (hij> . (14)

is a measure of the fabric of the granular mass. Other measures can be
introduced, and some are briefly discussed later on in this section. If the
granules are spherical (circular in two dimensions), ther the unit vector m*
coincides with the unit normal n®, and the fabric tensor H becomes symmetric.
Furthermore, the symmetry of the overall stress, equation (10), requires

(tichy;) = (thyi (15)
If we now set
T = {tw) (16)

assume that £ and hy; are uncorrelated, and that the tensor T does not depend
on any other tensor-valued quantities than H, it follows from the symmetry
condition (15) that the three symmetric second-order tensors &, H, and T are
coaxial, in the sense that they share the same principal directions. An
immediate consequence of this then is the following stress—fabric relation:

G = Agoy; + A Hyj + A Hy Hy (17)

where the coefficients Ag, A, and A, are functions of the basic invariants of H.
Equation (17) is the simplest stress—fabric relation that emerges under the
rather restrictive assumptions that: (1) granules are spherical (or circular); (2)
the quantities t* and h® are uncorrelated, so that (t,hy;) = (txXhy); (3) there
are no other tensorial measures that are involved in expression & = T Hy;; and
(4) the overall stress tensor is symmetric. Experiments on the biaxial defor-
mation of photoelastic granules seem to support (17), although the granules
involved were cylinders with oval cross-section; see Fig. 13 of Oda et al. (12).
Expression (17), however, clearly shows that the ratio of the principal stresses
in two-dimensional deformation cannot be proportional to the corresponding
ratio of the principal values of the fabric tensor H. Hence, equation (4) and the
linear approximation of Fig. 13 of Oda ez al. (11) (which were reported on the
basis of triaxial compression tests on two Soma sands by Oda (10)), cannot
have general validity. Indeed, recent experiments on pure shearing of photo-
elastic granules have revealed that while the principal axes of the fabric tensor
tend to follow the principal axes of the stress tensor, in general, they do not
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coincide with the latter. The apparatus, constructed in the author’s laboratory,
is shown in Fig. 1(a) and sketched in Fig. 1(b). A typical example is given in Fig.
2(a). The corresponding stress—strain relations are displayed in Fig. 2(b). The
apparatus produces a two-dimensional flow of the granules, which is very close
to pure shearing under uniform confining pressure. The results of extensive
experiments and their thorough analysis will be reported elsewhere. Suffice it
to say here that, upon shearing, the principal directions associated with the
distribution of contact normals immediately change toward the principal
directions of the stress, but do not coincide with them. Indeed, the orientation
of the principal directions of the stress and the distribution of the contact
normals remain distinct and fixed, as the shearing continues monotonically in a
fixed direction. On the other hand, if the fabric tensor is weighted by the
intensity of the contact forces which can be represented by the magnitude of the
corresponding contact area through the parameter % in equation (13,), then
our tentative analysis seems to suggest that the corresponding fabric tensor and
stress tensor have a tendency of becoming coaxial.

Fabric tensors

In the literature, a number of second- and higher-order fabric tensors have
been introduced by different authors. These tensors are, by necessity, of even
orders, and, in one way or another, seek to define the distribution of contact
normals or unit branches. Some of these tensors are (niny), proposed by Satake
(14); N1(mymyp, proposed by Mehrabadi et al. (3); and the non-symmetric
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Fig I(a) Equipment for simple shear deformation of photoelassic granules
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tensors (n;m;) and {(en;m;), proposed by Nemat-Nasser and Mehrabadi (6), who
also considered (en;n;) and (em;m;). Higher-order fabric tensors also emerge in
the micromechanical modelling of granular materials; for example, {nn;ngn,) of
Mehrabadi et al. (3), as well as {(njnynym)). It is clear that the information
contained in higher-order tensors regarding the details of the distribution of
contact normals or branches, will, in general, be lost, if only lower-order fabric
tensors are employed; see Mehrabadi ez al. (4).

If the fabric is characterized by the distribution of, say, the contact normals
or the unit branches, then one introduces a distribution density function and
seeks to quantify this directly. Representation of the distribution function in
terms of spherical harmonics (in three dimensions) or Fourier series (in two
dimensions) then naturally leads to various even-ordered tensors which can be
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Fig 2(b) Variation of stress ratio with shear strain

used to characterize the fabric. A rather complete summary and a detailed
discussion of the connections among various representations can be found in
Kanatani (2); a brief review of some of the results is also given by Onat (13).

As an example, consider the distribution of contact normals, and let E(n) be
the density function for this distribution. Then

E(n) = E(-n), [ E(n)dQ =1 (18)
Q

where 2 is the unit sphere, and E(n) dQ is the number of contacts with the unit
normal falling in the solid angle dQ2, about the direction n. Expanding E(n) in
spherical, or circular harmonics, one may write

E(n) = A[1 + Jyjnn, + J gninpm + - -] (19)

where A = 1/7 in two dimensions, and =}z in three dimensions, and the
tensors J are all deviatoric. They can easily be expressed in terms of varios
even-order moments of the distribution of the unit vectors n. For exampie, if



R g NP NPy

42 YIELDING, DAMAGE, AND FAILURE OF ANISOTROPIC SOLIDS

these moments are denoted by M, and their deviatoric parts, by M’, one
obtains

2r+1/(2n\,,,
Ji:---ir = _i_r_ (T)Mil...i, (20)

where r is even. '

Recent experiments by the author and co-workers on two-dimensional
shearing of photoelastic granules have clearly shown that, in general, one must
include at least the fourth-order fabric tensor, in order to capture both the
inherent and the induced anisotropy of the granular material. This and related
points are discussed elsewhere. In Fig. 3, however, we have shown a typical
example with an actual distribution of contact normals and its second- and
fourth-order approximations.

Fabric in simple shear

Simple shearing of granular materials can be attained in a large hollow circular
cylindrical sample of relatively thin wall. (The special cell used in the author’s
laboratory has a 25 cm outside-, 20 cm inside-diameter, and is 25 cm high.) The
shearing is produced by the torsion of the sample about its cylindrical axis. If we

ACTUAL
FOURTH ORDER

SECOND ORDER

Fig. 3 Actual distribution of contact normals and its second- and fourth-order xpproximations
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assume that during such shearing the wall thickness remains constant, then the
volumetric change is associated with the change in the sample’s height. In this
case, a dilatancy theory for simple shearing developed by the author (5) can be
applied to study the influence of fabric on the dilatancy and the liquefaction
potential (saturated undrained samples) of the granular mass. While this
theory has been experimentally verified using a small circular cylindrical
sample 2 cm high and 7 cm in diameter, in cyclic horizontal shearing, the state
of stress in such a test is very complex and clearly not simple shear; see Nemat-
Nasser and Tobita (9) and Nemat-Nasser and Takahashi (8). In the following
we shall give a very simple and straightforward derivation of the basic dilatancy
equation and then discuss its consequences in relation to the simple cyclic
shearing of saturated granular materials.

Dilatancy equation for simple shearing

Consider a column of granular material of height, 4, measured along the y
direction, and of unit area, being sheared in the x direction; Fig. 4(a). Assume
that this shearing does not change the cross-sectional area of the column and
therefore, volumetric changes occur due to the change in height. The volu-
metric strain rate, V/V, then is

VIV = hih (21)

where the superimposed dot denotes time rate of change. While the overall
shearing is in the x direction, the flow of the granules actually occurs over the
wavy lines, such as SS, shown in Fig. 4(b). The motion of a typical granule, say,
granule i/, relative to its neighbouring granules, contributes to the overall
volumetric expansion, if the dilatancy angle, v;, associated with this granule is
positive. The dilatancy angle v, defines the direction of the motion of granule /,
along SS, in relation to its neighboring granule. This motion occurs under the
action of resultant forces T;and N;, which act on granule i; see Fig. 4(c). Define
the angle ¢; such that

T; = N;tan ¢, (22)

As a basic assumption, we regard the relative motion of granule i to be
governed by the Mohr—Coulomb criterion, as sketched in Fig. 4(d). The mean
force P; (positive in compression) is then defined by the abscissa of the centre of
the Mohr circle, as shown. In Fig. 4(c), x* defines the direction of the relative

motion of granule i. The resultant forces in the x*,y* coordinates then are
T* =T cosv, — N,sin v,
l* 1 . 1 1 1 (23)
N} = T,sinv; + N, cos v,

As a second basic assumption, we introduce a constant friction angle ¢,,, and
consider the friction law

T)=N}tan¢, (24)
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to relate the tangential (positive in the direction of sliding) force T;" to the
compressive (positive) force N} when the granule i is active. From (22), (23),
and (24) it follows that

tan ¢, = tan (¢, — v;) (25)

Hence, under compression, granules with negative dilatancy angles are the first
to attain the critical sliding condition (25).

Consider now the rate of frictional work associated with the ith granule. Let
I* be the rate of sliding of this granule in the x* direction. The rate of frictional
work then is

W= v = Tisinguh, 26)
sin (¢, — v;) sin v;

when & = [* sin v,. The rate of frictional work must be balanced by the rate of
stress work which consists of a part due to shearing, TJ;, and a part due to
volumetric expansion, — Ph We hence have

Ti; - Ph; = Ty
from which it follows that

. = COS (¢, +v)sin v,l
‘ cos @,

note that J; is the slip-rate in the x direction.
Let p; be the fraction of active granules with dilatancy angle v;

(27)

il’i =1 (28)
=1

where there are a total of n active dilatancy angles in a unit volume. The total
rate of volumetric expansion then is

n

V_ zl’. Iz, Z cos (¢, + v;) sinv, i, (29)

cos ¢,

where 4 is the length, measured in the y direction, associated with granule i,
and y = [/h, is the rate of shearing contributed by the sliding of granule I.

We now make the third assumption (after Taylor (15)) that the local y, is the
same as the global rate of shearing y, arriving at the dilatancy equation

l}_/ _ i lcos (¢, +v,)sinv, (30)

Vy cos ¢,

=1

When there are a very large number of granules, we introduce a density



—————

46 YIELDING, DAMAGE, AND FAILURE OF ANISOTROPIC SOLIDS
function p(v) for the distribution of the dilatancy angles, and replace (30) by

_l‘_/ _ Jw p(‘ll) CcOoS (¢::‘;:¢v) sin v dvy (31)
V" 7

Vy
where p(v) dv is the fraction of granules with dilatancy angle between v and
v+ dv, and v~ > —n/2 and v* < /2 define the range of the dilatancy angles.
A number of interesting observations emerge from equations (31) or (30), as
follows:

(1) Even if the distribution of the dilatancy angle, p(v), may be initially
symmetric with respect tov = 0, since ¢, is positive, initial shearing under
compression is always accompanied by an initial compaction. For
example, if p(v) is uniform for |v| < v,, simple calculation immediately
reveals this fact from equation (31).

(2) Since p(v) is the distribution function of the dilatancy angles at active
granules, it is intuitively clear that, for an isotropically formed sample,
this distribution tends to be biased toward negative dilatancy angles,
under uniform confining pressures. This observation again suggests a
greater tendency toward initial densification in shearing for an otherwise
isotropic sample.

(3) As the sample is monotonically sheared, the distribution function p(v)
tends to become more biased toward positive dilatancy angles, eventually
leading to positive dilatancy. This is intuitively clear, since the granules
tend to be engaged by the neighboring granules in a monotonic shearing,
up to the peak stress. Furthermore, experimental observation on rod-
shaped granules supports this.

(4) Suppose a sample has been sheared monotonically, say, in the positive x
direction, until a strong bias toward positive dilatancy angles has been
developed. Upon reversal of the shearing, the distribution of the dila-
tancy angles will ther be strongly biased toward the negative dilatancy
angles, leading to a strong tendency toward densification. Hence, pre-
shearing to large strain amplitudes (less than the strain associated with the
peak stress) renders the sample strongly susceptible to densification
(drained) or liquefaction (undrained) during load reversal.

The above observations have been systematically verified by the author and
co-workers (Nemat-Nasser and Tobita (9) and Nemat-Nasser and Takahashi
(8)) for a solid circular cylindrical sample of sand subjected to cyclic shearing.
In particular, after a series of careful experiments, Nemat-Nasser and Taka-
hashi (8) report the following conclusions, taken directly from p. 1305 of their

paper.

(1) In cyclic simple shearing, the resistance to re-liquefaction (undrained) or
densification (drained) of a pre-liquenied sample actully increases, be-
cause of the concomitant densification, if the pre-liquefaction is termi-
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nated at zero residual shear strain, but this resistance becomes very small,
if the pre-liquefaction is terminated at zero residual shear stress. ’

(2) The inherent anisotropy associated with sample preparation techniques
affects both the densification and liquefaction potential of the sample.

(3) Within each cycle of simple shearing, the induced anisotropy is essentially
wiped out in the neighbourhood of zero shear strain, and the anisotropy
that exists at this state is basically due to the sample preparation tech-
niques (i.e., it is the inherent anisotropy), provided that the sample is not
very loose and the strain amplitude is not very large.

(4) For simple shearing, the distribution of the dilatancy angles characteriz-
ing the fabric may be related to the shear strain and, in this manner, the
densification pattern may be estimated.

Since the state of deformation in the sample used to arrive at the above
conclusions is very complex and is clearly not simple shearing, a new series of
tests on large, hollow, circular, cylindrical samples has been initiated in the
author’s laboratory at the University of California at San Diego. Preliminary
tests clearly support the basic conclusions listed above. However, in complex
cyclic loading, where all three principal values of the deformation rate tensor
may be non-zero, and hence there are, in general, three non-zero principal
shear strains, some of the above notions will have to be generalized.
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A brief summary of some relevant theoretical and experimental results on the mucroscopic aspects of the response of
granular masses is presented. The results of a series of expertments involving simple shearing under a constant confiming
pressure, performed on photoelastic rod-like granules (plane strain) are reported In these experiments, the components of
various fabric tensors are measured, and their variations over one cycle of sheanng are examuned and compared. The
orientations of the principal axes of all commonly used fabric tensors are observed to change sharply with the reversal of the
shearing direction. It is also concluded that, in general, second-order fabnc tensors are not adequate to accurately descnibe the
distribution of fabric measures such as the distribution density function of unit contact normals or unit branches which are
unit vectors along line segments connecting the centroids of adjacent contacting granules. This 1s particularly so when the
response of the granular mass is highly anisotropic. Finally, the expression for the macroscopic stress in terms of the contact

forces and other local quantities, is reviewed and its experimental venfication 1s discussed.

1. Introduction

A granular mass which consists of rigid cohe-
sionless granules carries on the microscopic scale,
the overall macroscopic stresses through forces
transmitted across contact regions. It is essential
to understand the micromechanics of the overall
behavior of materials of this kind under various
loading conditions. To this end, triaxial tests, bi-
axial compression, and shear tests have been per-
formed on these materials (see, e.g., Parkin et al.,
1968; Roscoe et al., 1967; Arthur and Menzies,
1972; Oda, 1972a, 1972b, 1978; Oda and Konishi,
1974a, 1974b; Ochiai, 1975; Nemat-Nasser, 1980;
Oda et al., 1982; Konishi et al., 1983; Mehrabadi
et al.,, 1988). In addition, theoretical models have
been proposed in the literature in order to quan-
tify from a fundamental point of view the experi-
mental observations (Christoffersen et al., 1981,
Oda, 1975; Konishi, 1978; Mehrabadi et al., 1982;
Mehrabadi and Nemat-Nasser, 1983: Nemat-

0167-6636,/91 /803.50 € 1991 - Elsevier Science Publishers BV

Nasser, 1983, 1988). These models seek to include
the essential ingredients of the underlying micro-
mechanical features. They have led to the descrip-
tion of the overall stress, fabric, overall deforma-
tion rate, and the evolution of the corresponding
rate constitutive relations in terms of various mi-
croquantities.

The present study is concerned with the micro-
mechanical modelling of the behavior of granular
materials, and with the understanding of their
overall mechanical response under shearing in the
presence of an overall confining pressure. The
maiu objectives are (1) to measure the components
of various fabric measures and compare them with
each other, (2) to relate the overall stress and
fabric measures and verify the results experimen-
tally, (3) to observe how the orientations of the
principal axes of each tensonal fabric measure
change over a cycle of deformation, (4) to examine
the representation of the corresponding distribu-
tion density functions and to establish the re-
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quired accuracy in the order of their harmonic
expansion, and finally (5) to study the relation
between the macroscopic stress and the local
quantities such as the contact forces.

To accomplish the above objectives, experi-
ments have been performed on photoelastically
sensitive rod-shaped particles of oval cross sec-
tions with different sizes. Microscopic quantities
such as the orientations of unit contact normals
and unit branches have been measured and their
evolution during a cycle of shearing has been
observed.

Results of these experiments show that fabric is
closely related to stress. Though many fabric
tensors have been proposed in the literature (Oda
et al., 1982; Mehrabadi and Nemat-Nasser, 1983),
our experimental results seem to suggest that the
off-diagonal terms in all these tensors closely fol-
low the overall stress-strain relation. It is also
found that in the representation of the distribu-
tion density functions of contact normals and unit
branches, the second-order terms alone are not
adequate to capture accurately the involved ani-
sotropy. Hence, the fourth-order terms must be
included. The tensor, ((m,f,) + (m,f})/2, has
been shown to be indeed proportional to the mac-
roscopic stress. (Here, m, are the components of
the unit center-to-center vector of two contacting
granules, called the branch, and f, are the compo-
nents of the force acting at the corresponding
contact point; the symbol ( --- ) denotes the un-
weighted volume average.) The diagonal terms,
{(mf,) and (m,f,), remain constant, repre-
senting the constant confining pressure; the off-di-
agonal terms, ((m,f,) + {(m,f,))/2, follow the
variation of the applied shear stress. This is also
the case for the fabric tensors to be discussed
later.

2. Material and apparatus

The granular materials tested are composed of
cylindrical rods of oval cross sections. Three dif-
ferent sizes are used to obtain a dense packing; see
Table 1. These granules have been cast using
polyurethane rubber of photoelastic constant 82.5
mm_/kg. The samples considered in the experi-

Table 1

Size Max. dia. Aspect Weight (g2)
(mm) ratio

large 14.95 1.14 33

medium 9.7 1.1 1.5

small 6.4 1.1 0.7

ments were relatively dense with an initial void
ratio of about 0.18. The average coordination
number of the packing was around 1.27.

2.1. Experimental procedure

The equipment and the experimental procedure
have been briefly described earlier by Mehrabadi
et al. (1988).

The testing equipment consists of a rigid outer
frame and an internal frame (Fig. 1) which can be
deformed in shear while allowing for volumetric
straining. On this internal frame, two horizontal
and two vertical bars are mounted which could be
moved in parallel on the internal frame. These are
denoted by HBI1, HB2, VBI1, and VB2, respec-
tively, in Fig. 2. The granules can be packed inside
the frame formed by these bars. The confining
pressure is applied on the sample by means of
weights P. The bar HB1 is lifted up by springs to
balance its weight. An additional weight W is
applied on HB1 and HB2 to balance the weights
of these bars and the granules, and the tension in
the springs.

To assess the influence of the friction of the
apparatus on the measured forces, an experiment
was performed where the granules are replaced by
equivalent weights, keeping the rest of the experi-
mental conditions the same. The horizontal shear
force is then applied to the frame and the fric-
tional resistance of the frame is measured over one
cycle.

A linear least-squares approximation is fitted
through the points obtained from the friction test
and these values are subtracted from the corre-
sponding horizontal shear forces applied to the
granules. Note that the friction test and the actual
test on the granules are performed 1n the same
direction and the same sequence over one cycle.
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Fig. 1. Testing equipment.

The granules are packed in the internal frame
of 20 cm by 20 cm, formed by bars HB1, HBI,
VB1, and VB2. To minimize the effect of the
boundaries, analyses are performed on granules
within a central part which constitutes the sample,
see Fig. 3. The granular mass is subjected to a
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Fig. 2 Schemauc of the expenmental apparatus

confining pressure of 1200 g and is sheared hori-
zontally by incremental displacements. The ap-
plied load on the granules is measured by a load
cell, Lc. The horizontal and vertical movements of
the bars are measured by the transducers P1 to P8.
The shear strain is recorded by an LVDT, Lv.
The loading frame is placed in the field of a
circular polariscope consisting of a monochro-
matic light source, a polarizer, two quarter wave
plates, and an analyzer. After the packing is com-

region of analysis

B2 B3

iGN

c2 C3

Fig. 3 Central region of the granular mass which constitutes
the sample for analysis
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plete, under a confining load. the shearing is ap-
plied incrementally. At each stage of loading, pho-
tographs of the isochromatic fringe pattern in the
stressed assembly are taken. These photographs
are later analyzed using a digital image analysis
system consisting of a PC AT, a frame grabber
(PC vision plus) from Imaging Technology Inc., a
Vidicon camera (C1000) from Hamamatsu TV
Co., and a Trinitron color video monitor from
Sony. With the aid of software “Imlab” and “Im-
tool” from Imaging Technology, a powerful pro-
gram for obtaining several microscopic quantities
was developed. With this program one can mea-
sure the number of fringes, length of major axes,
orientation of contact normals and branches, and
other needed parameters. One can also produce
the actual, and the second- and fourth-order ap-
proximations of the distribution density functions
of the unit contact normals, the unit branches, and
their weighted averages which are given by the
product of the particular unit vector and the num-
ber of fringes multiplied by the force per fringe
factor. This factor is measured in a separate ex-
periment to be 27 g/fringe for the granules used
in this experiment. In this manner a wealth of
microscopic measures is efficiently obtained. These
results are then used to compute the tensorial
components of various fabric measures which have
been proposed earlier in the literature, and to
check their relation to the overall stress and defor-
mation measures.
To understand the response of the equipment
under the loads applied to the granular mass, and,
in particular, to establish whether simple or pure
shearing is involved, a separate test is performed
on the equipment under actual test conditions. A
fixed reference point was chosen on the rigid
frame, and the movement of the hinge points Al
to C4 is recorded over one cycle of deformation,
see Fig. 2. The following conclusions are obtained:
(1) there is no relative movement of points Al to
A4 throughout the entire cycle, and

(2) points B1 to B4, and C1 to C4 do not undergo
any appreciable motion in the vertical direc-
tion.

Therefore, it is concluded that the granular mass is

subjected to simple shear rather than pure shear.

3. Fabric elements and their effect on overall prop-
erties of granular masses

Granular masses carry overall applied loads
through contact friction. The description of the
overall mechanical response of these materials re-
quires description of the overall stress, fabric, de-
formation rate, their evolution, and the overall
rate constitutive relations, in terms of various rele-
vant microquantities. We will not address the
question of constitutive relations here, since this is
available elsewhere in the literature (see Nemat-
Nasser and Mehrabadi, 1983).

Fabric refers to the spatial arrangement of par-
ticles and associated voids (Oda, 1978). This may
include (1) orientation fabric, and (2) packing
which is concerned with the mutual relation of
individual particles.

The fabric measures are used to establish the
anisotropy of a granular mass. Arthur and Menzies
(1972), in their paper, state that Casagrande and
Carrillo (1944) were probably the first to dis-
tinguish between two forms of anisotropy in soils,
which they called the inherent and the induced
anisotropies, suggesting that anisotropy may be
present before the soil is strained or it may be
induced by the straining process. They defined the
inherent anisotropy as “a physical characteristic
inherent in the material and entirely independent
of the applied strains”, and the induced ani-
sotropy as “a physical characteristic which is ex-
clusively due to the strain associated with an ap-
plied stress”. Inherent anisotropy is produced es-
sentially by the process of deposition (Arthur and
Menzies, 1972; Oda, 1972a). This is because every
particle tends to rest in the most stable position
and preferred orientation, with respect to the
gravitational or other relevant force. Induced ani-
sotropy is produced in the course of deformation
in response to overall applied loads. Both types of
anisotropy can have a profound influence on the
response and failure modes of granular masses.
Arthur and Menzies (1972) concluded that any
general formulation of stress-strain relations for
noncohesive soils must account for the large in-
fluence of inherent anisotropy. Arthur et al. (1977),
and Oda et al. (1985) studied induced anisotropy
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in sand. A major difficulty in such a study is the
controlled rotation of the principal stress during
shear. In some tests, rotations have been imposed
by cutting cohesive soil samples at chosen orienta-
tions from larger blocks of the soil (Bishop, 1966).
In granular soils, Oda (1972b) made measure-
ments of changes in particle packing at various
stages of shearing with constant principal stress
directions. Oda and Konishi (1974) observed the
rotation of the principal stress directions in simple
shear. Similar observations made under the pres-
ent experimental work will be discussed later in
this paper.

4. Stress and fabric in granuler masses

Stress is a continuum concept. Mzny authors
have defined stress in terms of average contact
forces (see e.g., Christoffersen et al, 1981;
Mehrabadi et al., 1982; Nemat-Nasser and Tobita,
1982; Oda et al., 1982). Nemat-Nasser (1988) has
summarized some of these results within the
framework of continuum mechanics. Consider a
collection of granules with overall volume V' and
overall surface S, subjected to self-equilibrating
tractions T applied on its boundary S. This pro-
duces contact forces at the contacting granules. If
we assume a large number of granules in V, both
continuum and statistical formulations of the
overall stress are permissible. If 6(x) is a variable
stress field in equilibrium with the applied trac-
tions 7, and if body forces are zer:, then we must
have

0,,=0 inV,
o,¥ = T onS, (4.1)

where » is the exterior unit normal on S. The
overall stress is the simple volume average of this
self-equilibrating stress field,

5= Vfo(x) dv, (4.2)

The stress field may vary discontinuously from
granule to granule, but it must produce continu-

ous tractions across the contact area of any two
contacting granules, say A and B. Therefore,

[0,]n,=0, (4.3)

where n is the unit normal on the contact area,
which points from A to B. The symbol [---]
indicates the “jump”, i.e.,

[o,j] -a], (4.9)

which is the difference of stress in A and B at the
contact point. In the absence of any pore fluid or
gas pressure, (4.2) may be written as

] ¥o .
°=T’f\.:1/ o(x) dV = aglc (4.5)

where ¢ is the volume fraction of the ath gran-
ule, ie, ¢®*=V,/V, Mg is the total number of
granules in volume V, and o is ihe average stress
within the ath granule. From (4.1) and (4.3), it
follows that

fy(xjo,k),A av = fo,j av = ij, ds =35,

== Z x°F, (4.6)

a=1

where M, is the number of points on the outer
boundary S at which concentrated forces F* are
applied. Since this representation does not involve
the contact forces at the interior contacting gran-
ules, it does not involve the microstructure. Alter-
nate representations which include the microstruc-
ture have, therefore, been proposed.
Christoffersen et al. (1981) showed that the
overall stress may be defined in terms of the
volume average of the tensor product of the con-
tact forces and the associated branch vectors. They
used the principle of virtual work to show that the
overall average Cauchy stress, g, in a representa-
tive sample of a granular mass can be wntten as

1
=3 [o, do=N(L1), (4.7)

where

1
A= 2 1 (4.8)
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Here, V is the volume of the sample, o, is the
variable stress in equilibrium with the applied
loads, N is the number of contact points in the
sample, f* is the contact force at the typical
contact «, and /* is the corresponding branch, i.e.
the center-to-center vector of two contacting gran-
ules.

Many fabric measures have been introduced in
the literature. For spherical granules, Oda et al.
(1982) proposed the fabric tensor

F,=Ni(nn,), (4.9)
and, for nonspherical granules, the tensor
F, =Ni(mm,), (4.10)

where [ is the average value of the branch lengths,
and n, and m, are the components of a typical
unit contact normal and a unit branch, respec-
tively. Satake (1978) defined an *anisotropic
tensor” by

J,=(nm,). (4.11)

Another fabric measure considered by Nemat-
Nasser and Mehrabadi (1983) is

H, = N{almn ), (4.12)
where a is the contact area. We note that the
choice of a particular fabric measure is a matter of
convenience and its suitability is judged by com-
parison with experimental observation.

From our experimental data, many of the above
tensors can be calculated. We have considered the
tensor (m,f,), where f has been interpreted as
the weighted fringe bias which is given by the
product of the unit fringe bias and the number of
fringes as measured on the digitized picture multi-
plied by the force per fringe. The average of the
off-diagonal terms has been scaled so that its
range is the same as that of the applied shear
stress. The graph is then translated to match the
stress at the extreme points, see Fig. 4. This does
not change the shape of the curve, but determines
a scale factor to relate the overall stress to the
corresponding average quantities.
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The weighted fringe bias is not an exact repre-
sentation of the contact force. It may however, be
taken as a good measure of this force. The diago-
nal terms in the tensor (m,f,) remain almost
constant, representing the constant confining pres-
sure, see Fig. 5. The off-diagonal terms of the
tensors (mm ) and (n,n ), plotted in Fig. 6,
have very good agreement with the overall stress
ratio. Figure 7 is the plot of diagonal terms (n;n;)
and (mym,) vs. the shear strain. It is clearly
apparent that these quantities remain almost con-
stant throughout the deformation. (Note that
(nyn,) and (m,m,) also remain almost constant
because (nn,) + (nyny) =1 and (mym;) +
(mym,) =1.) Thus, it can be concluded that the
diagonal terms in each tensor are proportional to
the confining pressure and the off-diagonal terms
are proportional to the applied shear stress. Also,
note that the corresponding components of the
tensors associated with the branches and contact
normals are almost dentical.

5. Mechanism of strain hardening

A typical plot of stress ratio vs. shear strain is
shown in Fig. 8. When a granular medium is strain
hardening, its plastic deformation is accompanied
by a stress increment. When the granular medium
deforms under increasing stress ratios, rearrange-
ment of particles occurs to withstand the increas-
ing stress ratio. Therefore, contact normals tend to
concentrate in the direction of the principal stress
axis, as is clearly observed in the form of chains of
heavily stressed particles. The average direction of
these “chains” tends in the direction of the major
principal stress axis. As a result of this concentra-
tion, a strong fabric anisotropy develops, see Oda
(1974, 1978).

It is also observed that the principal stress axes
of each tensor rotate with a change in the magni-
tude and direction of applied shear stress. This
can be clearly observed from the rose diagrams of
unit contact normals and unit branches, Figs. 9(a)
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Fig. 8. Strain hardening behavior of granular materials can be clearly observed in the first quarter cycle of the experiment.

and 9(b). The distributions of both contact nor-
mals and branches and their evolutions are quite
similar. The orientation of the major principal axis
vs. the shear strain is plotted in Fig. 10 for tensors
(m,f,), {mm,), and (n,n ). In all three cases, it
is observed that the orientations of the corre-
sponding principal axes change rapidly during the
early stages of deformation, approach constant
values in the range 130°~140°, and remain con-
stant thereafter. Once the direction of shearing is
reversed, a rapid change by 90° in the orienta-
tions of the principal axes of the fabric occurs.
Their orientations then remain constant until a
further change in the direction of shearing occurs.
This process repeats in each cycle.

6. Dilatancy

Granular materials exhibit volume changes
when sheared under confining pressure. Figure 11
shows the relation between the shear and volumet-

ric strains. An initial densification is seen to be
followed by dilation, typical of almost all granular
materials.

The dilatancy equation proposed by Nemat-
Nasser (1980) is,

14 1 v’ .
73 = Y '/;_ p(v) cos(¢, +») sin v dv,

(6.1)

where v is the angle between the contact unit
normal and the vertical axis, p(») is the distribu-
tion function for the angle of active contacts,
v*<u/2 and v~ > m/2 define the range of varia-
tion of the dilatancy angles, and ¢, is the angle of
sliding friction.

In (6.1) it is assumed that the local ¥, is the
same as the global rate of shearing y, where v, is
the rate of shearing contributed by the shiding of
granule 1. Nemat-Nasser makes a number of inter-
esting observations from (6.1), which explains the
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dilatant behavior of granular materials. The ob-
servations are summarized below.

Under uniform confining pressure, the distribu-
tion density function of the dilatancy angles at
active granu':z, p(v), tends to be biased toward
negative dilatancy angles, leading to initial densifi-
cation in shearing. (\s the sample is monotonically
sheared, the distribation function p(») tends to
become biased toward positive dilatancy angles,
eventually leading to positive dilatancy. Suppose a
sample has been sheared monotonically, say, in
the positive x-direction, until a strong bias toward

positive dilatancy angles has been developed.
Upon reversal of shearing, the distribution of the
dilatancy angles will then be strongly biased to-
ward the negative dilatancy angles, leading to a
strong tendency toward densification. Hence, pre-
shearing to a large strain amplitude (less than the
strain associated with the peak stress) renders
the same strongly susceptible to densification
:drained) or liquefaction (undrained) during load
reversal. The above observations have been veri-
fied by Nemat-Nasser and Tobita (1982) and
Nemat-Nasser and Takahashi (1984), for a cir-
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cular cylindrical sample of sand subjected to cyclic
shearing. The same is also verified in the present
experiments on photoelastic rods.

7. Fabric tensors and representation of distribution
density functions

Distribution of directional . -ta is characterized
by what is termed “fabric tensors”. In our analy-
sis, “direction” or “orientation” means ‘‘axis”,
and the direction is indicated by a unit vector n.

Several fabric tensors have been discussed in
Section 4. These tensors are, by necessity. of even
orders. They define the distribution of contact
normals. n, or unit branches. m. Examples are

(n,n,) and NI{m m ) which are symmetric. and
(n,m,) which is nonsymmetric. Higher order
fabric tensors. like (n,n m m;) and (nn n;n;),
may also be considered. The inclusion of higher
order tensors provides more information regarding
the details of the anisotropy involved in each
distribution; Kanatani (1984).

Let E(n) be a distribution density function of
contact normals. Then

E(n)=E(-n) and fQE(n)dS2=l,~ (7.1)

where £ is the unit sphere. and E(n) d& 1s the
number of data points falling in the sohd angle
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dQ, about the direction n. Expanding E(a) in
spherical or circular harmonics, gives

E(n)=A[1+J,nn,+J nnnen+ <],
(1.2)

where 4 = 1/(2x) in two dimensions, and 1/(4)
in three dimensions. J,, and J, ,, are all deviatoric
and are expressed in two dimensions as

J:} = 4[(":”/) - %8:/]’

o= 16[("1"/"an> =8¢, (ngnpy) + 1118(,,1(1)]-
(7.3)

The angular brackets denote averages taken over
all orientations. J,, and J,,, are symmetric and
traceless. J,, has been related to various fabric
tensors in the literature.

where 8 is the orientation of #n or m, measured
from the horizontal. The distribution density func-
tion in terms of these parameters now becomes

EP(n) = 21—“ + %[2,4 sin 26 + (2C - 1)cos 26],

E®(n) = % + %[2,4 sin 26 + (2C — 1)cos 26
+ (1~ 8C + 8D)cos 46
+4(2B - A)sin 48],  (7.5)

where the superscript on E indicates the order of
terms included in the expansion of E(n). Note
that the parameters A and C are related to the
degree of concentration, J, and the preferred
orientation, B, introduced by Konishi (1978),
where

The components of the above two tensors can 2 1 2 2
\ AN 2= =447+ (1 - : .
be represented in two dimensions, in terms of the Ji=wdyd, =44+ (1-20) (76)
four parameters A, B, C, and D defined by and
A= (sin 6 cos §), B = (sin  cos’f), 2J 24
N ) _ 4 (7.4) tan ZB = 2 - . (7.7)
C = (cos°8), D = {co0s"8), Jy—Jn 1-2C
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Fig 12 The parameters C and D. which are the diagonal terms in fabric tensors J,, and J, ;. remain almost vonstant throughout the

deformation process
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Here, B is the same as the angle of the principal
axis of tensor (m,m,) or (n,n,), which is plotted
against shear strain in Fig. 10.

The parameters A, B, C, and D have been
measured at each stage of the experiment. 4 and
C represent the terms (mn,), and (mn;) or
(nayn,) in the fabric tensor (n,n,), respectively
(or the corresponding terms in (m,m,}), as dis-
cussed before. The parameters C and D are the
diagonal terms in the fabric tensors J,, and J, ;)
respectively, and from Fig. 12 they seem to remain
almost constant throughout the deformation pro-
cess, representing the constant confining pressure.
The off-diagonal terms, for example 4 and B,
behave similarly to the applied shear stress. The
parameter A vs. the shear strain is already plotted
for both unit normals and unit branches in Fig. 6,
and B vs. shear strain is shown in Fig. 13. Also
the parameters B and D behave similarly to A4
and C, respectively. Therefore, in the distribution
density function, even terms like (cos’§) and
(cos*@), or (sin*d) and (sin‘d) relate to the ap-
plied confining pressure, and odd terms involving
both sine and cosine, like 4 and B, relate to the
overall applied shear stress. Note that the values

0.06

of A, B, C, and D, for unit branches as well as
unit contact normals, are almost the same. Also,
the distributions of the unit contact normals and
the unit branches which are shown in Figs. 9(a)
and 9(b), and the orientations of the principal
axes which are shown in Fig. 10 for both the
above tensors, are similar. So, for all practical
purposes, the consideration of either one of them
seems sufficient for the analysis of fabric. This
was also observed in earlier experiments by
Mehrabadi et al. (1988). Figures 9(a) and 9(b)
show the actual, fourth-order and second-order,
distributions of the contact normals and unit
branches at various stages throughout the experi-
ment. It is clear that the fourth-order approxima-
tion reveals the inherent anisotropy much more
accurately than does the second-order approxima-
tion,

8. Conclusion

A summary of some theoretical and experimen-
tal developments on granular materials is pre-
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sented. The results of a series of experiments
performed on photoelastic granules in simple
shearing under confining pressure, are discussed.
The components of various fabric tensors pro-
posed in the literature are measured experimen-
tally. The tensor (m,f,) is shown to be a good
measure of the overall stress. The off-diagonal
terms in the tensors (m,f,), (m,m,), and (n,n )
have been found to represent the overall shear
stress, as predicted by the theory, and the diagonal
terms to represent the confining pressure which
remains constant throughout the deformation pro-
cess. The principal axes of all the above tensors
rotate during cyclic shear. They rotate by 90°
whenever a change in the direction of the applied
shear occurs.

In the distribution density function, E(n), of
the unit contact normals, terms involving both
sine and cosine follow the stress-strain relation
closely, and terms involving sine or cosine alone
remain constant throughout the deformation, rep-
resenting the constant confining pressure. Also, it
is important to include the fourth-order terms in
the expansion of E(m), in order to reveal the
highly anisotropic nature inherent in the data.

Finally, since the distribution of contact nor-
mals and unit branch orientations, and other mi-
croscopic quantities associated with them are simi-
lar for both contact normals and unit branches, it
may be concluded that any one of them can be
taken as a good measure of the fabric.
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ABSTRACT

Micromechanically-based constitutive relations for two-dimensional flow of granular materials
are presented. First, the relations between the overall stresses and the relevant microscopic quantities,
namely, the interparticle forces, the density and orientation of contact unit normals, as well as the average
size of the particles, are obtained. Then, the kinematics is examined, and the overall velocity gradient
is related to measures characterizing the relative sliding and rotation of granules. A significant concept
underlying all these developments is the notion of the class of contact unit normals with a continuously
evolving distribution function, even though individual members of various classes may change
discontinuously, as contacts are lost and new contacts are developed in the course of granular flow.
Then, simple local constitutive relations are introduced for the rate of change of the contact forces, the
evolution of the contact normals, the mechanism of local failure, and the density of contacts in a
particular class. This leads to macroscopic rate constitutive equations through a Taylor averaging
method. Due to the nonlinearity of the rate constitutive equations, the response is computed by an
incremental procedure. As an illustration, the overall response of a two-dimensional assembly of disks
subjected to an overall shearing deformation is determined. In addition, explicit results are presented for
the evolution of fabric, contact forces, and the history of active and inactive classes of contacts. The
stress-strain relations and the evolution of fabric and contact forces are in excellent qualitative agreement
with the observed behavior of granular materials. In light of these results, the mechanisms of failure and
inelastic deformation of dense as well as loose granular materials are discussed.

Although most features of the model could be readily generalized to three dimensions, for
simplicity, the discussion is limited to planar deformation.
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1. INTRODUCTION

A fundamental issue of considerabie scientific and technological importance in the mechanics of
granular materials is the development of their overall macroscopic constitutive relations on the basis of
simple and reasonable micromechanical assumptions. Many topics which either directly or indirectly bear
on this fundamental issue, have been dealt with by many researchers over the past several decades,
leading to considerable progress in this area, and better understanding of the major parameters involved.!

A systematic approach to this problem inevitably would include considerations of: 1) a description
of the overall macroscopic stresses in terms of contact forces, their distribution, and some relevant
geometric measures of the microstructure; 2) a description of the overall measures of incremental
deformation in terms of quantities that characterize micromechanisms of relative sliding or sliding and
rolling of granules; 3) a description of the time rate of change of the overall stress measure in terms of
the overall deformation-rate measures, based on simple models which characterize the corresponding rate
of change in contact forces in terms of suitable local deformation-rate measures.

A stumbling block that seems to have hindered achieving all of the above-mentioned goals is the
fact that, in the course of deformation, new contacts are constantly being generated as some of the
existing contacts are being lost. This precludes analytic identification of the history of individual contacts,
unless one approaches the problem numerically, using a large-scale computer program (see, e.g., Petrakis
and Dobry, 1989). On the other hand, in the course of continuous deformation of a granular mass, one
expects that suitable measures of the distribution of contacts can be employed, which characterize a
certain class of contacts and, therefore, undergo continuous change. This is the viewpoint adopted in the
present paper.

In this work the microstructure is identified with the "fabric” of the granular mass. There are

! For some recent contributions see the proceedings of the three U.S.-Japan Seminars (Cowin and
Satake, 1978; Jenkins and Satake, 1983; Satake and Jenkins, 1988).
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various tensorial measures that can be used for describing the fabric of a granular mass; see
Nemat-Nasser and Mehrabadi (1983) for a discussion of some of these fabric measures. Here, following
Oda (1972), the tabric is represented by the distribution of the unit contact normals. Accordingly, based
on the observed evolution of fabric, we introduce local constitutive equations directly for the probability
density function of the contact normals rather than for various fabric tensors which are defined by means
of the distribution density function.

Based, in spirit, on our earlier work (Nemat-Nasser and Mehrabadi, 1984), we introduce simple
constitutive models at the microlevel, which relate the change (or the rate of change) in the contact force
associated with a given class of contacts to the corresponding micro-deformation increment (or rate)
produced by the corresponding changes in the microstructure, Such an approach (which deals with classes
of contacts rather than with individual contacts) bypasses the difficult issue of continuous loss of contacts
and formation of new ones. As mentioned earlier, here the fabric is represented by the distribution of
contact normals. Each orientation corresponds to a large number of contacts which, while individually
may undergo abrupt changes, collectively evolve in a continuous manner during the course of the
continuous flow of the representative granular sample. In this manner, one can, for example, identify an
initial and a current orientation for a given class of contacts, while clearly the same identification may
not, in general, be possible for an individual and specific contact.

After a discussion of the concept of stress in granular materials in Section 2, a description of the
kinematics is presented in Section 3. At the local level, the description of kinematics corresponds to the
double shearing model of Spencer (1964, 1982). The local constitutive assumptions for the time rate of
change of contact forces, the local yield criterion, the time rate of change of the local nominal stress, and
the evolution of the probability density function of contact normals are presented in Section 4.
Macroscopic constitutive equations are found, in Section 5, by employing a Taylor averaging scheme.

Due to the nonlinearity of the rate constitutive equations, the response must be computed by an

incremental procedure. Instead of using a scheme of subincrementation, we introduce another simpler
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method based on the first-order approximation of the local yield function. This procedure is described
in Section 6, where local and overall constitutive equations are written in incremental form.

Owing to the simplicity of the local rate constitutive equations introduced in Section 4, an
analytical integration is possible and is carried out in Section 7, whereby explicit relations are derived,
including +hose for the contact forces and contact normals. Using these relations, the overall nominal
stress can be computed in two alternative ways which are described in Sections 6 and 7.

For boundary value problems on granular materials, with prescribed initial overall confining
stresses, it is necessary to determine the initial equilibrium distribution of contact forces for each class
of contacts. Hence, in Section 8, a relationship is developed between the local contact force
corresponding to an individual class, and the overall confining stress and the initial fabric. Boundary
conditions for the numerical examples are also considered in this section.

As an illustration, the response of a two-dimensional assembly of rigid cylindrical disks of
circular cross section subjected to shearing deformation is determined in Section 9. Two numerical
examples are presented, one of which simulates the response of dense and the other corresponds to the
behavior of loose granular materials. The mechanism of strain hardening and failure followed by strain
softening which is a characteristic response of densely packed samples of granular materials, and the
inelastic deformation mechanism corresponding to the loosely packed samples are discussed in light of
the model predictions of the evolution of fabric, contact forces, and the history of active and inactive
contacts. In so far as the shearing deformation is concerned, the resulting stress-strain relations and the
evolution of fabric, and the evolution of contact forces are in excellent qualitative agreement with the
observed behavior of granular materials. However, the volumetric response of the model in cyclic shear
is not realistic because the model predicts a net dilatancy rather than a net densification at the conclusion
of a cycle of deformation. A further study of this point and the generalization of this model to three

dimensions are left for future investigations.




2. DESCRIPTION OF STRESS AND ITS TIME RATE OF CHANGE

A granular mass is modeled as a continuum whose material points are endowed with the overall
macroscopic characteristics of a typical sample which contains a representative set of granules. The
typical sample must be large enough to be statistically representative of the properties of the granular
material. The stress at a material point in the model continuum is then represented by .he average stress
in the typical sample of the granular mass.

An expression for the overall average stress tensor in the sample of the granular body, in terms
of microscopic quantities such as contact forces and branches (which are vectors joining the centroids of
adjacent contacting granules), can be obtained by applying the principle of virtual work. The following
derivation is based on the work of Christoffersen, Mehrabadi, and Nemat-Nasser (1981).

Consider a representative sample of a granular mass which at time t has a volume V bounded by
a surface S. The reference configuration of the sample has a volume V, and a surface S,. The sample is
subjected on its boundary to 2 uniform traction T'* measured per unit reference area. Choosing a fixed
rectangular Cartesian coordinate system, denote the corresponding components of the local asymmetric
nominal stress tensor by v, , and require that this nominal stress and its time rate of change remain in
equilibrium with the applied tractions and their time rates of change, i.e., the spatially variable nominal
stress and its rate are introduced in such a manner that the following equilibrium equations are satisfied

at all times (body forces are absent and quasi-static problems are considered):’

0_ 40 . g0 _ 0

vUN, =T, , "UN' ’TI onS,, Q.1
2Py iy, 2.2)
X, ox,

where X is the position of a point of the granular mass in the reference configuration, N’ is the normal
to the boundary S, and where a superimposed dot designates the time-rate of change. The introduction
of the (variable) nominal stress and its rate in equilibrium with the prescribed boundary tractions and their

rates is in agreement with similar concepts used in developing overall macroscopic properties of

! Here and throughout the paper, summation over the appropriate range of repeated indices is in
force.




polycrystalline solids and composite materials in terms of their microscopic properties; Hill (1965, 1972).
In this context, the overall average nominal stress and its time rate of change are simply given by the

unweighted volume averages of the local quantities, i.e.,

N -—-f v,dv,, 2.3)

and

N ---f v, dv, . 2.4)

Following the procedure outlined by Christoffersen er al. (1981), let f; stand for the components
of the contact force exerted by a typical granule on its neighboring granule over a contact point. At each
contact point we identify ore such contact force. We consider a spatially varying velocity field v, which
is kinematically admissible, and which produces at typical contact points relative virtual separations

denoted by A,. Then the virtual work principle requires

Efc Al""f"y”l 4950 »

«s=l

(2.5)
ov
= -.Lf vu_l,dVo ,
Vo on Vax,

where M, is the number of contacts per unit volume in the reference configuration, and where the
equilibrium equations (2.1), and (2.2), and the divergence theorem are used.

As pointed out in the introduction, in developing rate constitutive relations, we may deal with
classes of contacts and the evolution of these classes, rather than with specific individual contacts which
may be lost or generated in the course of deformations. This idea will be further discussed later on.
Here, it suffices to comment that we actually use the current configuration as the reference configuration,
which circumvents this problem.

Let the virtual velocity v, be linear, so that the velocity gradient is constant, i.e.,

Syl (2.6)

A compatible virtual relative separation velocity, 4, at atypicai contact is then of the form




A, =60, @.n

where £° is the associated branch, i.e., the vector joining the centroids of two typical contacting granules;
Christoffersen, Mehrabadi and Nemat-Nasser (1981). Note that there are two such branches associated
with each contact point, £°; and -£%. For each contact point we identify only one contact force, f; , and
one associated branch, %; see Mehrabadi, Nemat-Nasser, and Oda (1982).

Substitution from (2.7) and (2.6) into (2.5) now yields

".
«a e 1
A 67 s =0. @8

Since ¢, is arbitrary, we obtain

".
N, = Elﬁ-fl‘ ’

29
"0
I3 [}
=Y 0 m g,
=1
where £% is the branch length, and m’ is a unit vector referred to as the "unit branch”.
Following Mehrabadi, Nemat-Nasser, and Oda (1982), the group of M, contacts per unit
reference volume of granu'ar mass is divided into, say Q classes, each with a common branch direction
defined by the corresponding unit branch vector. If there are M,, (a = 1,2,...,Q), contacts which belong

to class a with common unit branch m”, then

QM
- (2.10)
v

o

Let &, denote a typical contact in class a. In obtaining the average quantities in Eq. (2.9), one must first
calculate the corresponding average over each class and then sum the results over all classes. Since, for

a typical class a, there are M,, contributing contacts,

Q M, or &
Ny = S € gy m”

os] « ]

ﬂ. .
For the sake of simplicity, we assume that the contact forces f, ° are not correlated with the branch
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length, ¢°*~. With this assumption, it follows that

Qe M «
N,=E-M£ 0y =<0, @11
a=1 0

where

0 = M, P m 77,
and where the angular brackets, < > denote averaging over all the classes. The subscript zero of the
anguiar brackets is to indicate that the average is taken over the reference unit volume. A superposed
hat in (2.11) designates averaging over the force-bearing contacts in a class. Bearing in mind that the
contact force and the branch length are average quantities over a class, and that these quantities and the

unit branch vary from one class tc another, to make the notation somewhat simpler, the superposed hass

and the superscripts a will not be shown in the sequel. For example (2.11), in the simplified notation,

becomes
N =y Mo e 2.12)
v - EF Vi = <V¢o i
as} 0
where
vy M Omf . (2.13)

We now take the reference configuration to be the instantaneous current configuration , and obtain

from (2.12) and (2.13)

_ Mo, 2.14)
2U'<°U>'EM°U' .
arl
where
o, =Mtmf, (2.15)

and the angular brackets, < >, denote averaging over all the classes in the current
volume, E,}=<o‘l> is the average (overall) Cauchy stress, and M and M, are, respectively, the total

number of contacts per unit current volume and the number of contacts in class a per unit current volume




Note that although the average of o, is the symmetric overall Cauchy stress, the local quantity o, is
not symmetric, in general.
When the number of classes, Q, is very large, we can introduce the distribution density function

E(m) to describe the angular distribution of unit branches. In this case (2.10) becomes
an(m)dQ =1, (2.16)

where E(m) = E(-m), and where dQ is an elemental angle of the unit circle ). With (2.16), the average

of any quantity ¢(m) is given by

e M
<> = 27‘ e(m*) ,

a=1 (217)
= foE(m) P(m)dQ .

In particular,

Ny = <v 20 = My<Cmif>, = My [ Em®) Omifda (2.18)
and
<o,> = M<tmf> = M foE(m)vm,f;dQ : (2.19)
The macroscopic Cauchy stress, L;, is defined by the relations

LG, N (2.20)

VT GG Y
where G, the average deformation gradient, is related to the local' deformation gradient, g, by

1 -
G, = 70 V’g‘fiVo =<g.> - 2.2

Hill (1984) has shown that under homogeneous macro-boundary conditions the average and macroscopic

Cauchy stresses are equal, i.e.,

' The term "local” is used interchangeably with the term "class”, so that g, or more explicitly g*,
defines the contribution of the typical class a to the overall deformation gradient.
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Expressions similar to (2.19) for stress have been derived by many investigators beginning with
Cauchy in 1822 (see Love, 1927, Note B) who derived an expression for stress in an anisotropic linearly
elastic material on the basis of a molecular theory. Assuming that forces between the atoms are centric,

Cauchy derived an expression of the form'
T, = M<tfmm> . (2.23)

Since the current configuration is used as the reference one, the nominal stress N, equals the
Cauchy stress T;. The same, however, is not true for the corresponding rates. The advantage of working
with the nominal stress of the form (2.10), is that one may employ a procedure similar to the one outlined

above, and show that

Nil = <V, = M0<Q° m:’ >0 - (2.29)

When the current and the reference configurations are chosen to be coincident, Eq.(2.13) reduces

to
N,= M<tm, fp> . (2.25)

This eliminates the need for a transport-type equation which, generally speaking, relates the time rate
of change of the average of a quantity to the average of its time rate of change. The relation between the
nominal stress rate and the Cauchy stress rate will be examined in Section 5 after the necessary

kinematical quantities have been introduced.

' Cauchy's derivation of the form of the elasticity moduli on the basis of (2.23) yields only 15
independent moduli (rather than 21) for the least degree of symmetry (i.e. triclinic). The six "Cauchy
relations"” between the 21 elastic moduli are generally attributed to the centric force assumption. It is
interesting to note that even when the tangential component of the force is non-zero and the stress is given
by (2.14) and (2.15), under certain conditions, the six Cauchy relations cannot be avoided.

10




3. KINEMATICS

The flow of a granular mass which consists of rigid granules under the action of an overall
applied load occurs through sliding and rolling of grains over each other. As pointed out earlier, in this
process, some contacts are lost, and new contacts are continually deveioped. The overall deformation rate
is the result of local relative motion of the grains over active contact points. The grains, however, are
constrained by the neighboring grains during their relative motion, so that a compatible overall
configuration is maintained. In the course of such flow, the microstructure or fabric changes;
consequently contact forces and, hence, the overall stresses also change.

As mentioned before, in dealing with the evolution of the microstructure of a granular sample,
it is more effective to consider a distribution of suitable measures of microstructure and its evolution in
the course of deformation, rather than the changes of specific and individual local quantities. One such
suitable measure of microstructure or fabric is the distribution of contact unit normals (Oda, 1972).
Another, equally effective measure is the distribution of unit branches which are unit vectors in the
direction of the branches. Both measures, or a combination of the two, have been discussed in the
literature; see Nemat-Nasser and Mehrabadi (1983), and Mehrabadi er al. (1988). Here, we select to
work with the distribution of contact normals, simply because it is easier to relate frictional sliding to this
quantity. Also, for simplicity, we limit our discussion to circular disks in a plane or spherical granules
for which the unit normals and the unit branches are of course, identical.

Hence, in what follows, the microstructure of a typical sample of a granular mass is characterized
only by the distribution of contact unit normals. Each orientation in this distribution corresponds 1o a
class of contacts. As the sample deforms, the distribution of unit normals changes and this change
characterizes a corresponding change of the fabric or microstructure. The overall deformation is viewed
as a suitable average of the local deformations associated with each class of contacts. Here, by "local
deformation rate”, we mean the deformation rate corresponding to a given class of contacts which
includes contributions from a large number of specific individual contacts that are represented by a given
orientation.

The local deformation rate associated with a given class of contacts comprises contributions from
(i) the relative motion of individual grains which leaves their associated orientation and, therefore, the

microstructure of this class unchanged, and (ii) an accompanying part associated with the fabric change
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which renders the resulting velocity gradient for this class compatible and which induces a change in the
contact force associated with the class. For example, if contacting granules undergo rigid rotation without
sliding or rolling, the contact orientation and the contact force change, leading to a change in fabric. On
the other hand, if contacting granules simply slide and roll in such a manner that the orientation of the
contact normal is unchanged, no contribution to the change in fabric is made. In general, however, a
compatible deformation is obtained only if both contributions are present. It should be noted that, for
certain classes of contacts, this formulation allows nonzero velocity gradients solely due to fabric change,
even when the granules are rigid.

Let I, (a =1,..,Q), denote the components of the velocity gradient associated with a typical
class of contacts, a. Then

=Rt 5, (a1,.,0), 3.1)

where I’® is the velocity gradient corresponding to the fabric change, and 1°* is the velocity gradient
stemming from the relative sliding motion of the grains, which leaves the fabric unchanged. The
part I'** in (3.1) is the counterpart of the slip-induced velocity gradient in single crystals, and the
part I°® is the counterpart of that associated with the elastic lattice distortion. Note that, in a granular
material which is modeled by rigid granules, no elastic deformation can be involved, it is the change in
fabric that produces the change in the overall stress.
The part I'*® is resolved into a symmetric and a skew-symmetric part, as
I =d; +w, (3.2)
where
1

LX) 1 .e *n LR LA LN}

d;" = E(IU + 1) and wy = -E(IU -, (3.3)
are, respectively, the local inelastic deformation rate and spin; and where, for ease in writing, the
dependence on the class of contacts is not shown explicitly in (3.2). Similarly, the accommodating
velocity gradient, I*® , associated with the fabric change, is decomposed as

I =dy +w, (3.4)

where




. l . . . . »
dy = 25 < By and wj = 205 - L), 3.5)

are the corresponding deformation rate and spin tensors.

The overall velocity gradient, deformation rate tensor, and spin tensor, are respectively defined

by
L" = <lu> , (3.6)
and
1 1
Du = E(L" + L,, = <d”>, W, = E(L" - L,,) = <wp>, (3.7
where 1
d, = E(l" + zﬂ) =d, +d;, (3.8)
and where 1
w, = -i(lu -1) = wp o+ wy (3.9)

4. LOCAL CONSTITUTIVE EQUATIONS
The local constitutive assumption for the time rate of change of the contact force is considered
in Section 4.1. The local yield criterion and the local inelastic part of the velocity gradient (i.e., I"" )
associated with this yield condition are described in Sections 4.2 and 4.3, respectively. The rate of
change of the local nominal stress is derived in Section 4.4, and the evolution of the probability density
function of contact normals is considered in Section 4.5.
4.1. Time Rate of Change of Contact Force
To arrive at macroscopic constitutive relations for the nominal stress-rate given by Eq. (2.25),
we proceed to relate the time rate of change of the contact force to the local kinematic measures.
Following Nemat-Nasser and Mehrabadi (1984), the contact force is written , without loss in generality,

in the form
feerym,, @

where ¢ with the dir -nsion of area is a parameter representing a measure of the total contact area and,
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consequently, the number of contacts in a particular class a; and where <, are the components of a local
stress associated with a class of contacts’.

Recall that in the decomposition of the microscopic measure of the velocity gradient I, in the
manner of Eq. (3.1), only the contribution I° is responsible for the change of fabric and, therefore, the
change in the magnitude and orientation of the corresponding contact force. Accordingly, it seems
reasonable to write local constitutive relations for Ty » M, S (components of a unit vector normal
to m and in the sliding direction), and ¢ , in terms of the rate of fabric change, quantified here

by I°. In particular, to keep the formulation as simple as possible, we set

. . 4.2)
"."-w"ml'—-o s s,-quI=0 »
. . . [ (4.3)
fu"w“fu“'f uwH = Qyudu N
and choose for illustration an isotropic relation for Q;,u,
. . . 4.4
L= bubuﬂs (6u6,,+o,,aﬁ) s
and set ,
by, 4.5)
>

where A°, p°, and b are constants; and where & y » are the components of the Kronecker delta.
Assumption (4.2) defines the spin of a contact normal representing a typical class, and not the spin of
individual contacts which form that class. It is consistent with earlier formulations of elasto-plastic
theories for crystalline materials (Hill and Rice, 1972; Havner and Shalaby, 1977; Nemat-Nasser,
Mehrabadi, and Iwakuma, 1981; Nemat-Nasser, 1983; and Nemat-Nasser and Mehrabadi, 1984), in
which m, , and s, would define the crystal lattice. Here, since m, and s, characterize a class of

contacts which define the corresponding local fabric, it is reasonable to require that the time rate of

! This local stress is related to the local nominal stress given by (2.13), and the local quantity o,,
defined by (2.15), as follows:

= MO0 o © =
v,=MCemit,m, and o =Mtemz,m, .
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change of these quantities, measured with respect to an observer rotating with the fabric, vanishes.
Expressions (4.2-4) are based on the starting assumption that the time rate of change of the local
stress and the parameter ¢ are affected by the rate of change of the fabric only.
It is convenient to resolve the contact force f into its components, f™ along the contact normal

and f“ along the direction of sliding, i.e.,

£,="m +f¥s, , 4.6)
where, using (4.1),

f™=er S

CN))
fP=er sm, .
Differentiating (4.7) with respect to time and employing (4.2-5), we obtain
fP=APd; . fO=4ddy 4.8)
where
A =bf™8 v e(A8 + 20" mym)) 4.9)
and
A{,’)=bf(’)6u+eu°(m,sl+mls,) . 4.10

Upon use of (4.8), (4.9), (4.10), (3.4), and the definition of v according to (2.13), the local

nominal stress rate becomes
L) 3, 1 .
= [M,fm] (Am + AQs, i,y 800 @11

where, consistent with (2.24), we have written

vy =MPmlf, (4.12)

Eliminating I* in (4.11) using (3.1), we obtain

V= (MOm (A m + AQ) )+_(v 8-V iy -1a") . 4.13)
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It should be emphasized that the isotropic relation (4.4) is used here for illustration only, and that,
in general, one must use a relation which reflects the corresponding local conditions. However, since
the contact force associated with a class is defined in terms of the yet unspecified tensor t,, and since
(4.3) relates the rate of change of this tensor to the rate of change of the local fabric, assumption (4.4)
ought to be adequate,

In order to calculate I°* in terms of the local velocity gradient I , 2 local yield criterion is
developed in the sequel.

4.2 The Local Yield Criterion

Jn the absence of cohesion, a simple model for the yielding mechanism is a Mohr- Coulomb-type
condition written in terms of the normal and tangential components of the contact force associated with
a given class. In addition to this, we require here that the normal contact force remains compressive,
i.e., negative, if the granules associated with the corresponding class are to remain in contact. These
conditions may easily be generalized to include an allowable tensile contact force due to cohesion or other

phenomena. Hence, for no inelastic deformation to be present we must have

If@]+nf™<0 , f™<0, 4.14)

where | | stands for the absolute value of the quantity it encloses, and p(>0) is the coefficient of
interparticle friction. Introducing a scalar parameter u which takes on values, -1, 0, and +1, the

conditions represented by (4.14) can be deduced from the three yield functions
YW suf@ ey =-1,0,+1) , (4.15)

where the superscript (u) stands for (+), (0), or (-) corresponding to positive ( f©>0 ), "null"
( f™<0 ), or negative slip ( <0 ), respectively. As shown in Figure (1), the plane of f™ , f®
is divided into six regions by the three lines defined by the yield functions (4.15).

If the average contact force for a class falls in region E, there is no inelastic deformation. On
the other hand, if the force falls within regions S*' or S, the contacts in that particular class will be
undergoing, in an average sense, an inelastic deformation consisting of either a single positive slip or a
single negative slip, respectively. In the region designated by DS® * , the two yield functions Y and

Y'* are both non-negative and the inelastic deformation will take place by double slip. Similarly in the
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region designated by DS® the two yield conditions derived from Y® and Y are violated and double
slip is possible. Finally, since f®=0 is outside the domain of Y® and Y, normal tensile contact
forces will cause local inelastic volumetric deformation consisting of a single "null slip”. Hence,
the ™ .axis is designated by S® in Figure 1.

The local inelastic velocity gradient, I, , corresponding to (but not "associated” with) the yield

functions Y® for various regions in Figure (1) are as follows:

E: I,"=0,
$O: L =y esm 4 {mm]
SO L =y -sm +{mm],
u" m ml @.16)
$™ I =yOmm,

DS(O-‘): IU 8?(‘)[*"[,”}*((.)"’[’"}] ..,Y(o)mlmj'
DS 1" =y -sm +{Omm] +yOmm,,

where ¥ |, (u = +,0,-) is the magnitude of the inelastic strain rate, and {“ is the coefficient of
dilatancy. It can be shown (see, Anand, 1983) that the local inelastic velocity gradient in (4.15) are
similar in form to the relations obtained for the velocity gradient in the double shearing model proposed
by Spencer (1964, 1982) and later extended to dilatant materials by Mehrabadi and Cowin (1978, 1981).

The above relations can be written in compact form by making use of the scalar "u". For

example, for single slip, S, we have

IJ'=7(')[“S,M,*((“)M,’",] (u=-1,0,+1), (@.17)

while for double slip, DS®¥, we find

IJ.=?M[uSlmI*((.)mlmi] *?(O)mlmi’ (u=-1,+1, u+0) . (4.18)

Note that since (@ can be lumped with y©@ | without any loss in generality, its value can be taken to
be unity.

The local inelastic deformation rate and spin for the case of single slip, S, are found to be

d';.:?(“)p,(j‘o s wo..'=?(.)r‘(;) , (u='l,0,+1) » (419)
where
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w_& )

py =—(sm +s,m)+{"mm, ,
A ! (4.20)
(¥)

ry -lzl-(s,m,-slm,) ,
and where (3.3) and (4.17) have been employed. Notice that for S©, the inelastic spin vanishes.

Similarly for the case of double slip, DS®¥, from (3.3) and (4.18), it follows that

g’ =y"p +yOp , wyt=y9rl?,  @=-1,41,ur0), “.21)

where p((,") , p{,o) ,and r{" are given by (4.20).

The magnitude of the inelastic strain rate y™® , appearing in the expressions for I'* , can now
be calculated by employing the local yield condition described above. A derivation is given in the next
section.

4.3. Calculation of v®

In order to calculate Y in terms of the local deformation rate d,, , the yield functions (4.15)

are employed. The flow rules are:

v =0 if  Y®W<0 , (4.22),
®=0 if Y%®=0 and YY<0 , 4.22),
>0 if  Y®W=0 and Y¥s0 . 4.22),

Various cases are considered below.
(a) Single Slip, $*

The consistency relation is obtained from (4.15) and (4.22), as

A TTASN AL =-1,0,+1) . 4.23)

Substituting for £ and ™ from (4.8) into (4.23), we find

@AY +pA"d; =0 , 4.24)

or using (3.8) and (4.19),,
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WA+, - 1P =0 .

The required expression for y® is obtained by solving (4.25), to arrive at
o (M) _ o.(W) (O] (m)
1=k (udy +pd, )du>0 ,

where x®(>0) satisfies the relation

5 =AD A p)

(b} Double Slip, DS®

The two consistency relations are obtained from (4.15) and (4.22) as

YO uufP sy f™a0 | @=-1,+1),
F@ef™.0
Hence, employing (4.8), (4.28) implies
Add;=0 ,  A{d; =0,
or using (3.8) and (4.21),,

8 ) . ()
Ajd,-v¥p,’ - v‘°’p.-‘,o’) =0,
Agl)(du - ?(u)pz;i) _ ?(0)1,‘(, )) =0 .

Solving the above equations for y* and ¥ , we find

P9-d,50 L 1P=ld,0, weole.,

where

2 = AP AT - AP AT
(ll =- l:* ]) ’

0) (m) , (3 (m) 4 (5)y (v)
2y =04 Ay - Ay AR
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(4.25)

4.26)

4.27)

(4.28)

(4.29)

(4.30)

4.31)

(4.32)




and where

1

—o =ACAY ADA WP L @=-10)
n

4.4.Time Rate of Change of Local Nominal Stress

(4.33)

To find an expression for the time rate of change of the local nominal stress rate in terms of the

local velocity gradient, we substitute for the local inelastic velocity gradient, I'*

, from (4.17) or (4.18)

into (4.13), making use of Eqs. (4.26) and (4.27), or (4.31) and (4.32). We find that

vy lcwl,l ,
where

cW+H(y("))c(') for single slip, S,

KUU =
CW+H(?"))C((,.2’,") for double slip, DS©9,

Here H(Y™) is the Heaviside step-function, i.e.,

0 for v“<0
HGE®) =
1 for y¥>0,

and

CUU '-"-Mo'o m,o(ll,(:) (’)S’)*’—(V 6}1 vllbjk) »

(w) ) (w) (m) 5] ()
cha=x0uAg + Ry ) - MyEm] (Am + ARs)pi)

(0 u) (u)(A (S)A (m) A(J)A (M) Mv . r v i(;)pff)

+M,m/ (A("" +A;)s )p;,;)(p(“’ .
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4.34)

(4.35)

(4.36)

4.37)

(4.38)

4.39)




Equations (4.34) with (4.35-39) and (4.9-10), are the desired constitutive relations at the lecal

level.
4.5. Evslution of Distribution of Contact Normals

As seen from (4.35-4.39) , the local moduli x;, depend in a complicated manner on the
microstructure through the unit contact normal, m . An explicit calculation of the overall moduli (see
Section 5) would be possible only when the distribution density functions E(m) or M, /M are known.
Since the number of contacts in each class is strongly influenced by the magnitude of the contact force
for that particular class as well as by the loca! vnlumetric change, we relate the density of contacts in each
class to the magnitude of the corresponding contact force and the associated volumetric strain rate (see
(4.5)) by

Q
f{—"=—l-c2e”, azzzze”, (4.40)
M a

ae}

where 3 is a macroscopic constant, and f is a nordimensional quantity related to the magnitude of the
contact fcrce for class a, i.e., f* , as follows

) M
f= -(1/2) T

(4.41)
Note that the saperscript a is omitted in (4.41), as in ail other equations starting with (2.12).
Employing (4.41), the average of any local quantity can be found in the manner of (2.17) after
the values of the magnitude of the contact force and the parameter ¢ are calculated by integrating the
rate equations (4.5) and (4.8). In quantitative crystallography, it is customary {o expand the density
function of the orientational data in a series of generalized spherical harmonics. In works on granular
materials, it has also become customary in recent years to describe the distribution density in terms of
"fabric tensors” of various ranks (Mehrabadi, Nemat-Nasser, Oda, 1982; Nemat-Nasser and Mehrabadi,
1983; Kanatani, 1984). Note that here, to cnaracterize the fabric, we have made a constitutive

assumption for the density distribution function itself, rather than for various approximations of it in the

form of macrosccpic "fabric tensors”.
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5. MACROSCOPIC CONSTITUTIVE EQUATIONS
To obtain the overall constitutive equations, we substitute for the local rate of nominal

stress, ¥, , from (4.15) into (2.24), to arrive at the corresponding overall quantity,
ﬁu=<xw1g> s 6.1

where the local moduli x5, , i.e. those associated with a typical class, say g, are given by (4.35)-(4.39).

Next, we have to make assumptions concemning the dependence of the local velocity
gradient lu on the microstructure. In self-consistent theories for polycrystalline materials (Hill, 1965)
and in earlier work on granular materials (Nemat-Nasser and Mehrabadi, 1984), a fourth-rank
(concentration) tensor, A, , is introduced which depends on microstructure and which relates the local
velocity gradient in a typical micro-element, e.g. a single crystal, to the macroscopic uniform velocity
gradient (see Nemat-Nasser and Mehrabadi, 1984; and Iwakuma and Nemat-Nasser, 1984, for more
details). This concentration tensor must then be calculated using an appropriate model. Iwakuma and
Nemat-Nasser (1984) use 3 fully nonlinear self-consistent model proposed by Hill (1965, 1972), and
actually calculate the corresponding concentration tensor for plane problems. It can, however, be shown
that this type of self-consistent calculation breaks down when the density of voids or cracks is suitably
large. For the granular materials, voids are connected through contact zones which may be viewed as
cracks. Hence, the application of the self-consistent method is problematic, leading to unreaiistic
estimates of the overall instantaneous moduli. Here, to achieve our goal of developing the simplest
micromechanical model that exhibits the basic features of granular material behavior, a Taylor-averaging
method is adopted, i.e., it is assumed as a first approximation that the concentration tensor is the identity

tensor, leading to

(5.2)

Nemat-Nasser and Obata (1986) present a discussion and comparison between the Taylor averaging

scheme and the self-consistent method for polycrystals. With assumption (5.2), (5.1) now reduces to
Ny=<xu2Ly= Tuly (5.3)

where J,, are the overall moduli defined by
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F x> - (5.4)
The relationship between the Jaumann rate of macroscopic stress, i.e.,
B =B, - Wy, 42 W, , (5.5)

and the rate of deformation, D, , is obtained by differentiating (2.20) and taking the initial and final

configurations coincident. It is found that
£y+Dyl =N +D T +E W, . (5.6)
Substituting for N, from (5.2) into (5.6), we obtain
1
):‘,+D,,z,,=[.7w+5(a,,z,,+aaz,+ 8,2,-8,Z )L, . 5.7
However, employing (5.4), (4.35), {4.37), (4.38), and (4.39), it follows that the quantity in brackets on
the right-hand side of (5.7) is symmetric in the indices I and k, because
T8l y=F 8,2, . (5.8
Using (5.8), (5.7) can be written as

2U+Duzu=%(yw+yw+a,,2,d+a,,z Dy (5.9)

Requiring the "continuing™ symmetry of the Cauchy stress, we must also have
Fu* 82y T w8,y - (5.10)

Equations (5.9) subjected to the constraint (5.10), with the overall moduli defined by (5.4),
(4.35), (4.37), (4.38), and (4.39) are the macroscopic constitutive relations of the model.

As mentioned before, in order to calculate an overall quantity from the corresponding local
quantity, the expression for the probability density function of the contact normals. namely (4.40), is used

in (2.17). In particular, the overall moduli are calculated from the following relation:
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where the index a denotes the corresponding class, and the summation is over all existing classes.
Finally, we assume an expression for the evolution of the coefficient, Mt , which is required
for calculating various stresses and stress-rates from expressions given in Section 2 (e.g., (2.15)).
Recalling that M is the number of contacts per unit volume and that ¢ is the branch length, the
quantity Mt , with the dimension of (area), is intimately related to the volumetric strain and strain rate
represented by the quantities detG , and D . The calculations presented in this paper are based on

the following relation
Mt = Mol° "G (5.12)
where n is a negative constant, and where

tr

n= f trD dt = (1,-t)trD(t"), (5.13)
%

where 1, <t° st ; for the numerical illustration given in Section 9, we have used ¢°= %(IFJ' ,). An
equation resembling (5.12) has been introduced by Jagota, er al. (1988), for the evolution of the
coordination number, in connection with the sintering and compaction of powder packings. The relation
(5.12) follows from the assumption that the rate of change of (M?) per its own unit is proportional

to (detG)(trD) ,i.e. (MU, /(M®) = n(detG)(trD) . Upon integration over the time increment and
using the value of detG at the start of time step (i.e., retaining only linear terms in (1.-1,) ), we

obtain (5.12) and (5.13).
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6. CONSTITUTIVE RELATIONS IN INCREMENTAL FORM

Due to the nonlinearity of the local constitutive relations, the material response must be computed
by an incremental procedure. In an incremental loading process, a part of the lvad increment may
actually cause an elastic-plastic behavior while the remaining part may lead only to an elastic response.
Instead of using a scheme of sub-incrementation, we introduce here another simpler method based on a
first-order approximation of the local yield function.

Let the loading process be measured by the time-like parameter t which takes the values {, at the
beginning of the increment under consideration and ¢ at the end. Furthermore for any quantity x, Ax
= x(t) - x(;). Instead of seeking the time t* for which the yield condition is satisfied, i.e., Y¥'(t*) = 0,

we make the following approximation:

YO, = YO0 ) + FE) AL, g sBst,, 6.1)

or using (4.23),, (4.8), and (4.19)', for single slip, $©, (u = -1,0,+1), we have

YO () =Yt + [uA(’)+pA(')],,z[Ad A~((")p‘,)],,E , tosEst., 6.2)

while for doubie siip, DS“®, (u = -1, +1), it follows from (4.28), (4.8), (3.8), and (4.21), that

YOt = YO + [wA] + kA, [Ad, - AY“p) - AyOp),

6.3)
YO = YO + AT, [Ad, - AY“pY - AyOp],

In order to define the magnitudes of the inelastic strain increment Ay* and Ay® |, we proceed as

follows. In a first step, the behavior is assumed to be elastic and for a given strain increment Ad,, the

I]?
elastic response is computed. Let us denote by 7, the corresponding (fictitions) value of the time
parameter ¢°. It is important to make the distinction between the time-like parameters 7 and /* (see the
footnote on the next page). Then for single slip, S*', the relations (4.22) and (4.26) will take the

incremental form
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For Y®¥@e)<0 , Ay®=0, 6.4)

For Y9720 , Ay®=x"(Ere)+@A) +pAd), M, ,

where, «* is defined by (4.27). Similarly, for double slip, DS® (u = -1, +1), (4.28), (4.31), and
(4.32) take the incremental form'

Ay®=0

For Y"()<0 and YO()<0 |, ,
F. I Ay® =0

(6.5)
AY® =s(E) +2,7 (E) Ady

For Y¥(1)20 and Y9(,)20 .
AY® =sO(E) +2(E) Ad,y

where

s(.) = un(u)[y(O)(t 0) (Mg) + M‘(;')) - Y(“)(IO)A ‘(,.)]p ((10)
. w=-11), ©.6)

s = -un YO (4 + 14 - YAy

and where z{Y and n™ are defined by (4.32) and (4.33), respectively.
Employing (6.4) or (6.5) and following the same procedure that led from (4.26) and (4.31) to

(4.34), it is found that the incremental form of the stress-strain relation is of the form,
PN () P o .
Avu—AvU—AvU , 6.7)
where
AV =x AL, (6.8)

and where, for single slip, $*, (u=-1,0,+1),

' According to (6.2), Y“"(Ir')zY'“‘(lo)+(uA"’+pA,;""],_(Ad,.j. Hence we assume H(Y(t;)) = H(AY).

v
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For Y®(@)<0 , Ay®=0, 6.9)

For Y®()20 , Ay®=x®(E)Ye)+wA +pd),. )4, ,

where, «® is defined by (4.27). Similarly, for double slip, DS®® (u = -1, +1), (4.28), (4.31), and
(4.32) take the incremental form'

Ay®=0

(g Vg
For Y"(t;)s0 and YO(;)<0 Ay®=0’

(6.5)
Ay® =sO(E) +25(E) Ad

For Y"()20 and YO(,)20 iy g ,

Ay@=sO) +2(E) Ad,,

where

s(.) - un(")[Y(o)(t 0) (Mg) + M ‘(;n)) _ Y(u)(to)A‘(;")]p‘(lO)
, (m=-1,+1), 6.6
s(o) - _un(l)[y(o)(lo) (llAg) + pAg')) - Y(")(IO)A:,M)]P((;)

and where z;; and ™ are defined by (4.32) and (4.33), respectively.
Employing (6.4) or (6.5) and following the same procedure that led from (4.26) and (4.31) to

(4.34), it is found that the incremental form of the stress-strain relation is of the form,
~ AuD, A @ i
Av, = Avy ~Avy , (6.7)
where

Av(y:waIu , (6.8)

and where, for single slip, %, (u=-1,0,+1),

' According o (6.2), Y¥(t7) = Y1) + [uA) +pA)"),. Ad . Hence weassume H(Y(7))=H(Ay).

v
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the present model in that the numerical evaluation of the overall response, in particular, the overall
nominal stress, can be performed via two methods: In the first method, the overall nominal stress and
the overall stiffness are directly computed, respectively, from (2.18) and (5.4), using the results of the
integration presented in Section 7. In the second method, the nominal stress is computed from (6.12)
which is obtained from rate constitutive relations through the incremental procedure described above and
by using the overall moduli derived by the first method. Note that if the velocity gradient is given, then
the material response is deduced without any need for computing the overall stiffness. On the other hand,
if the boundary conditions are mixed or are expressed in terms of the stress-rates, then the overall

stiffness must be computed.

7. ANALYTICAL INTEGRATION OVER A TIME INTERVAL
The local constitutive equations, (4.2), (4.5), and (4.8) are amenable to analytica!l integration over
a small time interval [4, , t,=1,+Ar] , assuming that the velocity gradient, I , remains constant over
the interval. The integration is performed in two steps, as described in Section 6. In the first step, the
material is assumed to remain elastic under a total increment of loading Al=(t.-1,)I. In the second
step, the plastic deformation allowing for the yield condition to be satisfied is obtained. Hence, it is
supposed that the yield criterion is satisfied in the second step, if it was not already satisfied at the end

of the first step. Consistent with (3.1), the superposition of the two steps will correspond to I =I1-1"* .

7.1 The First Step of Integration
The integration of the evolution equations (4.2), (4.5), and (4.8) for m, ¢, and f, respectively,
are performed between the initial time f, and f; . As mentioned earlier, the material is assumed to
be elastic in this step. Details are given below.
(a) Integration of the evolution equations for m and s
Since in the first step the magnitude of the inelastic strain rate, y , is zero, Egs. (4.2) can be

written as
N =W ¢ = 7.
m=w.m, s $1=w,S; 7.1

where (3.9),, (4.19),, and (4.21), are used. The solution of the above equations can be written in terms
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of an angle 6, defined by

O=-wp=-w, . (7.2)
Integrating between ¢, and f; ,
'
0" -0,=- [ wy,dt=-w(tp-1)=-Aw,, , (7.3)
%
or
8°=6,-Aw,, , (7.4)

where 6°=0(t;) and 6,=6(,) . Notice that at any time f, , we have

m(te) =R(p,0)m(t) ,  S(tp) =R(ty,1)s5(t) (7.5)
where
cos(8°-8,) -sin(8° -90)]

R(ty,t,) =
Urte) Lin(e'-eo) cos(8” -6,)

Hence, since
m(t,) =cosf e, +sinb e, ,
(7.6)
5(1,) =sinB e, ~cosBe, ,
where e, and e, are unit vectors along the coordinate axes, it follows from (7.5) that at the end of the
first step, the components of m and s are as follows:
m(tr)=cos(8,- Aw,,)) ,  my(t;)=sin(8,-Aw,,), -
1)

s(te) =my(tz) S{try=-m(t5) .

(b) Integration of the evolution equation for e

Again, since in the first step, y is zero, Eq. (4.5) can be written as
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=b d,, . (7.8)

oo

Integrating this equation from ¢, to t, , we have

[2 - [berdyar, (7.9)
6t
or
In £¢p) =b(trd)(tp-1,) =b(irAd) . (7.10)
e(ty)

Hence, at the end of the first step of integration,

e(tp) =e(ty) b2 (7.11)

(c) Integration of the evolution equations for the contact force f
The evolution equations for the contact force are given by (4.8-10). Substituting for €(f) from

(7.11)and for m and s from (7.7), and (7.7), into (4.9-10), using (7.4), it then follows from (4.8) that

S =brd f™ et TN At trd s

(7.12)
+2p°(d,,cos*0 +2d,,sin B cos B +d,, sin? 6)],
and
SO =brd)f?+2p" e(t) "9 [d, sinBcos +
(1.13)
+d,,(sin’0 - cos?0) - d,,sin B cos 6] ,
where, since y is zero, d°=d . Now let
AW =0 et B =T (7.14)

then
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A =e(ty) (A" +p")rd+ p*[(d,, -dy,) c0s20 +2d,,5in26] ) .15
B =¢(t,) p" [(d,, -d,,)sin26 -2d,, cos26] .

The above relations can be integrated by noting that all the quantities that appear in these equations
remain constant over the interval except for § which varies with time according to (see Eq. (7.3))

0(1) =8, - Wy, (1 -1,) . (7.16)

Proceeding with this integration (see Appendix A for details) and substituting for A(t) and B(t) into Egs.
(7.14), we find that when wy, =0,

FtE) = 2 fP ) + et [M tr Ad +2p° Adym (1) m(e)])

(7.17)
Stp) = ¥R fO) + 207 ety) Adym(ty) s8]
and when w;,#0 ,
FOe) =AY 1) + (IR + Y er Ad + p*(aya,+a,a,)]) .18
FOxg) = b2 + pte(ty) (ay8,-a,0,)]
where
a, =m (1) my(t)) - my(tz)my(ts)
ay=mi(ty) -mi(t,) ,
Ad,-Ad, (7.19)
a4y = ———
A Wy,
d
Ly
Aw,

Equations (7.17) and (7.18) give the values of the normal and tangential components of the contact force

at the intermediate time f; , i.e., at the end o{ the first step of integration.
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7.2 The Second Step of Integration
Integration of the evolution equations for m , # , ¢ ,and f are performed between the
intermediate time, #, , and the final time f, . Accordingly, in the second step, the yield condition is
enforced if it was not already satisfied at time ¢, .
(a) Integration of the evolution equations for m and s

Recalling the definition of angle 6, namely, (7.2),, we have

b= -wy,=w, . (7.20)

The components of the local inelastic spin are given by Eq. (4.19), for single-slip, S, and by Eq.
(4.21),, for double-slip, DS®¥, Employing these relations together with (4.20),, we have

wy = 2 ", (7.21)

where, u = -1, 0, +1 for single-slip, S; and where u = -1, +1 for double-slip, DS®. Substituting

from (7.21) into (7.20) and integrating between f, and t, ,
0,=6‘+-§Ay, (1.22)

where 6, =6(t;) and where, asin (7.4), 8°=6(t;) =0,-Aw,, . Following a procedure similar to that

described earlier for step one, we find

my(tp) =cos(8° + SAY™),  my(e.)=sin(®* + 2AYY)
2 2 (1.23)

5,(tp) ='"2('r) , Sy(tp)=-my(ty) .

Given the magnitude of the local inelastic strain increment, Ay™ | the final orientations of fabric
vectors, m and s , can be calculated from the above relations. The values of Ay™ are calculated
by imposing the appropriate yield criterion. This is done in Section (7.2d), after the evolution equations
for the contact force are integrated in Section (7.2c¢).

(b) Integration of the evolution equation for ¢

In the second step of integration the evolution equation for ¢ can be written as
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LA (1.24)
£

where the local inelastic rate of volume change, djj , must be calculated from (4.19), for single-slip,

S®, and from (4.21), for DS®. Performing this calculation and integrating (7.24) from ¢, to tp

yields

(1

[ -bt®yar for SY, (u=-1,0,+1),
t .

de _ | (1.25)

, € 4
” [ -bQOFOLO4 e, for DSOM,  @=-1,41),

»
'

or

‘b((“)Y(")(‘; - ,;) s -b{WAY®, for ¥,
L (7.26)
e(ty)

-b(C(")y(“) + ((O)Y(O))(,, _,,;) = -b(C“"Av"" + ((°)A Y(O))’ for DsOw.

Hence, -. the end of the first step of integration,

()

e(ep)p Ot for $© ., @=-1,0,+1)
ety = (7.27)

C(t;)e-b((h)Ay(-)o(MAym) s for DS(O,I) , (ll= "l, *l) )

(c) Integration of the evolution eguations for the contact force f

In the second step of integration, since I°~-I'* | the evolution equations for the contact force

i.e., equations (4.8), become

f = -bdy ™ -e(A* djy +2p° dy"mm) ,
(7.28)

SO -bdy f9 - dy s m,)

where, (4 9) and (4.10) have been used in writing (7.28). Again the local inelastic strain rate, d,l

y
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must be calculated from (4.19), for singie-slip, $*, and from (4.21), for DS®®. Performing this

calculation and substituting the result into (7.28), we find that

(m) - -C,(1-1,)
FARERT of A B o I

(1.29)
f(’)=-C,f"’-C,e'c'(H‘:) ,
where (7.27) has been employed, and where
bC(")?(') , for sm ,
C,= (7.30)
(¥ + Oy, for DSON,
(A +2p7)e )XWy @ for S®,
C,= (1.31)
(A +2pe(t )Y@+ OO, for DSOM
Cyup'e(ty)uy® , for S and for DS, (u=-1,0,+1). (1.32)
Integrating (7.29) between ¢, and ¢, , we find that
SO =105 - Cyar)e
(7.33)
1) =119) - Cyar)e 4
Hence, for single slip, S, at the end of an increment we have,
SR =L 07) = (A7 2p et (DAY Ve 136
Q.

/{7)«’-) =[f(3)(l;_)_ptt(’;)uAy(.)]e_b(a)Aym ’

while, for double slip, DS®, we find
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T =11"7) - (" + 2 Ve lty KT A Y™ + (DA YT e #E 8- E%0D)

SR 1) - el By e HE 7™

(35)

) Calcdation of the Magsitude of the Inelastic Strain Increment Ay™
For a single slip sysi=m, S**, the increment of inelastic strain is calzulated by imposing the vizld
condition, i.e_,

Y =uf%(e,) + pf*(1,)=0 . (7.36)
Substituting frcm (7.34), into (7.36) and solving for Ay* , we find that

uft) + ufe,)

Ay¥= - .
e(tp)p’ ju] +nl®A° +2p7))

(7.37)

For the double slip system, DS®2, substituting from (7.35) into the yield conditions,

Y(')rnj"’(‘f)‘pf(.)(tf)=0,
YO=pf™,)=0,

(7.38)

and solving for the magnitudes of the inelastic strain increments, we obtain

TSN -u e +2) {9r;)
et TP +247)

Ay®-= (7.39)

and

uf®¢;)
e(t)n’

Ay®= (7.40)
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8. INITIAL AND BOUNDARY CONDITIONS
In he numerica! calculations, i is ofien pecessary to obtain the iniiial distributios of eontact
forces, given the mitial confining stress and the initial fabric. An expression relatizg fh= contact forces
to the macroscopi: siress 2ad fabric is developed in Section 8.1. Boundary conditions are described in
Section 8.2.

8_1 Initicl Conzact Forces
An expression for the average (initial) contact force in each class could be obtained by assuming
that this quantity is related to the contact normal which identifies that particular class, by means of 2
polynomial expression; the coefficients of the polynomial are macroscopic guantities, i.e., they are class-
independent. For simplicity, following Mehrabadi, Nemat-Nasser, and Oda (1982), we assume that
M1 =Am) 8.1

where A; are global quantities independent of class. The distribution of contact forces given by (8.1)
must be compatible with a symmetric Cauchy stress, .‘JGV . defined by (2.19) and (2.22). Thus,

substituting from (8.1) into (2.19), using (2.22), we must have
Ty =<mmp>A, (8.2)

Introducing the traceless second-rank fabric tensor, J;, defined by the relation

Jy = 4(<mm> -% 8., (8.3

into {8.2), the initial macroscopic Cauchy stress is found to be

o 1 1
E‘-’- = -2'/‘04’;.!]‘/4“ . (84)

To calculate the contact force from (8.1), one has to solve (8.4) for A, in terms of the given initial values
of the stress and fabric and then substitute the result in (3.1). To this end, define the symmetric and skew

parts of A; by
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4;=300A) . H=2UA), ®3)
so that
Ag=Ag+Ag . (8.6)
Using the Zdentities
A J+JA =(A)+@IAYE , A =0, ®.7)

where & is the unit tensor, in (8.4), one can show that
A= %(JA‘ AT 88)
Now employing (8.3) and the identities
JAT= -;-[2«:14 V- IYA" +@A YY) J’=%(tr]z)6 , ®8.9)

in (8.4), we obtain the following relation
162%=(8-1rJ2)A* +[2(trA ") + (trJA ‘)114%[4(171.4 Y+ rA)(rJ»))S . (8.10)

Note that the identities (8.7) and (8.9) are limited to two dimensions. Solving (8.10) for A*, one obtains

A =—3 4202 -rEn1] . @.11)

8-trJ?

Substituting from (8.11) into (8.8) yields

A= _zo-3poy) . (8.12)
g-2uJ?

Finally, the expression for A, is obtained by adding (8.11) and (8.12) according to (8.6).

Note that for an initially isotropic sample,
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J=0 ,  A=2%", (®.13)

where (8.3), (2.17), (8.11), (8.12), and (8.6) have been used. Employing (8.13). in (8.1), it then follows
that

M, =25 m) 38.14)

Heace, when the initial confining stress is also isotropic, there is no shear force present at any contact
point.
8.2 Boundary Conditions

To assess the predictive capability of the model, the incremental procedure described in the
previous section is employed to calculate the response of the model to shearing deformation (Fig.2). In
the initial configuration, the sample which is in the shape of the unit square shown, is assumed to be in
equilibrium under constant confining loads P, and P,. Keeping the vertical force (P,) constant, an
increment of shear strain AL, is then applied to the sample. Requiring that the side A’B’ remains
parallel to the horizontal side AB and that A’B’ = AB = OC at all times, the volume change of the

sample is calculated from

AN, =0 , L,=0. (8.15)
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9. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations corresponding to the two-dimensiona! behavior of the model under
monotonic and cyclic shear are presented in this section. In these calculations 48 discrete orientations
are used between 0 and 360" to define 48 classes of contacts. The initial conditions and material
constants for the monotonic loading (Section 9.1) are chosea so that the behavior of the model
corresponds to that of densely packed granular materials; while for the cyclic loading (Section 9.2), the
initial conditions and constants are chosen so that the model behavior corresponds to a loosely packed
sample. The material constants and initial conditions used in the two cases are summarized in Table I.

Table I Material constants and initial conditions

Monotonic Shear Cyclic Shear
A\/p, 200.0 200.0
1ips 200.0 200.0
Q 0.40 0.40
¢ 0.36 0.36
b -100.0 -1.0
g 0.01 0.1
n -10.0 -10.0
a,/a; 0.048 0.048
M,a, 10.0 10.0
2/, [—2.0 o.o] [-1.0 o.o}
00 -40 00 -1.0
AL, 0.0010 (50 Increments) +0.0015 (100 Increments)

In this Table, p, and a; are reference stress and area, respectively, and a, is the initial value
of a defined by (4.40),. The initial orientational distribution of contact normals is assumed to be
isotropic for both cases. As shown in Table I, except for the constants b and £, the remaining constants
have been chosen to be identical for both cases. Examination of (7.11) and (7.12) reveals that the
constant b which was first introduced in (4.5), governs the value of the parameter ¢ and the volumetric

behavior of the material. On the other hand, it can be verified from (4.40) that the parameter ¢ and the
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constant B strongly affect the orientational distribution of contact normals. Notice that the chosen values
of b and B, in the two cases, differ by two and one orders of magnitude, respectively. We shall find out
that the model behaves like densely packed materials for a large absolute value of b, while it behaves
similarly to a loosely packed material for a relatively large value of 8. A thorough study of the

interrelationship among the various constants has been left for future investigation.

9.1 Behavior of the Model Under Monotonic Shearing

(a) Stress-Strain-Volumetric Behavior

The stress-strain behavior of the model under monotonic loading is depicted in Fig.3, where the
ratio of shearing stress to the mean normal stress is plotted versus the magnitude of shear strain. The
volumetric strain versus shear strain is plotted in Fig.4. The data points indicate the beginning of an
increment of loading. The numbers 5, 20, 30, 40, and 50 appearing on the plots identify the increments
for which the orientational distribution of contact normals and other microstructural quantitics are
preseated here for discussion. At increment S, the behavior is still elastic (with no slip taking place at
any contact) and no significant change in volume occurs anywhere. This linear elastic behavior continuey
until about increment 14, when slip occurs at certain contacts and v/hen a change in volume starts to take
place. Failure occurs at about increment 30 at which time the material starts to soften up until increment
50 when large deformations can take place under a constant stress ratio. The volumetric and stress-strain
behavior of the model with the constants and initial conditions given in Table 1, clearly correspond to the
observed behavior of dense granular materials.
(b) Evolution of Contact Normal Distribution

When the sample is isotropic, there are an equal number of contacts in all ciasses. Hence, it

follows from (2.16) that

E(m) = 1 s O.1
2n

so that the distribution of the number of contacts in various classes, represented by the quantity 27 E(m)
in polar coordinates is a unit circle. The distribution of the quantity 2z E(m) at increments 0, 5, 20, 30,

40, and 50 is compared to this unit circle in Fig.5. There are 48 data points in each plot of Fig.5
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ceiresponding to the 48 classes.

No significant change in the number of contacts occurs in the elastic regime up until increme.n
14 when a few contacts become active. As a class of contacts becomes active, the magnitude of the
average contact force corresponding to that class increases (see the next section for details). Tie increase
in this contact force then leads to an increase in the number of contacts in the active classes {see Fig.5,
increment 20). Since the total number of contacts in the sample changes only slightly, the increase in
the total number of contacts for active classes is accompanied by a decrease in the number of contacts
in all the inactive classes including the class of contacts whose normal is in the maximum compressive
stress direction. As more classes of contacts become active, the number of contacts in the class whose
normal is in the direction of maximum compressive stress decreases to a critical value at the peak strength
(increment 30; see Fig.3) when further shearing of the sample causes a collapse of the load-bearing
columns formed by the contacts belonging to this class. The collapse of these columns leads to the loss
in strength and the softening of the sample. This point is further discussed in the next section in

connection with the evolution of the contact force magnitudes and active contacts.

(c) Evolution of the Contact Force Magiitudes and the Critical Contacts

The distribution of the contact force magnitudes and the status of various classes of contacts in
terms of whether they are critical or not, is considered in Figs. 6a and 6b. The 48 data points in each
plot of these figures correspond to the 48 classes of contacts. The magnitudes of the contact forces are
represented by the non-dimensional quantity M¢ f/p, where p = -(1/2) tr L, while the status of the
contacts is represented by the non-dimensional quantity -f/uf,. This latter quantity varies between -1 and
+1. It equals -1 or +1 for active contacts undergoing negative or positive slip, respectively. The
intermediate values correspond to non-critical contacts where there is no slip.

Since the initial confining pressure on the horizontal plane is -4 and on the vertical plane is -2,
the distribution of the magnitudes of the contact forces (see Fig.6a, Increment 00) is such that the
maximum and minimum contact forces are carried by the classes of contacts whose normals are,
respectively, along the vertical and horizontal axis. The initial directional distribution of -f/uf,, (Fig.6a,
Increment 00}, indicates that there are no critical classes of contacts and the sample is indeed initially at

~quilibrium. As might be expected, however, this distribution is biased so that several classes whose

41



normals are making angles of about 40° or 220° are close to becoming active with a positive slip.
Similarly, those classes whose contact normals are making an angle of about 135° or 325° with the
borizontal axis, have the potential to become active and undergo a negative slip.

As the sample is sheared to the right, the maximum compressive stress rotates in a clockwise
dgirection causing the contact force distribution to rotate accordingly (see Fig.6a, and 6b). In the elastic
regime, no significant change in the shape of the distribution of the magnitudes of the contact forces
occurs (see Fig.6a, Increment 05). As the distribution of the magnitudes of the contact forces rotates,
however, the normal components of the contact forces, £, (which have a distribution very similar to the
magnitudes of the contact forces, f) decrease for nearly critical contacts. This decrease in £, leads to an
increase in the absoiute value of -f/uf,. Eventualiy this value increases to unity and the nearly critical
contac ‘s become active (see Fig.6a, Increment 20).

The initiation of slip at critical contacts, causes mostly a change in the shape (and littie or no
rotation) of the distribution of the contact force magnitudes, as can be verified by comparing the plots
of increments 20, 30, 40, and 50, in Figs.6a and 6b. As a class of contacts becomes active, the local
slip-induced dilatancy causes an increase in the magnitude of the contact force. This can be verified by
inspecting Eqgs. (7.34), noting that the final values of the components of the contact forces are exponential
functions of the slip-induced dilatancy and that the constant b is negative. At the peak strength, i.e., at
about increment 30, the magnitudes of the contact forces of an active class becomes comparable with the
magnitudes of the contact forces corresponding to the class whose normal is along the maximum
compressive stress direction. This causes an instability, as menticned earlier, in the form of buckling
or collapse of the load-bearing columns, as can be seen by comparing the plots of increments 20 and 30.
This behavior is consistent with the experimental results of Oda (1972). After the peak strength and

buckling of the load-carrying columns, the sample gradually softens until a critical stress state is reached.

9.2 Behavior of the Model Under Cyclic Shearing
(a) Stress-Strair.-Volumetric Behavior
The stress-strain and volumetric behavior of the model under cyclic shear is shown in Figures
7 and 8, respectively. Once again, the data points indicate the beginning of an increment of loading.

The transition from linear elastic behavior to ineiastic behavior begins just after increment 5, when the
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sample volume begins to increase. Unlike the previous example, there is no loss in strength or softening
of the material in this case so that the behavior resembles that of a loosely packed granular material.
At increment 25 and 75 the strain-rate direction is reversed. The stress-strain behavior of the
model is in good qualitative agreement with the observed behavior of loosely packed granular materials.
However, the volumetric behavior is not in good agreement with the observed behavior because the model

predicts a net dilatancy rather than a net densification at the end of the cycle.

(b} Evolution of Contact Normal Distribution

The distribution of the quantity 2= E(m) at increments 0, §, 25, 39, 50, and 75 is represented
in Fig.9. Again, there are 48 data points in each plot of Fig.9 corresponding to the 48 classes. Since
the sample is assumed to be initially isotropic the distribution of normais is a unit circle at increment 0.

In this example, there is a slight change in the number of contacts within a class in the elastic
regime (see, Fig.9, Increment 05). As the sample is sheared, even at the very beginning of the loading
in the course of elastic behavior, the fabric adapts itself to the rotation of the principal stress axes so that
there are more contacts along the maximum compressive stress (Fig.9, Increments §, etc.). This should
be contrasted with the evolution of contacts in the previous example where a reduction of contacts led
to the buckling and collapse of the load-carrying columns along the maximum compressive stress direction
which in turn led to a loss of strength or softening of the material. Another interesting point is that the
distribution of contact normals at increments 39 and 92 (not shown), when the stress ratio is zero, is

nearly isotropic and hence it is similar to the initial distribution of contact normals.

(c) Evolution of the Contact Force Magnitudes and the Critical Contacts

The distribution of the contact force magnitudes and the history of active and inactive classes of
contacts are considered in Figs. 10a and 10b. Again, the magnitudes of the contact forces are represented
by the non-dimensional quantity M¢ f/p, while the status of contacts is represented by the non-dimensional
quantity -f./uf,..

Since the initial confining pressure is isotropic, the distribution of the magnitudes of the contact
forces (see Fig.10a, Increment 00) is the same for all classes of contacts. As mentioned earlier in section

8.1 (see, Eq. 8.14), since the :nitial confining stress and the initial fabric are both isotropic, the
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component of the shear force vanishes for all the classes of contacts and hence, the quantity -f/uf,, is
initially zero; see, the initial directional distribution of -f/uf,, (Fig.10a, increment 00).

As mentioned earlier, during shearing, the rotation of the maximum compressive stress causes
the contact force distribution to rotate accordingly (see Figs.10a, and 10b). After the initial rotation and
a significant redistribution of contact forces in the very beginning of loading during the elastic regime
(Fig.10a, Increment 05), no significant rotation occurs up until increment 39 when a stress reversal
ocrurs. At about increment 39, the distribution of contact forces is only slightly anisotropic, and hence
approximately similar to the initial distribution of contact forces. Note, however, that there are several

active classes of contacts at increment 39, while the sample is initially in a state of equilibrium.

10. SUMMARY AND CONCLUSIONS

A micromechanically-based model for the two-dimensional behavior of granular materials is
presented in this paper. The model is systematically formulated as follows:

1. The relationship between the overall stress and the microscopic quantities is examined. These
microscopic quantities include the interparticle forces and the number and orientation of contacts, and the
average size of the particles.

2. The relationship between the overall velocity gradient and the microscopic deformation
measures characterizing the relative frictional sliding and rotation of the granules is considered.

3. Local constitutive equations are introduced for the rate of change of the contact forces, the
evolution of contact normals, the mechanism of local failure, and for the number of contacts in a
particular orientation. The local constitutive relations are simple enough to permit an analytical
integration over a small time interval. This is an important feature of the present model because the
overall nominal stress can be computed directly by employing the relationship for the overall stress,
mentioned in (1) above.

4, Macroscopic rate constitutive relations are developed for the stress rate by adoptir t a Taylor-
averaging method and by writing explicit relations between the number of contacts per unit volume and
the incremental change in volume. The analytical integration of the local constitutive relations mentioned
in the previous step are used to obtain the overall stiffness from (5.13).

5. Due to the nonlinearity of the local constitutive relations, the material response is computed
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by an incremental procedure. B, employing this procedure, the nominal stress can also be computed by
incrementally integrating the expression for the overall nominal stress rate.

6. The predictions of the model in the case of shearing deformation were obtained by means of
two numerical examples. In addition to the overall stress and strain diagrams, explicit and detailed results
are presented for the evolution of fabric, contact force, and the history of active and inactive classes of
contacts. By examining these results it has become possible to clearly explain the mechanism of failure
and softening of densely packed materials as well as the mechanism of the inelastic deformation of loosely
packed materials. In so far as the shearing deformation is concerned, the stress-strain behavior of the
model is in excellent qualitative agreement with the observed behavior of granular materials. However,
the volumetric response of the model in cyclic shear is not realistic because it predicts a net dilatancy

rather than a net densification at the conclusion of cyclic deformation.
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APPENDIX A. DERIVATION OF RELATIONS (7.17) AND (7.18)
Writing (7.16) in the form
3 = ‘G—,-wnt . (A*)

where 6, = B, 4,1, isaconstant, we note that when wy, = 0,

[c0s28 dr = cos28,(t-1,)
% a2

=la; (G} -m3 (1)} (1-1,)
Similarly,
[
[<in28 d&r = sin26,(t-1,} A3
%
= 2”’1(‘0)"'2(10)("10) -
Integrating (7.15), using (A 2) and (A 3), substituting the result into (7.14), and solving for the normal
and tangential components of the contact force, Egs. (7.17) will be obtained.

When wy;, % 0, we have

f cos20 dt = f cos2(8, - W, f)d

Y %
=L {sinB cos6,-sinBcos 6] (A4)
Wi
==L [my (I my 0 -m, Omy (9] -
12
Similarly, .
[sin20 dt =——m; ) -} (1)) - (A5)

% wlZ

Again, integrating (7.15), using (A 4) and (A 5), substituting the result into (7.14), and solving for the

normal and tangential components of the contact force, Egs. (7.18) will be obtained.
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Figure 6:
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Figure 9:

FIGURE CAPTIONS

Schematic representation of the local yield condition, Egs. (4.14).

Dilatant shexirg deformation of a sampie of grazular materials.

Predicted stress-strain response of the material under monotonic shear.

Predicted volumetric bebavior of the material under monotonic shear.

Distribution of contact normals at incremests indicated on the stress-strain curve of Fig. 1.
Distribution ¢f magaitudes of contact forces 2nd the directicnal distribetion of the ratio of
shear to normal forees at varigos increments marked on the stress-strain curve of Fig. 1.
Stress-strain response of the model under cyclic shear.

Volumetric behavior of the model uader cydlic shear.

Distribution ¢f contact normals at increments indicated on the stress-strain curve of Fig. 7.

Figure 10: Distribution of magnitudzs of contact forces and the directional distribution of the ratio of

shear to normal forces 2t various increments marked on the stress-strain curve of Fig. 7.
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Abstract

A recently proposed constitutive model for two-dimensional flow of granular materials is
briefly reviewed and some numerical results are presented in this paper. First, the concept
of fabric and the relations between the overall stresses and the relevant microscopic
quantities are reviewed. Then, the kinematics is briefly examined. A significant concept
underlying all these developments is the notion of the class of contact unit normals with a
continuously evolving distribution function, even though individual members of various
classes may change discontinuously, as contacts are lost and new contacts are developed in
the course of granular flow. Next, local and macroscopic constitutive relations are discussed
and the evolution of the density of contacts in a particular class is considered. As an
illustration, the overall response of a two-dimensional assembly of disks subjecied to an
overall shearing deformation is determined. The stress-strain relations and the evolution of
fabric are in excellent qualitative agreement with the observed behavior of granular
materials. In light of these results, the micromechanisms of failure and inelastic deformation
of dense as well as loose granular materials are discussed.

1. INTRODUCTION

Development of overall macroscopic constitutive relations for granular materials on the
basis of simple and reasonable micromechanical assumptions is of great interest. A
systematic approach to this problem inevitably would include considerations of: 1) a
description of the overall macroscopic stresses in terms of contact forces, their distribution,
and some relevant geometric measures of the microstructure; 2) a description of the overali
measures of incremental deformation in terms of quantities that characterize
micromechanisms of relative sliding or sliding and rolling of granules; 3) a description of
the time rate of change of the overall stress in terms of the overall deformation-rate and the
overall moduli. A procedure for achieving all of these goals is described in [1]. A brief



review of this procedore and some pzmerics] results are presented in RIS paper.

Since, in the cousse of deformetion, new comtacts zre constantly being penerated as some
of the existing contacts are beizg los?, the 2nalytic identification of the kistory of individual
comtacts is extremely cifficult ualess one approaches the problem rumeric2lly, using a larpge-
scaje competer program (see, g, [2])- On fhe other hand, in the course of continvous
deformation of 2 granular mass, cne expects that suitable measures of the distribution of
contacts can be employed which characterize a certain dass of contacts and, therefore,
uadergo continuous change. Adopting this viewpoint in [1], the 2uthors infroduce simple
constitutive modeis at the microlevel, which relaie the change (or the rate of change) in the
contact force associated with a given class of contacts to the comresponding
micro-deformation increment (or rale) produced by the comresponding chanpes in the
microstructure. Such an approach (which deals with classes of contacts rather than with
individual oontacts) bypasses the difficult issue of continvous loss of contacts 2nd formation
of new ones.

After a brief review of the concept of stress and fabric in granular materials in Section
2, kinematics is reviewed in Section 3. At the local level, the description of kinematics
corresponds to the double shearing model [3-4] and its extension to dilatant materials [5-6].
The local coastitutive assunptions, the evolution of the probability density function of
contact normals, and the macroscopic constitutive relations are summarized in Section 4.

As an illustration, the response of a two-dimensional assembly of rigid cylindrical disks
of circular cross section subjected to shearing deformation is described in Section 5. Two
numerica! examples are presented, one of which simulates the response of loose and the
other corresponds te the behavior of dense granular materials. The mechanism of strain
hardening and failure followed by strain softening which is a characteristic response of
densely packed samples of granular materials, and the inelastic deformation mechanism
corresponding to the loosely packed samples are discussed in light of the model predic ions
of the evolution of fabric. The resulting stress-strain relations and the evolution of fabric
and the evolution of contact forces are in excellent qualitative agreement with the observed
behavior of granular materials.

2. DESCRIPTION OF FABRIC AND STRESS

We consider an ideal granular material composed of rigid, dry particles. For simplicity,
particles are assumed to be spherical or cylindrical with circular cross-section. Following
Oda [7;, the fabric is represented by the distribution of the unit contact normals. Each
orientation corresponds to a large number of contacts which, while individually may undergo
abrupt changes, collectively evolve in a continuous manner during the course of the
contiruous flow of the representative granular sample. In this manner, one can, for example,
identify an initial and a current orientation for a given class of contacts, while clearly the
same identification may not, in general, be possible for an individual and specific contact.

The group of M contacts per unit volume of a representative sample of granular material
is divided into, say Q classes, each with a common contact plane defined by the
corresponding unit contact normal. Let M,, (a = 1, 2, .., Q), be the number of contacts
which belong to class @ with common unit contact normal m°. Then

Q M, 1

?;l — 1. ¢y



When the number of classes, Q, is very large, we can introdece the distribution density
function E(m) to describe the angalar distribution of unit branches. In this case (1) becomes

[ Emada =1, [v)

where E(m) = E(-m), 2nd where d) is an elemental angle of the unit circle ). With (2),
the average of any quantity ¢(m) is given by

e M
<o> =) 2° olm") = [ B etm)da . &)
a=1

Thcpnnmymxcmscopxcqmnnuesassoaawdmmatypxmlcontacta in class a are
shown in Fig. 1. In this figure, f, is the interparticle contact force and ¢ is the branch
Jength. Denoting the average of these quantities by f; and ¢* , respectively, the Cauchy
stress is given by

Qe M «
> =Yo7 % og=MEmf . @

a=1

1]

The nominal stress-rate is described by (see, [1] for details)
I'Vy= M<e m‘ff . &)

3. KINEMATICS

Under the action of an overall applied load, the flow of a granular mass consisting of
rigid granules occurs through sliding and rolling of grains over each other. As the sample
deforms, the distribution of unit normals changes and this change characterizes a
corresponding change of the fabric or microstructure. The overall deformation is viewed as
a suitable average of the local deformations associated with each class of contacts. Hence,
denoting by I; , (@ =1,...,Q), the components of the velocity gradient associated with a
typical class of contacts, a, the overall velocity gradient is written as

Lif = <1il> . (6)

The local velocity gradient is resolved into two parts as follows:
Ip=°+ 1., (a=1,.,Q) , )

y

where I is the velocity gradient corresponding to the fabric change, and I°*¢ is the
velocity gradient stemming from the relative sliding motion of the grains, which leaves the
fabric unchanged. The part 1°** in (7) is the counterpart of the siip-induced velocity gradient
in single crystals, and the part I*° is the counterpart of that associated with the elastic lattice
distortion. Note that since, in a granular material which is modeled by rigid granules, no
elastic deformation can be involved, it is the change in fabric that produces the change in
the overall stress.



4. CONSTITUTIVE RELATIONS

Constitutive assumptions are made at the local level for the time rate of change of the
average contact force for each class, and for the evolution of the distribution density function
of contact normals. These reiations are then used in conjunction with a local yield criterion
to arrive at the time rate of change of Iocal nominal stress; see [1] for details. Using this
Jocal nominal stress-rate and (5), the overall constitutive relation is obtained in the form

Ny=<xgl>, ®

where the local moduli x;y , i.e., those associated with a typical class a, explicitly depend
on the fabric, the local contact force, and the material constants [1].

Next, we have to make assumptions concerning the dependence of the local velocity
gradieat l; on the microstructure. In self-consistent theories for polycrystalline materials
[8] and in our earlier work on granular materials [9], a fourth-rank (concentration)
tensor, Aw , is introduced which depends on microstructure and which relates the local
velocity gradient in a typical micro-element, e.g. a single crystal, to the macroscopic uniform
velocity gradient (see, [9-10] for more details). This concentration tensor must then be
ca'culated using an appropriate model. Iwakuma and Nemat-Nasser [10] use a fully nonlinear
self-consistent model proposed by Hill [8,11], and actually calculate the corresponding
concentration tensor for plane problems. It can, however, be shown that this type of self-
consistent calculation breaks down when the density of voids or cracks is suitably large. For
the granular materials, voids are connected through contact zones which may be viewed as
cracks. Hence, the application of the self-consistent method is problematic, leading to
unrealistic estimates of the overall instantaneous moduli. In order to develop the simplest
micromechanical model that exhibits the basic features of granular material behavior, a
Taylor-averaging method is adopted in [1], i.e., it is assumed as a first approximation that
the concentration tensor is the identity tensor, leading to

a

=L, ©
With assumption (9), (8) now reduces to

Ny =<x,pLy= Fyly , (10)
where F , are the overall moduli defined by

e M

‘9;}'H=<xiiu> =Zl.—.gx;.u . (11)
Denoting the spin tensor by W, the Jaumann rate of macroscopic Cauchy stress, i.e.,

=Dy - WD +I,Wy,, (12)
and the rate of deformation, D, , are related as follows [1]:

1
2U+Duzu=-2-(yw+yu&wuzwbuzq)pu : (13)



Equations (13), subject to the stress symmetry constraint and with the overall moduli defined
by (11), are the macroscopic constitutive relations of the model.

In order to calculate an overall quantity from the corresponding local quantity (e.g., the
overall moduli from (11)), an expression for the distribution density function of the contact
normals is needed. Since the number of contacts in each class is strongly influenced by the
magnitude of the contact force for that particular class as well as by the local volumetric
change, the density of contacts in each class is related to the magnitude of the corresponding
contact force and the associated volumetric strain rate by the relation [1]

Q
L Y e=Ye?e?’, (14)
M a a=1

where 8 is a macroscopic constant, £ is a local quantity with the dimension of area, and f is
a nondimensional quantity related to the magnitude of the contact force for class g, i.e., f* ,
as follows

f= Moeof . (15)
-(1/2)tr2

Note that, for ease in writing, the superscript a is omitted in (14) and (15). Employing (14),
the average of any local quantity can be found in the manner of (3). In quantitative
crystallography, it is customary to expand the density function of the orientational data in
a series of generalized spherical harmonics. In works on granular materials, it has also
become customary in recent years to describe the distribution density in terms of "fabric
tensors” of various ranks [12-14]. Note that here and in [1], to characterize the fabric, we
have made a constitutive assumption for the density distribution function itself, rather than
for various approximations of it in the form of macroscopic "fabric tensors".

Finally, an expression for the evolution of the coefficient M¢ is assumed in [1]. This is
required for calculating the stress and stress-rate from (4) and (5), respectively. Recalling
that M is the number of contacts per unit volume and that ¢ is the branch length, the
quantity M¢ with the dimension of (area), is intimately related to the volumetric strain and
strain rate represented by the jacobian detG and by trD , respectively. Hence, it is
assumed that

MU = Myp° entetOn (16)
where n is a negative constant, and where

N = ftrD dt = (t-1,)trD(t*); (17)
%

here t, <t* <t , and for the numerical illustration given at the end of this paper, we have
used ¢°=(1/2)(t+¢). An equation resembling (16) has been introduced by Jagota, et al.
[5], for the evolution of the coordination number, in connection with the sintering and
compaction of powder packings. The relation (16) follows from the assumption that the rate
of change of (M0) per its own unit is proportional to (detG)(trD) , i.e.,



(MU)[(M?) = n(detG)(erD) . Upon integration over the time increment and using the
value of detG at the start of time step (i.e., retaining only linear terms in (¢-1,) ), we
obtain (16) and (17).

Due to the nonlinearity of the rate constitutive equations, the response must be computed
by an incremental procedure. This procedure is described in detail in [1], where local and
overall constitutive equations are cast into an incremental form by using a first-order
approximation of the local yield function.

Owing to the simplicity of the local rate constitutive equations, an analytical integration
is possible and is carried out in [1], whereby explicit relations are derived, including those
for the contact forces and contact normals. Hence, using these relations, the overall nominal
stress can be computed in two alternative ways, either using the analytical integration
procedure or the incremental procedure described in the previous paragraph.

5. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations corresponding to the two-dimensional behavior of the model under
simple dilating shear are presented in this section. In these calculations 48 discrete
orientations are used between 0° and 360° to define 48 classes of contacts. Two cases are
considered. In case (1), the initial conditions and material constants are chosen so that the
behavior of the model corresponds to that of loosely packed granular materials; while for
case (2), the initial conditions and constants are chosen so that the model behavior
corresponds to a densely packed sample. The material constants and initial conditions used
in the two cases are summarized in Table 1. In this Table, \", u* are Lame-type constants
governing the rate of change of local stress (due to the fabric distortion); p, and a; are
reference stress and area, respectively; p is the interparticle friction coefficient; { is the
dilatancy coefficient; b is a constant that governs the value of the parameter ¢ and the
volumetric behavior of the material [1, Eq. (4.5)]; 8 and n which appeared first in (14) and
(16), respectively, strongly affect the orientational distribution of contact normals as well as
the total number of contacts; e, is the initial value of & defined by (14),; I° is the initial
confining overall stress on the sample. The initial orientational distribution of contact
normals is assumed to be isotropic for both cases. As shown in Table I, except for the
constants b and 8, the remaining constants have been chosen to be identical for both cases.
Notice that the chosen values of b and 8, in the two cases, differ by two and one orders of
magnitude, respectively. The model behaves like densely packed materials for a large
absolute value of b, while it behaves similarly to a loosely packed material for a relatively
large value of 8.

The stress-strain behavior of the model in the two cases are depicted in Fig.2 and 4,
where the ratio of shearing stress to the mean normal stress is plotted versus the magnitude
of the shear strain. The volumetric strain versus shear strain is plotted in Fig.3 and 5. The
data points indicate the beginning of an increment of loading in shear equal to 0.001. The
stress-strain and volumetric behavior of the model are in good qualitative agreement with the
observed behavior of granular materials.

The orientational distribution of contact normals at increments identified on the plots of
Fig.2-5 are presented in Fig.6. Since the samples are assumed to be initially isotropic the
initial distribution of normals is a unit circle at increment 0. For the ioose sample, as the
szmple is sheared (to the right), the fabric immediately adapts itself to the rotation of the



principal stress axes so that there are more contacts along the maximum compressive stress
(Fig.6, Increments 5). This is in contrast with the evolution of contacts in the dense sample
where a gradual reduction of contacts leads to the buckling and collapse of the load-carrying
columns along the maximum compressive stress direction which in turn leads to a loss of
strength or softening of the material.

Table 1
Material constants and initial conditions
Dense Loose
N'Ipa 200.0 200.0
1P 200.0 200.0
m 0.40 0.40
¢ 0.36 0.36
b -100.0 1.0
B 0.01 0.1
n -10.0 -10.0
oy/an 0.048 0.048
M,°a, 10.0 10.0
2/ [-2.0 o.o] [-1.0 o.ol
Pr 0.0 -40 00 -1.0
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Figure 1. A typical contact « in class a; m° is the common
unit normal for all contacts m class a; f, is the
interparticle contact force; ¢ is the branch length.
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Micromechanics of flow and failure modes of particulate media

over a wide range of strain rates
Sia Nemat-Nasser and B. Balendran
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Abstract

A basic framework is proposed for the systematic micromechanically-based constitutive
modeling of the flow of granular materials, over a broad range of strain rates, from quasi-
static to high strain rates. Frictional effects, pressure sensitivity, and coupling between shear-
ing and volumetric strain are included. Stress-induced anisotropy in elastic and inelastic
instantaneous material response is incoporated. The model is flexible enough to account for
both rate-independent and rate-dependent frictional sliding and rolling of the grains. For illus-
tration, typical results for biaxial and simple shearing of granular materials with various void
ratios are calculated in monotonic, as well as cyclic loading, and they are shown to accurately
correspond to actual observations.

1. INTRODUCTION

The resistance of a granular mass to plastic flow is strongly influenced by the
corresponding interparticle friction and the void ratio. In addition, existing experimental
results suggest that the fabric structure and its changes play an important role in the mechani-
cal behavior of granular materials. As an implicit measure of the granular fabric, the statistical
distribution of contact normals is widely used. In a virgin sample, the distribution may be
isotropic. However, during a course of shearing, the distribution of contact normals may
develop a strong bias, leading to a strong anisotropy.

A number of experiments has been conducted using photoelastic cylindrical granules to
study the variation of the distribution of the contact normals, in a course of deformation; see
Konishi et al. (1982), Oda er al. (1985), and Subhash er al. (1991). In these experiments, it
has been observed that the distribution of the contact normals changes in such a manner as to
produce a greater concentration of contact normals along an orientation which parallels the
direction of the ‘maximum principal compressive stress.

During the course of granular flow, on a microscale, grains override each other, resulting
in sliding on planes which pass through active contact points. We denote by v the angle that
the microscopic plane of motion at a typical contact point makes with the macroscopic shear-
ing direction. If the angle v is positive as in Fig. la, then the normal force transimitted to the



granules tends to hinder their sliding and rolling motion, resulting in an increase in the
effective resistance to the macroscopic shearing. On the other hand, if the angle v is negative
as in Fig. 1b, the motion of the granules is assisted by the normal force, and hence, the
effective resistance to macroscopic shearing is reduced. When sliding occurs, the motion of
the granules with positive angles of dilatancy tends to contribute to the overall dilatancy,
whereas the granules with negative angles of dilatancy tend to produce densification.

N . N

B TN

(a) (b)

Figure 1. Active contacts with (a) positive angle of dilatancy (b) negative angle of dilatancy.

During the course of deformation, more and more contacts with positive dilatancy angles,
v, are formed, while contacts with negative v are continually lost. This process tends to
increase the resistance to continued loading and decrease the material resistance in unloading
and reverse loading. In this manner, the potential for dilatancy in continued loading, and for
densification in unloading and reverse loading, is increased.

In addition to the resistance due to interparticle friction and the fabric, the confining
pressure affects the material resistance to flow. This is an isotropic effect, depending on the
density of the granular mass. This resistance increases with the density of the granular mass.

We consider the planar deformationt of granular materials in the x,x,-plane. Based on
the above observation, we write the sliding criterion, a variant of Coulomb’s criterion, for
granular flow i a direction s, in a plane with unit normal m, as follows:

f1=1, +0,tandf —ptand, S0, for loading,

fa=-1, + o tand{ - ptand, <0, for unloading , (1)
where 1,, and 0, are the shear and normal stresses on the sliding planes, given by

1, = 0:(mBS), G, =0o:(mem), p =-1r(0)2, )

with the usual sign convention of continuum mechanics in which tensile stress components are
positive. Here dyadic notation is used and : denotes a double contraction, e.g.,

o:(m®s) = 0;; imiSj with o denoting the Cauchy stress with rectangular Cartesian

t Planar deformation corresponds to two-dimensional flow of cylindrical granules.



components, 0;;, and repeated indices are summed.

In the sliding criterion (1), the angles, ¢f and ¢/ , represent the effective frictional
resistance to sliding by the interparticle friction as well as the fabric structure, while the angle
¢, represents the resistance due to the isotropic interaction of particles. The angle ¢f is for
continued loading, whereas ¢ corresponds to unloading and reverse loading. Based on com-
ments made at the beginning of this section, the angle ¢f is always positive and greater than
the angle ¢ which may be either positive or negative, depending on the local granular
Jabric, where a negative value corresponds to the collapse of voids upon unloading and load
reversal. This has been observed in photoelastic experiments as well as in numerical model-
ling, and is an important ingredient of the present theory. The energy equation then ensures
that the process is in fact dissipative.

The resistance to flow due to the interaction of particles, increases as the material
densifies and decreases when the material dilates. Hence, the angle ¢, varies with the void
ratio.

(md-¢° /2)

Figure 2. Sliding planes in loading and unloading.

Sliding takes place on planes where f, given by (1), is maximum and non-negative. There
are two planes on which f attains maximum values. These planes are symmetrical about, and
make angles of m/4+¢{/2 (6f, 65-planes for loading) and w/4—-¢//2 (8f, 6 -planes for
unloading), with the direction of the greater principal stress, ©;; see Fig. 2. Therefore, the
sliding criterion, (1), can be expressed in terms of pressure, p, and the effective shear stress,
q, in the form,

-MY% S q SM'p, g =(%0"0)%, A3)
M* = sin(f + dp)/cosdy, MY =sin(@f + ¢,)/cosh,. )

Denote by & the angle that the effective microscopic plane of motion makes with the
corresponding sliding plane. From the energy equation for the frictional loss on the effective
microscopic plane of motion, the angle of dilatancy, 8, is related to the microscopic, ¢y, and
macroscopic (1, ¢/, and ¢,), angles of friction by (see Nemat-Nasser, 1980),



5=¢f +9¢,-¢, for loading,
=0 +¢,- ¢, for unloading. &)

2. CONSTITUTIVE EQUATIONS

We seek to obtain the phenomenological constitutive relations implied by the double-
sliding theory, in line with the flow mechanism discussed in Section 1. To this end, we
assume that the kinematics of the instantaneous granular flow is expressed by the velocity gra-
dient L = dv/0x, consisting of a symmetric part D, the deformation rate tensor, and an
antisymmetric part W, the spin tensor. Each of these rates are separated into elastic and plas-
tic parts as follows:

D=D'+D", W=W" +Wr, ©)

where superscript p denotes the plastic part which is due to the shearing along the sliding
directions, and the superscript * denotes the elastic part; note that W' also includes the rigid

spin.

L) o,

Figure 3. The unit vectors in the direction and normal to the direction of sliding

In plane flow, there are two preferred sliding lines, symmetrically situated about the prin-
cipal stress directions. The first, the 6,-line, makes an angle 6, = y — n/4 ¥ ¢,/2, and the
second, the 6,-line, makes an angle 6, = y + n/4 * ¢,/2, with the positive x -axis. Here and
in the sequel, both loading and unloading are considered together, superscripts L and U are
omitted, and the symbols + and ¥ are used where necessary, with the upper and lower signs
corresponding 1o the loading and unloading, respectively, Assuming that the plasiic deforma-
tion is due to the shearing on the sliding lines, and denoting the rate of shearing on the 6;-
sliding system by ¥* (o = 1,2), we write the plastic part of the velocity gradient as



D’ =j:‘.fp°‘, WP = 4% (a swrred), )]
,,a:-;-(s“sm%muesn)imn@mw

r°‘=-§-(s"®m"—m“&s“). ®

Here, s* and m® are unit vectors in the direction 2ad normal 1o the direction of siiding of the
o-sliding system, and the angle y is the orieniation of the smallest (compressive) priacipal
stress direction with the x;-axis (see Fig. 3).

In the present model, it is assumed that the fabric is not affected by the plastic sbearing
deformation along the active sliding planes, and thai only the elastic pant of the velocity gra-
dient, L° =D° + W"*, is respoasible for the change in fabric, giving risc to stress changes.
To describe the local elastic response, we consider the objective Jaumann rate of siess,
é=6-Wo + oW,
and relate it to the elastic deformation rate by
8=C:D*' =C:(D - D*), ©)
where C is the instantancous elasticity tensor. Further, based on the experimenial gbserva-
tions that the fabric (defined by the distribution of contact normals) rotates with the principal
stress directions, we assume,

Wi = - ¥ = (0"3612 — 01,6') /242 10
Denoting the unit deviatoric stress tensor by jt, and in view of (10), the plastic part of the
velocity gradient, D?, can be rewritten in the form,

Dh =18, Wi =+G-p),

? -7 b 4+ _o _ sin(¢, - &)
D7 =Faztrl, %' T Tom
(¢ 5) _ sind
Y= +P)—————, B +cos(¢l 5 @11)

where « is the noncoaxiality cocfficient, characterizing the deviation of the plastic strain rate
orientation from the orientation of the stress deviator, B is the dilatancy parameter, and ¥ is
the effective inelastic strain rate.

The elastic response of a granular mass, in general, is anisotropic when the stress state is
anisotropic. Many authors, however, have used isotropy to simplify the corresponding results.
If the elasticity is assumed to be isowropic, (see Balendran and Nemat-Nasser (1991) for a dis-
cussion of the general case), with bulk modulus, X, and shear medulus, G, then the constitu-
tive equations reduce to
84 = 2K Dy F1B),

&=2D+pa -pep)y’ ¥y | p=—G%
B(1 - pep) 5 quoa

(12)

For rate-independent sliding, the average slip rate, ‘i(, is related to the deformation rate
through the rate form of the sliding criterion as,

5



y=H (£ 2GpD + M K D).

H =@p +G  MEBY?, =%;. a3)
The framework is Bexible enough 0 accoua: for raze-dependen: shiding which will be dis-
cussed eizsewhere; Balendran 2nd Nenmzi-Nzsser (1991).

Eguatiors (12) comrespond 1o the vsual J,-piasticity, except for two very amportant
differences. First, there is 2 skeaning-induced dilatancy or densification embedded in (12) by
the difatancy parameter B, and second, the 1emm associated with B in (12) renders the piastic
strain rare noncozxizl with the swress deviator. As has been pointed out by many authors (
Spencer, 1964, 1982; Rodamicki and Rice, 1975; Mekrabadi and Cowin, 1978; Nemat-Nasser er
al, 1981; and Nema:-Nasser, 1983), this is doe 1o the presence of friction and is removed
only if &; =3, i.e, when the friction coefficient is equal 1o the dilatancy angle. This, however,
cannot, in genesal, be te.

3. HARDENING AND SOFTENING

Consider now the evolution of the effective frictional resistance in loading and in unload-

ing. It is convenient to write the evoluiion equations in tezms of the frictional coefficients
defined by,
N = ettty = and, (14)
We consider 2 very simple model where the rate of change of the effective frictional resis-
tance due to fabric, with respect to the rate of shearing, is linearly related to its deviation from
the maximum saturation valve, p, = tand,. We also assume that the resistance to inelastic
shearing due to pressure becomes very large as the void ratio reaches its smallest value;
Nemat-Nasser and Shokooh (1979). In this manner, we write the evolution equations for the
frictional resistances as follows:

Mo =tan(@,—¢,) +a [ 1 1 ] . (15)

(e—e,)" - (e.—¢,. )"

L
-a—;;-l- =b W, ~nf), for continued loading, ie., g —M*p >0,

oy v L

F =b (W, -ny), forreverse loading, ie., g+M"p <0, (16)

where e is the void ratio, e, is the critical void ratio, and e, is the minimum void ratio. We
further assume that both sliding conditions are always met, both in loading and in unloading.
This results in,

g=M'p=-M"p, Gr+¢/=-2¢,. 17

This assumption also implies that when a granular mass (in present illustration) is subjected to
only hydrostatic stress, the microstructure is isotropic and the macroscopic angles of friction
are related to the void ratio by,

Of = ¢f =~ ¢, = 1an"'(uy(e)). (18)



4. EXAMPLES

We now coasiéer several illustrative examples in order to bring out the features embed-
ded in our gereral constituzive relations. We stant with a hydrostatc state of stress and set the
initia! values of the angles of friction from (18) for the given void ratic of the sample. In all
examples, we use G =100pg. K =200pg, a =5, b =20, n=35, ¢, =40° ¢,=15%,
e, =02, and e. = 0.6, where pq is the initial pressure.

We. consider the application of the proposed model to simple shearing of 2 granular
raterial at constant confining pressuze, (Gy; = 65 =0, Ly =L =0), and biaxial shearing
of 2 granular mazerial at constant lateral stress, (G5, =0, Ly, =Lo; = 0). The results of these
simulations are given in the form of reiations between the stress ratio, (032/p in simple shear
asd o'yy/p in biaxial compression), void ratio, e, and shear strain (F;,/2 in simple shear and
(Fy; — F»)72, in biaxial compression) where F is the deformation gradient. In Fig4, the
results from the simulation of monotonic shearing are given. They correlate very weil with the
following experimentally observed phenomena:

(1) There is always an inidal densification, the magnitude of which decreases as the initial
void ratio approaches its minimum value.

(2) if the sample is dense, then the initial densification is followed by dilatancy which con-
tinues until a critical void ratio is amained asymptotically. The stress ratio increases
monotonically in densification and reackes its peak value during dilatancy and then
asymptotically drops 10 a critical value as the critical void ratio is reached.

(3) If the sample is loose, it densifies continually until the critical void ratio is reached
asymptotically. The stress ratio increases monotonically and asymptotically reaches a
critical value.

The results from the simulation for five cycles of shearing deformation are given in
Fig.5. They show:

(1) When the shearing is reversed, the material tends to densify, resulting in a net
densification at the completion reversed shearing.

(2) If the shearing is continued in the opposite direction, the sample tends to dilate.
(3) Upon completion of each cycle of defor.nation. there is a net densification.
(4) The amount of net densification per cycle decreases with the number of cycles.

5. CONCLUSION

A physically-based clastoplastic constitutive model is presented for dilatant, pressure-
sensitive, workhardening materials. The model is applied to simple shearing and biaxial defor-
mation of granular materials, both in monotonic and in cyclic deformation, and it has been
shown to predict ail the basic features of the shear deformation of granular maternials.
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ABSTRACT

The results of a systematic study of energy dissipation in cohesionless granular
media are presented. First, the relation between the excess pore water pressure, accu-
mulated in a water-saturated granular mass, and the correspoiding external work in
cyclic loading is studied experimentally. Second, a micromechanical model of internal
energy dissipation due to slip between contacting granules is introduced, and the

results are compared with experimental measurements.

A series of undrained experiments is carried out using water-saturated large hol-
low cylindrical specimens. Most experiments are performed under displacement-
controlled conditions. The imposed cyclic angular displacement which produces the
applied shear strain, has a triangular time variation with constant strain rate over each
quarter cycle. The specimens are subjected to two sequences of loading in order to
simulate the reliquefaction phenomenon. External work per unit volume is calculated
from the experimental results, and its correlation with the excess pore water pressure is
examined. In the first loading, a unique nonlinear relation is observed to exist between
the excess pore water pressure and the external work per unit volume. This relation is
found to be independent of the shear strain amplitude. In the second loading, however,
this relation is a function of strain amplitude. The cyclic shear strength is seen to have

increased in the second loading, because of the strain history of the first loading.

External work supplied to cohesionless granular media is mainly consumed by the
frictional slip between contacting granules. A micromechanical model is developed and
validated by the experimental results. It is shown that the internal dissipation per unit
volume in cohesionless granular media, can be expressed in terms of the time-history
of the applied effective pressure and a single scalar parameter which depends on the
density and strain amplitude. The model is further validated by torsion tests with ran-
dom variation in the applied strain amplitude. The theoretical predictions are in excel-

lent agreement with the experimental results.
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1. INTRODUCTION

Liquefaction is a complex phenomenon in which fluid-saturated granular media
may momentarily behave like fluids. It is an important aspect of earthquake-resistant
foundation design of many structures, especially those located in coastal areas, which
are often built on sand with high underground water levels. As liquefaction takes
place under seismic loading, saturated sand behaves more like a fluid, and therefore
fails to support the applied loads of the building. Severe damage to the structure is
often the result. Damage resulting from liquefaction has been observed in the after-
math of many earthquakes; the Loma Prieta earthquake (1989), the Niigata earthquake
(1964), and the Alaska earthquake (1964) are a few examples.

The mechanism of liquefaction is closely related to the dilatancy of granular
media. Dilatancy was first studied by Reynolds (1885). It is defined as the rate of
volume expansion in granular media per unit rate of shearing. The granules are rear-
ranged during shear deformation, and this results in a change in the total volume. If
the granular medium (e.g. sand) is water saturated, a tendency toward densification
(negative dilatancy) results in an increase in pore water pressure and hence a decrease
in the corresponding frictional resistance of the contacting granules. Consider a sam-
ple of sand which js saturated with water while contained in a flexible rubber mem-
brane, and is subjected to a hydrostatic pressure denoted by P,. Static equilibrium
requires that the total internal pressure be P,. The inicrnal pressure may be divided
into two separate parts: pore water pressure P; which is carried by the water, and the
effective pressure P which is carried by the sand as contact stresses at granule/granule
and granule/boundary interfaces. Upon externally applied cyclic shearing, the granules
are rearranged, resulting in a tendency towards a decrease in the water volume. This
results in an increase in the pore water pressure, P;, and a corresponding decrease in
the effective pressure, P. In continued cyclic shearing, the pore water pressure at the

termination of each cycle increases until it reaches a value close to the applied hydros-
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tatic pressure, P,. When this occurs, the contact resistance of the granules is essen-
tially negligible, leading to loss of load-bearing capacity of the sand mass. The sample
then ceases to behave like a solid body. This is what is meant by liquefaction, in the

present paper; se¢ Casagrande (1975) and Seed (1979).

Liquefaction has been experimentally treated extensively by a number of
researchers; see, for example, Silver and Seed (1971), Castro (1975), and Ishihara and
Yasuda (1975). Parameters influencing the onset of liquefaction of the sand within a
control volume are identified and measured. These parameters typically include
overall density, initial packing conditions, and granule size distribution; see Seed
(1979), Miura and Toki (1982), and Tatsuoka ez al. (1982). In addition to these inter-
nal characteristics, the applied loading also affects the onset and nature of liquefaction;

see Ishihara and Tcwhata (1983, 1985), and Symes et al. (1984).

Previous work has, in general, studied liquefaction from the experimental point of
view. Theoretical work has focused more on phenomenological considerations of this
topic rather than a micromechanical approach. A unified energy model for densification
and liquefaction of cohesionless sand was proposed by Nemat-Nasser and Shokooh
(1979) who compared its prediction with experimental results of Peacock and Seed
(1968), Youd (1970, 1972), and DeAlba et al. (1976), and obtained excellent agree-

ments.

The present work correlates the results of an experimental program with a
theoretical model based on micromechanics and energy principles. Models of this kind
seek to relate the overall response of granular materials to the response of their micro-
coastituents Examples of micromechanical analyses of densification and liquefaction
phenouiena, which are also coordinated with experiments, are Nemat-Nasser (1980),

Nemat-Nasser and Tobita (1982), and Nemat-Nasser and Takahashi (1984).



2. EXPERIMENTAL SETUP

2.1 Motivation and Background

friction. An experimental program must include compression and shearing of reprodu-
cible samples in a fully controlled manner with reliable daza. The study of granular
material behavior requires complex expezrimenta! facilitics, with a closed-loop feedback
system to control the experiment and to monitor the specimen deformation. The speci-
men geometry used for the present investigation is a large hollow cylinder, 25cm high,
with inner and outer dizmeters of 20cm and 25cm, respectively. This geometry is such
that in torsion, the shear stress remains (approximately) homogeneous throughout the
thickiicss of the specimen; see Hight er al. (1983) for a detailed examination of this
and related issues The specimen is supported by a triaxial load frame; see Figure 1.
The axial and icrsional deformations are conirclled through an MTS servohvdraulic
loading system. In addition, the specimen is subjecicé 0 lateral hydrostatic pressure,
on both its inside and outside cylindrical surface. In this manner, tnaxial states of
stress can be imposed on the mater.ai under controlled conditicas with complete data
acquisition capability. This load frame to our knowledge is one of four that have been
constructed to date. Our load frame is fully computer-controiled, where either the

stress- or the strain-path can be preprogramed with mode switching capabilities.

2.2 Specimen Preparation and Instailation

The granular material chosen for this study is Silica 60 manufactured by U.S. Sil-
ica. This sand is chosen for its fine particle size. This is necessary in order to avoid
membrane penetration phenomena that would otherwise invalidate the test results. The

particle size distribution is shown in Figure 2. The mean particle diameter is 220wn
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znd the specific gravity of the sead is 2.645. Depeading on the packing conditions,
Efferens void ratios zre obuained; void ratio is defined 2s the rzio of the void volome
2nd the sznd volume. For Sifica 60, the nrnimem zad maximem void rztios are 0.631
aad 1095, respectively, these are mezsured by the JISSMFE method; Committee of
JSSMFE oa the Test Method of Relative Density of Szad (1979).

Special fixtures 2re used to prepare hollow cylindrical sand specimens. These
fixteres include inner znd outer molds o which rubber membranes are aitached. The
sand is initizlly supposted ca the boom by 2 ring of poroas metal with six evealy
spaced fins, called the pedestal, thzt in combination with a meating top ring, called the
czp, applies the tossional load to the specimen. The inner mold with anached rubber
membrane is shown in Figure 3. The pedestal (with associzted fins) is attached to the
boitom supperi plate. The outer membrane is then slid over the inner membrane and
fixed 1o the pedestal with o-rings. The outer mold is bolied in place and the top of the
outer membrane is draped over the outer mold and held in place by o-rings. A separate
fixture is installed on top of the outer mold (Figure 4) to prevent sand spillage on the
rest of the triaxial load frame. This fixture also allows for an overfill amount of sand
so that a desired packing condition can be obtained. The excess sand is removed later.
The tubs extending from the outer mold in Figure 4 is used to crzate a vacuum

between the outer mold and outer membrane, thereby holding it securely in place.

It is well known that the initial packing condition of the sand has a noticeable
effect spon the material response of the specimen; see Arthur and Menzies (1972),
Oda (1972), and Miura and Toki (1982). The specimen preparation method must
therefore achieve a consistent initial packing condition so that experiments are repeat-
able. To this end, a technique has been adopted in the soils community that is known
as the rodding method. This method consists of pouring an approximately 2cm deep
layer of sand into the mold and then inserting a rod into the latest layer approximately

1-1.5cm deep. The rod is moved around the circumference of the sand in an up-and-
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down motioa for 2-3 revolutions. This procedure is continued until the mold is filled.
We bave used 10 layers to obuain loose packing conditions and 14 layers for dense
packing conditions. Experiments performed with loose conditions use the sand in a wet
form. Here the sand has been air dried and then mixed with 8 weight percent water
before pouring in the mold. The water is needed to prevent non-homogeneous initial
packing conditions in the loose form. The void ratio for this condition varies between
0.865 and 0.874 . Experiments performed with dense conditions use only air-dried
sand with the void ratio varying between 0.708 and 0.725 .

The fixwure that was attached to the top of the outer mold is then removed and the
amount of overfilled sand is cut’ away. The cap is installed next; it consists of the
same porous metal as the pedestal and also has six fins. A second vacuum system is
connected to the cap and pedestal. The purpose of this vacuum system is to make the
specimen rigid under atmospheric pressure. The vacuum level is maintained at
29.4iN/m?. The first vacuum system that keeps the outer membrane affixed to the outer
mold is then released. TP~ outer mold is then removed, followed by the inner mold. A
torque load cell unit is first bolted onio the ram of the triaxial load frame (Figure 1),
and then bolted onto the cap. Next, a potentiometer is attached io the load frame (Fig-
ure 5). The potentiometer measures the twist angle during the experiment. A piexiglass
chamber with steel bands is installed over the entire specimen, and a top plate is
installed. The top plate is affixed to the bottom plate via stainless steel tie bars. The
bars hold the chamber firmly in place. The purpose of the chamber is manyfold. First,
it provides confinement of the experiment if the sand mold loses integrity. Second, it
holds the water that is used to apply hydrostatic pressure to the specimen. Finally, it is

used as a viewport to observe the progress of the experiment.

The entire specimen assembly is now complete. The assembly is then raised to
the level of the MTS load frame via a forklift. A special work frame has been built

onto the MTS load frame. This work frame allows attachment of all connections to the
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specimen assembly as well as providing a railway for installation and removal of the
specimen into and from the MTS load frame. The overall assembly is shown in Figure
6.

The MTS load frame used for this experiment has an axial capability of 89 kN
(20,000 Ib), and a torsional capability of 565 N-m (5,000 1b-in) which can be used
independently. This system uses a Digital Equipment Corporation PDP-11 computer to
control the servohydraulic actuators. The system is closed-loop so that feedback from

any selected transducer can be used to control the test.

Once the triaxial load frame has been rolled into place over the ram of the MTS
load frame, it is secured in place by both vertical and horizontal clamps (Figure 1).
The hydraulics for the MTS system are turned on and the MTS ram is raised to the
level of the universal joint (Figure 7), using displacement control. An air clamp (Fig-
ure 8) that is fixed to the top of the MTS ram is then actuated and grips the universa!
joint on the bottom of the ram of the triaxial load frame. The universal joint is
required to accommodate any misalignment between the ram of the MTS load frame

and the ram of the triaxial load frame.

The first step in the experimental procedure is to fill the plexiglass chamber with
water until the specimen is completely submerged. The remaining space above the
specimen is pressurized with air to 29.4kN/m2, which is the same value as the vacuum
inside the specimen. During this operation the vacuum in the specimen is released and
water pressurized in such a manner as to keep the effective pressure in the specimen

constant, 29.4kN/m?.

The specimen is then water saturated in the following manner. To attain full
saturation, first the specimen is saturated with CO, gas through the porous metal in the
pedestal and cap. The flow of gas is continued until all air is removed from the speci-
men. CO, gas is used because of its high solubility in water. A fixed amount, 4 liters,

of de-aired water is used to saturate the specimen. The small amounts of air and C0,
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gas remaining in the specimen must then be removed as much as possible. The pore
water pressure is then increased to 196iV/m? as back pressure, using a buret system,
while at the same time the external hydrostatic pressure is increased to 225.4kN/m? so
as 10 keep the effective pressure constant (29.4kN/m?) during this procedure. This pro-
cedure reduces the volume of the excess gas in the specimen due to the relatively high

pore water pressure.

To perform experiments of this type, it is required that the specimen be highly
saturated. The degree of saturation is measured by the B-value. To measure the B-
value the specimen must be in the undrained condition. This condition is met by clos-
ing the valve to the buret, ensuring that the specimen remains at a fixed volume. The
specimen is said to be perfectly saturated (B=1) if an incremental increase in external
hydrostatic pressure has the effect of increasing the pore water pressure in the speci-
men by an identical amount. The B-value is defined as the ratio of the incremental
increase of pore water pressure to the incremental increase of hydrostatic pressure. The

values for all of our experiments are in excess of 0.99.

The last step of specimen preparation is to increase the effective pressure to
196xV/m?. To do this, the valve to the buret is reopened, allowing water to drain from
the specimen. The external hydrostatic pressure is thereby increased to 392iN/m?,
where pore water pressure is 196kN/m?. A schematic diagram of the pressurization
system is shown in Figure 9. Finally, the specimen is left undisturbed in this condition

to isotropically consolidate for a period of 3 hours.

2.3 Experimental Procedure and Data Acquisition

The MTS load frame has a computer-operated controller system. The computer
operates three independent controllers. Each controller has three independent feedback

channels. Controller number one is associated with the vertical movement of the
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MTS/triaxial load frame ram assembly; channel one is used to monitor the load from
the torque load cell, whereas channel two is used to monitor the vertical displacement
of the specimen. Channel three is not used with any controller. Controller number two
is associated with the pressure; channel one is used to monitor the chamber pressure,
P,, and channel two is used to monitor the pore water pressure, P;. Controller number
three is associated with the twist of the ram assembly; channel one monitors the torque
from the torque load cell and channel two monitors the angle of twist from the poten-

tiometer.

The experiment is conducted by using two closed-loop feedback systems. System
one uses channel one of controller one in load control to keep the specimen in a state
of hydrostatic compression in accord with the external pressure, P,. The second feed-
back system uses channel two of controller number three in displacement control to
cyclically twist the specimen to desired shear strain amplitudes and at desired shear
strain rates. The imposed cyclic angular displacement which produces the applied shear
strain, has a triangular time variation with constant strain rate, 2/3 %/minute over each
quarter cycle. Shear strain amplitudes are 0.2%, 0.5%, and 1.0% for both loose and
dense specimens. Tests at 0.4% and 2.0% shear strain amplitudes are performed on
dense specimens. All tests are continued until the excess pore water pressure reaches
95% of the initial effective pressure, i.e., 186.2kN/m% In actuality, the tests are
stopped at the end of the cycle after which transducer two of controller two (pore pres-
sure transducer) reaches a value of 382.2iN/m2 This entire process is defined as the

first loading.

The valve to the buret is then opened and the pore water pressure, P,, is reduced
to its initial value of 196kN/m% The specimen is not disturbed for three hours for
reconsolidation purposes. The valve to the buret is closed and then the exact pro-
cedure for the first loading is repeated. This is then called the second loading. After

the second loading, the experiment is disassembled. Care is taken to remove the sand



-9.

from the specimen and place it in an oven for drying. The sand is dried for 24 hours

and then weighed.
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Figure §. Specimen under applied v cuum with torque load celt and poientiometer
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Figure 6. Overall assembly of MTS and triaxial load frame
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Figure 7. Universal joint

Figure 8. Air clamp
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3 EXPERIMENTAL RESULTS

3.1 First Loading

The results of the first loading for both loose and dease sampies are presenizd ia
this section. First, we discuss the cyclic shear deformation characierisiics of waier
saturated specimens in strain-controlled conditions. Second, we examine the relation
between the external work, measurcs per unit volume, and the comresponding excess
pore water pressure.

All our experiments are under a strain-coatrolled condition. This is in contrast to
most other researchers who have conducted the undrained cyclic shear tests under
stress-controlled conditions; see, for example, Ishihara and Yaeuda (1975), Seed
(1979), and Tatsuoka er al. (1982). Figure 10 shows the relation between the shear
strain and the effective pressure for loose samples, for two strain amplitudes, 02% and
1.0%. It is seen that the effective pressure decreases during each cycle. The reduction
after the first cycle is especially large. It is also seen that the number of cycles
required for the excess pore vressure to attain 95% of the initial effective pressure,
depends on the employed strain amplitude: 27 cycles are needed for 0.2%, and only 2
cycles for 1.0% strain ampiitude. Figure 11 shows the relation between the shear
stress and the effective pressure, while Figure 12 is for the corresponding shear siress
vs. the shear strain. It is seen that the peak shear stress (and the secant modulus)

decreases after each cycle.

The energy supplied through the external work is mainly consumed by the fric-
tional loss at contacting granules, resulting in a change of the microstructure in the
granular mass. Therefore, the external work may be used to measure the history of

fabric change in a granular mass.

The rate of external work per unit volume, < wg >, car be evaluated in terms of

the applied boundary tractions, 1, and the boundary velocity field, a,
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If we zcsume thzs the bouadesy actioas ase wxiform, thea (3.5) caa e expressed ia

terms of the oveszll sresses aad swain rzizs 25 GEEL, 1963, 1967)

<WE >=<G.><E. >E<O, ><E, >+ <Cgp><ig>+<0C.g><Ty> (G2)
Siace the specimen 1s isotropically presserized by the extzmzl pressure, P,, twounghou:
ihe expesiment, 2il the three pommzl swesses equzl P,. Denoting the average volumemic
sazamzazsmﬁ

- ‘r’

(3-2) can bz rewniien 25

<Wg>= P, (e >+ <6y >+ <> )+ <G ><¥%a>,
7

=P,%+<6=e><%:e>. (33)

Since, for ine pressure levels used here, sand paricles zzd water can be assumed to be

. . V. . . . e ;
incompressible, 7 Sz during the undrained experiment if the sample is completely
saturated. The raie of external work per unit volume then becomes

<V >=<C,g><Tg>. (3.9)
The pressure term does not coniribute to the rate of extemnal work for incompressible
materials, as is evident at the outset. The external work per uaii volume, < we >, Up 10
time r can then be evaluated by thie ime-integration of (3.4),

4

<w£>=j<6,9><:{,e>dt, (3.5)

‘s

where 1, denotes the time at which the experiment is started.

The external work is calculated from the experimental results, and correlated with
the accumulated pore water pressure for both loose and dense specimens. The relation
berween the external work per unii volume and the excess pore water pressure for the
loose specimens is shown in Figure 13. Three strain amplitudes, 0.2%, 0.5% and
1.0%, are used here. The data at the end of each cycle in each experiment are plotied

in Figure 13. It is clearly seen that there exists a unique nonlinear relation between
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the external work and the accunralated pose water pressure; this relation is independent
of the employed shear-strzin amplitude, but the pumber of cycles to the 95% ininal
effective pressure does depend on the strain amphitude.

The relation between extemal work per unit volume and the excess pore waler
pressure for dense specimeas is shown in Figure 14. Five different strain amplitudes,
02%, 0.4%, 0.5%, 1.0% and 2.0%, are employed. It is clearly scen that here again a
unigue nonlinear relation exists between the external work and the accumulated pore
waler pressure.

To further explcre this interesting phenomenon, randomly varying shear-strain
amplitudes up to 1.0% are applied to a specimen. The relation between the shear strain
and the effective pressure is shown in Figure 15. The relaticn between the external
work and the excess pore water pressure for this random loading is also included in
Figure 14, where the accumulated pore pressure at zero shear strain is plotted against
the comresponding external work. It is seen that the randomness in loading does not

affect the unique nonlinear reiation between these two quantities.

The effect of specimen density on the above-studied relation is now coasidered.
It 1s seen that both the l.ose and dense specimens in first loading display a unique
reiation between the external work and the corresponding excess pore water pressure.
The two curves are compared in Figure 16. They essentially coincide up o 130V/m?
pore water pressure, i.e., 65% of the initial effective pressure. A significant difference
appears thereafter, with the loose samples developing higher pore pressure, as should

be expecied.

3.2 Second Loading

The experimental results for the second loading for both loose and dense speci-

mens are presented in this section. After the first loading discussed in the previous
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subsection, specimens are reconsolidated under the same initial effective pressure,
196&N/m>, as in the first icading. The second loading is then applied to the specimens.
First, we discuss the results where the strain amplitude in the second loading is the
same as that in the first loading. Then, we examine the results where the strain ampli-
tude in the second loading is different from the one in the first loading.

The shear deformation characteristics in the second loading are compared with the
results of the first loading. Figure 17 shows the first two cycles of the relation between
the shear strain and the effective pressure in both the first {solid curve) and second
(dotted curve) loading for a dense specimen deformed at a strain amplitude of 0.5%. It
is seen that the excess pore water pressuie accumulated during the second loading is
much less than that in the first loading, and the number of cycles required to reach
95% of the initial effective pressure in the second loading is much greater than that in
the first loading.

Figure 18 is a direct comparison of the pore water pressure variation in loose and
dense specimens, deformed at a strain amplitude of 0.5%. It is clearly seen “hat it
takes a greater number of cycles for the pore water pressure to reach a specified level
in the second loading than it does in the first loading, for both cases. This is due to the
ordered arrangement of the granules, attained upon the completion of the first loading.
Specifically, the contact normals tend to be orientcd after the first loading such that the
specimen is better able to resist a similar shearing. Another trend to notice is that the
pore water pressure builds up faster during the first loading of the dense specimen
than it does in the second loading of the loose specimen. This is also explained by the
oriented contact normals, despite the large difference in densities. These trends are
seen in all our results when we compare the behavior of loose and dense specimens
deformed at a constant strain amplitude. It should be noted, however, that, in a

strain-controlled test, the deformation of the gpecimen is limited by the prescribed

strain amplitude. This prevents extensive particle rearrangement which often occurs in
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stress-controlled tests, once sufficiently high pore pressures are attained; see Nemat-

Nasser and Tobita (1982).

The relation between the external work per unit volume and the excess pore water
pressure in the second loading will now be presented. Figures 19 and 20 show this for
loose and dense specimens, respectively. There are no significant differences up to
half the initial effective pressure. However, after that, the relation in the second load-
ing seems to depend on the employed strain amplitude, although this same relation in
the first loading does not. Figures 21 and 22 show the relation between the excess
pore water pressure and the employed strain amplitude for loose and dense specimens,
respectively.

To undersiand why the relation between the pore water pressure and the supplied
work per unit volume is independent of the strain amplitude in the first loading but not
in the second loading of the same sample, we observe that for the same density, the
sample packing is the same for all samples at the start of the first loading, whereas at
the start of the second loading each sample has experienced a different stress and
strain history during its first loading with a strain amplitude different from the other
samples. It is still not clear whether the strain amplitude used in the first loading
affects the relation between external work and the excess pore water pressure in the
second loading. In order to investigate the true effect of the strain amplitude during
the second loading, the specimens are subjected to cyclic loading at several different
strain amplitudes, and then the second loading is performed for each specimen at the
same common strain amplitude. The results are shown in Figures 23 and 24. It is
clearly seen that the stress and strain history in the first loading does not affect the
relation berween the external work and the excess pore water pressure in the second

loading, i.e., this relation in the second loading depends on the strain amplitude
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4. THEORETICAL MODELING

4.1 Energy Dissipation in Granular Media

In the present context, the external work that is supplied at constant temperature
to a material sample is either dissipated through friction or is stored in the material as
strain energy. The relation between the external work and the internal dissipation pro-
vides a basic constitutive constraint for the flow of granular media; Rowe (1962). For
stress levels considered in our experiments, essentially the entire extemnal work is dissi-
pated by slip between contacting granules, and, hence, very little is stored in the
granules and the fluid as strain energy; Schofield and Wroth (1968). In this section,
energy dissipation in granular media is micromechanically modeled, and is related to
the pore pressure built up in cyclic shearing of saturated undrained samples.

We consider the low-strain-rate shear loading of a granular mass that occupies
spatial region D of volume V. The region Q within D is occupied by the granules,
whereas D - Q 1s occupied by water (the specimen is saturated). The rate of external
work per unit volume is expressed in terms of the boundary tractions t, and the boun-

dary velocity field a, by
<e(t) > =+ djﬂ T V1) - dx, 1) dS(x). (4.1)
14
The tractions t relate to the exterior unit normal v on 9D by

uUx, v, 1)=0(x,1) « v(x,1), 4.2)
where o is some stress field in equilibrium with the applied tractions; Hill (1967).

Using (4.2) in (4.1), we have

<Wg() > = — J[ (O(x, 1) + V(x, 1)) + B(x, 1) dS(x) . (4.3)
14 D

To apply the Gauss theorem, we note that for granular materials, slip at contacting
granules renders the velocity field discontinuos there. Therefore, the Gauss theorem

cannot be directly applied to (4.3). The velocity jumps at contacting granules must be
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included. Suppose that there are N slip surfaces in D at contacting granules at time t.
Let s® be the area on which the o’th slip occurs. Then, the velocity field is discontinu-

N
ous on ¥, s® where velocity jumps { @ 1 take place; here we define the jump by,
ox]

[u(E.0)]= x{im; w(x*, 1) -lim w(x"1). 4.4)

r—§

N
The velocity field is therefore differentiable everywhere except on ¥, s Now, we
a=1
N
consider a surface S shown in Figure 25, which included the slip surface ¥, s®in D at
a=]

N M
time t, i.e., we let ¥ s®c S, and which divides region D into M subregions ¥ DP=D.
o=} p=1

We apply the Gauss theorem to each subregion to armrive at

Mx

VE[rias=g (Vo) vV, @5
aD

1 B=1 pb
where aDP denotes the boundary of subregion DP. Using the equilibrium equation with

¥

no body and inertia forces, we have

V ] c = 0. (4'6)
The symmetry of the stress tensor gives

c=0". @.7
Then (4.5) yields

1 ¥ . 1 ¥

Vﬁgab[pt.u(.'s:-‘;”globc £ dv (4.8)
where

E=2 (Vi+(Vi)T) (4.9)

is the strain-rate tensor.

We consider the left-hand side of (4.8), and note that

M
Y oDP(x,v,t)=aD(x,v, 1)+ S*(x, v, 1 )+5(x,V, 1), (4.10)
B=l
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where S* and §™ are opposite faces of the same surface §, i.e.,
SY(x,v,1)= §(x,-v,1). (4.11)
Using (4.10), the left-hand side of (4.8) becomes

T.udS= —( tT.udS+|tT.udS+|T.udS) 4.12)
Vﬁ%apﬂ u J} ] ,{-[ . 5[

Since the surface tractions t satisfy
Wx,v,t)=—-%x,-V, 1), 4.13)

N
the second and the third terms in (4.12) cancel out for any x e (S - ¥, s*), where the
a=1

velocity field is continuous. Equation (4.12) then becomes

M
-‘175'] =-%,-(£1:.nds zj:.[nw) (4.14)
1 3P
and (4.8) reduces to
1 . 1 . N .
-— T - s = — cgdvV . ]dS . 4.15
VaJ; i V({ce +a§;['1: [4]dS) (4.15)

The first and second terms in the right-hand side of (4.15) are the strain energy and the
frictional energy terms, respectively. The strain energy in (4.15) can be decomposed

to the strain energy for granules and for water, leading to

-‘l—;ajt.ﬁds=-€;(£c:édV+ j' c: edV+ZIt [w]dS), (4.16)
D

o=l e

which is the energy dissipation equation for saturated granular media.

4.2 Formulation of Frictional Energy Loss

In this section, we formulate the frictional energy term in (4.16) as a linear func-
tion of the effective pressure P. The unit contact normal to a slip plane and the unit

vector in the slip direction are denoted by mn and s, respectively. The traction t on the

N
slip surface ¥, s® in D, is decomposed as

a=]
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t(x,nt)=1(x,2)s(x,2)+1(x,t)n(x,¢), @4.17)

where 1* and 1* are the normal and shear components of the tractions, respectively.

Now, we assume that the velocity jump has only a shear component,
[@)x2)=1&)}x,1)s(x.1). (4.18)

Using (4.17) and (4.18), the frictional energy term in (4.16) becomes

N
S | t@nlilmndw. (419

=1, %xns)

N
T [ . 8x)dSE =
=1, 2 1)

<
<|=

N
Denote the effective frictional coefficient on Y s® by p (x,¢). Then the shear com-
a=1

ponent 7* is expressed in terms of the normal component t* and the effective frictional

coefficient as

?(xt)=mx1)t(x,1). 4.20)
Substitution from (4.20) into (4.19) yields

1 ¥ ]
T2 w0 i) dse

a=1 4O(xmr)

N
-1 | wmovenlilens®. @20

&=l ;%xa,0)

Since the granules carry the effective pressure through intergranular frictional contacts,

N
it is reasonable to assume that the normal tactions t* at a slipping contact in ¥ s°, are

a=]

linearly dependent on the effective pressure P,

™x, t)=¥(x,t)P(t), 4.22)
where ¥ is a scalar-valued function defined at points where slip occurs. In general, ¥
depends on the size of the granules, the packing, the loading condition, and other
relevant factors. Then (4.21) yields

1 & .

X [ om0 [ax e

621 ;0 n1)

N
='1'Z J H(x, 1) ¥(x, 1) P(1) [ 4 )(x, t) dS(x). (4.23)

4 =1 ;Ox u1)

Siice the effective pressure P(¢) is not a function of x, we obtain
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1 N -
-2 | w0 [a)x 1) dSx)

ax1 ;%xar)

N

=(+ 3 | wxo¥e0lilends®) Pe (4.24)
o=l s%xm)

E<CE()>P(1), 4.25)

where
N
<é) >=!—1, S om0 ¥ o[ lx 0 dSE) . (4.26)
o=l 4%z 1)

Since a negligibly small part of the rate of external work is stored in the granules
and water at stress levels considered in our experiments, the strain energy terms for
granules and water in (4.16) is negligibly small compared with the friction term. We,

therefore, set

<é>=-17(l[o:édV+D!°c:édV). 4.27)

Then, the energy dissipation in granular media becomes

1 . . .
— |t 0dS=<¢é>P +<é>. (4.28)
v

4.3 Cyclic Torsional Loading

The energy dissipation for a cyclic torsion test performed on a hollow cylindrical
specimen is now considered. Experiments are performed under undrained conditions.
The shear strain is cyclically applied to the isotropically consolidated specimen, as
described in Section 3. The rate of external work per unit volume under these condi-

tion is expressed ir: terms of the average stresses and strains as
—:—; J X, V, 1) « B(x,1)dS =<0,6(t) > < Yeolt) > . (4.29)
D
Equation (4.28) yields

<0(1) > <Ye(t) >=< () >PU) +<é(t) > . (4.30)
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Consider the energy per cycle. Integrating (4.30) over the n’th cycle, we have

1 LA (A

I<c,e(t)><y,9(t)>dt j<c(z)>P(x)dz+ [ <éwy>ar, 4.31)

L bat In-1

where ¢, denotes the time at which the n’th cycle is completed. Decomposing (4.31)
by pulling P outside of the integral and accounting for the resulting error by the addi-
tion of a term denoted by ¢,, we arrive at

[ <out)><tne()>di=P, [ <é@)>di+e,+ [ <é@)>ar, (4.32)

[/

fa-1 -1 a-1

where P, is the average effective pressure in the n’th cycle given by

P.= j P(e) dr. (4.33)

‘n—l tac1

If the effective pressure changes only slightly in the n’th cycle, the error ¢,, is small.
Summing (4.32) over all cycles up to the k’th cycle, we now have

k ‘l ‘I ‘l

. LA
Y [ <o) ><te)>di =3 (Py [ <é@)>dt+e,+ [ <é@)>dr). (434)

A= ba-1 =l ta-1 a1

Finally, (4.34) is written as

b

[ <ou0t)> < Yot > dt =
to

j<c(¢)>d: jp(z)d: +z € + j < é(t) >dt, (4.35)

4

=G [PW)ar, (4.36)
to

where

&

C,‘=‘ 1 I<c>d1+(ze +J<e>dr)/de1 4.37)
-1 ;

Equation (4.36) represents the energy dissipation up to the k’th cycle. C, will be
called the energy dissipation coefficient. It is regarded as representing the microstruc-

tural arrangement of the granular mass at each instant.

The coefficient C, in (4.36) can be estimated experimentally. Its variation is plot-

ted against the number of cycles in Figures 26 and 27 for loose and dense specimens,
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respectively, and against the excess pore water pressure in Figures 28 and 29. These
results show that C, is nearly constant throughout the experiment when a constant
strain amplitude is cyclically applied to the specimen. There is only a small difference
in the C;-value between the first and second loading, even though there exists a large
difference in the corresponding number of cycles. These results suggest that C, does
not depend on the strain history, but does depend on the strain amplitude. The relation
between C; and the strain amplitude for both loose and dense specimens is given in
Figure 30. It is seen that C, depends on the strain amplitude and density, but not on

the strain history.

From these results, it seems reasonable to assume that, at constant density and
strain amplitude, C, is a constant, say, C, related to the internal work per unit volume
of a given granular mass. It can be evaluated experimentally, as long as the same
strain amplitude is cyclically applied to the specimen. The C-values shown in Figure
30 are used to calculate the internal work per unit volume at the end of each cycle,
and these results are plotted in Figures 31 - 34 along with the corresponding external

work. Clearly, the data points match closely in each case.

These results show that energy dissipation in granular media for cyclic torsional
loading can be expressed in terms of the time history of the effective pressure, along

with a constant C-value which depends on the strain amplitude and density only.

4.4 Random Torsional Loading

Energy disspation for a torsional loading test in which the shear strain is applied
randomly (rather than cyclically), is studied as an application of the above results. The
experiments are performed using dense specimens. Shear strains are applied to a
specimen at randomly varying straii: amplitudes, but at a constant shear strain rate over
each quarter cycle. The relation between the shear strain and the effective pressure in

the first loading is shown in Figure 15 ar?' examined in Section 3.2. The same
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relation in the second loading is shown in Figurc 35.

Since C-values are essentially independeut of the strain history, as discussed in
Section 4.3, the energy balance for a random torsional loading gives, upon modifying

(4.36),

f 4

[ < Guet) > < Yuolt) > =i C:[Pad, (4.38)
‘o

=l 4y

where 1 is the time of the i’th zero shear strain, and C; is the i’th C-value. The value
of C; is determined as follows. First, the maximum shear strain between 1,_, and ¢, is
found. Then, the C-value corresponding to the shear strain is obtained from Figure 30
which shows the relation between the C-value and the shear strain amplitude (dashed
line).

The internal work per unit volume is calculated from the right-hand side of
(4.38), using experimental results. It is displayed in Figure 3¢ along with the external
work per unit volume. These two quantities are in excellent azgreement, which tends to

support the validity of (4.38).




Figure 25. Contour § and slips s® in the considered region D
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5. DISCUSSION

Energy dissipation in the flow of cohesionless granular mediz is considered in this
report. A theoretical formulation is proposed in Section 4 based on a simple
micromechanical model. The intemal work for cyclic torsional loading is showa to
depend on the time history of the effective pressure and an experimentally obtainable
parameter C. The: results of a series of experiments show that C depends on the strain
amplitude and density, but is essentially independent of the stress or strain history. On
the other hand, the effective pressure clearly depends on the strain history, as shown
by the large difference in the number of cycles between the firs: and second loading

required to attain the same pore water pressure. Therefore, the right-hand side of

4

(4.36) consists of a strain-history-dependent part, [P di, and a strain-history-
%

independent part, C.
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