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1 Summary

Research on an evolutionary approach to designing neural networks that learn was begun at SRI
International (SRI) in July 1989 under AFOSR sponsorship (SRI Project 7929, Contract No. F49620-

89-K0005). This report describes the research conducted during the first two years of the project.

1.1 Objectives

One of the most interesting properties of neural networks is their ability to learn appropriate behavior
by being trained on examples. Established learning algorithms, which typically work by minimizing
error through backpropagation in weight space, tend to get stuck in local optima — a tendency typical
of gradient-descent methods applied to nonconvex objective functions. Therefore, for problems of
nontrivial complexity these systems must be handcrafted to a significant degree, but the distributed

nature of neural network representations make this handcrafting difficult.

Our goal is to develop a learning and adaptation mechanisms capable of coping with complex and
dynamic problem domains. Once we obtain a machine that performs a certain task well, we want
to understand why its structure leads to good performance, and thereby help a network designer to
create even more successful designs. More specifically, the aim of this program is to design a system
that can learn to recognize signals adaptively. That is, the system should learn to respond in a
distinctive, repeatable way to those signals to which it has been exposed; should track changes to its
signal environment (including possibly the introduction of entirely new classes of signals); and should
do these things spontaneously, with no instruction. Adaptive signal recognition should be the result

of a self-reorganization of the system in the face of a changing environment.

1.2 Approach

We are investigating an evolutionary approach to learning with two levels of representa.ion: genotypic
and phenotypic. In this approach a genotype is a highly structured encoding of a class of neural
networks, which play the role of phenotypes. The genotype specifies general r -cperties of the networks,

such as initial patterns of connectivity, distributions of weights, threshol is or gains, etc. A phenotypic



network can then be further modified to respond appropriately to experienced stimuli (in particular,

to classify stimuli).

A fundamental hypothesis motivating this approach is that the principles of biological evolution
and population genetics provide the basis for such behavior. The processes of variation and selection,
operating at both levels of representaticn, are known to produce in natural populations the kind of
emergent behavior we seek to em. ate. By simulating these processes on the computer, we observe

similar kinds of behavior in artificial systems.

Genotypic variation is caused by random mutation and recombination of the network descriptions;
genotypic selection is caused by differential reproduction governed by the performance of networks as
measured by an explicit or implicit fitness function. These processes operate over a comparatively

long time scale and produce networks with comparatively general adaptations.

Our purpose is not to model biological processes explicitly, but rather to explore a genetic and
ecological metaphor of computation. We are interested in investigating this metaphor for two reasons.
First of all, adaptive behavior may lead to very general methods of dealing with difficult and ill-defined
problems in signal understanding. A system that can learn from experience without explicit training
by examples, that can exploit contextual information, and that can modify itself to adapt to possibly
radical changes in its input could be useful for difficult problems such as speaker-independent speech
recognition. In addition, the inherent parallelism of the evolutionary metaphor, with its emphasis on

populations, can lead to effective methods for exploiting the power of parallel computer systems.

We considered two general problems: adaptation to sensory stimuli, and the role genetic operations
play in the evolution of learning abilities.
1.3 Summary of Accomplishments
1.3.1 Adaptation Sensory Sensory Stimuli

For the adaptation to sensory stimuli the evolutionary algorithm exhibits effective adaptation, see
Appendix A. Differential reproduction amplifies the frequency of selected genes and leads to the

emergence of a population that is progressively more fit. In our model, free recombination (crossover)




seems to be the primary means of adaptation. Two relatively fit parents clearly have a better-than-
average chance of producing more fit offspring. Mutation, on the other hand, has only an average
chance of producing an offspring that is more fit, regardless of the parents’ fitness. However, by itself
free recombination causes a progressive loss of information: those genes that are amplified replace
others that are lost forever. This loss of diversity in the gene pool is disastrous if the ensemble of sources
changes, as demonstrated in Experiment 2 (see Appendix A). The mutation operator continuously
injects diversity into the gene pool, thereby preventing the system from becoming trapped in a low-

diversity dead end.

Our approach differs from some genetic-algorithm and neural-network approaches in a fundamental
way. We do not seek an individual network that is “most fit” overall; instead, we seek subpopulations
of networks that have specialized their responses to particular sources. The response of the system
is an aggregate, macroscopic feature of the individual responses of a large population of individual,
interacting subsystems. We view fitness as a very general concept: simply a measure of the similarity
between the input and the output. Rather than being built in to the fitness function, the evolutionary
trend toward specialization is instead an emergent property of the population as a whole, and a
consequence 1o the informational bottleneck in the encoders. Unlike the more standard optimization
methods for designing systems, this method results in subpopulations that resemble species adapted

to different ecological niches that are determined by the sources.

1.3.2 Recombination: A Genetic Operation

Our second domain of study was the evolution of the recombination as a genetic operation. The
evolution of a selectively neutral modifier of recombination is studied under different conditions of
selection on the major genes. In a finite population a simulation study is carried out in which the
phenotype is computed additively from the genotype at twenty genes. The fitness is taken to be a
function of the phenotype and we show that when this function is very jagged, low recombination
has a strong advantage. When the function is smooth and of the disruptive-selection kind, high
recombination may be favored in both finite and very large populations. In a deterministic numerical

study of disruptive selection on two loci it is shown that the evolution of recombination depends on




the initial frequencies at the selected loci, on the exact shape of selection and on the strength of the
selection. In general, when the selection is disruptive and very strong, it is possible to find conditions

under which higher recombination will be favored.

We found a delicate dependencies on the shape and strength of the disruptive selection, on the
initial average phenotype and its distribution, and on the distribution of high recombination allele,
CH, among the selected chromosomes which conspire to make generalizations very difficult. Perhaps
the only general conclusion we may draw is that when disruptive selection is strong, there will be a
set of initial chromosome frequency vectors in the population from which evolution will favor CH. On
the other hand, under the same conditions CL will usually be favored for some other set of starting
conditions. As selection becomes stronger, the latter set appears to decrease in size relative to the

former.

1.4 Future Work

In the future we would like to investigate three research areas: two processes described in the previous
section and the third described in the body of the report. First we would like to attain a better and
formal understanding of the relation between the feature maps generated by Kohonen’s network and
the generalization of the system we have been investigating. A detailed outline of the approach will
be discussed later. This work will be tightly linked to the investigation of dimensionality reduction,
where the dimensions under consideration are the geometrical organization of the individuals in the

population.

The second area of research will be on the evolution of learning capabilities. This research will
lead to a better undesrstanding of the conditions under which learning mechanism as opposed to fix
algorithm is advantagous. It will reflect also on the question of what should be the number of learning

steps before performing a genetic operation like recombination and mutation.

The third proposed direction is the investigation of the effect of coevolutionary processes on the
formation of clusters in the population and maintaining variability in a controlled way to preserve

memory of past experience in the presence of a changing environment.




The results of the research will lead to better understanding of the relationship among neural
network theory, evolutionary and population genetics, and some aspects of dynamical systems theory.
We expect also that fields such as signal processing and machine learning will greatly benefit from the

outcome of this research.




2 Appendix A

2.1 Definition of the Problem

Suppose that we have a system, for the time being regarded as a “black box,” that receives as input a
signal vector of length n, x = (29, ...zn—1). These signals could be, for example, speech waveforms.
The components of x are real numbers within some limited dynamic range. In practice, since any
measurement of a real signal will be uncertain to some degree, we can represent the signal vector with
nonnegative integers to some precision b bits. Each possible signal is a point in the n-dimensional

metric signal space.

Now suppose the system is stimulated only by a much smaller, structured ensemble of signals
generated by a few unknown, relatively low-dimensional physical processes, possibly corrupted by
noise. They are called sources. They could be, for example, a few speakers of English. There may
be considerable variation within a single source, so we should imagine a source to be represented by
a subset of the signal space: its attractor. The task of the system is to respond distinctively to each
source. From looking at a macroscopic feature of the system, we should be able to tell when it has

been presented with a source and which source it is.

In the simplified problem we restrict the components of the input vector to binary values (b= 1)
and restrict the sources to single values (point attractors). Under these assumptions, the system will
be learning a subset of the numbers {0, ...,2" —1}. The signal vector can be visualized as the corners

of an n-dimensional hypercube, and the response of the system will be to select one of these corners.

2.2 Encoder Populations

Each subsystem is an instantiation of a simple neural network called an encoder [1,11] as shown in
Figure 1. An n;-n3-n3 encoder has n, inputs that feed into n, hidden units, which in turn feed into
na output units. Each unit computes a weighted sum of the inputs and compares the result with a
threshold. If the sum exceeds the threshold, the unit is activated and outputs a one; otherwise, it

produces a zero.




hidden-unit gene output-unit gene

Figure 1: A 4-2-4 encoder.

Originally, these networks were used to attack the encoding problem [11]. Assume that n; = n3
and nj = log, n;, and that the inputs consist of a single one bit, with all the rest zeros. The position
of this bit then represents one of the first n natural numbers. The encoding problem is to learn to
encode these numbers into a pattern of logn bits, and also to learn to decode this log n bits pattern
into an output pattern, usually identical to the input pattern. We, however, are using the :>pulation
of encoders in quite a different way. Instead of finding a single network that solves the encoding
problein for all sources, we want to construct subpopulations of networks that are specialized for

encoding different sources.
In general, an encoder is a tuple

fz[ﬂ,‘VvU’w

where 8 = (0o, ..., Bn,-1) and ¥ = (Yo, ..., Yns—1) are thresholds for the hidden units and the output
units, respectively, and U = {u;;{0 < i< np,0<j<m}and V = {v;]0 < i< ny,0 < j < ng}are

weight matrices.




An encoder accepts an n;-bit input vector a, produces an n»-bit hidden vector b, and then produces

an n3-bit output vector ¢. Each unit applies a threshold function

1ifs>¢
O(s,s) =

0 otherwise

to the sum of its weighted inputs:

bi = ©(6;, E u;;a;)

O_<_j <n,

Cc; = 6(7]‘, Z tl.‘jbj) .

0<i<ny

It is essential to the genetic algorithm described below that a description of an encoder may be
decomposed into parts, called genes, in such a way that a new encoder (a child) can be cor ‘ructed
with parts from two others (the parents) [7,5]. In part, we have chosen the encoder network for this
work because it can be decomposed in a fairly natural way. The genetic structure of an encoder
is illustrated in Figure 1. Each encoder has n, hidden-unit genes and nz output-unit genes. The
hidden-unit genes are the more complex of the two types. The ith hidden-unit gene of an encoder ¢
consists of the hidden-unit threshold g;, a vector of input weights (u;;]0 < j < n,), and a vector of
hidden-unit weights (v;;]0 < j < n3). The jth output-unii genc consists simply of the output-unit

threshold v;.

The system cons.sts of a population of N encoders
E={&.0<k< Nj

with, in general, different thresholds and weights. We always have n; = n3 and typically, but not
necessarily, nz = log, n1. Every encoder in the population is presented simultaneously with the same
input vector, and tries to reconstruct the input. Success is measured by a fitness function [3,8]

fe(a) = - Z lai — el .

0<ji<n

Note tha' fitness is simply the negative of the Hamming distance between the input and the output
vectors. The idea behind the genetic algorithm described below is to increase the frequency of genes
and combinations of genes in = by selection, thereby causing the population to learn to enccde the

inputs it sees most frequently.
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2.3 A Genetic Algorithm

Genetic algorithms can be effective for exploring large design spaces [5,7]. The essential idea is to
simulate many generations of populations of individual subsystems, with each generation produced
from previous generations by selection and differential reproduction (3,4,6,10]. Each individual is
graded by a fitness function that is intended to measure its performance on one or more instances
of a problem. Those individuals that are most fit are selected and then a set of new subsystems
is created by applying genetic operators to the descriptions of the selected individuals. Commonly
used genetic operators are called crossover and mutation, modeled after similar processes that drive
biological evolution [2,5,7]. Although the concepts behind genetic algorithms are very general, there
are inevitably a wide variety of parameters, reproduction schemes, representations, and so on that
could be used. Part of the aim of this preliminary work is to understand the consequences of and

interactions among these choices.

Our genetic algorithm consists of an initialization,

0

[

followed by an iteration of the generation operator, G:
Z—G(Ea"), t=0,1,...

In the initialization step, a population of at least N = 4096 encoders with n inputs and m hidden
units is created. All thresholds and weights are chosen from a uniform random distribution over the
interval [-1, 1]. Initially, all of the members of Z are marked as alive and are assigned an age chosen
from a random distribution of integers in the range [0,...,agemasz — 1]. Only those encoders marked
as alive, denoted by Z,, are active and available for input, selection, and reproduction. All encoders
that are not alive are treated as available space for the next generation. The age of £ is an integer

indicating the number of generations for which £ has been continuously alive.

1We use a Connection Machine with 4096 processors for our simulations. N can be larger than 4096, but must be a

power of 2.
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The generation function G is defined as the following sequence of steps:

Q  «— select(f,=,a)
Q° — reproduce(f)
Z  «— insert(Q*,E
Z  «— age(D)
Z — kZ)

These steps can be performed in several ways, but each step has the basic characteristics outlined

below, in Section 2.4.

Selection:  «— select(f, =, a)

An input bit vector, a, is chosen and presented to the system. The input can be selected in a variety
of ways. The simplest is to select the vector from a set of sources according to some prior probability
distribution. Input vectors can be degraded with noise by inverting bits with some probability. Inputs
can also be chosen randomly from the set of 2" possible inputs with some specified frequency. All
living encoders are ranked by fitness and a subset {2 of the most fit is selected. The size of Q could be
determined dynamically by a threshold on fitness. Instead, in this preliminary investigation, we set

the size of ? as a fixed proportion of the size of Z (usually 1/16).

Reproduction: Q* — reproduce()

Every member of § is paired at random with another member of Q (possibly itself), which is called its
mate. The pairs are combined to produce a fixed number of children. The combination is performed
by applying two genetic operators, crossover and mutation. In the crossover operation, every child’s
gene is selected from one or the other parent with probability 1/2, a process called free recombination
(6,9]. In the mutation operation, every gene constituent, whether a weight or a threshold, is replaced
by a random value with some probability of mutation y, which is usually quite low.

Insertion: = ~ insert(Q*,Z)

A random number k € {0,..., N — 1} is generated for every child in Q*. If £ is not alive, the child is
inserted into = at that location, is marked as alive, and is assigned an age of zero. If more than one

child tries to occupy the same location, one child is chosen at random.
Aging: = — age(Z)

12




The ages of all living encoders are increased by 1.
Death: Z « kill(Z)
Every encoder whose age is greater than agemq. is marked as not alive. Its space in = then becomes

available for the children in the next generation.

2.4 Results

When interpreting the performance of the system, we consider only those encoders that can reconstruct

their outputs perfectly. These are said to respond to the input; that is, ri(a) = 1, where

ri(a) = max(0,1 + fi(a)) .
We want many networks to respond to the sources, few or none to respond to nonsource signals, and
different subpopulations to respond to each different source.

Two measures of the effectiveness of the system depend on computing the probability distribution
P(a|r), which is the probability that the signal is a given that a randomly chosen encoder is responding.
This distribution is computed assuming no prior knowledge of the frequency of occurrence of the source.

Therefore, using a uniform (maximum entropy) distribution of priors
1
P(a) = 5
and writing the probability of an encoder responding to a as

P(rln) = 272)

and the probability of an encoder responding to any signal as

P(r) = x 2k Tt(X) %;:"(x) :

we use Bayes’s Rule to determine the desired distribution:

P(alr) = Prla)P(a) “}'f‘()r’)’ (@)

or
_ NTurila)
Plal == 5

13




Ideally, this distribution should be identical to the prior probability P(a) after many generations.

We can compute the entropy of P(a|r)

§ =~ 3 P(xlr)log, P(xlr)
X

to summarize the degree of organization of the system in terms of the uncertainty associated with
its response. We can also compute the correlation between P(a|r) and some prior model distribution
Pyg(a) from which the sources were chosen:

o Zx(Pxir) - PEIN(Pu(x) - Pu())
T x(P(xlr) - PxIN)?\/ T (Pat (x) — Par(x))?

The first three experiments described below use entropy and correlation to examine the evolution
of the system under different conditions. Because the time required to compute P(a|r) grows exponen-
tially with the length of the input vector, n, these experiments were done only on small 4-2-4 encoders.
The fourth experiment examines the behavior of the system when n is larger and, in particular, when
the number of possible inputs greatly exceed the size of the population. Finally, the fifth experiment

examines whether the population becomes specialized to the sources.

2.4.1 Experiment 1: Typical Behavior (no mutation)

The first experiment examines the typical behavior of a population of 16K 4-2-4 encoders with no
mutation (4 = 0). The inputs were chosen at random with equal frequency from a set of four sources.
Figure 2 shows the entropy of P(a|r) over 1000 generations when the maximum number of children

n. is 2 and 4 ((a) and (b), respectively). Also shown is the size of the population that is living.

In both cases the entropy eventually drops to the ideal value of log,4 = 2, which is the entropy
of the model distribution. The correlation with the model distribution (not shown) is very nearly 1
after only about 20 generation. The fraction of the population that is living fluctuates at first, but

eventually approaches some limit, which is greater for the n. = 4 case.

14
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Figure 2: Typical behavior (no mutation)
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Figure 3. Changing environment
2.4.2 Experiment 2: Changing Environment

The previous simple experiment illustrated that adaptation can occur without mutation, relying only
on the crossover operation. This experiment shows that mutation is essential in a more challenging
problem. Figure 3 shows the entropy and the correlation measures when the system is successively
stimulated with two different sets of four signals, L; and L. Two cases are shown: u = 0 and

u = 0.01. The interesting feature of this experiment is that in the first case, g = 0, the system

15




“collapses” into an irreversible condition of total insensitivity on the third presentation of the set
L,. The entropy drops to zero, indicating that the system can respond to no signals (or possibly
to only one), and the correlation with the model distribution drops effectively to zero. Apparently,
the successive presentations and epochs of selection have eliminated variation in =. Selection for L;
eliminates genes effective for Ly, selection for L, eliminates genes effective for L;, and so on, until by

the third presentation of L;, Z has been so depleted that it cannot adapt.

In the case of u = 0.01 this does not happen. Even this low rate of mutation is sufficient to
maintain adequate variation in E. The crossover operation is effective for making large jumps though

the space of genotypes, while mutation is effective as a continual source of variation.

2.4.3 Experiment 3: Effects of Noise

Experiment 3 examines the effects of noise in the input. The population size is 4K, the encoders are
4-2-4, four different soutrces are used with equal probability, 4 = 0.01, n. = 4, and agemar = 30.
Each encoder is presented with an input vector, selected from the four sources, but each vector has
a probability P, of having (at least) one bit changed at random. All encoders receive input from
the same source, but the inputs are corrupted by noise independently, so that any two encoders may
see different signals. Figure 4 shows four cases: P, = 0.1,0.2,0.25,0.4. Entropy is shown above and
correlation below. The shaded portions of the correlation graphs indicate when the system is working,
in the sense that the four signals of highest probability are identical to the sources. The system

performs well up to P, = 0.2 but degrades quickly for higher noise levels.

2.4.4 Experiment 4: Large n

To test the system on a larger problem, and in particular on a problem in which the number of
possible signals greatly exceeds the size of =, we performed a simulation with 16-4-16 encoders and
eight sources. As in the previous simulation the population size is 4K, g = 0.01, n, = 4, and
agemar = 30. Because the number of possible inputs is 2!¢ = 64K it is not practical to compute the
complete distribution P(a|r), especially not for every generation. Instead, we let the system run for

4,000 generations and then counted the number of encoders that responded averaged over all eight

16
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Figure 4: Effects of noise

sources, which was 488.5, and the average number of encoders that responded averaged over 1000

randomly chosen signals, which was 0.13.

2.4.5 Experiment 5: Specialization

The last experiment examines whether the population divides into disjoint subpopulations special-
ized for the sources. Suppose we have s sources with R; being the subpopulation of encoders that
respond to source i. The following equation gives a normalized measure of the overlap between two
subpopulations:

= —-——' 0<ij<s.

Ideally, O;; should be one if i = j and zero otherwize for complete specialization. Figure 5 shows
matrices of overlap measures for four cases. When we adapt 4-2-4 encoders to only two sources, shown
in Figure 5 (a), no specialization occurs at all: nearly every encoder that responds to one source also
responds to the other. When we adapt the samne system to four sources (b) or seven sources (c), there

is some specialization, with relatively more specialization occurring when there are more sources.
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7 sources overlap matrix (for 4-2-4 encoders)

s
s2
3
$4
S5
$6

2 sources overlap matrix (for 4-2-4 encoders)

§2

S1

(a)

S1 $2 $3 sS4

S1 {10 099 099 00
§2 | 099 1.0 099 0.0
§3 1099 099 10 0.0

S4 100 00 o0 1.0
(b)

4 sources overiap matrix (for 4-2-4 encoders)

10 sources overiap matrix (for 16-2-16 encoders)

S S2 S5 S4 S5 $6 §7 SI S2 S3 S4 S5 S6 S7 S8 S9 SI0
10 022 0.62 053 0.0 0.0 0.0 s1 (1.0 00 00 00 00 00 00 00 00 00
022 1.0 043 033 00 00 00 s2 {00 10 00 00 00 60 00 00 00 00
062 043 1.0 065 00 00 0.0 $3 00 00 10 00 00 00 00 00 00 00
0.53 0.33 0.69 1.0 00 00 00 S4 {00 00 00 1.0 00 00 00 00 00[0s66]
00 00 00 00 10 099 093 55|00 00 00 00 10 00 00 00 00 00
00 00 00 00 099 10 099  S6 |00 00 09 00 00 1.0 00 00 00 00
00 00 00 00 099 09 1.0 s7 [00 00 00 00 00 00 10 00 00 00
(© ss [00 00 00 00 00 00 00 10 00 00

$9 [0.0 00 00 00 00 00 00 00 10 00

s10[00 00 00 [066]00 00 00 00 00 10

(d)

Figure 5: Specialization
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Finally, when we adapt a system of 16-2-16 encoders to ten sources, Figure 5 (d), the specialization

is nearly perfect, with only two subpopulations having a significant degree of overlap.

2.5 Encoder Populations: Conclusions

For the encoding problem, the evolutionary algorithm exhibits effective adaptation. Differential re-
production amplifies the frequency of selected genes and leads to the emergence of a population that is
progressively more fit. In our model, free recombination (crossover) seems to be the primary means of
adaptation. Two relatively fit parents clearly have a better-than-average chance of producing more fit
offspring. Mutation, on the other hand, has only an average chance of producing an offspring that is
more fit, regardless of the parents’ fitness. However, by itself free recombination causes a progressive
loss of information: those genes that are amplified replace others that are lost forever. This loss of
diversity in the gene pool is disastrous if the ensemble of sources changes, as demonstrated in Exper-
iment 2. The mutation operator continuously injects diversity into the gene pool, thereby preventing

the system from becoming trapped in a low-diversity dead end.

Our approach differs from some genetic-algorithm and neural-network approaches in a fundamental
way. We do not seek an individual encoder that is “most fit” overall; instead, we seek subpopulations
of networks that have specialized their responses to particular sources. The response of the system
is an aggregate, macroscopic feature of the individual responses of a large population of individual,
interacting subsystems. We view fitness as a very general concept: simply a measure of the similarity
between the input and the output. Rather than being built in to the fitness function, the evolutionary
trend toward specialization is instead an emergent property of the population as a whole, and a
consequence to the informational bottleneck in the encoders. Unlike the more standard optimization
methods for designing systems, this method results in subpopulations that resemble species adapted

to different ecological niches that are determined by the sources.

We would like to simulate populations with more diverse features, such as variable sizes, repro-
duction rates, age limits, and mutation rates. Currently, these properties are global to all encoders,
but they could be variable, inherited properties, represented as “modifier genes” attached to the basic

encoder genotype. We speculate that this process will lead to more interesting adaptation because it
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will create more niches for adaptation to fill. For example, one can imagine relatively large, scarce,
long-lived encoders specializing on complex sources that appear infrequently or change slowly or rel-
atively small, numerous, short-lived, and perhaps highly mutable encoders specializing on common,

simple sources.

We are changing the input representation of the more general case of b-bit samples so that we
can investigate applications to real, physical sources. Whether the approach can be extended to more
complex sources than point attractors is an open question. To do so, the basic encoder representation
may have to be extended to a more elaborate, dynamic network. Instead of an encoder, we may need
a generator whose internal state allows it to recognize and mimic (i.e., predict) a sours with a low

number of dimensions.

Variability is one of the important driving forces that causes a population to evolve. One way of
maintaining variability in population is by mutation, but mutation is a random process that causes
a reduction in the population performance and may lead, together with drift, to an unfit population.
Are there more sophisticated mechanisms by which nature chooses to operate? Is coevolution a process
that can be artificially reproduced and generate populations that will be able to adapt to a changing
environment while memorizing the important features of the history? Our experiments indicate that
such a mechanism and behavior can be mimicked and rather interesting dynamical behavior can be
observed. The question that can be asked here is the relation of such systems to dissipative dynamical
systems, where the environment acts as an energy source and the parasites (“viruses”) act as the

dissipative part of the system.

2.6 Coevolution

Thus far in our research we have dealt with individual populations in isolation having no interaction
with other populations. However, in the natural world populations do not exist in isolation. The
interactions (between populations) are intrinsically interesting because they produce perhaps the
most intricate and fascinating patterns in biology. In this section we will introduce the notion and
implication of the evolution of population of processes in the presence of “parasites.” A parasite

can be considered a low-level process which depends on its host for survival and reproduction. The
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host provides the environment for the parasite, and as long as the parasite can exploit the host, it
can survive while causing harm to its host (a synergetic behavior can also be included, but for the
arguments below I will not consider that option). Consider the following interaction between a host
and its environment and a parasite and its environment, i.e. the host itself. The host is selected such
that its fitness is maximized. The parasite reproduces, and is therefore considered successful, if it can
exploit its host, say, by recognizing its genetic makeup. Once recognition is achieved, the host is no
longer operational and the parasite spreads its offspring, copies of itself, to neighboring hosts. In the
case where the neighboring hosts have similar genetic makeup to that of the original host, in the next
generation they will be non-functional and will no longer produce offspring. The hosts that survive
are those that have enough variability in their genetic makeup to avoid the parasite. Since the host is
subjected to its environment and the process of selection causes the elimination of the processes that
responds poorly to the environment, the processes that survive are the processes that are successful
in responding to the environment and simultanously avoiding the parasite. Such a behavior could be
achieved if the variation in the host is such that it occurs in places that are not critical for the selection
process that occur at the phenotypic level. For example, consider a process which is the conversion of
a binary bit string to its integer representation. The parasite, a binary bit string of the same length,
looks only at the binary bit string and measures its Hamming distance to it regardless of its integer
representation. In case the selection is based on the highest integer representation for the host, the
variability that will be maintained in the host that will have the minimal effect on its phenotypic
fitness and still maintain high distance from the parasite will be at the least significant bits. Such a
behavior of controlled variability is better than random mutation since its effect on the phenotypic

level is minimal while random mutation has no bias to maintain high fitness at the phenotypic level.

We have shown (in preparation) that, in the presence of changing environment, the coevolved
population in the presence of a parasite can evolve to fit the new environment while maintaining a

memory about the past environment, longer than when variation is maintained by random mutation.
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3 Appendix B

3.1 Recombination Dynamics

In this section we will concentrate on a study we did on the conditions under which recombination in

a genetic systems is favored. This study includes analytical and numerical results.

The evolution of a selectively neutral modifier of recombination is studied under different conditions
of selection on the major genes. In a finite population a simulation study is carried out in which the
phenotype is computed additively from the genotype at 20 genes. The fitness is taken to be a function
of the phenotype, and we show that when this function is very jagged, low recombination has a strong
advantage. When the function is smooth and of the disruptive-selection kind, high recombination may
be favored in both finite and very large populations. In a deterministic numerical study of disruptive
selection on two loci it is shown that the evolution of recombination depends on the initial frequencies
at the selected loci, on the exact shape of selection, and on the strength of the selection. In general,
when the selection is disruptive and very strong, it is possible to find conditions under which higher

recombination will be favored.

Recent research on the evolution of recombination has demonstrated that a selectively neutral
genetic modifier of recombination, introduced near an equilibrium of a large randomly mating pop-
ulation that is in linkage disequilibrium, will succeed if it reduces recombination (Feldman et al.,
1980; Feldman and Liberman, 1986; Liberman and Feldman, 1986). Similar reduction results hold
for modifiers of mutation and migration (Liberman and Feldman, 1986, 1989). There are a series
of mathematical and numerical caveats to this Reduction Principle that involve departures from the
assumption of the modelling framework under which the principle was derived. Among these are the

following.

Nonrandom mating: Numerical studies (Charlesworth et al., 1979) and analytical work (Holsinger
and Feldman, 1983) have shown that, in the presence of inbreeding, a modifying allele that increases

the value of the parameter under its control may succeed.

More general forms of constant selection: The Reduction Principle was proved under con-
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stant viability selection. When selection operates at the level of fertility (Holsinger et al., 1986) or
with different viabilities for males and females (Twomey and Feldman, 1990), the Reduction Principle
may fail. When it fails, however, it usually does so only when the linkage between the selected genes
and the modifier is sufficiently loose. Similar results are true when segregation distortion occurs at

the major loci (Thomson and Feldman, 1974; Feldman and Otto, 1990).

Cyclically fluctuating selection: Charlesworth (1976) showed numerically that if selection
favors the coupling and repulsion phases in an alternating way with a period of two or more generations,

increase of recombination may occur.

In another series of studies with recombinacion modifiers two additional features were introduced:
finite population size and different starting conditions. Felsenstein and Yokoyama (1976) stud-
ied a finite population in which fitnesses were multiplicative and directional and the population was
initially fixed at each locus. Variability was introduced by mutation to favorable alleles. Under these
assumptions high recombination tended to be favored, a result which depended on the mutation rate
but not on the strength of selection. Maynard Smith (1979, 1980, 1988) took a Gaussian distribution
for the phenotypic values and studied the evolution at a recombination controlling locus at which the
high and low allele were initially equally frequent, that is, not in the neighborhood of an equilibrium as
is required for the Reduction Principle. Some of these models have been reexamined by Bergman and
Feldman (1990) with the following conclusions. When the phenotypic and selective optima coincide,
recombination is reduced. When the selective optimum is shifted, the results depend on the strength
of the selection, i.e. the variance of the Gaussian regime. Under strong selection, reduction o_zurs,
while if the selective mean is shifted far enough from the phenotypic mean, higher recombination may
evolve. There is critical dependence here on the variance of the Gaussian selection regime, even in
finite populations. In the latter case with small variance (i.e. strong selection) lower recombination
was shown to be strongly favored while the results are equivocal with weaker selection. When the
mea;. of the selection distribution is shifted far enough away from the phenotypic mean, higher re-
combination is favored in the finite population analyses, although once again there is a marked effect
of the variance. In these analyses under Gaussian selection, the sign of the linkage disequilibrium is

not diagnostic of whether high or low recombination succeeds (Bergman and Feldman, 1990).
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It should also be recalled that Maynard Smith (1979) found in a disrup.ive selection model with
different selective optima in different niches, and Levene-type population structure (Levene, 1953),

low recombiration was favored.

The array of these recent results led us to propose that it would be us:ful to phrase the question
of the evolution cf recombination in terms of the structure of the selection function in more general
terms. In the present study we first report on results for a 20-locus diploid model, with an additional
recombination-controllii.g locus, in a finite population mcdel. The ftness functions used are defined
in terms of different numbers of coefficients in a harmonic series. The results of these numerical
simulations suggested that certain forms of selection functions might be the most conducive to the
evolution of high recombiunation. These regimes, characteristic of some views of disruptive selection,

were investigated in more detail.

3.2 Finite Population Model

One hundred diploid individuals each defined at 20 loci are considered. 1here are two alleles at each
of these 20 loci which are under selection. An additional twenty-first gene controls the amount of
recombination across the whole chromosome. At each locus the alleles are labelled 0 and 1 and the
phenotype of an individual is constructed by summing the 1’s at the 20 selected loci. Thus, the

phenotypic value, v. takes on values between 0 and 49.

Since the population size is small relative to the 22° chromosome types possible at the selected
loci, we choose the initial population according to some probabilistic rule. For the results reported
here a 1 or a 0 were assigned equaily likely at each allele of each locus, and this procedure was
done independently between loci. On average this gives an initial mean phenotype of 20 and linkage

equilibrium.

From the 100 individuals two parents are chosen at random and each donates a gamete, after
recombination, to an offspring. The offspring’s phenotype is then evaluated against the fitness function
and, if it survives. it is listed as part of the next generation. This process is repeated until 100 offspring

have survived.
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The Fitness Landscape. The phenotypic value v takes values between 0 and 40. Set z = /40

and define the function
n

R(k)sinwkz
P(z) = —_ 1
@2 »
where R(k), k = 1,2,...,n are random numbers uniformly distributed on [0, 1]. We then define the
fitness of the phenotype with values v as

N {e) = minfy(a)]
) = @ - (@] @

The “jaggedness” or, as Kaufman and Levin (1990) called it, “ruggedness” of the fitness function
is controlled by varying n; the greater is n, the more jagged is F(-). We have examined in detail
n = 2,3,20,40. After n is fixed, R(k), ¥ = 1,2,...,n are chosen. The initial configuration of
the population is chosen and the simulation proceeds until one or other allele at the recombination
controlling locus is fixed. For each set R(k) the simulation is repeated 500 times each with a randomly

chosen starting population.

For each value of n, 50 different sets of {R(k)} are chosen and the results of the 50 x 500 runs
for each n constitute the data. A control experiment where the twenty-first locus had no effect on

recombination was also carried out.

Recombination is controlled by the (neutral) twenty-first locus with alleles we call CL and CH.
Genotype CL/CL produces a probability 0.01 that there is at least one break per pair of chromosomes
while for CH/CH this probability is 0.50. In the dominant case CH/CL also produces 0.50 and in
the recessive case CH/CL gives a recombination rate of 0.01. If a break occurs its position is chosen
uniformly across the 21 genes. Up to three breaks are permitted, with 1, 2, or 3 breaks being equally
likely, given that recombination occurs, according to the above probabilities. In choosing the breaks
uniformly across the loci, no single position was permitted to be chosen twice. Following recombination
but before selection, one of three kinds of mutation regimes was imposed. In the first, there was no
mutation; in the second, there was symmetric mutation, i.e. from 0 to 1 and 1 to 0 at rate 0.005 per

locus; and in the third, mutation was unidirectional, from 0 to 1 only at this rate.

The initial frequency of the high recombination allele CH was 5 percent in the population. The

simulation was pursued until either CH or CL was fixed. For each set of 500 runs with a given choice of
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R(k) the number which resulted in fixation of CH was tabulated and the distribution of these numbers
among the 50 different sets of R(k) that were chosen for each n is recorded in Table 1 (dominant case)

and Table 2 (recessive case).

3.3 Results of Finite Population Model

Tables 1 and 2 record the distributions of observed frequencies of fixation of CH according to the
jaggedness of the fitness landscape F' as specified by the number of coefficients n. If CH were com-
pletely neutral in its effect on the whole genotype, we would expect 5 percent, or 25, of the 500 runs
to fix on CH. The tables record the results in histogram form as a function of n = 2,3,20,40. The
most obvious feature of the tables is that with 20 or 40 coefficients, low recombination is favored.
If anything, this advantage is stronger in the recessive case (see also Bergman and Feldman, 1990).
On the other hand, there is some advantage to high recombination in the cases n = 2 or 3, but it is
not nearly as strong an effect as the advantage of low recombination with n = 20 or 40. The role of
mutation does not appear to be qualitatively important in the dominant case although the presence

of mutation in the recessive model does seem to enhance the effect in favor of CL.
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Table 1. High Recombination Dominant.

Distribution of fixations of the high recombination allele.

Model Number out of 500 with high-recombination allele fixed
Mutation® <10 11-15 16-20 21-25 26-30 31-35 36-40 > 41
fromQto 1

2 coefficients 0 0 4 14 12 12 5 3
3 coefficients 0 1 8 14 12 6 4 5
20 coeflicients 18 19 7 5 1 0 0 0
40 coefficients 24 16 5 4 1 0 0 0
Symmetric

mutation®*

2 coefficients 0 1 9 1 19 7 1 2
3 coefficients 0 4 6 15 14 8 1 2
20 coefficients 29 9 5 6 1 0 0 0
40 coefficients 26 12 10 0 2 0 0 0
No Mutation

2 coefficients 0 0 6 13 19 5 3 4
3 coeflicients 0 1 6 21 11 8 2 1
20 coefficients 29 10 10 1 0 0 0 0
40 coeflicients 36 9 1 4 0 0 0 0

*Mutation is at 0.005 per locus per generation.

**Mutation from 0 to 1 and 1 to 0 each at 0.005 per locus per generation.
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Table 2. High Recombination Recessive.

Distribution of fixations of the high recombination allele.

Model Number out of 500 with high-recombination allele fixed
Mutation” <10 11-15 16-20 21-25 26-30 31-35 36-40 > 41
fromOtol

2 coefficients 1 7 12 10 6 7 7 0
3 coeflicients 0 1 3 5 8 14 10 9
20 coeflicients 10 8 12 6 10 4 0 0
40 coefficients 47 0 2 1 0 0 0 0
Symmetric

mutation®”

2 coefficients 1 7 12 10 6 7 7 0
3 coefficients 13 10 5 7 3 8 2 2
20 coefficients 41 3 5 1 0 0 0 0
40 coefficients 44 2 3 1 0 0 0 0

No Mutation

2 coeflicients 1 4 11 12 9 7 3 3
3 coefficients 1 11 10 15 6 2 4 1
20 coefficients 19 23 7 1 0 0 0 0
40 coefficients 29 16 4 1 0 0 0 0

*Mutation is at 0.005 per locus per generation.
**Mutation from 0 to 1 and 1 to 0 each at 0.005 per locus per generation.

In summary the top two and bottom two lines of each block of Tables 1 and 2 appear to be

qualitiatively different. We were led to examine in some detail the characteristics of those landscapes
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that produced the highest numbers toward the right sides of Tables 1 and 2 when n = 2 or 3.

All of the cases in which high recombination was favored were characterized by high fitness values
for the lowest and highest phenotypes, low values in the intermediate range, and a single minimum
close to the center of the phenotypic range. One function of this form is the inverse Gaussian of the
form

F(v) = k- exp(v — p)*/20°. 3)

Selection functions of this form can be viewed as disruptive in that they favor the phenotypic extremes
at the expense of the intermediate values. Two versions of (3) were examined, each with “standard
deviation” ¢ = 33. In one case we set k = 2 and in the other ¥ = 1. “Mean” parameters g = 20 and
25 were used and the initial phenotypic value was ¥ = 20. Below are recorded the percentage of runs
(out of 500) in which the high recombination allele CH rose to 100 percent from an initial frequency

of 5 percent.
k=1 k=2

p=20 84%  4.4%
u=2  96%  52% (4)

The values 8.4 percent and 9.6 percent are significantly different from the b percent expected under
neutrality. Starting from phenotypic mean values # = 10 and 30 with both 4 = 20 and p = 25,
however, there was no significant departure from neutrality in 500 runs. It would appear, then,
that there is a delicate balance between the initial conditions in the population and the strength of

disruptive selection insofar as evolution at the recombination locus is concerned.

Three other models that might be interpreted as disruptive selection were investigated in the same
way. We chose F(v) = |v — p|™ with m = 1,2,4, 4 = 20 and 25 and the initial population mean
phenotype i = 20. The results corresponding to the inverse Gaussian of the previous paragraph are

below: . .
v—ul  (v-n) (v-n)

pu=2  66% 7.8% 8.2%
u=2  10% 6.6% 10.2% (5)

Apparently the stronger is the strength of the directional selection the more likely is fixation on high

recombination, but there is an interaction with the initial population configuration. This suggested
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that similar results might be found for the deterministic model of recombination modification with

two loci under selection.

3.4 Deterministic Model with Disruptive Selection

Here we use the usual two-locus selection model, with a third locus that controls recombination. The
numerical analysis follows the description given in Bergman and Feldman (1990) except in the form
of the 4 x 4 fitr..ss matrix. The modifier locus is neutral with respect to selection and, for simplicity,
no interference is assumed between recombination events in the two intervals. The phenotypic values
of the genotypes are 0, 1, 2, 3, 4, according to the number of 1's in the genotype under selection. The
initial frequencies of the high and low recombination alleles are equal to 0.5 unless mentioned otherwise,
and initially there is no linkage disequilibrium. The exact 8-chromosome systermn was iterated for 512

generations and the frequency of CH at that time was recorded.

The fitness matrices considered may be written in the form

11 10 01 00

11 wy w3 w3 wy
10 w3 wa wsy w,
01 w3 wa wy wy
00 w2 w w  w (6)

where identical entries reflect the dependence of viability on the phenotypic value. Three kinds of
“disruptive” viability matrices were considered. The first is of the form w; = li = u[/2, the second
is w; = (i ~ p)? and the third w; = k — exp[—(i - 1)2/20?). The results for the square-root case are
recorded in Tables 3 and 4 below. In Table 3, u was set at 1 and the frequency of CH recorded as a
function of the initial mean phenotypic value, ¥, in the population. In Table 4, & was set at 1.4 and

the frequency of CH recorded as a function of 4. In both tables 3, 4 CH was recessive to CL.
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Table 3: Fitness [i — u|*/2; u=1.0

p 0.38 0.60 0.80 1.0 1.2 1.4 1.6 18 1.98 2.0
frequ(CH) 0.4868 0.0180 0.2400 0.3903 0.5033 0.5080 0.5069 0.5038 0.5026 0.5032

z 0 0 0 1 1 1 1 1 1 1

v = 1.2

Frequency of allele 1

1st locus 2nd locus CH frequ
5999 .001 0.5033
.59 .01 0.5018
.55 .05 0.4955
S A 0.4881

Table 4: Fitness Curve |i — u|'/?; 5 = 1.4*

u 1.0 1.05 1.12 1.13 1.14 1.33 1.34 1.37 1.4 1.8
frequ (CH) 0.4922 0.4890 0.4850 0.4844 0.4838 0.4661 0.4646 0.4593 0.4525 0.4965
zy 1 1 1 1 1 1 1 1 1 1

*First locus frequency of allele 1 is 0.3, Second locus 0.4.

Examination of Table 3 reveals that when # is initially low the population eventually fixes on the
selected chromosome 00 while larger initial values of ¥ lead to fixation on 11 . The correspondence
betwcen this change with # and the allele favored at the recombination modifying locus is not perfect

but is quite marked. Clearly, when i is initially greater than u = 1.0 by a large enough amount CH
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is favored, otherwise CL is favored. It is not just the distance |P — | that is important here as can
be seen in Table 4, where ¥ is fixed at 1.4. When ¥ is sufficiently greater than u, CH is favored but
with 4 < 7 and ¥ — 4 small enough CL is favored. In Table 4 we see again the relationship between

fixation on the advantageous chromosome 11 and increase of CH.

In Table 5 are recorded the frequencies of CH after 512 generations when selection is parabolic.
Two values of u are illustrated and there are clear parallels between them. As i increases CH starts
out at a disadvantage, becomes advantageous and then loses its advantage. We address this non-
monotonicity in the Discussion.

Table 5. Parabolic Fitness (i — u)2.

Frequency of allele 1

1st locus 2nd locus v p=04 p=0.6

0.05 0.1 0.3 0.4978 0.4755
0.04 0.16 04 0.5004 0.4855
0.1 0.15 0.5 0.5011 0.4926
0.1 0.2 0.6 0.5016 0.4959
0.15 0.25 0.8 0.5017 0.4990
0.2 0.3 1.0 6.5015 0.5000
0.4 0.6 2.0 0.5004 0.5003
0.5 0.7 24 0.5002 0.5002
0.7 0.8 3.0 0.5001 0.5001
09 0.9 3.6 0.5000 0.5000

For the third two-locus selection scheme, the inverse Gaussian, we set
w; = k — exp[~(i — p)?/20?] )

where 1 takes the values i = 0,1,2,3,4, in the fitness matrix. With initial frequency 0.06 of allele
1 at the first selected locus, and 0.14 of allele 1 at the second selected locus, so that with linkage

equilibrium ¥ is 0.4 initially, we found that when k = 1, & = 1 the fate of CH depended on u. With

32




s = 1,2,3 the frequency of CH approached 0.4750, 0.4999, and 0.5005, respectively. Tables 6 and 7
show how the frequency achieved by CH after 512 generations, starting from 0.5, may depend on the
initial value of u, and o, respectively. It is clear that all three of 77, 4,0 may influence whether CH

eventually achieves a frequency higher than its initial value.
Table 6. Inverse Gaussian with k=1, ¢ = 0.5, & = 2.0*.

Frequency of CH is recorded.

u 25 26 27 275 3
frequ (CH)  0.4977 0.4996 0.5022 0.5037 0.5107

*Each locus begins with the frequency of allele 1 at 0.5.
Table 7. Inverse Gaussian with k=2, u=3, b = 2%,

Frequency of CH is recorded.

o frequ CH
0.5 0.5086
0.8 0.5054
0.9 0.5035
1.0 0.5019
1.05 0.5013
1.1 0.5007
1.15 0.5002
1.2 0.4997
1.25 0.4993
1.5 0.4975
20 0.4949

*Frequency of allele 1 at each locus is initially 0.5.
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Dominant and Recessive Modifiers: In the previous numerical experiments the high recom-
bination allele CH was recessive to CL. Does the recessivity of CH affect its evolution? The answer
is in the affirmative as Table 8 shows. We set 4 = 3, ¢ = 1 in the inverse Gaussian and examined
the fate of CH, after 512 generations, as a function of ». Clearly in the dominant case CL is slightly
favored while in the recessive case there may be dependence on the initial value of ¥, with CH favored
when p — & is large enough, and CL favored when u — & is small enough. In the third column of Table
8 the non-monotonicity is not an artifact; the frequency of CH after 512 generations is indeed higher
when v = 1.8 than elsewhere in the given range.

Table 8. Recessive and Dominant Cases with Inverse Gaussian.

p=30=1
k=2 k=1
v Recessive Dominant Recessive Dominant
1.6 0.5031 0.4997 0.5017 0.4999
1.8 0.5029 0.4997 0.5018 0.4999
1.98 0.5021 0.4997 0.5017 0.4999
20 0.5019 0.4997 0.5017 0.4999
22 0.4998 0.4996 0.5013 0.4999
24 0.4953 0.4993 0.5001 0.4998

*Each locus begins with frequency of allele 1 at 0.5.

A second set of comparisons between the dominant and recessive cases was based on the role of
the initial average recombination fraction in the population. If we denote the initial frequencies of
CH in the chromosomes carrying 00,01, 10, and 11 by p, ¢, r, 8, respectively, then the role of the initial
average value of the recombination fraction in the population, ¥, may be investigated as in Table 9.
In this table, where the fitnesses are inverse Gaussian, the frequencies of CH after 512 generations are
recorded. We see again that CH has lost ground to CL when the former is dominant, and gained when

it is recessive, as we observed in Table 8. In our earlier study (Bergman and Feldman, 1990) we saw
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a similar quantitative difference between the recessive and dominant cases, but did not find examples
where high recombination advanced above its initial frequency when recessive, and lost ground when

dominant. Notice also in Table 9 that this qualitative finding does not depend on .

Table 9. Dominant and Recessive Evolution as a Function of Initial Recombination

Rate*: Inverse Gaussian Case with u=3,0=1, k =2, and & = 2**,

f Recessive Dominant!
0.01 0.0100 0.0100—
0.10 0.1002 0.0997
0.20 0.2006 0.1996
0.30 0.3011 0.2996
0.40 0.4015 0.3996
0.50 0.5019 0.4997
0.60 0.6021 0.5998
0.70 0.7021 0.6998
0.80 0.8017 0.7999
0.90 0.9015 0.8999
0.99 0.9901 0.9900—~

* f = p=g¢q =r = s is the initial frequency of CH.
** Each locus begins with frequency of allele 1 at 0.5.

tThe negative sign following the number indicates that the actual frequency is less than that shown

by about 10-3.

Our final series of numerical studies involved variation in p, ¢, r, s. By choosing these to be different,
while holding the initial frequencies of 00,01, 10, 11 equal to 0.25, we establish linkage disequilibrium
between the modifier locus and the selected genes with the selected genes initially in linkage equilib-

rium. Table 10 records a sample of results of this kind with inverse Gaussian fitnes-es; u = 3,0 =1,
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k = 2, and # = 2. Again the size of the shift in the frequency of CH is smaller when it is dominant
than in the recessive case. The initial distribution of CH among the selected chromosomes is seen to
have a strong effect iu the four examples with # = (p+ ¢+ r + s)/4 = 0.55. In the first case CH
increases to well above its Initial frequency at 512 generations, but in the other three examples it
decreases sharply. The last two examples should be compared to the cases ¥ = 0.7 and 0.8 of Table 9,
where CH gains in the recessive case. In Table 10, CH loses when + = 0.75 and 0.775, presumably an
effect of the initial disequilibrium.
Table 10. The Effect of the Initial Distribution of CH:

Inverse Gaussian Selection with u =3,0 =1, k =2, v = 2**,

Linkage Disequilibria*

r p q r 5 Recessive Dominant Dy, D3 D3 Dja3
0.15 02 01 02 01 0.198 0.164 0 0 0.025 0

0.25 03 04 01 0.2 0.292 0.257 0 0.05 —0.025 0

0.25 03 02 04 01 0.307 0.275 0 0 0.05 -0.0125
0.475 06 07 02 04 0.581 0.498 0 0.0875 —-0.0375  0.00625
0.55 07 04 06 05 0.687 0.584 0 0 0.05 0.0125
0.55 04 02 09 0.7 0.409 0.521 0 -0.125 0.05 0

0.55 02 09 06 05 0.278 0.488 0 ¢ -0.075 -0.05
0.55 01 09 03 09 0.150 0.428 0 -0.025 0.175 —-0.0125
0.75 0.7 05 09 09 0.700 0.734 0 -0.075 0.025 0.0125
0.775 07 09 08 0.7 0.717 0.767 0 0.0125 -0.0125 -0.01875

*Linkage Disequilibria computed as e.g. in Feldman et al. (1974).

**Fach locus begins with frequency of ailele 1 at 0.5.
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3.5 Recombination Dynamics: Conclusions

The mapping from genotype to fitness in a diploid model with 20 genes could be extremely complicated.
In our first models with finite population size we have simplified this relationship enormously by
interposing a simple mapping from genotype to phenotype, known in quantitative genetics as additive
determination of the phenotype. By adding the number of 1’s in the genotype the domain of the fitness
function is greatly restricted. While the fitness mapping (Eq.1) used here is reasonably complicated
by the standards of population genetics, it is certainly much simpler than those used by Tanese (1989)
and Forrest and Mitchell (1991), which were defined by Walsh polynomials. Nevertheless, Tables
1 and 2 show clearly that as the fitness mapping becomes more complicated (i.e. n increases) the

likelihood that = high recombination allele succeeds drops sharply.

In these finite population models with 2 or 3 coefficients the shapes of the fitness mappings that
favored high recombination were all of the disruptive kind, that is the extreme phenotypes had the
highest and the intermediate phenotypes the lowest fitnesses. As can be seen in the results (Eq. 4)
the strength of the disruptive selection may play a critical role; with £ = 1 in (Eq. 3) the inverse
Gaussian favors the extremes more sharply than when k = 2. The results (Eq. 5) for polynomial
selection appear to reinforce the idea that the stronger the distuptive selection, the more likely is high
recombination to succeed. A caveat should be made: in these finite population studies we did not
make a detailed survey of the initial distribution of chromosomes nor of the role of the initial value of
7. On the basis of the deterministic results for 2 genes it is reasonable to conjecture that both may

play a role in the ultimate fate of a high-recombination allele.

For the deterministic two-locus model, Tables 3-6 and Table 8 amply document the role of the
initial average phenotype & and the distribution of chromosomes that produce this average. The
ultimate frequency of CH is not monotonic as a function of |7 — u|, and for the same value of b,
different initial distributions of the alleles at the first and second loci {with initial linkage equilibrium)
may lead to different outcomes for high recombination {Table 3 for example). Also of interest here
is the shape of the disruptive selection function; in the universe Gaussian case of Table 6, as y — v
increased the ultimate frequency of CH also increased, while with the paraboloid fitnesses of Table 5

there was first an increase, but for the largest values of # — p the trend reversed. The strength of the
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selection in the inverse Gaussian case is measured by o2 for fixed k. Table 7 shows that the greater

the advantage to the extremes (the smaller is o), the greater is the advantage to CH.

In our previous study of directional Gaussian selection there was a tendency for CH to change less
and more slowly when it was dominant than when recessive. On the whole, however, the diraction
of change as the same in both cases. Table 8 shows that with inverse Gaussian selection the first
observation is still valid but the second is not. It appears much more difficult for CH to advance in

the dominant case, irrespective of the initial recombination value in the population (Table 9).

Table 10 reveals a phenomenon that appears to be new. The linkage disequilibrium between the
major loci is initially zero, yet the fate of CH depends delicately on the initial recombination pattern
in the population. For example, when the average recombination rate is 0.55, CH may advance sharply
or drop sharply depending on th: exact distribution of CH and CL among the selected chromosomes.
Again when CH is dominant this effect is more muted. From Table 10 it is difficult to discern a

constant pattern for the effect of the other linkage disequilibria that might explain this i adi~g.

T' -se delicate dependencies on the shape and strength of the disruptive selection, on the initial
average phenotype and its distribution, and on the distribution of CH among the selected chromosomes
tonspire to make generalizations very difficult. Perbaps the only general conclusion we may draw is
that when disruptive selection is strorg, there will be a set of initial chromosome frequency vectors
in the population from which evolution will favor CH. On the other hand, under the same conditions

CL will usually be favored for some other set of starting conditions. As selection becomes stronger,

the latter set appears to decrease in size relative to the former.




4 Future Work

In the course of our research on the use of biologically-inspired computational pradigms for signal
processing problems, numerous questions have arisen. In this report we will describe our general
approach in this research and our plan for future work. In particular, we will point out the relationship
of our work to Kohonen’s feature-map ~<tworks and the ways in which we propose to generalize and
expand this area. The second research area is the evolution of learning and plasticity from a population
genetics view point. The third area of proposed research is an expansion of the evolution computational

paradigm to include coevolutionary processes.

4.1 Introduction

Recently, many researchers have speculated on the possible relationships between neural networks
and genetic algorithms. One reason for this interest, no doubt, is because both concepts are derived
from fundamentally biological metaphors, so it is natural to consider them in combination. More
significantly, genetic algorithms suggest new ways to construct optimal neural networks that avoid
some serious problems associated with conventional learning algorithms — in particular, the problems

of slow learning, local error minima, poor generalization, and the need for large training sets.

We shall argue that the use of genetic algorithms primarily for optimization is based on a somewhat
naive view of biological evolution and that it neglects several important features of the metaphor.
In the modern neo-Darwinian view, evolution (in the biological sphere) does not produce optimal
individual organisms in any well-defined sense. Instead, it appears to produce well-adapted ecosystems,
with subpopulations of genetically related individuals inhabiting their own niches, but interacting in
complex and often unpredictable ways. Biological evolution is characterized by increasing diversity
— as relatively small, undiversified parent populations radiate into newly uncovered niches, the gene
pool splits into a more diverse collection of species. This picture contrasts quite starkly with the
“evolution as optimization” point of view, in which the ideal end result is a population of identical,

optimal clones.

Replacing “optimization” with “adaptation” actually suggests a much richer and potentially more
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effective role for genetic algorithms. Instead of an optimal neural network to solve a relatively sim-
ple static problem, a truly adaptive system may consist of a diversified collection of networks that

specialize in subproblems that are part of a more complex, dynamic, and possibly ill-defined problem.

In the following section we briefly present some relevant background material, including a more
precise definition of adaptation. Next we discuss our previous work on this problem, and finally a

plan for further research.

4.2 Background

In our previous work we have used the genetic algorithm approach to create the computational
paradigm for signal processing problems. The following steps are used ir. our Genetic Algorithm

approarch:

A problem is selected and a class of computational mechanisms thought to be effective for solving

the problem is identified.

A coding scheme is devised for specifying members of the class of mechanisms.

A population of encodings and associated mechanisms is constructed.

The mechanisms are tested on instances of the problem and are graded according to their

performance. Those with higher grades are considered to be more “fit.”

e A new population is constructed by selecting the most fit mechanisms, producing a new set
of mechanisms by combining the encodings of the more fit one, and inserting them into the

population.

This process is repeated until the population becomes dominated by (one hopes) optimally fit

mechanisms. The most fit is taken to be the best solution to the problem.

The genetic-algorithm approach is obviously inspired by the phenomenon of biological evolution.

We argue that the simple approach outlined above is deficient in several respects.

1. Biological evolution does not optimize; it adapts.
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2. There is no objective “fitness function.”

3. Significant problems may not be solvable by a single mechanism. Instead, the solution may re-
quire a collection of individuals, or perhaps subpopulations of individuals, specialized to different

subproblems.

4. The implication that the problem to be solved is static often is not realistic, and certainly does
not follow the example of biological environments. Instead, we argue, the flexibility of biological
evolution in the face of changing environments suggests that genetic algorithms may best suited

to problems that change over time.

5. The role of development may be crucial. It is clear that in the course of transforming from the
organism’s genotypic description to its phenotype, an organism goes through numerous layers
of developmental stages by which each layer creates an ever more complex entity. While in the
experiments we have conducted this transformation is shallow, yet an interesting behavior can
be observed; a more logically deep transformation will create better framework for hierarchically

organized systems.

4.3 Open Questions

During the last year several important questions about the potential of our approach and relationship

of our ideas to different areas of neural network and dynamical system science have surfaced.

o When the evolutionary system is constrained to work within a framework that allows only local
reproduction (vs. global reproduction), there is a question as to whether one can relate the
“map-like” activity of the system to the feature maps generated by Kohonen’s self organization
network. The answer to this question is “yes,” at least with regard to islands of activity, namely,
sources that are considered to come from the same generator. Those required to be recognized by
the same “individuals” are clustered together. However nearby signals (in signal space) coming

from different generators may be scparated spatially.

o One observed characteristic of our system is the emergence of species, networks that are better at

recognizing stimuli that are part of one environment and not the other. This emergent behavior

41




is achieved by the limited capability each network is endowed with. 1t is also a consequence of
the fact that the individuals are temporally isolated during the reproduction process; namely, at
each time step only the top-N, the individuals that are best fit at recognizing a signal are mated.
This process is one way to achieve reproductive isolation, a required condition for speciation.

The questions we would like to address are:

1. What are the minimal conditions for the process of speciation to occur?

2. What are the advantages of having a system with several species as opposed to a system

with one “optimized” individual?

3. Is it possible that learning capabilities will evolve and under what conditions. We will
study this question from a population genetic point of view. The question to ask is: Under
what environmental conditions learning capability evolve, and what complexity of learning
mechanism does an individual need in order to cope with a known environmental complex-
ity?

4. Is it possible to use an evolutionary-inspired system to capture the behavior of a dynamical
system by reflecting in its behavior the nature of the dynamical system, e.g. can one
regenerate attractors that are associated with the “true” attractors used in training the

system?

In what follows, we will address some of the issues in more detail and describe some of the prelim-

inary results obtained by simulations.

4.4 Relation to Feature-Map Networks

Our evolutionary approach is related to self-organizing feature maps by neural networks (Kohonen
83). Such maps are of interest because of their reduced data dimensionality capability, since economic
representation of data with all their interrelationships is a crucial problem in information sciences.
The ability to reduce dimensionality by forming a reduced representation of the most relevant facts,
without loss of knowledge about their interrelationships, is a desirable characteristic one would like

to achieve. When the reduction in dimensionality takes place, certain geometric relationships should
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be maintained, i.e. nearby objects in the higher-dimensional space (can be an n-dimensional feature
vector) should be mapped into nearby objects in the reduced space. In Kohonen’s network, an n-
dimensional feature vector is mapped into geographicaly close units (organized on a two-dimensional
grid).

To get the self-organization of the feature maps, two processes of lateral feedback should take place:
the first is local excitation, where each unit which is activated excites units in its neighborhood. The
second process is the inhibition of all units that are outside the excitation neighborhood. Once
the system relaxes, the most activated unit(s) and its neighbors adjust their weights to maximize
their response for the current feature vector. The interaction between the two processes creates a
geometrically organized feature map of the knowledge in a particular category. That is to say, objects

belonging to the same or similar categories will be represented by geometrically close units on the

reduced-dimensionality feature map.

As we demonstrated in our previous work (in preparation), our system of a population of networks
can exhibit similar behavior. The link between the feature-map network and the competing network
system can be viewed as follows. The two lateral feedback processes, local excitation and global

inhibition, can be associated with local mating and global selection respectively.

Local mating causes nearby processes (networks) to respond to closely related input vectors (or
feature vector in general). This association comes about because the mating process mixes the prop-
erties of the two networks that mate. Such a process, after some generations, creates a system where
geographically close networks share common properties, e.g., a similar set of weights, such that they

response strongly to similar stimuli.

The process of differential reproduction due to selection is equivalent to the process of global
inhibition: namely, only few members of the population are allowed to reproduce and enhance their

response to the current input.

To summarize, one can view the system of competing networks as an extention of Kohonen’s self-
organized feature map network, where each unit is replaced by a general process that may itself be
a neural network. Each network is capable of solving part of the problem, and the system as a unit

solves the larger problem. In case the problem is within the complexity that a single network can
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solve, it may be the case that each individual of the population will solve the entire problem.

4.5 Evolution of Learning: A Population Genetics Approach

The evolution of learning capabilities in organisms is one of the more perplexing issues in evolutionary
biology. Several studies on the evolution of learning proposed the idea of learning as a mechanism to
adapt to changes in the environment during somatic time. These studies are based on the “absolute
fixity argument”; that is to say, in the presence of an absolutely fixed environment, an individual

should develop a genetically fixed pattern of behavior (assuming some cost associated with learning).

On the other hand, in an absolutely unpredictable environment, where the past and present state
of the environment bears no information about the future, then there is nothing to learn, and assuming

some cost to learning, there is no driving force for learning capabilities to evolve.

Stephens (personal communication) proposed a different approach. Stephens argues that the
pattern of predictability in relation to an individual’s life history determines the evolution of learning.
His study concludes that the value of learning is for those things that change between-generations and

are regular within-generations.

An alternative approach is to view learning as the ability of an individual to construct a correct
model of its environment and by proper use of the model to be able to predict future states of its

environment.

Consider a changing environment where the state, s € {0;1}, is a stationary first-order Markov
process, S. The state of the environment at ¢ + 1 depends only on the state at time ¢, that is to say,

that the conditional probability P(s'*! | {s',s*"!,...,5°}) depends only on s and is independent of t.
Each environmental state has a viability value, E,«, associated with it. In the current model the
viabilities are: Eq = 0 for s = 0 and E; = 1 for ' = 1.

Consider a diallelic two-loci diploid model where the first locus (considered the main gene) controls
the capability of an individual to learn and the second gene is a modifier gene which controls the
probability of expressing the learning capability. If learning is expressed, an individual pays a cost

O<e< .
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Individuals, either lacking or not expressing their learning capability, always sample from the

environment regardless of its previous state.

Individuals that expresses their learning capabilities are endowed with a variable size “lookup”
table containing the block probabilities of sampling from the environment. If an individual chooses to
sample from the environment, its viability is increased proportional to the viability associated with
the environment at the sampling time. If an individual chooses not to sample, its viability is increased

by some factor 0 < § < 1.

Learning is viewed as a two-step process; first, update a lookup-table based of observations, namely,
generate an estimate, p(si*! | s%), of the true environmental conditional probabilities, P(s{*! | ).

Second, once an individual is endowed with the model, it makes use of it for N time steps.
Several questions can be asked:

1. What environmental conditions, namely, what range of values P(s!*! | s}) can take, will lead

to the invasion of the learning individuals?

2. Will an individuals evolve to have a larger lookup-table for environments modeled as K’s

ordered Markov process?

3. In case the environment is not a Markov process, is it possible to evolve a more efficient learning

mechanism other than a lookup-table?

4. What is the number of training steps each individual should go through to get optimal resalts

for a given environment?

4.6 Proposed Work

The future work is a continuation and elaboration of our existing ongoing project on an evolutionary

approach to learning.

In the future we would like to investigate three research areas: two processes described in the
previous section and the third described ii the body of the report. First we would like to attain a better
and formal understanding of the relation between the feature maps generated by Kohonen’s network

and the generalization of the system we have been investigating. A detailed outline of the approach will
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be discussed later. This work will be tightly linked to the investigation of dimensionality reduction,
where the dimensions under consideration are the geometrical organization of the individuals in the

population.

The second area of rcsearch will be on the evolution of learning capabilities. This research will
lead to a better undesrstanding of the conditions under which learning mechanisn. as opposed to fix
algorithm is advantagous. It will reflect also on the question of what should be the number of learning

steps before performing a genetic operation like recombination and mutation.

The third proposed direction is the investigation of the effect of coevolutionary processes on the
formation of clusters in the population and maintaining variability in a controlled way to preserve

memory of past experience in the presence of a changing environment.

The results of the research will lead to better understanding of the relationship among neural
network theory, evolutionary and population genetics, and some aspects of dynamical systems theory.
We expect also that fields such as signal processing and machine learning will greatly benefit from the

outcome of this research.
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5 Publications and Presentations

A paper by Stephen T. Barnard and Aviv Bergman has been published in the Proceedings of Parallel
Problem Solving from Nature, a workshop held in Germany in October 1990. Aviv Bergman also
participated in the international workshop on Evolution and Complex Systems, in Torino, Italy, in
July 1990. This workshop included fruitful discussion among several of the world’s top researchers in

complex systems and evolution.

A second paper by Aviv Bergman and Marcus W. Feldman will be published in Physica D, Re-

combination Dynamics and the Fitness Landscape.
A third paper by Aviv Bergman, Means of Variability, is in preperation.

All three paperes have been presented by Aviv Bergman at the Santa Fe Institute during the

summer of 1991 as part of their Adaptive Computation program.
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