
4a

AD-A246 956

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
S ELECTE

I
S 1992 THESIS

ENHANCEMENT OF IMAGE PROCESSING
CAPABILITIES FOR DIFFERENT ENVIRONMENTS

by

Erkan Aykaq

June, 1991

Thesis Advisor: Charles W. Therrien

Approved for public release; distribution is unlimited.

92-05304
n, , . 44)2 4I

UNCLASS1FIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION ' '-HORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE disrbto is unlimiteddistribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

t. NAME OF PERFORMING ORGdANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable) Naval Postgraduate School
Naval Postgraduate School EC

6. ADDRESS (City, S.te, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

So. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO ACCESSION NO.

11, TITLE (Include Security Cleiflostion)

ENHANCEMENT OF IMAGE PROCESSING CAPABILITIES FOR DIFFERENT ENVIRONMENTS

12. PERSONAL AUTHOR(S) Erkan Aykaq
ERORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Mster FROM TO 1991,June 49
16. SUPPLEMENRY NOThe views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Digital Image Processing

19. ABSTRACT (Continue on reverse if neoessaty and identify by block number)

This thesis provides a set of tools for the enhancement of digital image processing capabilities on MS-DOS, UNIX,
and VM operating systems with computer programming languages APL, C, FORTRAN, and MATLAB. The tools
consist of input/output functions for images, programs for displaying images on SUN SPARCstations, and IBM-PC
compatibles, and finally "toolkit" for MATLAB to implement the basic digital image processing functions.

20 DISTRiBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22cg f EJE SYMBOL

22I NMORPSBCharles W. Therren (408) 646-3347
DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
1

Approved for public release; distribution is unlimited

Enhancement of Image Processing Capabilities for Different Environments

b>y

Erkan Aykaq
Lieutenant Janior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING

from the

NAVAL POSTCIADUAT E SCHOOL

June 1991

Author:

rukan Ayka

Approved by: 24 4/
Charles \V. Therrien, Thesis Advisor

cf ' B. . url, Second Reader

,Michiael .\ .og, .h iihr

Electrical and (on(Ilr Enl1ginieering

ii

* ABSTRACT

This thesis provides a set of tools for the enhancement of digital image pro-

cessing capabilities on MIS-DOS, UNIX, and] VM operating systems with computer

programming languages APL, C, FORTRAN, and MATLAB. The tools consist of

input/output functions for images, programs for displaying images on SUN SPARC-

stations and IBM-PC com-patililes and finally a -toolkit" for MATLAB to implement

the basic digital image processing ftinctions.,

OTIC

copy
INSPECTECD

6

Accesion For

NTIS CRAMI
011C TA13
UnIaoliounIced

...................................

.~
Avadlabiity Codes

Dit Avaii axlI or

Dit spciaI

TABLE OF CONTENTS

L INTRODUCTION 1

A. AN OVERVIEW AND PURPOSE 1

B. DATA I/O 3

C. DISPLAY ROUTINES 4

D. MATLAB TOOLKIT 4

II. DATA MANAGEMENT 5

A. DATA FILE STRUCTURES . , . .,,, , , 5

B., I/O ROUTINES FOR MATL,:\ . ., 5

1. PC-MATLA3 ROUT INES . . ,., 5

2. 386 MATLAB Routines 8

3. PRO-MATLAB Routines....... 10

C I/O-ROUTINES FOR API 10

i. -. /0" T ES FOR (. , 10

E. I/O ROUTINES FOR FORTRAN 15

III. DISPLAY ROUTINES 17

A. PC DISPLAY ROUTI'INIE 17

B:, UNXDISPLAY ROUTINE 19

1. "Command Line Mocd .e, 19

2. Display From Vithin PRO-MATLAB 20

IV. MATLAB TOOLIKIT 21

A. DISCUSSION OF FUNCTIONS 21

B. EXAMPLES USING FUNCTIONS 22

i\V

*V. SUMMARY AND-CONCLUSIONS 32

A. REVIEW OF THESIS........................... 32

I)B. AREAS FOR FUTURE WVORN..................... 33

1. Displaying Color Images on SPARCstations............. 33

2. Expanding the Toolkit........................ 33

APPE9NDIX A - CRE ATING MEX FILES...................... 34

LIST OF REFERENCES.............................. . .38

INITIAL DISTRIBUTION'LIST............................ 39

LIST OF TABLES

2.1 IMAGE FILE ORGANIZATION 6

2.2 SUMMARY OF MATLAB I/O FUNCTIONS 9

2.3 APL I/O FUNCTIONS 11

2.4 SUMMARY OF I/0 FUNCTIONS 16

4.1 BASIC IMAGE PROCESSING FUNCTIONS 23

vi

LIST OF FIGURES

1.1 Digital Image Representation 3

2.1 Creadtest.c Program 12

2.2 Cwritest.c Program 13

4.1 Masks Used for Edge Detection: (a.) Gradlienth, (b) Gradientv, (c)

Laplacian 24

4.2 Lenna.red 25

4.3 Reduced Imagc 26

4.4 Histogram Equalized Images 27

4.5 Demonstration of Histogram Plots: (a) Reduced Image, (b) Equalized

Reduced Image 28

4.6 Direct Histogram Specification: (a.) Look-up Table, (b) Histogram of

Output Image 29

4.7 Application of Ideal Filters 30

4.8 Edge Detectors 31

vii

I. INTRODUCTION

A. AN OVERVIEW AND PURPOSE

Image Processing has a wide range of application areas like enhancement of

images obtained via satellites and object identification for military, medical and

other purposes. Because vision is probably the most important and most used of

the five human senses, we always like to use images in our presentations. Since

image data is .important to us, we want to store image data in a reliable, easy, and

flexible way. We need consistent and flexible file formats that will allow us to use

the- same data in different environments quite easily.

Once we have stored the images, then we want to manipulate them, alter some

properties of them, and store again in the same format, Thus we need convenient

Input/Output procedures from within computer programs. A further requirement

is that the images be accessible from a variety of programming environments. In

other words, we want to have simple functions or subroutines to read and write the

images from within the following languages or environments:

*APL

.C

* FORTRAN

* MATLAB

and perhaps others. Further we desire to have this capability available in several

operating system environments, so the uscr of say MATLAB or C will need to use

only a single procedure regardless of the operating system he or she is using. These

operating systems include MS-DOS on IBM-PC compatible microprocessors, UNIX

on SUN workstations and the VAX, and VM on the mainframe. In other words

we want to present a common interface. In this thesis, we have written such

subroutines and functions for all of the above languages and provided them in both

the DOS and the UNIX environment. These functions can also be easily ported to

VM if desired.

Displaying image data is another separate and important part of digital image

processing. Since we want to display image data in different environments, we

need to have different programs for each different system due to different display

capabilities and display drivers for specific systems. The display functions should

be easy, flexible, intelligent, and provide a consistent interface to the user as much

as possible. In this thesis, we have provided display programs for both MS-DOS

(PC) and UNIX (SUN Workstation) environments to display images. The use of

the display functions in both environments is similar.

Processing image data with a computer program is easy but processing image

data with MATLAB is fun! Since MATLAB is flexible, user friendly, and interac-

tive, it provides an extremely efficient way to process image data and develop new

algorithms. A very basic image processing "toolkit" was written as a part of this

thesis and is available now for use with MATLAB. The combination of this image

processing toolkit with I/O and display functions, which also operate under MAT-

LAB, provides a very powerful environment in which to perform image processing

and develop new algorithms. This environment is, as stated before, available both

on PC's and on SUN workstations.

Origin

x~

Figure 1.1: Digital Image Represeiitation

B. DATA 1/0

We will use the digital iigc representation presented in Gonzalez [Ref. 1].

The image is repregented in a modified Cartesian coordinate system with origin in

the upper left corner of the image. The coordinate system is depicted in Figure 1.1.

The smallest spatially discretized imnage element is called a pixel; at each pixel

we have an intensity value representing the gray level from dark to full bright. The

data can be thought of as arranged in a niatrix. We will restrict ourselves to an

8 bit representation of intensities w~ith valucs ranging from 0. (darkest) to 255

(brighitest). In the case of color images, we have three 8-bit intensity values for

red, green, and blue components of the composite real color. These are represented

as three separate files on disk or as matrices within a program. Spatial sampling of

an inmae depends on the resolution of the digitizer used; the most common image

3

sizes are powers of two such as 512 x 512 or 256 x 256. In the latter example, it

takes 256 x 256 = 65,536 bytes to represent the image. Image data stored in this

form is called raw data. We may either store the image data in raw data form,

or we may add some more information to explain what the image is, when it was

captured, the size of the image, and other things. The extra information is put into

a header record and added to the image data file. Frequently, we want to be able

to read/save both raw data images (without header) and images with a header. We

have provided easy ways to input and output image data in different environments

and programming languages as mentioned earlier.

C. DISPLAY ROUTINES

Display of the image data will be on PC's and SUN Workstations. Both sys-

tems are flexible and easy to use. We have developed a complete capability in both

environments for monochrome images. In the case of color images, we have some

limitations. On the PC, these limitations are due to the restricted quantity of colors

for a given palette with the VGA mode. Since SUN Workstations handle displaying

color images in a different way than PC's, we cannot display color images in raw

data form. If three data files for red, green and blue intensities can be converted

into rasterfile form however, then we can display them in color. Rasterfiles are

defined in the Sun PixRect Reference Manual [Ref. 2].

D. MATLAB TOOLKIT

Several simple image processing tools have been developed. Since notation

and definition becomes important in defining and expressing the underlying math-

ematics, we tried to follow the conventions used in Gonzalez [Ref. 1]. The basic

toolkit has functions to perform lowpass filtering, highpass filtering, edge detection

(4 types), histogram specification, and image size reduction.

4

II. DATA MANAGEMENT

A. DATA FILE STRUCTURES

Image data files we will be working with are of two kinds, namely raw data

form and raw data with a header. Both of these are binary files, so you cannot edit

them using a text editor. The raw data form is standard in image processing and is

the type provided on tape by USC/SIPI (University of Southern California/Signal

and Image Processing Institute) and other sources. The image is stored in a raster

scan order; the first byte of the file corresponds to the intensity at the origin, the

second byte to the one on the right, of origin, and so on (See Figure 1.1).

Headers for image files in general follow no standard conventions. Our header

format was adopted from the ITEX/PC format [Ref. 3]. This has the advantage that

images acquired using the PC image processing station in Spanagel 315 can be read

directly in all other environments and operating systems addressed in this thesis.

The first two bytes of the header consists of the letters '1' and 'M' to distinguish

it from other types of files. This is followed by the length of the comment area,

horizontal size of the image, vertical size of the image, the horizontal coordinate of

the image on the screen, the vertical coordinate of the image on the screen, format

of the image file, a reserved area, and comments. The structure of the header is

detailed in Table 2.1 below.

B. I/O ROUTINES FOR MATLAB

1. PC-MATLAB ROUTINES

For PC-MATLA, the input and output routines and utilities are readim,

rim, readheader, saveim, and putim. These functions are MEX files written in

5

TABLE 2.1: IMAGE FILE ORGANIZATION

Byte Location Purpose of the Bytes
in the File

0 - 1 Letters 'I' and 'M' to distinguish ITEX/PC
images-from the others. (Hex 49, 4D)

H 2 - 3 Size of comment area, low byte and high byte.
These two bytes determine the length of comments
which start at byte 64.

E 4 - 5 Horizontal size or image in pixels, 4 is low byte
and 5 is high byte (to be multiplied by 256)

A 6 - 7 Vertical size of image in pixels
(6 low, 7 high)

D 8 - 9 Horizontal screen coordinates for origin
(not necessarily 0)

E 10 - 11 Vertical screen coordinates for origin
(10 low, 11 high)

R 12- 13 Format of image file; possible values are:
0:8 bits/pixel, 1:Compressed data

14- 63 Reserved for future use

64 - xx Comment in ASCII. Variable size, but the length
is specified in bytes 2-3.

D xx + I - END Data follows the comment. Data length
A should be product of sizes specified in bytes
T 4-5 and 6-7. Data is stored in rasterscan
A form.

6

the C language (Microsoft C 5.0) and then compiled with the MEX utility that

comes with PC-MATLAB. The PC-MATLAB manual explains how to create MEX

files on pages 43-58 [Ref. 4]. More information about MEX files can be found in Ap-

pendix A. All of these functions have corresponding m-files (same function names)

which have only comments in them, to explain how to use the function, and which

is typed to the user when the help facility in MATLAB is used.

Function readheader reads the header of the image data file, if it exists,

and displays header information for the image. If the header does not exist, read-

header lets us know that the image is in raw-data form and gives its estimated size

(as a square image).

Function readim reads the entire image data file and creates a matrix

variable in MATLAB. Since PC-MATLAB limits the maximum number of elements

that a matrix can have to 8188 (which corresponds to a 90 x 90 square image),

it should always be used with great care. If we limit ourselves to square images

that are powers of 2, the largest image that we can read into PC-MATLAB is 64

x 64. This limitation applies only to PC-MATLAB; for 386 MATLAB and PRO-

MATLAB, the matrix size is unlimited. This means we can work with images of

sizes 1024 x 1024 or even larger. Functions for 386 MATLAB and PRO-MATLAB

are discussed in the following two sections. It. is useful to check the image file with

readheader first to determine its size before using readim.

Function rim is more flexible than readim. It allows us to read portions

of an image. While using rim, one should specify the coordinates of the leftmost

corner, sub-image sizes, and also the filename.

Some common features of both rim, and readim are:

9 If the filename is given without any extension, the default ".img" is added;

however, any extension given overrides the default.

7

9 The functions automatically sense the file type and skip the header part (if it

exists) and return data into a matrix variable as mentioned above.

e If the image size is not as large as requested, an error message is displayed

while trying to read.

Function saveim saves a matrix variable in MATLAB to a binary data

file with header. This function needs an input matrix, a comment for the header

(optional), and an MS-DOS filename. If the extension is omitted, the default ".img"

is added,

Function putim saves an image matrix in MATLAB as a binary file in

raw-data form. As in the case of saveim, it needs an input matrix, and a DOS

filename (no comments are possible). In this thesis, we have been working with color

USC/SIPI images and when we needed a monochrome USC/SIPI image, we used

the .red component of the color image like a monochrome image. So the default

extension is ",red" when putim is used.

The above routines are in the form of MEX files for PC-MATLAB which

were created using Microsoft C 5.0 [Ref. 5] and the MEX utilities supplied with PC-

MATLAB. Since these functions are compiled executable codes, they are fast and

convenient ways to import/export image data to PC-MATLAB. These are the key

functions that make it possible to do image processing within MATLAB. A summary

of I/O functions is given in Table 2.1 below; their usage is further explaincd in the

related m-files, which are accessed with the help command in MATLAB.

2. 386 MATLAB Routines

Data I/O Functions for 386 MATLAB are the same as for PC-MATLAB.

The advantage of 386 MATLAB is the unlimited size of the matrix variables which

allows us to read the entire image, of size 512 x 512 as an example, into a matrix.

TABLE 2.2: SUMMARY OF MATLAB I/O FUNCTIONS

Function Name and Usage Description

readheader ('filename') Input is filename; displays header
information, and estimated image size.

x = readim (fllename'); Input is Jilename, output is variable x;
reads the entire image.

x = rim ('filename', xo, yo. d.x, dy); Inputs are filcitame, origin coordinates
.o, yo, and sub-image sizes dx, dy.
Reads a portion of image.

saveim (x, 'filename') 'connen!') Inputs are image matrix x, filename,
and comment (optional). Saves to a binary
MS-DOS file with header.

putim (x, 'filename') Inputs are image matrix x, filename.
Saves to a binary MS-DOS file without header.

9

Also, speed of processing is increased with 386 MATLAB. The I/O functions for

386 MATLAB are created using Metaware High C and the MEX utilities that are

supplied with 386 MATLAB. These routines are functionally equivalent to the PC-

MATLAB routines.

3. PRO-MATLAB Routines

For PRO-MATLAB, we have functions readim, rim, readheader, put-

im, and savim exactly like the ones in the other two environments. They are used

in exactly the same way and with the same conventions as in Table 2.2. These

functions were created using the C compiler on the SUN workstations [Ref. 6] and

the PRO-MATLAB CMEX utility. There are no restrictions on the size of images

that can be handled other than availability of storage on the workstation.

C. I/O ROUTINES FOR APL

The APL functions READIH, READIM, and SAVEIM are equivalent to the

functions readheader, readim, and saveim in the MATLAB environment. The func-

tions are implemented under IBM APL2 for the mainframe and for the PC [Ref. 7].

Their use is given in Table 2.3.

D. I/O ROUTINES FOR C

The I/O routines for use with C consist of two object modules getsize and

getimage to read images and saveimage to write image files. These object modules

are ready to be linked with any C program. The function names should be declared

as externals and unsigned char pointers should be defined for the image data to be

read. The use of these object modules are clarified with two example C programs

readtest and writest. The source code for these two programs is shown below in

Figures 2.1 and 2.2.

10

TABLE 2.3: APL I/O FUNCTIONS

Function Name & Use Description

H - READIM 'filename' Reads the contents of the header
of image filename into variable H
in the workspace.

M -- READIM 'filename' Reads image data into variable M.
Shape of M is determined by
information in the header.

M SAVEIM 'filenaine' Saves array M as an image file.
Automatically creates header with
dimensional information.

11

Jun 13 11:30 1991 creadtest.c Page 1

#include <stdio.h>
#include <malloc.h>

extern void getsizeo;
extern void getimageo;

~main()

long ~ ,total-size;

char fname(48J;
unsigned char *datas; /* define the ptr to get data *

fprintf(stdoutiffenter filename : \n");
scanf ("%s", fname);

/* get size of image *
getsize(fname,&total size);
f print f(stdout, "total. size : %ld \nt",total.size);

/* allocate memory *
if ((datasm (unsigne~d char *) malloc(total.size)) -- NLL)

fprintf(stderr,'lmemory is not enough\n"l);
exit(-l);

/* read image datas *
get image (fname, datas);

for(i=0;i<9;i++)
fprintf(stderr,Ildata(%d]%x\nlI,i,datas(i])

free(datas);

Figure 2.1: Creadtest.c Program

12

Jun 12 15:17 1991 cwritetest.c Page 1

#include <stdio.h>

extern void saveiiialeo;

main()

int
char *fname-Ildata2l;
unsigned char datas(9J;

tor(i-O;i<9;i++)
datasfi]- j;

saveimage (f name, datas, 9);

Figure 2.2: Cwritest.c Program

13

The code for readtest shows a typical use of getsize and getimage. Alter-

natively, one may run readheader first, to get the image size and define arrays in

his/her program instead of using pointers. However, use of C with the dynamic

memory allocation provision permits reading image data before its size is known.

In C the file I/O is byte oriented and data can be read one byte at a time, which is

the most natural way to do it.

Some special things to note about the sample read program are:

* Include files <stdio.h> and <malloc.h>;

* Definition of external functions getsize() and get imageO;

* Definition of variables for image size, input filename, and pointer to data;

e Use of getsize(;

* Dynamic memory allocation for data;

* Reading of data with getimageo;

* Processing of data in the program; (This is not included in the test program)

* Freeing of allocated memory.

Some special things to notice about the writest program are:

e Include file <stdio.h>;

Definition of saveimage() as an external function;

* Definition of variables for output filenames;

* Call of function saveimage(.

14

A limitation exists with the use of these modules on PC's to images less than

256 x 256 in size. Since the Intel 8086 based architecture addresses memory in 64k

segments, each data block is limited by most C-compilers to 64k bytes. For the case

of the VAX and SUN workstations, there is no restriction on image size.

E. I/O ROUTINES FOR FORTRAN

From the user's point of view, the FORTRAN input/output subroutines are

very similar to the C subroutines. They were written with the FORTRAN compiler

on SUN workstations [Ref. 8]. The two subroutines writeimage and readimage

are used to save an image data array to a file and read an image file into an array

respectively. It is easier to copy the source code than to try to link the object files,

because these subroutines are very short. One difference from the C programs is,

since the FORTRAN file I/O is record oriented, the file is read as blocks instead

of bytes. This detail is actually hidden from the programmer, since the subroutine

readimage takes care of reading blocks and simply returns an array of data to

the calling program. Since the record size is fixed, it only works for headerless

files. Two test FORTRAN programs freadtest and fwritest illustrate the details

of using these subroutines.

A summary of I/O functions for all different environments is shown in Table

2.4.

15

TABLE 2.4: SUMMARY OF 1/O FUNCTIONS

Operation Performed MATLAI3 APL C FORTRAN

reading headcer readheadci' READIJ reaciheader-
information

reading image reaclim REA1)IM getsize readimage
data rimi getimage

saving image saveim SA\'EIMI saveimage saveimage
data putili

16

III. DISPLAY ROUTINES

A. PC DISPLAY ROUTINE

If we process an image, displaying or printing (using a high resolution printer)

is essential in order to compare the processed image with the image before processing.

After we examine these images, we can further process the original image to get

better results until we reach a desired threshold. Displaying images on IBM PC's

is done via DISPLAY.EXE. The source code was written using Microsoft Quick C

2.0. DISPLAY requires a VGA card and monitor, and needs some space on hard (or

floppy) disk to make working (temporary) files. The exact space needed depends on

the image file(s) to be displayed. For monochrome images, DISPLAY needs a space

as large as the image file. For color display, it needs a space three times larger than

one of the components of the colored image (since three files are manipulated). In

case of insufficient disk space, DOS will terminate DISPLAY and report the error.

DISPLAY is quite flexible and a user with just a little knowledge of DOS can

use DISPLAY quite easily. Typing "DISPLAY" at the DOS prompt will cause it

to prompt for a filename. Filenames may be entered with or without an extension.

Filenames without an extension are first assumed to refer to a color image and

extensions .RED, .GRN, and .BLU are appended to the original filename. If these

color image files do not exist, thei the extension .IMG is appended to the original

filename and DISPLAY tries to find a monochrome image with this filename. If the

image files are not in the current directory, but in a different directory, then complete

pathnames should be given. DISPLAY determies whether or not the image file has

a header or consists of just raw-data, and displays it automatically. It is possible

17

to display a component of a color image as a (black and white) monochrome image.

This is done by giving the filename with the extension (e.g., lenna.red).

DISPLAY contains a menu to display left, center, or right portions of an image.

This is needed for images that are greater than 320 x 200 pixels in size. Display uses

320 x 200 pixels with 256 colors in VGA. Color images do not look as natural because

of coarse quantization of the color palette in VGA. If the image is greater than the

screen size, it can be moved with arrow keys to see the hidden portions. The escape

key takes you back to the menu. It is possible to reduce the image size, using the

reduce option from the menu, by factors of two, three, or four. Since most images

are square images, color or monochrome images without a header are assumed to

be square. Image files with a. header may be of any size, and not necessarily square.

DISPLAY also has UNIX-like features. On the DOS command line, it is pos-

sible to give switches and a filename or a complete pathname simultaneously. This

results in direct display, skipping the menu, The possible command line switches

are -c, -1, -r for center, left, and right portions of the image respectively. A detailed

usage of DISPLAY.EXE can he found in READ.DIS, a portion of which is shown

below:

NAME

DISPLAY [option . . .] [filename]

OPTIONS

-c Display center part of the image.

-1 Display left part of the image.

-r Display right, part of the image.

is

B. UNIX DISPLAY ROUTINE

1. Command Line Mode

Display in UNIX is done via the show command.1 The current version is

implemented on SUN SPARCstations. It requires a color or gray scale monitor with

8 bit frame buffer, Show works within SUNVIEW, the windowing environment for

SUN workstations. Typing show on the command line will cause it to prompt for

a filename and start in interactive mode. After providing the filename, it will ask

for the image sizei but will provide a default value, so that you may just hit return

rather than giving a size. It will then ask for the displayed image size, which may

be smaller (or at most equal to) the stored image size. Again it has a default, so

to see the entire image you just hit return. It further prompts for the bits/pixel

(default is 8 bits/pixel) and a scale factor. The default scale factor is 1; negative

values reduce the display size.

Show can also be used in a noninteractive mode, by supplying the file-

name with show directly on the command line. This will cause show to use all

default values without any prompt. Show can also display images in rasterfile

form as described in the Pixrect Reference Manual of SUN workstations [Ref.2]. A

minor bug with show is that it does not display unless you move the pointer into

the image window using the mouse.

A very useful feature provided by show is that you can find the intensity

of a pixel by moving the pointer with the mouse and then holding down the right

mouse button. The coordinates (XY) and the intensity at this pixel (Z) will be

displayed, and an option to quit the image window also is provided at this point.

'The current version of this program was obtained courtesy of the University of Southern
California/Signal and Image Processing Institute.

19

2. Display From Within PRO-MATLAB

Although both PC-MATLAB and PRO-MATLAB can use operating sys-

tern commands using the "!" escape operator, the PC DISPLAY function does not

work from within PC MATLAB. In the UNIX environment, however, we can use

show within Pro MATLAB using the "' operator of MATLAB. We have pro-

vided -a script file show.m that will display image matrices directly from within

PRO-MATLAB. This m-file takes a matrix as its argument and opens a temporary

window to display the image matrix. The elements of the matrix should be integers

between 0-255. Interactive use of show can also be activated from within PRO-

MATLAB by typing "!show". Show will thin prompt for the image name (which

in this case must be a file) and the other parameters remain exactly as before.

20

IV. MATLAB TOOLKIT

A basic set of image processing functions were also written for use with MAT-

LAB. We refer to these functions as the image processing "toolkit".

A. DISCUSSION OF FUNCTIONS

Functions for basic image processing tasks provided in the toolkit are equal-

ize, gradienth, gradientv, highpass, hisplot, histogram, laplacian, lowpass,

reduce, and sobel. All these functions arem-files written as they are described in

Gonzalez [Ref. 1].

Histogram can be used in two ways. The first usage plots the histogram

for a given image matrix. The second usage does not plot the histogram of the

given image matrix, but instead returns a vector that has data ready for plotting

by the function hisplot. Hisplot is especially useful for fast display of a known

histogram. Histogram takes a short time to make the necessary calculations but

after it is done, by assigning the result to a variable, we can save computation time

for the second and following displays of the same plot.

Hisplot plots data returned by the function histogram. The abscissa is

intensity level from 0 to 255 and the ordinate is the density of the corresponding

intensity.

Equalize can also be used in two ways. In the first usage, it produces the

usual histogram equalization, based on an approximately uniform output histogram.

In the second usage, we can specify the desired histogram of the output image. For

direct histogram specification, equalize needs a look-up table as its input as well

as the image matrix. The look-up table is a vector of length 256 where the values

21

in this vector map their positional values to new intensities. If for instance, the 5th

element of the look-up table (vector) is 127, then all intensities that have the value

4 .in the original image will be replaced by 127.

The highpass function is a circularly symmetric ideal highpass filter. Fre-

quencies in the region that is outside the circle are passed with unit gain and spatial

frequencies that lie within the circle are blocked.

Lowpass executes an ideal circularly symmetric lowpass filter in the spatial

frequency domain. In contrast to the highpass function, the spatial frequency

components that lie within a circle of the given radius are passed while components

outside the--circle are-blocked.

For edge detection, there are four algorithms, namely gradienth, gradientv,

sobel, and laplacian. Gradienth detects horizontal edges in the image, while

gradientv detects vertical edges in the image. Sobel is a, combination of gradienth

and gradientv to detect both horizontal and vertical edges. Laplacian makes use

of a different mask in which the corniers of the mask are zeros. This makes it quite

sensitive to the noise in the images. The masks for gradienth, gradientv, and

laplacian are shown in Figure 4.1.

Reduce is useful for compressing large images. Reduce converts an image to

a desired smaller size by using neighborhood averaging techniques. A reduction size

of 2 will reduce a 512 x 512 image to a 256 x 256 image. The basic image processing

functions in the toolkit are summarized in Table 4.1.

B. EXAMPLES USING FUNCTIONS

One of the USC/SIPI images "lenna" of size 512 x 512 (color image) has

been used to illustrate the basic functions. The red component is used to make

comparisons in gray scale, more easily. To make calculations faster, the function

99

TABLE 4.1: BASIC IMAGE PROCESSING FUNCTIONS

Function and Use Operation or Effect on Image

histogram (x) or If no output variable (y) exists then
y = histogram (x); plots histogram, otherwise returns a

vector y for IIISPLOT.

hisplot(y) Plots intensity density vector returned by
histogram.

y = equalize (x): or In the first usage, histogram equalization is
y = equalize (x,t); performed. If an additional look-up table

t is supplied, then direct histogram
equalization is performed.

y = highpass (x,r); Ideal highpass filter with radius r.

y= lowpass (x,r); Ideal lowpass filter with radius r.

y = gradienth (x); Gradient horizontal edge detector.

y = gradientv (z); Gradient vertical edge detector.

y = sobel (z); SOBEL omnidirectional edge detector.

y = laplacian (x); Laplacian omnidiectional edge detector.

y = reduce (x,t); Reduces image size by k with
neighlborhood averaging.

23

-1 -2 -1 -1 0 1 0 1 0

0 0 0 -2 0 2 1 -4 1

1 2 1 -1 0 1 0 1 0

(a) (b) (c)

Figure 4.1: Masks Used for Edge Detection: (a) Gradienth, (b) Gradi-
entv, (c) Laplacian

reduce is used first to reduce the image size to 256 x 256 from 512 x 512. Then all

the other functions are applied to this reduced image. Figure 4.2 shows the original

(512 x 512) image "lenna.red". Figure 4.3 shows the reduced image (256 x 256)

using the reduce function. Figure 4.4 shows the reduced image on the top left; the

equalized image on the top-right; on the bottom a direct histogram specification was

used to get the negative of the input image. The look-up table contains the values

0 to 255 in reverse order. Figure 4.5 shows the histogram for the reduced image on

the top, and the histogram for the equalized image on the bottom. Figure 4.6 shows

the specified look-up table and histogram of the output image. Note how the values

are the reverse of those in Figure 4.4 (a). Figure 4.7 shows the application of lowpass

and highpass filtering. The first row shows lowpass filtered images with radii 30

pixels and 80 pixels from left to right. The second row shows highpass filtered

images with radii 5 pixels and 10 pixels from left to right. Figure 4.8 illustrates the

application of edge detectors. The first row shows sobel and gradienth applied

from left to right. The second row shows gradientv and laplacian applied from

left to right.

24

Figure 4.2: Lenivi red

25

Figure 4.3: Reduced In-age

26

Figure 4.4: Histogram Equalized Images

27

HISTOGRAM

0.014 .
0.016 .~n........... n...n. nn,~

0.0 1n. n...fl.l.....fl ...n..........m.

,00

0
0 50 100 ISO 200 250 300

Intenulty

FIgure 4.5 Histogram Plots: (a) Reduced Image.

HISTOGRAM0.018

0.00~*

011
0 30 100 1S0 200 250 300

Intmnsity

FIgure 4.A Histogram Plots: (b) Equalized Reduced Image.

28

Look-up Table

I 0

0 010IO200 250 300

Iniput Imtenalty Values

Figure 4.6: Direct Histogram Specification: (a) Look-up Table.

H4ISTOGRAM

0.011 A

0,012- . .."

1 0.01 - -. . . .-.,........

10.00. I-.......- 1
.I.........................

.

0.0 -....

0 6
0310'10200 250 300

lntenelty

Figure 4.6: Direct Histogram Specification: (b) Histogram of Output Image.

29

Figure 4.7: Application of Ideal Filters

30

A!

Figure 4.8: Edge Detectors

31

V. SUMMARY AND CONCLUSIONS

A. REVIEW OF THESIS

This thesis provides useful tools to make image processing easier and more

'flexible. Indeed, it makes image processing feasible in MATLAB. It supplies these

tools in different environments in a consistent way in order to make the user interface

identical for all environments. These tools are easy to use and flexible. We developed

utilities for MATLAB, APL, C, and FORTRAN. Since MATLAB is a relatively

new language, but is becoming a standard in signal processing and other areas, we

have also provided a. toolkit of specific functions for use with MATLAB. For the

other languages, we have provided input/output functions. These functions hide

the details of I/O from the user and provide a neat way to read and write images. If

someone wants to process images with these languages, he or she can write programs

that call these I/O functions.

For displaying images, we have provided two executable codes; one for PC

compatibles and another for SUN SPARCstations. Both of these display programs

are user friendly and easy to use. The workstation display program show, which

runs under UNIX can also be used within PRO-MATLAB. This version is capable

of displaying matrices (rather than image files) which makes it more useful for

displaying results rapidly.

The MATLAB image processing toolkit consists of 10 m-files which implement

some of the basic image processing functions. Since these are m-files, they work for

PC-MATLAB, 386 MATLAB, or PRO-MATLAB. Examples of using these functions

are presented in Chapter IV.

32

B. AREAS FOR FUTURE WORK

1. Displaying Color Images on SPARCstations

The display program for UNIX (SUN SPARCstations) is capable of dis-

playing monochrome images, but for color images, it only displays image files in

rasterfile form (with extension .ras). This format is not like the standard USC/SIPI

color images where we have three separate files for red, green, and blue components.

In rasterfile form, there is only one data file and three look-up tables for red, green,

and blue components in the header part. These look-up tables are used to convert

the single data file to three separate data arrays internally. The problem is: given

three separate data files, find one data file and three look-up tables representing the

same color image. If these look-up tables and one data file are found then a utility

program raw2ras is provided to combine the data file and three look-up tables into

a rasterfile.

2. Expanding the Toolkit

The basic toolkit can be expanded to cover more image processing func-

tions and hence obtain more image processing capabilities within MATLAB. In

addition, the basic toolkit is implemented entirely with m-files which makes it slow

for some large matrix operations. If these functions are implemented with MEX

files however, the speed will increase considerably.

33

APPENDIX A
Creating MEX Files

Programming in MATLAB is usually done via m-files. Another way is to call

C or FORTRAN subroutines from MATLAB, as if they were built-in MATLAB

functions, MATLAB-callable C and FORTRAN programs are referred to as MEX-

,files (MATLAB EXecutable files). MEX-files have several good applications:

@ Large pre-existing FORTRAN and C codes can be called from MATLAB,

without having to rewrite them as m-files.

9 Bottleneck computations (usually for loops) are too slow in m-files. These can

be re-cod;d in C or FORTRAN for efficiency. Speed improvements of up to a

factor of 25 are possible.

9 A/D cards, D/A cards, and other hardware can b6 accessed directly for data

acquisition and control applications.

* Import/export of data can be accomplished (our functions for reading and

saving images are an example of this).

The utilities for creating MEX files are discussed in Chapter 9 of the PC-

MATLAB manual [Ref. 4]. The examples EIGS.C and VDPOL.C in the MEX

directory are very useful in understanding the organization of MEX files. The I/O

functions readim, rim, saveim, and putim were written in C and compiled with

the CMEX utility. Those four functions explain how MEX files can be used for

data import/export. Two other example functions mexampll and mexampl2 are

provided in this appendix to explain how a variable in the MATLAB workspace can

be reached, and how built-in functions, or m-files, or other MEX-files can be called

from within a C program.

34

Important things to note about mexampll are:

* The main function must be named userlcn 0 instead of maino.

* Define a Matrix structure pointer for every variable to be reached.

* Check usage of function (nunber of left hand side and number of right hand

side arguments need to be correct).

* Procedure get-global() with the variable name.

* Select the "pr member" of the Matrix structure which contains the actual data

and assign it to the variable of the program.

* Print the results with function mex-printf(. Note that with the use of

mex-printfo, we do not need to include <stdio.h>.

Important things to note about mexampl2 are:

• Define user.fcn() instead of manino.

* Define Matrix struclire i)ointers for other fuiction calls (plhs[], and prhs[]).

* Call matlab-fcnl() to reach other rn-files or MEX-files.

* The results will be in structure plhs.

35

mexampll.c Program

Jun 13 11:20 1991 mexampll.c Page 1

* this c program shows how'-to use procedures : *
get global() *

* mex printf() *

* note I get global() is-usod to get the value of a constant *
* (or a matrix) in user's workspace to a variable in this *
* C-program. *
* mex-printf() can be used instead of printf() so *
* you don't need to link the whole <stdio.h> *

o* *

linclude <cmex.h>

user_fcn(nlhs,plhs,nrhs,prhs)
int nlhs,nrhs;
Matrix *plhs[),*prhs(];

Matrix *ptr to ans;
double *ans;

if (nrhs!-0) mexerror("Must not be any input arguments");

if (nlhs!-0) mexerror("Must not be any output arguments");

ptrtoans=getglobal ("ans");

ans=ptr to ans->pr;
if(ans-=0) /* if NULL */

mex error("variable 'ans' does not exist yet"),;
mexprintf("\nans %f\n\n",*ans);

36

- - mekaml2. Program

Jun 13 11:21 1991 mexampl2.c Page 1

* this program shows ho'~to call rn-files, MEX-files or btUlt-in*
functions from within ai,MEX-file.

* also read the example programs EIGSC and VDPOL.C*
in MEX directory.*

#include I"cmex.h"I

#define INP 1 prhs(0]
4dnfine OUTl1 plhsC0)

user fcn(nlhs, plhs, nrhs,prhs)
int nlhs, nrhs;
Matrix *plhs(1, *prhs(];

char *function-namel, *function_name2;

if(nrhs!-l) mexerro (I"must be one input");
if(nlhs!-l) mex-error(rnust be one output");

function name l="cos":-
function name2="mexampll";

/* call. built-in 'cosine' function *
matlab-fcn(l,plhs,l,prhs,function_namel);

/* call MEX-file Imexampli' */
matlab-fcn(0, 0,0,0, function name2);

37

LIST OF REFERENCES

1. Gonzalez, Rafael C. and Wintz, Paul, Digital Image Processing, Addison-
Wesley, 1987.

2. SUN Microsystems, Inc., "Pixrect Rfeference Manual 4.1," 1990.

3. Imaging Technology Inc., "ITEX PCplus PROGRAMMER'S MANUAL,"
1987.

4. The MathWorks, Inc., "PC-MATLAB for MS-DOS Personal Computers,"
1989.

5. Microsoft Corporation, "Microsoft C 5.0 Optimizing Compiler for the MS-

DOS Operating System," 1984.

6. SIN Microsystems, Inc., "C Programmer's -Guide," 1989.

7. APL2 Programming: "AP1,2 for thc IBM PC User's Guide, Version 1.01,"
Mechanicsburg, PA, December 1988.

8. SUN Microsystems, Inc., "SUN FOR(TRAN Reference Manual," 1989.

38

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Charles W. Therrien, Code EC/Ti 1
Department of Electrical and Comrput.cr Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Jeffrey B. Burl, Code EC/BI 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

6. Professor Roberto Cristi, Code EC/Cx 1
Department of Electrical and Comiputer Engineering
Naval Postgraduate School
Monterey, CA 939,43-5000

7. Professor John Powers, Code EC/Po 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 939:3-5000

39

8. Professor Chin-Hwa Lee, Code EC/Le
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

9. Professor Robert D. Strum, Code EC/St
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

10. Professor J. Miller, Code EC/Mr
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

11. Mr. Robert Limes, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

12. Erkan Ayka 2
Malkoc Mh 78.Sk No. 6
G6nen/BALIKESIR. 10900
TURKEY

.10

