AD-A246 896 .
L
NAVAL POSTGRADUATE SCHOOL

Monterey, California

CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN
OF COMPUTER-AIDED INSTRUCTION
by
DAWN MARIE MASKELL
MARCH 1992

Thesis Advisor: TIMOTHY J. SHIMEALL

Approved for public release; distribution is unlimited.

92-05253
92 2 28 079 HEIRRRRIN

.]

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a REFO - HASS N UNCLASSIFIED |
) ORIV LA RTTON AUTRORITY 3. DIS THIBUTTON/AVAILABILTTY OF REPORT
Approved for public release;

b DECLASSIFICA TTON/GOWNGRADIR AEDULE e .

° SNOS distribution is unlimited
7 PERFORMING ORGANIZATION REFGAT NUMBERS) 5. MONITORING ORGANIZATION REFORT NUMBER(S)
8’ NAME OF PERFORMING ORGANIZATION 160, OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

omputer Science Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School Gs .
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Montercy, CA 93943_5000 Monterey, CA 93943'5000
Ba. NAME OF FUNDING/SPONSORIN 8. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENTIBEN XTTON NUMBER

ORGANIZATION (if applicable)
SPAWARS PMW-183
8c. ADDRESS (City, State, and ZIP Code) '13% ggm CEOF FUpN e MBERS — S
Washington D.C. 20363-5100 ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN OF COMPUTER-AIDED INSTRUCTION

ASRELL, DAWN'M.

2. TYPE QEREPOR [130. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
aster’s Thesis FROM To MARCH 1992 150

16. SUPPLEMENTARY NOTATIO
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the United States Government.

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
I TED SROUP SUB.GROUP Concept-Flow Diagram, Mastery Test

19, ABSTRACT (Continue on reverse if necessary and identify by block number) . .
Current software design techniques are organized around either data transformation or stimulus-response control

flow abstractions. Neither of these approaches apply to the flow of presentation and answer analysis that characterizes
computer-aided instruction. This thesis introduces a new design abstraction, concept-flow, and technique that
exploits it in the design of tutorial software. The design technique uses concept-flow diagrams, which highlight
presentation of information and verification of user comprehension.The technique is explained through application to
a tutorial on the physics of underwater sound. The design and implementation of a prototype concept-flow interpreter
are presented. This design technique and the associated interpreter allow for rapid construction of highly flexible
computer-based tutorial strategies, useful for both traditional CAI applications and for more efficient help-sequence
design in interactive systems.

0. DISTRIBUTION/AVAILABILTTY OF ABS TRACT PN
[} U.<CLASSIFIED/UNLIMITED [] SAME ASRPT [] OTIC USERS | UNCLASSIFIED

2R TAYE QF NESEONSIELE INOIVIDUAL 22b, TELEPHONE (Include Area Code) | 226,58 JdCE SYMBOL
ATMEALL TIMOTHY 3. (408) 646-25 B R

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obs?lete UNCLASSIFIED
1

‘—_

Approved for public release; distribution is unlimited

CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN OF
COMPUTER-AIDED INSTRUCTION

b)’ .
Dawn Marie Maskell

Lieutenant, United States Navy
B. A, University of California, Los Angeles, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

. il
Author: QCU-L’T))Y’”U‘ux)HMLLC‘L
Dawn Marie Maskell

Approved By: jwfl ;,9‘ / j//vw«d < (

Timothy 7. $himeall , Thesis Advisor

7
lan B. Coppens. SefohdReader

“Robert B. McGhee, Chairman,
Department of Computer Science

ABSTRACT

Current software design techniques are organized around either data transformation or
stimulus-response control flow abstractions. Neither of these apﬁroaches apply to the flow
of presentation and answer analysis that characterizes computer-aided instruction. This
thesis introduces a new design abstraction, concept-flow, and technique that exploits it in
the design of tutorial software. The design technique uses concept-flow diagrams, which
highlight presentation of information and verification of user comprehension.The
technique is explained through application to a tutorial on the physics of underwater sound.
The design and implementation of a prototype concept-flow interpreter are presented. This
design technique and the associated interpreter allow for rapid construction of highly
flexible computer-based tutorial strategies, useful for both tradition:l CAI applications and

for more efficient help-sequence design in interactive systems.

Accession For 1
NTIS GRAXI f
DTIC TAB 0

Unannounced dJ
Justification |

By
| Distribution/ =
Availebility Codos]
[JAvail ancsor |
Dist Special

P"\

iii

TABLE OF CONTENTS

I. INTRODUCTION ...t ittt e ittt ananaaeaees 1
A. THEPROBLEM. ittt ittt iareennans 1

B. THENEEDSttt ittt ieiii e iiiieennnan, 2

C. ASOLUTION: CONCEPT-FLOWDIAGRAMcccooiiiininan. 3

1. Brief Overview of the Design Methodology, 3

2. SymbolsUsed ... o e 4

a. Rectangle e 4

b. CirCle ... e e e 4

C. AITOW ittt e e 4

Ao OCtagON .. e i 4

3. Labellingof SymbolsUsedttt 4

D. APPLICATIONOFTHESIS e 5

E. THESISCONTENTS ... i i i i 5

II. CONCEPT-FLOW DIAGRAM METHODOLOGYcoooiiintt 6
A. PHYSICSOFSOUNDTUTORIALot 6

B. PEDAGOGICALPHASEOFDESIGN ..., 6

L USErGroup ..ottt e e e 6

iv

2. ConceptGoalst e e e 7

3. ConceptDependenciescooviiiiiiiiiiiiiier i, 7
4. Mastery TestPlacementooiiiiiiiiiiieeniiiinnnnnnn. 9
C. CONCEPT-FLOWDIAGRAMttt enn 13
1. ConceptBubbleoiiiilt ST 13
2. Mastery TestOCtagoncovueiiiiniieeeennnneeennnnnnnns 14
3. Guidelines........oviiiiiii i i e e 15

III. CONCEPT-FLOW DIAGRAM METHODOLOGY AS

APPLIED TO THE PHYSICS OF SOUND TUTORIALo.e... 16
A. CONCEPT-FLOWDIAGRAM 16
L Level I e 16

2. Level 2 e 18

3. Level 3. 18

B. DATAFLOW DIAGRAM ... i e it e i e 18
1. ContextDiagram......... it 18

2. Level l oo e 18

C. SUMMARY OF CFD ANDDFD COMPARISONcoienn.. 25
IV. DESCRIPTIONOFPROGRAMttt 27
A. COMPUTER SYSTEM i i 27
B. IMPLEMENTATIONOFDESIGNTOOLSc.ociiiiiiiiiaiint 27
C. DESCRIPTION OF GRAMMAR AND DATA STRUCTURE.............. 28

1. GraphicDefinition i i 28
2. cfdmode. e e 28
action_list e e 29

(1) region_idot e e e e 30

(2) draw ... e e 30

(B) Clear ... 30

() WIHE ittt ittt e e et e e e e e 30

(5) IMput . e e 30

(3 I 1 T 30

(7)) Arag . e e 30

(B) quit .. e 30
TeSPONSe_liSt e 31

(1) click-left, click-middle, click right, click-any 32

(2) click-help, click-continue or click-exit 32

(3) MOUSE-MOVEttt ittt e iiieenaneeannns 32

(4) integer*seconds” e 32

(5) arithmetic Operatorst eennennnnnnnnns 33
Useofassertandpast..........c.ooitiiiiiininiiinennnnnn. 33

L) T+ < T 34

02 T 1Y)« P 34

3. cfd_menu. e 34
D. DESCRIPTIONOFINTERPRETER......t 34

vi

1. Present ACtionsoeiieiniie ittt i aeanreeneaneannns 35

2. Interpret ReSpONSeottt it i 35

V. CONCLUSIONANDFUTURERESEARCH...............ccoiiiiiiiinnnn.. 37
A. SUMMARYOFCONTRIBUTIONSttt 37

"B. RECOMMENDATIONSFORUSE\ttt e, 37

C. RECOMMENDATIONS FOR FUTURERESEARCH..................... 38
APPEN DX A . e e 39
APPENDIX B ..o e e 41
APPENDIX C o e e i 69
APPEND X D ..o 70
APPENDIX E .. e 93
APPENDIX F . 128
LISTOF REFERENCES i ettt aes 137
BIBLIOGRAPHY ... e 138
INITIALDISTRIBUTION LIST e 140

vii

I. INTRODUCTION

A. THE PROBLEM

Morc and more, instructors arc using computers as instructional tools both in and out of the classroom
environment. The use of a computcr as an instructional tool is referred to as Computer-Aided Instruction
(CAI), “a process in which the computer is actually the prime deliverer of the instruction” (Burke, 1982,
p. 16)

The educational promise of CAI lies in its ability to individualize and personalize the instructional
process. CAT lessons can test as well as tutor by encouraging students to become active participants in
their own learning. Students work at their own pace while the computer monitors their progress.
Students are kept informed of their progress through intermediate responsc and achicvement summarics.
(Marks, 1981, p. 228)

Current techniqucs for design of instructional software tend to produce computer-driven tutorials. The
computer system drives the presentation of a specific topic and determines to what degree the presentation of
that concept will occur even if the user alrcady has a grasp of the concept. The computer presentation of the
lesson is an almost lincar process; presentation of the concepts is in a specific order with only limited or no
devia'ion to this order allowed. Thus, current techniqgues do not simulate the real-world teaching environment.
In a real-world tcaching environment, the tcacher determines the level of student comprehension; the teacher
determines when the student has difficulty understanding the concept and can therefore digress to a level of
comprehension upon which o build and tcach the concept; and the tcacher determines when the student
understands a concept, when not to continuc dwelling on the concept at hand and when 1o move on to a new
concept prescntation.,

Current software design technigues do not allow for the proper representation of the concepi-flow
needed to simulate the real-world tcaching environment in CAIL They aid in determining the control flow,
when to execute a process, and the data flow, how data is passcd between processes, within the system. Both
of these techniques arc uscful in the software engincering ficld but are not very helpful with CAT design.
There is a necd for a design technique that allows the user to drive the concept presentation. Therefore, we

want to design a technique that allows for a closcr simulation of the tcacher-student interaction environment.

B. THE NEEDS

To simulate the real-world teacher-student environment, the computer sysiem must determine and
detect when the lesson plan nceds adjustment to better suit the needs of the user. The program must make the
determination, as does a teacher, based upon user response. There are two ways of making this determination:
either the user explicitly claims no knowledge or the user specifically claims knowledge that requires
verification to ensure expertise.)

If the user claims little or no knowledge of a concept, then presentation of the tutorial should
automatically occur. Once the user initiates the program and begins demonstrating an understanding of
concepts through task accomplishment, an actual explanation of a concept should occur only when the user
demonstrates or claims unfamiliarity with that concept. When the user has trouble comprehending a concept,
the program should backtrack until a level of comprehension is found. Basing the flow of the lesson upon this
level of comprehension, the program then begins from this concept and moves forward. As Krendl suggests,
this allows the novice user to bencfit from structure, systematic presentation of material, and opportunity for
practice. (Krendl, 1988, p. 371)

“High aptitude students are more likely to benefit when they can control the pace, amount of practice,
level of difficulty, and style of instruction 10 suit their own needs.” (Krendl, 1988, p. 371) Therefore, if the
uscr shows or claims knowledge of a concept, omission of a tutoriat of the concept should occur allowing the
uscr to progress onto the next concept. This will prevent the user from experiencing the boredom produced
by forcing him/her to cycle through a tutorial he/she alrcady understands. An expert user should be able 10
drive the presentation forward from concept to concept aftcr demonstrating an understanding of cach concept
through successful task accomplishment. Thercfore, the user, instcad of the computer, is guiding the concept
presentation.

Software designers nced to allow for this varying concept presenitation flow in the program design, The
program should allow a user with an arbitrary level of comprehension 10 traverse through the program dealing
only with the presentation of concepts when they arc not understood. Hence, in order 1o allow for this tutorial
presentation, the concept presentation must encourage minimal ordering constraints,

Alfred Bork, a leader in the pedagogical development of computer-based learning, uses pedagogical
flowcharts to diagram the presentation-flow of a tutorial (clectronic mail from Bork). These flowcharts are
non-hierarchical, informal, and are difficult to translate into software. There is a necd for a formal diagram
that more explicitly displays the hicrarchy of the presentation and that lcads to a natural translation into

software,

C. A SOLUTION: CONCEPT-FLOW DIAGRAM

To support a minimal-ordering design, we introduce a new diagram to the structured analysis design
methodology. The new tool is called a Concept-Flow Diagram (CFD). A CFD is for use 1o aid in the design
of CAI by software engineers, computer scientists and anyone involved in the process of designing a tutorial
of any type. The CFD is a high-level diagram and is for usc in conjunction with pedagogical design, a series

of instructional goals, and Dataflow Diagrams (DFD), thc conncctions between program subunits.

1. Brief Overview of the Design Methodology

Before attempting to design the CFD, the designers must first auempt a pedagogical design. It is
during this stage that the instructional materials are fully specified from an instructional point of view (Bork,
p. 106). From the pcdagogical design, specific concepts that need presentation should be apparent.

A general, but less will-defined, method is to usc the educational objectives and task analyses to
subdivide the course into a sct of concepts and techniques which have to be Icarned. These can be
partitioned into a series of levels, depending on their complexity, and usually checks are made to ensure
that the student has reached a satisfactory standard of mastery before he is allowed to continuc to higher
levels. (Walker, 1984, p. 45)

These concepts translate into a module or bubble in the CFD. The CFD represents the forward and
the backward prescntation of thesc concept modules. Hartley argues for . . . a more comprchensive
representation of the student’s knowledge state on which to basc decision making . . . " (Walker, 1984, p. 39)
Therefore, at the start of a new concept module, the user is given a task or comprehension test to complete
via a mastery test (MT). This allows for an active involvement in learning, which is necessary for effective
leamning and achicving desired outcomes (Levin, 1981, p. 1). Performance upon complction of this task
determines the user’s level of comprehension. If the user demonstratcs comprehension or satisfactorily
completes the task, the sysiem movces on to the next task or instruction-related exercise. If the user does not
complete the task or cannot pass the comprehension test, the feedback should “. . . locate errors and provide
information so that the learner can put them right. . .. (Walker, 1984, p. 43) and also provide “. . . corrective
procedures by which gaps in learning, mistakes, and misunderstandings can be relearned or corrected.”
(Levin, 1981, p. 16) The system then reverts 10 a tutorial and presentation of the concept. The idea is to
introduce the tutorial only when needed. Upon successful completion of the MT for the specific concept
module, flow moves on to the next concept module. This is in keeping with Bork’s suggestion that pretesting

and post-testing be included in the tutorial to make individualization possiblc. (Bork, p. 77)

2. Symbols Used

We based the symbols used in the CFD on Dataflow Diagrams to allow for easy understanding
and translation of the new diagram. Refer 10 Yourdon's recent work (Yourdon, 1989, pp. 139-187) for a

detailed explanation of the DFD.

a. Rectangle

A rcclangle represents external entities, or terminators, with which the system
communicates. A terminator is usually a person, a group of people, or another system outside the control of
the system modeled. The systems analyst cannot change the contents, organization or internal procedures
associatcd with the terminators. (Yourdon, 1989, pp. 155-156, pp. 345-347) This is the same as a terminator

in a DFD.

b. Circle

A circle represents concept that is to be presented. (Also referred 10 as concept bubble).
Circles are decomposced into further Concept-Flow Diagrams as needed to detail the concept-flow forming a

design hicrarchy.

c. Arrow
An arrow represents concept-flow and direction. It points Lo the next concept for introduction

and/or MT to be given. An arrow indicates the dependency of concepts or modules from one part of the lesson

to another.

d. Octagon

An octagon represents a scrics of tasks that form a MT. Octagons may be decomposed into

further Concept-Flow Diagrams to show 1ask scquencing and help prescntation.

3. Labelling of Symbols Used

The name given to cach concept should be specific enough 10 give the uscer of the diagram an idea
of exactly what type of information is presented in the concept presentation. The name of the MT should be
the exact same as the concept or concepts that the MT is testing for comprehension. Arrows do not get labelled

since they only represent the direction of flow.

D. APPLICATION OF THESIS

Concept-Flow Diagrams arc extremely uscful and immediatcly applicable to CAI and computer
tutorials. They benefit both the software designer and the uscr. Software designers have at their disposal a
structured analysis design tool to improve the presentation and flow of their program. Also, they are given a
tool that looks somewhat familiar 10 software enginccrs, making the learning of CFD design easier. The user,
on the other hand, is able to usc a CAI program that better suits his/her needs. The tutorial is more useful to
the gencral uscr. Through the use of Concept-Flow Diagrams, the novice user is challenged but not frustrated
with the presentation of new material and the experienced user is allowed to demonstrate understanding rather
than becoming bored with presentation of concepts he/she alrcady comprehends. Help is provided only when
the user demonstrates a deficiency, either through task performance or explicitly. Concept-Flow Diagrams,

thus, improve the functionality of CAI tutorials.

E. THESIS CONTENTS

Chapter 11 explains the methodology behind the CFD. Chapier 1] explains the application of the CFD
mcthodology to the design of an actual tutorial that will be implemented. Chapter IV describes the program
that was written for the tutorial implementation. And finally, chapter V presents the conclusions and

dircctions for futurc research.

II. CONCEPT-FLOW DIAGRAM METHODOLOGY

A. PHYSICS OF SOUND TUTORIAL

The Concept-Flow Diagram (CFD) design methodology was developed 1o aid in the design of a tutorial
concerning the physics of underwater sound. This arca was chosen because the U. S. Navy, specifically,
Space and Naval Warfarc Systems Command (SPAWARS (PMW-183)), requested that we design a tutorial
to present just that. The intended users of the tutorial arc U. S. Navy enlisted personnel in the Ocean Systems
Technician Analyst (OTA) rating. This user group includes the high school graduate who basically has no
knowledge of the topic, and the experienced OTA, who has worked with and studicd the physics of sound.
The tutorial begins with an introduction of how 1o usc the particular computer program. The concepts covered
in the tutorial are basic definitions regarding the physics of sound, the characteristics of sound, occan
characteristics, ray path transmission and loss, the passive sonar cquation, and the sound velocity profile. The
placement of mastery tests (MT) and the concept-flow of the Physics of Sound Tutorial (POST) are discussed

in this and the following chapter.

B. PEDAGOGICAL PHASE OF DESIGN

“The key to pedagogical design, in all its phascs, is the extremely good teachers. It is the competence
of the good teacher that one tries to capture within the computer program.” (Bork, 1990, p. 6) As suggested
by Bork’s methodology (Bork, p. 106), a profcssor of physics was consulted for the pedagogical design phase
of the POST. To form a pedagogical basis for the design, designers must determine two things to allow for
easy transition to the design of the CFD. First, the pedagogical phase must determine exactly what the concept
goals are and sccond, what tasks 1o include in the MT. These determinations arc formed in a scrics of four

steps.

1. User Group

The first step is to determine the uscr or person/group of people for whom the system is being

built.

The user may be job specific such as an opcrator, a supervisor or an exccutive; the uscr may be based
on the level of experience of the potential uscrs of the system; or the user may be inherent in the concepts
being taught. (Yourdon, 1989, pp. 155-156)

Knowing who the uscrs of the tutorial will be affects the pedagogy of the utorial. The

terminology, complexity of mastery tests, and the order of the presentation are much different for
the novice than the expert uscr. The pedagogy for the novice user begins with low-level concept
goals and mastery tests and increases in complexity as the user completes portions of the tutorial.

The expert user, on the other hand, begins with high-level concept goals and tasks.

2. Concept Goals

Once the user group is identified, the next step is to examine the tutorial system as a
whole and determine the overall concept goals. In other words, the analyst needs to decide what
the student must comprehend upon completion of the tutorial. This step can take the form of a list
of all of the concepts needed for presentation in some form within the tutorial. This list of concepts
is then grouped into categorices of related concepts and each category assigned a descriptive name,

In the casc of the POST, we produccd the list in Figurc 1.

3. Concept Dependencies

Once the concept goals are known, the next step is to determine the dependency
relationship between each of the concept categorics. In other words, the analyst needs to decide
what concepts must be taught prior to other concepts in order to facilitate comprehension. For
example, it makes no sensc to present the passive sonar equation before presenting what a source,
sound and detcctor are and what the relationship and behaviors are in the medium through which
the sound is travelling. As the dependency relationships became apparent, the order of
presentation of these groups based on the dependencies also became apparent.

The order of the presentation is not lincar. Linearity occurs when the entire tutorial
presentation is restricted to the presentation of one concept after another in a specific order. While
this may be appropriate for a fully homogenous group of students, it forces experts 1o review
known material. If the order is initially lincar, subdividing and rearranging the contents of the
concept goal catcgories is necessary until the dependencies are more explicit. The subdivision and
rearrangement of the concept goal categorics leads to the formation of concept categorics that

allow the user’s knowledge to derive the order of presentation within a section of the tutorial. The

Introduction and Basic Definitions
Source
Medium

Sound Characteristics
Frequency
Hertz
Period
Compression
Rarefaction
Longitudinal wave
Broadband

Ray Path Transmission and Loss
Attenuation and Absorption
Spreading/divergence
Spherical Spreading
Cylindrical Sprcading
Scattcring
Critical Angle
Multipath Propagation

Ocean Characteristics
Bathymetry
Isothermal
Gradient
Thermoclinc
Sound Channel
Surface Ducts
Decp Sound Channcl
Convergence Zone
Reliable Acoustic Path

Sound Velocity Profile
Temperature
Salinity

Passive Sonar Equation
Transmission Loss
Noise Level
Recognition Differential
Signal Excess
Bandwidth
Echo Level

Sound and Ray Path
Detector

Amplitude

Effective Pressure Amplitude
Wavelength

Wavefront

Absolute Sound Pressurc Level
Dccibel

Tonals

Directed Path

Reflected Path

Refracted Surface Reflected
Path

Refracted Path

Limiting Ray

Shadow Zone

Noise

Biological Noise
Hydrodynamic Noise
Occan Traffic Noisc
Sca Surface Noise
Seismic Noise
Bottom Bounce
Mixed Layer

Pressure
Dcep Sound Channel Axis

Source Level

Array Gain

Figure of Merit

Noise Spectrum Level
Doppler

FIGURE 1: Concept Categories

original list of concept goal categories and their dependency relationship for POST is illustrated in Figure 2.
The original order of the concept presentation is lincar. Upon reexamination of the concept calegorics and
their contents, we discovered that several of the categorics were related and could be combined. The
recxamination included looking for related concepts, no matter which category they were a part. In Figure 2,
Ray Path Transmission and Transmission and Propagation Loss categories are related, so these two
categorics were combined. The rcarrangement of the categorics changed the dependency relationship.
Categories emerged whose order of presentation would be left to the student. Students may choose if Ray Path
Transmission and Loss is presented before or after Ocean Characteristics. Figure 3 illustraies the refined

concept dependency relationships.

4. Mastery Test Placement

The last step is to determine where in the system to place the mastery tests and what tasks to
include within these mastery tests. A MT is a task or a group of tasks such that the tasks arc . . . large cnough
1o expose the student’s misunderstandings and correct them.” (Walker, 1984, p. 43) User performance upon
completion of the task determines the next state in the tutorial flow. If the user successfully compleies the
task, the MT dirccts the tutorial flow in a forward direction advancing to another state or concept. However,
if the user does not successfully complete the task, answer analysis within the MT determines the tutorial
flow.

Answer analysis of a task consists of detcrmining the possible answers, both correct and incorrect,
and if necessary, the types of answers given to previous tasks. By maintaining a history of previous answers,
a pattern of errors made may develop making the arca of deficiency more specific. If answer analysis cannot
immcdiatcly determine the exact arca of deficiency, the tutorial backtracks through the mastery tests until the
deficicnt area is pinpointed. The mastery tests, not the concept bubbles, determine the user’s level of
comprchension.

Mastery tests are a part of the bubble to ensure the user comprehends the low-level concept goals.
Mastery tests can and should be given upon completion of onc or more relatcd bubbles to ensure the user is
not only grasping the individual concepts goals, but is also able 10 tic these concepts together to understand
the more general concept goal. The placement of mastery tests is illustrated in Figure 4. Successive tasks
within a MT should increasc in complexity. By gradually increasing the complexity of cach task, the MT

design makes answer analysis casicr.

Introduction

Basic Decfinitions

Sound Characteristic

Transmission and

Y

Propagation Loss

Ray Path Transmission

Ocean Characteristics

Sound Velocity Profile

Passive Sonar Equation

FIGURE 2: Original Concept Category Dependency Relationships

10

Introduction & Basic Decfinitions
Sound Characieristics

Ray Path Transmission Occan Characteristics

andm\\/

Sound Velocity ~ Passive Sonar
Profile Equation

FIGURE 3: Refined Concept Category Dependency Relationships

Introduction & Basic Definitions

\

Sound Characteristics

v

MT
Introduction & Basic Definitions
Sound Characteristics

)

Ray Path Transmission Occan Characlteristics

anum\/
MT

Introduction & Basic Definitions
Sound Characicristics
Ray Path Transmission & Loss
Occan Characlcristics

N

Sound Velocity ~ Passive Sonar
Prafile Equgption

MT
All of the above

FIGURE 4: MT Placement

C. CONCEPT-FLOW DIAGRAM

Upon completion of the pedagogical phase of design, the next step is to formulate the concept-flow by
using the CFD. At this point in the tutorial design process, the concepts 1o be presented and the tasks to
include in the MT have been determined in the pedagogical phase. The basic premise behind the CFD is to
let the user demonstrate level of comprchension and delve into the actual concept presentation only if
neccssary, i.e., the user demonstrates a deficiency in a specific arca. The user should have the option of either
starting with a tutorial presentation or delving into a MT. Theoretically, the expert user should be able to
traverse through the tutorial from MT 10 MT without a concept presentation occurring.

The CFD design consists of levels as with the Dataflow Diagram (DFD). The top level of the CFD is
level 1, the second lcvel is level 2, and so on. The high-level diagrams will have small numbers and the low-
level diagrams will have large numbers. The higher levels, i.c., level 1, contain general concept goals and

mastery tests; the low levels contain the specific concept goals and mastery tests.

1. Concept Bubble

The concept categorics delincated in the pedagogical design phase translate into the high-level
bubbles in the CFD. The dependency relationships determined in the pedagogical design phase translate into
the placement of the bubbles and the arrows between them to indicate flow of the tutorial presentation. The
contents of cach bubble becomes more specific as you move down (levels with high numbers) in the CFD,
until the lowest level is reached. The concept goals within cach concept category of the pedagogical design
arc translated into the lowest level of the CFD. The lowest level of the CFD pinpoints the exact concepts 1o
be presented and the order of presentation. It is acceptable for the lowest level concept order of presentation
to be lincar.

There should be no more than 9 concepts per level, including level 1. *Pcople can deal with seven,
plus or minus two, chunks of information consciously and comfortable. More than nine chunks of information
can lcad to confusion and overload.” (Cleveland, 1986, p. 18) If more than 9 concepts per level occur, the
pedagogical design must be reviewed 1o determine if concept categories can be combincd at the higher levels
then broken out at the lower levels. Each category must contain closely relawcd concepts, not just an arbitrary
group of concepts. Therefore, a concept category may be divided into subcategories. The subcategorics then
translate 10 intcrmediate levels of the CFD and the specific concepts are the lowest level of the CFD.

Each bubbic is numbered as with the DFD. Numbering cach bubble allows for relating a bubble

1o the surrounding levels of Concept-Flow Diagrams. The number of cach low-level CFD relates to the high-

13

level CFD bubbles. For example, bubble 1.1.1 is a level 3 diagram and the bubble is part of bubble 1.1 in level
2 and bubble 1 in level 1. Reversing the process, if bubble 1 in level 1 of the CFD is broken down, the level
2 bubbles will be numbered 1.1, 1.2, 1.3, etc.

2. Mastery Test Octagon

This is probably the most difficult determination to be made in the design of the tutorial. The
mastery tests determine the level of comprehension of the user and whether or not the user is ready to move
forward or backward in the flow of the tutorial. The MT is therefore extremely important in the design of the
tutorial.

Great care must be taken in determining the placement of the mastery tests and determining the
tasks presented within each MT. This docs not necessarily mean that in the higher level CFD, i.e., level 1,
there must be a MT given afier cach concept. When designing POST, the first attempt at MT placement put
at MT between cach and every bubble. We discovered that this is unnecessary. A MT between two bubbles
is unnccessary if the flow to the sccond bubble is only dependent upon the previous bubble. For example, it
is unnccessary to place a MT between the Introduction & Basic Definitions bubble and the Sound
Characteristics bubble in Figure 3. The MT within the Introduction & Basic Definitions bubble is sufficient
to determine user comprehension of that concept category. Placing another MT between the bubbles would
only be redundant. It is necessary, however, to place a MT afier the completion of the Sound Characteristics
bubble because the user must comprehend both the Introduction & Basic Definitions bubble and the Sound
Characteristics bubble prior to starting cither the Ray Path Transmission and Loss bubble or the Ocean
Characieristics bubblc.

There are smaller mastery tests given within cach bubble in order to determinc comprehension of
that particular concept. The mastery tests within a bubble address «necific concepts within that bubble. Atthe
cnd of the presentation of a bubble and prior to flowing to the next bubble, there is a MT to ensure that the
uscr comprehends the concept category presented. Then, if a MT follows in the flow, it tests comprehension
of the rclationship between that bubble and any other bubbles alrcady presented. For example, in Figure 4,
the mastery tests within the Introduction & Basic Definitions bubble and the Sound Characteristics bubble
test only their respective concepts. The MT given afier the Sound Characieristics bubble tests the
comprehension of the relationship between the Basic Definitions and the Sound Characteristics.

The addition of the MT 1o the diagram complicates the 9 bubbles per level rule. If the addition of

mastery tests clutters the diagram, the entire CFD must be readdressed. 1t may require that more concepts that

14

are related be combined and/or the placement of mastery tests changed. Mastery tests arc numbered just as

with the bubblcs.

3. Guidelines

This translation into a CFD is by no means the final CFD. The CFD must constantly be reviewed

for improvement. The following guidclines and criteria must be considered:

1.

(%)

Are there more than 9 bubblcs on cach level of the CFD? The CFD cannot look 100 busy or cluttered.
If there arc more than this number of bubbles and mastery tests, take another look at the concept
categorics dectermined in the pedagogical design. Concept categories may need to be combined or
reorganizced 1o mect this criteria. Divide the CFD into more levels than planned or reevaluate the use
and placement of mastery tests. This only leads to better modularization of, flow of and answer analysis
within the tutorial.

Do the mastery tests serve as a point of bottleneck? A bottleneck occurs when the MT is testing too
broad and arca for comprchension. If so, reconsider the mastery tests that are needed in the tutorial. A
bottlencck indicates a necd for further breakdown of concept categorics and placement of mastery tests
within the tutorial.

Docs the design allow backtracking from MT to MT?

Docs the design allow the user 1o choose between concept presentation or MT presentation?

III. CONCEPT-FLOW DIAGRAM METHODOLOGY AS APPLIED TO THE
PHYSICS OF SOUND TUTORIAL

The pedagogical design phase of the Physics of Sound Tutorial (POST) has been completed as
discussed in the previous chapter. The concept categorics and their subgoals arc now organized 1o be
incorporated into the tutorial by using the Concept-Flow Diagram (CFD). The following discussion applies

the CFD and the Dawaflow Diagram (DFD) mcthodologics to POST.
A. CONCEPT-FLOW DIAGRAM

1. Levell

Level 1 of the CFD is illustrated in Figure 5. At this level, the CFD shows the genceral concept
categorics introduced and when the mastery tests occur. The user may enter at one of two points: go directly
into the MT or start with the concept prescmation. The bubbles are the concept categorices determined during
the pedagogical design phase (Figure 1). The flow and MT placement correspond to the relationships
determined during the pedagogical design phasc (Figure 4). The mastery tests visually break up the tutorial
into three distinct arcas: bubbles 1 and 2; bubbles 3 and 4; and bubbles 5 and 6. This was not intentional; the
thought that went into the pedagogical design and the final dependency relationships made this a natural flow.

The contents of the Introduction and Busic Definitions bubble in Figure S arc lisied below. The
other concepts will be implemented in the future and therefore, the specific arcas covered within each topic
arc not discusscd.

1. Buutonology - how the mouse operates and how cach bution that appears on cvery scrcen operates.
Buttons introduced are HELP, CONTINUE and EXIT.

1

Source - the definition of the term, how represented in the tutorial and manipulation of the source by
the user.

3. Medium - the definition of the term and how the medium affects the speed of sound.
4, Sound and Ray Path - the definition of the term and how represented in the tutorial.
5. Detector - the definition of the term, how represented in the tutorial, manipulation of the detector by

the uscr and the cffects on detection of sound depending upon the relationship between the source and
the detector.

16

USER

ntroduction
&
Basic Defs
(IBD)
1

Ray Path

ath Ocean
Transmission Characteristics
, and Loss (00
USER (RPTL) 4
3

Sound
Velocity

Passive
Sonar

Profile Equation
(SVP) (PSE)
5 6

FIGURE 5: Concept-Flow Diagram Level 1

2. Level2

Refer to Figure 6. he first attempt at designing the level 2 diagram is illustrated in Figure 7. Notice
there is a MT after each concept presentation. Upon further design and review of the pedagogical design, we
discovered that this was unnecessary for the POST. The concepts presented are so basic that the MT for each
concept would be trivial. A MT within and between cach concept bubble caused the MT between each
concept bubble to be trivial and redundant. We decided that a MT for concepts 1.2 thru 1.5 was much more
effective as illustrated in Figure 7.

Each bubble in Figurc 7 represents the presentation of each concept. Bubbles 1.2 thru 1.5 are not
contained within one bubblc because each concept presentation depends upon the student understanding the
prior concept prescntation. Although there are not explicit mastery tests between each bubble, there are
mastery tests within each bubble. It is the successful completion of these mastery tests that determines

transition to the next bubble.

3. Level3
The original version of the CFD level 3 diagram appears in Figure 8. Notice that there arc no
mastery tests. Upon reexamination, we decided that the Introduction bubble needed to be more explicit and
that mastery tests were needed. The inclusion of mastery tests ensured that the user had mastered the basic
tasks of using the mousc prior to starting the tutorial. This diagram was revised, Figure 9, to include them.
Mastery tests are not given afier the presentation of each concept goal because the MT after all of the concepts
at this level have been presented would be too trivial and redundant. The concepts themsclves are so basic

that one MT at the end is sufficient.
B. DATAFLOW DIAGRAM

1. Context Diagram

The context diagram represents the entire system. The context diagram for POST is illustrated in
Figure 10. In addition to the student using the tutorial, terminators arc introduced representing an instructor
and the Ocean Systems Qualification (OQS) board. The instructor and the OQS board arc able to monitor

student progress and to update the tutorial as needed.

2. Levell

Level 1 of the DFD is illustrated in Figure 11. A quick glance at FiguresS and 11 shows a drastic

diffcrence in the CFD and the DFD. The difference is duc to what cach ar-'ysis tool represents. The DFD

18

' "] Buttonology

1.6
e
MT
P e
Medium

1.8
MT
Sound & -

Ray Path
1.9

Sound
&
Ray Path
1.4

MT

Detector
P
1.5

Detector
1.10

FIGURE 6: Original Concept-Flow Diagram Level 2

19

[@—————=1 Buttonology
1.6

MT Detector

1.5

Basic Defs
1.10

FIGURE 7: Revised Concept-Flow Diagram Level 2 .

Introduction HELP
111 Button

1.1.2

CONTINUE
Button
1.1.3

FIGURE 8: Original Concept-Flow Diagram Level 3

represents the communication between software structures of the system and shows how the data is passed

throughout the system. The CFD attempts to provide a visual aid 1o illustratc how the tutorial is to be

presented; i.e., the sequence of introduction of different concepts.

1.

The terminators of the POST tutorial arc;

The instructor. The instructor is allowed 1o intcract with the tutorial text and test question file.
Interaction includes the instructor deciding which concept module the student will use or modifying

the test questions asked of the student. The instructor also may keep track of uscr mastery test (MT)
results.

3 Mouse
Buttons
1.1.2

Continue
Button
1.14

MT

HELP,
CONTINUE,
EXIT
Buttons
1.1.7

FIGURE 9: Revised Concept-Flow Diagram Level 3

2. The Ocean System Qualification Standard (OQS) Board. The OQS Board may intcract with the systcm
by requesting and/or monitoring MT results of each user.

3. The user of the tutorial. The user may request which concept he/she wishes to explore. If the user must
quit the tutorial, either temporarily as an icon or for an extended period of time, he/she may restart the
tutorial at the point at which he/she quit. Determination of this point of restart is through check points
reached when the user last uscd the tutorial.

22

0OQS Board

Student
Tutorial
Results

PHYSICS
OF

SOUND
TUTORIAL

Tasks Test

Questions

Concept

Requests Student

Tutonal
Results

User Instructor

FIGURE 10: Context Diagram

Bubble 1 of Figure 11 allows the instructor to interact with the tutorial 1ext and test questions file. The
tutorial presentation uses this file for the text of concept explanations and mastery tests. For each tutorial, the
main process is to present the tutorial, bubble 2. The CFD is actually a more detailed design of this bubble. It
dclineates exactly how to present the tutorial, taking into consideration the topic of the lesson plan. Because
the mastery tests are given within this process, the instructor and the OQS board get the individual user
performance statistics from here. The other process that occurs in a tutorial is the restart, bubble 3. If the user
exits the tutorial in the middle, the user is brought back to the concept where he/she left off. The tutorial has
check points assigned after the completion of a concept or MT. When the uscr restarts the tutorial, the check

point file is checked find the last check point encountered. The torial then restarts from this check point.

INSTRUCTOR %
Changes to
Tutorial Mastery
Test
Results
Monitor
Tutorial
1
Tutorial Text and Test Questions File
Tutorial
Text
Mastery
Test
Present
00S Board [a—5 [Turorial
2 Tutorial Text
> USER

Request
Tutorial
Text

Check Point File

Restart
Tutorial
3

Check
Point

Start Point

FIGURE 11: Dataflow Diagram Level 1

To illustrate the basic process flow, the only DFD level 1 bubble that required further brcakdown was
bubble 2, Prescnt Concept. Refer to Figure 12. Within the presentation of the tutorial, the two major processes
that occur are cither the presentation of a concept to the user or the presentation of a MT to the uscr.

1. Once the concept presentation occurs, a MT is given 1o determine the level of comprehension of the
user. Determination is made by the maintenance of statistics of correct answers 10 the mastery tests.

2. Once the MT is given, a determination is made by the tutorial as to the level of comprehension. If the
user has shown mastery of the concept, the tutorial moves on to the next MT or concept module. If the
user has shown a deficiency, the tutorial moves to the appropriate concept presentation to help clear the
misunderstanding.

C. SUMMARY OF CFD AND DFD COMPARISON

The CFD design methodology presents a very complex structure while the DFD presents a simple
structure. This is very characteristic of computer-aided instruction (CAI). CAl deals with the trying to present
a wide range of concepts in an ordered manner. The CFD structure allows for the breaking up of this task into
an organized hicrarchical structure.

The CFD allows for an instructor to inicract with the tutorial presentation to modify task and concept
discussion. This permits the tutorial to be updated as the course develops. By allowing the modification of
the tutorial, the CFD structure must be placed in an external file, intcrpreted by a fairly general system. This

system is presented in the next chapter.

USER INSTRUCTOR 0OQS Board
A
Test
i Questions ?astery

Tutorial est Master

Text Results Tes Y
Results

Request
: Check
Present Give Point
——® Concept Mastery
Tutorial 21 Completed Test
Text) Concep[2.2 Test)
Questions
Deficienc Statistics Next
Concept
Determine M;‘;? °
Comprehension
23 Mastery CO.',] aep !

Check
Point

Next Concept

FIGURE 12: Dataflow Diagram Level 2

26

IV. DESCRIPTION OF PROGRAM

Now that the structure of the Concept-Flow Diagram (CFD) has been developed, it is necessary to
translate the design into software. In order to do this translation in a flexible manncr to allow instructors to
customize the course materials, the CFD is translated into an external file in a special-purpose language. This
language is parsed into a data structure represcntation and interpreted. The following discussion prescnts the

grammar implemented to support the data structurc and a prototype of an intcrpreter.

A. COMPUTER SYSTEM

The Physics of Sound Tutorial (POST) module is part of the SPARS Releasc S system. The computer
hardware uscd for implementation was a U. S. Navy Standard Desk-Top Tactical-Support Computer (DTC-
2) designed by a major systems integration firm, C3, Inc. The DTC-2 uses the SPARC 4 scrics
implementation of RISC computer architecture. The DTC-2 system includes an 8 MB 4/110 CPU, a 197 color
monitor, a color graphics plotter, a color graphics printer, a mousc, and a track ball. The software used was
SUNOS 4.0 and C compiler. The 4/110 UNIX System V Operating System includes SunView, Open
Windows (X11/NeWS), NFS, Asscmbler, and Real-time Extensions.

The interpreter was implemented using Sun Visual/Integrated Environment for Workstations
(SunView). SunVicw is a tool that allows for the implementation of graphic-bascd applications running in
windows. Two types of windows were used in this application: pancls in order to usc buttons and a canvas in
order to draw text and graphics. The canvas may be used as a whole region or a set of nine regions. A mouse
is used to track location, to click the sct of buttons, and as a graphic positioning device. A trackball is available

for use but was not used in the prototype.

B. IMPLEMENTATION OF DESIGN TOOLS

We developed a data structure, a grammar and an interpreter in order to implement the tutorial based
upon the pedagogical design phase, structurcd analysis and CFD designs. The POST was implemented using
the grammar and data structures described below. Appendices B thru E contain the POST script, grammar,
LEX and YACC files and interpreter respectively, Appendix F contains a detailed explanation of the data
structure clements. In the discussions below, bold italics refer to elements of the grammar and bold refers to

elements of the data structure.

C. DESCRIPTION OF GRAMMAR AND DATA STRUCTURE

The grammar is based on the CFD graph semantics and expressed in a BNF notation. The UNIX tools
LEX and YACC were uscd to implement the grammar as a parse for input files describing the utorial. The
data structure for a tutorial forms a ¢fd_graph. A cfd_graph consists of a ¢fd_menu and nodes, called

¢fd_node. The rescrved words of the grammar are listed in Figure 13.

assert halfwid (
clear input)
click-left key +, -
click-mid mousc */
click-right mousc&key ==
chick-any mouse-move <, >
click-help past <=, >=
click-continue pausc & (logical and)
click-exit write | (logical or)
draw X
halfht Y

FIGURE 13: Reserved Words

I. Graphic Definition
The user may define the graphics or CFD states at the highest syntax level of the input file. The
graphics arc specificd by identifier := string. The tutorial script references the graphic images by the
identifier. The string identifics a file in which the graphic is stored. This information is uscd in the draw and

drag actions, Figurc 14 shows the graphic image definitions used in POST Introduction and Basic Definitions.

2. c¢fd_node

Each nodc of the CFD is represented as a ¢fd_node structure with a CFD node identification

number (¢fd_id), the action or actions that is/are to occur at this CFD node, and the possible response or

detector := *“dctector_sym.icon
mousc_sym := “mousc_sym.icon”
path := “path_sym.icon”

post := “post_sym.icon”

source := “‘sourc¢_sym.icon”

FIGURE 14: Graphic Definition Example

responscs expected at this point in the tutorial. An example of the grammar of a typical ¢fd_node appears in

Figure 15.

(st_1_1_1, ((0, clear),
(1, draw, post@(mouseX, mouscY)),

(2, write, *“Welcome 1o the Physics of Sound Tutorial™),

(5, write, “Upon completion of this tutorial, you will have cnough of an understanding to
complete the Physics of Sound module of your OQS™),

(8, write, “Let’s begin . . .”),

(0, pause, 15)),

st_1_1_95)

FIGURE 15: Example of a State

a. action_list

The action list specifies the actions that are 1o occur while in a state. The action list identifics
where in the window to accept input, to draw graphic images and where to display the text of the tutorial. The
actlist of the cfdnode in the data structure represcnts the action list elements as a linked list data structure of
actnode. The actnode identifics the region of the window in which the action is to occur, the specific action

10 take, and the arguments to that action.

(1) region_id - The screen window is broken into 10 distinct regions. By breaking the
window into distinct regions, different actions arc allowed 10 take place in the different regions of the
window. This allows the tutorial 1o simultancously display graphics and text. In Figure 15, the “0” in (0, clear)

refers to region 0, the “8” in (8, write, “Let’s begin . . .”) refers 1o region 8.

(2) draw - This terminal enables the tutorial to display a graphic in the window to enhance
the presentation of the tutorial. The “draw” action must be followed by an identifier specifying the graphic
to be displayed and the location. The location is given using a set of coordinates; either the current location
of the mouse, (mouseX, mouseY), or the location of a graphic currently displayed, (identifier.x, identifier.y).
In Figure 15, (1, draw, posi@(mouseX. mouseY)) says to draw the post icon in region 1 at the current location

of the mouse.

(3) clear - This feature allows the crasure from portions of the window text and/or graphics
that are not relevant to the current state of the tutorial presentation. The location is identified as in the “draw”

action. In Figure 15, (0, clear) says to clear region ().

(4) write - This is the mcans by which text is displayed in the window. In Figure 15, (2,
write, “Welcome to the Physics of Sound Tutorial ™) says to write the string “Welcome to the Physics of Sound

Tutorial” in rcgion 2.

(5) input - Restricts the arca of the window where the user may input text and/or manipulate
graphics. Restricting the input arca to a region within the window prevents the user from arbitrarily writing
text or moving graphics around the window and thus interrupting the tutorial presentation. Input is either
mouse, keyboard or mouse&key. In Figurc 16, (0, input, mousc) says to allow input via the mousc in region

0 and (9, input, keyboard) says to allow keyboard input in region 9.

(6) pause - Limits thc amount of time that an action is displaycd to the user before moving
on to the next action or state. An example is to display text in the window, allow a sufficicnt amount of time
for the display to be rcad, and then move on to the next state. In Figure 15, (0, pause, 15) says to set the timer

for 15 seconds and have region 0 in the wait state.

(7) drag - Allows the uscr to drag a graphic using the mousc. The drag feature may be

incorporated into the mastery tests to increase the complexity of the tasks,

(8) quit - This fecature is used to quit the wtorial upon exccution of the last state of the

tutorial. Il MT performance and answer analysis indicate that the uscr is not grasping a concept, the tutorial

30

(st_1_1_50, ((7, write, “Don’t be afraid to try pressing a button on the mouse.”),
(0, input, mousc),

(9, input, keyboard)),

((15 seconds & (past st_1_1_50 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_10 wait), (assert, wait_wait), st_1_1_50),
(click-left, (assert, left), st_1_1_15),

(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),

(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),
(click-middlc, (assert, mid), st_1_1_35),

(click-right & (past st_1_1_40 2X_wrong), st_1_1_45),

(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-right, (assert, mid), st_1_1_35),

((“Help” | “I do not know) & (past st_1_1_10 help), st_1_1_45),
((“Help” I *“I do not kr ow), (assert, helpy, st_1_1_65),

((past st_i_1_10 wrong_ans & past st_1_1_35 wrong_ans), st_1_1_45),

((assert, wrong_ans), st_1_1_35)})

FIGURE 16: input and response_list Example

terminates the presentation and dirccts the user to get assistance from the instructor. This terminal is not the
same as the EXIT button. The EXIT button is uscd by the user to request tutorial termination. In Figure 17,

quit is uscd to stop the tutorial to allow the user to get assistance from a human,

b. response_list
The response list evaluates the user response, performs answer analysis, and provides the
uscr with feedback. The response list was designed such that the tutorial can identify the user response and
the state to flow to based upon the response and answer analysis,
The response list is a list of all of the possible responses to the action(s) in the action_list.

The structure of the response list must identify the response and the nexy state (¢fd_id) to go to based on this

31

(st_1_1_45, ((3, clear),
(5, clear),

(3, write, “You secm to be having trouble.”),

(4, write, “Before progressing any further, get assistance from your instructor.™),

0, quit)),
st_1_1_45)

FIGURE 17: quit Example

response. The response list is order dependent: therefore, the first response in the list that maiches the

response of the uscr is executed. The responsce list was implemented with a linked list called resnode.

(1) click-left, click-middle, click right, click-any - Refers to the respective button on the
mouse. The click of a mouse button is a responsc event from the user. This terminal allows the response list
to evaluate the respective response in the responsc list. In Figure 16, the “click-left” in (click-left, (assert, left),

st_1_1_15) asks if the response event was a click of the left mouse button.

(2) click-help, click-continue or click-exit - Refers to the buttons located in the panel across
the top of the window. The HELP bution is on-linc help provided to the uscr. The CONTINUE button is an
accept action that directs the tutorial to move on to the next state in the tutorial flow. The EXIT button quits
the tutorial. These buttons are always present in the window and are global to the tutorial allowing the user

to choose one of these options at any time.

(3) mouse-move - Notifics the response list that the cursor is being moved using the mouse.

This feature was not used in the POST.

(4) integer “seconds” - Limits the length of time that a user may take to give a response.
This feature prevents the tutorial and the user from getting into a dead lock state; the user does not know the
proper response and therelore is not giving any response and the tutorial is waiting for a response before
moving on to the next state. In Figure 16, “15 scconds™ in (15 scconds & (past sti_1_1_50 wait_wait),

st_1_1_55) states to sct the timer for 15 scconds and wait that long for a responsc cvent. If a response event

is not received in that time period, go to state st_1_1_55. Remember, st_1_1_55 represents state 55 of concept

bubble or MT 1.1.

(5) arithmetic operators - The usc of the arithmetic operators allows for the interpretation of
where a graphic has been placed within a region. This includes the use of the terminals halfht and halfwid 10

assist in centering a graphic in a region of the window.

¢. Use of assert and past

In order to determine which state to go to next, answer analysis must occur. This involves
reviewing answers given to past questions or tasks. Therefore, the MT should respond 10 a response
differenuly based on a history of performance in the tutorial. assert is a list that maintains all of the states
traversed and the user response for that state. Howcever, the list docs not imply path traversal. past verifics the
assert list to check if a state and specified response have occurred in that state. The past feature is very useful
for answer analysis. The choice of the next state 10 go 1o can then be based on the current response and
previous responses made at specific states. This feature is also very uscful for distinguishing state traversal
for the expert versus the novice uscr. The novice user will make mistakes. The past feature allows for finding
paticrns in the types of wrong answers made and morc importantly, ensures that the flow of the tutorial
presentation is to a state that will provide assistance for correcting the pattern of wrong answers.

With the introduction of the past fcature, the order of the response list affects the decision
logic. For example, assume state st_1_1_10 has been traversed and st_1_1_10/wait exists in the assert list.
Also, assumc the response event is a click of the left mouse button. The cvaluation of the response list in

Figure 18 will always cvaluatc the first responsc and never evaluate the sccond response. The first response

(click-left & (past st_1_1_10 wait), (asscrt, wail_wait), st_1_1_70)
(click-left & (past st_1_1_70 wait_wait), st_1_1_55)

FIGURE 18: Sample Response List

will check the assert list to verify that st_1_1_10 has been traversed with the response wait. Since the response
list is order dependent, this will always be truc and the responsc will lead to an infinite loop. The evaluation
of the response list in Figure 19, on the other hand, will evaluate the sccond response the first time the
responsc list is encountered. The first time that state st_1_1_70 is traversed, only “st_1_1_10 wait” is in the

assert list; thercfore, “st_1_1_70 wait_wait™ will not be found and the second response will be evaluated. The

(39}
(S]

(click-left & (past st_1_1_70 wait_wait), st_1_1_55)
(click-left & (past st_1_1_10 wait), (assert, wait_wait), st_1_1_70)

FIGURE 19: Revised Sample Response List

second time that state st_1_1_70 is traversed, both “st_1_1_10 wait” and “st_1_1_70 wait_wait” will be in
the assert list. When the first response is evaluated, the response will be truc and traversal will continue to

another state. The terminals used to represent this data structurc in the grammar are:

(1) past - Specify state and response given in that state. Response given cannot be a reserved

word. Refer to Figure 13 for a listing of the reserved words. Refer to Figures 16, 18 and 19 for examples.

(2) assert - Specily responsc given which cannot be a reserved word. Refer to Figures 16,

18 and 19 for examplcs.

3. cfd_menu

This non-terminal and data structure clement allows the tutorial to individualize the presentation
by allowing the user to specify the point in the tutorial he/she wishes to start. If the user chooses a start point
that is too advanced, the MT for that start point will identify this and backtrack until a point of comprehension
is found. The interpreter of the tutorial script gencrates the window tide of the specific tutorial in the main
frame and the start points within the ¢fd_graph for the specific tutorial.

In the POST, the grammar for the menu appcears in Figure 20. The main window will feature the
string of the title “PHYSICS OF SOUND TUTORIAL” and the menulist consists of the title of the seven (7)
choices to appear in the main menu and their respective state identificrs. The choices in the main menu will

be labelled starting with the string “Introduction” and ending with the string “Ovcrall Test.”

D. DESCRIPTION OF INTERPRETER

An interpreter was designed to implement a prototype of the POST. The interpreter allows for the use
of any tutorial written in the grammar described in this thesis. A listing of the interpreter is found in Appendix
E.

Prior to interpreting the grammar, the grammar must first be parsed. The parse input is then used to
initialize the wtorial window. The initial frame presents the user with the options for an initial start state. Once
the initial start state is chosen, the actions of that start state are presented in the canvas of the base frame. The

event handling procedurcs of SunView then accept a response from the uscr to be interpreted via the input

34

(menu “PHYSICS OF SOUND TUTORIAL”
“Introduction”->st_1_1_1,
“Source”->st_1_2_1,

“Medium”->st_1_3_1,

“Sound”->s1_1_4_1,

“Detector”->st_1_5_1,

“Intro Test”->st_1_10_1,

“Overall Test”->s1_7_1)

FIGURE 20: cfd_menu Example

handier for the canvas. The next state is chosen and executed based on the interpretation of response options
for the current state. The sequence for presenting a state is the same: present the actions, allow SunView to
accept the response, interpret the responsc and then go 1o the next state. At anytime during the execution of

the tutorial, the uscr has the option of cxiting the wtorial.

1. Present Actions

The process of presenting the actions of a state is first to deicrmine the rcgion that the action is to
occur. Once the region is determined, the action is then executed within that region as described previously.

If the action list consists of more than onc action, each action in the action list is executed.

2. Interpret Response

The response is first interpreted by Sunview event handling procedures to determine exactly what
the response was. Then, the corresponding response is found in the response list. If the next state to go to relies
on past answer history, the assert list is included in the response evaluation. Once the appropriate response
and past history have been found in the response list, the next state is executed. If no match with the response

list is identified, the software remains in the same siate and waits for further input. However, most states will

specify a default transition to be taken in such a case, i. ¢., users will not be left “stranded” at some point in
the tutorial.

36

V. CONCLUSION AND FUTURE RESEARCH

A. SUMMARY OF CONTRIBUTIONS

A Concept-Flow Diagram (CFD) is a representation of the information prescnted in a computer-aided
tutorial. The CFD highlights the concepts that arc prerequisites to the presentation of other concepts and
identifies where verification of mastery is to be performed within the tutorial. A visualization of this
information, as provided with the CFD, has two key benefits.

First, the CFD provides a functional basis for the design of tutorials. The designers of the computer-
aided tutorial arc provided with a tool that assists in the design of the prescntation of the tutonial. The CFD
allows for a hierarchical presentation of the tutorial, forward and backward prescntation-flow, and answer
analysis that is history sensitive. Designers are also presented with a tool whose symbology is somewhat
familiar and therefore immediatcly implementable. By using the CFD design methodology, the designers are
able to sec the presentation flow prior to any programming or coding.

Second, the CFD provides a basis for evaluation of tutorial presentation. By using the CFD
methodology, the designers are forced to take a closer look at the presentation flow of the concept goals. The
CFD can identify arcas where the presentation is presenting too much information. It can also help to identify
where the ideal place within a presentation occurs to test the uscr for comprehension. The CFD strongly
encourages non-lincar dependency rather than an explicit ordering to the concept-flow of the tutorial
prescntation.

By highlighting the flow of prescntation as a basis for software design, the CFD enables more realistic
engincering of computer-based tutorials. Automatcd strategics, such as the CFD interpreter described in this
thesis, arc supported by this design technique. In summary, the introduction of u;c CFD shifts the emphasis
of computer-aided instruction design from modelling of student behavior to design of presentation and

knowledge verification.

B. RECOMMENDATIONS FOR USE

Concept-Flow Diagrams allow the design of tutorials to take place in a specific context of assumed and
demonstrated knowledge. The CFD mecthodology is immediately uscful in tutorials for students with

heterogencous backgrounds. The CFD docs not rely on the users 1o have some common knowledge base in

37

order to use the tutorial. Therefore, the tutorial can be directed at a more generic audience, from the novice
to the expert, without over-challenging or boring the uscr. The usc of this methodology would greatly enhance
the tutorials used in organizations, such as the U. S. Navy or the Department of Defense, where the personnel
who attend their schools range from the recent high school graduate to individuals with advanced degrees and/
or experience.

Concept-Flow Diagrams are also uscful in providing information on how 1o use interactive software
with complex user interfaces. The users of on-line help within a software package, such as an editor or word
processor. are usually presented with detailed information about the item requested. The use of Concept-Flow
Diagrams would allow the user the option of a detailed explanation or a quick review, pleasing both the
novice user and the expert user of the sysiem who may have just forgotten how a function operates. The CFD
also can place the help provided in the context of recent commands through the use of the answer analysis

assert and past non-terminals.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis concentrated on the design methodology of the prescntation $low and representation in a
CFD. An extension of this discussicn led 1o answer analysis. A more concentrated effort in the arca of answer
analysis is well-deserved. This includes morc formally describing mastery test flow and usage.

In order to build to00ls to generate and cvaluate Concept-Flow Diagrams, formal semantics and code
gencration are nceded. Therefore, two arcas recommended for future rescarch arce establishing the formal
scmantics of Concept-Flow Diagrams and building tools to generate code from Concept-Flow Diagrams.

This leads to actually building the tools to generate and cvaluate Concepi-Flow Diagrams. The tool or
tools could verify such things as too many bubbles per level, points of entry exist via both the MT and concept
presentation, and that flow is possible, both forward and backward, from MT 10 MT or bubble to bubble.

In order to enhance the tutorial presentation, the CFD language can be extended to provide vector
graphics capability and animation capability. Currcntly, the tutorial designers are restricted to stationary
icons. The extended capabilities would allow for using moving objects in a task or presentation.

The last recommendation is the ransformation from prototype to working interpreter. The interpreter
designed is a partially functional prototype. Completion of the prototype and implementation as a production

model are necessary.

(4

APPENDIX A
LIST OF CONCEPT GOALS FOR
THE PHYSICS OF SOUND TUTORIAL

. Introduction and Basic Definitions

Buttonology

Source

Mecedium

Sound and Ray Path
Detectlor

cen TR

Sound Characteristics
Frequency
Henz
Pcriod
Compression
Rarefaction
Longitudinal wave
Amplitude
Effcctive Pressure Amplitude
Wavclength
Wavcfront
Absolute Sound Pressure Level (ABS SPL)
Decibel
. Broadband
Tonals

Sg-FTrIRMo,OAQA0 TR

Ray Path Transmission and Loss
Direct Path

Reflected Path

Refracted Path

Refracted Surface Reflected Path (RSR)
Limiting Ray

Shadow Zoncs

Altenuation

Scattering
Spreading/Divergence
Spherical Spreading

. Cylindrical Spreading

. Multipath Propagation

m. Critical Angic

mET TR o0 AN o

39

4. Ocean Characteristics
Bathymetry
Gradients
Isothermal
Gradient
Thermocline
Sound Channel
Deep Sound Channel (DSC)
Surface Ducts
Bottom Bounce
Mixed Layer
Convergence Zones
Reliable Acoustic Path
. Noise
Hydrodynamic Noisc
Biological Noise
Seismic Noise
Ocean Traffic Noisc
Sea Surface Noise

neBesIrFTrSRSOAD O

S. Passive Sonar Equation

Transmission Loss (TL)

Source Level (SL)

Noise Level (NL) - ambient noise, platform noisc
Array Gain (AG)

Recognition Differential (RD)

Figure of Merit (FOM)

Signal Excess (SE)

©hean o

6. Sound Velocity Profile (SVP)
Temperature

Pressure

Salinity

Deep Sound Channel Axis
Noise Spectrum Level
Bandwidth

Doppler

Echo Level

Smmempan o

40

APPENDIX B
PHYSICS OF SOUND TUTORIAL SCRIPT

/* AS OF 17 JAN 92, 1430 */

(menu "PHYSICS OF SOUND TUTORIAL"
"Introduction” ->st_1_1_1,

"Source" ->st_1_2_1,

"Medium" ->st_1_3_1,

"Sound" ->st_1_4_1,

"Detector” ->st_1_5_1,

"Intro Test" ->st_1_10_1,
"QOverall Test" ->st_7_1)

detector := "detector_sym.icon”

mouse_sym := "mouse_sym.icon”

path := "path_sym.icon"

post := "post_sym.icon”

source := "source_sym.icon”

/********************** BU"[']"ONOLOGY 11 *************************/

/********************** INTRODUCTION 1.1.1 ***********************/

(st_1_1_1, ((0, clear), (1, draw, post@(mouseX,mouseY)),

(2, write, "Welcome to the Physics of Sound tutorial”),

(5, write, "Upon completion of this tutorial, you will have enough of an understanding
to complete the Physics of Sound module of your OQS"),

(8, write, "Let's begin . . ."), (0, pause, 15)),

st_1_1_5)

41

/************************* MOUSE BU'I"I‘ONS 112 ******************/

(st_1_1_5, ((O, clear),

(1, draw, mouse_sym@ (mouseX, mouseY)),

(3, write, "In order for you to interact with the computer, you must be familiar with the
keyboard and the mouse. It is assumed that you are already somewhat familiar with the
keyboard since you logged onto the system"),

(4, write, "Notice the figure in the upper lefthand corner of the screen. This is called the
MOUSE. There should be one hooked up to your terminal."),

(5, write, "There are 3 buttons on the top of the MOUSE, each one performing a different
function.”), (0, pause, 10)),

st_1_1_10)

(st_1_1_10, ((3, clear),
(4, clear),
(5, clear),
(3, write, "The LEFT button performs an ACTION when clicked once."),
(7, write, "Click the LEFT button on the MOUSE once when you are ready to continue."),
(0, input, mouse), /* allow input with mouse */
(9, input, keyboard)), /* allow input with keyboard only in */
/* region 9 */

((click-left, (assert, left), st_1_1_15),

(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),

(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-middle, (assert, mid), st_1_1_35),

(click-right & (past st_1_1_402X_wrong), st_1_1_45),

(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-right, (assert, right), st_1_1_35),

(15 seconds, (assert, wait), st_1_1_50),

(("Help" | "1 do not know") & (past st_1_1_10 help), st_1_1_45),

("Help" 1 "I do not know", (assert, help), st_1_1_65),

((past st_1_1_10 wrong_ans) & (past st_1_1_35 wrong_ans), st_1_1_45),

(assert, wrong_ans), st_1_1_35))

(st_1_1_15, ((3, clear), (7, clear), (9, clear),
(5, write, "Very good. That is the correct button."”)),
st_1_1_20)

42

(st_1_1_20, ((5, clear),

(3, write, "At this time, the MIDDLE and RIGHT mouse buttons have no function.
Therefore, you will not have to use them."),

(7, write, "Click the LEFT mouse button when you are ready to continue."),

(0, input, mouse),

(9, input, keyboard)),

((click-left, (assert, left), st_1_1_25),

(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-middle, (assert, mid), st_1_1_35),

(click-right & (past st_1_1_402X_wrong), st_1_1_45),
(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),
(click-right, (assert, right), st_1_1_35),
(15 seconds, (assert, wait), st_1_1_80),

(("Help" | "I do not know") & (past st_1_1_20 help), st_1_1_45),

("Help" | "I do not know", (assert, help), st_1_1_40),

((past st_1_1_20 wrong_ans) & (past st_1_1_35 wrong_ans), st_1_1_45),
(assert, wrong_ans), st_1_1_35))

(st_1_1_25, ((3, clear), (7, clear),

(3, write, "The position of the cursor on the screen can be changed by moving the
MOUSE on the pad."),

(4, write, "Try moving the cursor to different positions on the screen using the mouse."),

(7, write, "Once you are comfortable with moving the cursor, position the cursor over the
CONTINUE button at the top of the screen and click the left mouse button once."),

(0, input, mouse),

(9, input, keyboard)),

((mouse-move, st_1_1_30),

(click-continue & (past st_1_5_30 wrong_ans), st_1_5_1),

(click-continue & (past st_1_2_30 wrong_ans), st_1_2_5),

(click-continue & ((past st_1_6_25 help) | (past st_1_6_25 wrong_ans)),

(assert, continue), st_1_6_1),

(click-continue & ((past st_1_6_5 help) | (past st_1_6_5 wrong_ans)),

(assert, continue), st_1_6_1),
(click-continue & ((past st_1_6_1 help) | (past st_1_6_1 wrong_ans)),

(assert, continue), st_1_6_1),

(click-continue, (assert, continue), st_1_1_110),

(15 seconds, (assert, wait), st_1_1_70),

("Help" | "I do not know", (assert, help), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

43

(st_1_1_30, ((3, clear), (4, clear), (7, clear), (9,clear),
(4, write, "Good. Try moving the position of the cursor using the mouse again."),
(7, write, "When you are comfortable with moving the cursor, move the cursor to the
CONTINUE button at the top of the screen and click the LEFT mouse button once."),
(0, input, mouse),
(9, input, keyboard)),
((mouse-move, st_1_1_30),

(click-continue, (assert, continue), st_1_1_110),

(5 seconds, (assert, wait), st_1_1_85),

("Help" | "I do not know" | "How", (assert, help), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(st_1_1_35, ((3, clear), (5, clear), (9,clear),
(3, write, "That is not the correct button. Try again.")),
(((past st_1_1_10 mid | past st_1_1_10right ! past st_1_1_10 wrong_ans),

(assert, wrong_ans), st_1_1_10),

((past st_1_1_20 mid | past st_1_1_20 right | past st_1_1_20 wrong_ans),

(assert, wrong_ans), st_1_1_20),
((past st_1_1_20 wrong_ans), (assert, wrong_ans), st_1_1_20)))

(st_1_1_40, ((3, clear), (5, clear), (9, clear),

(3, write, "Remember, the MIDDLE and RIGHT buttons on the mouse DO NOT perform
any function. Therefore, click the LEFT button on the mouse once to perform an
ACTION."),

(7, write, "Try the exerise again.")),

(((pastst_1_1_10mid ! past st_1_1_10right) & (past st_1_1_35 wrong_ans),

(assert, 2X_wrong), st_1_1_10),

((past st_1_1_20 mid | past st_1_1_20 right) & (past st_1_1_35 wrong_ans),

(assert, 2X_wrong), st_1_1_20),
((past st_1_1_20 help), st_1_1_20)))

(st_1_1_45, ((3, clear), (5, clear),
(3, write, "You seem to be having trouble."),
(4, write, "Before progressing any further, get assistance from your instructor."), (0, quit)

), st_1_1_45)

44

(st_1_1_50, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_50 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_10 wait), (assert, wait_wait), st_1_1_50),

(click-left, (assert, left), st_1_1_15),
(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-middle, (assert, mid), st_1_1_35),
(click-right & (past st_1_1_402X_wrong), st_1_1_45),
(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-right, (assert, right), st_1_1_35),

(("Help" ! "I do not know") & (past st_1_1_10 help), st_1_1_45),
("Help" | "I do not know", (assert, help), st_1_1_65),
((past st_1_1_10 wrong_ans & past st_1_1_35 wrong_ans), st_1_1_45),

(assert, wrong_ans), st_1_1_35))

(5, write, "You have not taken action."),

(8, write, "Do you want help?"),

(9, input, keyboard)),

(("Yes" | "YES" | "yes" 1 "Y" 1 "y", (assert, help), st_1_1_45),

("No"I1"NO" I "no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_45))

(st_1_1_55, ((O, clear),

(st_1_1_60, ((0, clear),

(5, write, "It is assumed that you wish to EXIT."), (0,quit)),
st_1_1_60)

(st_1_1_65, ((3, clear), (5, clear),

(3, write, "Let's take a look at the MOUSE again.")),
(assert, help), st_1_1_10)

45

(st_1_1_70, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),

(9, input, keyboard)),

((15 seconds & (past st_1_1_70 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_10 wait), (assert, wait_wait), st_1_1_70),

(click-left & (past st_1_1_140 help | past st_1_1_140 wrong_ans), st_1_1_140),

(click-left, (assert, left), st_1_1_15),

(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-middle, (assert, mid), st_1_1_35),

(click-right & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-right, (assert, right), st_1_1_35),

(("Help" | "I do not know") & (past st_1_1_10 help), st_1_1_45),

("Help" | "I do not know", (assert, help), st_1_1_65),

((past st_1_1_10 wrong_ans & past st_1_1_35 wrong_ans), st_1_1_45),
(assert, wrong_ans), st_1_1_35))

46

(st_1_1_75, ((3, clear), (7, clear), (9, clear),
(3, write, "You did not find the CONTINUE button. You must first move the position
of the cursor so that the cursor is positioned within the rectangle labelled 'CONTINUE.'
Once you have positioned the cursor, click the left mouse button once."),
(5, write, "Locate the CONTINUE button and click the left mouse button once."),
(0, input, mouse),
(9, input, keyboard)),
((click-continue & (past st_1_1_175 help | past st_1_1_175 wrong_ans),
st_1_1_160),
(click-continue & (past st_1_1_165 help | past st_1_1_165 wrong_ans),
st_1_1_160),
(click-continue & (past st_1_1_160 help | past st_1_1_160 wrong_ans),
st_1_1_160),
(click-continue & (past st_1_1_150 help | past st_1_1_150 wrong_ans),
st_1_1_150),
(click-continue & (past st_1_1_145 help | past st_1_1_145 wrong_ans),
st_1_1_140),
(click-continue & (past st_1_1_140 help | past st_1_1_140 wrong_ans),
st_1_1_140),
(click-continue & (past st_1_1_116 help | past st_1_1_116 wrong_ans),
st_1_1_110),
(click-continue & (past st_1_1_115 help | past st_1_1_115 wrong_ans),
st_1_1_110),
(click-continue & (past st_1_1_110 help | past st_1_1_110 wrong_ans),
st_1_1_110),

(click-continue, (assert, continue), st_1_6_1),

(5 seconds, (assert, wait), st_1_1_90),

("Help" 1 "1 do not know", (assert, help), st_1_1_45),
(assert, wrong_ans), st_1_1_45))

47

(st_1_1_80, ((7, write, "Don't be afraid to try pressing a button on the mouse."),

(0,_in;)ut, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_80 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_20 wait), (assert, wait_wait), st_1_1_80),

(click-left, (assert, left), st_1_1_25),

(click-middle & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-middle & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-middle, (assert, mid), st_1_1_35),

(click-right & (past st_1_1_40 2X_wrong), st_1_1_45),
(click-right & (past st_1_1_35 wrong_ans), st_1_1_40),

(click-right, (assert, right), st_1_1_35),

(("Help" | "I do not know") & (past st_1_1_10 help), st_1_1_45),

("Help" | "I do not know", (assert, help), st_1_1_65),

((past st_1_1_10 wrong_ans & past st_1_1_35 wrong_ans), st_1_1_45),

(assert, wrong_ans), st_1_1_35))

(st_1_1_85, ((7, write, "Don't be afraid to try pressing a button on the mouse."),

(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_85 wait_wait), st_1_1_55),
(15 seconds & (past st_1_1_20 wait), (assert, wait_wait), st_1_1_85),

(mouse-move, st_1_1_30),

(click-continue, (assert, continue), st_1_6_1),

("Help" | "I do not know™" | "How", (assert, help), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(—0,—inI)ut, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_90 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_20 wait), (assert, wait_wait), st_1_1_90),

(click-continue, (assert, continue), st_1_6_1),

("Help" | "I do not know", (assert, help), st_1_1_45),
(assert, wrong_ans), st_1_1_45))

(st_1_1_90, ((7, write, "Don't be afraid to try pressing a button on the mouse."),

/************************ End MOUSE BU'I"'I‘ONS *************************/

48

/*********************** MAIN FRAME BUTTONS ***********************/

(st_1_1_110, ((0, clear),

(1, write, "Notice the 3 buttons that appear at the top of the screen.”),

(2, write, "The buttons are labelled HELP, CONTINUE, and EXIT."),

(4, write, "These 3 buttons will always appear at the top of the screen while using the
Physics of Sound tutorial."),

(7, write, "Let's take a look at how these buttons operate."),

(9, write, "Click the mouse on the CONTINUE button when you are ready to move on
S §

(0, input, mouse),

(9, input, keyboard)),

((click-continue, (assert, continue), st_1_1_120),

(5 seconds, (assert, wait), st_1_1_115),

("Help" | "I do not know", (assert, help), st_1_1_75),
(assert, wrong_ans),st_1_1_75))

(st_1_1_115, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_115 wait_wait), st_1_1_116),
(15 seconds & (past st_1_1_110 wait), (assert, wait_wait), st_1_1_115),

(click-continue, (assert, continue), st_1_1_120),

("Help” | "I do not know", (assert, help), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(st_1_1_116, ((O, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" | "yes" 1 "Y" | "y", (assert, help), st_1_1_75),

("No" I "NO" | "no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_75))

49

/************#************* HELP BU'I"]‘ON *********************/

(st_1_1_120, ((O, clear),
(1, write, "The HELP button can be used at any time. The button is designed to assist you
when you are unable to determine the function of a specific feature on the screen."),
(4, write, "To use the HELP button, move the cursor to the button labelled HELP located
in the upper lefthand corner of the screen and click the left mouse button once."),
(5, write, "You will then be guided through the use of the particular function that you
requested.”),
(7, write, "Click the mouse on the HELP button"),
(0, input, mouse),
(9, input, keyboard)),
((click-help & (past st_1_6_30 help | past st_1_1_30 wrong_ans), (assert, help_button),
st_1_6_20),
(click-help & (past st_1_6_25 help | past st_1_1_25 wrong_ans), (assert, help_button),
st_1_6_20),
(click-help & (past st_1_6_20 help | past st_1_1_20 wrong_ans), (assert, help_button),
st_1_6_20),
(click-help, (assert, help_button), st_1_1_140),
(5 seconds, (assert, wait), st_1_1_125),
("Help" | "I do not know", (assert, help), st_1_1_130),

(assert, wrong_ans), st_1_1_130))

(st_1_1_125, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_130 wait & past st_1_1_125 wait_wait), st_1_1_45),
(15 seconds & (past st_1_1_130 wait), (assert, wait_wait), st_1_1_125),
(15 seconds & (past st_1_1_120 wait & past st_1_1_125 wait_wait), st_1_1_135),
(15 seconds & (past st_1_1_120 wait), (assert, wait_wait), st_1_1_125),

(click-help, (assert, help_button), st_1_1_140),

("Help” | "I do not know", (assert, help). st_1_1_130),
(assert, wrong_ans), st_1_1_130))

50

(st_1_1_130, ((1, clear), (4, clear), (5, clear), (7, clear),

(1, write, "You did not correctly identify the HELP button. First, move the position of
the cursor so that the cursor is positioned within the rectangle labelled 'HELP.' Once you
have positioned the cursor, click the left mouse button once."),

(5, write, "Locate the HELP button and click the left mouse button once."),

(0, input, mouse),

(9, input, mouse)),

((click-help, (assert, help_button), st_1_1_140),

(5 seconds, (assert, wait), st_1_1_125),

("Help" | "1 do not know", (assert, help), st_1_1_45),
(assert, wrong_ans), st_1_1_45))

(st_1_1_135, ((O, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" | "yes" 1 "Y" | "y", (assert, help), st_1_1_130),

("No" I "NO" | "no" | "N" 1 "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_130))

/*********************** End HELP BUTTON ****************************/

51

/******************#**** CONTINUE BU'I'I‘ON **************************/

(st_1_1_140, ((0, clear),
(1, write, "You have already seen the use of the CONTINUE button. The CONTINUE
button is used to perform an action, such as moving the position of an icon or to accept
input."),
(4, write, "To use the CONTINUE button, move the cursor to the button labelled
CONTINUE located in the upper left of the screen and click the left mouse button once."),
(5, write, "Move the cursor to the CONTINUE button and click left mouse button once
when you are ready to continue . . ."),
(0, input, mouse),
(9, input, keyboard)),
((click-continue & (past st_1_5_10 wrong_ans), st_1_5_1),
(click-continue & (past st_1_4_5 wrong_ans), st_1_4_5),
(click-continue & (past st_1_4_1 wrong_ans), st_1_4_1),

(click-continue & (past st_1_3_5 wrong_ans), st_1_3_5),

(click-continue & (past st_1_3_1 wrong_ans), st_1_3_1),
(click-continue & (past st_1_3_1 wrong_ans), st_1_3_1),
(click-continue, (assert, continue), st_1_1_160),

(5 seconds, (assert, wait), st_1_1_145),

("Help" | "I do not know", (assert, help). st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_140 wait & past st_1_1_145 wait_wait), st_1_1_150),

(st_1_1_145, ((7, write, "Don't be afraid to try pressing a button on the mouse."),

(15 seconds & (past st_1_1_140 wait), (assert, wait_wait). st_1_1_145),
(click-continue, (assert, continue), st_1_1_160),
("Help" | "I do not know", (assert, help). st_1_1_75),

(assert, wrong_ans), st_1_1_75))

(st_1_1_150, ((O, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?").
(9, input, keyboard)),
(("Yes" I "YES" | "yes" | "Y" | "y", (assert, help), st_1_1_75),

("No" 1 "NO" 1"no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_75))

/*********************** End CONTINUE BU'I’"[‘ON **********************/

52

/*************************** EXIT BU']"I'ON ***************************/

(st_1_1_160, ((0, clear),
(1, write, "The EXIT button is used when you are ready to stop working on the Physics
of Sound tutorial.”),
(3, write, "If you are in the midddle of the tutorial when you EXIT, the system will keep
track of where you left off and you will restart at this point the the next time you logon."),
(4, write, "The EXIT button will always be located in the upper righthand comer of the
screen."”),
(6, write, "We will not experiment with the EXIT button at this time since it is assumed
you wish to continue on with the tutorial.”),
(7, write, "Click the mouse on the CONTINUE button when you are ready to move on .
N
(0, input, mouse),
(9, input, keyboard)),
((click-continue, (assert, continue), st_1_6_1),
(5 seconds, (assert, wait), st_1_1_165),
("Help" | "I do not know", (assert, wait), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(st_1_1_165, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_160 wait & past st_1_1_165 wait_wait), st_1_1_175),

(15 seconds & (past st_1_1_160 wait), (assert, wait_wait), st_1_1_165),

(click-continue, (assert, continue), st_1_6_1),

("Help" | "I do not know", (assert, wait), st_1_1_75),
(assert, wrong_ans), st_1_1_75))

(st_1_1_175, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" | "yes" 1 "Y" | "y", (assert, help), st_1_1_75),

("No" I"NO" I "no" I "N" | "n", (assert, check_pt). st_1_1_60),
(assert, wrong_ans), st_1_1_75))

/************************* End EXIT BU"I"’I‘ON ************************/

53

/************************ MAS'I'ERY 'I‘EST 1.6 ***********************/

(st_1_6_1, ((0, clear),
(1, draw, mouse_sym),
(4, write, "As you know, the mouse is required for interaction with the Physics of Sound
tutorial."),
(7, write, "Click the left mouse button once on the CONTINUE button to move on to the
next task."),
(0, input, mouse),
(9, input, keyboard)),
((click-continue, (assert, continue), st_1_6_20),
(5 seconds, (assert, wait), st_1_6_5),
("Help" | "I do not know", (assert, help), st_1_1_25),
(assert, wrong_ans), st_1_1_25))

(st_1_6_5, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_6_5 wait_wait), st_1_6_10),

(15 seconds & (past st_1_6_1 wait), (assert, wait_wait), st_1_6_5),

(click-continue, (assert, continue), st_1_1_110),

("Help" | "I do not know", (assert, help), st_1_1_25),
(assert, wrong_ans), st_1_1_25))

(st_1_6_10, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" I "yes" 1 "Y" | "y", (assert, help), st_1_1_25),

("No"1"NO"1"no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_25))

(st_1_6_20, ((0, clear),
(1, write, "Experiment with the HELP button until you feel comfortable with its use."),
(7, write, "Click the mouse once on the CONTINUE button when you are ready to move

on..."),

(0, input, mouse),
(9, input, keyboard)),
((click-help, (assert, help_button), st_1_6_20),

(click-continue, (assert, continue), st_1_2_1), /* NEXT MT */

(5 seconds, (assert, wait), st_1_6_25),

("Help" | "I do not know", (assert, help), st_1_1_120),
(assert, wrong_ans), st_1_1_120))

54

(st_1_6_25, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_6_20 wait_wait), st_1_6_25),

(15 seconds & (past st_1_6_20 wait), (assert, wait_wait), st_1_6_30),

(click-help, (assert, help_button), st_1_6_20),

(click-continue, (assert, continue), st_1_2_1), /* NEXT MT */
("Help" 1 "I do not know", (assert, help), st_1_1_120),
(assert, wrong_ans), st_1_1_120))

(st_1_6_30, ((0, clear),
(5, write, "You have not taken action.”),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" | "yes" 1 "Y" | "y", (assert, help), st_1_1_120),

("No" I "NO" 1 "no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_1_120))

/**************************** End MT 1.6 **************************/

/**************************** SOURCE 1.2 *************************/

(st_1_2_1, ((0, clear),

(1, write, "Now that you have become familiar with the use of the mouse, let's move on
to another topic."),

(2, write, "In order to study the physics of sound, there are 3 basic properties that must
exist:"),

(3, write, "SOURCE, SOUND, and DETECTOR"),

(4, write, "First, let's dicuss the term SOURCE."),

(0, pause, 30)),

st_1.2.5)

55

(st_1_2_5, ((0, clear),

(1, draw, source),

(3, write, "A SOURCE is any object that moves or vibrates disturbing the medium around
it."),

(5, write, "The SOURCE is represented by a FISH, as is shown in the upper lefthand
corner of the screen."),

(8, write, "Locate the SOURCE by moving the position of the mouse to the FISH and
click the left mouse button once . . ."),

(1, input, mouse)),

((click-left, (assert, left), st_1_2_10),

((click-middle | click-right) & (past st_1_2_25 wrong_ans), (assert, help), st_1_2_30),

(click-middle, (assert, mid), st_1_2_25),

(click-right, (assert, right), st_1_2_25),

(5 seconds, (assert, wait), st_1_2_15),

("Help" | "I do not know", (assert, help), st_1_2_30),
(assert, wrong_ans), st_1_2_30))

(st_1_2_10, ((3, clear), (5, clear), (8, clear),
(3, write, "Great! You were able to locate the SOURCE."),
(4, write, "Now, what can you do with the SOURCE?”"),
(5, write, "You cannot move the SOURCE since in a real world situation you will have
no control over the location of a source."),
(0, pause, 45)),
st_1_3_1)

(st_1_2_15, ((7, write, "Don't be afraid to move the cursor over the SOURCE location and

pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_2_15 wait_wait), st_1_2_20),
(15 seconds & (past st_1_2_5 wait), (assert, wait_wait), st_1_2_15),

(click-left, (assert, left), st_1_2_10),

((click-middle | click-right) & (past st_1_2_25 wrong_ans), (assert, help), st_1_2_30),

(click-middle, (assert, mid), st_1_2_25),

(click-right, (assert, right), st_1_2_25),

("Help" | "I do not know", (assert, help), st_1_2_30),
(assert, wrong_ans), st_1_2_30))

56

(st_1_2_20, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" | "yes" 1 "Y" | "y", (assert, help), st_1_2_30),
("No" | "NO" | "no" | "N" | "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_2_30))

(st_1_2_25, ((3, clear), (5, clear), (8, clear),

(3, write, "That is the incorrect button. Remember, the MIDDLE and RIGHT mouse

buttons do not perform any function. Try again.")),
st_1_2_5)

(st_1_2_30, ((3, clear), (5, clear), (8, clear),

(3, write, "Let's review how to move the cursor using the mouse.")),
(assert, help), st_1_1_25)

/************************* MASTERY 'I'EST 17 ************************/

/* DO NOT NEED MT AFTER SOURCE MOD -- TOO SIMPLISTIC */
[k ks ok sk sk ik R R R R o o R ok ko ok
Jrd ks kR kR dok ko MEDIUM 1,3 % ik ootk dokokkok ok kok

(st_1_3_1, ((O, clear),

(1, write, "A MEDIUM is a substance regarded as the means of transmission of a force
or effect.”),

(4, write, "Becasue the POST deals specifically with underwater sound, the MEDIUM
through which the sound travels is SEA WATER."),

(7, write, "The successful transmission of sound is dependent on the ability of the
MEDIUM to react to changes in pressure originated by the sound SOURCE."),

(8, write, "Click the CONTINUE button when you are ready to move on . . ."),

(0, input, mouse)),

((click-continue, (assert, continue), st_1_3_5),

(300 seconds, st_1_3_5),

(assert, wrong_ans), st_1_1_140))

57

(st_1_3_5, ((0, clear),

(1, write, "To pass on sound, the MEDIUM must have the capability to respond to
variations or changes in the SOURCE pressure fluctuations."),

(4, write, "Sea water possess the quality called ELASTICITY. This means that the sound
pressures causes physical movement of the water molecules which return to their normal
state following the passage of SOUND."),

(7, write, "The travel of sound through a MEDIUM is called PROPOGATION."),

(8, write, "Click the CONTINUE button when you are ready to move on . . ."),

(0, input, mouse)),

((click-continue, (assert, continue), st_1_4_1),

(300 seconds, st_1_4_1),

(assert, wrong_ans), st_1_1_140))

/************************** End MEDIUM ****************************/

/************************* MAS'I‘ERY TEST]8 ***********************/

/* DO NOT NEED MT AFTER MEDIUM MODULE -- TOO SIMPLISTI */

/***/

/************************** SOUND 1.4 ******************************/

(st_1_4_1, ((0, clear),

(1, draw, path),

(3, write, "SOUND is a mechanical wave motion that is generated or propagated in an
elastic MEDIUM."),

(4, write, "SOUND is represented by a line. Since SOUND has direction, the line will
point in the direction that the sound is travelling. In the upper lefthand corner of the screen,
you can see a SOURCE with its SOUND."),

(8, write, "Click the CONTINUE button when you are ready to move on . . ."),

(0, input, mouse)),

((click-continue, (assert, continue), st_1_4_5),

(300 seconds, st_1_4_5),

(assert, wrong_ans), st_1_1_140))

58

(st_1_4_5, ((3, clear), (4, clear),
(3, write, "This line is called a RAY PATH."),
(8, write, "Click the CONTINUE button when you are ready tomove on . . ."),
(0, input, mouse)),
((click-continue, (assert, continue), st_1_5_1),
(300 seconds, st_1_5_1),

(assert, wrong_ans), st_1_1_140))

SRRk Rk ok kR Rk Epnd SOUND ok k koo doksdokkokokok kool koo dokokokok |

/*********************** MASTERY TEST 19 **************************/

/* DO NOT NEED MT AFTER SOUND MOD -- TOO SIMPLISTIC */

/*************************** DETECTOR 1 5 **************************/

(st_1_5_1, ((0, clear),
(1, draw, detector),
(2, write, "A DETECTOR is the RECEIVER of SOUND."),
(4, write, "The DETECTOR is represented by a as is located in the
upper lefthand corner of the screen."),
(5, write, "Locate the DETECTOR by placing the cursor in the DETECTOR and click
the left mouse button once."),
(1, input, mouse)),
((click-left, (assert, left), st_1_5_10),
((click-middle ! click-right) & (past st_1_5_25 wrong_ans), (assert, help), st_1_2_30),
(click-middle, (assert, mid), st_1_5_25),
(click-right, (assert, right), st_1_5_25),

(5 seconds, (assert, wait), st_1_5_15),

("Help” | "I do not know", (assert, help), st_1_5_30),
(assert, wrong_ans), st_1_5_30))

59

(st_1_5_10, ((3, clear), (5, clear), (8, clear),

(3, write, "Great! You were able to locate the DETECTOR."),

(4, write, "Now, what can you do with the DETECTOR?"),

(7, write, "The position of the DETECTOR can be determined by you. To change the
position of the DETECTOR, position the cursor inside the DETECTOR. Hold down the
left mouse button and drag the mouse until the DETECTOR moves to the position you want
it and then release the left mouse button."),

(8, write, "Click the CONTINUE button when you are ready to move on . .."),

(0, input, mouse)),

((click-continue, (assert, continue), st_1_5_35),

(300 seconds, st_1_5_35),

(assert, wrong_ans), st_1_1_140))

(st_1_5_15, ((7, write, "Don't be afraid to move the cursor over the DETECTOR location
and pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_5_15 wait_wait), st_1_5_20),
(15 seconds & (past st_1_5_5 wait), (assert, wait_wait), st_1_5_15),

(click-left, (assert, left), st_1_5_10),
((click-middle | click-right) & (past st_1_5_25 wrong_ans), (assert, help), st_1_5_30),
(click-middle, (assert, mid), st_1_5_25),

(click-right, (assert, right), st_1_5_25),

("Help" | "I do not know", (assert, help), st_1_5_30),
(assert, wrong_ans), st_1_5_30))

(st_1_5_20, ((0, clear),
(5, write, "You have not taken action.”),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" | "YES" | "yes" | "Y" | "y", (assert, help), st_1_5_30),
("No" I "NO" 1 "no" | "N" 1 "n", (assert, check_pt), st_1_1_60),
(assert, wrong_ans), st_1_5_30)) ‘

(st_1_5_25, ((3, clear), (5, clear), (8, clear),

(3, write, "That is the incorrect button. Remember, the MIDDLE and RIGHT mouse
buttons do not perform any function. Try again.")),

(assert, wrong_ans), st_1_5_1)

(st_1_2_30, ((3, clear), (5, clear), (8, clear),

(3, write, "Let's review how to move the cursor using the mouse.")),
(assert, help), st_1_1_25)

60

(st_1_5_35, ((2, clear), (3, clear), (4, clear), (7, clear),
(2, write, "Try changing the position of the DETECTOR."),
(4, write, "Click the CONTINUE button when you are ready to move on. .."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, move_detector), st_1_5_50),
(click-continue, (assert, continue), st_1_10_1),
(15 seconds, (assert, wait), st_1_5_45),
("Help" | "I do not know", (assert, help), st_1_5_1),
(assert, wrong_ans), st_1_5_1))

(st_1_5_40, ((0, clear, detector@(detector.x, detector.y)),

(1, draw, detector@ (mouseX, mouseY))),
st_1_5_35)

(st_1_5_45, ((7, write, "Don't be afraid to change the DETECTOR location."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_5_45 wait_wait), st_1_5_20),

(15 seconds & (past st_1_5_35 wait), (assert, wait_wait), st_1_5_45),
(click-continue, (assert, continue), st_1_10_1),

("Help” | "I do not know", (assert, help), st_1_5_1),

(assert, wrong_ans), st_1_5_1))

(st_1_5_50, ((1, clear, detector@(detector.x, detector.y)),

(1, draw, detector@ (mouseX, mouseY))),
st_1_5_35)

/************************** End DETECTOR ***************************/
/************************* MASTERY TEST 110 ***********************/

(st_1_10_1, ((O, clear),
(1, draw, source@(mouseX, mouseY)),
(1, draw, path@(mouseX, mouseY)),
(1, draw, detector@(mouseX, mouseY)),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse)),
((click-left, (assert, move_detector), st_1_10_10),
(45 seconds, (assert, wait), st_1_10_20),
st_1_10_20))

61

(st_1_10_10, ((1, clear, detector@(detector.x, detector.y)),
(1, draw, detector@(mouseX, mouseY))),
((click-left & (mouseX <= sound.x + halfwid & mouseX >= sound.x - halfwid &
mouseY <= sound.y + halfht & mouseY >= sound.y - halfht), (assert, hit), st_1_10_15),
(click-left & ((past st_1_10_10 miss_left) |
(past st_1_10_10 miss_right) |
(past st_1_10_10 miss_low) |
(past st_1_10_10 miss_high)), (assert, help),
st_1_10_30),
(click-left & (mouseX < sound.x - halfwid), (assert, miss_left), st_1_10_20),
(click-left & (mouseX > sound.x + halfwid), (assert, miss_right), st_1_10_20),
(click-left & (mouseY < sound.y - halfht), (assert, miss_low), st_1_10_20),
(click-left & (mouseY > sound.y + halfht), (assert, miss_high), st_1_10_20),
(45 seconds, (assert, wait), st_1_10_20)))

(st_1_10_15, ((7, clear),
(7, write, "Very good. You positioned the DETECTOR correctly.")

)
st.7_1)

(st_1_10_20, ((7, clear),
(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES" | "Yes" | "yes" | "y" 1 "Y"), (assert, help), st_1_5_1),
(("NO"1"No"1"no" | "n" | "N") & (past st_1_10_10 miss_left) &
((past st_1_10_30 move_detector) | (past st_1_10_30 miss_again)),
(assert, help), st_1_1_45),
(("NO"1"No"1"no" I "n" | "N") & (past st_1_10_10 miss_left), st_1_10_25),
(("NO"I"No" I "no" | "n" | "N") & (past st_1_10_10 miss_right) &
((past st_1_10_30 move_detector) | (past st_1_10_30 miss_again)),
(assert, help), st_1_1_45),
(("NO"I"No"1"no" I "n" 1 "N") & (past st_1_10_10 miss_right), st_1_10_35),
(("NO"I"No" I "no" I "n" I "N") & (past st_1_10_10 miss_low) &
((past st_1_10_30 move_detector) | (past st_1_10_30 miss_again)),
(assert, help), st_1_1_45),
(("NO"1"No" I "no" 1 "n" | "N") & (past st_1_10_10 miss_low), st_1_10_40),
(("NO”" I "No" 1"no" 1 "n" 1 "N") & (past st_1_10_10 miss_high) &
((past st_1_10_30 move_detector) | (past st_1_10_30 miss_again)),
(assert, help), st_1_1_45),
(("NO" I "No" I"no" | "n" | "N") & (past st_1_10_10 miss_high), st_1_10_45),
(300 seconds, (assert, wait), st_1_1_60)))

(st_1_10_25, ((7, clear),
(4, write, "You moved the DETECTOR too far to the left."),
(7, write, "Try again.")),
st_1_10_1)

(st_1_10_30, ((4, clear), (7, clear),

(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some part of

the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move_detector), st_1_10_10),
(assert, miss_again), st_1_10_20))

(st_1_10_35, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),
st_1_10_1)

(st_1_10_40, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),
st_1_10_1)

(st_1_10_45, ((7, clear),
(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),
st_1_10_1)

/*************************** End DETECTOR *********x**¥*>ﬁ>ﬁ**********/

/******************** End Of INTRO & BAS]C DEFS bUbb]C ***************/

63

/************************ MASTERY TEST 7 ***************************/
/************* This is the overall MT’ Level 1 of CFD **********************/

/* TASK - Direct Path */

(st_7_1, ((0, clear),
(1, draw, source@ (mouseX, mouseY)), /* center pt of mouse*/
(1, draw, path@(mouseX, mouseY)), /* Direct Path */
(1, draw, detector@(mouseX, mouseY)),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, move_detector), st_1_7_10),
(45 seconds, (assert, wait), st_1_10_20),
("Help" 1 "I do not know" | "How", (assert, help), st_1_5_10),
st_1_7_20))

(st_1_7_10, ((1, clear, detector@(detector.x, detector.y)),
(1, draw, detector@(mouseX, mouseY))),
((click-left & (mouseX <= sound_direct.x + halfwid &
mouseX >= sound_direct.x - halfwid &
mouseY <= sound_direct.y + halfht &
mouseY >= sound_direct.y - halfht), (assert, hit), st_1_7_15),

(click-left & ((past st_1_7_10 miss_left) | (past st_1_7_10 miss_right)

| (past st_1_7_10 miss_low) | (past st_1_7_10 miss_high)),
(assert, help), st_1_7_30),

(click-left & (mouseX < sound_direct.x - halfwid),

(assert, miss_left), st_1_7_20),

(click-left & (mouseX > sound_direct.x + halfwid),

(assert, miss_right), st_1_7_20),

(click-left & (mouseY < sound_direct.y - halfht),

(assert, miss_low), st_1_7_20),

(click-left & (mouseY > sound_direct.y + halfht).

(assert, miss_high), st_1_7_20),

(45 seconds, (assert, wait), st_1_7_20)))

(st_1_7_15, ((7, clear),

(7, write, "Very good. You positioned the DETECTOR correctly.")

)
st_7_100)

64

(st_1_7_20, ((7, clear),
(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES"1"Yes" | "yes" | "y" | "Y"), (assert, help), st_1_5_1),

(("NO"I"No" 1 "no" I "n" | "N") & (past st_1_7_10 miss_left) &

((past st_1_7_30 move_detector) | (past st_1_7_30 miss_again)),

(assert, help), st_1_1_45),

(("NO"I"No" | "no" | "n" | "N") & (past st_1_7_10 miss_left), st_1_7_25),

(("NO"I"No" I "no" | "n" | "N") & (past st_1_7_10 miss_right) &

((past st_1_7_30 move_detector) | (past st_1_7_30 miss_again)),

(assert, help), st_1_1_45),
(("NO"I"No" I "no" | "n" | "N") & (past st_1_7_10 miss_right), st_1_7_35),
(("NO"I"No" I "no" I "n" I "N") & (past st_1_7_10 miss_low) &
((past st_1_7_30 move_detector) | (past st_1_7_30 miss_again)),
(assert, help), st_1_1_45),
(("NO" I"No" I"no" I "n" | "N") & (past st_1_7_10 miss_low), st_1_7_40),
(("NO"I"No" I"no" 1 "n" | "N") & (past st_1_7_10 miss_high) &
((past st_1_7_30 move_detector) | (past st_1_7_30 miss_again)),
(assert, help), st_1_1_45),
(("NO"I"No"I"no" I "n" | "N") & (past st_1_7_10 miss_high), st_1_7_45),

(300 seconds, (assert, wait), st_1_1_60)))

(st_1_7_25, ((7, clear),
(4, write, "You moved the DETECTOR 100 far to the left."),
(7, write, "Try again.")),

st_1.7_1)

(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some part of
the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move_detector), st_1_7_10).
(assert, miss_again), st_1_7_20))

(st_1_7_30, ((4, clear), (7, clear),

(st_1_7_35, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),

st_1.7_1)

65

(st_1_7_40, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),

st_1.7_1)

(st_1_7_45, ((7, clear),
(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),

st_1.7_1)

/* End TASK Direct Path */
/* TASK Reflected Surface Refracted (RSR) */

(st_7_100, ((0, clear),
(1, draw, source@(mouseX, mouseY)),
(1, draw, path@(mouseX, mouseY)), /* RSR Path */
(1, draw, detector@(mouseX, mouseY)),
(3, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, move_detector), st_1_7_110),

(45 seconds, (assert, wait), st_1_10_120),
("Help" | "I do not know" | "How", (assert, help), st_1_5_1),
st_1_7_120))

(st_1_7_110, ((1, clear, detector@ (detector.x, detector.y)),

(1, draw, detector@ (mouseX, mouseY))),

((click-left & (mouseX <= sound_RSR.x + halfwid & mouseX >= sound_RSR.x -
halfwid & mouseY <= sound_RSR.y + halfht & mouseY >= sound_RSR.y - halfht),
(assert, hit), st_1_7_115),

(click-left & ((past st_1_7_110 miss_left) | (past st_1_7_110 miss_right)

I (past st_1_7_110 miss_low) | (past st_1_7_110 miss_high)), -
(assert, help), st_1_7_130),

(click-left & (mouseX < sound_RSR.x - halfwid), (assert, miss_left), st_1_7_120),

(click-left & (mouseX > sound_RSR.x + halfwid), (assert, miss_right), st_1_7_120),

(click-left & (mouseY < sound_RSR.y - halfht), (assert, miss_low), st_1_7_120),

(click-left & (mouseY > sound_RSR.y + halfht), (assert, miss_high), st_1_7_120),
(45 seconds, (assert, wait), st_1_7_120)))

66

(st_1_7_115, ((7, clear),

(7, write, "Very good. You positioned the DETECTOR correctly."),
(0,quit)),
st_1_7_115)

(st_1_7_120, ((7, clear),

(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES" | "Yes" | "yes" | "y" | "Y"), (assert, help), st_1_5_1),

(("NO"I"No" 1 "no" 1 "n" | "N") & (past st_1_7_110 miss_left) &
((past st_1_7_130 move_detector) | (past st_1_7_130 miss_again)),
(assert, help), st_1_1_45),
(("NO"1"No" I "no" | "n" | "N") & (past st_1_7_110 miss_left), st_1_7_125),
(("NO" I "No" I "no" | "n" | "N") & (past st_1_7_110 miss_right) &

((past st_1_7_130 move_detector) | (past st_1_7_130 miss_again)),

(assert, help), st_1_1_45),
(("NO"I"No"1"no" I "n" | "N") & (past st_1_7_110 miss_right), st_1_7_135),
(("NO"I1"No"1"no" I "n" | "N") & (past st_1_7_110 miss_low) &
((past st_1_7_130 move_detector) | (past st_1_7_130 miss_again)),

(assert, help), st_1_1_45),
(("NO"I1"No" I"no" | "n" | "N") & (past st_1_7_110 miss_low), st_1_7_140),
(("NO" I "No" I "no" | "n" | "N") & (past st_1_7_110 miss_high) &

((past st_1_7_130 move_detector) | (past st_1_7_130 miss_again)),

(assert, help), st_1_1_45),

(("NO" I"No" I "no" 1 "n" | "N") & (past st_1_7_110 miss_high), st_1_7_145),
(300 seconds, (assert, wait), st_1_1_60)))

(st_1_7_125, ((7, clear),
(4, write, "You moved the DETECTOR 100 far to the left."),
(7, write, "Try again.")),

st_1_7_100)

(st_1_7_130, ((4, clear), (7, clear),
(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some part of
the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move_detector), st_1_7_110),
(assert, miss_again), st_1_7_120))

67

(st_1_7_135, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),

st_1.7_100)

(st_1_7_140, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),
st_1_7_100)

(st_1_7_145, ((7, clear),

(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),
st_1_7_100)

/* End TASK RSR ¥/

68

APPENDIX C
GRAMMAR

cfd_graph ::= cfd_graph cfd_node |cfd_node | cfd_menu cfd_node
cfd_node ::= "(" cfd_id "," action_list "," response_list ")" | identifier ":=" string
cfd_menu ::= "(" "menu" string menulist)"
menulist ::= string "->" cfd_id "," menulist | string "->" cfd_id
cfd_id ::= identifier
action_list ::= "(" act_node_list ")" | action_node
response_list ::= "(" res_node_list ")" | response_node
action_node ::= "(" region_id "," action ")"
act_node_list ::= act_node_list "," action_node | action_node
response_node ::= "(" pattern "," cfd_id ")

(" pattern "," "(" "assert” "," identifier ")" "," cfd_id ")"

(" pattern "," "ignore")"

I "(" pattern "," "(" "assert" "," identifier ")" "," "ignore" ")"

| "(" "assert” "," identifier ")" "," ¢fd_id | cfd_id
res_node_list ::=res_node_list "." response_node

| response_node
region_id ::= integer | region_id "+" integer

"ottt "o

action ::= "draw" "," identfier | "draw" "," identifier "@" location | "clear"

| "clear” "," identifier "@" location | "write" "," string | "input" "," input_list
| "pause” "," integer | "drag” "," identifier | "quit"
input_list ::= "mouse” | "keyboard" | "mouse&key"
location ::= "(" loc_part "," loc_part ")"
loc_part ::= loc_part "+" term | loc_part "-" term | term
term ::=term "*" factor | term "/" factor | factor
factor ::= integer | "mouseX" | "mouseY" | identifier ".x" | identifier ".y" | "halfwid"
| "halfht" | "(" loc_part ")"
patpart ::= keywords | "click-left" | "click-right" | "click-middle" | "click-any"
| loc_part relop loc_part | "click-exit" | “click-help" | “click-continue”
| "mouse-move" | integer "seconds” | "past” cfd_id identifier | "(" pattern ")" -
patconj ::= patpart | patconj "&" patpart
pattern ::= patconj | pattern "|" patconj
relop ii="==" 1">" 1"<"1">="|"<="
keywords ::= string

69

APPENDIX D
lex AND yacc FILES

A. parser.h - HEADER FILE

/* defines for cfd data structures and values */

/* region codes, or'd to make resultant code */
#define REG_ALL 0O
#define REG_ONE 1
#define REG_TWO 2
#define REG_THREE 4
#define REG_FOUR 8
#define REG_FIVE 16
#define REG_SIX 32
#define REG_SEVEN 64
#define REG_EIGHT 128
#define REG_NINE 256
#define REG_OTHER 512

/* action codes */
#define ACT_NULL 0
#define ACT_DRAW 1
#define ACT_CLEAR 2
#define ACT_WRITE 3
#define ACT_INPUT 4
#define ACT_PAUSE 5
#define ACT_QUIT 6
#define ACT_DRAG 7

/* input modes */

#define MODE_NULL O
#define MODE_MOUSEONLY 1
#define MODE_KEYONLY 2
#define MODE_MOUSEKEY 3

70

/* response codes */

#define RES_NULL 0

#idefine RES_KEY 1

#define RES_CLICKLEFT 2

#define RES_CLICKRIGHT 3

#define RES_CLICKMID 4

#define RES_CLICKANY 5

#tdefine RES_MOUSEX 6 /* unused */
#define RES_MOUSEY 7 /* unused */
#idefine RES_MOUSEMOVE 8

#define RES_SECONDS 9

#define RES_PAST 10

#define RES_CLICKHELP 11

#define RES_CLICKCONT 12

#define RES_CLICKEXIT 13

/* operator codes */

#define OP_

NULL 0

#define OP_GREAT 1
#define OP_GEQ 2
#define OP_EQ 3
#define OP_LEQ 4
#define OP_LESS 5
#tdefine OP_AND 6

#define OP_
#define OP_

OR 7
KEYOR 8 /* unused */

struct expnode (
struct expnode *left, *right;

char op;

/* only checked if left or right isn't null */

char *vamame; /* mousex, mousey, or graph id */

char comp;
int val;

I

/* x, y or blank */
/* integer value in expression */

struct locnode {

)

struct expnode *x, *y;

I

|

struct actnode {

int actloc; /* region codes or'd together */

int action; /* action code */

char *info_str; /* string arguments to action, including graph filename */
int info_int; /* integer arguments to action, including input mode */
struct locnode *info_loc; /* location arguments to action */

struct actnade *next; /* next action list */

};

struct opnode {
struct opnode *left; /* left arg to operator */
int operator; /* operator code */
struct opnode *right; /* right arg to operator */
intres_act; /* response code */
struct expnode *res_left, *res_right; /* expression arguments to response */
intres_int; /* integer argument to response, including seconds */
char *res_str; /* string argument to response , includeing keywords */

B

struct resnode {
struct opnode *expr; /* expression tree to match response */
char *label; /¥ assertion label */
struct cfdnode *node; /* node to go to if match response, null to ignore */
struct resnode *next; /* next response option */

};

struct cfdnode {
char *nodeid;
struct actnode *actlist;
struct resnode *reslist;
struct cfdnode *next;

J;

struct menunode {
char *choice;
| struct cfdnode *state;
‘ struct menunode *next;

K

struct menu {
char *title;
struct menunode *choices;

)

#ifdef MAIN

#define EXTERN

felse

#define EXTERN extern
#endif

EXTERN struct cfdnode *cfdgraph;
EXTERN struct cfdnode *cfdlist;
EXTERN struct menu *topmenu;

struct picnode

char *picid;

char *picfile;

struct picnode *next;

};
EXTERN struct picnode *piclist;

struct cfdnode *findnode();

73

B. parser.l-LEX

%1

#include <stdio.h>
#include "y.tab.h"

int yylineno;

int yylen;

int intval;

static int is_comm = 0;
char *malloc();

%}

% %o

[\i]+ ;

#["\n]* ;

\n {yylineno++; };
VA% {is_comm=1; }
kY {is_.comm=0; }

\+ (if (tis_comm) {return(TOK_ADD);}} ;

- {if (Yis_comm) {return(TOK_SUBTRACT);}} ;
* {if (!is_comm) {return(TOK_TIMES);}} ;

\Y; {if (tis_comm) {return(TOK_DIVIDE);}} ;

@ {if (i~ comm) {return(TOK_AT);}} ;

\ {if (!is_comm) {return(TOK_BAR):}} ;

\ {if (Yis_comm) {return(TOK_COMMA);}} ;

\({if (1is_comm) {return(TOK_OPENPAREN):}} ;
\) {if (tis_comm) {retum(TOK_CLOSEPAREN);}};
\>= {if (!is_comm) {return(TOK_GREATEQ);}} ;

<= {if (tis_comm) {return(TOK_LESSEQ):} }:
== {if (tis_comm) {return(TOK_EQUAL);}};

\< {if (lis_comm) {return(TOK_LESS);}} ;

> {if ('is_comm) {return(TOK_ARROW);}} ;
= {if (lis_comm) {return(TOK_DEFINE);}} ;

> {if (!is_comm) {return(TOK_GREATER);}} ;

NN R {if ({is_comm) {

yylen = strlen(yytext);

yylval.t_str = malloc(yylen+1);
strncpy(yylval.t_str,&(yytext[1]),yylen-2);
return(TOK_STR);}} ;

74

[0-9]+ {if (lis_comm) {

intval = 0;
yylen = strlen(yytext);
yylval.t_str = malloc(yylen+1);
strncpy(yylval.t_str,yytext,yylen);
while (is_comm < yylen) {

intval = intval*10 + yytext[is_comm] - '0';

is_comm-++;

}

is_comm = 0;

return(TOK_NUM);

1)

ignore {if (!is_comm) {return(TOK_IGNORE);}} ;
drag {if (!is_comm) {return(TOK_DRAG);}} ;
draw {if (Yis_comm) {returm(TOK_DRAW);}} ;
clear {if (!is_comm) {return(TOK_CLEAR);}} ;
write {if (tis_comm) {returm(TOK_WRITE);}} ;
input {if ('is_comm) {return(TOK_INPUT);} } ;
pause {if (Yis_comm) {return(TOK_PAUSE);)} } :
assert {if (Yis_comm) {return(TOK_ASSERT);}} ;
mouse {if (lis_comm) {return(TOK_MOUSE);}} ;

keyboard {if (Yis_comm) {return(TOK_KEY);}} ;
mouse\&key {if (!is_comm) {return(TOK_MOUSEKEY);}} ;
click-left {if (!is_comm) {return(TOK_CLICKLEFT);}} ;
click-right {if (!is_comm) {return(TOK_CLICKRIGHT);}};
click-middle {if (!is_comm) {retum(TOK_CLICKMID);}} ;
click-any {if (Yis_comm) {return(TOK_CLICKANY):}} ;
click-help {if (Yis_comm) {return(TOK_CLICKHELP);} };
click-continue {if (tis_comm) {returmn(TOK_CLICKCONT);}} :
click-exit {if (!is_comm) {return(TOK_CLICKEXIT):}} ;

halfwid {if (Yis_comm) {return(TOK_HALFWID);}} ;
halfht (if (is_comm) {return(TOK_HALFHT);}} ;
mouseX {if (!is_comm) {return(TOK_MOUSEX);}} :
mouseY {if (!is_comm) {return(TOK_MOUSEY):}} ;
mouse-move {if (lis_comm) {return(TOK_MOUSEMOVE);}} ;
seconds {if (!is_comm) {returm(TOK_SECONDS);}} ;
past {if (Yis_comm) {return(TOK_PAST);}} :
menu {if (Yis_comm) {retum(TOK_MENU):}} ;
quit {if (tis_comm) {return(TOK_QUIT);}} :
\x {if (tis_comm) {return(TOK_XCOMP);}} ;
\y {if (Yis_comm) {return(TOK_YCOMP);} } ;

75

[0-9A-Za-z_-]+{if (lis_comm) {
yylen = strlen(yytext);
yylval.t_str = malloc(yylen+1);
strncpy(yylval.t_str,yytext,yylen);
return(TOK_ID);}} ;
\& {if (Yis_comm) {return(TOK_AMPERSAND);}} ;
. {if (tis_comm)
fprintf(stderr,"unrecognized '%s\n",yytext);} ;

76

C. parser.y- YACC

ounion {
char *t_str;
int t_int;
struct cfdnode *t_cfd;
struct actnode *t_act;
struct resnode *t_res;
struct opnode *t_op;
struct locnode *t_loc;
struct expnode *t_exp;
struct menunode *t_men,;

}

%token <t_int> TOK_OPENPAREN TOK_CLOSEPAREN

%token <t_int> TOK_EQUAL TOK_GREATER TOK_LESS TOK_GREATEQ
TOK_LESSEQ

Z%token <t_int> TOK_ADD TOK_SUBTRACT TOK_TIMES TOK_DIVIDE
%token <t_int> TOK_BAR TOK_AMPERSAND

%token <t_int> TOK_COMMA TOK_DEFINE TOK_MENU TOK_ARROW
%token <t_int> TOK_NUM

%token <t_int> TOK_ID

%token <t_int> TOK_STR

%token <t_int> TOK_IGNORE

%token <t_int> TOK_DRAW TOK_WRITE TOK_CLEAR TOK_INPUT TOK_PAUSE
TOK_ASSERT

%token <t_int> TOK_DRAG TOK_QUIT TOK_MOUSEKEY TOK_MOUSE
TOK_KEY

%token <t_int> TOK _CLICKLEFT TOK_CLICKRIGHT TOK_CLICKMID
TOK_CLICKANY

%token <t_int> TOK_CLICKHELP TOK_CLICKCONT TOK_CLICKEXIT
%token <t_int> TOK_MOUSEX TOK_MOUSEY TOK_MOUSEMOVE TOK_PAST
%token <t_int> TOK_SECONDS TOK_HALFWID TOK_HALFHT

%token <t_int> TOK_XCOMP TOK_YCOMP TOK_AT

%type <t_str> cfd_id

Yotype <t_men> menu_list

%type <t_men> choice

%type <t_act> action_list

%type <t_act> action_node

%type <t_act> act_node_list

%type <t_res> response_list

%type <t_res> response_node

%type <t_str> exp_assert

Jotype <t_res> res_node_list

77

%type <t_int> region_id
%type <t_act> action
%type <t_int> input_list
%type <t_op> keywords
%type <t_op> pattern
%type <t_op> patpart
%type <t_op> patconj
%type <t_int> relop
%type <t_loc> location
Zotype <t_exp> locpart
%type <t_exp> term
%type <t_exp> factor

%start cfd_graph

%% Y%

cfd_graph : cfd_graph cfd_node | cfd_graph cfd_def |
start cfd_node | start cfd_def |
start cfd_menu cfd_node | start cfd_menu cfd_def ;

start: {

cfdlist = NULL;
cfdgraph = NULL;
piclist = NULL,;
topmenu = NULL;

#ifdef YYDEBUG
#if YYDEBUG
yydebug = 1;
felse

yydebug = 0;
#endif

#endif

)

cfd_menu: TOK_OPENPAREN TOK_MENU TOK_STR
{topmenu = NEWPTR(menu);
topmenu->title = yylval.t_str;
)} menu_list TOK_CLOSEPAREN
{topmenu->choices = $5;) ;

78

R

menu_list: choice TOK_COMMA menu_list
{tmp_menu = $1;
tmp_menu->next = $3;
$$ = tmp_menu;
} I choice {$$ =$1;};

choice: TOK_STR {tmp_str = yylval.t_str;} TOK_ARROW cfd_id
{tmp_menu = NEWPTR(menunode);
tmp_menu->choice = tmp_str;
tmp_menu->state = findnode($4);
tmp_menu->next = NULL;
3 = tmp_menu;

)

cfd_node : TOK_OPENPAREN cfd_id TOK_COMMA action_list TOK_COMMA
response_list TOK_CLOSEPAREN
{tmp_node = findnode($2);
tmp_node->actlist = $4.
tmp_node->reslist = $6;
if (cfdgraph == NULL) cfdgraph = tmp_node;
/* else it's already linked into the graph */

)

cfd_def : TOK_ID {tmp_str = yylval.i_str;} TOK_DEFINE TOK_STR
{add_defn(tmp_str,yylval.t_str);} :

cfd_id : TOK_ID { $$ = my_copy(yylval.t_str,yylen); } ;

action_list : TOK_OPENPAREN act_node_list TOK_CLOSEPAREN ({$$ = $2;}
| action_node {$$ = $1;} -

response_list : TOK_OPENPAREN res_node_list TOK_CLOSEPAREN {$$ = $2;
| response_node ($$ =$1:} ;

action_node : TOK_OPENPAREN region_id TOK_COMMA action
TOK_CLOSEPAREN
{ tmp_act = $4;
tmp_act->actloc = $2;
tmp_act->next = NULL;
$$ = tmp_act:

79

act_node_list : act_node_list TOK_COMMA action_node
{tmp_act = $1;
if (tmp_act == NULL) $$ = $3;
else {
while (tmp_act->next != NULL) tmp_act=tmp_act->next;
tmp_act->next = $3;
$% =81
}
}
| action_node {$$ = $1;} ;
response_node : TOK_OPENPAREN pattern TOK_COMMA cfd_id
TOK_CLOSEPAREN
{tmp_res = NEWPTR(resnode);
tmp_res->label = NULL,;
tmp_res->expr = $2;
tmp_res->node = findnode($4);
$$ = tmp_res;
}
| TOK_OPENPAREN pattern TOK_COMMA exp_assert
TOK_COMMA cfd_id
TOK_CLOSEPAREN
{tmp_res = NEWPTR(resnode);
tmp_res->label = $4;
tmp_res->expr = $2;
tmp_res->node = findnode($6);
$$ = tmp_res;

}
| TOK_OPENPAREN pattern TOK_COMMA exp_assert
TOK_COMMA TOK_IGNORE
TOK_CLOSEPAREN
{tmp_res = NEWPTR (resnode);
tmp_res->label = $4;
tmp_res->expr = $2;
tmp_res->node = NULL;
$$ = tmp_res;
)
| TOK_OPENPAREN pattern TOK_COMMA TOK_IGNORE
TOK_CLOSEPAREN
{tmp_res = NEWPTR (resnode);
tmp_res->label = NULL;
tmp_res->expr = $2;
tmp_res->node = NULL.:

80

$$ = tmp_res;
)
| exp_assert TOK_COMMA cfd_id
{ tmp_res = NEWPTR(resnode);
tmp_res->expr = NULL,;
tmp_res->label = $1;
tmp_res->next = NULL;
tmp_res->node = findnode($3);
$$ = tmp_res;
}
| cfd_id
{ tmp_res = NEWPTR(resnode);
tmp_res->expr = NULL,;
tmp_res->label = NULL;
tmp_res->next = NULL;
tmp_res->node = findnode($1);
$$ = tmp_res;

};

exp_assert: TOK_OPENPAREN TOK_ASSERT TOK_COMMA TOK_ID
{tmp_str = my_copy(yylval.t_str,yylen);} TOK_CLOSEPAREN
{$$ =tmp_str;} ;

res_node_list : res_node_list TOK_COMMA response_node
{tmp_res = $1;
$$ =NULL,;

if (tmp_res == NULL) $$ = $3:

else {
while(tmp_res->next != NULL) tmp_res = tmp_res->next;

tmp_res->next = $3;

$ =51

)

)
| response_node {$$ =$1;} ;

81

region_id : TOK_NUM

case 0:
case 1:
case 2 :
case 3:
case 4 :
case 5:
case 6 :
case 7 :
case 8 :
case 9 :
default:

}
)

{switch (intval) {
case 0 : $$ = REG_ALL,; break;
case 1 : $$ = REG_ONE,; break;
case 2 : $$ = REG_TWO,; break;
case 3 : $$ = REG_THREE; break;
case 4 : $$ = REG_FOUR; break;
case 5 : $% = REG_FIVE; break;
case 6 : $$ = REG_SIX; break;
case 7 : $% = REG_SEVEN; break;
case 8 : $% = REG_EIGHT,; break;
case 9 : $% = REG_NINE; break;
default: $$ = REG_OTHER;
}
}
| region_id TOK_ADD TOK_NUM
{switch (intval) {

$$ =9$1 1 REG_ALL,; break;

3 = $1 | REG_ONE; break;

$$ = $1 | REG_TWO; break;

$$ = $1 | REG_THREE; break:

3 = $1 | REG_FOUR; break;

$% = %1 | REG_FIVE,; break:

$$ = $1 | REG_SIX; break;

$% = $1 | REG_SEVEN; break:

$$ = $1 | REG_EIGHT; break;

$% = $1 | REG_NINE,; break;

$$ =$1 | REG_OTHER;

action : TOK_DRAW TOK_COMMA TOK_ID
{if ((t_pic=findpic(yylval.t_str))!=NULL)
3 = new_actnode(ACT_DRAW, 1_pic->picfile, 0, NULL),
else {
fprintf(stderr,"Warning: undefined graph %s\n",yylval.t_str);
$$ = new_actnode(ACT_DRAW, yylval.t_str, 0, NULL);
})
{ TOK_DRAW TOK_COMMA TOK_ID {tmp_str = yylval.t_str;} TOK_AT location
{if ((t_pic = findpic(tmp_str))!=NULL)
$% = new_actnode(ACT_DRAW, 1_pic->picfile, 0, $6);
else {
fprintf(stderr,"Warning: undefined graph %s\n",tmp_str);
$$ = new_actnode(ACT_DRAW, tmp_str, 0, $6);
)}
| TOK_DRAG TOK_COMMA TOK_ID
{if ((t_pic = findpic(yylval.t_str))!=NULL)
$$ = new_actnode(ACT_DRAG, t_pic->picfile, 0, NULL);
else {
fprintf(stderr,"Warning: undefined graph %s\n",yylval.t_str);
3 = new_actnode(ACT_DRAG, yylval.t_str, 0, NULL);
1)
| TOK_CLEAR
{$$ = new_actnode(ACT_CLEAR,NULL, 0, NULL):}
| TOK_QUIT
{$$ = new_actnode(ACT_QUIT,NULL, 0, NULL);}
| TOK_CLEAR TOK_COMMA TOK_ID {tmp_str = yylval.t_str;}
TOK_AT location
{if ((t_pic = findpic(tmp_str))!=NULL)
3 = new_actnode(ACT_CLEAR, t_pic->picfile, 0, $6);
else {
fprintf(stderr,"Warning: undefined graph %s\n",tmp_str);
$3 = new_actnode(ACT_CLEAR, tmp_str, 0, $6);
)}
| TOK_WRITE TOK_COMMA TOK_STR
{$$ = new_actnode(ACT_WRITE,yylval.t_str,0,NULL);}
| TOK_INPUT TOK_COMMA input_list
{$$ = new_actnode(ACT_INPUT,NULL,$2,NULL);}
| TOK_PAUSE TOK_COMMA TOK_NUM
{$$ = new_actnode(ACT_PAUSE,NULL, intval, NULL);}

k4

83

location : TOK_OPENPAREN locpart TOK_COMMA locpart TOK_CLOSEPAREN

{tmp_loc = NEWPTR(locnode);
tmp_loc->x = $2;

tmp_loc->y = $4;

$$ = tmp_loc;

}s

locpart : term {$$ = $1;}
| locpart TOK_ADD term
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = $1;
tmp_exp->0p = '+,
tmp_exp->right = $3;
tmp_exp->varmname = NULL;
tmp_exp->comp ="
tmp_exp->val = 0;
$$ = tmp_exp; }
| locpart TOK_SUBTRACT term
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = $1;
tmp_exp->o0p = -
tmp_exp->right = $3;
tmp_exp->varname = NULL;
mp_exp->comp =";
tmp_exp->val = 0;
$$ = tmp_exp; } ;

term : factor { $$ = $1; }

| term TOK_TIMES factor
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = $1;
tmp_exp->0p = '¥';
tmp_exp->right = $3;
tmp_exp->vamname = NULL,;
tmp_exp->comp ="
tmp_exp->val = 0;
$$ = tmp_exp;)

| term TOK_DIVIDE factor
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = $1;
tmp_exp->op ='/;
tmp_exp->right = $3;
tmp_exp->varmame = NULL;

84

tmp_exp->comp ="'";
tmp_exp->val = 0;
$$ = tmp_exp; } ;

factor : TOK_NUM
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = NULL,;
tmp_exp->op ="";
tmp_exp->right = NULL;
tmp_exp->vamame = NULL,;
tmp_exp->comp ="'}
tmp_exp->val = intval;
$$ = tmp_exp; }
| TOK_HALFWID
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = NULL,;
tmp_exp->op = '
tmp_exp->right = NULL;
tmp_exp->varname = "halfwid";
tmp_exp->comp ="',
tmp_exp->val = 0;
$$ = tmp_exp; }
| TOK_HALFHT
{tmp_exp = NEWPTR (expnode);
tmp_exp->left = NULL,;
tmp_exp->op ="' ;
tmp_exp->right = NULL,;
tmp_exp->varname = "halfht";
tmp_exp->comp ="";
tmp_exp->val = 0;
$$ = tmp_exp; }
| TOK_MOUSEX
{tmp_exp = NEWPTR (expnode);
tmp_exp->left = NULL;
tmp_exp->op ="";
tmp_exp->right = NULL,;
tmp_exp->varmame = "mouseX";
tmp_exp->comp ="";
tmp_exp->val = 0,
$$ = tmp_exp; }
| TOK_MOUSEY
{tmp_exp = NEWPTR(expnode):
tmp_exp->left = NULL.:

85

tmp_exp->op="",
tmp_exp->right = NULL;
tmp_exp->vamame = "mouseY";
tmp_exp->comp ="'
tmp_exp->val = 0;
$$ = tmp_exp; }
| TOK_ID TOK_XCOMP
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = NULL;
tmp_exp->o0p ='";
tmp_exp->right = NULL,;
tmp_exp->varname = yylval.t_str;
tmp_exp->comp = 'X';
tmp_exp->val = 0;
$$ = tmp_exp; }
| TOK_ID TOK_YCOMP
{tmp_exp = NEWPTR(expnode);
tmp_exp->left = NULL;
tmp_exp->op ="',
tmp_exp->right = NULL,;
tmp_exp->varname = yylval.t_str:
tmp_exp->comp ='y';
tmp_exp->val = 0;
$$ = tmp_exp; }
| TOK_OPENPAREN locpart TOK_CLOSEPAREN ($$ = $2;};

input_list : TOK_MOUSE {$$ = MODE_MOUSEONLY;}
| TOK_KEY {$$ = MODE_KEYONLY;}
| TOK_MOUSEKEY {$$ = MODE_MOUSEKEY;} ;

patpart : keywords {$$ = $1;)
| TOK_CLICKLEFT
{$$ = new_opnode(OP_NULL,NULL,NULL,NULL,NULL,

RES_CLICKLEFT,0,NULL);}
| TOK_CLICKRIGHT

{$$ = new_opnode(OP_NULL,NULL,NULL,NULL,NULL,

RES_CLICKRIGHT,0,NULL);}
| TOK_CLICKMID

{$$ = new_opnode(OP_NULL,NULL,NULL ,NULL,NULL,

RES_CLICKMID,0,NULL);}
| TOK_CLICKANY

{$$ = new_opnode(OP_NULL ,NULL,NULL,NULL,NULL,
RES_CLICKANY,0,NULL);}

86

| TOK_CLICKHELP
{3% = new_opnode(OP_NULL,NULL,NULL,NULL,NULL,
RES_CLICKCONT,0,NULL);}
| TOK_CLICKCONT
{$$ = new_opnode(OP_NULL,NULL ,NULL,NULL,NULL,
RES_CLICKCONT,0,NULL);}
| TOK_CLICKEXIT
{$$ = new_opnode(OP_NULL,NULL,NULL,NULL,NULL,
RES_CLICKEXIT,0,NULL);}
| locpart relop locpart
{$$ = new_opnode($2,NULL,NULL,$1,$3,
RES_NULL,0,NULL);}
| TOK_MOUSEMOVE
{$$ = new_opnode(OP_NULL,NULL,NULL NULL,NULL,
RES_MOUSEMOVE,Q,NULL):}
| TOK_NUM TOK_SECONDS
{$$ = new_opnode(OP_NULL,NULL,NULL,NULL,NULL,
RES_SECONDS,intval, NULL); }
| TOK_PAST cfd_id TOK_ID
{
tmp_str = malloc(strlen($2)+yylen+2);
strepy (tmp_str,$2);
strcat(tmp_str,"/"):
strcat(tmp_str,yylval.t_str).
$ =

new_opnode(OP_NULL,NULL,NULL,NULL,NULL,RES_PAST,0,tmp_str); }

| TOK_OPENPAREN pattern TOK_CLOSEPAREN
{$% =$2.}

.

patconj : patpart {$$ = $1;)

| patconj TOK_AMPERSAND patpart
($%=

new_opnode(OP_AND,$1,$3, NULL NULL,RES_NULL,0O,NULL); } ;

pattern : patconj {$$ = $1;} | pattern TOK_BAR patconj
{ $% = new_opnode(OP_OR.$1,$3,NULL,NULL,RES_NULL,0,NULL);

87

relop : TOK_EQUAL {$$ = OP_EQ;}
| TOK_GREATER {$$ = OP_GREAT;}
| TOK_LESS {$$ = OP_LESS;}
| TOK_GREATEQ {$$ = OP_GEQ;)
| TOK_LESSEQ {$$ = OP_LEQ;} ;

keywords : TOK_STR
{$% =
new_opnode(OP_NULL,NULL ,NULL,NULL,NULL,RES_KEY,0,yylval.t_str);}

14

% %o

#include <stdio.h>
#ifdef STANDALONE
#define MAIN
#include "parser.h"”
#undef MAIN

#else

#include "parser.h”
#endif

extern int yylineno;
extern char *yytext;
extern int yylen;
extern int intval;
char *malloc();
char *tmp_str;
struct expnode *tmp_exp; \
struct opnode *tmp_op;
struct resnode *tmp_res;
struct cfdnode *tmp_node;
struct actnode *tmp_act;
struct locnode *tmp_loc;
struct menunode *tmp_menu;
struct picnode *t_pic;

#define NEWPTR(Type) (struct Type *) malloc(sizeof (struct Type))

88

char *my_copy(str,len)
char *str;
int len;
{char *tmp;
if (str == NULL ll len <=0) {
fprintf(stderr,"null string sent to my_copy\n");
return NULL;
)
else {
if ((tmp = malloc(len+1)) == NULL) {
fprintf(stderr,"Cannot allocate memory for string of length %d\n"len+1);
exit(2);
)
strncpy(tmp, str,len);
#if YYDEBUG
fprintf(stdout,"copied %s (%d)\n",tmp,len);
#endif
return tmp;
}
}

struct opnode *new_opnode(op,oleft,oright,rleft,rright,act,num,str)
struct opnode *oleft, *oright;
int op,num,act;
struct expnode *rleft, *rright;
char *str;
{struct opnode *tmp = NEWPTR (opnode);
tmp->left = oleft;
tmp->operator = op;
tmp->right = oright;
tmp->res_act = act;
tmp->res_left = rleft;
tmp->res_right = rright;
tmp->res_int = num,;
tmp->res_str = Str;
‘return tmp;

)

89

struct actnode *new_actnode(actcode, str, num, loc)

int actcode, num;

char *str;

struct locnode *loc;

{struct actnode *tmp = NEWPTR(actnode);
tmp->actloc = 0; /* whole screen, by default */
tmp->action = actcode;
tmp->info_str = str;
tmp->info_int = num;
tmp->info_loc = loc;
tmp->next = NULL;
return tmp;

}

struct cfdnode *findnode(target)
char *target;
{struct cfdnode *cur = cfdlist;
if (cur == NULL) {
cfdlist = NEWPTR(cfdnode);
cfdlist->nodeid = target;
cfdlist->actlist = NULL;
cfdlist->reslist = NULL;
cfdlist->next = NULL;
return cfdlist;
}
else {
if (target == NULL) return cfdlist:
while (cur->next != NULL && stremp(cur->nodeid,target)!=0) cur = cur->next;
if (strcmp(cur->nodeid,target)==0) return cur:
else {
cur->next = NEWPTR(cfdnode):
cur = cur->next;
cur->nodeid = target;
cur->actlist = NULL;
cur->reslist = NULL;
cur->next = NULL,;
return cur,
)
)

return NULL; /* should be unreachable, but let's be safe! */

)

90

struct picnode *findpic(target)

char *target;

{ struct picnode *cur = piclist;

if (cur == NULL Il target == NULL) return NULL;

while (cur->next != NULL && stremp(cur->picid,target) != 0) cur = cur->next;
if (stremp(cur->picid,target) == 0) return cur;

else return NULL,;

)

void add_defn(id,filename)
char *id, *filename;
{struct picnode *cur = piclist;
if (id == NULL Il filename == NULL) {
fprintf(stderr,"Warning: null ident/filename in def on line %d\n",yylineno),
return;
}
if (cur == NULL) {
piclist = NEWPTR(picnode);
piclist->picid = id;
piclist->picfile = filename;
piclist->next = NULL,;
}
else {
while (cur->next = NULL && stremp(cur->picid,id) '= 0) cur = cur->next;
if (stremp(cur->picid,id) == 0) {
fprintf(stderr,"Warning: ignoring duplicate picture named %s on line %d\n",
id,yylineno);
}

else {
cur->next = NEWPTR(picnode):
cur = cur->next;
cur->picid = id;
cur->picfile = filename;
cur->next = NULL;

91

int yyerror(s)
char *s;
{
fflush(stdout);
fflush(stderr);
fprintf(stderr,"%s on line %d\n",s, yylineno);

}

#ifdef STANDALONE
main()

{
if (yyparse()==0) printf("Successful parse\n");
else printf("Unsucessful parse\n”);

)
#endif

92

APPENDIX E
INTERPRETER

/***/

/* FILENAME: interp.h */

/* PURPOSE: Declaration of all global variables, function */
/* declarations and include files */

/* CALLED BY: interp.c */

/* AUTHOR: Dawn M. Maskell */

/* Timothy J. Shimeall */

/* Naval Postgraduate School, Monterey, CA */

/* DATE: 20 January 1991 */

/***/

/* include files */

#include <stdio.h>
#include <string.h>

#include “parser.h”

#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <suntool/icon.h>
#include <suntool/panel.h>
#include <suntool/alert.h>
#include <sunwindow/notify.h>
#include <sys/time.h>

93

#ifdef MAIN

#define EXTERN

#define INIT(Value) = Value
#else

#define EXTERN extern
#define INIT(Value)

#endif

#define ITIMER_NULL ((struct itimerval *)0)
/* set up conversion macros */

#define LINE_TO_RASTER_Y(Line) Line*16
#define RASTER_Y_TO_LINE(Ry) Ry/16
#define CHAR_TO_RASTER_X(Char) Char*8
#define RASTER_X_TO_CHAR(Rx) Rx/8

/* STRUCTURE declarations */

struct assert{ /* for assert list */
char *id; /* state identifier being asserted */
struct assert *next; /* ptr to next in assert list */

)

94

/* GLOBAL variables ¥/
EXTERN struct assert *assert_list INIT(NULL); /* create assert list */

EXTERN struct cfdnode *current_state INIT(NULL);/* pointer to current*/
/* state in tutorial */
/* being executed */

EXTERN Canvas canvas; /* base canvas for display of */
/* graphics and text */

EXTERN FILE *yyin; /* yacc input file, default stdin */
EXTERN Frame frame; /* base window of system */
EXTERN Icon post_icon;

EXTERN int panel_value; /* value of start state selection */
timer_on; /* need to use a time */

EXTERN Panel menu_panel, /* display main menu buttons */
panel; /* display base window panel buttons */

EXTERN Panel_item button, /* base window panel */
cont, /* base window panel item button */

help, /* base window panel item button */

menu, /* base window main menu check boxes */
quit; /* base window panel item button */

#ifdef MAIN

/* ICON declarations */
static short icon_image(] = {
#include “post_sym.icon™

]’

EXTERN mpr_static(post_sym, 64, 64, 1, icon_image);
#endif

95

/* FUNCTION declarations */

EXTERN struct assert
*create_assert_list();

EXTERN char
*menu_selection();

. EXTERN void
canvas_repaint(),
create_base_canvas(),
create_base_frame(),
create_base_panel(),
do_action_list(),
exit_selected(),
kill_window(),
get_file(),
panel_repaint(),
pause(),
input_events(),
present_concept();

EXTERN int
continue_selected(),
find_assert_list_id(),
help_selected(),
do_response_list(),
start_selected();

EXTERN Notify_value
pause_time(),
my_notify();

/***/
/* FILENAME: interp.c */

/* PURPOSE: contains the routines to interpret concept-flow */
/* structure of the Physics of Sound Tutorial */

/* CONTAINS: main() */

/* get_file() */

/* create_base_frame() */

/* create_base_panel() */

/* create_base_canvas() */

/* AUTHORS: Dawn M. Maskell, LT, USN */

/* Timothy J. Shimeall */

/* Naval Postgraduate School, Monterey, CA */

/* DATE: 21 January 1992 */

/* SOFTWARE: SunView */

#define MAIN
#include “interp.h”

main(argc, argv)

int argc;

char *argv[];

{

/* get the correct input file for tuturial */
get_file(&argc, argv);

/* Successful parse of file, execute tutorial */
if (yvparse() == 0)

{

/* create base frame */
create_base_frame(argc, argv);

/* create base panel */
create_base_panel();

/* create base canvas */
create_base_canvas();

window_main_loop(frame);

}

/* Unsuccessful parse */

else printf(“Unsuccessful parse™\n™):

97

98

/***/
/* FUNCTION: get_file() */

/* PURPOSE: get the name of the file to be used for tutorial */

/* CALLED BY: main() */

/* RETURNS: void */

/* CALLS: */

/* GLOBALS: FILE yyin <interp.h> */

/***/

void get_file(argc, argv)

int *argc;

char *argv(];

{int 1;

/* get name of tutorial file from stdin ¥/
if (*arge>1 && *argv([1] !="-") {

yyin = fopen(argv([1],’1”);

if (yyin == NULL) {

fprintf(stderr,”%s: Can’t open %s\n”",argv[0].argv{1]);
exit(1);

}

for (i=1;i < (*argc - 1); i++)

argv[i] = argv([i+1]:

(*argce)--;

)

/* if name of tutorial file not given, assume */
else {

yyin = fopen(“post.script”.’'r");

if (yyin == NULL) {

fprintf(stderr,”%s: Can’t open post.script\n™,argv]0]):
exit(1);

}

}

}

99

/***/
/* FUNCTION: create_base_freme() */

/* PURPOSE: create the main window that the entire tutorial */

/* operates */

/* CALLED BY: main() */

/* RETURNS: void */

/* CALLS: */

/* GLOBALS: Frame frame <interp.h> */

/***/

void create_base_frame(argc, argv)

int argc;

char *argv([];

{

/* create icon image */

post_icon = icon_create(ICON_IMAGE, &post_sym, 0);

frame = (Frame)window_create(NULL, FRAME,
FRAME_LABEL, ((topmenu != NULL) ? topmenu->title
: “Physics of Sound Tutorial™).

FRAME_ICON, post_icon,

FRAME_ARGS, argc, argv,

FRAME_NO_CONFIRM, FALSE.

NULL);

}

100

/***/

/* FUNCTION: create_base_panel() */

/* PURPOSE: create the buttons for the main window of the */
/¥ tutorial */

/* CALLED BY: main() */

/* RETURNS: void */

/¥ CALLS: continue_selected */

/* exit_selected */

/* help_selected */

/* start_selected */

/* GLOBALS: Frame frame <interp.h> */

/* Panel menu_panel, panel <interp.h> */
R ARk ks sk ks sk ko ks sk Rk o ok sk kol sk R kaak ok skor ok stk kR sk e ek ok sk ol ke ook

void create_base_panel()

{

panel = (Panel)window_create(frame, PANEL,
WIN_WIDTH, WIN_EXTEND_TO_EDGE,
NULL);

menu = (Panel_item)panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, “START", §, 0),
PANEL_NOTIFY_PROC. start_selected,

NULL);

help = (Panel_item)panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, “HELP", 4, 0),
PANEL_NOTIFY_PROC. help_selected,

NULLY);

cont = (Panel_item)panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, “CONTINUE",
8,0),

PANEL_NOTIFY_PROC. continue_selected,

NULL);

quit = (Panel_item)panel_create_item(panel, PANEL_BUTTON,
PANEL_ITEM_X, 590,

PANEL_LABEL_IMAGE, panel_button_image(panel, “EXIT™, 4, (),
PANEL_NOTIFY_PROC. exit_selected,

NULL);

window_fit_height(panel):

101

102

/***/

/* FUNCTION: create_base_canvas() */

/* PURPOSE: create the base canvas for the main window of the */
/¥ tutorial */

/* CALLED BY: main() */

/* RETURNS: void */

/* CALLS: canvas_repaint */

/* GLOBALS: Frame frame <interp.h> */

/* Canvas canvas <interp.h> */
/***/

void create_base_canvas()

{Pixwin *pw;

/* create a canvas on which to display the tutorial */

canvas = (Canvas)window_create(frame, CANVAS,
WIN_X, 10,

WIN_COLUMNS, 60,

WIN_ROWS, 45,

CANVAS_AUTO_EXPAND, TRUE,
CANVAS_AUTO_SHRINK, TRUE,
/* CANVAS_REPAINT_PROC, canvas_repaint, */

NULL);
/*

printf(“Width of 60 chars is %d, Height of 45 lines is %d\n”,
(int) window_get(canvas, WIN_WIDTH),
(int)window_get(canvas, WIN_HEIGHT)):

*/

pw = canvas_pixwin(canvas);

window_set(canvas,

WIN_CONSUME_KBD_EVENTS, WIN_NO_EVENTS, WIN_ASCII_EVENTS,

WIN_CONSUME_PICK_EVENTS., WIN_MOUSE_BUTTONS,
WIN_IN_TRANSIT_EVENTS, 0,

NULL);

win_register(canvas, pw, input_events, kill_window, PW_RETAIN);
notify_interpose_event_func(canvas, my_notify, NOTIFY_SAFE);

)

103

/***/

/* FUNCTION: start_selected() */

/* PURPOSE: provide on-line help to user */
/* CALLED BY:: create_base_frame() */

/* RETURNS: int */

/* CALLS: */

/* GLOBALS: */

/***/

int start_selected(item, event)
Panel_item item;
Event *event;

{

char *start_state;

Alert_attribute *attr_list = (Alert_attribute *)malloc
(10*sizeof(Alert_attribute));

/* load attr_list from topmenu */

panel_value = alert_prompt(panel, NULL,
ALERT_MESSAGE_STRINGS, “Select starting point™,
NULL,

ALERT_BUTTON, “Introducticn”, 0,
ALERT_BUTTON, “Source™, 1,

ALERT_BUTTON, “Sound™, 2,

ALERT_BUTTON, “Detector”, 3,

ALERT_BUTTON, “Mastery Test", 4,

NULL);

/* 0,1, 2, 3 and 4 are value returned when button is pushed */

/* get main menu item selected and start point of tutuorial */
start_state = menu_selection(): '

/* find start state in cfdgraph */
current_state = findnode(start_state);

/* do actions in start state action list */
do_action_list(current_state->actlist);

/* get event and find in response list

do_response_list(current_state->reslist);

*/

104

105

ek sk ol ol el el koK KRR KRR kR R R ko ko ok kK ok ko

/* FUNCTION: help_selected() */

/* PURPOSE: provide on-line help to user */
/* CALLED BY: create_base_frame() */

/* RETURNS: int ¥/

/* CALLS: */

/* GLOBALS: */

/***/

int help_selected(item, event)
Panel_item item;
Event *event;

{

int result;

result = alert_prompt(panel, NULL,
ALERT_MESSAGE_STRINGS, “Help button selected””, NULL,
ALERT_BUTTON_YES, “OK”,

ALERT_BUTTON_NO, “CANCEL",

NULL);

if (result == ALERT_YES)
return 1;
else return O,

}

106

/***/

/* FUNCTION: continue_selected() */

/* PURPOSE: provide on-line help to user */
/* CALLED BY: create_base_frame() */

/* RETURNS: int */

/* CALLS: */

/* GLOBALS: */

/***/

int continue_selected(item, event)
Panel_item item;
Event *event;

{

int result;

result = alert_prompt(panel, NULL,

ALERT_MESSAGE_STRINGS, Do you wish to continue?”’, NULL,
ALERT_BUTTON_YES, “YES",

ALERT_BUTTON_NO, “NO™,

NULL);

if (result == ALERT_YES)
return 1;
else return 0;

}

107

/***/

/* FUNCTION: exit_selected() */

/* PURPOSE: provide on-line help to user */

/* CALLED BY: create_base_frame() */

/* RETURNS: int */

/* CALLS: */

/* GLOBALS: */
/***/
void kill_window(frame, event, args)

Window frame;

Event *event;

char *args;

{

/* this can’t call window_destroy (for fear of recursive loop) */

/* but eventually needs to do almost everything else to clean up */
exit(0);

}

void exit_selected(argc, argv)

int *argc;

char *argv[];

{

window_destroy(frame);
kill_window(frame, NULL, NULL):
}

108

/***/

/* FUNCTION: menu_seclection() */

/* PURPOSE: call procedure based on main menu option selected */
/* CALLED BY: create_base_panel() ¥/

/* RETURNS: void */

/* CALLS: */

/* GLOBALS: Panel menu_panel <interp.h> */

ARk ok koK kKR o sk ok Rk R Rk sk kR sl ok e koK K

char *menu_selection()

{

/* based on the main menu option chosen, find the start state */
/* of the tutorial */

switch (panel_value){

case 0:{

printf(“INTRODUCTION chosen\n”);
printf(**Go to start state: %s\n”’, cfdgraph->nodeid);
return (cfdgraph->nodeid):

break;

}

case 1:{

printf(“SOURCE chosen\n™):

return (“‘st_2"");

break;

)

case 2:(

printf(“MEDIUM chosen\n™);

break;

)

case 3:{

printf(“DETECTOR chosen\n™):
break;

}

case 4:{

printf(“MT chosen\n’);

break;

}

} /* End switch */
)

109

#include “interp.h”
#include <suntool/icon_load.h>

static int is_pausing = 0;
static int mousex = 0;
static int mousey = 0;
static char inbuf[2048];
static int inbuflen = 0;
static int inx = 0;

static int iny = 0;

/***/

/* FUNCTION: canvas_repaint() */

/* PURPOSE: repaint canvas window */

/* CALLED BY: main() <interp.c> */

/* RETURNS: void */

/* CALLS: */

/* GLOBALS: Canvas canvas <interp.h> */

/***/

void canvas_repaint(cvs, pwin, xrects)
Canvas cvs;

Pixwin *pwin;

int xrects; /* unused */

{

Pixwin *pw = canvas_pixwin(canvas):

/* EVENTUALLY - BUILD A REPAINT LIST IN DO ACTION LIST */
/* EVENTUALLY - decode event */

/* EVENTUALLY - interpret which state to go to based on event */

/* EVENTUALLY - do actions in that next state */

/¥ EVENTUALLY - return to main */

}

110

/***/
/* FUNCTION: do_write() */

/* PURPOSE: display text in canvas window */

/* CALLED BY: do_action_list() */

/* RETURNS: void */

/* CALLS: */

/* GLOBALS: Canvas canvas <interp.h> */

/***/

void do_write(dx, dy, dw, dh, str)

int dx, /* x coordinate of pixwin origin */
dy, /* y coordinate of pixwin origin */
dw, /* width of pixwin */

dh; /* height of pixwin */

char *str; /* string to be printed in pixwin */
{

char *cur;

int pos;

char save;

Pixwin *pw = canvas_pixwin(canvas);

printf(“Write\n™");

/* clear the pixwin prior to writing */
pw_writebackground(pw, dx - CHAR_TO_RASTER_X(1),
dy - LINE_TO_RASTER_Y(1).

dw + CHAR_TO_RASTER_X(1), dh, PIX_SRC):

/* write string in pixwin */

cur = str;

/* EVENTUALLY -- Deal with scrolling windows */

while (*cur != \0’) {

if (strlen(cur)> RASTER_X_TO_CHAR(dw)) {

/* output up to word break prior to dw and adjust cur accordingly*/
pos = RASTER_X_TO_CHAR(dw);

while (pos>0 && cur[pos]!=")

poOs--;

if (cur{pos]!=")

pos = RASTER_X_TO_CHAR(dw): /* no blank to break at */
save = cur{pos];

cur[pos] = ‘\0’; /* cheat */

pw_text(pw, dx, dy, PIX_SRC. NULL, cur);

cur{pos] = save: /* uncheat */

1

Cur = Cur + pos;

while (*cur==**)

cur++; /* skip whitespace after linebreak */
dy += LINE_TO_RASTER_Y(1);

)

else { /* print cur */

pw_text(pw, dx, dy, PIX_SRC, NULL, cur);
break;

)

} /* End while */

}

SRRk kR ks ok ok ook skl s kol ok ok sk ok ok o ok ok ko sk ko e skok ok ok |
/* FUNCTION: my_notify() */

/* PURPOSE: track mouse and handle other needed events */
/* CALLED BY: ¥/

/* RETURNS: integer */
/¥ CALLS: ¥/

/* GLOBALS: Canvas canvas <interp.h> */
/***/
Notify_value my_notify(frame, event, arg, type)
Frame frame;

Event *event;

Notify_arg arg;

Notify_event_type type;

{int id = event_id(event);

Notify_value value;

if (id >= ASCII_FIRST && id <= ASCII_LAST)
{ifGd>="‘&&id<=‘~") {

inbuf[inbuflen++] = (char) id:
inbuf[inbuflen]="_"; /* simulate cursor */

)

else if (id == \b’ Il id == ASCII_LAST /* DEL */) {
inbuf{inbuflen] = \0’;

if (inbuflen>0) inbufl--inbuflen} = "_":

}

else if (id == 024’ /* CTRL-U */) {

while (inbuflen>0) inbuf[inbuflen--] = \0":
inbuffinbuflen] = *_’;

)

else if id == “\r’) inbuflinbuflen] = \Q":

)

else

switch (id) {

case LOC_STILL.: /* fall through */

case LOC_WINENTER: /* fall through */

case LOC_WINEXIT: /* fall through */

case LOC_DRAG: /* fall through */

case LOC_TRAJECTORY: /* fall through */
case LOC_RGNENTER: /* fall through */

case LOC_RGNEXIT: /* fall through */

case MS_LEFT: /* fall through */

case MS_RIGHT: /* fall through */

case MS_MIDDLE: /* fall through */

case LOC_MOVE:

mousex = event_x(event);
mousey = event_y(event);
break;

default: break;

}

value = notify_next_event_func(frame.event,arg,type); /* let window handle */
return value;

}

114

/***/
/* FUNCTION: do_expr() */

/* PURPOSE: evaluate expression structure and return value */
/¥ CALLED BY: do_location() */

/* RETURNS: integer */

/* CALLS: (recursive) */

/* GLOBALS: Canvas canvas <interp.h> int mousex, mousey */
/***/
int do_expr(exptr)

struct expnode *exptr;

{int lhs, rhs;

if (exptr == NULL) return 0;

if (exptr->left == NULL && exptr->right == NULL) {

if (exptr->varname != NULL) {

if (strcmp(exptr->varname, “halfwid”) == 0)

return (int) window_get(canvas, WIN_WIDTH)/6;

else if (strcmp(exptr->varname, “halfht”) == 0)

return (int) window_get(canvas, WIN_HEIGHT)/6;

else if (strcmp(exptr->varname, “mouseX”) == ()

return mousex;

else if (strcmp(exptr->varname, “mouseY ") == ())

return mousey;

/* EVENTUALLY: search for varname in redisplay list & deal with
components*/

}

else return exptr->val;

}

lhs = 0;

rhs=1;

if (exptr->left = NULL) lhs = do_expr(exptr->left);

if (exptr->right != NULL) rhs = do_expr(exptr->right);

switch (exptr->op) {

case ‘ ‘: return lhs;

case ‘-’: return lhs-rhs;

case ‘*’: return lhs*rhs;

case ‘/’: return lhs/rhs;

case ‘+°:

default : return lhs+rhs;

)
)

115

/***/
/* FUNCTION: do_location() */

/* PURPOSE: determine location for actions in list */

/¥ CALLED BY: do_action_list() */

/* RETURNS: x,y */

/* CALLS: do_expr */

/* GLOBALS: <interp.h> *
/***l
void do_location(locptr, x, y)

struct locnode *locptr;

int *x, *y;

{if (Jlocptr == NULL) return;

else {

*x = do_expr(locptr->x);

*y = do_expr(locptr->y);

)

}

116

/***/
/* FUNCTION: do_action_list() */

/¥ PURPOSE: execute actions in action list */

/* CALLED BY: start_selected() <interp.c> */

/¥ RETURNS: void */

/¥ CALLS: do_location() */

/* GLOBALS: Canvas canvas <interp.h> */
/***/
void do_action_list(action_node)

struct actnode *action_node;

{

int dx, /* x coordinate of pixwin origin */

dy, /* y coordinate of pixwin origin */

dw, /* width of pixwin */

dh, /* height of pixwin */

op; /* rasterop */

Pixwin *pw = canvas_pixwin(canvas);

Pixrect *image;

char error_msg[IL_ERRORMSG_SIZE];

for (inbuflen = (; inbuflen <2048; inbuflen++)
inbuf{inbuflen] = \0’;
inbuflen = 0;

#define REG_WIDTH (int) window_get(canvas, WIN_WIDTH)/3
#define REG_HEIGHT (int) window_get(canvas, WIN_HEIGHT)/3
while (action_node != NULL){

switch (action_node->actloc){

case REG_ALL:{ /* region O */

printf(“Action in region ALL (code = %d)\n”,
action_node->actloc);

dx =0;

dy = LINE_TO_RASTER_Y(1);

dw = (int) window_get(canvas, WIN_WIDTH);

dh = (int) window_get(canvas, WIN_HEIGHT);

break;

}

case REG_ONE:{ /* region 1 */

printf(**Action in region 1 (code = %d)\n”, action_node->actloc);
dx =0;

dy = LINE_TO_RASTER_Y(1);

dw = REG_WIDTH;

dh = REG_HEIGHT:;

117

break;

}

case REG_TWO:{

printf(“Action in region 2 (code = %d)\n”, action_node->actloc);
dx = REG_WIDTH;
dy = LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

)

case REG_THREE:{

printf(“*Action in region 3 (code = %d)\n”, action_node->actloc);
dx =2 * REG_WIDTH;
dy = LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

)

case REG_FOUR:{

printf(“Action in region 4 (code = %d)\n”, action_node->actloc):
dx=0;
dy = REG_HEIGHT + LINE_TO_RASTER_Y(1):
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

)

case REG_FIVE:{

printt(“Action in region 5 (code = %d)\n”", action_node->actloc):
dx = REG_WIDTH;
dy = REG_HEIGHT + LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

}

case REG_SIX:{

printf(“Action in region 6 (code = %d)\n”, action_node->actloc);
dx =2 * REG_WIDTH;
dy = REG_HEIGHT + LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

}
case REG_SEVEN:{

118

printf(“Action in region 7 (code=%d)\n”, action_node->actloc);
dx =0;
dy =2 * REG_HEIGHT + LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

}

case REG_EIGHT:{

printf(*Action in region 8 (code=%d)\n”, action_node->actloc);
dx = REG_WIDTH;
dy = 2 * REG_HEIGHT + LINE_TO_RASTER_Y(1);
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

}

case REG_NINE:{

printf(““Action in region 9 (code=%d)\n", action_node->actloc);
dx =2 * REG_WIDTH;
dy = 2 * REG_HEIGHT + LINE_TO_RASTER_Y(1):
dw = REG_WIDTH;
dh = REG_HEIGHT;

break;

)

case REG_OTHER:

default: {

printf(“Unrecognized region code %d\n",action_node->actloc);
)

} /* End switch */

switch (action_node->action){

case ACT_DRAW:{

printf(“Draw\n™);

if (image = icon_load_mpr(action_node->info_str,
error_msg)) {
do_location(action_node->info_loc, &dx, &dy);
pw_write(pw, dx, dy, 64, 64, PIX_SRC, image, 0, 0);
)

else fprintf(stderr, “%s\n”, error_msg):

break;

}

case ACT_CLEAR:{

printf(“Clear\n”),

if (action_node->info_str != NULL) {

119

do_location(action_node->info_loc, &dx, &dy);
pw_writebackground(pw, dx, dy, 64, 64, PIX_SRC);
)

else pw_writebackground(pw, dx - CHAR_TO_RASTER_X(1),
dy - LINE_TO_RASTER_Y(1),

dw + CHAR_TO_RASTER_X(1), dh, PIX_SRC);
break;

}

case ACT_WRITE:{
do_write(dx,dy,dw,dh,action_node->info_str);

break;

}

case ACT_INPUT:{

printf(“Input\n”);

inx =dx;

iny =dy;

pw_writebackground(pw, dx - CHAR_TO_RASTER_X(1),
dy - LINE_TO_RASTER_Y(1),

dw + CHAR_TO_RASTER_X(1), dh, PIX_SRC);
break;

}

case ACT_PAUSE:{

printf(“Pause\n”);

sleep(action_node->info_int);

/* while (is_pausing); set by pause, cleared by end_of_pause */
break;

}

case ACT_QUIT:{

printf(“Quit\n”);

break;

}

case ACT_DRAG:{

printf(“Drag\n”);

break;

)
} /* End switch */

action_node = action_node->next;

} /* End while */
/* test for only no-user-action responses & set up for seconds */

}

120

/***/

/* FUNCTION: do_response_list() */

/* PURPOSE: execute actions in response list */
/¥ CALLED BY: input_events() */

/* RETURNS: int ¥/

/* CALLS: create_assert_list <do_assert_list.c> */

/* GLOBALS: current_state <interp.c>, inbuf, inbuflen ¥/
/***/

int do_response_list(response_node, res_code)
struct resnode *response_node;

int res_code;

{ struct resnode *cur = response_node;
int retval = Q;

printf(“testing %d\n”’,res_code);

while (cur = NULL){

if (res_code == RES_NULL) {

/* evaluate expression */

}

else if (res_code == cur->expr->res_act) {
/* evaluate and test event */

)

if (retval) {

if (cur->label != NULL)
create_assert_list(current_state->nodeid,
cur->label);

current_state = cur->node;

cur = NULL;

}

else cur = cur->next;

} /* End while */

return retval;

)

/***/

/* FUNCTION: input_events() */

/* PURPOSE: handle events and call for response evaluation */
/* CALLED BY: define_base_canvas() <interp.c> */

/* RETURNS: void */

/* CALLS: do_response_list do_action_list */

/* GLOBALS: current_state <interp.c> */

/***/

void input_events(window, event, arg)
Window window;

Event *event;

caddr_t arg;

{int id = event_id(event);

int rescode = RES_NULL;

#define TEST_RES(Opcode) \
if (do_response_list(current_state->reslist, Opcode)) \
do_action_list(current_state->actlist)

if (current_state == NULL) return;

if (id >= ASCII_FIRST && id <= ASCII_LAST) {
if ((char) id == \r’) {

TEST_RES(RES_KEY);

for (inbuflen=0; inbuflen<2048; inbuflen++)
inbuffinbuflen]} = \0’;

inbuflen=0;

)

else do_write(inx, iny, REG_WIDTH, REG_HEIGHT, inbuf);
)

else if (id == MS_LEFT) {
TEST_RES(RES_CLICKLEFT);

else TEST_RES(RES_CLICKANY);

)

else if (id == MS_MIDDLE) {
TEST_RES(RES_CLICKMID);

else TEST_RES(RES_CLICKANY);

}

else if (id == MS_RIGHT) {
TEST_RES(RES_CLICKRIGHT);

else TEST_RES(RES_CLICKANY);

)

122

| | else if (id == LOC_MOVE Il id == LOC_DRAG Il id == LOC_TRAJECTORY) {
) TEST_RES(RES_MOUSEMOVE);

|)

, }

123

JRddkdkokokoo ek ok kKR Rk ook skooolok ek ko ko ok ok

/* FUNCTION: pause() */

/* PURPOSE: start and monitor timer */
/* CALLED BY: do_action_list() ¥/

/* RETURNS: void */

/¥ CALLS: */

/* GLOBALS: ¥/ v

/***/

Notify_value pause_time(client, which)
Notify_client client;

int which;

{

printf(“Entered PAUSE_TIMEW”);
printf(“%i seconds\n”’, which):
is_pausing = 0;

return (NOTIFY_DONE),

}

void pause(time)
int time;
{

struct itimerval run_timer;

printf(““Entered PAUSE procedure\n™);

printf(“‘Length of timer is %i\n", time);

if (time <= Q) return; /* smart-alecs... */

is_pausing = 1;

{* set up interval with which to RELOAD the timer */
run_timer.it_interval.tv_usec = 0;
run_timer.it_interval.tv_sec = 0; /* timer interval */

/* set up INITIAL value with which to set the timer */
run_timer.it_value.tv_usec = 0;
run_timer.it_value.tv_sec = time; /* current value */

printf(“Calling set_itimer_func\n”);

/* turn on interval timer for client */
(void)notify_set_itimer_func(canvas, pause_time, ITTMER_REAL,
&run_timer, ITIMER_NULL);,

)

124

e

#include “interp.h”

/***/

/* FUNCTION: create_assert_list() */

/* PURPOSE: create linked list of assert states and identifier */
/* CALLED BY: do_response_list() */

/¥ RETURNS: void */

/* CALLS: find_assert_list() */

/* GLOBALS: struct assert *assert_list <interp.h> */
/***/

struct assert *create_assert_list(node, identifier)
char *node, *identifier;

(

struct assert *tmp = assert_list:
char *temp_id;
int found = 1;

/* allocate space for temp_id */
temp_id = (char *)malloc(strlen(node) + strlen(identifier)
+1);

/* put asserted state in proper format for comparison with past */
/* identifier */

strcpy(temp_id, node):

strcat(temp_id, “/);

strcat(temp_id, identifier):

if (tmp == NULL){

/* empty list, create first link */

assert_list = (struct assert *)malloc(sizeof(struct assert)):

assert_list->id = temp_id;

assert_list->next = NULL;

}

else{

/* see if identifier already in assert list */

printf(“Before call Find, found = %i\n”, found):

found = find_assert_list_id(assert_list, temp_id);

printf(“Just returned from FIND. FIND = %i\n™, find_assert_list_id(assert_list,
temp_id));

printf(“Just returned from FIND. FOUND = %i\n", found):

if (found == 0){

/* identifier not in assert list */

/* find end of list and add new link */
while (tmp->next != NULL){

tmp = tmp->next;

} /* End while, end of assert list found */
/* create space in memory for new link */
tmp->next = (struct assert*)malloc(sizeof(struct assert));
tmp = tmp->next;

tmp->id = temp_id;

tmp->next = NULL,;

} /* End if */

} /* End else */

printf(“ASSERT LIST FOLLOWS\n"):
tmp = assert_list;

while (tmp != NULL){

printf(*“%s\n”, tmp->id);

tmp = tmp->next;

}

return{(assert_list);

}

/***l

/¥ FUNCTION: find_assert_list_id() */

/* PURPOSE: find given identifier in assert list */
/* CALLED BY: create_assert_list() */

/* RETURNS: int */

/* CALLS: */

/* GLOBALS: */

/***/

int find_assert_list_id(list, target)
struct assert *list;
char *target;

{

int status;
printf(“Begin FINDW”);
printf(“TARGET is: %s and ASSERT ID is: %s\n”, target, list->id);
if (stremp(list->id, target) == 0){ /* found match */
printf(**Assert ID FOUND. Return 1.\n™);
status = 1;
printf(“Returning %i\n”, status):

return (status);

)

else{

if (list->next == NULL){ /* end of assert list */

/* target not found */
printf(““Assert ID NOT FOUND and END OF LIST. Return 0.\n™);
status = 0,
printf(“Returning %i\n”, status);

return (status);

}

else{ /* target nof found, move to next in assert list */
printf(“Assert ID NOT FOUND. Recursing. . \n”').
return find_assert_list_id(list->next, target);

}

)

}

127

APPENDIX F
DATA STRUCTURE EXPLANATION

Ilustrations of the menu and cfdgraph data structures appear in Figures 1 and 2, respectively, as visual

e
menu menunode cfdnode

title . ic See Figure 2

choices : choice 8
: State ’
: NEXT cenmennnssd .
e tateamececacennnnnanaaait

FIGURE 1: menu Data Structure
aids.
1. menu
a. fitle

A character string of the title of the witorial,

b. choices

A pointer 10 a linked list of the titles of the start states to appear in the main menu. The

choices poinier points 10 menunode.
2. menunode

a. choice

A character string of the title of the main menu item.

128

messssssecanasanacss

anpnug ejed @A) T AANHIA

Js7sa1
ur-sal

W3uTsas

eA

Ty
dwoo

AWEUIEA
do

1Jay st
eTsal

wy3su
Jowesado
.................. 3oy

................ wou |
apou m
1dxa '

-
apousau

o0} ojul
ur-ojut

ns oju

%A

A uonoe

X aopor

3poudoy AL

apouje

................. 1Xau

18S9

HdVYD ddD

s
prapou

apoupyd

T

129

b. state

A pointer to the state (cfdnode) of that main menu item in the cfdgraph. The state pointer

points to cfdnode. This allows the tutorial to go directly to that statc within the cfdgraph.

¢c. next

A pointer to the next menunode in the choices linked list.
3. cfdnode

a. nodeid

A character string identifying the state.

b. actlist

A pointer to a linked list of the action list. The actlist pointer points to an actnode linked list

data structure.

c. reslist

A pointer 1o a linked list of the response list. The reslist pointer points to a resnode linked

list data structure.

d. next

A pointer to a linked list of nodes in the ¢fdgraph. The next pointer points to the next

cfdnode created, not nccessarily the next state.
4. actnode

a. actloc
An integer representing the region_id. The region_id and their corresponding region codes
are listed in the file parser.h found in Appendix D.
b. action

An integer representing the action in the action_node. The action codes arc found in the file

parscr.h in Appendix D.

130

¢. info_str
A character string argument for the text to be displayed in the window or the file name of an
icon.
d. info_int
An integer representing the diffcrent input modes, such as mouse. The input modes and the
corresponding codes are found in the file parser.h in Appendix D.
e. info_loc
A poiater 1o a linked list of the location arguments in the action list. The info_loc pointer
points to a locnode linked list data structure.
f. next

A pointer to a linked list of cach action in the action list. The next pointer points to actnode.
S. locnode

a x
A pointer to a linked list data structure of the x coordinate of a location in the window. The
X pointer points to an expnode.
b y
A pointer 10 a linked list data structure of the y coordinate of a location in the window. The
¥ pointer points to an expnode.

6. expnode

a. left
A pointer to a linked list of the operands of an arithmetic expression. The left pointer points
10 expnode.
b. right

A pointer to a linked list of the operands of an arithmetic expression. The right pointer points

1o expnode.

c. op

A character representing the four arithmetic operators: +, -, * and /.

d. varname

A character string of the argument mouseX, mouseY, the identificr for the icon file name or

the variable name used in the arithmetic expression. Refer to Figures 4 and S for an example.

(1, draw, mouse_sym@(mouseX, mouscY))

> expnode

left= NULL

right = NULL

op - ‘&

varnamc = mouscX

comp=""*
locnode val= 0

actnode

actloc=1

action = ACT_DRAW
info_str = mouse_sym.icon expnode
info_int=0
info_loc = YT lefi=NULL
right= NULL

op = [N 3

varname = mouseY
comp="*"*

val=0

FIGURE 4: Example of varname

e. comp
A char specifying x, y, or blank. The x and y refer o identifier.x and identifier.y,
respectively. Refer to Figures 4 and 5 for an example.
fo val

An integer representing the operand value in the expression,

(1, clear, mousc_sym@(dctector.x, detector.y))

— expnode
left = NULL
right = NULL
op =4
varnamc = dctector

actnode locnode comp = x
val=0
actloc=1 x
action = ACT_CLEAR
info_str = detector_sym.icon expnode
info_int =0 y.
info_loc = T ™ left=NULL
; right = NULL
op ="
varnam¢ = detector
comp=y
val=0
FIGURE §: Another Example of varname
7. resnode
a. expr

A pointer 10 a tree representation of cach response in the responsc list. The expr pointer
points to an opnode linked list data structure.
b. label
A character string for the identificr associated with assert. When the actual assen list is
created, the character */” separates the staie and the label. For example, if the state = st_1 and the label = “lef,”
then the assert list identifier would be “st_1/left.”
¢. node

A pointer to the state or nodc in the cfdgraph to go to if the given response is reccived. The

node pointer points to a cfdnode linked list data structure,

133

d. next

A pointer to the next responsc in the response list. The next pointer points to a resnode linked list

data structure.
8. opnode
a. left

A pointer to the left node in a tree structure of a response that includes logical operators. The
left pointer points to another opnode. Figure 20 illustrates one of the response events of state st_1_1_25 of
the POST script (Appendix B).

b. right

A pointer the right node in a tree structure of a responsc that includes logical operators. The
right pointer points to another opnode. Figure 6 illustrates onc of the response events of state st_1_1_25 of

the POST script (Appendix B).

¢. operator
An integer representing the logical operators. The logical operators and their corresponding
codes are listed in the file parser.h in Appendix D.
d. res_act

An integer representing the response event. The response codes are listed in the file parser.h

found in Appendix C.

e. res_left

A pointer to an arithmetic operation uscd in the relop or loc_part of the grammar. The

res_left pointer points to an expnode.

[res_right

A pointer to an arithmetic operation used in the relop or loc_part of the grammar. The

res_right pointer points to an expnode.

g res_int

An integer for the integer argument in the response_node “seconds.”

134

(click-continuc & ((past st_1_6_25 help | past st_1_6_25 wrong_ans))

click-continue

st_1_6_25/hclp

/N
/N

st_1_6_25/wrong_ans

opnode

left

operator = &
right

res_act = RES_NULL
res_left

res_right

res_int

res_str

opnode

left = NULL

operator = OP_NULL

right = NULL

res_act = RES_CLICKCONT
res_left

res_right

res_int

res_str

opnode

left=NULL

operator = OP_NULL
right = NULL

res_act = RES_PAST
res_lefl

res_right

res_int

res_sir = st_6_25/help

opnode

lefio

operator = OP_OR
right

res_act = RES_NULL
res_left

res_right

res_int

res_str

opnode

left = NULL

operator = OP_NULL

right = NULL

res_act = RES_PAST
res_left

res_right

res_int

res_str = st_6_25/wrong_ans

FIGURE 6: Response Event Data Structure

135

b res_str
A chuactq string representing the identifier for past.

136

LIST OF REFERENCES

Bork, Alfred, /nternational Development of Technology-Based Learning Courses, Educational Technology
Cenier, Information and Computer Science, University of California, Irvine, August 31, 1990.

Bork, Alfred, Pedagogical Development of Computer-Based Learning Material, Educational Technology
Center, Information and Computer Science, University of California, Irvine.

Bork, Alfred, Production Systems for Computer-Based Learning, University of California, Irvine.
Burke, Robert L., CAI Sourcebook, Prentice-Hall, Inc., 1982.

Cleveland, Bernard F., Mastering Teaching Techniques, The Connecting Link Press, 1986.
Electronic mail from Alfred Bork, bork@idyllwild.ics.usi.cdu, 08 February 1991,

Krendl, Kathy A. and Licberman, Debra A, “Computers and Learning: A Review of Recent Rescarch,”
Journal of Educational Computing Research, v. 4, n. 4, Baywood Publishing Co., Inc., 1988.

Levin, Tamar and Long, Ruth, Effective Instruction, The Association for Supervision and Curriculum
Development, 1981.

Marks, Gary H. and Bartholomew, Rolland, “Computer-Assisted Instruction in Secondary Physical Science:
An Evaluation of Student Achicvement and Attitudes,” Proceedings of National Educational Computing
Conference (NECC), 17-19 June 1981. North Texas State University, University of lowa, 1981.

Walker, Decker F. and Hess, Robent D, ed., Instructional Software Principles and Perspectives for Design
and Use, Wadsworth Publishing Company. 1984.

Yourdon, E., Modern Structured Analvsis, Premtice-Hall, Inc., 1989,

BIBLIOGRAPHY

Bork, Alfred, International Development of Technology-Based Learning Courses, Educational Technology
Center, Information and Computer Scicnce, University of California, Irvine, August 31, 1990.

Bork, Alfred, Pedagogical Development of Computer-Based Learning Material, Educational Technology
Center, Information and Computer Scicnce, University of California, Irvine.

Bork, Alfred and Pomicter, Nancy, “Practical Techniques Usecful in Authoring Technology-Based Learning
Maienal”, Journal of Computer-Based Instruction, Spring 1990, v. 17, n. 2, 53-60, 1990.

Bork, Alfred, Production Systems For Computer-Based Learning, University of California, Irvine,

Bork, Alfred, Tools For Developing Technology-Based Learning Units, Educational Technology Center,
Information and Computcr Science, University of California, Irvine, May 30, 1990.

Burke, Robert L., CAI Sourcebook, Prentice-Hall, Inc., 1982,

Clevcland, Bernard F., Mastering Teaching Techniques, The Connecting Link Press, 1986.

Electronic mail from Alfred Bork, bork@ idyllwild.ics.usi.cdu. 08 February 1991.

Gray, Susan H., “The Effect of Locus of Control and Sequence Control on Computcerized Information
REtricval and Retention,” Journal of Educational Computing Research, v. 5. n. 4, Baywood Publishing Co.,

Inc., 1989.

Hativa, Nira, “Diffcrential Characteristics and Mcthods Underlying CAI/CMI Drill and Practice Systems,”
Journal of Research on Computing in Education, v. 20, n. 3, Spring 1988,

Krendl, Kathy A. and Licberman, Debra A, “Computers and Leaming: A Review of Recent Rescarch,”
Journal of Educational Computing Research. v. 4, n. 4, Baywood Publishing Co., Inc., 1988.

Levin, Tamar and Long, Ruth, Effective Instruction, The Association for Supervision and Curriculum
Devclopment, 1981.

Marks, Gary H. and Bartholomcw, Rolland, “Computer-Assisted Instruction in Secondary Physical Science:
An Evaluation of Student Achicvement and Attitudes,” Proceedings of National Educational Computing
Conference (NECC), 17-19 June 1981, North Texas State University, University of Iowa, 1981,

Mason, Tony and Brown, Doug, lex & yacc, O'Reilly and Associates, Inc., 1990.

Slceman, D. and Brown, J. S., ed, /ntelligent Tuioring Systems, Academic Press, Inc., 1982,

Urick, Robert J., Principles of Underwater Sound, 3d ed., McGraw-Hill Book Company, 1983.

Walker, Decker F. and Hess, Robert D, ed., Instructional Software Principles and Perspectives For Design
and Use, Wadsworth Publishing Company, 1984,
Yourdon, E., Modern Structured Analysis, Prentice-Hall, Inc., 1989.
2
e
]
v |
i
139
S o

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 052

Naval Postgraduate School
Monterey, CA 93943-5002

LT Dawn M. Maskell

c/o 2 Lenox Court
Longview

Montville, NJ 07045-9001

Timothy J. Shimeall

Code CS/Sm

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Robert B. McGhee

Chairman, Code CS

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

CDR Thomas J. Hoskins

Curricular Officer, Code 37
Naval Postgraduate School
Monterey, CA 93943-5100

Space and Naval Warfare Systems Command

ATTN: CAPT Kirk E. Evans, USN (PD-80)
Washington, D. C. 90363-5100

140

10.

11

12.

13.

Space and Naval Warfare Systems Command
LCDR J. L. Knecht, USN (PMW 183-11)
Washington, D. C. 90363-5100

Space and Naval Warfare Systems Command
ATTN: LCDR P. A. Feldmann, USN (PMW 183-113)
Washington, D. C. 90363-5100

Space and Naval Warfare Systems Command
ATTN: OTACR. Bryan (PMW 181)
Washington, D. C. 90363-5100

Applied Research Laboratories
The University of Texas at Austin
ATTN: Steve Houser

P. O. Box 8029

Austin, TX 78713-8029

Applied Research Laboratories
The University of Texas at Austin
ATTN: Carol Sheppard

P. O. Box 8029

Austin, TX 78713-8029

Alfred Bork

Educational Technology Center
Information and Computer Science
University of California

Irvine, CA 92717

141

