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are provided. First, the problem of finding the coordinates on the Earth's surface
viewed by each pixel of a reconnaissance aircraft camera is discussed. Second, the
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Abstract

Nonlinearity is one of the most stubborn difficulties of
contemporary engineering and science. In this paper we are
concerned with a broadly useful tool, the resultant, for manipulating
polynomial nonlinearities, and we review several techniques for
solving systems of nonlinear polynomial equations. The resultant, a
classical algebraic tool, has become much more practical recently
with the advent of symbolic software (such as Mathematica and
Maple) which can evaluate 10 X 10 symbolic determii.ants in a
matter of -ninutes on a desktop computer.

While much of this paper is concerned with applying resultants
to systems of univariate equations, the last section considers the
generalization to the multivariate situation. Nonlinear multivariate
applications appear in various areas of engineering such as chaos,
signal processing, circuit theory, robotics and control theory. Two
illustrations of the power of the resultant formalism are provided.
First, the problem of finding the coordinates on the Earth's surface
viewed by each pixel of a reconnaissance aircraft camera is
discussed. Second, the Lorenz model of chaos theory is considered.
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I. Introduction

A. Univariate Polynomial Systems of Equations

Given two univariate polynomial equations such as

dx 3 +cx 2 +bx+a=0 and (1.1)
C x2 +B x+A =0 (1.2)

there are a variety of methods available for finding any common
roots. One way, obviously, is to use some brute force technique to
numerically determine all the roots of both equations (e.g. Newton's
Root Finder Method). The common roots can then be selected as the
intersection of these two sets.

This paper describes a more elegant method for solving this
problem which utilizes the resultant [1] [2] (defined below). In this
section we will define the key elements involved in these techniques;
in later sections, we will describe how these elements can be used to
solve polynomial equations.

One way to obtain the resultant is by taking the determinant of
the Sylvester matrix. The Sylvester matrix is formed by padding
zeroes before and/or after the coefficients of the two polynomials
For the polynomials in equations (1.1) and (1.2) above, the Sylvester
matrix would be:

d c b a 0

0 d c b a

0 0 C B A
0 C B A 0

C B A 0 0

The size of the matrix is equal to the sum of the degrees of the
highest order terms of each of the polynomials. For example, for the
above two polynomials, the highest order term in the first
polynomial is three, and in the second polynomial it is two.
Therefore, the matrix is 5 X 5.

The subresultant is formed from the determinant of the Inner
matrix. The Inner matrix is formed by removing the outer layer of
elements from the Sylvester matrix (the top and bottom rows, and
the first and last columns). For example, for the above case we
would have

dcba0
Odcba
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d c b
0 C B

C B A

The 2nd subresultant, 3rd subresultant, etc., can be formed in
the same manner. The 2nd subresultant in the above example
would be the single element ICI.

B. Multivariate Polynomial Systems of Equations

Given a pair of multivariate equations such as

fx y2 + d x2 y2 + c x3 y2 + b x y + a y = 0 (1.3)
D x2 y2 + C x3 y + B x y + A x 3 = 0 (1.4)

the resultant methodology is still useful. The resultant applied to
this pair of polynomial equations will reduce the number of variables
by one. The equations are treated in much the same way as with
the single variable case. The main difference is that now the
coefficients of the variable to be eliminated (for example, y) are no
longer constants, but rather are polynomials in the remaining set of
variables (for the equations above, the coefficients of y are
polynomials in x). For examples using nonlinear multivariate
equations, see Section V, below.

II. Existcnce and Number of Common Roots for Univariate Equations

A. Resultant Method

In general, the number of common roots for two polynomials
can be found by checking the values of the resultant and the
subresultants If the resultant is nonzero, then there are no common
roots; whereas, if it is zero, there is at least one common root [3] [41.
Then the subresultants must be checked in increasing order
(decreasing determinant size) for a nonzero result. If the Nth
subresultant is the first subresultant to yield a nonzero result, then
there are N common roots.

2
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This method lends itself to a symbolic solution because it only
involves rational combinations of the coefficients of the polynomials
in contrast to nonrational iterative processes such as root finders.

B. Rank Method

The rank of the matrix can be obtained in a variety of ways.
One way is to determine the singular values. The rank is the
number of nonzero singular values.

The rank of the Sylvester matrix can be used to determine the
number of common roots. If the rank of the Sylvester matrix is
equal to its size (dimension), then there are no common roots.
However, if the rank is less than the size, then the difference
between the size and the rank is the number of common roots. For
example, if the Sylvester matrix is 5 X 5 and the rank is 3, then the
number of common roots is 5 - 3 = 2.

In contrast to the resultant method discussed above, this
method does not lend itself to a symbolic solution. A numerical
algorithmic approach is typically utilized to solve for the singular
values.

III. Values of the Common Roots for Univariate Equations

A. One common root

1. Derivatives of Resultants

The value of the common root (cr) can be determined by
computing the ratio of the first derivatives of the resultant (R) with
respect to two successive coefficients [5]. Expressed as a formula,

cr = dR/dC (3.1)
dR/dB

where C and B are any two successive coefficients in either
polynomial (C is the coefficient of the higher order term).

To illustrate this procedure, let us consider the two
equations in the Introduction, namely

3
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d x3 +c x2 +bx +a= 0 and (3.2)
C x2 + B x + A =0 (3,3)

Recall, that the Sylvester matrix of these equations was

d c b a 0
0 d C b a

0 0 C B A

0 C B A 0

C B A 0 0

The resultant, R, is the determinant of this matrix, and this turns out
to be

R= -C3a 2 +BC 2 ab-AC 2 b2 -B 2 Cac+2AC2 ac+ABCbc
- A 2 Cc 2 + B3 ad-3 A B Cad- A B2 bd+2A 2 Cbd
+ A2 B cd-A 3 d2  (3.4)

The first derivatives of R with respect to C and B are

dR/dC = -3 C2 a2 + 2 B C a b - 2 A C b2 - B2 a c + 4 A C a c
+ AB bc-A 2 c2 -3ABad+2A 2 bd (3.5)

dR/dB = C2 ab-2BCac +ACbc+3 B2 ad-3ACad

-2 A B bd + A2 cd. (3.6)

Suppose, for example, that the two equations were

f = (x - 3)(x - 1)(x - 2) = x3 - 6x 2 + lIx - 6 (3.7)
g =(x- 3)(x 5) = x2 - 8x + 15 (3.8)

If the reader were presented with these two equations (3.7)
and (3.8) in the unfactored form and were unaware that the common
root is 3, he could plug d = 1, c = -6, b = 11, a = -6, C = 1, B = -8, and A
= 15. into equations (3.5) and (3.6). The derivatives evaluate to
dR/dC = -216 and dR/dB = -72. The ratio of these two derivatives,
equation (3.1), yields the common root to be 3, as expected.

4
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2. Cramer's Rule

Another method for solving for a single common root
involves Cramer's Rule [6]. First, the bottom row is dropped from
the Sylvester matrix. Second, two determinants are formed: one by
dropping the next to last column (which we shall call "Next-to-Last");
the other, by dropping the last column (which we shall call "Last").

Using, again, the example discussed in the Introduction,
we have

Next-to-Last = Determinant of the following matrix: (3.9)

d c b 0

0 d c a

0 0 CA

0 C B 0

Last = Determinant of the following matrix (3.10)

d c b a

0 d c b

0 0 C B

0 C B A

The single common root (cr) is then the negative of the
ratio of the Next-to-Last determinant to the Last determinant.
Expressed as a formula, we have

cr = - Next-to-Last (3.11)
Last

If one were trying to solve equations (3.7) and (3.8) using this
approach, Next-to-Last and Last evaluate to 36 and -12 respectively,
and the negative of their ratio (the common root) is 3.

B. Two Common Roots

1. Derivatives of Resultants

If there are two common roots, the second derivatives of
the resultant with respect to two successive coefficients can be used

5
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to solve for their values [7]. These second derivatives are inserted
into a quadratic equation, and the solutions to the quadradic
equation are the two common roots.

Suppose C and B are two successive coefficients in either
polynomial, and R is the resultant. Let us define

u = d2 R/dC 2  (3.12)
v = d2 R/dCdB (3.13)

w = d2 R/dB 2  (3.14)

The two common roots are then obtained from the following:.

v+4v2-uw
cr = (3.15)w

We will apply this formalism to equations (1.1) and (1.2), since
we already know the first derivatives of the resultant from
equations (3.5) and (3.6). Taking the second derivatives, we get
symbolically

u = d2 R/dC 2 = -6 C a2 + 2 B a b - 2 A b2 + 4 A a c (3.16)
v =d 2 R/dCdB =2Cab-2Bac+Abc-3Aad (3.17)
w=d 2 R/dB 2 =-2Cac+6Bad-2Abd (3.18)

A numerical example of this approach can readily be had by
altering equations (3.7) and (3.8) so that they have two common
roots, 3 and 5. For example, suppose

f =(x - 3)(x - 5)(x - 2) = x3 - 10x2 + 31x - 30 (3.19)
g =(x - 3)(x -5) =x 2 - 8x + 15 (3.20)

If we substitute d = 1, c = -10, b = 31, a = -30, and C = 1, B = -8,
and A = 15 into equations (3.16), (3.17), and (3.18) we get u = -1350,
v = -360, and w = -90. If these values are then inserted into
equation (3.15), the common roots turn out to be 3 and 5.

2. Greatest Common Divisor (GCD) Using Subresultants

A second method for finding the values when there are
two common roots involves finding the polynomial GCD using the
first nonzero subresultant [8] [9]. The roots obtained by setting this

6
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GCD equal to zero are the common roots of the two given
polynomials.

The technique involves replacing the last column of the
first nonzero subresultant (we will call this "FNS") by a series of
elements formed by multiplying the two given polynomials by
different powers of the unknown (e.g. x). The determinant of this
altered subresultant is the GCD.

Suppose the coefficients from the first given polynomial
are contributing 'T' rows to the FNS, and the second polynomial's
coefficients are contributing "j" rows. The replacement column then
has "i+j" elements. The top element in the replacement column is
formed by multiplying the first polynomial by "x" raised to the "i-l"
power. The second element is had by multiplying the first
polynomial by "x" raised to the "i-2" power. This continues until the
element equals the first polynomial multiplied by one. The next
element in the column is the second polynomial. This is followed by
elements formed by the second polynomial multiplied by increasing
powers of "x" until the power equals "j-l".

To illustrate this technique we would like to use again the
equations (3.19) and (3.20). However, this case is too simple and
does not demonstrate the technique very well. Recall that the
Sylvester matrix is 5 X 5. Since we have two common roots, the first
nonzero subresultant will be the second subresultant which is 1 X 1,
a single element. Since this element is one of the coefficients from
the equation (3.20), the altered subresultant (the GCD) ends up
having one element which is

x2 - 8x + 15 (3.21)

When this GCD is set equal to zero, the roots are, of course, 3 and 5.
To obtain a better example we consider below another pair of

equations (of higher order) which also have common roots 3 and 5.

f= 2(x - 3)(x - 5)(x - 2)(x - 1)
=2x4 - 22x3 + 82x 2 - 122x + 60 (3.22)

g = 3(x - 3)(x - 5)(x - 7)
= 3x 3 - 45x 2 + 213x - 315 (3.23)

The Sylvester matrix of these coefficients is

7
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+2 -22 +82 -122 +60 +0 +0
+0 +2 -22 +82 -122 +60 +0
+0 +0 +2 -22 +82 -122 +60
+0 +0 +0 +3 -45 +213 -315
+0 +0 +3 -45 +213 -315 +0
+0 +3 -45 +213 -315 +0 +0
+3 -45 +213 -315 +0 +0 +0

The determinant of this matrix (the resultant) evaluates
to zero, and the first subresultant is also zero. Since the second
subresultant is not zero, there must be two common roots.

The second subiesultant is

+2 -22 +82
+0 +3 -45
+3 -45 +213

The second subresultant modified by replacing the last
column in the manner described above is

+2 -22 (2x4-22x3+82x 2-122x+60) 1

+0 +3 (3x3-45X2+213x-315)

+3 -45 (3x4-45x3+213x2-315x)

Suprisingly, the determinant of this matrix reduces down
to -540(x - 3)(x - 5). This is the GCD. The roots of this GCD set
equal to zero are x equals 3 and 5 which are the two common roots
of the two given polynomials.

IV. Repeated Roots of a Single Univariate Equation: Discriminant

The resultant methodology is also very useful for determining
whether a single univariate polynomial equation has repeated roots.
One test for repeated roots is to check if the discriminant (D) is zero.
The reader will recall that for the quadratic equation the solutions
are

-b± b 2 -4a c
2a (4.1)

8
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In this case,

D = b2 - 4a c (4.2)

Obviously, when D = 0 there is a repeated root, namely x = -b/2a. It
can easily be shown that an alternative way to express D for the
quadratic case is

D = a2*(Xl - x2) 2  (4.3)

where x I and x2 are the two roots. In general, for a polynomial of
order n, the discriminant is defined as

D = an2 (n- 1)(xI - x2) 2 ... (Xl - Xn) 2 (x2 - x3) 2 ... (x2 - Xn) 2 ... (Xn-l - Xn) 2

(4.4)
where an is the coefficient of the highest order term, and Xl,X2 .... Xn

are the roots. If any of the roots are repeated, D = 0. The problem
is that since we are assuming that the roots are unknown, it is
impossible to evaluate D directly from equation (4.4). However, the
discriminant can be shown to be directly proportional to the
resultant of the given polynomial and its first derivative [4]. This
implies that if the resultant of a polynomial and its first derivative is
zero, then there are repeated roots. Furthermore, this resultant is
fairly straightforward to evaluate.

Consider, for example, the equation

f=(x-3)2 (x-7) = x 3 -13x2 + 51x- 63 (4.5)

The first derivative of f is

g = df/dx = 3x 2 - 26x + 51 (4.6)

These two equations are in the form of (1.1) and (1.2). When the
resultant is taken, it is found to be zero. Since this resultant of the
function and its first derivative is zero, the discriminant must be
zero, and this implies that there are repeated roots.

To find out the value of the repeated root, one can use the
method discussed in section III(B.1) which the reader will recall
utilizes the second derivatives of the resultant.

9
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V. Multivariate Generalization

It was mentioned in the Introduction that if the system of
polynomial equations involves more than one variable, the resultant
technique can be used to reduce the number of variables. If there
are sufficient equations, applying this resultant technique to pairs of
equations can lead to unique solutions for the variables. This is
often a nontrivial task when the equations are nonlinear. The
resultant provides an organized approach to accomplish this task.

A. Reconnaissance Problem

In modern airborne reconnaissance it is important to be
able to map the surface of the Earth onto the pixel plane of the
camera. In the example which follows the coordinate system used
has its origin at the center of the Earth. The aircraft is assumed to be
on the positive z axis at coordinate zo The x and y axes point East
and North respectively from the aircraft. We will assume that we
have earlier computed the direction cosines (cos-x, cos-y, cos-z) of
the vector pointing from a given pixel toward the Earth. The Earth
is modeled as a sphere of radius R. The successive use of resultants
on pairs of equations is shown below to solve the problem of finding
the point on the Earth's surface intercepted by the line of sight of
each pixel.

The equations which characterize the line of sight of the pixel
are:

X _ COS-X
z - zO cos-z (5.1)

y _ cos-y
z - zO cos-z (5.2)

The equation of the sphere is

x2 + y2 + z2 = R2  (5.3)

Equations (5.1) , (5.2), and (5.3) are expressed below as (5.4),
(5.5), and (5.6) respectively:

x - a z + b = 0 (5.4)

10
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y - c z + d = 0 (5.5)

x2 + y2 + z2 - R2 = 0 (5.6)

where the parameters a, b, c, and d are defined as:

a= - b= CMo-x I z0(C =57cos-z kc s -z Icos-z cos-z, z (5.7)

A Sylvester determinant can be formed from the coefficients of z in
equations (5.4) and (5.5).

-a (x+b)}
--c (y+d)l

When this determinant is set equal to zero, we obtain the following

equation in x and y:

a y + (ad -cx- c b) =0 (5.8)

A second Sylvester determinant can be formed using the coefficients
of z in (5.4) and (5.6).

-a (x+b) 0

0 -a (x+b)

1 0 (x2 +y2-R 2)

When this second determinant is set equal to zero, we obtain another
equation in x and y:

a2 y2 +(b 2 -a 2 R 2 +2bx+x 2 +a 2 x2 )= 0  (5.9)

Finally, a third Sylvester determinant can be formed using the
coefficients of y in (5.8) and (5.9).

a (ad-cx-cb) 0

0 a (ad-cx-cb)

a2  0 (b2 - a2 R2 + 2 b x +x2 + a2 x2)

Setting this determinat equal to zero yields a quadratic equation in x:

11
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(I + a2 + c2 ) x2 + (2 b + 2 b c 2 - 2 a c d) x
+ (b2 + b2 c2 -2 a b cd + a2 d2 - a2 R2 ) = 0 (5.10)

The quadratic formula is next applied to equation (5.10) to
obtain the x roots. The smaller root is the x value of the intercept of
the pixel's line of sight with the Earth. Obviously, if the roots are
complex, the line of sight missed the Earth. The y value of the
interception point can be obtained from equation (5.8), and the z
value from equation (5.4).

To illustrate this technique, suppose that R = 10, zo =15, and
the angles of the pixel's line of sight with respect to the x, y, and z
axes are 600, 900, and 1500 respectively (it is in the x-z plane).

Figure 1: Sphere Intercepted By Pixel Line Of Sight

Z axis

7 Line of sight'(--
A Near Intersection Point

Far Intersection Point

In this example, cos-x = cos(600 ) = 0.5; cos-y = cos(900 ) = 0;
and cos-z = cos(150') = -0.866. Using the definitions for parameters
a, b, c and d (5.7) we have:

a= c°S-x = 0.5 = -0.577
cos-z -0.866 (5.11)

=( 0 .866s -. 66(5.12)

cos-y 0 0
cos-z -0.866 (5.13)

12
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d= -osz,= z0 = )15 =0d -0.86)65 O (5,14)

Plugging these values for a, b, c, and d into equation (5.10)

along with R = 10 we get:

1.33 x2 - 17.31 x + 41.62 = 0 (5.15)

Using the quadratic formula we get x = 3.19 and x = 9.80.
The smaller value is the x coordinate of the line of sight intercept.

The value of y is had by putting x = 3.19 into equation (5.8)
along with the values of the other parameters.

-0.577 y + (-0.577 )(0) - (0) (3.19) - (0) (-8.66) = 0 (5.16)

Solving for y we get y = 0. This is expected since our line of
sight is in the x-z plane

The z coordinate of the intercept is had by plugging the x value
along with the values of the parameters into (5.4).

3.19 - (-0.577) z + (-8.66) = 0 (5,17)

The z intercept turns out to be 9.48.

B. Chaos Problem

A common model in the theory of chaos, the Lorenz model,
involves the following set of equations [101:

dx 1 /dt = - a x1 + a x2 (5.18)
dx 2 /dt = c xl - X2 - X X3 (5.19)
dx 3/dt = -b x3 + X1 x2 (5.20)

in which a, b, and c are positive constants.
In the limit when the derivatives are all zero, equation (5.18)

reduces to simply xl = x2. Replacing X2 by xj, in the other two
equations (5.19 and 5.20). we have

0 = C X1 - Xl - X1 X3 (5.21)
0 = -b x3 + (xI) 2  (5.22)

13
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This is an especially simple set of equations. It was chosen for
two reasons: (1) it allows the reader to see by inspection what the
solution must be, that is X3 = c - I and xl = Sqrt[b (c - 1)] ; (2) it
allows the reader to easily evaluate the Sylvester determinant.

The resultant formalism can be shown to produce the same
result. The Sylvester matrix is formed from the coefficients of the
different powers of one of the variables. If the Sylvester matrix
elements are, for example, the coefficients of xj, then xl will not
appear in this matrix and is said to be eliminated. In this case the
coefficients of xl, and therefore the elements of the Sylvester matrix,
will involve polynomials in x3. The reader can easily prove that the
Sylvester matrix takes the form

C- 1-X3 0 0

0 c- 1 -x 3  0
1 0 -bx 3

Setting the determinant of this matrix equal to zero we have

(c - I - x3) 2 (-b x3) = 0 (5.23)

The nontrivial solution of (5.23) is x3 = c - 1.
This problem was solvable without the Sylvester formalism.

In other more complicated pairs of polynomial equations, it is not
usually apparent how to algebraically eliminate one of the variables.
However, the resultant formalism affords the user a systematic
process for achieving this goal.

If there are several equations in as many unknowns, the user
can apply the resultant formalism to pairs of equations, each time
reducing the number of variables by one until there is eventually
only one equation in one unknown [111 This single equation may
have a high order, but a method such as the Newton Root Finder
Method can then by used.

VI. Conclusion

The resultant is a useful tool for determining whether there are
any common roots for a given pair of univariate polynomial
equations. If common roots exist, the resultant can also be used to
determine the values of these roots without determining all the roots
of both polynomials. As a practical matter, these methods work very
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well for one or two common roots. The common roots flow from an
equation whose order is equal to the number of common roots. The
solution of this equation becomes increasingly difficult as the
number of common roots increases.

Since the resultant is proportional to the discriminant of a
single univariate polynomial equation, it can provide a quick check
for repeated roots.

When used on pairs of multivariate polynomial equations, each
application of the resultant formalism provides an organized method
for reducing the number of variables by one.
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APPENDIX A

SAMPLE RUN SESSIONS

Below we have included sample sessions which illustrate the
syntax for evaluating the resultant on three different symbolic
manipulation packages: Maple (version 4.2), Mathematica (version
1.2), and Cocoa (version 0.99b). Our hardware consisted of a
Macintosh IIx equipped with 8 Meg of RAM.

Maple:
On Maple there are three optional methods for evaluating

the resultant of two polynomials The first method is the simplest
and fastest; it simply involves invoking the "resultant" command.
The second method involves entering the Sylvester matrix (it can
also be obtained by applying the "sylvester" command to the two
polynomials), and then evaluating the determinant of this matrix
using the "det" command The third method uses the "bezout"
command; the "det" command is then applied to the output of the
"bezout" command to produce the resultant.

Method 1:
f := d*xA3 + c*xA2 + b*x + a;
g := C*xA2 + B*x + A;
with(linalg);
resultant(f,g,x);

Method 2:
M := array(l..5,1..5, [[d,c,b,a,0J,

0,d,c,b,al,
[O,O,C,B,A],
[0,C,B,A,0],
[C,B,A,0,0]]);

with(linalg);
det( M,sparse );

Method 3:
f:= d*xA3 + c*xA2 + b*x + a;
g:= C*xA2 + B*x + A;
with(linalg);
MapleBezArray:= bezout(f,g,x);
det(MapleBezArray);

16
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Mathematica:
The first two methods described above are available to

Mathematica users. There are two resultant commands: "Resultant"
and "Resultant2". The latter is much faster. Also, Mathematica has
not implemented direct commands equivalent to Maple's "sylvester"
and "bezout".

Method 1:
f := d xA3 + c xA2 + b x + a
g := C xA2 + B x + A
Resultant2[f,g,x]

Method 2:
M := [{d,c,b,a,O,

{,d,c,b,a),
{o,,C,B,A},
{0,C,B,A,O},
[C,B,A,0,0} I

Det[M]

Cocoa:
Before the user can use Cocoa he must declare all his

variables. This is done by using the mouse to pull down "Ring".
After selecting "Set Ring", a screen appears which allows the user to
declare variables. In our example, the user would type in the
Variables window "abcdABCx" (without the quotes). Exit this screen
by clicking "OK". Now, the user is ready to type in the appropriate
input statements listed below.

Method 1:
f = dx3 + cx 2 + bx + a

g = Cx 2 + Bx + A
Resultant(f,g,x)

Method 2:
M = Matrix(5,5,d,c,b,a,O,

O,d,c,b,a,
O,O,C,B,A,
O,C,B,A,O,

C,B,A,0,O)
Det(M)
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APPENDIX B

SOFTWARE TIMING SURVEY

We timed how long various commands took to execute using
the three symbolic manipulation packages listed in Appendix A
(namely, Maple, Mathematica, and Cocoa) on our Macintosh IIx (eight
Meg of RAM). We benchmarked the Resultant and Determinant
commands on all three packages. The Determinant command was
applied to the Sylvester matrix and therefore also determined the
resultant. On Maple, recall from Appendix A, there is a third
approach available to determine the resultant, namely the Bezout
command. The Bezout command produces the Bezout matrix, and
then the Determinant command can be applied to the Bezout matrix
to yield the resultant.

In the table on the next page, the column under the heading
"6=3+3" contains the execution times for determining the resultant of
two univariate third order (cubic) equations using the commands
discussed above. The Sylvester Determinants were 6x6. The
"7=4+3" column contains the times for the resultant determination of
a quartic and a cubic equation, etc.

Generally, the various commands were terminated after ten
minutes if a result had not been determined; however, in some
instances the system aborted the calculation due to lack of memory.

18
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TABLE 1

EXECUTION TIME (Seconds)

Software Siz 6=3+3 7=4+3 8=4+4 9=5+4 10=5+5 11=6+5 12=6+6 13=7+6
Package Command_'"_

Maple

Resultant 4.2 4.8 8.2 17.8 54.0 293.5

D eterm inant - - - - 260 .5
(Sylvester) 34 7.6 35.2 91.2 260.5
Bezout and
Determiant 2.3 3.3 10.2 28.2 85.7 359.0Determinant

Mathem atica

Resultant2 1.1 1.6 2.7 8.1 19.3 97.6 266.4

Determinant(yvse) 1.5 7.3 14.0 48.9 183.3 *(Sylvester)

Cocoa

Resultant 7.1 * * *

Determinant 8 4
(Sylvester) 58 472 ,

= Execution took at least ten minutes or was aborted by the system due to
lack of memory.

= Sizes are presented as a set of three numbers, for example, 7 = 4 + 3.
The first number (e.g.,7) is the size of the Sylvester matrix.

The second and third numbers (e.g.,4 and 3) are the orders of the two
polynomials.
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