
AD-A246 814

DTIG
#%LECTE

A FORMAL DEFINITON

OF THE
OBJECT-ORIENTED PARADIGM

FOR REQUIREMENTS ANALYSIS

THESIS

Antrew, D. Boyd, Captain. USAF

AFIT/GSS/ENG/91ID-3

NOW- CP -92-04840

DEPARTMENT OF THE AIR FORCEjJjJj'IIIII!IIIlIr~1
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

~22 91 4,w(0

AFLT/GSS/ENG/9l1D-3

A FORMAL DEFINITION
OF THE

OBJECT-ORIENTED PARADIGM
FOR REQUIREMENTS ANALYSIS

THESIS

Andrew D. Boyd, Captain, USAF

AF1T/GSSIENG/9 1D-3

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

LAeession For
WrIS GT'A&I "

DTIC TAR]

I _r

~veil aw~/er
Dig% 3 peolal

AFIT/GSS/ENG/91D-3

A FORMAL DEFINITION OF THE OBJECT-ORIENTED PARADIGM

FOR REQUIREMENTS ANALYSIS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Software Systems Management

Andrew D. Boyd,

Captain, USAF

December 1991

Approved for public release; distribution unlimited

Acknowledgments

I would like to take this opportunity to thank Dr. David Umphress for being the

inspiration behind this research to develop a formal definition of the Object-Oriented

paradigm, and for extending to me an invitation to use it for my thesis. Working with him

has served to enrich my understanding of both Object-Oriented computing and the benefits

of formalisms; two areas that are gaining much popularity in this time of the "software crisis."

Without the knowledge and guidance of Dr. Umphress, this research would not have been

possible. Much of the credit for this thesis goes to him. I am also deeply indebted to Dr.

Henry Potoczny for providing guidance to us in the area of discrete math and formal

definitions. I would also like to thank Capt Dedolph for providing a different point of view

on the thesis.

I will also take this opportunity to express my gratitude to my wonderful wife Nancy,

and marvelous son Alex. Without the help and support they both gave me, this thesis would

have been even more difficult than it already was. I would also like to thank the one who

is not here yet for staying not here yet so that I could finish this thesis before you got here.

To all of you, thank you.

Andrew D. Boyd

ii

Table of Contents

Page

Acknowledgm ents .. ii

List of Figures ... vi

List of Tables ... vii

A bstract ... viii

I. Introduction ... 1-1
Background of the Object-Oriented Paradigm 1-2

Object-Oriented Programming 1-2
Object-Oriented Design 1-2
Object-Oriented Requirements Analysis 1-3

Benefits of Formal Methods 1-3
Research Objectives ... 1-4
Scope ... 1-4
O verview ... 1-5

II. Literature Survey .. 2-1
Major Schools of Thought on OORA 2-1

Inform al .. 2-1
B ailin ... 2-1
Shlaer and M ellor 2-3
Booch .. 2-5
Coad and Yourdon 2-7

Form al ... 2-8
Bralick .. 2-9
Z2-9
REFIRNE 2-10

Summary of the Object-Oriented Models 2-11

1H. M odel Development ... 3-1
Operational Definition .. 3-1

C lass 3-1
O bject .. 3-2

N am e .. 3-3
Parent .. 3-3
Interface Part ... 3-3

Interface Class 3-3
Canonical Class 3-4
Sim ple Class 3-5
Complex Class 3-5

iii

Page

Capabilities 3-5
Hidden Part .. 3-6

Relationships 3-7
A-kind-of 3-7
Has-part 3-9
Has-attribute 3-9
Hasassociation 3-11
Hasdomain 3-Il

Multiplicity and Participation Restrictions 3-12
M ultiplicity 3-12
Participation 3-13

Behaviors 3-15
Form al Definition .. 3-17

IV . Application ... 4-1
Description of the ATC 4-1
Graphical Presentation of the ATC 4-2
Formal Presentation of the ATC 4-15

Formal Definitions of the ATC Classes 4-16
AIRCRAFT 4-16
AIRCRAFTTYPE 4-17
AIRPORT 4-17
AIRSPACE 4-17
A TC .. 4-18
Boolean 4- 18
COMMAND 4-18
Coordinate 4- 18
DESTINATION 4-19
Direction 4-19
ETA ... 4-19
FIX ... 4- 19
FLIGHTPLAN 4-19
FU EL .. 4-20
HEADING 4-20
ID .. 4-20
LANDMARK 4-21
N am e .. 4-21
N AVAID 4-21
N um ber 4-21
POSITION 4-21
SOURCE 4-22
String .. 4-22
U SER 4-22
X_coordinate 4-22
Y_coordinate 4-22

iv

Page

Z-coordinate 4-22
Summary of Application 4-23

V. Conclusions and Recommendations..................................5-1
Summary ... 5-1
Conclusions ... 5-2
Recommendations ... 5-4
Remarks..$5

Appendix: Spelling Checker System A-I
Description of the Spelling Checker System A-1
Graphical Presentation of the SCS A-2
Formal Presentation of the SCS................................. A-9

Definition of the Spelling Checker System Classes A-9
Boolean A-9
DICTIONARY Class Definition...................... A-9
DOCUMENT Class Definition....................... A-9
INPUTDOC Class Definition....................... A-9
Line-number A-10
MAINDICT Class Definition...............A-10
OUTPUTDOC Class Definition A-10
Space A-10
SPELLINGCHECKER Class Definition A-10
String A-li
TEMPDICT Class Definition A-Il
TOKEN Class Definition A-i11
USER Class Definition A-i11
Word-number A-Il

Bibliography .. BIB-I

Vita .. VIT-l

List of Figures

Page

Figure 3-1. Class Interface Icon 3-2
Figure 3-2. Class Hidden Icon 3-2
Figure 3-3. A Simple Class Interface 3-5
Figure 3-4. A Complex Class Interface 3-6
Figure 3-5. Canonical Class Capabilities 3-6
Figure 3-6. A-Kind-Of Relationship Notation 3-8
Figure 3-7. Haspart Relationship Notation 3-9
Figure 3-8. HasAttribute Relationship Notation 3-10
Figure 3-9. HasAssociation Notation 3-11
Figure 3-10. HasDomain Relationship Notation 3-12
Figure 3-11. One-To-One Multiplicity 3-13
Figure 3-12. Conditional Participation 3-14
Figure 3-13. Defining Relationships at Different Levels of Abstraction 3-16
Figure 3-14. Behavior Notation 3-16
Figure 4-1. ATC Interface .. 4-2
Figure 4-2. ATC Hidden View 4-3
Figure 4-3. USER Hidden View 4-4
Figure 4-4. AIRSPACE Hidden View 4-5
Figure 4-5. COMMAND Hidden View 4-7
Figure 4-6. FIX, NAVAID, and AIRPORT Hidden View 4-8
Figure 4-7. LANDMARK Hidden View 4-9
Figure 4-8. AIRCRAFT Hidden View 4-10
Figure 4-9. FLIGHTPLAN Hidden View 4-11
Figure 4-10. SOURCE, DESTINATION, and ETA Hidden View 4-12
Figure 4-11. POSITION Hidden View 4-13
Figure 4-12. Xcoordinate, Y coordinate, and Zcoordinate Hidden Views 4-14
Figure 4-13. AIRCRAFTTYPE, HEADING, ID, and FUEL Hidden Views 4-15
Figure A-1. SPELLING-CHECKER Interface A-2
Figure A-2. SPELLINGCHECKER Hidden View A-3
Figure A-3. USER Hidden View A-4
Figure A-4. TOKEN Hidden View A-4
Figure A-5. INPUT DOC and OUTPUTDOC Hidden Views A-5
Figure A-6. DOCUMENT Hidden View A-6
Figure A-7. MAINDICT and TEMPDICT Hidden Views A-7
Figure A-8. DICTIONARY Hidden View A-8

vi

List of Tables

Page

Table 2-1. Comparison of Object-Oriented Models 2-12
Table 3-1. Canonical Class Capabilities Description 3-7
Table 3-2. Sixteen Multiplicity and Participation Restrictions 3-15

VII

AFIT/GSS/ENG/91 D-3

Abstract

This paper develops a formal definition of the Object-Oriented paradigm for

requirements analysis. The literature was surveyed for both formal and informal methods for

conducting an Object-Oriented Requirements Analysis (OORA). The informal methods

reviewed are: Bailin's, Shlaer and Mellor's, Booch's, and Coad and Yourdon's. The formal

methods reviewed are: Bralick's, Z, and REFINE. None of the methods were found to be

adequate for doing an OORA. A formal definition of an OORA, based on the concept of

classes, is developed. The definition itself is presented as set and relation theory. A

supporting graphical representation is also developed and presented. The graphical method

allows a system to be successfully leveled. The formalism is validated by applying it to the

Air Traffic Control (ATC) simulation.

viii

A FORMAL DEFINITION OF THE OBJECT-ORIENTED PARADIGM
FOR REQUIREMENTS ANALYSIS

I. Introduction

It has been said that as much as 10% of the entire Department of Defense (DOD)

budget ;s spent on the development and maintenance of weapon system software, with 80%

of that number going towards the labor intensive tasks of reworking and updating the software

(Goldberg, 1990:60). Rework is usually performed to remove errors in the software, either

in the code or in the design, and updates are adding new requirements or previously missed

requirements. According to (Bailor, 1991), the source of these software errors are:

1) Requirements and specification: 11 percent

2) design or design related: 81 percent

3) language and environment: 6 percent

4) other: 2 percent.

Two items of interest have recently emerged that could have a significant positive

impact on this situation. They are the Object-Oriented (0-0) paradigm and the use of formal

methods in software development. Between the use of these two concepts, a significant

number of errors could be avoided and thus reduce the amount of rework and updates

required.

As the 0-0 paradigm rapidly gains popularity as a programming methodology

(Yelland, 1989:290) the need for conducting Object-Oriented Requirements Analysis (OORA)

1-1

grows as wll. A requirements specification produced by an OORA is the ideal front end to

an Object-Oriented Design (OOD) (Booch, 1991:37), and the products of an OOD are then

used to completely impiement an Object-Oriented Program (OOP) (Booch, 199t:141). Thus,

to produce the best OOP, one should begin with a detailed analysis (OORA) to produce the

best specification. The most effective technique for assisting in detailed analyses is the formal

technique (Sommerville, 1989:125). This thesis combines the 0-0 paradigm and the formal

technique to develop a formal definition of the 0-0 paradigm for requirements analysis.

Background of the Object-Oriented Paradigm

The term "object-oriented" (0-0) connotes the process of modeling a system as "a set

of autonomous agents that collaborate to perform some higher level behavior" (Booch,

1991:15). The idea of interacting agents is the fundamental difference between the object-

oriented view and the more traditional structured-oriented view of the software development

process in which the system under consideration is modeled as a collection of functions.

These interacting agents are known as "objects" (Booch, 1991:15).

Object-Oriented Programming. The fundamental ideas of 0-0, classes and objects,

appeared first in the programming language Simula 67 and were later refined in languages

such as the Flex system and Smalltalk (Booch, 1991:34). Recently, a large number of

objected-oriented programming languages have been developed. These include C++ and

Objective C, Ada, Object Pascal, Eiffel, and many dialects of Lisp (Booch, 1991:35).

Object-Oriented Design. As OOP became increasingly popular. techniques for

designing softwaie to fit the programming paradigm had to be developed. These techniques

came to be known as OOD. Some techniques were very language oriented (e.g. Booch)

1-2

(Booch, 1987), and some, such as Jackson Structured Development, were a mix of structured

and object-oriented methodologies (Henderson-Sellers and Edwards, 1990:146).

Object-Oriented Requirements Analysis. Prior to OORA, requirements analysis was

often done using a structured (functional) decomposition and therefore, in a form

inappropiiate to OOD (Umphress and March, 1991:1). Now, the informal techniques for

doing OORA are as varied as those for doing OOD and OOP and range from a mix of

structured and object-oriented views (Bailin, 1989), to relational database theory (Shlaer and

Mellor, 1988; Shlaer and Mellor, 1989), to pure object-oriented (Coad and Yourdon, 1990).

These informal methods do not agree with each other and they do not provide a sound basis

upon which to build an adequate requirements specification. A formal based method for

doing OORA would provide a mathematically sound basis upon which to build a requirements

specification. However, no formal based methods currently exits for conducting an OORA.

Benefits of Formal Methods

Formal methods provide the software analyst with the ability to precisely define

software in terms of "what" the software must do rather than "how" the software must do it

(Spivey, 1989:1). Sommerville provides the following six benefits of formal specifications

(Sommerville, 1989:126-127):

1) Formal specifications provide insights into and understanding of the software
requirements.

2) Given a formal system specification and a complete formal programming
language definition, it may be possible to prove that a program conforms to its
specification.

3) Formal specifications may be automatically processed.

4) It may be possible to animate a formal system specification to provide a
prototype system.

1-3

5) Formal software specifications are mathematical entities and may be studied and
analyzed using mathematical methods.

6) Formal specifications may be used as a guide to the tester of a component in
identifying appropriate test cases.

Research Objectives

The overall objective of this thesis is to develop a formal definition of an OORA.

However, that objective will be accomplished through the following sub-objectives:

1) Determine the necessary concepts of the 0-0 paradigm that must be incorporated
into a formal definition for an OORA.

2) Develop a graphical representation of the key concepts to supplement the formal
definition.

3) D.. .nine the mathematical representation of the individual key concepts to be
used in the formalism.

4) Produce the formal definition by defining the mathematical relationships between
key concepts.

5) Validate the research through a sample problem.

Scope

The formalism developed in this thesis is applicable only to the requirements analysis

phase of software being developed in the context of the object-oriented paradigm. The formal

definition and supporting graphical representation can be applied only after an analysis has

been conducted to initially determine the system classes, structure, and dynamics. This

formalism provides the capability to produce a requirements specification capable of being

used as inputs to the design phase of the software development process.

1-4

Overview

The remainder of this thesis is broken down into four chapters. Chapter H is a survey

of the literature on current schools of thought in the field of OORA. Chapter III develops the

formalism with illustrated examples from the Spelling Checker System (see Appendix).

Chapter IV is the application of the formalism to the Air Traffic Control (ATC) simulation.

Chapter V presents a summary of the research, conclusions reached from the research, and

recommendations for future research.

1-5

H1. Literature Survey

This chapter is a survey of the literature on OORA. The major schools of thought in

the area of OORA for both informal and formal definitions are presented.

Major Schools of Thought on OORA

Since OORA is a relatively new field, there are few truly original perspectives on the

subject. This section presents those in the literature for both informal and formal methods

of accomplishing OORA.

Informal. According to (Umphress 1991) "an 'informal method' connotes a seat-of-

the-pants, ad hoc approach to analysis; i.e, few rigid principles are used." In the case of

OORA, informal approaches range from a hybrid of structured and object-oriented

methodologies (Bailin) to everything being described in terms of an object (Coad and

Yourdon). The following discussion begins with the hybrid approach and works towards the

pure object approach.

Bailin. Bailin's Object-oriented Requirements Specification (OORS) (Bailin,

1989) is a hybrid of structural and object-oriented methodologies. He describes the key

abstractions of OORA as entities and functions. The contents of an entity is described by

data structures, the underlying state of some process as it evolves in time, and the aspect of

the process that is persistent across repeated execution cycles (Bailin, 1989:609). Functions,

on the other hand, transform inputs to outputs but have no underlying state that persists after

the function is complete. Functions occur within entities and are performed by or act on the

entity.

2-1

Bailin (1989:609) describes a seven step approach for OORS:

1) Identify key problem-domain entities.

2) Distinguish between active and passive entities.

3) Establish data flow between active entities.

4) Decompose entities (or functions) into sub-entities and/or functions.

5) Check for new entities.

6) Group functions under new entities.

7) Assign new entities to appropriate domains.

The first three steps are only performed once; the remaining steps are performed iterativly

until the desired level of detail is attained.

The initial problem domain entities are determined by drawing structured analysis Data

Flow Diagrams (DFDs) and then extracting the nouns from the process names (step 1) (Bailin,

1989:610). Entities can be classified as active or passive. Bailin distinguishes between active

and passive entities (step 2) as: "An active entity is an entity whose functions we want to

consider in the analysis phase. A passive entity is one whose functions we do not want to

consider until the design phase" (Bailin, 1989:612). Next, Entity Data Flow Diagrams

(EDFDs) are constructed (step 3) by specifying active entities as processes and passive entities

as data flows or data stores. The highest level EDFD contain only entities whereas lower

level EDFDs contain both entities and functions. Entities are further decomposed into

subentities and/or functions and functions decomposed into subfunctions in step 4.

Throughout the process of iterative decomposition, Bailin's method checks to ensure

every functional requirement can be met by one or more of the functions identified in the

EDFDs. If additional functions are required, new entities may need to be added and the

2-2

functions grouped with it (steps 5 and 6). The final step (step 7) maintains a source of

domain analysis information for use by other projects.

Bailin approaches the 0-0 philosophy by adding services and attributes to his

functional foundation. He points out that services may be a group of related functions that

are identified with an entity and represent some sort of user access point to that entity. With

respect to attributes, Bailin writes,

In the terminology of an E-R model, state variables are attributes of an entity.
Since an entity (object) provides functions (methods) as well as state
variables, it seems reasonable to view these functions as attributes of the
entity.... Every functional attribute of an entity would have to appear as a
function in the EDFD that decomposes that entity. Every Data-valued
attribute of an entity would have to appear as a data store in the EDFD.
(Bailin, 1989:618-619)

This approach to OORA relies heavily on the structured technique of Data Flow

Diagrams while combining the idea of entities that contain functions and data interacting with

each other. The resulting EDFDs contain functions, entities, and data.

Shlaer and Mellor. Shlaer and Mellor's approach to Object-Oriented Analysis

(OOA) is based on the development of an information model derived from database relational

theory (Shlaer and Mellor, 1988:xii, 13). State models and process models complete the

analysis by representing the behavior of the information model (Shlaer and Mellor, 1989:66).

The first step in their OOA is the construction of a model to represent the system

under development. The model, called the information model, illustrates the main components

of the system and how they relate. The first part of the modeling process is to determine the

objects in that system. An object is defined as "an abstraction of a set of real-world things

such that all of the real-world things in the set -- the instances -- have the same

characteristics; and all instances are subject to and conform to the same rules" (Shlaer and

Mellor, 1989:67). Objects can be tangible things, roles, specifications or quality criteria,

2-3

aggregations of equipment, or even steps in a process found in the problem domain. Once

objects are identified, attributes are added to describe a single characteristic possessed by all

the instances of that object. For example, a Vehicle Identification Number might be an

attribute of a vehicle object since all vehicles have one. Finally, object-to-object multiplicity

and interdependency relationships are added to complete the model. Shlaer and Mellor define

a relationship as "an abstraction of a systematic pattern of association that holds between real-

world things" (Shlaer and Mellor, 1989:67). An attribute in one object that is referenced by

another object is called a referential attribute. Extra objects are added to capture the

referential attributes that are a result of many-to-many relationships between objects (Shlaer

and Mellor, 1989:69-70).

The next major step is to develop state models. State models represent the dynamic

behavior of the objects and relationships. Shlaer and Mellor write that each object follows

a lifecycle. Some lifecycles may be trivial (e~g. the object exists) and some may be very

complex (e.g. the object goes through several stages in it's lifecycle) (Shlaer and Mellor,

1989:70). A lifecycle may be made up of a number of stages that must obey specified

physical laws, operating policies, and rules. Each stage in the lifecycle represents a state of

that object. An object moves from one stage to the next when the object is triggered by an

event. Events may be timed (e.g. after a process has run for a timed interval, the object will

proceed to the next stage) or may be requests from other objects (e.g. another object

requesting a change in it's state, thus progressing it through it's stages) (Shlaer and Mellor.

1989:72). Actions occur within the object in response to an external (to that object) event.

After the state models are developed, coordination of the lifecycles must be accomplished to

complete the dynamic description of the system. (Shlaer and Mellor, 1989:70-73)

2-4

The final step in Shlaer and Mellor's OOA is the development of a set of process

models. The process models use data flow diagrams to define information processing of each

state in the state model. Little original information is added to the analysis by this step but

it is intended to allow the analyst to see areas of potential process reuse. (Shlaer and MeUor,

1989:75-76)

The key concepts of the Shlaer and Mellor approach are that object-oriented systems

can be described as a relational database model that consist of objects, attributes describe the

objects, and relationships describe object-to-object dependencies. The addition of state and

process models serve to represent the dynamic behavior of the system.

Booch. Grady Booch writes, "Object-oriented analysis is a method of analysis

that examines requirements from the perspective of the classes and objects found in the

vocabulary of the problem domain" (Booch. 1991:37). Although Booch's contribution to the

0-0 paradigm has been in the designing and programming aspect of the software lifecycle,

his initial steps for designing object-oriented systems can be viewed as object-oriented

analysis since he claims "the boundaries between analysis and design are somewhat fuzzy"

(Booch, 1991:141). Booch (1991:190) uses four steps in developing object-oriented systems:

1) Identify the classes and objects at a given level of abstraction.

2) Identify the semantics of these classes and objects.

3) Identify the relationships among these classes and objects.

4) Implement these classes and objects.

The first step involves the identification of candidate classes from the vocabulary of

the problem domain (key abstractions) and the determination of "important mechanisms that

provide the behavior required of objects that work together to achieve some function" (Booch.

1991:191). The second step defines the behaviors of each class identified in the previous

2-5

step. The key to this step is viewing each class from the perspective of its interface to

determine what can be done to each instance of that class (Booch 1991:192). The

accomplishment of a behavior leads to a change in the state of a class and is thus best

represented by a state transition diagram and timing diagrams (Booch 1991:167-168,

173-174).

The third step identifies the specific types of relationships that exist among classes

(Booch, 1991:193). Booch refers to three basic kinds of class relationships. These

relationships include a-kind-of (AKO), where one class is a specialization of another class

(e.g. a Car is a-kind-of Vehicle); aggregation, where one class is a part of another class (e.g.

an engine is part of a car); and association, where classes are associated by some semantic

connection among otherwise unrelated classes (e.g. a person controls the car) (Booch,

1991:96). The simplest way to describe an association is the relationship between two classes

that can communicate with each other but do not in any way contribute to the state of each

other. Objects interact by passing messages between each other. The messages serve to

trigger behaviors within the object receiving the message (Booch, 1991:169-172).

The fourth step takes a more detailed look inside the classes identified previously as

the system is decomposed to the lowest level necessary for adequate requirements analysis

(Booch, 1991:195).

These four steps are an incremental and iterative process that continues until a level

of detail has been identified that fully defines the requirements of the system being modeled

(Booch. 1991:190).

After all of the classes have been identified, it is possible to move one level of

abstraction above the class to what Booch calls class categories. Class categories are a means

of organizing classes into meaningful chunks, or more appropriately, subsystems. Class

2-6

categories are the highest level of abstraction for the system and allow the developer to

understand the general logic of the system.

Each class category denotes another class diagram; thus, if we pick any one
of the class categories from this topmost diagram and zoom into its
implementation, we may find either a simple class diagram consisting of
classes, class relationships. . . or (for very large problems) another class
diagram containing other class categories, which in turn represent other object
diagrams. (Booch, 1991:162)

Class categories serve to further encapsulate information from the rest of the system by only

providing visibility to internal classes that can be used by outside clients (Booch, 1991:162).

Booch's main contribution to the 0-0 paradigm is in design. However, his front end

to design makes the assumption that an OORA has not been accomplished, and therefore,

classes, their relationships, behaviors, and states must be determined before the OOD process

can begin. When Booch describes his method to fill in the missing information to begin an

OOD, he is actually describing an OORA. Thus, Booch's OOD has an OORA built in.

Coad and Yourdon. The most comprehensive work to be found on object-

oriented requirements analysis had been done by Peter Coad and Edward Yourdon. Coad and

Yourdon use a five step approach to complete OORA. The five steps are identifying objects.

identifying structures, defining subjects, defining attributes, and defining services (Coad and

Yourdon, 1990:34). Their model is presented in five layers and are called the subject, object,

structure, attribute, and service layers (Coad and Yourdon, 1990:35).

The subject layer is an abstraction mechanism that controls how much the reader

considers at one time. It can be seen as describing the subsystem level of the system being

modeled. Subjects can be combined at higher levels to suppress unnecessary detail from the

reader (Coad and Yourdon. 1990:188).

2-7

The object layer is the level below the subject layer. It contains the objects that

represent the problem space. Objects are "an abstraction of data and exclusive processing on

that data, reflecting the capabilities of a system to keep information about or interact with

something in the real world" (Coad and Yourdon, 1990:177).

The structure layer connects objects together in two different ways. The classification

structure relates those objects that are specializations of a general object while the assembly

structure relates the composite, or "has-parts", structure of objects (Coad and Yourdon.

1990:183).

The attribute layer consists of defining data elements within objects that define the

object's state space. Additionally, this layer serves to connect objects together that require

the services of other objects as well as showing the multiplicity and participation (optional

or mandatory) of all of the objects (Coad and Yourdon, 1990:190-191).

The final layer, the service layer, describes the behaviors each object can exhibit and

is also where intra-object communication is shown. Behaviors are described as services listed

within the objects- communication is represented by directed dashed lines (arrows) between

objects (Coad and Yourdon, 1990:127-138). Coad and Yourdon use state-event-response

tables to enhance the dynamics of this layer (Coad and Yourdon, 1990:134-135).

This approach is the most truly object-oriented approach found in the literature in the

sense that it requires objects, attributes of objects, services to be provided by the objects, the

structure of the relationships between objects, and the higher level grouping of objects called

the subject layer.

Formal. A formal method is a method that when applied to the accomplishment of

a particular task, can be proven to be correct. Formal methods also include "a well-defined.

controlled vocabulary" (Umphress. 1991). Formal methods, much like the informal methods.

2-8

range from loose methods like (Bralick, 1988) to executable specifications like REFINE. The

Z (pronounced "zed") specification language does not produce executable specifications, but

it is considered to be one of the most widely used specification languages. The following

discussion on formal methods begins with the method presented by Bralick, then discusses

Z, and finally REFINE.

Bralick. Bralick defines an object as having "a unique identity, composed of

a set of attributes, a set of behaviors, and a set of (sub)objects" (Bralick, 1988:3.5). An

attribute, in Bralick's definition, represents some value that is a property of an object that

serves to describe or supplement the meaning of the object (Bralick, 1988:3.6). A behavior

is an activity or operation of objects whose result is the modification of some set of attributes

of that object (Bralick, 1988:3.8). Objects communicate with each other by sending messages

requesting their attributes be adjusted by means of an object's behavior (Bralick, 1988:3.20).

The key to Bralick's object model is that he considers objects as consisting of a

unique identifier, attributes, behaviors, and other objects. Although Bralick labeled his object

model as a formal model, it lacks the rigor of a true formal method.

Z. Z is known as a model-based formal specification language developed by

J. R. Abrial for developing formal specifications of software systems requirements

(Sommerville, 1989:158). "Model-based specification is a technique that relies on formulating

a model of the system using well understood mathematical entities such as sets and functions.

System operations are specified by defining how they affect the overall system model"

(Sommerville, 1989:158). Z is based on typed set theory since sets are mathematical entities

that are formally defined and well understood (Sommerville, 1989:158).

The basic building block of Z is the schema. A schema has three parts, a name; a

signature, which introduces some specification entities: and a predicate part, which defines

2-9

relationships between the entities within the signature (Sommerville, 1989:159). An Entity

in the signature is described by the set of values it can assume (e.g. set of natural numbers).

"Every Z specification begins with certain objects [entities] which play a part in the

specification, but have no internal structure of interest. These atomic objects [entities] are the

members of the basic types or given sets of the specification" (Spivey, 1989:27). Predicates

(relationships) are defined over the entities in the signature which must always hold

(Sommerville, 1989:159). Schemas can be combined to form more complex schemas where

the new schema inherits all of the signature and predicate parts of the its constituent schemas

(Sommerville, 1989:160).

Operations can be described using schemas by annotating input and output entities

within the signature and describing, in the predicate part, the state change relationship (i.e.

precondition and postcondition) between entities within the signature (Sommerville,

1989:161).

The domain and range of functions are used in Z to describe the set of valid inputs

and the set of associated outputs to a given relationship. Z provides a number of operators

which allow the domain of the functions to be manipulated (Sommerville, 1989:164-165),

The completed specification prodiced by Z is a set ol schemas that will describe

mathematically the system being modeled.

REFINE. In contrast to Z which to date can only be accomplished by hand,

REFINE is considered to be a specification language that will produce executable specifications

(Reasoning Systems, 1990:1-2). REFINE provides specification programming to include set

theory, logic, transformation rules, pattern matching, and procedure (Reasoning Systems.

1990:1-2),

2-10

A specification is developed as a collection of top-level definitions using the REFINE

language. The language itself is in the form of set and logic notation which has the capability

of defining "a type, variable, constant, action, assertion, explicitly-defined or assertionally-

defined function, rule, or gammer" (Reasoning Systems, 1990:7).

Specification descriptions can be modeled using REFINE and then stored in an object

base (object-oriented database) for later reuse (Reasoning Systems, 1990:1-3). Specifications

are continually refined (more explicitly defined) using the tools of the language until they

actually become the executable code when compiled.

REFINE claims to support the 0-0 paradigm by defining object classes:

An object-oriented model of an application domain specifies the classes of
entities in the domain, and the attributes that are applicable to the entities in
each class. An entity of an application domain may be represented in REFINE

by an object, i.e. an element of the type object. An entity class is represented
by a variable of type object-class, which is a predicate on objects. An
attribute that applies to any element of an entitv class is represented by a
variable of type wmo whose domain is th- ,olect class representing the entity
class. (Reasoning Systems, 1 09"U 10)

The REFINE interpretat-on of an object-oriented system consists of objects, object-

classes, and attributes. An 0-0 specification would consist of top-level definitions of those

entities. These definitions would not only define the entities themselves, but would also

define the dynamics ot the system.

Summary of the Object-Oriented Models

The Softwar Engineering Institute's (SEI) module "Software Specifications: A

Framework" describes four aspects of a specification that should be addressed when analyzing

software. They are behavior, interface, flow, and structure (Rombach, 1989:9-11). Behavior

is defined as "the externally obseivable response of a product or process to stimuli in actual

2-11

use" (Rombach, 1989:10); interface is defined as "the structure of the boundary between

product or process and its environment" (Rombach, 1989:10); flow is defined as "the internal

dynamics of a product or process in actual use" (Rombach, 1989:10); and structure is defined

as "the organization of a product or process into interacting parts" (Rombach, 1989:11).

Table 2-1 puts the object-oriented methods presented in perspective with the SEI

framework.

Table 2-1. Comparison of Object-Orie,.ted Models

Specification 4spects
SEI Object-Oriented Models

Aspect Bailin Shlaer & Booch .3oad & Bralick
Mellor (ourdon

Data flows State Model Class Template Service Layer -

Interface

Active Entity State Model State Transition State-Event- Operation
Behavior Diagrams Response

Function Timing

Diagrams

Entity Data Flow Process Model Message Communication Message
Diagram (EDFD) Arrows

Flow

Sub Entity Referential A-Kind-Of Haspart AttributesAttributes A-Kind-Of Sub-objectsStrcture Sub Functionregate Instance

Relations Association RelationsScAttributes

2-12

Il. Model Development

Chapter I describes the development of the formal model of an object-oriented

requirements analysis. The first section of this chapter presents an operational definition of

the model and defines the graphical representation. The second section presents the formal

definition itself.

Operational Definition

From an analysis perspective, an object-oriented system may be conceptualized as:

An object-oriented system is composed of classes. Each class has a unique
name, one or more parent classes, an interface part and a hidden part. The
interface part describes those aspects of a class that need to be known by a
client in order to use this class. The hidden part describes the detailed view
of the class to include the relationships and restrictions on those relationships
with other classes.

Key to this definition are the terms class, name, parent, interface part, and hidden part. Each

term is explained below. The Spelling Checker System (SCS) (see Appendix for the complete

SCS analysis) is used to illustrate the major principals.

Class. The class is the basic building block of the 0-0 analysis. It is a generalization

(abstraction) of a group of similar concepts. Classes do not have state, but describe the

possible range of states for the system. Two icons represent classes: one shows that the

interface is being viewed, and the other shows that the hidden part is being viewed.

Figure 3-1 is the class interface icon and Figure 3-2 is the class hidden icon. The most

noticeable difference between the two icons is the "shadow-box." The icon with the shadow

represents the interface of the class whereas the icon without he shadow represents the

detailed view of the class that is hidden behind the interface. The concept of

3-1

Figure 3-1. Class
Interface Icon

Figure 3-2. Class
Hidden Icon

going from the abstract (the interface view) to the detailed (the hidden view) is referred to as

leveling (Davis, 1990:59-60; Coad and Yourdon, 1990:80).

Object. An instance of a class that contains a particular state is called an

object. An instance of a class that contains a state range is just another class. If a class is

said to contain a range of states (a set), and an object is the realization of a specific state

within that range, then a class can be said to contain a set of objects that fall within that range

of state. Objects need only be considered in the most abstract sense during analysis but

become more prominent during the successive stages of software development.

3-2

Name. The top part of the class icon is called the "name area." It names the class

represented by the icon and is the same for both interface and hidden icons. The name of a

class represents the unique identifier of that class and is the way to distinguish that class from

other classes. It also allows the analyst to provide a meaningful description of what the class

represents.

Parent. The parent concept denotes an inheritance relationship. All classes are

derived from at least one parent class. The parent of a class passes all of its interface and

hidden aspects to the class being defined. The class, in turn, can add information to make

it a specialization of its parent. All classes have, as a minimum, the Universal class as an

ancestor; although, not necessarily as a direct parent. The Universal class is the highest level

of abstraction and encompasses all classes. The Universal class, represented as U, has no

parent and its interface and hidden parts are empty. The relationship between a parent and

its child is an "a-kind-of" relationship and will be discussed in more detail later.

Interface Part. The interface to a class describes that information which a client

would need to know in order to use this class. This interface can be divided into two parts,

the interface class description and the capabilities.

Interface Class. Interface classes, listed in the middle area of the interface

icon, denote those classes that must also be present in order for a client to use this class. One

way to view an interface class is to liken it to a "wire" attached to the class. In order to use

that class, all of its wires must be attached, and they must be attached to the classes listed in

its interface. For example, a radio speaker would list a radio in its interface and would

therefore need its "wires" attached to a radio in order for it to be of any use.

A class's interface class description determines what kind of class it is. Classes come

in three levels of complexity: canonical, simple, and complex. Classes that have a higher

3-3

level of complexity are less easily reused than classes at lower levels of complexity. In

addition, complex classes are more cumbersome to use then those with less complexity. The

higher the complexity, the more information (in the form of other classes) needs to be present

for a client to be able to use the complex class. In ether words, in order for a client to use

a complex class, every interface class of the complex class must be accessible by the client.

Canonical Class. Canonical classes are the most basic of all classes

and have no interface classes. Canonical classes exist at the boundary between classes and

values. The description of a canonical class represents the possible range of states that an

instance of the class could take on. This capability allows the modeler to solve the problem

of whether or not values are considered to be objects (MacLennan, 1982). MacLennan's

argument is that values "amount to timeless abstractions for which the concepts of updating,

sharing and instantiation have no meaning" (MacLennan, 1982:9) while objects can be

instantiated, changed, have state, created and destroyed, and shared (MacLennan, 1982:11).

The actual value would be associated with one or more instances of that class (objects) and

would represent the state of these objects. There is only one "value" (i.e. the number 1) but

it may be associated with several different objects that have that value as their state at any

given time. For example, in the SCS, a canonical class String is defined to be the set of an

combinations of the ASCH character set. An instance of a class associated with String would

map to a specific member of that set. There may be several instances of the string "my" all

mapping to the single value "my." The name of a canonical class as written in the "name-

area" of the interface icon has only the first letter capitalized. A canonical class will only

have an interface part since it represents the lowest level of abstraction that is necessary for

the analysis, and thus no need to view the details of any hidden part.

3-4

Simple Class. A simple class is one that has only canonical classes

in its interface. For example, the TOKEN class in the SCS is a simple class which only has

the two canonical classes String and Boolean in its interface. Figure 3-3 is the interface

representation of the simple class TOKEN. By convention, the names of simple classes are

written entirely in upper case letters.

TOKEN

String
Boolean

Figure 3-3. A
Simple Class

Interface

Complex Class. A complex class has at least one non-canonical class

within its interface, and represents the most complex form of the class to use. The more non-

canonical classes there are in a class's interface, the higher the module complexity and

coupling and the less reusable that class will tend to be. The SPELLINGCHECKER class

is an example of a complex class. It has three non-canonical classes as well as one canonical

class within its interface. They are USER, INPUT-DOC, OUTPUTDOC. and String.

Figure 3-4 is the interface representation of the complex class SPELLINGCHECKER.

Capabilities. Capabilities, listed in the lower area of the interface icon, are

those operations that a client can request this class to perform. The only capabilities that
canonical classes posses are: value_of. set_value, image of, and convert_image. Figure 3-5

3-5

shows the interface icon for the canonical class Line-number and Table 3-1 describes what

those capabilities are.

SPELLINGCHECKER

USER
INPUTDOC
OUTPUTDOC
String

Figure 3-4. A
Complex Class

Interface

Line number

valueof
set-value
image-of
convert image

Figure 3-5.
Canonical Class

Capabilities

Hidden Part. The hidden part of the class describes a more detailed view of the class.

From this view, all the classes that are required to be present in order for this class to

accomplish its intended purpose are shown. The middle area of the hidden icon lists only

those canonical classes that contribute state to the class. The lower area of the hidden icon

lists all of the behaviors of this class including those listed as capabilities in the interface.

3-6

Additionally, the specific relationships that exist between this class and others are shown

along with their multiplicity and participation restrictions.

Table 3-1. Canonical Class Capabilities Description

Capability Description

Returns the value of the object
value_of in its internal representation

(e.g. 11111111)

Sets the value of the object
setvalue by setting its internal representation

(e.g. MyNumber := 11111111)

Returns a universal string
image_of representing the character value ofthe object

(e.g. 11111111 would return 256)

Takes a character value and returns an
convert-image internal representation

(e.g. takes 256 and return 11111111)

Relationships. There are five different class to class relationships. They are

a-kind-of, has_part, hasattribute, hasassociation, and hasdomain.

A-kind-of. The a-kind-of relationship (Booch, 1991:54) or classification

structure (Coad and Yourdon, 1990:79-82) denotes an inheritance relationship between two

or more classes. This relationship can also be thought of as a parent-child relationship where

the child class inherits all of the parent's interface and hidden parts. In addition to having

3-7

its own unique name, the child class may add additional classes and capabilities to its

interface to further make it a specialization its parent class. Child classes do not contribute

in any way to the state range of its parent class. However, since this is an inheritance

relationship, the child's state range is affected by that of its parent in addition to any state

range that had been changed or added as a result of the specialization. Figure 3-6 shows the

graphical representation of the a-kind-of relationship between the two classes INPUTDOC

and OUTPUTDOC and their parent class DOCUMENT.

DOCUMENT

TOKEN
String
Boolean

INPUT Doc DoU U Do0C-

Itcab ee fomFgue -6tatth irfaceclases or NUO aentol

Line number

Wordnumber
Sparse write
value of line number

uo word number

Figure 3-6. A-Kind-Of Relationship
Notation

It can be seen from Figure 3-6 that the interface classes for INPUT-DOC are not only

Line-number and Word number, but also the classes TOKEN, String, and Boolean from its

parent. The interface classes for OUTPUTDOC arc only the classes TOKEN, String, and

3-8

Boolean from its parent. Similarly, the capabilities of INPUTDOC and OUTPUTDOC are

only those listed within their respective capability areas since their parent possessed none of

its own.

Has_.part. The haspart relationship denotes a structural relationship

between two classes. Booch terms this type of relationship an aggregate (Booch, 1991:58-59)

whereas Coad and Yourdon call this an assembly structure (Coad and Yourdon, 1990:82-92).

The class that is the constituent ("part") contributes its state range to that of the class that is

the aggregate. An example of this type of relationship is the DOCUMENT class. A

DOCUMENT class has one part: a TOKEN class. In other words, a DOCUMENT is made

up of TOKENs. Figure 3-7 shows this relationship and its graphical notation.

DOCUMENT TOKEN

systembeingstdeled

Boolean
is_word

3-9-

Figure 3-7. Has-part Relationship Notation

The constituent class, TOKEN, inherits nothing from the aggregate class.

DOCUMENT. The /zasj'art relationship is intended to show structural decomposition of the

system being modeled.

Has-attribute. An attribute describes characteristics of a class that A

instances of that class will inherit (Shlaer and Mellor, 1989:67). In other words. a

3-9

hasattribute relationship between two classes denotes a relationship where the presence of

one class serves to describe some characteristic of another class. An attribute can be either

a simple class or a complex class but not a canonical class since canonical classes only

represent a mapping to values and are not descriptive in nature. An attribute contributes its

state range to that of the class being described. An example of the hasattribute relationship

is shown in Figure 3-8 where the SPELLINGCHECKER class has the TOKEN class as an

attribute. The TOKEN class describes something about the state of the

SPELLINGCHECKER class.

SPELLING-CHECKER

Stnng

serviceuser request

TOKEN

String

Boolean

valueCf

Figure 3-8. HasAttribute Relationship Notation

The has-attribute relationship differs from the has-part relationship in that a haspart

relationship denotes a structural decomposition while a has_attribute relationship denotes a

semantic description of a class.

3-10

Has-association. The has-association relationship exists between two

classes that only have the need to communicate. The classes involved in an association

relationship in no way contribute state ranges to each other. Often, the hasassociation

relationship is required in order to allow a class the ability to evaluate the value of another

class.

Figure 3-9 shows the graphical representation of the hasassociation relationship

between the USER class and the SPELLINGCHECKER class. This relationship is required

since the SPELLINGCHECKER class and the USER class have the need to communicate

with each other in order for the SCS to function. The USER does not provide any state range

to the SPELLINGCHECKER and the SPELLINGCHECKER provides no state range to the

USER.

SPELLING-CHECKER

Sttring

serme _se_ reqes

Figure 3-9. HasAssociation Notation

Has-domain. The has-domain relationship exists only between a

simple or complex class and a canonical class. This relationship describes the basis for the

state range of that class without considering any of its parents, attributes, or parts. The total

state range of any class is the combination of its has-domain relationships plus the state

ranges of any parents, attributes, or parts. The state range is described by the range of values

3-11

the canonical class references. Canonical classes that have this relationship are listed in the

middle area of the hidden icon. An example of this hasdomain relationship can be seen in

the TOKEN class (see Figure 3-10). This shows that the TOKEN class has the domain (state

range) of the canonical class String, which was defined earlier. The diagram describes

TOKEN as being a class whose individual instances are strings.

TOKEN

Sring
Boolean

Figure 3-10.
HasDomain Relationship

Notation

Multiplicity and Participation Restrictions. Multiplicity describes how many

objects from each class are involved in the relationship, whereas participation describes

whether or not the objects must participate in that relationship.

Multiplicity. The multiplicity part can be placed into four groups, one-

to-one, one-to-many, many-to-one, and many-to-many. The one-to-one restriction placed on

a relationship implies that one instance of a class has that relationship with one instance of

another class, and the reverse must also be true. These restrictions can be illustrated using

notation borrowed from (Shlaer and Mellor, 1988). Figure 3-11 shows how the restriction

looks applied to two arbitrary sets S and W which represent classes. The instances (members)

of each class (set) represent objects. In general. the left side of the restriction represents the

class being defined and the right side depicts the class with which there is a relationship. The

"one" means one instance of that class whereas "many" is more than one. Consequently, a

3-12

one-to-many restriction implies that any one instance of the first class is associated with more

than one instance of the second class and many instances of second class is associated with

one instance of the first class. A many-to-one restriction is just the reverse of the one-to-

many.

S W

00

1:1

Figure 3-11. One-To-One Multiplicity

The last general muliplicity restriction is the maiy-to-many restriction which implies

that many instances of the first class ar. associated with many instances of the second class

and many instances of the second class are associated with many instances of the first class.

Participation. The other half of the restriction on relationships is the

participation constraint. The "conditional" denotes that, under some conditions, an instance

of one class may exist which does not have to take part in the relationship. A conditional on

both sides of the restriction implies that instances from both classes can exist that do not

participate in that relationship. Figure 3-12 shows the sets with conditional participation.

There are a total of sixteen different multiplicity and participation restrictions that may

be placed on the various relationships, and certain relationships are subject to certain

restrictions. All sixteen of these restrictions are described in Table 3-2.

3-13

The hasdomain relationship is always restricted by the one(conditional)-to-one since

any instance of a canonical class represents the mapping to only a single value at any time,

any remaining values will not be part of relationship.

S W

1:1 c

Figure 3-12. Conditional Participation

The hasattribute relationship is restricted to a one(conditional)-to-one or a one-to-one

situation. That is, every instance of the class must have a corresponding attribute, but there

may be instances of attributes that do not have a corresponding instance associated with it.

The has part and has-association can be any of the sixteen restrictions. By convention, any

hasassociation relationship that is the result of a class being listed in the interface of another

class is conditional on both ends of the relationship.

Relationships and restriction are best shown at the lowest level of abstraction possible.

For example, the relationship between a class and the parent of another class may be different

then the restrictions on the relationship between the class and the children of the pervious

parent. Figure 3-13 illustrates the difference between showing a relationship at a higher level

of abstraction (with a parent class) versus showing it at the lowest level (with a child class).

The diagram shows that the relationship and restriction between the SPELLINGCHECKER

class and DOCUMENT class is a hasassociation and one(conditional)-to-many whereas the

3-14

Table 3-2. Sixteen Multiplicity and Participation Restrictions

Or-*One Wklpficty and Patapawon Rest1"Ws OQ..to.-Mm Vpbcy id Puarcip Rmwiar sn
RP-kon N- w Nwk l SO RPreP-WASm RFwrichmo W aM N~ot SoW Rp--M#

One-to-Orn S W One-to-Ma S W

0 n*(eond) .- o.Orw S W O ns dcandil nai) m- M any S W

OIn-to-Orb(nd* :nbW) S W Cnoeto-Many(cndiaa eJ) S W

O nl)-b-) S W Onc a)to- ylCOndoS W

le-e- le -e< 3_
IMy-tb-One W i y and Partacpson Reeniduma Mwy-o-Muiy Aftpbq and Palipavw R..nicons

Rmkio . -A .4 k S.1 R"p...,hI. R..hk1W. N aM Nobi, 5. R....b0

S --- W W

Mm.OeSwM ,/.ao-lI, tmy S w

S W S W

MwWy-0*(co-d%-oW) S W MmnY-WMWTn,/tft) S W

>i -- 6c _!e<eE

Mi" ud1bo)-to-On*(=oX, duo) S W SWy(condtond).ta-My(andS)eo el 6 t)e e< 6

relationships and restrictions between the DOCUMENT's children, INPUTDOC and

OUTPUTDOC, and the SPELLINGCHECKER class are both hasassociation and

one(conditional)-to-one instead of one(conditional)-to-many.

Behaviors. The lower area of the hidden icon lists all of the behaviors of this

class. This list includes as a minimum all of the operations that were listed in the interface

as capabilities. Behaviors that are listed only in the hidden view are behaviors classes in the

hidden part (as well as the class itself) requests. An example of a behavior that would not

be listed as a capability would be something like a garbage collecting routine which would

only be callable from classes in the hidden part of this class. Figure 3-14 is the hidden view

of the TOKEN class. The lower area of the hidden icon is where behaviors are listed.

TOKEN's behaviors are listed as isword, value_of, and replace.

3-15

SPEILINGCHECKE

String

se vice-Um-request

WPTF DOC OPUOC

Lane number

Wrdnumber

Figure 3-13. Defining Relationships at Different
Levels of Abstraction

TOKEN

String

Boolean

is-word
value-of

Figure 3-14. Behavior
Notation

3-16

Formal Definition

Given the operational definition, the following is a formal definition of the object-

oriented paradigm for requirements analysis:

(1) Definition. A Class is a 4-tuple <n,P,I,H> where

1. n is a unique identifier
2. P a {parentclass E Class}
3. I is a tuple describing the interface to n
4. H is a tuple describing the hidden part of n

(1.1) Definition. I is a 2-tuple <S,C> where

1. S a {interfaceclass E CLASS)
2. C a (capability (n x interfaceclass)}

(1.2) Definition. H is a 2-tuple <M,B> where

1. M A ((relationship (mult-part x n x mapping-class)}
2. B a Ibehavior (n x mapping-class)

and

A capability maps an instance of n to an instance of an interface_class.

A behavior maps an instance of n to an instance of a mapping-class.

andC B

mapping-class E Class and represents all of the classes associated with this class

thus S _ {mappingclass}

relationship E (has-part, hasattribute, has-domain, has_association)

multpart E (1:1, l:lc, lc:l, lc:lc, I:M, l:Mc, lc:M, lc:Mc, M:I,
M:lc, Mc:1, Mc:lc, M:M, M?:Mc, Mc:M, Mc:Mc}

The multiplicity and participation restrictions are formally defined by the following

definitions:

(2) Definition. One-to-one:

1:1 A {s:Sw:WlVsE S,!we W:(s.w) A VwE W,!sE S:(s,w))

3-17

(3) Definition. One(conditional)-to-one:

lc:1 a (s:S;w:WlVsE S,3!WEW:(sw) A (VWE W,VS,S'e S,((S,W)A(S,.W))=>(S=S')I

(4) Definition. One-to-one(conditional):

1: lc a {s:S;w:WIVwE W,3!SE S:(s,w) A (VSE S,VW,W'E W,((SW)A(S,W'))= (W=W')

(5) Definition. One(conditional)-to-one(conditional):

IC: IC A I S:S;W:WI(VSE S,VW,w'E W,((S,W)A(S,W'))=*(W=W')) A
(Vwe W,VS,S'E S,((S,W)A(S',W))=$(S=S')))

(6) Definition. One-to-many:

1IN A I S:S;W:WI VSE S,3wE W:(s,w) A VwE W,3!se S:(s,w)

(7) Definition. One(conditional)-to-many:

lC:M A I S:S;W:WI VSE S3WE W:(S,w) A (VWE W,VS,S'E S,((S,W)A(S',W))=*>(S=S')

(8) Definition. One-to-many(conditional):

INMC A {S:S;W:WIVWEW,3!SES:(S,W)l

(9) Definition. One(conditional)-to-many(conditional):

I C:MC A { S:S;W:WI(VWE W,VS,S'ES ,((S,W)A(S',W))=>(S=S'))

(10) Definition. Many-to-one:

M:1I A I S:S;W:WIVSE S,3! WE W:(s,w) A VwE W,3se S:(s,w))

(11) Definition. Many(conditional)-to-one:

MC:1 A IS:S;W:WIVSES,J!WEW:(S,W)l

(12) Definition. Many-to-one(conditional):

MAlC A (S:S;W:WIVWE W,3SE S:(s,w) A (VSE S,Vw,w'E W,((SW)A(S,W'))== (W=W')

(13) Definition. Many(conditional)-to-one(conditional):

Mc: c A { S:S;W:WI(VSE S,VW,W'E W.((SW)A(SW'))=$>W=W')I

3-18

(14) Definition. Many-to-many:

M:M a {s:S;w:WIVsE S,BwEW:(S,W) A VwE W,3sES:(s,w)I

(15) Definition. Many(conditional)-to-many:

Mc:M a I{s:S;w:WIVsswEw:(s,w)}

(16) Definition. Many-to-many(conditional):

AMMC A (S:S;W:WIVwWWSES:(S,W)1

(17) Definition. Many(conditional)-to-many(conditional):

Mc:Mc a I{s:S;w:Wlany subset of S x WI

3-19

IV. Application

Chapter IV is the application of the formal model, developed in chapter III, to a

sample problem to demonstrate the model's validity. The Air Traffic Control (ATC)

simulation was chosen as the sample problem because it is sufficiently complex to

demonstrate all of the aspects of the model. An initial object-oriented requirements analysis

was performed on the ATC by Baum (Baum, 1991) and serves as the initial identification of

classes and behaviors of the ATC system.

This chapter is divided into three parts. The first part is a description of the ATC

simulation, the second part present the graphical representation of the ATC, and the third part

presents the formal representation of the ATC.

Description of the ATC

The following is Baum's description of the ATC simulation (Baum, 1991):

Air Traffic Control is a simulation which allows the user to play the part of
an air traffic controller in charge of a 15x25 mile area from ground level to
9000 feet. In the area are 10 entry/exit fixes, 2 airports, and 2 navaids.
During the simulation, 26 aircraft will become active, and it is the
responsibility of the controller to safely direct these aircraft through his
airspace.

The controller communicates to the aircraft via the scope, issuing commands
and status requests, receiving replies and reports, and noting the position of
the aircraft on the map of the control space. The controller issues commands
to change heading or altitude, to hold at a navaid, or clear for approach or
landing. Each aircraft has a certain amount of fuel left, so the controller must
see to it that the aircraft is dispositioned prior to fuel exhaustion. Also. the
minimum separation rules must be followed, which state that no two aircraft
may pass within three miles of each other at 1000 feet or less separation. The
aircraft must enter and/or exit via one of the ten fixes. If an aircraft attempts
to exit through a non-exit fix. a boundary error is generated. The controller
may request a status report on each aircraft, which will display all information
on the aircraft, including, fuel level, which is measured in minutes.

4-1

The player initially specifies the length of the simulation, which may be
between 16 and 99 minutes. The same number of aircraft will appear for each
run, so the shorter the simulation, the more challenging. The simulation
terminates when all aircraft have been successfully dispositioned, the timer
runs out, the player requests termination, or one of the three error conditions
occurs:

conflict error - separation rules were violated

fuel, exhaustion

boundary error - the aircraft attempt to leave the control space via an
unauthorized point.

Graphical Presentation of the ATC

The following section presents the graphical analysis of the ATC beginning with the

highest level of abstraction and working toward the lowest level of abstraction.

Figure 4-1 represents the highest level of abstraction for the ATC. This interface icon

of the ATC shows that in order to use the ATC system, a USER class and a canonical class

String must also be present. It also describes the general capabilities of the system as

service user request.

ATC

USER
String

serv"ceuser request

Figure 4-1. ATC
Interface

4-2

Figure 4-2 represents the first level of detail of the ATC with this view of the hidden

part of the ATC class. Now, the detail of the internal structure of the system begins to

emerge with the addition of the one-to-one hasart relationship with AIRSPACE and the

one(conditional)-to-one(conditional) has-association relationship with COMMAND which are

USER
S String O S t in g

service-user reqlm~ displa

AIRSPACE

COMMAND
String

image..of

COMMAND

Boolean

is-vaTd Hidde View
vakie._of e-au

isjtominate mg.p

is-status
is-aircraft
create command

Figure 4-2. ATC Hidden View

both hidden from the USER. The haspart relationship with AIRSPACE implies that the ATC

can be structurally decomposed into an AIRSPACE and the one-to-one restriction implies that

if an instance of ATC exists, a corresponding instance of AIRSPACE must also exist. The

hasassociation relationship with the canonical class Boolean is necessary since Boolean is

listed in the interface of COMMAND. The String canonical class is left within the ATC icon

4-3

to show that String contributes to the state range of the ATC because of the hasdomain

relationship that exists. The rest of ATC's state range is determined by AIRSPACE since the

AIRSPACE is in a has_part relationship with ATC.

Figure 4-3 shows the hidden view of the USER class. The entire state range of USER

is described by the canonical class String. The one-to-one(conditional) has-association

relationship between the USER and ATC is provided to maintain continuity. The restriction

states that if an ATC exists, there must be a USER. However, the reverse is not necessarily

true. In other words, zero or one instances of ATC is associated with one instance of USER.

ATC

USER

String

display
read _ _

Figure 4-3. USER Hidden View

Figure 4-4 shows the hidden view of the AIRSPACE class. This view reveals that

AIRSPACE can be decomposed into has_part relationships with AIRCRAFT, FIX, NAVAID,

and AIRPORT. This view also shows the has-association relationships with COMMAND, ID.

POSITION, and the canonicals X coordinate, Y-coordinate, and Z coordinate. There are also

hasdomain relationships with the canonicals String and Boolean. Once again, the

relationship with ATC is shown for completeness.

4-4

AIRCRAFF ATC

POSITION
ID
String AIRSPACE
Boolean

image -of
vaJueofposition String
value - of - ID Boolean
fuel - within - limit COMMANDCOMMA
changeheading
change altitude image-of String
take-off k__) command - aircraft Booleanhold-at-navaid status of aircraft
continuestraight ch ck-fo -terminat is-valid
clear forapproach value of
clear for langind is terminate
ETA-within-limit isstatus

of dest is-aircraft
kcreate command

X coordinate

FIX (NAI 17D AIRP.Ri

Y-coordinate

Z coordinate,
r;POSITTION

X-coordinateID Y coordinate

String Z coordinate
set to

_positionvalue-of of
0 (vaLlueof

Figure 4-4. AIRSPACE Hidden View

4-5

It is also worth noting here that the behavior check jor terminate is not considered to be a

capability accessible from outside the AIRSPACE class and thus only listed in the hidden view

and not the interface view.

The restriction on the has_part relationship between AIRSPACE and AIRCRAFT is

show as one(conditional)-to-many(conditional). This restriction states that there may be zero

or more instances of AIRCRAFT (up to 26 see ATC description) associated with zero or one

instances of AIRSPACE. Thus, an AIRCRAFT that had landed, exited, or had not yet become

active would not have a relationship with an AIRSPACE, and an AIRSPACE that had no active

AIRCRAFT would have no relationship with any instances of AIRCRAFT.

The ATC description calls for 10 fixes, 2 navaids, and 2 airports within the area. This

corresponds directly to the one-to-many restrictions on the haspart relationships between

AIRSPACE and the classes FIX, NAVAID, and AIRPORT.

The one(conditional)-to-one(conditional) hasassociation relationships with ID and

POSITION are required since both ID and POSITION are listed in the interface of AIRCRAFT.

Consequently. the relationships between AIRSPACE and the three coordinate canonical classes

are as a result of the association with POSITION.

The one(conditional)-to-one(conditional) has-association with COMMAND is for

communication of commands to AIRSPACE. Figure 4-5 shows the hidden view of

COMMAND. COMMAND's state range is determined by the canonicals String and Boolean

and contributes none of that range to either AIRSPACE or ATC. The one(conditional)-to-

one(conditional) restrictions between COMMAND and ATC and AIRSPACE are levied since

zero or one instances of COMMAND can have a relationship with zero or one instances of

ATC or AIRSPACE.

4-6

AIRSPACE: ATC

COMMAND

SigBoolean
is valid

value-of

is-terminate

is-status
is-aircraft

', eate command

Figure 4-5. COMMAND Hidden View

Figure 4-6 diagrams the hidden view of the classes FIX, NAVAID, and AIRPORT.

Keep in mind that these tuee classes inherit all of the LANDMARK's interface and hidden

parts. The parent LANDMARK is shown as an interface icon to maintain good modularity

within the system.

Figure 4-7 presents the hidden view of the LANDMARK class. The LANDMARK class

serves to provide a generalization of the types of physical entities found within the airspace

of the ATC. Each instance of LANDMARK has an associated attribute of POSITION that

describes where each LANDMARK exists within the airspace. The reason for the

one(conditional)-to-one restriction on the relationship is because each instance of LANDMARK

must have an associated instance of POSITION, but there may exist instances of POSITION

not associated with a LANDMARK, namely those instances of POSITION that may be

associated with the class AIRCRAFT since POSITION was also listed in AIRCRAFT's

interface.

4-7

LANDMARK

POSITION
Name

value olLposion
i~mage._ name

rFIX-) (NAVAI RPRT

AIRSPACE

Figure 4-6. FIX, NAVAID, and AIRPORT Hidden View

Figure 4-8' provides the hidden view of the AIRCRAFT class. [he AIRCRAFT class

is described by several has-attribute relationships. Each instance of AIRCRAFT is described

by an instance of POSITION, FUEL, ID, HEADING, AIRCRAFTTYPE, and FLIGHT_PLAN.

The only has_attribute relationship that is not one-to-one is the one with POSITION since

there can be instances of POSITION associated with LANDMARK and not AIRCRAFT.

The hasassociation relationships with the coordinate canoni: al classes and the

Direction canonical class are required siace they are listed in the interface of POSITION and

HEADING respectively.

Figure 4-9 presents the FLIGHTPLAN's hidden view. The FLIGHT_PLAN is made

up of three parts: a SOURCE, a DESTINATION, and an ETA. The has-association

4-8

POSITION LADMARK

X-coordinate 1 String
Y_coordinate _ _ _

Z-coordinate value ofposition
set-ostn imageof_namevalue-of .

Ycoordinatze

Figure 4-7. LANDMARK Hidden View

relationships are for convenience since both Name and Number are listed in the interface of

the three has_part classes. The reason neither Name or Number had to be listed within the

interface of FLIGHTPLAN was because the capabilities were only passing an instance of the

canonical class String in the form of image of source, image ofdest, and imageof_ETA and

not values.

Figure 4-10 is the hidden view of the classes SOURCE, DESTINATION, and ETA.

These simple classes only have hasdomain relationships with either Name or Number.

Figure 4-11 describes the hidden view of the POSITION class. Now, the specific

relationships between POSITION and the coordinates are seen as one-to-one has__parts. Thus,

every instance of POSITION must have an X-coordinate, a Y-coordinate, and a Z-coordinate:

and every X, Y, and Z coordinate must be associated with an instance of POSITION.

4-9

-X-coordinate _____-____AIRSPACE

valuecopstion POITO

chaX coordenate

holdcatrnanate
coninustrigZ coordeae

veA fwithinmi vasempty

imY corint desbwth n aori iihi ii

mgeanET -altitof

Figue 4-8. AICAFUideLVe

hold-t - 4-10i

I.AIRC.. ,

set f IIIe IGHT PLAN
vnmage .

n v e ff.-m aI S t r i n g

i mage-of-sou rce
l image-o-lest

image of I
lcnvokimagoe

SOURCE /DESTINATION1 ETA

Name !Name Number

value-of value -of value-of

Figure 4-9. FLIGHT-PLAN Hidden View

4-11

I FLIGHTPLAN

SOURCE DESTINATION

Name Name Number

Figure 4-10. SOURCE, DESTINATION, and ETA Hidden
View

Figure 4-12 presents the hidden view of the coordinate classes. The diagram shows

that Xcoordinate, Ycoordinate, and Zcoordinate are a-kind-of Coordinate class which is

a canonical class. Since no interface classes or capabilities have been added to the interface

of the child classes, they too can be considered as canonical classes.

The final diagram, Figure 4-13, describes the hidden view of the simple classes

AIRCRAFTTYPE, HEADING, ID, and FUEL. Nothing new has been added in the hidden

view that was not present in the interface view.

4-12

AIRCRAFT AIRSPACE LANDMARK

POSITIONA

set-posidon
value of

X-coordiate Ycoordinate Z-coordiate

Figure 4-11. POSITION Hidden View

4-13

Figuredinate -cooriae dinate inate, andat

Z oordinate de iw

4-14 o

AIRCRAFT:

ARCRAFT -TYPE HEADING ID FUEL

String Direction String Boolean

decrement
value-of charige direction value-of is-emrr"

value of iswitin limit

Figure 4-13. AIRCRAFrTYPE, HEADING, ID, and FUEL Hidden Views

Formal Presentation of the ATC

There are 9 canonical classes, 11I simple classes, and 7 complex classes that make up

the ATC system. The 9 canonical classes are: String, Boolean. Name. Coordinate,

X-coordinate. Y-coordinate, Z-coordinate, Direction, and Ntimber. The 11I simple classes

are: USER. COMMAND, POSITION, ID, FUEL. AIRCRAFTTYPE. HEADING.

FLIGHTPLAN, SOURCE. DESTINATION, and ETA. The 7 complex classes are: ATC,

AIRSPACE. AIRCRAFT, LANDMARK. FIX, NA VAID, AIRPORT. The fol-lowing section will

formnally define the above classes (classes will be listed in alphabetical order).

4-15

Formal Definitions of the ATC Classes.

AIRCRAFT

n = AIRCRAFT
P= fUl
I =<{POSMrON, ID, String, Boolear.),

I image-of(AIRCRAFT x String),
value_of~aircraftposition(AIRCRAFT x POSITION),
value_of -aircrftjID(AIRCRAFr x ID),
fuel -within-liniit(AIRCRAFT x Boolean),
change-heading(AIRCRAFT x AIRCRAFT),
change~atitude(AIRCRAFT x AIRCRAFT),
take off(ALRCRAFT x AIRCRAFT),
hold -at -navaid(AIRCRAFT x AIRCRAFT),
continue-straight(AIRCRAFT x AIRCRAFT),
clear-for-approach(AIRCRAFT x AIRCRAFT),
clear -for -landing(AIRCRAFT x AMCRAFT),
ETA -within limit(AIRCRAFT x Boolean),
imnage-ofdestination(AIRCRAFT x String))>

H =<{has-domain(lc:l x AIRCRAFT x Boolean),
has_domain(lc:1 x AIRCRAFT x String)),
hx'_attribute(lc:l x AIRCRAFT x POSITION),
has attribute(1:1 x AIRCRAFT x FLIGHTPLAN),
has -attribute(l:l x AIRCRAFT x ID),
hasatt-ibute(1:1 x AIRCRAFT x FUEL),
has_attribute(1:l x AIRCRAFT x CLASS),
has attribute(1:1 x AIRCRAFT x HEADING),
has-association(lc:lc x AIRCRAFT x Direction),
has -association(l c:lIc x AIRCRAFT x X coordinate),
has-assoclation(ic: ic x AIRCRAFT x Y coordinate).
has-association(lc:lIc x AIRCRAFT x Z-coordinate),

fimageof(AIRCRAFT x String),
value-of-aircraft-..position(AIRCRAFT x POSITION),
value_of-aircraft_ID(AIRCRAFT x ID),
fuel-within limit(AIRCRAFT x Boolean),
change-.heading(AIRCRAFT x AIRCRAFT),
change _altitude(AIRCRAFTF x AIRCRAFT),
take_off(AIRCRAFT x AIRCRAFT),
hold-at-navaid(AIRCRAFT x AIRCRAFT).
continue-straight(AIRCRAFT x AIRCRAFT),
clear-for-approach(AIRCRAFT x AIRCRAFT).
clear-for-landing(AIRCRAFT x AIRCRAFT),

4-16

ETAwithinjlimit(AIRCRAFT x Boolean),

imageof_destination(AIRCRAFT x String)}>

AIRCRAFTTYPE

n = AIRCRAFTTYPE
P = Jul
I = <fString),

{valueof(AIRCRAFTTYPE x String)}>

H = <{has-domain(lc:I x AIRCRAFTTYPE x String)),

(value-of(AIRCRAFTTYPE x String) 1>

AIRPORT

n = AIRPORT
P = { LANDMARK}
I =<(),},1}>
H =<{),{(}>

AIRSPACE

n = AIRSPACE
P = {Ul
I = <(COMMAND, String),

(image_of(AIRSPACE x String),
commandaircraft(AIRSPACE x COMMAND),
statusaircraft(AIRSPACE x COMMAND)}>

H = <{hasdomain(lc:1 x AIRSPACE x String),
hasdomain(lc:l x AIRSPACE x Boolean),
haspart(lc:Mc x AIRSPACE x AIRCRAFT),
haspart(1:M x AIRSPACE x FIX),
has-part(l:M x AIRSPACE x NAVAID),
haspart(l:M x AIRSPACE x AIRPORT),
has association(lc:1 x AIRSPACE x COMMAND),
hasassociation(lc:lc x AIRSPACE x POSITION)},
hasassociation(lc:lc x AIRSPACE x Xcoordinate),
has association(Ic:lc x AIRSPACE x Ycoordinate),
has association(lc:lc x AIRSPACE x Zcoordinate),
hasassociation(lc:lc x AIRSPACE x ID)),

fimage-of(AIRS PACE x String),
command-aircraft(AIRSPACE x COMMAND),

4-17

status -aircraft(AIRSPACE x COMMAND),
check-for-termmnate(AJRSPACE x Boolean) 1>

ATC

n ATC
P (U)
I =<(USER, Stringl,

(service userjequest(ATC x String x USER))>

H = <(has-domain(lc:1 x ATC x String),
has-part(1:1 x ATC x AIRSPACE)
has-association(lc:lc x ATC x Boolean),
has-association(lc:lc x ATC x COMMAND),
has-association(lc:1 x ATC x USER)),

I service userjequest(ATC x String x USER))>

Boolean a (true, false)

COMMAND

n =COMMAND

P (U)
I =<(String. Boolean),

fis..yalid(COMMAND x Boolean),
value-of(COMMAND x String),
is-termninate(COMMAND x Boolean),
isstatus(COMMAND x Boolean),
is_aircraft(COMMAND x Boolean),
create-commnand(COMMAND x String))>

H =<(has_domain(lc:1 x COMMAND x String),
hias-domain(lc:1 x COMMAND x Boolean)),

(is-valid(COMMAND x Boolean),
valueof(COMMAND x String),
is-terminate(COMMAND x Boolean),
isstatus(COMMAND x Boolean),
is_aircraft(COMMAND x Boolean),
create-comimand(COMMAND x String))>

Coordinate A (c c- NI 05~c : e-o

4-18

DESTINATION

n =DESTINATION

p (U}

I =<(Namel,

(value-of(DESTINATION x Name))>

H = < fhas-domain(l c: 1 x DESTINATION x Name)),

Ivalue of(DESTINATION x Name))>

Direction a (N, NE, E, SE, S, SW, W, NW)

ETA

n =ETA
P = (U)
I = <(Number,

(value of(ETA x Number))>

H = <(has_domain(lc:1 x ETA x Number)),

(value of(ETA x Number))>

FIX

n = FIX
P = I LANDMARK)

FLIGH-FPLAN

n =FLIGHTPLAN

P (U)I
I =<(String.

(imagesofsource(FLIGHTPLAN x String),
imageofdestination(FLIGHT_-PLAN x String),
image _ofETA(FLIGHTPLAN x String))>

H = <(has_domain(lc:1 x FLIGHTPLAN x String),
has-attribute(l:1 x FLIGHTPLAN x SOURCE),
has-attribute(1:1 x FLIGHT_PLAN x DESTINATION),

4-19

has_attribute(l 1: x FLIGHTPLAN x ETA),
has-association(lc:lc FLIGHT_PLAN x Name),
has-association(lc:lc FLIGHTPLAN x Number)l>

(i ageof-Source(FLIGHTPLAN x String),
imageoLdestination(FLIGHT_PLAN x String),
imageofETA(FLIGHTPLAN x String))>

FUEL

n =FUEL
P ul

I = <(Booleanl,

Idecrement(FUEL x FUEL),
is..empty(FUEL x Boolean),

H = < (has-domain(l c:1I x FUEL x Boolean),

I decrement(FUEL x FUEL),
is -empty(FUEL x Boolean),
is-within-limit(FUEL x Boolean))J>

HEADING

n =HEADING
P = Jul
I =<I Direction),

I change-direction(HEADTNG x HEADING),
valueof(HEADING x Direction))>

H = <(has-domain(lc:1 x HEADING x Direction)),

(change-direction(HEADING x HEADING).

value of(I-EADING x Direction))>

ID

n = ID
P = fU)
I = <(String.

(vaiueof(ID x String))>

4-20

H = <{has_domain(lc:l x ID x String)),

{valueot(D x String))>

L4NDMARK

n = LANDMARK
P = Jul
I = <POSITION, String},

{ valueof position(LANDMARK x POSITION),
image-of(LANDMARK x String) }>

H = <{hasdomain(lc:I x LANDMARK x String),
has_domain(lc:l x LANDMARK x Name),
hasattribute(lc:1 x LANDMARK x POSION),
has association(ic: lc x LANDMARK x Xcoordinate),

has association(lc:lc x LANDMARK x Ycoordinate),
hasassociation(lc:lc x LANDMARK x Zcoordinate)).

ivalueof-position(LANDMARK x POSITION),

imageof(LANDMARK x String))>

Name & (0, 1, 2, 3, 4,5, 6, 7, 8, 9, *#, %)

NAVAID

n = NAVAID
P = (LANDMARK)
I = <,{ 1{>

Number A fn E N I 1 <n< 101

POSITION

n = POSITION
P = {U}
I = <{X_coordinate. Y-coordinate. Zcoordinate},

Isetposition(POSITION x Xcoordinate x Ycoordinate x
Z_coordinate),

value_of(POSITION x Xcoordinate x Ycoordinate x
Z_coordinate)}>

H = <{has part(l:I x POSITION x Xcoordinate),
has part(l:I x POSITION x Ycoordinate),

4-21

haspart(1:1I x POSITION x Z-coordinate))

isetposition(POSITION x X-coordinate x Y-coordinate x
Z--coordL" latel1,

value_of(POS1TION x X-coordinate x Y-coordinate x
Z-coordinate))>

SOURCE

n = SOURCE
P = (U
I = <[Namel,

value-of(SOURCE x Name))>

H = <Jhas_domain(lc:1 x SOURCE x Name)),

{value-of(SOURCE x Namne))>

String a I ASCII-alphabet)'

USER

n = USER
P =Ju
I = <lString),

idisplay(USER x String),
read(USER x String))>

H = <{hasjlomain(lc:1 x USER x String)),

idisplay(USER x String),
read(USER x String))>

X coordinate a Ix XE Coordinate I 1I x x-max)

Y coordinate A (y E Coordinate 1 I y y-max)

Z-coordinate A {I ZE Coordinate 1 0 z . .ax)

4-22

Summary of Application

The preceding specification of the ATC simulation provides sufficient detail about the

system to begin the design phase. The ATC has been leveled from a single interface

description (highest level of abstraction) down to the simple and canonical classes (lowest

level of abstraction) which describe the state range of the entire system. This specification

is considered to be an accurate representation of an OORA of the ATC simulation.

4-23

V. Conclusions and Recommendations

This final chapter summarizes the research presented in this thesis. It also provides

a list of conclusions that have been reached as a result of the research, and provides some

recommendations for follow-on research for the formalism developed.
I

Summary

The literature surveyed in chapter U for methods of doing OORA revealed informal

based methods by Bailin, Shlaer and Mellor, Booch, and Coad and Yourdon. Formal based

methods included Bralick, Z, and REFNE. However, none were found to be adequate for

producing an OORA. The informal methods varied in approach from a combination of

structured and object-oriented to pure object-oriented witi erything on the same plane of

abstraction. Of the formal methods, Bralick's was the only one to claim to be object-oriented.

However, it did not-meet the criteria for being a formal definition. The remaining two formal

based methods are broad based in their application and not specifically applied to the 0-0

paradigm.

A formal method for OORA was developed in chapter III. The formalism presented

a combination of graphical representation, using the Spelling Checker System as examples,

and formal definitions. The formalism revolves around the concept of a class. Formally, a

class is a 4-tuple consisting of a unique name, a set of parents, an interface part and a hidden

part.

The formalism was demonstrated by applying it to the ATC simulation. Both the

graphical and formal presentations proved to be successful for conducting an OORA. The

resulting specification of the ATC was sufficient to begin thz design phase.

5-1

Conclusions

Several conclusions can be drawn from the research presented in this thesis.

1) An OORA can successfully be formalized as a combination of graphical

notations and formal definitions based on set and relation theory.

2) Classes are more appropriate than objects for building a requirements analysis

model since a class is a template whereas an object is specific (an object may

be more appropriate for a design model).

3) No adequate formal based methods currently exist upon which to build a object-

oriented formal specification.

4) There are specific relationships that exist between classes; namely has_part,

hasattribute, hasassociation, hasdomain, and a-kind-of. These relationships

determine the structure and state range of the entire system under analysis.

5) There are 16 multiplicity and participation restrictions that are placed on the

relationships between classes (except the a-kind-of relationship). These

restrictions describe the number of instances from each class participate in the

relationship.

6) A graphical representation alone was not sufficient to provide an adequate

specification. The graphic does provides excellent support for developing the

formal specification.

5-2

7) Contrary to many of the object-oriented methods reviewed to date, an attribute

is nothing more than another class. The relationship between a class that serves

to describe another class is a hasattribute relationship.

8) Three levels of class complexity were discovered: canonical, simple, complex.

Canonical classes provided mapping to values, simple classes had only canonical

classes in its interface, and complex classes had other simple or complex classes

in its interface.

9) At analysis time, there are few differences between a class's list of capabilities

and its list of behaviors.

In addition to the previous conclusions, several heuristics were drawn out of the

research.

1) When specifying relationships and restrictions between classes, and one of those

classes is the parent of another class, ensure that the relationships and restrictions

are valid for both the parent and any children that would inherit those

relationships and restrictions, otherwise, define the relationships from the child

class only.

2) Certain relationships are constrained by certain restrictions. The hasdomain is

always restricted by the one(conditional)-to-one, the hasattribute is always

restricted to either one(conditional)-to-one or one-to-one. By convention,

5-3

hasassociation relationships that are a result of another relationship are

conditional on both sides.

3) The more interface classes a class declares, the more complex the overall system

becomes. Every class listed in a class's interface must also have some

relationship with every client of that class.

4) An OORA should be leveled by means of the interface view and hidden view.

Recommendations •

As a result of the research, several follow-on topics are recommended.

1) The formal definition presented in this thesis should be formally proven. This

could be accomplished by proving it to be isomorphic to a turing machine. The

effect of this would be to further validate the formalism.

2) Develop complexity metrics based on the interface descriptions of the classes.

To do this would require several applications of the formalism to partition a

number of systems into the three levels of class complexity. Once done, expert

opinion would be needed to quantify the actual levels of system complexity.

Results from the formalism and opinion poll could then be correlated to

determine any relationships between complexity and interface description.

3) The formal specification, developed as a result of applying this formal model.

could be used to model the dynamics of a given system by applying set and

5-4

relations operations on the formal specification itself. The result could be similar

to a prototype of the system.

4) Take this formal model to the next step of the software development process and

apply it to OOD. At this level, objects would have to be introduced along with

their associated state.

Remarks

This research was undertaken to promote the use of formal definitions in the software

development process. It is believed that through the use of formalism, like the one developed

in dhis thesis, the software development process might be a little less ad hoc. Systems

developed using these formalism will be better understood earlier on in the program and

eaier to maintain once fielded.

5-5

Appendix. Spelling Checker System

Description of the Spelling Checker System

The following Spelling Checker System description was presented by (Umphress,

1990):

The spelling checker will parse an input document extracting one word at a
time. (As it parses the document, it displays the current document line
number and word number on the terminal.) If the word is a "non-word", the
spelling checker passes it directly to the output document. Otherwise, the
spelling checker consults the main and temporary dictionaries. If either
dictionary contains the word, the word is written on the output document.

If neither dictionary contains the word, the spelling checker allows the
operator to either:

(1) replace the word with a word typed in from the terminal,
(2) add the word to the temporary dictionary,
(3) add the word to the main dictionary, or
(4) request the program to display like-spelled words in the main

and temporary dictionaries.

The word entered or accepted by the user is written to the output document.

The space available in the main and temporary dictionaries will be
continuously displayed on the terminal. An error message will be displayed
if the user tries to add a word to a full dictionary.

A-I

Graphical Presentation of the SCS

SPELLING_CHECKER

USER
INPUTDOC
OUTPUTDOC
String

serviceuser-request

Figure A-i. SPELLINGCHECKER
Interface

A-2

Une-number Word-number Boolean Space

value of value of value of value -of
stvajue wtvalue st-vaiue t-value

mage..of mage-of mageaf mage-ot
nveqjmnage nvert-imae nvertjimage nvert-image

Figre -2.SPELLINGCHECKER HdenVe

Stri3

SPELLINGCHECKER

String

Sdisplayread

Figure A-3. USER
Hidden View

TOKEN

String

Boolean

is word
value-of

Figure A-4. TOKEN Hidden
View

A-4

SPELLING-CHECKER

Line-..number
Word-number

parse write
value-at_

Line number
value-of_

Word-number

(DOCUMENT
TOKEN

Figure A-5. INPUTDOC and OUTPUTDOC
Hidden Views

A-5

Boolean

vaiueot
stvalue

image-of
nvert_imago

SString

value~pt
stvalue

image-of
onvert_image

Figure A-6. DOCUMENT Hidden View

A-6

SPELLINGCHECKER

rMAINDICr TEMPDICTi

AICflONARY7
TOKEN
Space
Boolean
consut
add-word
vaueoSpace

o dolJke

Figure A-7. MAINDICT and TEMIPDICT Hidden
Views

A-7

DICTIONARY :
TOKEN

Space If' ,"1/ Stnng

consultBoolean
od J is word

valueofSpace valiue of

crvetk elc

Figure -. CINR idnVe

,7-8 k

Formal Presentation of the SCS

Definition of the Spelling Checker System Classes (in alphabetical order).

Boolean a { true, false}

DICTIONARY Class Definition

n = DICTIONARY
P={U}

I = <(TOKEN, Space, Boolean),

{(consult (DICTIONARY x TOKEN x Boolean)),
(add word (DICTIONARY x TOKEN x DICTIONARY)),
(va:,ie-of (DICTIONARY x Space)),
(providejike (DICTIONARY x TOKEN)))>

H = <((has-domain (lc:l x DICTIONARY x Space)),
(has-domain (lc:1 x DICTIONARY x Boolean)),
(has_part (lc:Mc x DICTIONARY x TOKEN)),
(hasassociation (lc:.!c DICTIONARY x String))}

{(consult (DICTIONARY x TOKEN x Boolean)),
(add-word (DICTIC.AARY x TOKEN x DICTIONARY)),
(value-of (DICTIONARY x Space)),
(providejike (DICTIONARY x TOKEN)))>

DOCUMENT Class Definition

n = DOCUMENT
P=IU}
I = <{TOKEN}, {}>

H = <{(haspart (lc:Mc x DOCUMENT x TOKEN)),
(has-association (lc:lc x DOCUMENT x String))
(has-association (lc:lc x DOCUMENT x Boolean))}, {}>

INPUTDOC Class Definition

n = INPUT-DOC
P = {DOCUMENT}
I = <I Linenumber, Wordnumber}.

{(parse (INPUT-DOC x TOKEN)),
(value of (INPUT DOC x Linenumber)),
(value of (INPUT DOC x Word-number))}>

A-9

H = <{(has domain (lc:1 x INPUTDOC x Linenumber)),
(has-domain (lc:1 x INPUTDOC x Wordnumber))),

{(parse (INPUT DOC x TOKEN)),
(value-of (INPUT-DOC x Lie_number)),
(valueof (INPUTDOC x Wordnumber))}>

Line number a {I E NI 0 1 1_max)

MAINDICT Class Definition

n = MAINDICT
P = { DICTIONARY)

H =<{ ,{}>

OUTPUTDOC Class Definition

n = OUTPUTDOG
P = {DOCUMENT}
I = <{ }. {write (OUTPUT_7 DC x TOKEN))>
H = <I }, 1 write (OUTPUTDOC x TOKEN)I>

Space A {s E RI 0.0<s 1.0)

SPELLING-CHECKER Class Definition

n = SPELLINGCHECKER
P = (U)
I = <IUSER, INPUTDOC, OUTPUT-DOC, String),

{service.user-request (SPELLINGCHECKER x String x USER x
INPUTDOC x OUTPUTDOC)}>

H = <((has-domain (lc:l x SPELLINGCHECKER x String)),
(haspart (Mc: I x SPELLINGCHECKER x MAIN _DICT)),
(haspart (1:1 x SPELLINGCHECKER x TEMPDICT)),
(hasattribute (ic: I x SPELLING_CHECKER x TOKEN)),
(hasassociation (1c:l x SPELLINGCHECKER x USER)),
(hasassociation (lc:l x SPELLINGCHECKER x INPUTDOC)).
(has-association (lc:I x SPELLINGCHECKER x OUTPUTDOC))
(hasassociation (lc:lc x SPELLINGCHECKER x Linenumber))
(hasassociation (lc:lc x SPELLINGCHECKER x Wordnumber))
(hasassociation (lc:lc x SPELLINGCHECKER x Boolean))
(hasassociation (lc:Mc x SPELLINGCHECKER x Space))),

A-10

{service-user-request (SPELLINGCHECKER x String x USER x

INPUTDOC x OUTPUTDOC)I>

String a { ASCfalphabet }*

TEMPDICT Class Definition

n = TEMP_DICT
P = { DICTIONARY}
I = <{ },{ 1>
H = <{ 1,1 }>

TOKEN Class Definition

n = TOKEN
P={Ul
I = <(String, Boolean),

{(isword (TOKEN x Boolean)),
(valueof (TOKEN x String)),
(replace (TOKEN x TOKEN)) }>

H = <{(has_domain (lc:1 x TOKEN x String)),
(has-domain (Ic:I x TOKEN x Boolean))},

{isword (TOKEN x Boolean),
valueof (TOKEN x String),
replace (TOKEN x TOKEN)}>

USER Class Definition

n = USER
P = {U}
I = <[String),

(display (USER x String),

read (USER x String))>

H = <{(has-domain (1c:l x USER x String))),

fdisplay (USER x String),
read (USER x String))>

Word-number a Iw E N 10 < w < w-max)

A-Il

Bibliography

Bailin, Sidney C. 1989. "An Object-Oriented Requirements Specification Method,"
Communications of the ACM, 32, 5:608-623.

Bailor, Paul. 1991. Class handout distributed in CSCE 595, Software Generation and
Maintenance. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH.

Baum, K. D. and D. Umphress. 1991 (In press). "Determining Concurrency in Object-
Oriented Real-Time Design." Ada Letters.

Booch, Grady. 1987. Software Components with Ada: Structures, Tools, and Subsystems.
Menlo Park CA. The Benjamin/Cummings Publishing Co. Inc.

-1991. Obiect Oriented Design With. Applications. Redwood City CA. The
Benjamin/Cummings Publishing Co. Inc.

Bralick, Capt William A. Jr. 1988. An Examination of the Theoretical Foundations of the
Obiect-Oriented Paradigm. MS thesis, AFIT/GCS/MA/88M-01. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
March 1988.

Coad, F. and E. Yourdon. 1990. Object-Oriented Analysis. Englewood Cliffs NJ. Prentice
Hall.

Davis, Alan M. 1990. Software Requirements Analysis & Specification. Englewood Cliffs
NJ. Prentice-Hall, Inc.

Goldberg, Jay H. 1990. "The Pentagon's Software Crisis Jeopardizes Key Weapon
Programs," Armed Forces Journal International. June:60-70.

Henderson-Sellers, Brian and Julian M. Edwards. 1990. "The Object-Oriented Systems Life
Cycle," Communications of the ACM, 33, 9:143-159.

Ince. D.C. 1988. An Introduction to Discrete Mathematics and Formal System Specification.
Clarendon Press NY.

MacLennan, Bruce J. 1982. "Values and Objects in Programming Languages," SIGPLAN
Notices, 17, 12:70-79.

Reasoning Systems, Inc. 1990. Refine Users Guide (version 3.0). 3260 [lillview Ave., Palo
Alto CA.

BIB-i

Rombach, Dieter H. 1989. "Software Specifications: A Framework," SEI Curriculum Module
SEI-CM- 11-2.0. Carnegie Mellon University.

Shlaer, Sally and Stephen J. Mellor. 1988. Object-Oriented Systems Analysis: Modeling the
World in Data. Englewood Cliffs NJ. Prentice Hall.

--- 1989. "An Object-Oriented Approach to Domain Analysis," Software Engineering
Notes, 14 5:66-77.

Sommerville, Ian. 1989. Software Engineering (third edition). Wokinghan, England.
Addison-Wesley Publishing Co..

Spivey, J. M. 1989. The Z Notation A Reference Manual. United Kingdom. Prentice Hall
International.

Umphress, David A. 1990. Class handout distributed in CSCE 593, Systems and Software
Analysis. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH.

-1991. Associate Professor of Computer Science. Personal Correspondence.
Department of Electrical and Computer Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH.

Umphress, David A. and Steven G. March. 1991 (In press). "Object-Oriented Requirements
Detennination," Journal of Obiect-Oriented Programming.

Yelland, P. M. 1989. "First Steps Towards Fully Abstract Semantics for Object-Oriented
Languages," The Computer Journal, 32, 4:290-296.

BIB-2

Vita

Captain Andrew D. Boyd was born on 14 March 1960 in Kansas City, Missouri. He

graduated from Mannheim American High School, Germany in 1978 and attended the

University of Kansas, Lawrence, graduating with a Bachelor of Science in Chemical

Engineering in December 1983. He attended the Air Force Officers Training School (OTS),

class 85-02, and received his commission on 7 November 1984. His first tour of duty was

at the Los Angeles Air Force Base, California. He began as a business/financial manager for

the Space Test Program and later as a payload program manager for the Space Shuttle

Program Office. He managed the STP-1 payload which flew on STS-39 in May 1991.

Captain Boyd's next tour was at Wright-Patterson Air Force Base's Electronic Combat and

Reconnaissance Program Office where he was the program manager of the Air Force

Electronic Warfare Evaluation Simulator (AFEWES) upgrades program until entering the

School of Systems and Logistics, Air Force Institute of Technology, in May 1990, in the first

Graduate Software Systems Management (GSS) program.

Permanent Address: c/o Robert Boyd
1309 55 St.
Blue Springs, Mo.
64015

VIT- I

REPORT DOCUMENTATION PAGE FM o p4ro 88

''''.'i' -~~ .- J'..' ' 'r -_- : TC.C - i . ,i~r~njt:n peaaar-es,O. -r~ onV~tPf~h ')D.,.cn !)ro , " 0-- ' > rrson
A ~ ~ -*30 wa-~ -1A~'.~"e! ,,t .e 1"'' te'r.r Re h aOC-~ ' A.,sn ' .

1. AGENCY USE ONLY (Leave olanK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

77)eelymher 91 I Mnstf-r'q Th0 _________________

*4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A FORMAL DEFINITION OF THE OBJECT-ORIENTED
PARADIGM FOR REQUIREMENTS ANALYSIS

6. AUTHOR(S)

Andrew D. Boyd, Captain USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, AFIT/GSS/ENG/91D-3
WPAFB OH 45433-6583

9 SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUT ON CODE

Approved for public release: distribution unlimited

13. ABSTRACT (,VFmum 200 wordS)

This p.per develops a formal definition of the Object-Oriented paradigm for requirements analysis.
The literature was surveyed for both formal and informal methods for conducting an Object-Oriented
Requirements Analysis (OORA). The informal methods reviewed are: Bailin's, Shlaer and Mellor's,
Booch's, and Coad and Yourdon's. The formal methods reviewed are: Bralick's, Z, and REFINE. None
of the methods were found to be adequate for doing an OORA. A formal definition of an OORA, based
on the concept of classes, is developed. The definition itself is presented as set and relation theory. A
supporting graphical representation is also developed and presented. The graphical method allows a
system to be successfully leveled. The formalism is validated by applying it to the Air Traffic Control
(ATC) simulation.

14. SU4,JECT TERMS 15 NUMBER OF PAGES

Object-Oriented Paradigm. Requirements Analysis. Formal Definition . 16 PRICE CODE

17. SICURITY CLASSIFICATION 18SECURITY CASFATO 19SECURITY CLASSIFICATION 20LMTIOOFASRC
OF REPORT OF THIS PAGE 19OF ABSTRACT20IMTIOOFBTCT

UNCLASSIFIED IUNCLASSIFIED UNCLASSIFIED UL
'~""I2 70 SVi))9~~' 2 7397

- .t

AFIT Control Number AFIT/GSS/ENG/91D-3

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for cur-
rent and future applications of AFIT thesis research. Please return
completed questionnaires to: AFIT/LSC, Wright-Patterson AFB OH
45433-6583.

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another
agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency received by virtue of A1'IT performing the research.
Please estimate what this research would have cost in terms of manpower
and/or dollars if it had been accomplished under contract or if it had
been done in-house.

Man Years $

4. Often it is not possible to attach equivalent dollar values to
research, although the results of the research may, in fact, be important.
Whether or not you were able to establish an equivalent value for this
research (3 above), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Signi ficant Significant Significance

5. Comments

Name and Grade Organization

Position or Title Address

