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ABSTRACT

The need for direct turbulence measurements in the upper
ocean arise from widespread requirements to correctly
parameterize momentum and scalar fluxes across the air/ocean
interface. Until recently these observations were limited by
a lack of instrumentation capable of measuring the fine-
structure velocity field down to dissipation scales.

The recently developed CDV package allows simultaneous
sub-centimeter resolution measurements of temperature,
conductivity, pressure, shear and the 3 component velocity
field. As part of the development of this system a Monte-Carlo
simulation was used to analyze the performance of sevé}al
spectral estimators of the mean acoustic Doppler shifts, from
which the velocity components are derived. The selected
algorithms were implemented on a Digital Signal Processor
allowing real-time estimation of the velocity, shear and
scalar quantities.

To verify the performance of the CDV package,it was
deployed off Wharf 2 in Monterey for 24 hours while
simultaneously recording meteorological data. “eynold’s
stresses, buoyancy fluxes and fine scale stratification were

characterized and the surface gravity waves fiz=1ld identified.
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I. INTRODUCTION

Turbulence is a feature of flows and is characterized by
its irregularity or randomness, diffusivity, large Reynolds
numbers (highly nonlinear) and by three-dimensional vorticity
fluctuations. Turbulent flows are also dissipative, requir 1g
a continuous supply of energy, and limiting the smallest
scales to be far larger than any molecular length scale. The
cmallest scale occurring in turbulent flows is called the
Kolmogorov length scale {(Ref.1]. These characteristics make
any deterministic approach to the description of turbulent
flow impossible, and observations very difficult. On the other
hand, statistical approaches to the equations of motion lead
to an unresol.ed system, requiring extra assumptions in order
to obtain closure [Ref..].

In order to characterize turbulence, we need to perform
measurements of mean quantities and of fast varying
guantities, requiring high spatial resolution, fast response
sensors and stable observation platforms. a cléssical approach
to cseparating mean quantities from turbulent fluctuation, is
to assume a spectral gap, so that by using a running mean we
are able to isolate perturbations from the mean flow (Reynolds
averaging) [Ref.2].

A more complex procedure is required 1if one wants to

separate a linear wave field from superimposed turbulence




[Ref.3 and Ref.4]. One method is just to subtract, from the
fast varying variables, the components that are coherent to
the wave field. The cross spectral variables and its coherency
are used to identify the wave components and the correspondant
frequency ranges. This method will only demodulate
superimposed turbulence from the wave field assuming that no
energy is being transferred (linear approach), and non-linear
interaction between the two fields are not identified.
Turbulence velocity observations are frequently limited by
a lack of instrumentation capable of measuring the fine-
structure temperature, salinity and velocity field, down to
dissipation scales. The CDV package recently developed at the
Naval Postgraduate School allows simultaneous sub-centimeter
resolution measurements of temperature, conductivity,
pressure, shear and the 3 component velocity field. These
concurrent high resolution ocean microstructure measurements
will aid our understanding of a range of phenomena that
requires the determination of mnomentum or scalar fluxes.
Unresolved problems include layer stability characterizations,
turbulent closure problems, dissipation and energy cascade
estimations, observation of entrainment and turbulence
development, air-sea interaction, and the superposition and
coupling of turbulence to mean advection and/or wave fields.
As part of this work, real time signal processing
programs, programed in C environment are developed, for the

CDV package. This work is focused in creating and implementing




algorithms that estimate mean doppler shifts, from which the
velocity components are derived; on the real time processing
and filtering of the analog variables, including temperature,
conductivity and shear; and on the continuous real time
graphical monitoring of selected variables. Also, using a
Monte-Carlo simulation, the performance of several spectral
estimators of the mean acoustic doppler shifts are analyzed to
guide the real-time processing algorithm choice.

The CDV package, after being tested and calibrated, was
deployed on the 2 and 3 August 1991, in shallow water off a
wharf in Monterey to test its ability to measure momentum and
scalar fluxes. It was fixed to a 2 meter high bottom mounted
tripod, with the instrument facing the surface at depths of
the order of 0.5 meters, while simultaneously recording
meteorological data. Small swell, weak winds and overcast sky
were observed throughout the observation period.

A procedure is developed that allows the estimation of
Reynolds stresses and buoyancy fluxes based on the measured
guantities. Spectral methods are used to characterize which
part of the observed scalar variance fields are turbulent v.s.
advected by the surface gravity wave field.

This thesis is organized as follows. Chapter II summarizes
the theorical background and motivations for microstructure
observations. Chapter III describes a series of Monte-Carlo
simulations that study the performance of several spectral

estimators for the mean acoustic doppler shifts used to




estimate velocities. Chapter IV describes some recent methods
and equipment that led to the development of the CDV package;
the CDV package; the signal processing developed algorithms;
and some validation tests and error analysis performed with
real data. Chapter V describes the Monterey Wharf #2
experiment presenting the Reynolds stresses and ocean fluxes
estimation procedures. Finally chapter VI presents some

conclusions and recommendations for future work.




II. MOTIVATION FOR MICROSTRUCTURE OBSERVATIONS

Microstructure measurements are required for oceanography
problems such as the study of mixing parameterizations,
dissipation and energy cascade, surface layer entrainment,
air-sea interaction and coupling, upwelling systems and mixing
layer models. This chapter will introduce some theorical
background to ocean turbulence emphasizing the experimental

needs.

A. REYNOLDS EQUATIONS

The dynamics and thermodynamics of the ocean are described
by a set of non-linear basic governing equations containing
time and space derivatives requiring the definition of initiax
and boundary conditions [Ref.5]. Usually we do not have enough
information to solve these conditions at smaller scales, so we
must choose a cut-off eddy size below which we include only
the statistical effects of these smaller scales. The resulting
non-linear equations will be underdetermined with no
analytical solution. Therefore, we are limited to
approximations or numerical solutions after closing the system

with additional assumptions [Ref.2].




1. Basic Governing Equations
The governing equations are the set of equations
describing the general physical laws of fluid dynamics and
their application to the particular case of ocean dynamics
[Ref.6 and 2]:
a. Equation of State
This equation describes the thermodynamic state of
water relating the several basic variables of density,
pressure, temperature and salinity. A complete empirical
relation in polynomial form is given, for example, by Millero
et.al. 1980 [Ref.6]. However, this equation is difficult to
handle and interpret. An approximation widely used is based on
the fact that the water is nearly incompressible near the
surface so that density changes of a constant volume are only
due to temperature or salinity changes (Brian and Cox 1972)

[Ref.5],

p=p.x[1-ax(7T-T,) +fx(5-5)) !

where a = 2139%x107K™ is the thermal expansion coefficient and
8 = 0.751x10 is the salinity expansion coefficient and p, =
1025.96 kg/m’ is the density correspondent to the temperature

T, = 15°C and salinity S, = 35 psu [Ref.5].




b. Conservation of Mass (continuity)
The conservation of mass for fluids, also called
the continuity equation, states that the local rate of change

of density is egual to minus the mass divergence, or:

If the fluctuations of density are much smaller than the mean
density it can be shown that the incompressibility assumption

is valid and this equation becomes:

dp aU

L. -

dt ax

i.e. non-divergent flow and constant density following the
motion.
c. Conservation of Momentum
This balance describes Newton’s second law of
motion. If we assume that the vertical and horizontal scales
are much smaller then the earth radius, this cénservaticn law

can be written using the tangent plane approximation [Ref.2]:

ou. ou. 1dp 9%,

- _ = . ] —c
3t Y- 7 Ox. 8.:97€. 1 p dx, p Ox,




where: é 1 mng=123 231 312
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0 otherwise

Water can be assumed to be a newtonian fluid so
that:

_,0U; dU; 2, 90U,
tij-p(-a_;{; 8x1)+(pb 3“)—&;61,

where p=1.4x10-3 kgn™'s™ and pu, are the molecular viscosity and
the bulk viscosity respectively [Ref.2].

However if we assume that the fluid is incompressible and
defining kinematic viscosity (v) as u4/p=1.4x10"° m’s™ we

obtain:

1 0t..  O°U,

P a&f vaxf

If we assume that the motion is shallow, we can
neglect density changes associated with the mass of the fluid,
though we must retain their effect on the fluid weight, and we
can further simplify the equations of motion in the so called

Boussinesq approximation [Ref.2]:

1 I, 1-_§. P P 5 = 2 ;

1




These equations represent the balance of the inertia and
advection (LHS) by gravity, coriolis acceleration, pressure
gradient and viscous stresses.
d. Conservation of Heat

The conservation of heat describes the first law of
thermodynamics. If we neglect the change of internal energy
due to viscous dissipation and assume incompressibility, it
can be represented by:

ar,

, 6T _, 0T, QO
35 K

. er T, Q0
7Ox, T tox.r G,

where the left hand side represents the storage and advection
of heat, K,=1x10-7 m’s™'/(pC,) is the coefficient of thermal
diffusivity, Q represents the rate of heat addition per unit
mass by internal heat sources and C,=3990 J.Kg™7K? 1is the
specific heat at atmospheric pressure and 15°C [Ref.5].

The term Q can be summarized by [Ref.2,5 and 6]:

Q: 1 _a) f’:.*QbC‘OL’Q;_,"QV"’C’V

where:
Q. ~ short wave solar radiation (a = surface albedo)
Q.. - net heat gain by long wave radiation
Q. - net heat loss by long wave radiation
Q, ~ net heat loss/gain by conduction

Q. -~ net heat loss/gain by evaporation or condensation




Q. - net heat loss/gain by advection
The terms Q. and Q, will only be significant at the surface
and can be estimated by the aerodynamical bulk formulas, based
on bulk meteorological measurements [Ref.2].
The term Q. representing the heat associated with the mass
transport 1is wusually parameterized by an eddy diffusion

coefficient of the form:

The terms associated with the downward long wave
and short wave radiation are more difficult to analyze. We
must use empirical relations describing the penetration and
absorption of radiation with depth as a function of
wavelength.

Finally the heat loss by long wave radiation can be
estimated using Steffans law where (Q, « T‘).

e. Conservation of Salt
Because of the form of the equation of state used,

a salinity budget must be introduced of the form:

as as oS
— ~. = =K_——+85
ar : ax: s ax‘l."‘ s
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stating that the storage and advection of salt (LHS) must be
balanced by the molecular diffusivity of salt and by the net
salt gain/loss by internal sources.
The term S, corresponds to the balance due to
evaporation, precipitation and runoff effects.
2. Reynolds Averaging
The randomness found in the smaller scales of motion
in a turbulent fluid makes a deterministic approach to solving
these equations very difficult. If we assume that the energy
at these scales is the superposition of a variety of small
size, band limited eddies, we can separate these components
from the other mean effects by averaging over a sufficiently
large interval corresponding to a stationary low frequency
energy spectral component. This concept presumes the existence
of a spectral gap in the component variance spectra [Ref.2].
However, the presence of internal waves, surface gravity waves
and many other phenomena, does not always allow us to assume
the existence of this gap between forcing and dissipation
frequency ranges. Nevertheless, we can assume that each
variable is composed by a mean and a perturbed part, which
averages out to zero. However, the turbulent part of the
variance will have non-zero covariances with the other

turbulent components.

11




4.

Starting from the previous basic governing equations
and after separating the mean and perturbed components and
averaging, the resultant set of squations is

1. equation of state

p=p.x[1-ax(T-T,) +Bx(5-5,)

2. conservation of mass (continuity)

35?__8u’:_
2&:— 0X.

3.

conservation of momentum

oU, __dUu. — - 4 >U, 3§ ,~——r
— i — —6‘7 -€ .. 7 - L . - u’.
e U T L.g-€. ., £ .U, = ax, Vax_z ax. (u’;u’.)
conservation of heat
g"_:f[_ aT 7
at
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The new terms introduced by this procedure are the
divergences of momentum, temperature and salinity fluxes, and
they represent the interaction between the mean and the
perturbed flow. For these terms to be significant, we must
have a large Reynolds number ( R, = advection terms [/
molecular viscosity terms), so that it is usual to neglect the
viscosity terms in this set of equations. The set of equations
represent an unresolved system of 7 non-linear equations with
22 unknowns and are known as the Reynolds equations.

Before looking for any type of solutions we first must
close the system by finding prognostic equations for the new
variables in the form of fluxes and variances, eventually
reducing the number of unknowns. To obtain the forecast
equations for the fluxes and variances we must first find
prognostic equations for the perturbations. Following the
procedure described in Stull, 1988 [Ref.2], this can be
achieved by subtracting the Reynolds equations from the

governing equations, resulting in the system:

ou’, T ou’ . o U, du’;
dc T ox; - ox. Y dx,
/ 1 eu’, o
=-8,,98 ve . fu -2 P’y i, 9 (3 sul
TR T T poxy axif o ox, ‘
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. u’. +3 + e (U .
3r ' ox. 7 9x. “0x. toxc Cp Ox. T
I S ! / 7 g’
as +Tas/+u’vas ~u’ 95" _k At +8’ +—a"(uj5)

idx, Toxj  ° ox,

In order to obtain equations for the reynolds stresses and for
the scalar fluxes, the following procedure was developed by
Stull, 1988 [Ref.2]:

1. Multiply the equations for a generic variable q’, by u’,,
and Reynolds’ average.

2. Sum these resultant equations, obtained by Reynolds’
averaging the perturbed momentum equations multiplied by q,’.
3. Use the continuity balance to transform advective terms
into flux form.

4. Neglect the coriolis terms and the pressure, radiation and
molecular diffusion.

The resultant equations, are:

/ 7 / T /
i g QU U e 0T oy Uk oy
dat 7 0x, K Jox, 1 T ox; dx; %Yk
/ du’, ou’
Iis T o468 T o] +8 Ky _
+’: u 5 + U "'—:( ) 26.
p k3 ‘p 13 kp] p an axl YUy,
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As we can see, these equations do not close the system because
they introduce new variables in the form of statistical third
moments. If we proceed looking for prognostic equations for
these third moments, they will introduce in a similar way
fourth order type moments and so forth.

Therefore in order to be able to use these Reynolds
equations additional assumptions must be used.

3. Turbulent Closure

If there was no turbulence and the statistical second
moments of the Reynolds equations were negligible, they would
form a closed system of equations describing the mean motion.
This is typical of the deep ocean, where turbulence events are

episodic and of a low mean level [Ref.6].

15




However, these second moments are generally not
negligible on the upper layer of the ocean, where atmospheric
fluxes can be strong. The upper layer, where the Reynolds
stresses and other turbulent fluxes are important, is known as
the turbulent ocean mixing layer. It is not necessarily equal
to the well mixed upper layer of nearly constant density known
as the remnant mixed layer [Ref.7]. Therefore, in this study,
our closure problem is essentially a boundary layer problem
where mixing processes and air-sea interactions take place.

In order to close the system of equations, we must
first decide to what order we want to go to in our prognostic
equations, and at that point parameterize the statistical
moments based on known variables. Hence parameterizations are
an important tool that rely essentially on observations of
slow varying variables. However, a complete study of these
parameterizations, to see how the observed variables relate to
the fast varying ones and to validate the procedure, will
involve the simultaneous observation at a wide range of
scales. Until recently these type of observations suffered
from a lack of instrumentation capable of providing a complete
picture of the ocean microstructure, similar to those that
exist for micrometeorology observations.

The turbulent closure approximation may be made to
order 0, 1, 2, etc, depending on the highest order moment in

the prognostic equations. Some theories only use a portion of
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the available equations introducing what is known as the half-
order closures.

Two major approaches of turbulent closures are used
that are applicable at any order [Ref.2]. In local closure, we
parameterize unknown quantities at one point by values or
gradients of known quantities at the same point. It assumes
that turbulence has a similar nature to molecular diffusion.
This 1is 1like K-theory, where we assume the stresses are
directly proportional to the mean shear. In the other
approach, known as nonlocal closure, an unknown quantity at a
particular point is parameterized by known quantities at many
points in space. It assumes turbulence as a superposition of
eddies transporting fluid and 1its properties, 1like an
advective process. Examples of nonlocal first order closure
like the Transilient Turbulence Theory and the Spectral
Diffusivity Theory are described in Stull, 1988 ([Ref.2].
Usually higher order 1local closures and nonlocal closures
yield more accurate results, but they do so by adding
computational expense and complexity [Ref.2].

1. Local Zero-Order Closure

In this approach, no prognostic equations are
retained, not even equations for mean quantities. Mean flow,
temperature and salinity are parameterized directly as
functions of space and time. Adimensional variables are

usually defined for certain classes of problems.
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2. Local Half-Order Closure
This closure scheme uses only a subset of the first
moment equations. A variation of this method yield the so
called Bulk Models, where temperature profiles are assumed to
have a certain shape, exploring homogeneity in the mixing
layer and using vertically integrated equations [Ref.8].
3. Local First-Order Closure
In this scheme we retain the prognostic equations
for the mean quantities and we parameterize the statistical
second moments (variances and cross-variances).
For a generic variable niw one possible

parameterization of its turbulent flux will be:

uﬂl /=—Klil.'_
- 0x;

where K, with units m?’s™’is known as eddy viscosity for the
velocity case and as eddy diffusivity coefficient for the
scalar variables. This approximation is called K-Theory and
frequently fails whenever large eddies are present or when
there is not a dominant scale [Ref.2]. A useful interpretation
of these approaches can be made by looking at analogies to the
viscous stress expressions for Newtonian fluids. We can
express the Reynolds stresses in terms of the shear, by
substituting the molecular viscosity coefficient with an eddy

viscosity coefficient, obtaining:
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T reynolds ™ p Xm'a_z

Since turbulent mixing is much more effective than
viscosity, the eddy viscosity should be much greater then the
molecular viscosity [Ref.2]. Also while molecular viscosity is
a property of the fluid, the eddy viscosity is a property of
the flow so that this coefficient should vary as turbulence
level varies. Good parameterizations should rely on the Monin-
Obukhov length scale, on the Richardson number (Ri) and on the
stratification, as we can see in the examples presented in
Stull, 1988 [Ref.2].

Another useful interpretation of this theory is the
so called Mixing-Length Theory derived by Prandtl (1925)
[Ref.2] for neutral conditions. If a turbulent eddy moves a
water parcel upward by a distance z’ and if we assume that
there is no other mixing or changes on "1" within the parcel,

then the perturbation of "1" can be written as:

/e _ AT,
1'=1 surround:ing ‘zpar(:el =-( 79_5 ) 2
similarly
- - __, 00, 4
U =Ugurrounding ™ Yparcer™ ( 32 ) Z
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In order to have upward motion we must have some vertical

velocity w’. If turbulence is such that it can be assumed that

w'= c.u’ for _QH<0
dz

w/=-c.u’ for §g>0
dz

where "c" represents a positive constant. Then we can define
mixing length "M1" as

A vertical eddy flux of the scalar variable "1" will have the
form:

"7ﬁ

wT=-cz7| )

. ac aL
=-M]*? '82 (az)

so that K5=M12!6U‘

Therefore K, should increase as shear increases or turbulence

increases and as the ability of turbulence to cause mixing
increases. Finally

a remark should be made about the
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assumption of 1linear gradients valid only over small
distances, noting that this theory is a small-eddy theory.
4. Turbulence Kinetic Energy (TKE)

TKE measures the intensity of turbulence and is
directly related to the momentum, heat and salt transport
through the mixing layer. Its balance is important in the
physical interpretation of the fluxes that are present on the
Reynolds equations, and in describing the physical processes
that generate and maintain turbulence. The total kinetic

energy per unit mass (KE) is given by:

2

xke=%" Ly
o=1 2

)

wln

using Reynolds averaging we can identify the following

components on the mean KE:

2

'=§:-%ZE. KE of the mean flow

R=2:-327€ KE of turbulence (TKE)
2 -

From the Reynolds equations we can obtain the budget for the

KE of the mean flow on the form [Ref.2]:
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Interesting features in this equation are the fact that
Coriolis has no effect on the TKE, showing that it is only a
redistribution term. Another important feature is the explicit
form of the Reynolds stresses representing the transformation
of energy between the large scales of the mean flow and the
smaller scales of turbulence.

From the definition of potential energy () and by
using the Reynolds averaging procedure we can obtain the

following potential energy budget:

We can see from this budget that the scalar turbulent fluxes
represent the transformation between the mean potential energy
and turbulence.

After identifying the role of the Reynolds stresses
and scalar fluxes it is important to see how they balance,
interact and develop in time. This can be accomplished by
establishing a TKE budget. Using the prognostic equations for
the perturbations and using an analogous procedure to that

wich we used to obtain the prognostic equations for the
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Reynolds stresses and scalar fluxes, we can obtain prognostic
equations for the variances of the perturbed velocity

components that yield the following TKE balance [Ref.2]:

v NFT 5T I T A
ik*-ﬁ;_a_{(_:-gvp—/_malrl_a(u ]k) _éa(u lp)-
ot “dx; p 770X, 0x; p  Ox;

The LHS of the budget represents the storage and advection of
TKE by the mean flow. This latter term is often assumed
negligible by assuming homogeneous turbulence over the mixing
layer.

The first term on the RHS represents the buoyancy
production/consumption. Corresponds to the transformation of
TKE into potential energy and vice versa. Usually it is
positive during the day and negative during the night due to
diurnal solar heating.

The second term represents the mechanical or shear
production and is directly related to the Reynolds stresses,
reflecting any energy sources due to stirring or mixing and
the interaction with the kinetic energy of the mean flow.

The third term represents the eddy transport of TKE,
acting as a source or loss whenever there is a convergence or
divergence.

The fourth term represents the pressure correlation
term, describing how TKE is redistributed by pressure

perturbations. It is this term that is responsible for the




interaction of turbulence with internal or surface gravity
waves. The small scale perturbations can be due either to
waves or turbulence and from linear wave theory (u‘,p’)
represents energy flux or power; therefore we can expect
interaction between these two phenomena to exist by sourcing,
sinking and redistributing TKE.

The last term represents the viscous dissipation rate

or the transformation of TKE into heat.

B. MIXING LAYER ANALYSIS

Mixed layer depth can be defined as the depth at which
density increases by some predetermined amount above the
surface value, while mixing layer depth can be defined as the
depth at which the dissipation rate drops monotonically below
some arbitrary small value [Ref.8]. This definition for mixed
layer is useful for observational purposes, but do not reflect
the depth range of mixing, i.e. the layer that is dynamically
unstable. Static stability is a measure of the capacity for
buoyant convection that is independent on the flow and based
only on density profiles. Dynamic stability measures the
tendency for mean flow to break into smaller scales, even
under statically stable conditions [Ref.6]. While statically
unstable flows become or remain turbulent, statically stable
flows may be laminar or turbulent depending on many factors

that can be interpreted based on the TKE balance.
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We can view the dynamic stability in terms of a balance
between the two different effects of stratification and shear
whenever the inertia is much greater then the viscous effects
(high R,) and the reynolds stresses and scalar fluxes are
significant. While stratification will tend to damp out any
perturbation, the shear of the mean flow will tend to enhance
perturbations by supplying the required energy.

A description of a mechanism for the dynamic generation of
turbulence is summarized by Stull, 1988 ([Ref.2] based on
laboratory experiments. He describes the following sequence of
events:

1. shear across a density interface (laminar flow)

2. a critical value of shear is reached and flow becomes
dynamically unstable, generating gentle waves at the interface

3. waves grow in amplitude and eventually break

4. between waves crests lighter fluid entrains the denser
one and patches of static instability results

5. this static instability combines with continuous
dynamical instability causing each wave to become turbulent

6. turbulence at the interface causes miking of the two
different fluids (entrainment)

7. mixing can reduce shear below critical wvalue and
eliminate dynamical instability

8. if there is no continuous supply of energy to restore
the shear, turbulence will decay and flow will become laminar

again.
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This conceptual model for generation of turbulence seems
consistent, however due to the episodic and 3 dimensional
nature of turbulent events in the ocean, observations of all
the processes are very difficult to perform. Also the lack of
microstructure instrumentation able to directly observe the
velocity field is a major limitation on our understanding of
these processes.

Usually we rely on nondimensional parameters to compare
these factors, like the Reynolds number and the Richardson
numbers. The Reynolds number compares the inertial and the
viscous terms in the equations of motion, evaluated when the
Reynolds stresses are more important then viscous stresses.
This happens only when the non-linear effects are significant.
For turbulence to exist, it is therefore necessary to have a
high Reynolds number, but this by itself it is not a
sufficient condition, because it makes no requirements about
the supply of energy necessary for turbulence to persist.

The Richardson number compares the buoyancy production to
the mechanical production terms of the TKE balance, and
evaluates when the shear will be able to overcome
stratification to allow dynamical instabilities to exist
[Ref.2]. Usually we have high Reynolds numbers in the ocean:
therefore, the Richardson number is the critical criteria to
determine if the flow is turbulent or not.

The flux Richardson number is defined as [Ref.2]:

26




For R, less then zero we have static instability (hence
turbulent) flows. R, equal to zero corresponds to neutral
flows. The critical conditions below which flows are turbulent
is R, = 1.

Using K-theory, we can parameterize the fluxes based on

the mean shear and obtain the gradient Richardson number

[Ref.2]:
g9
R = p aZ
i al,., 9V,
[(52> (az)}

The critical value below which laminar flows become turbulent
is accepted as 0.25, while the critical value for turbulent
flows to become laminar is 1 [Ref.2]. This hysteresis is due
to the fact that, for turbulence to start, we need the
instability and a trigger mechanism; while instabilities will
start at R, near 1, the trigger mechanism will only occur near

R, = 0.25 [Ref.2].
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Because usually we are limited to discrete observations at
a certain depth, the bulk Richardson number is defined as
[Ref.2]:

gApAz
P LATF~ATF]

L':

This discretization will change the critical values but the
same critical value of 0.25 is generally used.

From this discussion we can conclude that direct
microstructure observations are very important on the
characterization of the mixing layer. Mixing processes have a
special importance in coastal processes, contrclling the rate
of cooling or warming of the surface waters and the dispersion
or diffusion of other scalar quantities. The role of vertical
turbulent mixing on the coastal wupwelling systems is
determinant in the characterization and understanding of these
type of phenomena, as we can see in the paper by Brink (1980)
[Ref.9]. Therefore mixing layer observations, are need in
order to study: mixing layer deepening or entrainment; and air
sea interactions, as we can see in the papers by Dewey et.al.
and Moum et.al. [Ref.7 and 10], characterizing coastal eddies
and the enhancement of ocean fronts by turbulent mixing, and
in the paper by Uwe et.al., analyzing upwelling relaxations

during the CODE experiment [Ref.11].
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C. SPECTRAL DESCRIPTION OF TURBULENCE

The spectrum, defined .s the Fourier transform of the
autocorrelation function, gives a picture of how variance or
energy is distributed over frequency or wavelength. An eddy of
a certain wavenumber "k" can be defined as a linear
superposition of the disturbances containing energy in the
vicinity of "k'" [Ref.1]. These eddies will be exposed to the
strain-rate field of larger ones, and nonlinear interactions
and consequent energy transfers are expected. As a result, the
eddies will loose their identity within one or two periods or
wave' :ngths.

The Fourier Transform is a decomposition into wave
components of different wavelengths associated with the
fourier coefficients. An eddy, however, has many fourier
coefficients changing in time. Therefore more sophisticated
transforms and a nonstationary approach should be used if we
want to decompose the velocity field into individual eddies.

When analyzing the wavenumber spectra, i.e. how energy or
variance 1is distributed in scale, we can expect to find
contributions down to the sub~centimeter scales of
dissipation, after which the mechanical energy is transformed
into heat by viscous processes, and the energy drcps down to
zero [Ref.l1]. If our data is not sampled kelow these scales
the spectra will be aliaised. Therefore to understand both
momentum fluxes and dissipation we must measure a wide range

of scales, including sub-centimeter dissipation scales.
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a. Velocity Spectrum

Large eddies are affected by the mean flow, such
that they have a s.eady anisotropy, whereas no permanent
anisotropy is induced at an appropriately small scales. As the
eddy size becomes smaller, we can expect that the strain-rate
field becomes isotropic in a mean sense. This concept is
called local isotropy and it can not exist if the Reynolds
number is not large enough (at least 100 [Ref.1]). When local
isotropy prevails, the time scales are much shorter then those
of the mean flow, so that small eddies respond quickly to
changing conditions. This area of the spectrum is called the
equilibrium range and includes all high wavenumbers. In this
area of the spectra the scales are too small to receive energy
directly from the mean flow. Because energy is finally
dissipated, the amount of energy arriving to this scale should
correspond to the total energy being dissipated by viscosity.
The smallest scale that can be reached on this range is called

the Kolmogorov microscale defined as [Ref.1l]:

foe

[s

=_v_3_‘
M (e)

where v is the kinematic viscosity coefficient and € is the

dissipation rate given by [Ref.1]:
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€ =2.v}k3.s.dk
¢}

and "S" is the observed velocity spectrum.

For small wavenumbers, viscosity is not important.
The important parameters to be considered are those relating
transfer of energy from the mean flow to turbulence, and the
energy transfer to the smaller scales. The area of the
spectrum corresponding to the superposition of there scales
with the Kolmogorov spectrum is often called the Inertial
Subrange and exists only for large Reynolds numbers (bigger
then 10°). At this range, no energy is added or dissipated, so
that the energy flux across each wavenumber is constant. It is
characterized by a slope of -5/3 on a loglog plot and is
scaled by dissipation. Therefore, from observed spectral
estimates 1in this range, we can estimate the total
dissipation.

Spectral estimates will depend only on the
wavenumber and on the total dissipation. Using similarity

theory [Ref.2], we can expect the spectral estimate to be:

S(k) =0 ,.€’> k™3

(8] =m3s -2
where [e] =m<s 3
[k} =m™?

31




where a, is known as the Kolmogorov constant with ranges from
1.53 to 1.68 [Ref.2, pp.390].

For time spectra of velocity, two cases should be
considered. The Lagrangian time spectra related to the
temporal evolution seen by an observer moving with the
turbulent velocity fluctuations and the Eulerian spectrum
related to the evolution at a fixed point where the mean
velocity is zero. Their shape is usually different due to
advection, but we <can still define the inertial and
equilibrium sub-ranges in a similar way.

b. Temperature Spectrum

The temperature spectrum is defined in a similar
way to the velocity spectrum, and shows the same nonstationary
character, with energy being added, dissipated and transferred
between different scales. If the Reynolds number is high
enough, there 1is also an equilibrium range, an inertial
subrange and an inertial-convective subrange where the
temperature fluctuations are simply convected and where the
spectral transfer of temperature variance is constant. 1In
certain cases when thermal diffusivity becomes important
within the inertial sub~-range and where viscosity is not yet
important, there is a Inertial-Diffusive subrange; this occurs
in fluids with small Prandtl number (ratio of kinematic
viscosity to heat conductivity). For large Prandtl number

fluids, like water, viscous effects occur first and then
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thermal diffusive effects; therefore we can also define
Viscous=-Convective and Viscous-Diffusive subranges.
c. Batchelor Spectrum

The Batchelor spectrum corresponds to a theorical
shape of the wavenumber spectrum of the temperature gradient
fluctuations for homogeneous, locally isotropic turbulence in
a homogeneous fluid with a large Prandtl number [Ref.12 and
1]. It is defined by the temperature variance dissipation
rate, molecular diffusivity and by the Batchelor wavenumber

defined as:

PN,

k., = (evD™®)

This wavenumber as been identified as the cutoff wavenumber
[Ref.12].

The effect of stratification was studied by Dillon
and Caldwell, 1980 [Ref.12], who proposed that its effect
should be more noticeable in the 1low viscous-convective
wavenumber ranges when turbulence 1is weak compared with
stratification. One of the most important applications of this
theorical spectrum is the estimation of the kinetic energy
dissipation rates from the spectral cutoff wavenumber, as we

can find in the work of Dillon and Caldwell, 1980 [Ref.12].
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ITII. DOPPLER SPECTRUM ESTIMATION

The bistatic velocity estimation that will be discussed in
the next chapter, requires a fast but accurate doppler
spectral estimator. This estimator must rely on a small number
of data points and be reliable even for weak signals submerged
in strong noise. Several spectral estimators will be analyzed
and Monte-Carlo simulations performed in order to study their
performances.

Spectral estimation corresponds to the estimation of a
function that is, by definition, the Fourier Transform of the
autocorrelation function. The performance of a spectral
estimator should be based on how well we are estimating this
function over a continuous range of frequencies [Ref.13].

The use of Spectral Estimators to detect the presence of
signals superimposed in white random noise demands a trade off
between detectability and confidence of the detected values.
Usually confidence is obtained by dividing the whole data set
into smaller subsets, estimating the spectrum of each subset
and then averaging the ensemble of estimates. If we consider
that each spectral estimate corresponds to 2 Fourier
coefficients and therefore has 2 degrees of freedom, the
ensemble average based on N subsets will increase the number
of degrees of freedom to 2N, improving the viability of the

overall estimate. However the spectrum based on these subsets
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will have less resolution and the spectral estimate will be a
smoothed but more accurate version of the unsegmented one
[Ref.14].

There are applications where we need only the behavior of
the spectral estimator at a specific frequency or in a
specific region, such as the frequency estimation of a
sinusoidal signal superimposed in white noise. In this case,
the smoothed version of the spectrum will be a poor estimator
of the sinusoidal frequency as we are seeking a parameter
estimation (and not spectral estimation), that involves
different statistics [Ref.13].

The frequency estimator based on a finite number of data
points represents an estimate of the true fregquency that we
would have if we had an infinite number of points. Therefore
we need to characterize, in statistical terms, the behavior of
these estimates. In this work, the Bias and Variance of the
frequency estimates will be the statistics that we will use to
compare the performance of several estimators.

Because determination of these statistics for a wide
variety of algorithms is not analytically treatable, Monte
Carlo simulations are used to obtain estimates of these
statistics in terms of the Signal to Noise Ratio (SNR) of the
input signal and of the record length used in the estimator.
The results of this simulation will be used to determine the
appropriate doppler frequency estimator, for the bistatic data

stream.
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A. ESTIMATION OF A SINGLE COMPONENT COMPLEX SIGNAL
SUPERIMPOSED ON GAUSSIAN WHITE NOISE
1. Peak FFT
This approach can be interpreted as an estimation of
the parameters of a single component sinusoidal signal of
frequency f, superimposed in gaussian white noise, of the form

[Ref.15]:

x{n)=A EXP(j2Ifn+®) +z(n)

where z(n) corresponds to complex gaussian white noise and
"A" "p" and "f" (amplitude ,phase and frequency), assumed
constant but unknown, are the parameters to be estimated.

The probability distribution function (PDF) of x(n)
corresponds to a shift in the multivariate gaussian
distribution function associated with the white noise, and has
the form:

1

—— FEXP[-(Xx-8)"R = (Xx-3)]
II*der (R,.,)

plx-s) =

where "R,," 1is the noise correlation matrix and "g" the
sinusoidal signal. Since we are assuming white noise, "R,,"
will be a diagonal matrix. The sinusoidal signal can be

represented by the vector:

S=A EXP(7®) [1 ExP(72If) ExF(j2If2) ... EXP(F2Of(N-1)]7 =
=A EXP(j®) e
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where e is a vector containing the values of the complex
exponential of frequency f, at the several values of n.

To obtain 2 maximum likelihood estimator (MLE), we
need to find the maximimum of the PDF, which will be

equivalent to minimize the hermitian form:

S = (x-8)F(x-8) = (x~A EXP(7®)e)¥(x-A EXP(id)e)

First, if we minimize in terms of the complex amplitude

A=A EXP(jp), we obtain [Ref.15]:

., . N;
2 = =¥ x(n) EXP(-jzlfr)
e’e A'::=:

~

A=

which corresponds exactly to the discrete fourier transform of
the data evaluated at f (assumed known in this case). Now if
we substitute this expression into the hermitian form, we

obtain:

to minimize this expression in terms of the frequency we need

to maximize:
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Therefore the MLE of the frequency will be the frequency where
the square of the absolute value of the discrete fourier
transform (periodogram) attains its maximum.

In this work, we used a 128 point FFT algorithm to
estimate the periodogram where the peak frequency will
correspond to the MLE estimator.

This procedure will limit our resolution to 7.8x107°
of the sampling frequency, so an interpolating procedure
should be used in order to increase the estimator resolution.
Nevertheless this estimator suffers from the fact that, for a
small number of points, discretization errors are highly
emphasized and its performance degradated if one wants to
obtain faster estimations.

2. Pulse Pair

Traditionally, the Pulse Pair algorithm is used to
estimate the mean frequency of a time series with a single
frequency component signal, which corresponds to the frequency
of maximum energy [Ref.16]. It is based on a very simple and
fast algorithm that has given accurate results even for data
sets with a small number of points. However, white noise
contamination will induce a deviation from the peak value

toward the zero frequency as the SNR decreases.
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The algorithm uses the direct evaluation of the phase
from the autocorrelation function estimate. In this project
only the phase of the first lag autocorrelation function was
used and computed using a classical approach based on
calculating covariances of two consecutive points averaged
over the sequence length. Other valid correlation estimate
methods could be used such as the Modified Covariance Method
[Ref.15], which has the property of giving estimates without
running out of the data set. It will be shown later, that this
method is equivalent to an eigenvalue decomposition of an
order 2 correlation matrix (MUSIC -order 2 fast algorithm).

Higher 1lag autocorrelation estimates can be used
either to improve the estimates when the frequencies are much
smaller then the sampling frequency, or to obtain more
credible estimates. However this procedure may create problems
with the uniqueness of the estimate, and will be limited by a
lag, corresponding to the Nyquist rate of the highest
frequency present on the detected signal, after which aliaised
frequency estimates occur [Ref.l6].

3. Zero Cross

This method consists of the evaluation of a dominant
frequency by the number of zero crosses or the number of sign
changes on a zero mean time series. When working with complex
signals, we must start by defining criteria for a zero cross.

A point in the real domain corresponds to a line parallel to
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the imaginary axis in the complex plane. Then using this
generalization, we can define a zero cross (real) as the
change of sign on the real components of the time series. On
other hand, a point in the imaginary domain is a line parallel
to the real axis in the complex domain; then a zero cross
(imaginary) corresponds to a change in sign in the imaginary
components of the time series. Therefore, we can define a
complex zero cross as a change in sign either in the real or
imaginary part between consecutive points; therefore the zero
crosses can either be determined in the real or imaginary
parts. To get a better estimate we can also average both
estimates.

By itself, this simple method is highly sensitive to
high frequency noise contaminations that will increase the
number of zero crosses. This effect can be partially
compensated by choosing a hysteresis after each cross in order
to minimize the high frequency contaminations [Ref.17]. In
order to apply this technique, we must know the maximum
possible frequency that we can have in the signal after which
no frequency will be detectable.

Another approach developed by B.Kendem [Ref.18]
suggests the incorporation of low-pass filters and periodogram
analysis to obtain more robust estimates. This procedure was
not developed in the present analysis, though some interesting

results may be obtained.
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4. AR Modeling (Burg’s method)

AutoRegressive (AR) modeling is one general class of
parametric models that we can use to study time series when
some previous information exists [Ref.15]. It is based on the
assumption that the value of the record at a particular time
is determined by a linear combination of P past values, where
P corresponds to the model order, superimposed in white noise

(uin]), in the form:

F
x[nl=-Y alklx(n-k}+uln!
k1

The model coefficients are usually determined based on the
autocorrelation function of the series using any of the
estimators (usually the modified covariance method gives the
best results) by solving the YULE-WALKER equations.

Another method to compute the model coefficients is
based on an extrapolation of the autocorrelation function that
has maximum entropy, so that the effects of truncation
(spectral smearing) are minimized [Ref.15]. The estimated
coefficients are then computed based on this assumption
directly using Lagrange Multipliers. This method is known as
BURG’S technique and is the one that was used in the present
study [Ref.15].

The spectral estimator will correspond to the z-

transform of x[n] evaluated on the unit circle, or:
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where f, is the sampling frequency, H(z) the z-transform of
the signal x[n], A(f) the denominator polinomial of H(z) after
the transformation z=EXP(-j.2.7.f), a the model coefficients
in vector form, and p. the noise power.

The spectral estimators will have singular points for
a discrete type spectra (pure sinusoids) corresponding to
zeros on the denominator of H(z); therefore, in our case of
only one pure complex sinusoid in white noise, we can just
look for the frequency that will be closer to a singularity.
This can be accomplished by 1looking for the zeros of the
denominator of the general spectral estimation expression and
choosing the one that is nearest to the unit circle. In this
form, the frequency estimation will be totally determined by
the AR model coefficients. This is the method we used for the
AR dominant frequency estimation. Because of its complexity,
we should expect this method to be computationally intensive,
and the results will also depend on tlie root finder that we
use.

5. Minimum Variance Method

This method introduced by Capon [Ref. 13] is also

called the Maximum Likelihood Method. It will describe the

distribution of variance over frequency, but the area under




this estimate will not corre: .ond to the total variance
[Ref.13]. Therefore it is not a true spectral estimator, but
is particularly suitable for single frequency estimation. The
algorithm computes the spectral estimates in accordance to the
output power of a set of narrow band finite irpulse response
(FIR) filters whose bandwidth or resolution are dependent on
the frequency in an adaptative manner (in comparison with the
periodogram that has a fixed resolution). The filter
coeificients are computed so that the output variance is
minimum and its gain is 1 (no distortion). Ir. fact we do not
need to compute all these coefficients explicitly because the
spectral estimators can be derived directly from the inverse

autocorrelation matrix in the form [Ref.13]:

1
e (f)E e(f)

1
P, (f)=—=
M ) fs

where R corresponds to the Toeplitz autocorrelation matrix,
that can be estimated in several forms. In the present work
the modified covariance method was used.

It can be shown that it gives spectral estimates that,
for a given order P, correspond to the average of the spectral
estimates of the AR models of order 1 to P [Ref.13], so its
performance should result in a smaller variance. Its
resolution is between that obtained by the classical spe .tral

estimators and by an equivalent AR model. Therefore, in order
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to obtain the single frequency estimate, we Jjust need to
compute the maximum of the above expression. However, due to
its complexity and dependence on the resolution used in the
maximum value determination, we should expect this algorithm
to be even more computational intensive than an equivalent
order AR method.
6. Multiple Signal Classification (MUSIC Algorithm)

This algorithm is one of several that analyze the
column space of the autocorrelation matrix into a signal
subspace and an orthogonal noise subspace using a Singular
Value Decomposition (SVD) [Ref.l15]. This is accomplished by
separating the matrix into its eigenvectors so that the
eigenvectors with the N largest eigenvalues, span the signal
subspace and the others the noise subspace, where N 1is the
number of complex components of the signal.

This estimate, like the minimum variance method, is
not a true spectral estimator because it does not preserve the
total variance, however it will work as a discrete frequency

parameter estimator. Its general expression is [Ref.15]:

1

P
ef"(H)H (Y vxoeln

k=M+1

Pypsr-(£) =
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where M is the number of complex sinusoids in the signal and
v’ are the eigenvectors that span the noise subspace
(associated with the smaller eigenvalues).

The discrete signal components will be orthogonal to
any linear combination of the eigenvectors that form the noise
base, and so we could expect singularities at the signal
frequencies. In reality, we will not have pure singularities
but the spectral estimates will peak. For our purposé of
estimating a single frequency component, the procedure used
was based on finding the roots of the averaged noise space
eigenvectors (taken as polynomials of the complex
exponential), whose phases correspond to the peak frequencies.
The eigenvector associated with the root closest to the unit
circle is the single frequency estimator.

It can be proved that when we use an order 2 matrix in
a single complex frequency component signal, the frequency
estimator is equivalent to the Pulse Pair algorithm, and so
the frequency estimate can be obtained directly from the
autocorrelation function.

The autocorrelation function for a éingle complex
component signal superimposed in white noise will have the

form:

Ty

k) =P.exp (jzllf?k) +p B (k)
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and the corresponding 2™ order autocorrelation matrix will be:

The eigenvector associated with the smaller eigenvalue (-p,.)

will be:

Therefore, the determination of the frequency estimate in this
case will correspond to the determination of the phase
associated with the first 1lag autocorrelation function
estimate, as in the Pulse Pair estimator.

This analytical solution of the 2™ order eigenvalue
problem was implemented for performance comparisons, and a
singular value decomposition was used for higher orders. The
Modified Covariance Method was used to estimate the

autocorrelation matrix at any order.

B. MONTE-CARLO SIMULATION
To evaluate the performance of these spectral estimators
for the estimation of the frequency of a complex sinusoid

superimposed in complex independent gaussian white noise, a
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MONTE CARLO simulation was built within MATLAB environment.

This simulation is based on 53 independent trials where the

BIAS, VARIANCE and a TIME INDEX are evaluated at each step.
The model has the input variables:

1. Signal to Noise Ratio (scalar or vector)

2. Number of Points (scalar or vector)

3. Signal Frequency (scalar or vector)

4. Type of Spectral Estimator
The model output variables are:

1. Bias

2. Variance

3. Time Index - proportional to the computation time

and are stored at each step.

The algorithm of the simulation program is as follows:

1.SELECT TECHNIQUE

1.Peak FFT

2.Pulse Pair

3.2ero Cross

4 .Modified Prony’s Technique

5.AR Model (burg algorithm)

6.MV (capon’s method)

7 .Music (eigenvalue decompositionnh

2.SELECT PARAMETERS (increments.initial and final values)

1.Number points <-> SNR

2.Frequency <-> SNR
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3.Frequency <-> Number Points

3.RUN MODEL

1. Initialize variables
trials=50
test frequency=20 Hz
sampling frequency=100 Hz
2. Main loop
generate noise
generate new frequency
generate signal
estimate frequency
compute estimate bias and variance

compute processing time

The complex independent gaussian white noise is generated
by a function that uses different seeds for the real and
imaginary parts at each step, in order to generate independent
complex gaussian noise. Each noise component is then averaged
from 5 different trials to obtain a pseudo gaussian noise.
This number of 5 trials represents a compromise in the
computation speed. The generated noise is normalized to
guarantee a variance of 1.

Model runs using a 20 Hz signal, a sampling frequency of
100 Hz, over a -20 to 10 SNR and 16 to 128 points time series,
were made for the following spectral estimators:

1. Peak FFT
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2. Pulse Pair
3. Zero Cross
4. AR Model order 4
5. MUSIC order 4
6. MUSIC order 3
7. MUSIC order 2
8. MUSIC order 2/Pulse Pair (fast algorithm)
The selected plots of the bias and the logarithms of standard
deviation are shown on the Figures 3.B.1-6.
1. Discussion of Some Results

The performance of an estimate can be assumed good
when its bias is less then 1 Hz and the log,, of the standard
deviation is less then 0. Using this criteria the following
tables show the SNR at which the bias of the several
estimators is equal to 1 Hz, and the log standard deviation
equal to 0:

TABLE 1 - SNR at BIAS = _1 Hz

Estimator 20 Points 40 Points 60 Points 80 Points
l—---—-——--——
|

e A e e e e
Peak -4 -5 -7 -8
FFT
|
Pulse -3 -8 -8 -8
Pair
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Points

Estimator I

Zero

Cross

40 Points

60 Points

80 Points

AR Model -2

(order 4)

MUSIC 2

(order 4)

MUSIC -5

{order 2)

TABLE 2 - SNR at log,,VARIANCE = Q

Estimator l 20 Points

Peak

FFT

40 Points

60 Points

Pulse

Pair

Zero

Cross

AR Model

(order 4)
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Estimator l 20 Points 40 Points 60 Points 80 Points

MUSIC 10 5 2 2

(order 4)

MUSIC 5 3 2 0

{order 2)

2. Conclusions

For all the estimators, after a sequence length (NP)
between 20 and 64, the estimator variance becomes dependent
only on the SNR. As a general rule except, for AR modeling,
the variance is more restrictive then the bias. This means
that we can get some improvement in the performance of this
estimators if we take averaged measurements of the estimated
frequency. The estimator that seems to work better for low SNR
is the PEAK FFT followed by AR modeling (order 4), but AR
modeling has poor processing time indexes (too slow). The
MUSIC estimator is very sensitive to the noise contamination
(SNR). The equivalent PULSE PAIR method and the MUSIC (order
2 fast algorithm) do not show any significant improvement by
changing the AUTOCORRELATION estimators, at least between the
two that were used in this program (biased and the modified
covariance estimators [Ref.15]).

The fastest algorithm is the MUSIC (order 2 fast

algorithm) at all sequences lengths followed by the PULSE PAIR
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and ZERO CROSS for small sequences and the PEAK FFT for large
sequences.

The lowest SNR for which we can get unbiased estimates
with a good variance is -10 when using a PEAK FFT with 128
point sequences. Unfortunately this performance indicator does
not show the discretezation error, which becomes
overwhelmingly significant for small FFT lengths. We can try
to reduce this error by using interpolation schemes, however
this procedure will make this algorithm slower for a small
number of points and is very susceptible to low SNR. For SNR
between -5 and 0 we should use sequences of at least 32 to 64
data points (PEAK FFT also), but these estimates will have
severe discretization errors. For SNR between 0 and 5 we can
use either the PEAK FFT or the PULSE PAIR/MUSIC 2 with 128 to
32 sequence length. For SNR dgreater then 5 the best
performance is given by the MUSIC (order 2 fast algorithm) or
PULSE PAIR. If we want to emphasize the speed of the
estimators, the best results are the ones given by the PULSE
PAIR/MUSIC 2, requiring high SNR.

Because the CDV package bistatic doppler frequency
estimation is based on 32 points records, and the algorithms
run in real time using C compiled code in a DSP, the most
suitable algorithms selected from these simulations are the
PEAK FFT for poor SNR, and the PULSE PAIR/MUSIC 2 algorithms
for higher SNR. When considering discretization noise, the

first choice for a spectral estimator to be used in the CDV
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real time processing will be the PULSE PAIR estimator, because

of its performance, simplicity and velocity.
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IV. THE CDV MICROSTRUCTURE PACKAGE

A. RECENT METHODS FOR TURBULENCE OBSERVATIONS
1. Rapid Sampling Vertical Profiler (RSVP)

The RSVP was developed by Caldwell, Dillon and Moum in
1987 [Ref.19] for sampling near microstructure parameters from
a moving vessel permitting the study of the horizontal
variability of upper layer profiles. The instrument makes
near-microscale measurements (3 cm resolution) of temperature,
salinity and turbulence dissipation down to 00 m when
deployed from a ship moving up to 6 Knots.

The profiler consists of a small retrievable probe at
the end of a cable that is also a data link. Damping flaps are
used to ensure uniform vertical velocity and orientation. The
airfoil shear probe, used to estimate the TKE dissipation
rate, is very sensitive to vibrational noise of the profiler,
which may dominate the signal in many situations. The process
by which it senses shear is based on the deflection of a piezo
ceramic beam in a rubber jacket by cross-stream velocity. By
careful instrument design, virtually all current measurements
of ocean turbulent velocity have been made with this type of
sensor.

Moum et.al. [Ref.10] performed upper ocean

observations with this instrument where they were able to
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characterize the fine structure of transition zone coastal
eddys, and Dewey et.al. 1990 [Ref.7] used this type of
measurements to study the enhancement of ocean fronts by
turbulent mixing. The interesting results obtained in both
experiments show the importance and applicability of the RSVP
in upper ocean observations.
2. Pulse to Pulse Coherent Sonar

A pulse to pulse coherent sonar was developed by
Lohrmann et.al. 1990 [Ref.20], called the High Resolution
Current Profiler. This instrument uses four 307 KHz
transceivers, mounted 30° off the vertical in 90° azimuthal
intervals. Fifty range cells, covering a profiling distance of
10 meters, measure radial current components along the
transceiver beams. These measurements do not give the true
velocity vector, but assuming a stationary and homogeneous
turbulent field, allows an estimation of the Reynolds stresses
and turbulent kinetic energy by separating the mean and
fluctuating parts of the radial speeds. In this way, this
instrument remotely senses the turbulent stresses without
inducing any flow distortions and provides moderate vertical
resolution.

3. Bistatic Acoustic Doppler Profiler

This instrument, developed by T.P. Stanton (1990),

measures the explicit velocity vectors at a very high temporal

and spatial sampling rate along one direction. The system
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consists of four, 300 KHz fan-beam receiver transducers,
radially separated from a central narrow beam-width
transmitter transducer, which rapidly emit short duration
acoustic pulses. Range gated doppler shifts are evaluated at
each receiver using dual interpulse period, coherent doppler
estimation methods.

Simultaneous receptions at the four transducers
provide an overdetermined estimate of the three velocity
components at range bins along the ensonified volume,
typically every 10 cm for 10 m ranges. This system allows
concurrent measurement of reynolds stress components and fine-
scale shear out to ranges of 30 m.

Velocity ambiguities from the coherent velocity
estimation limit the unambiguous velocity range and profiling
range. Unfortunately, the large frame for mounting the

acoustic components restricts applications of the system.

B. SPECIFICATIONS OF THE CDV SYSTEM

The CDV Microstructure Package is a system developed by
T.P. Stanton (1991) to measure ocean turbulence variables at
a sub-centimeter resolution. It has 3 convergent acoustic
transceiver beams operating at 5.296 MHz in a backscatter
coherent mode, using both bistatic (0.6 cm focal cube) and
monostatic operating modes. In the bistatic mode, one
transducer is transmitting, while the other two are receiving

the scattered energy from a focal volume. In the monostatic
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mode the same transducer that transmits the signal receives
the backscattered energy at range bins along the acoustic
beam.

The acoustic measurements provide the velocity vector,
shear and kinetic energy estimation at a 44 Hz rate, while
simultaneous microstructure measurements of temperature,
conductivity, pressure, shear and the 3 components of the
instrument acceleration are made.

This package operates in a profiling mode at approximately
25 cm/s descending or ascending rate, or fixed to a tripod
facing down for bottom layer observations, or facing up for
shallow water, near surface, observations. The package has
also been attached to an ROV for semi-lagrangian upper ocean
turbulence measurements.

The digital data is transmitted to the surface by a 1.4
Mbaud fiber optic data stream that is stored on a PCM/VCR
system. The data stream is also passed to an AT&T digital
signal processor (DSP) in a 386 based HP VECTRA for real time
processing and graphical monitoring of selected channels. This
pre-processed data is then stored on optical disks for further
processing. A summary of the profiler package technical

specifications follows:
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TABLE 3 - CDV CHARACTERISTICS

LENGTH

DIAMETER

WEIGHT

7 Kg (in air)

NELS

2

FREQUENCY POWER SAMPLING OUTPUT

FREQUENCY FREQUENCY

ﬁ=================================================L=============

5.296 MHz 5 Watt peak, in 11.1 KHz (after 44 Hz
a 2° beamwidth demodulation)
ABLE 5 - ANALOG CHANNELS
SAMPLING TEMPERATURE CONDUCTIVITY OoUTPUT
FREQUENCY PRE- EMPHASIS PRE~-EMPHASIS FREQUENCY
1.4 KHZ 0.339 Hz 0.100 Hz 44 Hz
5.6 KHz (shear)

C. SIGNAL PROCESSING OVERVIEW

The acoustic modes are controlled by a programmable
sequencer that rotates the transmitting and receiving modes of
the three transceivers, such that 3 monostatic and 3 bistatic
modes have been selected every 20 ms. This acoustic data is

received, complex demodulated to baseband and the complex (in
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phase and quadrature) channels sampled at 11.1 KHz, for the
bistatic data and 88.2 KHz for each monostatic channel.

The temperature and conductivity variables are pre-
emphasized, in order to obtain an improved SNR at small scale
and directly estimate gradient quantities, and sampled at 1.4
KHz. The 3 acceleration channels and pressure are sampled at
the same rate, while the shear pre-emphasized data is sampled
at 5.6 KHz.

The data stream comprises a set of 8 word records, such
that the first two are used by the non-acoustic channels and
the other 3 pairs correspond to the complex demodulated
acoustic data. These 8 word records are contained in a
sequence frame of 2051 words (corresponding to 22.7 ms of
data) which are passed by DMA to the DSP for processing and to
a PCM/VCR system for storage.

Once the DSP acquires the data, the data stream is
interpreted and the real time processing is performed.

Further processing, such as:

1 - Water salinity computation

2 - Water density computation

3 - Velocity vector (u, v, w components) estimation
4 - Spectral analysis of several variables

5 - Reynolds stresses estimation

6 - Scalar fluxes estimation

7 - Dissipation estimation

8 - T.K.E. estimation
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is performed by external programs accessing this preprocessed
data on the optical disks. The overall flow graph is shown in

the figure 4.C.1.

D. ACOUSTIC CHANNELS - VELOCITY ESTIMATIONS

The velocity component estimation in the acoustic bistatic
mode is based on the mean doppler shift of the backscattered
acoustic energy resulting from the relative velocity of
scatterers present in the focal volume. The real-time pre-
processed acoustic data stored on the optical drive comprise
the mean doppler shifts for the 6 different acoustic paths
between pairs of transmitters and receivers. In the bistatic
mode, the single transmitter/two receiver configuration is
sequenced around the three transducers. In order to obtain the
velocity components from this spooled data, the following
steps are performed:
1 =~ <Clear data of large spikes using a reciprocal
channel comparison and a 4" order linear predictor, based on
the previous 20 point autocorrelation function estimate.
2 - Compute velocities from the doppler frequencies.
3 - Transform estimates to an orthogonal frame of reference
fixed to the instrument.
4 - Rotate estimate to an absolute vertical reference frame.

1. Doppler Velocities Estimation

For two generic transducers, where transducer 1 is

transmitting and transducer 2 is receiving, see figure
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4.D.1.1, and assuming that the equipment is fixed to the
bottom, we can derive the following doppler relationships
[Ref.21]. If a pulse is transmitted at time t=0, it will
arrive at BS at time t=t,, that for a sound velocity "c" will

be given by:

1

C-Vag

C.ty=1+vgg . t,=t,=

Now, if a second pulse is transmitted at time t,, it will

arrive at BS at time t, and

TRUE VELOUTY

8BS -~ SCAITERING WLUNE
T4 — TRANSDUCER #1
T2 — TRANSDUCER#2

Figure 4.D.1.1 - Scheme of a Bistatic 2 transducer system.
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Assuning that during the interval (0,t,) we are transmitting
at a frequency f,,, there will be f,, .t, wave fronts arriving at
BS, during the intervai t,-t,. Therefore, the frequency

detected at BS will be:

71
Cc-V
Tpe (E3=ty) =f . ;= ps™ CBS Lex

This frequency corresponds to the frequency of the scattered
signal at BS that will be send towards T2. Using the same
procedure we arrive at the following expression for the

frequency at T2:

~me
d <

If we suppose that the velocity at BS has one component V,,
see figure 4.D.1.2, then v, ™ = -vg° and f,, = f,,. Therefore
the only velocity component producing a doppler shift will be
along the direction defined by the axis bisection of the two
beams i.e. V,. This component will have equal projections

along the two beams, so that:

Vas =Vpe=V14=V,5ind

Therefore
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T4

Figure 4.D.1.2 - Velocity projections scheme for

transducers bistatic system.

L"'“ =, _{'Y.-.[_T_i = ___..é_{_’_a_: :_1. Ial _‘_A._'t;‘_?.
f.x’fj'; uf»‘('Afllt 2 f?\'
and
b . A
Po2ein® " f,,

a 2

Because of the symmetric geometry of this system, this

expression will also be true for the case when

is

transmitting and Tl receiving. This fact creates redundancy in
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x
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Figure 4.D.2.1 - CDV Package, Orthogonal Reference Frame
fixed to the instrument,

the obkserved doppler frequency, which provides increased
confidence of the estimates by averaging, and allows the
detection of single spurious wild points. Therefore -“he six
acoustic transceiver modes, will measure three slanted
velocity projections along the axes bisecting the acoustic
beams.

If the instrument was in motion we would have to add
the instrument velocity components along these axis, in order
to get absolute values. These operations are implemented by

programs external to the real time processing.
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2. Velocities on an Orthogonal Reference Frame
The Doppler velocity components must be transformed
into an orthogonal frame before the Reynolds stresses or the
scalar fluxes can be estimated. We can define the instrumental

orthogonal reference frame as in figure 4.D.2.1.

The scatterers velocity will be defined as:

V. =ud+v i-wik

and the observed velocities will be:

’ ,1:] cosy 0 siny -
}‘/\' ™ u:
Lo cosycose cosycos(a-—) siny 1
RO E x| Vy
. |
P12 T 2 Wl
KNJ cosycosa —cosycos(a—aﬁ siny I
i.e.
YV =Txy.
IS N

Therefore, this system may be solved in terms of the unknowns
u, v and w by inverting the non-singular matrix "T".
The next step is to rotate this velocity in the x-axis

and y-axis in order to obtain a vertical z-axis. This can be
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accomplished in several ways depending on each particular
deployment. For the case when we have the system fixed to a
tripod, we can look for the rotations that minimize the mean
vertical velocity, or just measure the platform orientation

using the 3 axis accelerometer as tiltmeters.

E. NON-ACOUSTIC DATA

The non-~acoustic channels on the CDV package are: 3
component acceleration, pressure, temperature,conductivity and
shear. The real time processing for these channels was coded
in C language and compiled on the DSP together with the
Assembler routines that access the CDV data stream in memory.
This DSP program is controlled by another C routine running on
the Host computer, that interacts with the user, reads the
proper setup files, receives the data from the DSP, plots
selected variables of the pre-processed data and sends the
output to an optical mass storage unit. The details on the
processing of each particular channel are described next.

TEMPERATURE AND CONDUCTIVITY

The temperature variable (T) is measured using a high
frequency response FP 07 thermistor, and conductivity (C)
using a 2 electrode AC conductivity probe. The analog
temperature and conductivity are pre-emphasized at 20 dB per
decade for frequencies greater than 0.339 Hz and 0.100 Hz

respectively, for SNR optimization. They are sampled at 1.4
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KHz and the multiplexed data stream is sent to the DSP by DMA
assembly input routine.

A DSP function demultiplexes variables from the data
frame to separate selected variables from the stream. A first
difference criteria with a threshold s-t by a setup file, is
used to detect spikes on the data. Single bad points are
substituted by the previous valid point. Deterministic
coherent noise over each frame period (32 words) is subtracted
from each data cycle. This coherent noise is cocaputed from the
mean of approximately 5000 frames and is entered from an input
file. The raw T and C gradient data are then squared and
accumulated on 1 second rotary buffers for estimation of
gradient variances. Both the T and C data are also de-
emphasized by single pole digital Butterworth filters and low
pass (LP) filtered by a second order Butterworth filter with
a cutoff frequency at 20 Hz. These operations are done in
sequence by different functions to avoid round off errors.
Finally the de-emphasized data is decimated to 44 Hz and the
variances are computed based on the mean of the 1 second
rotary buffers. These 44 Hz data are sent every second to a
HOST program running on the HP Vectra.

ACCELE ION AND PRESS

Acceleration is observed using 3 orthogonal solid
state DC response accelerometers in the head of the CDV.
Pressure is sensed using a strain gauge pressure sensor. Both

Acceleration and Pressure are processed in a similar manner.
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The DSP function that demultiplexes the input buffer, also
separates these 4 channels from the data stream. The same
deglitching procedure is used concurrently with a threshold of
200 raw counts for the four channels. There is negligible
observed coherent noise on these channels. The data is then LP
filtered by a third order Butterworth with a cutoff frequency
at 20 Hz, decimated to 44 Hz and sent to the HOST program
every 1 second for monitoring and storage.
SHEAR

To measure the velocity shear, cross-velocity
variations are measured with a high sensitivity airfoil probe.
Because of 1its nature, this sensor 1is easily noise
contaminated by variations 1in the instrument velocity or
spurious vibrations. Also, it only works when the instrument
is in motion and senses only velocity changes perpendicular to
the mean sensor velocity.

The shear probe is sampled at 5.6 KHz and the data
send to DSP by DMA assembly input routine. The same DSP
function separates the shear from the data stream and applies
a 200 count, first difference deglitching criteria. Any
deterministic coherent noise is subtracted from each data
cycle. Next, the pre-emphasized (gradient) data is squared and
accumulated in 1 second rotary buffers, and the variance is

computed at a 44 Hz rate and sent to the HOST program.
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F. CALIBRATION AND ERROR ANALYSIS
The temperature data was previously calibrated using a

third order polynomial fit of the form:

TEMP=A.COUNTS?*+B. COUNTS*+C.COUNTS+D
where
A=10.662337

B=-3.957935.107¢
€=1.216833.10
D=-1.345511.107%

where TEMP represents temperature values in Degrees Celsius
and COUNTS the CDV cutputed values.

The pressure sensor was calibrated by recording the
pressure values obtained from water columns from 0.10 meter to
2.00 meter, 0.10 meter apart. The calibration transformation
was then computed using a least squares fit to a straight line
by solving a system of 20 equations on 2 unknowns. The

resulting calibration is:

DEPTH=0.000191964.COUNTS-0.0218414

where DEPTH is the water column height in meters and COUNTS
the pressure channel output values. The mean square error is
0.0012 m. The calibration was performed with pure water, so
that in order to compute the depth in salty water, this values

must be multiplied by a factor related to the density anomaly,
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that for practical use can be 0.974 (assuming a density of
1026 Kg/m*).

The acceleration channels were calibrated using the fact
that when the equipment is fixed the mean observed value
should be the gravitational acceleration. The package was
fixed and rotated from -20° to +20°, in 5° intervals on two
quasi-orthogonal planes, with one of the planes containing one
of the horizontal accelerometers. Least square fits to
straight lines were performed, resulting in the following

calibration:

ACC,= 0.00108549.COUNTS,-18.0324
ACC,= 0.00119582.COUNTS,-19.9673
ACC.=-0.00110622. COUNTS-+16 .9346

where ACC, is the acceleration in m/s® and COUNTS, the outputed
guantities. The observed mean square errors are 0.0532 m/s?,
0.0210 m/s’ and 0.0634 m/s’ in the X, Y and 2 channels
respectively.

To evaluate the performance of the equipment, two 5
minutes data sets were selected from the WHARF #2 Experiment
at the August 2 1991. This experiment will be described in
more detail in the next chapter. The calibrated temperature
values are very closed to those observed using a mercury
thermometer bucket temperature. The accelerometer mean values

are reasonably close to the expected. Because there was no in
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situ calibration, only mean quantities can be analyzed. A more
detailed description of these data will be presented in the
next chapter. This experiment was performed with the
instrument fixed to the bottom, so no shear probe data was
analyzed. No pressure data was available from this deployment.

The first step in the analysis is to look at the pre-
processed doppler data. A sample of two bistatic reciprocal
channels (frequency, power and bandwidth), and calibrated
temperature data is shown in the figures 4.F.1-2.

A careful analysis was required for the velocity
estimation, because there was no previous experience with this
method. It was necessary to validate all the processing steps
(both electronic and software).

The reciprocal channel doppler frequency estimates are
generally similar, see figure 4.F.1, except for individual
spikes, or in regions of very low signal to noise ratio (SNR)
which are also seen by a large bandwidth. Some of these
discrepancies will be attenuated by using a variable pulse
repetition interval in future deployments, eliminating
coherent additive interference.

To increase the confidence and deglitch the acoustic data,
an adaptative procedure has been developed. The probability
distribution function (PDF) of the differences histogram (see
in the Figure 4.F.3), shows that the differences between two
consecutive values are smaller than 70 Hz (0.01 m/s) 75% of

the time. Also, the scatter plots between the first
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Figure 4.F.1 - Reciprocal Bistatic channels, doppler

frequencies,

received powers and bandwidth.
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WIHARF#2 - Sea Temperature (at 1.45 mapp.)
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Fﬁgure A.F.2 - Calibrated Temperature data. Simultaneous to
the data shown in figure 4.F.1

differences and the received powers (Figure 4.F.4) shows that
the bigger differences are mainly associated with low received
powers, corresponding to the cases when noise from additive
interference and system noise may be significant. We have two
independent realizations of the same random variable
(reciprocal channels) that can be used either to increase the
confidence of the estimates or to validate them.

To deglitch the data and obtain a clean averaged time
series of the doppler frequencies, an intelligent adaptative
algorithm must be used based on the surrounding points. A
procedure was implemented to compare the signal at each time

with a predicted value obtained from a 4'" order linear
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Figure 4.F.3 - Reciprocal Bistatic channels, first
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predictor based on the previous 20 point autocorrelation
function. Whenever the difference was greater than four times
the standard deviation (also estimated from the previous 20
points), that point was assumed non-valid. When both channels
were assumed bad, or if a first difference fixed criteria was
violated, the predicted value was used. We can expect an
improvement in the SNR of the estimates by using this method.
Some examples of how this procedure works, are shown in the
figure 4.F.5.

To transform these deglitched doppler shifts to velocity
components in an orthogonal frame fixed to the instrument, a

linear transformation must be performed. This transformation
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Figure 4.F.4 - Reciprocal Bistatic channels, Scatter plots
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will not distribute the velocity variance evenly through the
3 orthogonal components of velocity, giving more weight to the
component along the instrument vertical; this component will

also have a greater statistical confidence.
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DEGLITCHING FUNCTION - wing mean or predicted values
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Figure 4.F.5 - Bistatic channels deglitching function.
Whenever the difference curves go higher than the threshold
curves, in the lower plot, that point was assumed as bad data.
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V. TURBULENCE OBSERVATIONS USING THE CDV PACKAGE

A. WHARF #2 EXPERIMENT

The purpose of this experiment was to asses the
performance of the CDV package in oceanic backscatter
conditions, test its ability to measure ocean fluxes and
surface wave fields, and to study the forcing mechanisms in
ocean surface layers.

The CDV package was deployed off the Monterey Wharf #2 on
2 and 3 August 1991. The tripod-mounted CDV was placed on the
sand-bed with the top of the instrument at depths ranging from
0 to 0.75 meter. The depth changed with the tide, and the
total water depths ranged between 1.7 to 2.5 meter.

The package was controlled and monitored from a van parked
on the wharf, from which observations of air temperature
(moist and dry), bucket sea surface temperature, short and
long wave radiation and wind direction and speed. The
equipment deployment is sketched on figure 5.A.1.

The air temperature was measured using a mercury
psychrometer and the sea surface temperature using a protected
mercury thermometer. The wind speed and direction was recorded
using a MRI anemometer and wind vane, while the short and long

wave radiation was obtained from an Epply radiometer.
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Figure 5.A.1 - Wharf #2 Experiment set-up
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The environmental conditions were characterized by an
overcast sky, moderate to weak winds from WNW. Small amplitude
swell from the North was being reflected from the solid walls
below the wharf. Due to the barrier created by the wharf walls
on the wind field, the measured winds did not correspond well
to those over the CDV package. These light wind conditions
were not ideal to evaluate the overall performance of the
instrument, because we would not expect to find high
turbulence levels in the high fregquency range. Nevertheless,
because we understand the physics of the linear wave fields
and we do not have lateral boundary effects (as we would
encounter in a tank experiment), we were able to measure the
performance of the package at the low and medium frequency
range using the wave field signal, and to estimate the noise
floor at higher frequencies.

The CDV data were recorded on VCR tapes (labeled WCDV1 to
WCDV7), from 1100 until 2300 on 2 Aug 1991, covering the
afternoon high tide at 1545 pm, and from 0200 to 0800 at 3
Aug, covering the morning high tide at 0515. The short and
long wave radiation and the wind data were recorded
continuously from 1100 am of 2 Aug until 0800 am of 3 Aug,
sampled at 8 Hz and spooled by an HP 332 computer to an
optical drive for further processing. The air and bucket
temperature were recorded every hour from 1600 2 Aug to 0800

3 Aug.

86




After a careful analysis, only the afternoon CDV data from
1300 to 1800 show high data quality, while the morning data
show large data gaps due to the fact that the equipment was
only partially submerged.

Following DSP preprocessing, all the data were spooled to
an HP VECTRA 386 and the CDV bistatic data to a SUN SPARC
STATION for further processing.

After calibration, the 8 Hz sampled wind and radiation
data were 10 min averaged and decimated at a 1/min sampling
rate. The CDV sea temperature was calibrated and used for
cross-spectral analysis and computation of fluxes over 20
minutes averages. The bistatic doppler frequency estimates
were deglitched using the adaptative procedure described in
the previous chapter, and used to estimate the velocity vector
in an instrumental reference frame. The instrumental
velocities were then properly rotated to a vertical reference
frame. All the processed data (intermediate and final),
spectral and flux estimates and output plots were stored on an

optical disk.

B. METEOROLOGICAL DATA

This section describes and analyzes the tide, wingd,
radiation, air and sea surface temperature data. It will focus
only on the period from 1100 to 2000 of 2 Aug 1991,

simultaneous with the useable CDV data.
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As is shown in the Figure 5.B.1, within this period there

was a high tide at 1545 pm. The tide height determines the
depth of the CDV measured quantities; so in Figure 5.B.1, the
expected mean depth of the top of the CDV is shown, assuming
that at 1100 it was at a 0 m depth. Also shown as vertical
straight lines are the times of the evaluated ocean fluxes.
Due to problems in the radiation sensors, 1long wave
radiation data was not available. This fact restricts our
ability to compute the surface buoyancy fluxes; however, we

can use the short wave radiation and wind stress as indicators

WHARFE #2 - Top of the CDV Depth - 2 and 3 Aug 199]

! trom tide tables S.Fran(Golden Gate)-conrected
1A -MOS-0.08m 1T

} ' 0016, 9.03m 1T
0.6, daylight saving time

Depth in meter

-1

A6 CDV in water at 1100 (depth 010 m)

ey ~
0" 5 1 s 20 28 1) 18 10 45 <0

hours (after 0000 2 Aug)

Figure 5.B.1 - Wharf #2 Experiment: depth of the top of the
CDV package at 2 August 1991.
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of the forcing mechanisms in the ocean upper layer. The wingd
data does not accurately reflect wind stress at the CDV
location due to the barrier created by the wharf walls, but it
will show the maximum expected mechanical forcing of the ocean
surface. The time evolution of these variables is shown in
Figure 5.B.2, for the period from 1200 to 2000 pm at 2 Aug
1991, based on measurements made from the top of the wharf.
These plots show that the wind stress was decreasing
slightly after 1500. Due to the overcast conditions during
almost all the period of the experiment, we should not expect
a large variability on the long wave radiation, so the changes
in the surface buoyancy flux should be determined primarily by
the short wave radiation and by the surface layer stability.
The short wave radiation followed a cloud covered diurnal
cycle increasing until 1500, and decreased thereafter. The
peak shown at approximately 1420 corresponds to a short period
of time of partially clear sky. From these conditions, we may
expect a decrease in the weak mechanical steering due to
decreasing winds and a reduction in the stability of the upper
layer and due to a reduction of solar heating. Therefore, we
should not expect to find high levels of turbulent energy in
the form of scalar fluxes and Reynolds stresses, i.e. we
should not expect to observe an active mixing layer, so that
the ocean conditions should be dominated by surface gravity

wave fields.
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Figure 5.B.2 - Wharf #2 Experiment: Wind stress and short
wave radiation, from 1200 to 2000 at 2 Aug 1991.

C. CDV DATA

The data between 1500 and 1800 of 2 Aug 1991 were analyzed
in more detail and the ocean fluxes computed using an eddy
flux correlation method [Ref.2]. The first step was to select

20 minutes ensembles every 1 hour. These data sets were then
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spooled to an optical drive, and the data analyzed in more
detail using C programs and MATLAB software.

After conversion to engineering units, the acceleration
and temperature data were averaged over all the 20 minute
ensenmbles;

the tilt angles were computed and the mean

temperatures compared with the observed bucket temperature.

6 - CDV AV

ATA

Hour (2 Aug)

Acceleration~X

(m/s?)

0.1630

0.1583

Acceleration-y

(m/s?)

~-0.6718

-0.6787

Acceleration-z

{(m/s?)

-9.8278

-9.8330

-9.8277

-9.8288

Direction-Deg

(ref.to x-axis)

-76.25°

-76.56°

-76.36°

-77.10°

Tilt (Deg)

(from vertical)

3.98°

3.976°

4.02°

4.05°

Mean Temperature

(bucket)

17.1°C

16.8°C

16.3°C

16.0°C

Mean Temperature

(CDV sensor)

16.24°C

16.23°C

16.17°C

15.82°C
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Hour (2 Aug) l 15:30 16:30 17:30 18:30

CDV Depth

(Tide Table)

We can see that over the full deployment there was a
constant tilt of 4 degrees from the vertical, and an offset of
-76.6 degrees from the x-axis, defined as the bisection of
transducers 1 and 2. These values were used to rotate the
velocity data to obtain a vertical reference frame. Examples
of the measured velocities are shown in Figure 5.C.1. The
small magnitude and variability of these values is consistent
with the observed conditions of low or nonexistent turbulence
and small amplitude wave field.

The mean temperature compares well with the bucket
temperature, but the 44 Hz measured temperature, shows some
high gradients (as is shown in Figure 5.C.2) not correlated
with the vertical velocities, suggesting high horizontal
stratification. The strong and sharp variations of
temperature, by itself, suggest horizontal advection of warm
patches of water. This hypothesis is further discussed in the

next section, when the temperature fluxes are discussed.

D. OCEAN FLUXES AND STRATIFICATION
Figures 5.D.1 to 4, show the spectral evolution of

temperature and of the 3 velocity components. The frequency
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density units of all spectral quantities are such that the

integration over the full frequency range gives the total
variance. These spectra are characterized by a broad peak,
more evident in the velocity spectra, at frequencies between
0.2 and 0.6 Hz. They represent short period,‘surface gravity

waves, with wavelengths of the order of 6 m with e-folding

WHARF #2 - uvw Velocny C()mp()nents at 44 Hz
04 e e g e
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seconds (after 15:18:07 - 2 Aug)

Figure 5.C.1 - Wharf #2 Experiment: Velocity data, sampled
at 44 Hz.

depths of the order of 1 m (i.e. deep water waves). This fact
is consistent with the observed similar energy content in the
vertical and horizontal velocity components (10™* (m/s)?/Hz).

The broad band shape of the spectrum suggests that this energy

93




is due to wind waves starting to shoal, probably generated in
the near field.

There are also three peaks, possibly associated with low
frequency swell or seiche, at the frequencies of: 2.5x1077 HZ,
4.5%10° Hz and 7x107° Hz: these spectral peaks can be seen in
the figure 5.D.5, which shows the high resolution spectra of

the variables at 1530. These peaks are more noticeable in the

WHARFE #2 - Sea Temperature (from CDV sensory at 44 Hz
16.26. : . .

WODV2-15:30 ';
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Figure 5.C.2 - Wharf #2 Experiment: Temperature data,
sampled at 44 Hz.

spectra of the horizontal velocity, significant to a 820%
contidence level, and are highly attenuated in the vertical
velocity spectra as we can expect for a shallow water wave.
These harmonically related frequencies suggest weak non-linear

interactions (resonance), with energy being transferred,
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between the different waves components. If ressonance is
occuring, these components will contribute to the presence of
stresses in the upper layer.

Besides telling us that the velocity field was dominated
by the surface gravity waves, the low energy levels at high
frequencies also shows the noise floor of the instrument with
energy density on the order of 107 (m/s)?/Hz in the velocity
spectra, and 107*° (Deg C)?/Hz in the temperature spectra. This
value repiesents noise significant velocities of the order of
0.005 m/s, that are smaller than typical velocities associated
with active oceanic turbulence, typically of the order of 0.01
m/s [Ref.22). Therefore, for turbulent flux observations we
should expect to obtain good SNR performances with this
instrument.

Integrating the velocity spectra, we obtain the kinetic
energy for each ensemble. These values and their evolution
over the 4 analyzed hours are important in the
characterization of the observed fields. We can see that the
total horizontal kinetic energy was significantly larger than
the vertical, due to the nature of the wave fields.

LE 7 - c RGIES

15:30

w~component
0.0035 0.0040 0.0073
(m?/s?) 0.0179
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HOURS l 15:30 16:30 17:30 18:30

u-component

0.0044 0.0049 0.0062 0.0119

(m*/s?)

v-conponent
0.0107 0.0118 0.0149 0.0238
(m*/s?)

In order to compute and interpret the fluxes of
temperature and the Reynolds stresses, the co-spectra, phase
spectra and coherence were computed for the several
combinations of variables. Using Parseval theorem [Ref.14],
integrating the co-spectra over frequency provides estimates
of the scalar fluxes or the Reynolds stresses. Therefore, the
co-spectrum will tell us how these fluxes are distributed over
frequency. In figures 5.D.6, 7.a, 7.b and 7.c, we can see the
evolution of the co-spectrum between the perturbed quantities
of the temperature (t’) and vertical velocity component (w’)
hereafter designated by t’w’, and between the three velocity
components u’w’, v’w’ and u’v’. The low values in the co-
spectrum and the negligible energy above 1 Hz are
characteristic of a linear wave field with low turbulence
levels.

The negative peak found at the very low frequency range in
the co-spectrum of the horizontal velocity components, Figure

5.D.7.a, confirms the presence of non-linear interactions
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between harmonically related wave components [Ref.23], as
suggested by the velocity spectra in Figure 5.D.5.

The co~-spectra of temperature and vertical component of
the velocity, shows that the thermal energy flux is negative
in the short period wave range (deep water waves), and
positive over the long period waves range at the 1530 and 1630
hours. Later energy starts cascading into the smaller scales,
where previously the co-spectral density was almost zero
(Figure 5.D.6). This is partially consistent with an increase
in the horizontal momentum flux, though it remains restricted
in the low frequency range. No significant changes are seen in
the vertical momentum flux. This picture suggests that after
the 1730, due to the shallow depth of the instrument and to
the reduction of insolation generated stratification,
turbulent levels tend to increase.

After integrating equivalent estimates for each data set,
the time evolution of the temperature fluxes and stresses were

calculated:

- TEMPERATU N OMEN F E

<u’v’>
-0.0046 -0.0051 -0.0063 -0.0108
(m*/s?)
<u’w’>
-0.0001 -0.0000 0.0002
(n?/s?) 0.0015
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<v?’w’>

0.0011 0.0014 0.0020 0.0012
(m*/s*)
<t’w’> -2.2277 -1.0943 ~-2.5964 -10.5082
(m.°C/s) x10™® x107® x10°® x10°®

This table shows that the Reynolds stresses and temperature
fluxes slightly increased with time, as stratification was
decreasing.

The phase spectra and coherence are tools that help the
interpretation of the co-spectrum. The phase spectra quantify
the phase lags between variables, showing departures from the
in-phase components shown in the co-spectra. These spectra are
useful 1in the identification of quadrature conditions,
characterizing linear wave components, and in the analysis of
non-linear characteristics. The coherence spectrum shows
whether cross-spectral components have constant phase
relationships in time. For 1linear wave fields, coherence
should be high, near 1 (no fluxes or stresses), while for
turbulent or non-linear fields the coherence should have low
values. Examples of these estimates are shown in the figures
5.D.8 and 9 for the temperature vertical flux and Reynolds

stresses at 1530. The features shown in these figures are

similar to the characteristics of the other data sets, with
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quadrature phase and high coherence through the spectral peaks
range, as expected for a linear wave field.

The low correlation between temperature and vertical
velocity hint that we cannot explain the observed temperature
variability only from the vertical stratification, in which
water is pumped up and down past the sensor following the wave
orbital motion. On other hand, if we assume that horizontal
stratification exists, then the horizontal velocities may
explain this variability, with patches of warmer or colder
water being advected by the mean horizontal flow and wave
orbits. To test this hypothesis, the horizontal temperature
fluxes were computed as is shown in the figure 5.D.10 for the
1530 data set. In fact, they do not show a stronger
correlation; however, the probable high variability on the
horizontal density gradient will introduce an additional
effect on these estimates. These estimates may also be
misleading if not computed from sufficiently long averaging
intervals as the sensor was stationary in the field.

The coherence spectra( Figure 5.D.9) again reinforce the
fact that the wave regime at the middle frequencies has a
linear character, showing high coherence between v and w
within this range. These characteristics are maintained
throughout the observation period. Similarly, the coherence
between the horizontal components of velocity 1is more
significant in the low frequency wave range, but with slightly

lower values.
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VI. CONCLUSIONS

The need to explicitly observe turbulent processes arises
from a wide class of problems in physical oceanography, as
described in the review in chapter II. The CDV package was
developed to simultaneously measure temperature, conductivity,
pressure, shear and the 3 components of velocity at sub-
centimeter scales.

The unique measurement techniques used in this instrument
require special data processing and analysis methods. The
three component velocity estimations rely on a doppler
frequency spectral estimator, working in real-time, that must
use a small number of coherently sampled data points. In order
to choose the mcz-t suitable a_gorithm, and to assess its
physical limitations, Monte~Carlo simulations were performed
using several possible spactral estimators. From these
simulations, the Pulse Pair algorithm, or equivalently the
MUSIC order 2 algorithm, showed the best performance, followed
by the Peak FFT algorithm. The FFT estimator, corresponds to
a maximum likelihood estimator, but suffers from the fact that
for a small number of points, the discretization errors are
very dominant, and it’s performance is seriously dergraded.
Using these results, the Pulse Pair estimator was i1mplemented,

together with the pre-processing of the other measured
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guantities, on a Digital Signal Processor for real-time pre-
processing and review.

To test the CDV software and hardware, the equipment was
deployed for the first time off Monterey Wharf #2, on the 2
and 3 of August 1991, along with measured environmental
conditions. This first analysis showed that the performance of
the bistatic velocity estimation is below that expected, with
some conspicuous spikes superimposed c¢°: valid data. By
introducing a change in the transmitting cycles of the
transducers this problem should be overcome in future
deployments. The calibration of the other scalar variables and
acceleration gave good results. To deglitch the bistatic
doppler frequencies and increase its confidence, we used the
redundancy in the velocity components observations, with two
independent estimates from each of the two reciprocal acoustic
bistatic paths. An adaptative procedure was developed, relying
on a one lag linear-predictor and predictively choosing the
best estimate of the doppler frequency. This procedure
significantly improved the SNR of the velocity estimates.

The CDV Wharf data shows a surface gravity wave field with
energy in two different ranges, superimposing near field
generated high frequency wind waves with a 1low frequency
swell. The wind waves shov the expected characteristics of
deep water waves while the low frequency waves clearly have
shallow water waves characteristics. The high resolution

spectra and the co-spectra show that resonance interactions
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may be occurring at the 1low frequency range. The high
frequency wind waves show a stronger coherence and do not
contribute significantly to the momentum flux, but
nevertheless the major contribution to the temperature flux
occur over these frequency ranges.

The fact that the observed temperature variability did not
correlate well with the measured vertical velocity, even at
the deep water wave frequency range, suggest that an irregular
horizontal stratification existed, with pools of warm or cold
water being advected past the sensor, by the wave orbits and
mean flow.

From the vertical velocity and temperature co-spectra
analysis, we also observed an increase in the temperature flux
associated with a shallow depth and reduction in the vertical
stratification, following the decrease in the solar heating
after 1730. However, due to remaining significant
stratification no significant turbulence develops, as we can
observe in the co-spectra of the velocity components.

At the high frequency ranges, we did not found significant
energy due to the absence of strong turbulence, allowing the
instrumentation noise floor to be seen. This noise floor
represents velocities in the order of 0.005 m/s, values below
the ones that we should expect to find during strong turbulent
conditions. Because this data was the first that was analyzed
with this equipment, we expect in future deployments to

improve the SNR in the velocity measurements by an order of

114




magnitude by reducing the acoustic noise component 5 to 10
times and altering acoustic sampling methods. However, the
existing noise floor is already below the minimum requirements
for studying energetic turbulence.

The CDV data seems consistent with the observed
environmental conditions, confirming the expected capabilities
of the instrument to observe real data, including wind wave
fields, and showing the noise limitations that we should
expect when observing turbulence fields. However, in order to
further study its precision, this data should also be compared
with simultaneous observations of the ocean variables measured
by independent instruments. The CDV package will be able to
perform simultaneous measurements of oceanographic variables
at the sub-centimeter scales, determining all terms in the
Reynolds equations. This should improve our characterization
of turbulent fields, with applications in a variety of
oceanographic turbulence problems. These applications will be
explored using the instrument in a loose-tethered profiling

mode.
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