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ABSTRACT

The need for direct turbulence measurements in the upper

ocean arise from widespread requirements to correctly

parameterize momentum and scalar fluxes across the air/ocean

interface. Until recently these observations were limited by

a lack of instrumentation capable of measuring the fine-

structure velocity field down to dissipation scales.

The recently developed CDV package allows simultaneous

sub-centimeter resolution measurements of temperature,

conductivity, pressure, shear and the 3 component velocity

field. As part of the development of this system a Monte-Carlo

simulation was used to analyze the performance of several

spectral estimators of the mean acoustic Doppler shifts, from

which the velocity components are derived. The selected

algorithms were implemented on a Digital Signal Processor

allowing real-time estimation of the velocity, shear and

scalar quantities.

To verify the performance of the CDV package,it was

deployed off Wharf 2 in Monterey for 24 hours while

simultaneously recording meteorological data. 'eynold's

stresses, buoyancy fluxes and fine scale stratification were

characterized and the surface gravity waves field identified.
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1. INTRODUCTION

Turbulence is a feature of flows and is characterized by

its irregularity or randomness, diffusivity, large Reynolds

numbers (highly nonlinear) and by three-dimensional vorticity

fluctuations. Turbulent flows are also dissipative, requir'ig

a continuous supply of energy, and limiting the smallest

scales to be far larger than any molecular length scale. The

smallest scale occurring in turbulent flows is called the

Kolmogorov length scale [Ref.l]. These characteristics make

any deterministic approach to the description of turbulent

flow impossible, and observations very difficult. On the other

hand, statistical approaches to the equations of motion lead

to an unresol.ed system, requiring extra assumptions in order

to obtain closure [Ref.2].

In order to characterize turbulence, we need to perform

measurements of mean quantities and of fast varying

quantities, requiring high spatial resolution, fast response

sensors and stable observation platforms. A classical approach

to separating mean quantities from turbulent fluctuation, is

to assume a spectral gap, so that by using a running mean we

are able to isolate perturbations from the mean flow (Reynolds

averaging) [Ref.2].

A more complex procedure is required if one wants to

separate a linear wave field from superimposed turbulence
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[Ref.3 and Ref.4]. One method is just to subtract, from the

fast varying variables, the components that are coherent to

the wave field. The cross spectral variables and its coherency

are used to identify the wave components and the correspondant

frequency ranges. This method will only demodulate

superimposed turbulence from the wave field assuming that no

energy is being transferred (linear approach), and non-linear

interaction between the two fields are not identified.

Turbulence velocity observations are frequently limited by

a lack of instrumentation capable of measuring the fine-

structure temperature, salinity and velocity field, down to

dissipation scales. The CDV package recently developed at the

Naval Postgraduate School allows simultaneous sub-centimeter

resolution measurements of temperature, conductivity,

pressure, shear and the 3 component velocity field. These

concurrent high resolution ocean microstructure measurements

will aid our understanding of a range of phenomena that

requires the determination of momentum or scalar fluxes.

Unresolved problems include layer stability characterizations,

turbulent closure problems, dissipation and energy cascade

estimations, observation of entrainment and turbulence

development, air-sea interaction, and the superposition and

coupling of turbulence to mean advection and/or wave fields.

As part of this work, real time signal processing

programs, programed in C environment are developed, for the

CDV package. This work is focused in creating and implementing
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algorithms that estimate mean doppler shifts, from which the

velocity components are derived; on the real time processing

and filtering of the analog variables, including temperature,

conductivity and shear; and on the continuous real time

graphical monitoring of selected variables. Also, using a

Monte-Carlo simulation, the performance of several spectral

estimators of the mean acoustic doppler shifts are analyzed to

guide the real-time processing algorithm choice.

The CDV package, after being tested and calibrated, was

deployed on the 2 and 3 August 1991, in shallow water off a

Wharf in Monterey to test its ability to measure momentum and

scalar fluxes. It was fixed to a 2 meter high bottom mounted

tripod, with the instrument facing the surface at depths of

the order of 0.5 meters, while simultaneously recording

meteorological data. Small swell, weak winds and overcast sky

were observed throughout the observation period.

A procedure is developed that allows the estimation of

Reynolds stresses and buoyancy fluxes based on the measured

quantities. Spectral methods are used to characterize which

part of the observed scalar variance fields are turbulent v.s.

advected by the surface gravity wave field.

This thesis is organized as follows. Chapter II summarizes

the theorical background and motivations for microstructure

observations. Chapter III describes a series of Monte-Carlo

simulations that study the performance of several spectral

estimators for the mean acoustic doppler shifts used to
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estimate velocities. Chapter IV describes some recent methods

and equipment that led to the development of the CDV package;

the CDV package; the signal processing developed algorithms;

and some validation tests and error analysis performed with

real data. Chapter V describes the Monterey Wharf #2

experiment presenting the Reynolds stresses and ocean fluxes

estimation procedures. Finally chapter VI presents some

conclusions and recommendations for future work.
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II. MOTIVATION FOR MICROSTRUCTURE OBSERVATIONS

Microstructure measurements are required for oceanography

problems such as the study of mixing parameterizations,

dissipation and energy cascade, surface layer entrainment,

air-sea interaction and coupling, upwelling systems and mixing

layer models. This chapter will introduce some theorical

background to ocean turbulence emphasizing the experimental

needs.

A. REYNOLDS EQUATIONS

The dynamics and thermodynamics of the ocean are described

by a set of non-linear basic governing equations containing

time and space derivatives requiring the definition of initia.

and boundary conditions [Ref.5]. Usually we do not have enough

information to solve these conditions at smaller scales, so we

must choose a cut-off eddy size below which we include only

the statistical effects of these smaller scales. The resulting

non-linear equations will be underdetermined with no

analytical solution. Therefore, we are limited to

approximations or numerical solutions after closing the system

with additional assumptions [Ref.2].

5



1. Basic Governing Equations

The governing equations are the set of equations

describing the general physical laws of fluid dynamics and

their application to the particular case of ocean dynamics

[Ref.6 and 2]:

a. Equation of State

This equation describes the thermodynamic state of

water relating the several basic variables of density,

pressure, temperature and salinity. A complete empirical

relation in polynomial form is given, for example, by Millero

et.al. 1980 [Ref.6]. However, this equation is difficult to

handle and interpret. An approximation widely used is based on

the fact that the water is nearly incompressible near the

surface so that density changes of a constant volume are only

due to temperature or salinity changes (Brian and Cox 1972)

[Ref.5],

p=p,,Y[I-a×(T-T,)+Px(S-S,),!

where a = 2139xl0-K-' is the thermal expansion coefficient and

B = 0.751xi0 -3 is the salinity expansion coefficient and Po =

1025.96 kg/m 3 is the density correspondent to the temperature

To = 15'C and salinity S, = 35 psu [Ref.5].

6



b. Conservation of Mass (continuity)

The conservation of mass for fluids, also called

the continuity equation, states that the local rate of change

of density is equal to minus the mass divergence, or:

ap aj
a t ax1 (p2

If the fluctuations of density are much smaller than the mean

density it can be shown that the incompressibility assumption

is valid and this equation becomes:

dp = al= 0

dt ax7

i.e. non-divergent flow and constant density following the

motion.

c. Conservation of Momentum

This balance describes Newton's second law of

motion. If we assume that the vertical and horizontal scales

are much smaller then the earth radius, this conservation law

can be written using the tangent plane approximation [Ref.2]:

au au ap _I_
a,- -X P ax, Pax,
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where: m n = mnq=123 231 312

- m n Hi mnq=321 213 132

otherwise

Water can be assumed to be a newtonian fluid so

that:

au;au, + 2 auki!=I -( x 'x ) + (lPb- - l)-xk <ax. ax1  3 aXk

where A=1.4x10-3 kgm-'s -1 and pb are the molecular viscosity and

the bulk viscosity respectively [Ref.2].

However if we assume that the fluid is incompressible and

defining kinematic viscosity (v) as p/p=1.4xl0 -6 m2s-1 we

obtain:

1 a , &2u,

P 8X7 ax-

If we assume that the motion is shallow, we can

neglect density changes associated with the mass of the fluid,

though we must retain their effect on the fluid weight, and we

can further simplify the equations of motion in the so called

Boussinesq approximation (Ref.2]:

all, au p +Va
+ x =-g-- -E if -_ -1 a, Lk

at a x, p pkax x4



These equations represent the balance of the inertia and

advection (LHS) by gravity, coriolis acceleration, pressure

gradient and viscous stresses.

d. Conservation of Heat

The conservation of heat describes the first law of

thermodynamics. If we neglect the change of internal energy

due to viscous dissipation and assume incompressibility, it

can be represented by:

3T+ ITK a2T +
at lax-, a c

where the left hand side represents the storage and advection

of heat, K,=lxlO-7 m2s-'/(pC,) is the coefficient of thermal

diffusivity, Q represents the rate of heat addition per unit

mass by internal heat sources and C,,=3990 J.Kg'K -' is the

specific heat at atmospheric pressure and 15°C [Ref.5].

The term Q can be summarized by [Ref.2,5 and 6]:

where:

Q- short wave solar radiation (a = surface albedo)

Q- net heat gain by long wave radiation

Qb - net heat loss by long wave radiation

Q- net heat loss/gain by conduction

Q- net heat loss/gain by evaporation or condensation

9



Q, - net heat loss/gain by advection

The terms Q. and Q, will only be significant at the surface

and can be estimated by the aerodynamical bulk formulas, based

on bulk meteorological measurements [Ref.2].

The term Q, representing the heat associated with the mass

transport is usually parameterized by an eddy diffusion

coefficient of the form:

01.=K (3 T

The terms associated with the downward long wave

and short wave radiation are more difficult to analyze. We

must use empirical relations describing the penetration and

absorption of radiation with depth as a function of

wavelength.

Finally the heat loss by long wave radiation can be

estimated using Steffans law where (Q, - T4).

e. Conservation of Salt

Because of the form of the equation of state used,

a salinity budget must be introduced of the form:

aS[T a S =Ks a-S

0ax ax.
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stating that the storage and advection of salt (LHS) must be

balanced by the molecular diffusivity of salt and by the net

salt gain/loss by internal sources.

The term S. corresponds to the balance due to

evaporation, precipitation and runoff effects.

2. Reynolds Averaging

The randomness found in the smaller scales of motion

in a turbulent fluid makes a deterministic approach to solving

these equations very difficult. If we assume that the energy

at these scales is the superposition of a variety of small

size, band limited eddies, we can separate these components

from the other mean effects by averaging over a sufficiently

large interval corresponding to a stationary low frequency

energy spectral component. This concept presumes the existence

of a spectral gap in the component variance spectra [Ref.2].

However, the presence of internal waves, surface gravity waves

and many other phenomena, does not always allow us to assume

the existence of this gap between forcing and dissipation

frequency ranges. Nevertheless, we can assume that each

variable is composed by a mean and a perturbed part, which

averages out to zero. However, the turbulent part of the

variance will have non-zero covariances with the other

turbulent components.
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Starting from the previous basic governing equations

and af ter separating the mean and perturbed components and

averaging, the resultant set of equations is:

1. equation of state

p =P~x 1-a x(T-TO) +- x (S-SO) 1

2. conservation of mass (continuity)

a 7 _ au'-
ax- ax-

3. conservation of momentum

a~ dl7 ~g~~fL aP aui a
- -; -=--- 8:- - kf V - - - (a- :dx a x- ax4

4. conservation of heat

__Ia- a-,T -L a
T aX, -x 78x,

5. conservation of salt

-- a - - -

at jx ax a
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The new terms introduced by this procedure are the

divergences of momentum, temperature and salinity fluxes, and

they represent the interaction between the mean and the

perturbed flow. For these terms to be significant, we must

have a large Reynolds number ( R. = advection terms /

molecular viscosity terms), so that it is usual to neglect the

viscosity terms in this set of equations. The set of equations

represent an unresolved system of 7 non-linear equations with

22 unknowns and are known as the Reynolds equations.

Before looking for any type of solutions we first must

close the system by finding prognostic equations for the new

variables in the form of fluxes and variances, eventually

reducing the number of unknowns. To obtain the forecast

equations for the fluxes and variances we must first find

prognostic equations for the perturbations. Following the

procedure described in Stull, 1988 [Ref.2], this can be

achieved by subtracting the Reynolds equations from the

governing equations, resulting in the system:

+ - 7 - + i U ; + L U -

a3x , x. a~x

... a. a
ax, ax ax7 (

13



aT' UT . , , +u' aT'_K & T'_ Q a (--7)
ax a cp ax -

as, +7, as, Ull , ias K. a2s' + (77)

In order to obtain equations for the reynolds stresses and for

the scalar fluxes, the following procedure was developed by

Stull, 1988 [Ref.2]:

1. Multiply the equations for a generic variable q', by u'k,

and Reynolds' average.

2. Sum these resultant equations, obtained by Reynolds'

averaging the perturbed momentum equations multiplied by q,'.

3. Use the continuity balance to transform advective terms

into flux form.

4. Neglect the coriolis terms and the pressure, radiation and

molecular diffusion.

The resultant equations, are:

A 17, -' a+ Y~ -7----- U -J---,-ak _a (-7
at ax3  U ax, ' ax 3

_ p' au'. au"
8 [S~-i 1+6 u a-=- +----{* ) -2c u

3 P axk axi -

14



a117 _ aYE' T_7 _ aT 0
+U.~ ~~~ -TT - uU 1

. a x, ax '

- T ) g+ - 2E,
~ax.

aL7 X7Z -~-7 - - -- ~ axs ax

P ) P' as'

As we can see, these equations do not close the system because

they introduce new variables in the form of statistical third

moments. If we proceed looking for prognostic equations for

these third moments, they will introduce in a similar way

fourth order type moments and so forth.

Therefore in order to be able to use these Reynolds

equations additional assumptions must be used.

3. Turbulent Closure

If there was no turbulence and the statistical second

moments of the Reynolds equations were negligible, they would

form a closed system of equations describing the mean motion.

This is typical of the deep ocean, where turbulence events are

episodic and of a low mean level [Ref.61.

15



However, these second moments are generally not

negligible on the upper layer of the ocean, where atmospheric

fluxes can be strong. The upper layer, where the Reynolds

stresses and other turbulent fluxes are important, is known as

the turbulent ocean mixing layer. It is not necessarily' equal

to the well mixed upper layer of nearly constant density known

as the remnant mixed layer [Ref.7]. Therefore, in this study,

our closure problem is essentially a boundary layer problem

where mixing processes and air-sea interactions take place.

In order to close the system of equations, we must

first decide to what order we want to go to in our prognostic

equations, and at that point parameterize the statistical

moments based on known variables. Hence parameterizations are

an important tool that rely essentially on observations of

slow varying variables. However, a complete study of these

parameterizations, to see how the observed variables relate to

the fast varying ones and to validate the procedure, will

involve the simultaneous observation at a wide range of

scales. Until recently these type of observations suffered

from a lack of instrumentation capable of providing a complete

picture of the ocean microstructure, similar to those that

exist for micrometeorology observations.

The turbulent closure approximation may be made to

order 0, 1, 2, etc, depending on the highest order moment in

the prognostic equations. Some theories only use a portion of

16



the available equations introducing what is known as the half-

order closures.

Two major approaches of turbulent closures are used

that are applicable at any order [Ref.2]. In local closure, we

parameterize unknown quantities at one point by values or

gradients of known quantities at the same point. It assumes

that turbulence has a similar nature to molecular diffusion.

This is like K-theory, where we assume the stresses are

directly proportional to the mean shear. In the other

approach, known as nonlocal closure, an unknown quantity at a

particular point is parameterized by known quantities at many

points in space. It assumes turbulence as a superposition of

eddies transporting fluid and its properties, like an

advective process. Examples of nonlocal first order closure

like the Transilient Turbulence Theory and the Spectral

Diffusivity Theory are described in Stull, 1988 [Ref.2].

Usually higher order local closures and nonlocal closures

yield more accurate results, but they do so by adding

computational expense and complexity [Ref.2].

1. Local Zero-Order Closure

In this approach, no prognostic equations are

retained, not even equations for mean quantities. Mean flow,

temperature and salinity are parameterized directly as

functions of space and time. Adimensional variables are

usually defined for certain classes of problems.

17



2. Local Half-Order Closure

This closure scheme uses only a subset of the first

moment equations. A variation of this method yield the so

called Bulk Models, where temperature profiles are assumed to

have a certain shape, exploring homogeneity in the mixing

layer and using vertically integrated equations [Ref.8].

3. Local First-Order Closure

In this scheme we retain the prognostic equations

for the mean quantities and we parameterize the statistical

second moments (variances and cross-variances).

For a generic variable "1" one possible

parameterization of its turbulent flux will be:

U = -KL
Ox,

where K, with units m's-'is known as eddy viscosity for the

velocity case and as eddy diffusivity coefficient for the

scalar variables. This approximation is called K-Theory and

frequently fails whenever large eddies are present or when

there is not a dominant scale [Ref.2]. A useful interpretation

of these approaches can be made by looking at analogies to the

viscous stress expressions for Newtonian fluids. We can

express the Reynolds stresses in terms of the shear, by

substituting the molecular viscosity coefficient with an eddy

viscosity coefficient, obtaining:

18



a-u
reYno2ds=P m rn

Since turbulent mixing is much more effective than

viscosity, the eddy viscosity should be much greater then the

molecular viscosity [Ref.2]. Also while molecular viscosity is

a property of the fluid, the eddy viscosity is a property of

the flow so that this coefficient should vary as turbulence

level varies. Good parameterizations should rely on the Monin-

Obukhov length scale, on the Richardson number (Ri) and on the

stratification, as we can see in the examples presented in

Stull, 1988 [Ref.2].

Another useful interpretation of this theory is the

so called Mixing-Length Theory derived by Prandtl (1925)

[Ref.2] for neutral conditions. If a turbulent eddy moves a

water parcel upward by a distance z' and if we assume that

there is no other mixing or changes on "1" within the parcel,

then the perturbation of "1" can be written as:

1 2 surround:ng parcel az

similarly

a-u-Uparcel -z
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In order to have upward motion we must have some vertical

velocity w'. If turbulence is such that it can be assumed that

W/= C. U/ for <0

w=-C u for -L>0

where "c" represents a positive constant. Then we can define

mixing length "Ml" as

A vertical eddy flux of the scalar variable "1" will have the

form:

a-z; as

so that K, =M1 2a
az

Therefore K, should increase as shear increases or turbulence

increases and as the ability of turbulence to cause mixing

increases. Finally a remark should be made about the
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assumption of linear gradients valid only over small

distances, noting that this theory is a small-eddy theory.

4. Turbulence Kinetic Energy (TKE)

TKE measures the intensity of turbulence and is

directly related to the momentum, heat and salt transport

through the mixing layer. Its balance is important in the

physical interpretation of the fluxes that are present on the

Reynolds equations, and in describing the physical processes

that generate and maintain turbulence. The total kinetic

energy per unit mass (KE) is given by:

KE=§ -lu-

using Reynolds averaging we can identify the following

components on the mean KE:

K= ) 7 KE of the mean flow

= zuQ KE of turbulence (TKE)2

From the Reynolds equations we can obtain the budget for the

KE of the mean flow on the form [Ref.2]:
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a ax, P ax. a x,

Interesting features in this equation are the fact that

Coriolis has no effect on the TKE, showing that it is only a

redistribution term. Another important feature is the explicit

form of the Reynolds stresses representing the transformation

of energy between the large scales of the mean flow and the

smaller scales of turbulence.

From the definition of potential energy (p) and by

using the Reynolds averaging procedure we can obtain the

following potential energy budget:

dO

We can see from this budget that the scalar turbulent fluxes

represent the transformation between the mean potential energy

and turbulence.

After identifying the role of the Reynolds stresses

and scalar fluxes it is important to see how they balance,

interact and develop in time. This can be accomplished by

establishing a TKE budget. Using the prognostic equations for

the perturbations and using an analogous procedure to that

wich we used to obtain the prognostic equations for the
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Reynolds stresses and scalar fluxes, we can obtain prognostic

equations for the variances of the perturbed velocity

components that yield the following TKE balance [Ref.2]:

&T-T ( u -k) 8! a(u'4 ')
a xt x x Bx, ax -E

The LHS of the budget represents the storage and advection of

TKE by the mean flow. This latter term is often assumed

negligible by assuming homogeneous turbulence over the mixing

layer.

The first term on the RHS represents the buoyancy

production/consumption. Corresponds to the transformation of

TKE into potential energy and vice versa. Usually it is

positive during the day and negative during the night due to

diurnal solar heating.

The second term represents the mechanical or shear

production and is directly related to the Reynolds stresses,

reflecting any energy sources due to stirring or mixing and

the interaction with the kinetic energy of the mean flow.

The third term represents the eddy transport of TKE,

acting as a source or loss whenever there is a convergence or

divergence.

The fourth term represents the pressure correlation

term, describing how TKE is redistributed by pressure

perturbations. It is this term that is responsible for the
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interaction of turbulence with internal or surface gravity

waves. The small scale perturbations can be due either to

waves or turbulence and from linear wave theory (u'1p')

represents energy flux or power; therefore we can expect

interaction between these two phenomena to exist by sourcing,

sinking and redistributing TKE.

The last term represents the viscous dissipation rate

or the transformation of TKE into heat.

B. MIXING LAYER ANALYSIS

Mixed layer depth can be defined as the depth at which

density increases by some predetermined amount above the

surface value, while mixing layer depth can be defined as the

depth at which the dissipation rate drops monotonically below

some arbitrary small value [Ref.8]. This definition for mixed

layer is useful for observational purposes, but do not reflect

the depth range of mixing, i.e. the layer that is dynamically

unstable. Static stability is a measure of the capacity for

buoyant convection that is independent on the flow and based

only on density profiles. Dynamic stability measures the

tendency for mean flow to break into smaller scales, even

under statically stable conditions [Ref.6]. While statically

unstable flows become or remain turbulent, statically stable

flows may be laminar or turbulent depending on many factors

that can be interpreted based on the TKE balance.
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We can view the dynamic stability in terms of a balance

between the two different effects of stratification and shear

whenever the inertia is much greater then the viscous effects

(high R.) and the reynolds stresses and scalar fluxes are

significant. While stratification will tend to damp out any

perturbation, the shear of the mean flow will tend to enhance

perturbations by supplying the required energy.

A description of a mechanism for the dynamic generation of

turbulence is summarized by Stull, 1988 [Ref.2] based on

laboratory experiments. He describes the following sequence of

events:

1. shear across a density interface (laminar flow)

2. a critical value of shear is reached and flow becomes

dynamically unstable, generating gentle waves at the interface

3. waves grow in amplitude and eventually break

4. between waves crests lighter fluid entrains the denser

one and patches of static instability results

5. this static instability combines with continuous

dynamical instability causing each wave to become turbulent

6. turbulence at the interface causes mixing of the two

different fluids (entrainment)

7. mixing can reduce shear below critical value and

eliminate dynamical instability

8. if there is no continuous supply of energy to restore

the shear, turbulence will decay and flow will become laminar

again.
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This conceptual model for generation of turbulence seems

consistent, however due to the episodic and 3 dimensional

nature of turbulent events in the ocean, observations of all

the processes are very difficult to perform. Also the lack of

microstructure instrumentation able to directly observe the

velocity field is a major limitation on our understanding of

these processes.

Usually we rely on nondimensional parameters to compare

these factors, like the Reynolds number and the Richardson

numbers. The Reynolds number compares the inertial and the

viscous terms in the equations of motion, evaluated when the

Reynolds stresses are more important then viscous stresses.

This happens only when the non-linear effects are significant.

For turbulence to exist, it is therefore necessary to have a

high Reynolds number, but this by itself it is not a

sufficient condition, because it makes no requirements about

the supply of energy necessary for turbulence to persist.

The Richardson number compares the buoyancy production to

the mechanical production terms of the TKE balance, and

evaluates when the shear will be able to overcome

stratification to allow dynamical instabilities to exist

(Ref.2]. Usually we have high Reynolds numbers in the ocean;

therefore, the Richardson number is the critical criteria to

determine if the flow is turbulent or not.

The flux Richardson number is defined as [Ref.2]:
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29 (-W'p')

For R, less then zero we have static instability (hence

turbulent) flows. R, equal to zero corresponds to neutral

flows. The critical conditions below which flows are turbulent

is R, = 1.

Using K-theory, we can parameterize the fluxes based on

the mean shear and obtain the gradient Richardson number

[Ref.2]:

az

The critical value below which laminar flows become turbulent

is accepted as 0.25, while the critical value for turbulent

flows to become laminar is 1 [Ref.2]. This hysteresis is due

to the fact that, for turbulence to start, we need the

instability and a trigger mechanism; while instabilities will

start at R, near 1, the trigger mechanism will only occur near

R, = 0.25 (Ref.2].
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Because usually we are limited to discrete observations at

a certain depth, the bulk Richardson number is defined as

[Ref.2]:

R=-gAPAZ

This discretization will change the critical values but the

same critical value of 0.25 is generally used.

From this discussion we can conclude that direct

microstructure observations are very important on the

characterization of the mixing layer. Mixing processes have a

special importance in coastal processes, controlling the rate

of cooling or warming of the surface waters and the dispersion

or diffusion of other scalar quantities. The role of vertical

turbulent mixing on the coastal upwelling systems is

determinant in the characterization and understanding of these

type of phenomena, as we can see in the paper by Brink (1980)

[Ref.9]. Therefore mixing layer observations, are need in

order to study: mixing layer deepening or entrainment; and air

sea interactions, as we can see in the papers by Dewey et.al.

and Moum et.al. [Ref.7 and 10], characterizing coastal eddies

and the enhancement of ocean fronts by turbulent mixing, and

in the paper by Uwe et.al., analyzing upwelling relaxations

during the CODE experiment [Ref.ll1.
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C. SPECTRAL DESCRIPTION OF TURBULENCE

The spectrum, defined :,s the Fourier transform of the

autocorrelation function, gives a picture of how variance or

energy is distributed over frequency or wavelength. An eddy of

a certain wavenumber "k" can be defined as a linear

superposition of the disturbances containing energy in the

vicinity of "k" [Ref.l]. These eddies will be exposed to the

strain-rate field of larger ones, and nonlinear interactions

and consequent energy transfers are expected. As a resuli-, the

eddies will loose their identity within one or two periods or

wave J.ngths.

The Fourier Transform is a decomposition into wave

components of different wavelengths associated with the

fourier coefficients. An eddy, however, has many fourier

coE.fficients changing in time. Therefore more sophisticated

transforms and a nonstationary approach should be used if we

want to decompose the velocity field into individual eddies.

When analyzing the wavenumber spectra, i.e. how energy or

variance is distributed in scale, we can expect to find

contributions down to the sub-centimeter scales of

dissipation, after which the mechanical energy is transformed

into heat by viscous processes, and the energy drops down to

zero [Ref.l1]. If our data is not sampled below these scales

the spectra will be aliaised. Therefore to understand both

momentum fluxes and dissipation we must measure a wide range

of scales, including sub-centimeter dissipation scales.
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a. Velocity Spectrum

Large eddies are affected by the mean flow, such

that they have a skeady anisotropy, whereas no permanent

anisotropy is induced at an appropriately small scales. As the

eddy size becomes smaller, we can expect that the strain-rate

field becomes isotropic in a mean sense. This concept is

called local isotropy and it can not exist if the Reynolds

number is not large enough (at least 100 [Ref.l]). When local

isotropy prevails, the time scales are much shorter then those

of the mean flow, so that small eddies respond quickly to

changing conditions. This area of the spectrum is called the

equilibrium range and includes all high wavenumbers. In this

area of the spectra the scales are too small to receive energy

directly from the mean flow. Because energy is finally

dissipated, the amount of energy arriving to this scale should

correspond to the total energy being dissipated by viscosity.

The smallest scale that can be reached on this range is called

the Kolmogorov microscale defined as [Ref.l]:

V
E

where v is the kinematic viscosity coefficient and E is the

dissipation rate given by [Ref.l]:
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E = 2.vfk .S.dk
0

and "S" is the observed velocity spectrum.

For small wavenumbers, viscosity is not important.

The important parameters to be considered are those relating

transfer of energy from the mean flow to turbulence, and the

energy transfer to the smaller scales. The area of the

spectrum corresponding to the superposition of th€c scales

with the Kolmogorov spectrum is often called the Inertial

Subrange and exists only for large Reynolds numbers (bigger

then 105). At this range, no energy is added or dissipated, so

that the energy flux across each wavenumber is constant. It is

characterized by a slope of -5/3 on a loglog plot and is

scaled by dissipation. Therefore, from observed spectral

estimates in this range, we can estimate the total

dissipation.

Spectral estimates will depend only on the

wavenumber and on the total dissipation. Using similarity

theory [Ref.2], we can expect the spectral estimate to be:

S(k) =ak.E2/3 .k - 5 /3

[S] =m3 s -2
where [E] =m2s -3

[k] =m -
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where ak is known as the Kolmogorov constant with ranges from

1.53 to 1.68 [Ref.2, pp.390].

For time spectra of velocity, two cases should be

considered. The Lagrangian time spectra related to the

temporal evolution seen by an observer moving with the

turbulent velocity fluctuations and the Eulerian spectrum

related to the evolution at a fixed point where the mean

velocity is zero. Their shape is usually different due to

advection, but we can still define the inertial and

equilibrium sub-ranges in a similar way.

b. Temperature Spectrum

The temperature spectrum is defined in a similar

way to the velocity spectrum, and shows the same nonstationary

character, with energy being added, dissipated and transferred

between different scales. If the Reynolds number is high

enough, there is also an equilibrium range, an inertial

subrange and an inertial-convective subrange where the

temperature fluctuations are simply convected and where the

spectral transfer of temperature variance is constant. In

certain cases when thermal diffusivity becomes important

within the inertial sub-range and where viscosity is not yet

important, there is a Inertial-Diffusive subrange; this occurs

in fluids with small Prandtl number (ratio of kinematic

viscosity to heat conductivity). For large Prandtl number

fluids, like water, viscous effects occur first and then
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thermal diffusive effects; therefore we can also define

Viscous-Convective and Viscous-Diffusive subranges.

c. Batchelor Spectrum

The Batchelor spectrum corresponds to a theorical

shape of the wavenumber spectrum of the temperature gradient

fluctuations for homogeneous, locally isotropic turbulence in

a homogeneous fluid with a large Prandtl number [Ref.12 and

1]. It is defined by the temperature variance dissipation

rate, molecular diffusivity and by the Batchelor wavenumber

defined as:

i

k = (Ev 1D2- )

This wavenumber as been identified as the cutoff wavenumber

[Ref.12].

The effect of stratification was studied by Dillon

and Caldwell,1980 [Ref.12], who proposed that its effect

should be more noticeable in the low viscous-convective

wavenumber ranges when turbulence is weak compared with

stratification. One of the most important applications of this

theorical spectrum is the estimation of the kinetic energy

dissipation rates from the spectral cutoff wavenumber, as we

can find in the work of Dillon and Caldwell,1980 [Ref.12].
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III. DOPPLER SPECTRUM ESTIMATION

The bistatic velocity estimation that will be discussed in

the next chapter, requires a fast but accurate doppler

spectral estimator. This estimator must rely on a small number

of data points and be reliable even for weak signals submerged

in strong noise. Several spectral estimators will be analyzed

and Monte-Carlo simulations performed in order to study their

performances.

Spectral estimation corresponds to the estimation of a

function that is, by definition, the Fourier Transform of the

autocorrelation function. The performance of a spectral

estimator should be based on how well we are estimating this

function over a continuous range of frequencies [Ref.13].

The use of Spectral Estimators to detect the presence of

signals superimposed in white random noise demands a trade off

between detectability and confidence of the detected values.

Usually confidence is obtained by dividing the whole data set

into smaller subsets, estimating the spectrum of each subset

and then averaging the ensemble of estimates. If we consider

that each spectral estimate corresponds to 2 Fourier

coefficients and therefore has 2 degrees of freedom, the

ensemble average based on N subsets will increase the number

of degrees of freedom to 2N, improving the viability of the

overall estimate. However the spectrum based on these subsets
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will have less resolution and the spectral estimate will be a

smoothed but more accurate version of the unsegmented one

[Ref.14].

There are applications where we need only the behavior of

the spectral estimator at a specific frequency or in a

specific region, such as the frequency estimation of a

sinusoidal signal superimposed in white noise. In this case,

the smoothed version of the spectrum will be a poor estimator

of the sinusoidal frequency as we are seeking a parameter

estimation (and not spectral estimation), that involves

different statistics [Ref.13].

The frequency estimator based on a finite number of data

points represents an estimate of the true frequency that we

would have if we had an infinite number of points. Therefore

we need to characterize, in statistical terms, the behavior of

these estimates. In this work, the Bias and Variance of the

frequency estimates will be the statistics that we will use to

compare the performance of several estimators.

Because determination of these statistics for a wide

variety of algorithms is not analytically treatable, Monte

Carlo simulations are used to obtain estimates of these

statistics in terms of the Signal to Noise Ratio (SNR) of the

input signal and of the record length used in the estimator.

The results of this simulation will be used to determine the

appropriate doppler frequency estimator, for the bistatic data

stream.

35



A. ESTIMATION OF A SINGLE COMPONENT COMPLEX SIGNAL

SUPERIMPOSED ON GAUSSIAN WHITE NOISE

1. Peak FFT

This approach can be interpreted as an estimation of

the parameters of a single component sinusoidal signal of

frequency f, superimposed in gaussian white noise, of the form

[Ref.15]:

x(n) =A EXP( j211fn+0) ,z(n)

where z(n) corresponds to complex gaussian white noise and

"A","1p" and "f" (amplitude ,phase and frequency), assumed

constant but unknown, are the parameters to be estimated.

The probability distribution function (PDF) of x(n)

corresponds to a shift in the multivariate gaussian

distribution function associated with the white noise, and has

the form:

HW'det((R E HR

where "R,," is the noise correlation matrix and "a" the

sinusoidal signal. Since we are assuming white noise, "R,."

will be a diagonal matrix. The sinusoidal signal can be

represented by the vector:

,s=A EXP(jO) [i EXP(j2f) EXP(j211f2) ... EXP(j2Hf(N-I)]T I
=A EXP jo).
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where e is a vector containing the values of the complex

exponential of frequency f, at the several values of n.

To obtain a m-ximum likelihood estimator (MLE), we

need to find the maximimum of the PDF, which will be

equivalent to minimize the hermitian form:

S = = (a-A EXP(jP).e)(a-A EXP(A))

First, if we minimize in terms of the complex amplitude

A,=A EXP(j p), we obtain [Ref.15]:

N.
A. = __: -. ~x(n)EXF(-j2llfn)

which corresponds exactly to the discrete fourier transform of

the data evaluated at f (assumed known in this case). Now if

we substitute this expression into the hermitian form, we

obtain:

S(A- f) = Ak- = z- ; =2 -Z
N'

to minimize this expression in terms of the frequency we need

to maximize:
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N-I
: - x(n) EXP(- 211fn)

N N 

Therefore the MLE of the frequency will be the frequency where

the square of the absolute value of the discrete fourier

transform (periodogram) attains its maximum.

In this work, we used a 128 point FFT algorithm to

estimate the periodogram where the peak frequency will

correspond to the MLE estimator.

This procedure will limit our resolution to 7.8xl0
-3

of the sampling frequency, so an interpolating procedure

should be used in order to increase the estimator resolution.

Nevertheless this estimator suffers from the fact that, for a

small number of points, discretization errors are highly

emphasized and its performance degradated if one wants to

obtain faster estimations.

2. Pulse Pair

Traditionally, the Pulse Pair algorithm is used to

estimate the mean frequency of a time series with a single

frequency component signal, which corresponds to the frequency

of maximum energy [Ref.16]. It is based on a very simple and

fast algorithm that has given accurate results even for data

sets with a small number of points. However, white noise

contamination will induce a deviation from the peak value

toward the zero frequency as the SNR decreases.

38



The algorithm uses the direct evaluation of the phase

from the autocorrelation function estimate. In this project

only the phase of the first lag autocorrelation function was

used and computed using a classical approach based on

calculating covariances of two consecutive points averaged

over the sequence length. Other valid correlation estimate

methods could be used such as the Modified Covariance Method

[Ref.15], which has the property of giving estimates without

running out of the data set. It will be shown later, that this

method is equivalent to an eigenvalue decomposition of an

order 2 correlation matrix (MUSIC -order 2 fast algorithm).

Higher lag autocorrelation estimates can be used

either to improve the estimates when the frequencies are much

smaller then the sampling frequency, or to obtain more

credible estimates. However this procedure may create problems

with the uniqueness of the estimate, and will be limited by a

lag, corresponding to the Nyquist rate of the highest

frequency present on the detected signal, after which aliaised

frequency estimates occur [Ref.16].

3. Zero Cross

This method consists of the evaluation of a dominant

frequency by the number of zero crosses or the number of sign

changes on a zero mean time series. When working with complex

signals, we must start by defining criteria for a zero cross.

A point in the real domain corresponds to a line parallel to
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the imaginary axis in the complex plane. Then using this

generalization, we can define a zero cross (real) as the

change of sign on the real components of the time series. On

other hand, a point in the imaginary domain is a line parallel

to the real axis in the complex domain; then a zero cross

(imaginary) corresponds to a change in sign in the imaginary

components of the time series. Therefore, we can define a

complex zero cross as a change in sign either in the real or

imaginary part between consecutive points; therefore the zero

crosses can either be determined in the real or imaginary

parts. To get a better estimate we can also average both

estimates.

By itself, this simple method is highly sensitive to

high frequency noise contaminations that will increase the

number of zero crosses. This effect can be partially

compensated by choosing a hysteresis after each cross in order

to minimize the high frequency contaminations [Ref.17]. In

order to apply this technique, we must know the maximum

possible frequency that we can have in the signal after which

no frequency will be detectable.

Another approach developed by B.Kendem [Ref.18]

suggests the incorporation of low-pass filters and periodogram

analysis to obtain more robust estimates. This procedure was

not developed in the present analysis, though some interesting

results may be obtained.
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4. AR Modeling (Burg's method)

AutoRegressive (AR) modeling is one general class of

parametric models that we can use to study time series when

some previous information exists [Ref.15]. It is based on the

assumption that the value of the record at a particular time

is determined by a linear combination of P past values, where

P corresponds to the model order, superimposed in white noise

(u[n]), in the form:

F

x[n] =- a [kI x[n-k +u [n'

The model coefficients are usually determined based on the

autocorrelation function of the series using any of the

estimators (usually the modified covariance method gives the

best results) by solving the YULE-WALKER equations.

Another method to compute the model coefficients is

based on an extrapolation of the autocorrelation function that

has maximum entropy, so that the effects of truncation

(spectral smearing) are minimized [Ref.15]. The estimated

coefficients are then computed based on this assumption

directly using Lagrange Multipliers. This method is known as

BURG'S technique and is the one that was used in the present

study [Ref.15].

The spectral estimator will correspond to the z-

transform of x[n] evaluated on the unit circle, or:
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_1 P ___ ___w

PA (f) H(Z) f , APIf
P -

where f. is the sampling frequency, H(z) the z-transform of

the signal x[n], A(f) the denominator polinomial of H(z) after

the transformation z=EXP(-j.2.r.f), a the model coefficients

in vector form, and p. the noise power.

The spectral estimators will have singular points for

a discrete type spectra (pure sin'!5oids) corresponding to

zeros on the denominator of H(z); therefore, in our case of

only one pure complex sinusoid in white noise, we can just

look for the frequency that will be closer to a singularity.

This can be accomplished by looking for the zeros of the

denominator of the general spectral estimation expression and

choosing the one that is nearest to the unit circle. In this

form, the frequency estiration will be totally determined by

the AR model coefficients. This is the method we used for the

AR dominant frequency estimation. Because of its complexity,

we should expect this method to be computationally intensive,

and the results will also depend on the root finder that we

use.

5. Minimum Variance Method

This method introduced by Capon [Ref. 13] is also

called the Maximum Likelihood Method. It will describe the

distribution of variance over frequency, but the area under
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this estimate will not corre- ,ond to the total variance

[Ref.13]. Therefore it is not a true spectral estimator, but

is particularly suitable for single frequency estimation. The

algorithm ccriputes the spectral estimates in accordance to the

output power of a set of narrow band finite impulse response

(FIR) filters whose bandwidth or resolution are dependent on

the frequency in an adaptative manner (in comparison with the

periodogram that has a fixed resolution). The filter

coefficients are computed so that the output variance is

minimum and its gain is 1 (no distortion). Ir, fact we do not

need to compute all these coefficients explicitly because the

spectral estimators can be derived directly from the inverse

autocorrelation matrix in the form [Ref.13]:

p, _ 1 1

where R corresponds to the Toeplitz autocorrelation matrix,

that Lan be estimated in several forms. In the present work

the modified covariance method was used.

It can be shown that it gives spectral estimates that,

for a given order P, correspond to the average of the spectral

estimates of the AR models of order 1 to P [Ref.13], so its

performance should result in a smaller variance. Its

resolution is between that obtained by the classical spe .tral

estimators and by an equivalent AR model. Therefore, in order
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to obtain the single frequency estimate, we just need to

compute the maximum of the above expression. However, due to

its complexity and dependence on the resolution used in the

maximum value determination, we should expect this algorithm

to be even more computational intensive than an equivalent

order AR method.

6. Multiple Signal Classification (MUSIC Algorithm)

This algorithm is one of several that analyze the

column space of the autocorrelation matrix into a signal

subspace and an orthogonal noise subspace using a Singular

Value Decomposition (SVD) (Ref.15]. This is accomplished by

separating the matrix into its eigenvectors so that the

eigenvectors with the N largest eigenvalues, span the signal

subspace and the others the noise subspace, where N is the

number of complex components of the signal.

This estimate, like the minimum variance method, is

not a true spectral estimator because it does not preserve the

total variance, however it will work as a discrete frequency

parameter estimator. Its general expression is [Ref.15]:

pmu,s (f) : p I

k=M-1
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where M is the number of complex sinusoids in the signal and

v' are the eigenvectors that span the noise subspace

(associated with the smaller eigenvalues).

The discrete signal components will be orthogonal to

any linear combination of the eigenvectors that form the noise

base, and so we could expect singularities at the signal

frequencies. In reality, we will not have pure singularities

but the spectral estimates will peak. For our purpose of

estimating a single frequency component, the procedure used

was based on finding the roots of the averaged noise space

eigenvectors (taken as polynomials of the complex

exponential), whose phases correspond to the peak frequencies.

The eigenvector associated with the root closest to the unit

circle is the single frequency estimator.

It can be proved that when we use an order 2 matrix in

a single complex frequency component signal, the frequency

estimator is equivalent to the Pulse Pair algorithm, and so

the frequency estimate can be obtained directly from the

autocorrelation function.

The autocorrelation function for a single complex

component signal superimposed in white noise will have the

form:

rX,(k) =P.exp j2f-L) +phb(k)
f4
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and the corresponding 2nd order autocorrelation matrix will be:

rz (l) rxx(o)

The eigenvector associated with the smaller eigenvalue (-pu)

will be:

r-exp 1

R( ),2R( 0)_

Therefore, the determination of the frequency estimate in this

case will correspond to the determination of the phase

associated with the first lag autocorrelation function

estimate, as in the Pulse Pair estimator.

This analytical solution of the 2nd order eigenvalue

problem was implemented for performance comparisons, and a

singular value decomposition was used for higher orders. The

Modified Covariance Method was used to estimate the

autocorrelation matrix at any order.

B. MONTE-CARLO SIMULATION

To evaluate the performance of these spectral estimators

for the estimation of the frequency of a complex sinusoid

superimposed in complex independent gaussian white noise, a
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MONTE CARLO simulation was built within MATLAB environment.

This simulation is based on 50 independent trials where the

BIAS, VARIANCE and a TIME INDEX are evaluated at each step.

The model has the input variables:

1. Signal to Noise Ratio (scalar or vector)

2. Number of Points (scalar or vector)

3. Signal Frequency (scalar or vector)

4. Type of Spectral Estimator

The model output variables are:

1. Bias

2. Variance

3. Time Index - proportional to the computation time

and are stored at each step.

The algorithm of the simulation program is as follows:

1.SELECT TECHNIQUE

l.Peak FFT

2.Pulse Pair

3.Zero Cross

4.Modified Prony's Technique

5.AR Model (burg algorithm)

6.MV (capon's method)

7.Music (eigenvalue decompositioni

2.SELECT PARAMETERS (increments.initial and final values)

l.Number points <-> SNR

2.Frequency <-> SNR
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3.Frequency <-> Number Points

3.RUN MODEL

1. Initialize variables

trials=50

test frequency=20 Hz

sampling frequency=100 Hz

2. Main loop

generate noise

generate new frequency

generate signal

estimate frequency

compute estimate bias and variance

compute processing time

The complex independent gaussian white noise is generated

by a function that uses different seeds for the real and

imaginary parts at each step, in order to generate independent

complex gaussian noise. Each noise component is then averaged

from 5 different trials to obtain a pseudo gaussian noise.

This number of 5 trials represents a compromise in the

computation speed. The generated noise is normalized to

guarantee a variance of 1.

Model runs using a 20 Hz signal, a sampling frequency of

100 Hz, over a -20 to 10 SNR and 16 to 128 points time series,

were made for the following spectral estimators:

1. Peak FFT
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2. Pulse Pair

3. Zero Cross

4. AR Model order 4

5. MUSIC order 4

6. MUSIC order 3

7. MUSIC order 2

8. MUSIC order 2/Pulse Pair (fast algorithm)

The selected plots of the bias and the logarithms of standard

deviation are shown on the Figures 3.B.1-6.

1. Discussion of Some Results

The performance of an estimate can be assumed good

when its bias is less then 1 Hz and the log,, of the standard

deviation is less then 0. Using this criteria the following

tables show the SNR at which the bias of the several

estimators is equal to 1 Hz, and the log standard deviation

equal to 0:

TABLE 1 - SNR at BIAS = 1 Hz

Estimator 20 Points 40 Points 60 Points 80 Points

Peak -4 -5 -7 -8

FFT

Pulse -3 -8 -8 -8

Pair
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Estimator 20 Points 40 Points 60 Points 80 Points

Zero 0 0 0 0

Cross

AR Model -2 -4 -5 -7

(order 4)

MUSIC 2 -2 -5 -4

(order 4)

MUSIC -5 -6 -5 -8

(order 2)

TABLE 2 - SNR at IOgoVARIANCE 0

Estimator 20 Points 40 Points 60 Points 80 Points

Peak -3 -5 -7 -8

FFT

Pulse 5 2 0

Pair

Zero 5 4 3 2

Cross

AR Model 8 0 -4 -5

(order 4)
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Estimator 20 Points 40 Points 60 Points 80 Points

MUSIC 10 5 2 2

(order 4)

MUSIC 5 3 2 0

(order 2)

2. Conclusions

For all the estimators, after a sequence length (NP)

between 20 and 64, the estimator variance becomes dependent

only on the SNR. As a general rule except, for AR modeling,

the variance is more restrictive then the bias. This means

that we can get some improvement in the performance of this

estimators if we take averaged measurements of the estimated

frequency. The estimator that seems to work better for low SNR

is the PEAK FFT followed by AR modeling (order 4), but AR

modeling has poor processing time indexes (too slow). The

MUSIC estimator is very sensitive to the noise contamination

(SNR). The equivalent PULSE PAIR method and the MUSIC (order

2 fast algorithm) do not show any significant improvement by

changing the AUTOCORRELATION estimators, at least between the

two that were used in this program (biased and the modified

covariance estimators [Ref.15]).

The fastest algorithm is the MUSIC (order 2 fast

algorithm) at all sequences lengths followed by the PULSE PAIR
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and ZERO CROSS for small sequences and the PEAK FFT for large

sequences.

The lowest SNR for which we can get unbiased estimates

with a good variance is -10 when using a PEAK FFT with 128

point sequences. Unfortunately this performance indicator does

not show the discretezation error, which becomes

overwhelmingly significant for small FFT lengths. We can try

to reduce this error by using interpolation schemes, however

this procedure will make this algorithm slower for a small

number of points and is very susceptible to low SNR. For SNR

between -5 and 0 we should use sequences of at least 32 to 64

data points (PEAK FFT also), but these estimates will have

severe discretization errors. For SNR between 0 and 5 we can

use either the PEAK FFT or the PULSE PAIR/MUSIC 2 with 128 to

32 sequence length. For SNR greater then 5 the best

performance is given by the MUSIC (order 2 fast algorithm) or

PULSE PAIR. If we want to emphasize the speed of the

estimators, the best results are the ones given by the PULSE

PAIR/MUSIC 2, requiring high SNR.

Because the CDV package bistatic doppler frequency

estimation is based on 32 points records, and the algorithms

run in real time using C compiled code in a DSP, the most

suitable algorithms selected from these simulations are the

PEAK FFT for poor SNR, and the PULSE PAIR/MUSIC 2 algorithms

for higher SNR. When considering discretization noise, the

first choice for a spectral estimator to be used in the CDV
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real time processing will be the PULSE PAIR estimator, because

of its performance, simplicity and velocity.
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IV. THE CDV MICROSTRUCTURE PACKAGE

A. RECENT METHODS FOR TURBULENCE OBSERVATIONS

1. Rapid Sampling Vertical Profiler (RSVP)

The RSVP was developed by Caldwell, Dillon and Moum in

1987 (Ref.19] for sampling near microstructure parameters from

a moving vessel permitting the study of the horizontal

variability of upper layer profiles. The instrument makes

near-microscale measurements (3 cm resolution) of temperature,

salinity and turbulence dissipation down to 00 m when

deployed from a ship moving up to 6 Knots.

The profiler consists of a small retrievable probe at

the end of a cable that is also a data link. Damping flaps are

used to ensure uniform vertical velocity and orientation. The

airfoil shear probe, used to estimate the TKE dissipation

rate, is very sensitive to vibrational noise of the profiler,

which may dominate the signal in many situations. The process

by which it senses shear is based on the deflection of a piezo

ceramic beam in a rubber jacket by cross-stream velocity. By

careful instrument design, virtually all current measurements

of ocean turbulent velocity have been made with this type of

sensor.

Moum et.al. [Ref.l0] performed upper ocean

observations with this instrument where they were able to
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characterize the fine structure of transition zone coastal

eddys, and Dewey et.al. 1990 [Ref.7] used this type of

measurements to study the enhancement of ocean fronts by

turbulent mixing. The interesting results obtained in both

experiments show the importance and applicability of the RSVP

in upper ocean observations.

2. Pulse to Pulse Coherent Sonar

A pulse to pulse coherent sonar was developed by

Lohrmann et.al. 1990 [Ref.20], called the High Resolution

Current Profiler. This instrument uses four 307 KHz

transceivers, mounted 300 off the vertical in 900 azimuthal

intervals. Fifty range cells, covering a profiling distance of

10 meters, measure radial current components along the

transceiver beams. These measurements do not give the true

velocity vector, but assuming a stationary and homogeneous

turbulent field, allows an estimation of the Reynolds stresses

and turbulent kinetic energy by separating the mean and

fluctuating parts of the radial speeds. In this way, this

instrument remotely senses the turbulent stresses without

inducing any flow distortions and provides moderate vertical

resolution.

3. Bistatic Acoustic Doppler Profiler

This instrument, developed by T.P. Stanton (1990),

measures the explicit velocity vectors at a very high temporal

and spatial sampling rate along one direction. The system

61



consists of four, 300 KHz fan-beam receiver transducers,

radially separated from a central narrow beam-width

transmitter transducer, which rapidly emit short duration

acoustic pulses. Range gated doppler shifts are evaluated at

each receiver using dual interpulse period, coherent doppler

estimation methods.

Simultaneous receptions at the four transducers

provide an overdetermined estimate of the three velocity

components at range bins along the ensonified volume,

typically every 10 cm for 10 m ranges. This system allows

concurrent measurement of reynolds stress components and fine-

scale shear out to ranges of 30 m.

Velocity ambiguities from the coherent velocity

estimation limit the unambiguous velocity range and profiling

range. Unfortunately, the large frame for mounting the

acoustic components restricts applications of the system.

B. SPECIFICATIONS OF THE CDV SYSTEM

The CDV Microstructure Package is a system developed by

T.P. Stanton (1991) to measure ocean turbulence variables at

a sub-centimeter resolution. It has 3 convergent acoustic

transceiver beams operating at 5.296 MHz in a backscatter

coherent mode, using both bistatic (0.6 cm focal cube) and

monostatic operating modes. In the bistatic mode, one

transducer is transmitting, while the other two are receiving

the scattered energy from a focal volume. In the monostatic
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mode the same transducer that transmits the signal receives

the backscattered energy at range bins along the acoustic

beam.

The acoustic measurements provide the velocity vector,

shear and kinetic energy estimation at a 44 Hz rate, while

simultaneous microstructure measurements of temperature,

conductivity, pressure, shear and the 3 components of the

instrument acceleration are made.

This package operates in a profiling mode at approximately

25 cm/s descending or ascending rate, or fixed to a tripod

facing down for bottom layer observations, or facing up for

shallow water, near surface, observations. The package has

also been attached to an ROV for semi-lagrangian upper ocean

turbulence measurements.

The digital data is transmitted to the surface by a 1.4

Mbaud fiber optic data stream that is stored on a PCM/VCR

system. The data stream is also passed to an AT&T digital

signal processor (DSP) in a 386 based HP VECTRA for real time

processing and graphical monitoring of selected channels. This

pre-processed data is then stored on optical disks for further

processing. A summary of the profiler package technical

specifications follows:
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TABLE 3 - CDV CHARACTERISTICS

LENGTH DIAMETER WEIGHT

1.2 m 12 cm 7 Kg (in air)

TABLE 4 - ACOUSTIC CHANNELS

FREQUENCY POWER SAMPLING OUTPUT

FREQUENCY FREQUENCY

5.296 MHz 5 Watt peak, in 11.1 KHz (after 44 Hz

a 20 beamwidth demodulation)

TABLE 5 - ANALOG CHANNELS

SAMPLING TEMPERATURE CONDUCTIVITY OUTPUT

FREQUENCY PRE- EMPHASIS PRE-EMPHASIS FREQUENCY

1.4 KHZ 0.339 Hz 0.100 Hz 44 Hz

5.6 KHz (shear)

C. SIGNAL PROCESSING OVERVIEW

The acoustic modes are controlled by a programmable

sequencer that rotates the transmitting and receiving modes of

the three transceivers, such that 3 monostatic and 3 bistatic

modes have been selected every 20 ms. This acoustic data is

received, complex demodulated to baseband and the complex (in
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phase and quadrature) channels sampled at 11.1 KHz, for the

bistatic data and 88.2 KHz for each monostatic channel.

The temperature and conductivity variables are pre-

emphasized, in order to obtain an improved SNR at small scale

and directly estimate gradient quantities, and sampled at 1.4

KHz. The 3 acceleration channels and pressure are sampled at

the same rate, while the shear pre-emphasized data is sampled

at 5.6 KHz.

The data stream comprises a set of 8 word records, such

that the first two are used by the non-acoustic channels and

the other 3 pairs correspond to the complex demodulated

acoustic data. These 8 word records are contained in a

sequence frame of 2051 words (corresponding to 22.7 ms of

data) which are passed by DMA to the DSP for processing and to

a PCM/VCR system for storage.

Once the DSP acquires the data, the data stream is

interpreted and the real time processing is performed.

Further processing, such as:

1 - Water salinity computation

2 - Water density computation

3 - Velocity vector (u, v, w components) estimation

4 - Spectral analysis of several variables

5 - Reynolds stresses estimation

6 - Scalar fluxes estimation

7 - Dissipation estimation

8 - T.K.E. estimation
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is performed by external programs accessing this preprocessed

data on the optical disks. The overall flow graph is shown in

the figure 4.C.1.

D. ACOUSTIC CHANNELS - VELOCITY ESTIMATIONS

The velocity component estimation in the acoustic bistatic

mode is based on the mean doppler shift of the backscattered

acoustic energy resulting from the relative velocity of

scatterers present in the focal volume. The real-time pre-

processed acoustic data stored on the optical drive comprise

the mean doppler shifts for the 6 different acoustic paths

between pairs of transmitters and receivers. In the bistatic

mode, the single transmitter/two receiver configuration is

sequenced around the three transducers. In order to obtain the

velocity components from this spooled data, the following

steps are performed:

1 - Clear data of large spikes using a reciprocal

channel comparison and a 4th order linear predictor, based on

the previous 20 point autocorrelation function estimate.

2 - Compute velocities from the doppler frequencies.

3 - Transform estimates to an orthogonal frame of reference

fixed to the instrument.

4 - Rotate estimate to an absolute vertical reference frame.

1. Doppler Velocities Estimation

For two generic transducers, where transducer 1 is

transmitting and transducer 2 is receiving, see figure
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4.D.1.1, and assuming that the equipment is fixed to the

bottom, we can derive the following doppler rela~ionships

[Ref.21J. If a pulse is transmitted at time t=O, it will

arrive at BS at time t=t,, that for a sound velocity "c" will

be given by:

Now, if a second pulse is transmitted at time t,, it will

arrive at BS at time t, and

31 +C. t 2 _. 3Tl=C t2
CC-VV

5 .c-4 rre xiN& &CL-uA/f
TI - TKAAMSDvC~cE #-1
T2 - TJRAA5DOCCA402 4kVEtry

Figure 4.D.1.1 - Scheme of a Bistatic 2 transducer system.
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Assuming that during the interval (O,t2 ) we are transmitting

at a frequency ft, there will be f,,.t 2 wave fronts arriving at

BS, during the intervai t3-t,. Therefore, the frequency

detected at BS will be:

c - VBsfBS (t3 -t ) =f t. " t2 f BSs- f CX

This frequency corresponds to the frequency of the scattered

signal at BS that will be send towards T2. Using the same

procedure we arrive at the following expression for the

frequency at T2:

ES- . .~- Cx
f o i s- c- fc vA c* vA

If we suppose that the velocity at BS has one component V,,

see figure 4.D.l.2, then v.," = -v j2 and fT2 = f,.. Therefore

the only velocity component producing a doppler shift will be

along the direction defined by the axis bisection of the two

beams i.e. V,. This component will have equal projections

along the two beams, so that:

vBT =2= V
1 2 = Vs in8

Therefore
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Figure 4.D.1.2 -Velocity projections scheme for a 2
transducers bistatic system.

2FI

5 Ar'

Because of the symmetric geometry of this system, this

expression will also be true for the case when T2 is

transmitting and Ti receiving. This fact creates redundancy in
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VN3

VN ~ C><1200

12

'CX

Fiqure 4.D.2.1 - CI)V Package, Orthogonal Reference Frame
fixed to the instrument.

the observed doppleL frequency, which provides increased

confidence of the estimates by averaging, and allows the

detection of single spurious wild points. Therefore -he six

acoustic transceiver modes, will measure three slanted

velocity projections along the axes bisecting the acoustic

beams.

If the instrument was in motion we would have to add

the instrument velocity components along these axis, in order

to get absolute values. These operations are implemented by

programs external to the real time processing.
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2. Velocities on an Orthogonal Reference Frame

The Doppler velocity components must be transformed

into an orthogonal frame before the Reynolds stresses or the

scalar fluxes can be estimated. We can define the instrumental

orthogonal reference frame as in figure 4.D.2.1.

The scatterers velocity will be defined as:

= 1-41 + "j -WIk

and the observed velocities will be:

S cosy 0 sin¥ u-j

J =-cosycosa -cosycos(a-T) siny -
- 2

i.e.

V :Tx v

Therefore, this system may be solved in terms of the unknowns

u, v and w by inverting the non-singular matrix "T".

The next step is to rotate this velocity in the x-axis

and y-axis in order to obtain a vertical z-axis. This can be
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accomplished in several ways depending on each particular

deployment. For the case when we have the system fixed to a

tripod, we can look for the rotations that minimize the mean

vertical velocity, or just measure the platform orientation

using the 3 axis accelerometer as tiltmeters.

E. NON-ACOUSTIC DATA

The non-acoustic channels on the CDV package are: 3

component acceleration, pressure, temperature,conductivity and

shear. The real time processing for these channels was coded

in C language and compiled on the DSP together with the

Assembler routines that access the CDV data stream in memory.

This DSP program is controlled by another C routine running on

the Host computer, that interacts with the user, reads the

proper setup files, receives the data from the DSP, plots

selected variables of the pre-processed data and sends the

output to an optical mass storage unit. The details on the

processing of each particular channel are described next.

TEMPERATURE AND CONDUCTIVITY

The temperature variable (T) is measured using a high

frequency response FP 07 thermistor, and conductivity (C)

using a 2 electrode AC conductivity probe. The analog

temperature and conductivity are pre-emphasized at 20 dB per

decade for frequencies greater than 0.339 Hz and 0.100 Hz

respectively, for SNR optimization. They are sampled at 1.4
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KHz and the multiplexed data stream is sent to the DSP by DMA

assembly input routine.

A DSP function demultiplexes variables from the data

frame to separate selected variables from the stream. A first

difference criteria with a threshold s:t by a setup file, is

used to detect spikes on the data. Single bad points are

substU.uted by the previous valid point. Deterministic

coherent noise over each frame period (32 words) is subtracted

from each data cycle. This coherent noise is comnputed from the

mean of approximately 5000 frames and is entered from an input

file. The raw T and C gradient data are then squared and

accumulated on 1 second rotary buffers for estimation of

gradient variances. Both the T and C data are also de-

emphasized by single pole digital Butterworth filters and low

pass (LP) filtered by a second order Butterworth filter with

a cutoff frequency at 20 Hz. These operations are done in

sequence by different functions to avoid round off errors.

Finally the de-emphasized data is decimated to 44 Hz and the

variances are computed based on the mean of the 1 second

rotary buffers. These 44 Hz data are sent every second to a

HOST program running on the HP Vectra.

ACCELERATION AND PRESSURE

Acceleration is observed using 3 orthogonal solid

state DC response accelerometers in the head of the CDV.

Pressure is sensed using a strain gauge pressure sensor. Both

Acceleration and Pressure are processed in a similar manner.
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The DSP function that demultiplexes the input buffer, also

separates these 4 channels from the data stream. The same

deglitching procedure is used concurrently with a threshold of

200 raw counts for the four channels. There is negligible

observed coherent noise on these channels. The data is then LP

filtered by a third order Butterworth with a cutoff frequency

at 20 Hz, decimated to 44 Hz and sent to the HOST program

every 1 second for monitoring and storage.

SHEAR

To measure the velocity shear, cross-velocity

variations are measured with a high sensitivity airfoil probe.

Because of its nature, this sensor is easily noise

contaminated by variations in the instrument velocity or

spurious vibrations. Also, it only works when the instrument

is in motion and senses only velocity changes perpendicular to

the mean sensor velocity.

The shear probe is sampled at 5.6 KHz and the data

send to DSP by DMA assembly input routine. The same DSP

function separates the shear from the data stream and applies

a 200 count, first difference deglitching criteria. Any

deterministic coherent noise is subtracted from each data

cycle. Next, the pre-emphasized (gradient) data is squared and

accumulated in 1 second rotary buffers, and the variance is

computed at a 44 Hz rate and sent to the HOST program.
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F. CALIBRATION AND ERROR ANALYSIS

The temperature data was previously calibrated using a

third order polynomial fit of the form:

TEMP=A. COUNTS3  B. COL7NTS2 _C. COUNTS D
where

A=10.662337
B=-3.957935.10-4

C=1.216833.10 -9
D=-1.345511.10-14

where TEMP represents temperature values in Degrees Celsius

and COUNTS the CDV outputed values.

The pressure sensor was calibrated by recording the

pressure values obtained from water columns from 0.10 meter to

2.00 meter, 0.10 meter apart. The calibration transformation

was then computed using a least squares fit to a straight line

by solving a system of 20 equations on 2 unknowns. The

resulting calibration is:

DEPTH=0.000191964. COUNTS-0. 0218414

where DEPTH is the water column height in meters and COUNTS

the pressure channel output values. The mean square error is

0.0012 m. The calibration was performed with pure water, so

that in order to compute the depth in salty water, this values

must be multiplied by a factor related to the density anomaly,
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that for practical use can be 0.974 (assuming a density of

1026 Kg/m 3).

The acceleration channels were calibrated using the fact

that when the equipment is fixed the mean observed value

should be the gravitational acceleration. The package was

fixed and rotated from -200 to +200, in 50 intervals on two

quasi-orthogonal planes, with one of the planes containing one

of the horizontal accelerometers. Least square fits to

straight lines were performed, resulting in the following

calibration:

ACCx= 0.0O0108549.COUNTSx-18.0324
ACC.= 0.00119582.COUNTSY-19.9673
ACC-=-O. 00110622. COUNTS-+16.9346

where ACCI is the acceleration in m/s 2 and COUNTS the outputed

quantities. The observed mean square errors are 0.0532 m/s 2,

0.0210 m/s 2 and 0.0634 m/s 2 in the X, Y and Z channels

respectively.

To evaluate the performance of the equipment, two 5

minutes data sets were selected from the WHARF #2 Experiment

at the August 2 1991. This experiment will be described in

more detail in the next chapter. The calibrated temperature

values are very closed to those observed using a mercury

thermometer bucket temperature. The accelerometer mean values

are reasonably close to the expected. Because there was no in
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situ calibration, only mean quantities can be analyzed. A more

detailed description of these data will be presented in the

next chapter. This experiment was performed with the

instrument fixed to the bottom, so no shear probe data was

analyzed. No pressure data was available from this deployment.

The first step in the analysis is to look at the pre-

processed doppler data. A sample of two bistatic reciprocal

channels (frequency, power and bandwidth), and calibrated

temperature data is shown in the figures 4.F.l-2.

A careful analysis was required for the velocity

estimation, because there was no previous experience with this

method. It was necessary to validate all the processing steps

(both electronic and software).

The reciprocal channel doppler frequency estimates are

generally similar, see figure 4.F.1, except for individual

spikes, or in regions of very low signal to noise ratio (SNR)

which are also seen by a large bandwidth. Some of these

discrepancies will be attenuated by using a variable pulse

repetition interval in future deployments, eliminating

coherent additive interference.

To increase the confidence and deglitch the acoustic data,

an adaptative procedure has been developed. The probability

distribution function (PDF) of the differences histogram (see

in the Figure 4.F.3), shows that the differences between two

consecutive values are smaller than 70 Hz (0.01 m/s) 75% of

the time. Also, the scatter plots between the first
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Figure 4.F.2 - Calibrated Temperature data. Simultaneous to
the data shown in figure 4.F.1-

differences and the received powers (Figure 4.F.4) shows that

the bigger differences are mainly associated with low received

powers, corresponding to the cases when noise from additive

interference and system noise may be significant. We have two

independent realizations of the same random variable

(reciprocal channels) that can be used either to increase the

confidence of the estimates or to validate them.

To deglitch the data and obtain a clean averaged time

series of the doppler frequencies, an intelligent adaptative

algorithm must be used based on the surrounding points. A

procedure was implemented to compare the signal at each time

with a predicted value obtained from a 4
" order linear
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Figure 4.F.3 - Reciprocal Bistatic channels, first

differences histogram.

predictor based on the previous 20 point autocorrelation

function. Whenever the difference was greater than four times

the standard deviation (also estimated from the previous 20

points), that point was assumed non-valid. When both channels

were assumed bad, or if a first difference fixed criteria was

violated, the predicted value was used. We can expect an

improvement in the SNR of the estimates by using this method.

Some examples of how this procedure works, are shown in the

figure 4.F.5.

To transform these deglitched doppler shifts to velocity

romponents in an orthogonal frame fixed to the instrument, a

linear transformation must he performed. This transformation
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will not distribute the velocity variance evenly through the

3 orthogonal components of velocity, giving more weight to the

component along the instrument vertical; this component will

also have a greater statistical confidence.
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Figure 4.F.5 - Bi.static channels deglitching function.
Whonever the difference curves go higher than the threshold
curves, in the lower plot, that point was assumed as bad data.
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V. TURBULENCE OBSERVATIONS USING THE CDV PACKAGE

A. WHARF 12 EXPERIMENT

The purpose of this experiment was to asses the

performance of the CDV package in oceanic backscatter

conditions, test its ability to measure ocean fluxes and

surface wave fields, and to study the forcing mechanisms in

ocean surface layers.

The CDV package was deployed off the Monterey Wharf #2 on

2 and 3 August 1991. The tripod-mounted CDV was placed on the

sand-bed with the top of the instrument at depths ranging from

0 to 0.75 meter. The depth changed with the tide, and the

total water depths ranged between 1.7 to 2.5 meter.

The package was controlled and monitored from a van parked

on the wharf, from which observations of air temperature

(moist and dry), bucket sea surface temperature, short and

long wave radiation and wind direction and speed. The

equipment deployment is sketched on figure 5.A.1.

The air temperature was measured using a mercury

psychrometer and the sea surface temperature using a protected

mercury thermometer. The wind speed and direction was recorded

using a MRI anemometer and wind vane, while the short and long

wave radiation was obtained from an Epply radiometer.
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The environmental conditions were characterized by an

overcast sky, moderate to weak winds from WNW. Small amplitude

swell from the North was being reflected from the solid walls

below the wharf. Due to the barrier created by the wharf walls

on the wind field, the measured winds did not correspond well

to those over the CDV package. These light wind conditions

were not ideal to evaluate the overall performance of the

instrument, because we would not expect to find high

turbulence levels in the high frequency range. Nevertheless,

because we understand the physics of the linear wave fields

and we do not have lateral boundary effects (as we would

encounter in a tank experiment), we were able to measure the

performance of the package at the low and medium frequency

range using the wave field signal, and to estimate the noise

floor at higher frequencies.

The CDV data were recorded on VCR tapes (labeled WCDVl to

WCDV7), from 1100 until 2300 on 2 Aug 1991, covering the

afternoon high tide at 1545 pm, and from 0200 to 0800 at 3

Aug, covering the morning high tide at 0515. The short and

long wave radiation and the wind data were recorded

continuously from 1100 am of 2 Aug until 0800 am of 3 Aug,

sampled at 8 Hz and spooled by an HP 332 computer to an

optical drive for further processing. The air and bucket

temperature were recorded every hour from 1600 2 Aug to 0800

3 Aug.
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After a careful analysis, only the afternoon CDV data from

1300 to 1800 show high data quality, while the morning data

show large data gaps due to the fact that the equipment was

only partially submerged.

Following DSP preprocessing, all the data were spooled to

an HP VECTRA 386 and the CDV bistatic data to a SUN SPARC

STATION for further processing.

After calibration, the 8 Hz sampled wind and radiation

data were 10 min averaged and decimated at a 1/min sampling

rate. The CDV sea temperature was calibrated and used for

cross-spectral analysis and computation of fluxes over 20

minutes averages. The bistatic doppler frequency estimates

were deglitched using the adaptative procedure described in

the previous chapter, and used to estimate the velocity vector

in an instrumental reference frame. The instrumental

velocities were then properly rotated to a vertical reference

frame. All the processed data (intermediate and final),

spectral and flux estimates and output plots were stored on an

optical disk.

B. METEOROLOGICAL DATA

This section describes and analyzes the tide, wind,

radiation, air and sea surface temperature data. It will focus

only on the period from 1100 to 2000 of 2 Aug 1991,

simultaneous with the useable CDV data.
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As is shown in the Figure 5.B.1, within this period there

was a high tide at 1545 pm. The tide height determines the

depth of the CDV measured quantities; so in Figure 5.B.1, the

expected mean depth of the top of the CDV is shown, assuming

that at 1100 it was at a 0 m depth. Also shown as vertical

straight lines are the times of the evaluated ocean fluxes.

Due to problems in the radiation sensors, long wave

radiation data was not available. This fact restricts our

ability to compute the surface buoyancy fluxes; however, we

can use the short wave radiation and wind stress as indicators

V, I ARt- #2 - 1op ()f 11w ('I)*%' I epth - 2 und 3 Aug I}QUI

I

fre}ni tidet table's S.1-ram(ilv(;det'v (G ot )-ccri{ecte'd

-A)( Io. 11,0ll11111 1
IIOt d(lliglht ';lving tilllc

E 0v.2

C..
0
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-I. I

-06( %' % il\ -'1 :it! 11001 ({h'lh 01.0 ill)
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Figure 5.B.1 - Wharf #2 Experiment: depth of the top of the
CDV package at 2 August 1991.
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of the forcing mechanisms in the ocean upper layer. The wind

data does not accurately reflect wind stress at the CDV

location due to the barrier created by the wharf walls, but it

will show the maximum expected mechanical forcing of the ocean

surface. The time evolution of these variables is shown in

Figure 5.B.2, for the period from 1200 to 2000 pm at 2 Aug

1991, based on measurements made from the top of the wharf.

These plots show that the wind stress was decreasing

slightly after 1500. Due to the overcast conditions during

almost all the period of the experiment, we should not expect

a large variability on the long wave radiation, so the changes

in the surface buoyancy flux should be determined primarily by

the short wave radiation and by the surface layer stability.

The short wave radiation followed a cloud covered diurnal

cycle increasing until 1500, and decreased thereafter. The

peak shown at approximately 1420 corresponds to a short period

of time of partially clear sky. From these conditions, we may

expect a decrease in the weak mechanical steering due to

decreasing winds and a reduction in the stability of the upper

layer and due to a reduction of solar heating. Therefore, we

should not expect to find high levels of turbulent energy in

the form of scalar fluxes and Reynolds stresses, i.e. we

should not expect to observe an active mixing layer, so that

the ocean conditions should be dominated by surface gravity

wave fields.
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Figure 5.B.2 - Wharf #2 Experiment: Wind stress and short

wave radiation, from 1200 to 2000 at 2 Aug 1991.

C. CDV DATA

The data between 1500 and 1800 of 2 Aug 1991 were analyzed

in more detail and the ocean fluxes computed using an eddy

flux correlation method [Ref.2]. The first step was to select

20 minutes ensembles every 1 hour. These data sets were then
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spooled to an optical drive, and the data analyzed in more

detail using C programs and MATLAB software.

After conversion to engineering units, the acceleration

and temperature data were averaged over all the 20 minute

ensembles; the tilt angles were computed and the mean

temperatures compared with the observed bucket temperature.

TABLE 6 - CDV AVERAGED DATA

Hour (2 Aug) 15:30 16:30 17:30 18:30

Acceleration-X 0.1626 0.1588 0.1630 0.1553

(mn/s)

Acceleration-y -0.6645 -0.6647 -0.6718 -0.6787

(m/s 2 )

Acceleration-z -9.8278 -9.8330 -9.8277 -9.8288

(m/s 2 )

Direction-Deg -76.250 -76.560 -76.360 -77.100

(ref.to x-axis)

Tilt (Deg) 3.980 3.9760 4.020 4.050

(from vertical)

Mean Temperature 17.1 0C 16.80C 16.30C 16.0°C

(bucket)

Mean Temperature 16.240C 16.230C 16.170C 15.820C

(CDV sensor)
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Hour (2 Aug) 15:30 16:30 17:30 18:30

CDV Depth 0.74m 0.71m 0.64m 0.36m

(Tide Table)

We can see that over the full deployment there was a

constant tilt of 4 degrees from the vertical, and an offset of

-76.6 degrees from the x-axis, defined as the bisection of

transducers 1 and 2. These values were used to rotate the

velocity data to obtain a vertical reference frame. Examples

of the measured velocities are shown in Figure 5.C.1. The

small magnitude and variability of these values is consistent

with the observed conditions of low or nonexistent turbulence

and small amplitude wave field.

The mean temperature compares well with the bucket

temperature, but the 44 Hz measured temperature, shows some

high gradients (as is shown in Figure 5.C.2) not correlated

with the vertical velocities, suggesting high horizontal

stratification. The strong and sharp variations of

temperature, by itself, suggest horizontal advection of warm

patches of water. This hypothesis is further discussed in the

next section, when the temperature fluxes are discussed.

D. OCEAN FLUXES AND STRATIFICATION

Figures 5.D.1 to 4, show the spectral evolution of

temperature and of the 3 velocity components. The frequency
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density units of all spectral quantities are such that the

integration over the full frequency range gives the total

variance. These spectra are characterized by a broad peak,

more evident in the velocity spectra, at frequencies between

0.2 and 0.6 Hz. They represent short period, surface gravity

waves, with wavelengths of the order of 6 m with e-folding

WHARF #2 - u,vw Velocity Components at 44 Izh
0.4 . --

absolute vertical
0.3 WCDV2-15:30 I V co(mI)ment

0.2

0.1 1

11060 165 1070 1075 180

seconds (after 15:18:07 - 2 Aug)

Figure 5.C.1 - Wharf #2 Experiment: Velocity data, sampled
at 44 Hz.

depths of the order of 1 m (i.e. deep water waves). This fact

is consistent with the observed similar energy content in the

vertical and horizontal velocity components (10-' (m/s)2/Hz).

The broad band shape of the spectrum suggests that this energy
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is due to wind waves startinq to shoal, probably generated in

the near field.

There are also three peaks, possibly associated with low

frequency swell or seiche, at the frequencies of: 2.5x10'- HZ,

4.5xi0- Hz and 7xl0-2 Hz: these spectral peaks can be seen in

the figure 5.D.5, which shows the high resolution spectra of

the variables at 1530. These peaks are more noticeable in the

,I IARi #2 - Sea' I emperamlve (Ormni (I)V C I uensr) it 44 117
10. 26

Ifi.2551 \\('DV2-15:30

] ,''I!

16.21 6.235 . ; 
'!

I .23 
j

secird late 15:18:07 - 2 Amia)

Figure 5.C.2 - Wharf #2 Experiment: Temperature data,
sampled at 44 Hz.

spectra of the horizontal velocity, significant to a 80'-.

contidence level, and are highly attenuated in the vertical

velocity spectra as we can expect for a shallow water wave.

Tho-se harmonically related frequencies suggest weak non-linear

iritpract ion (resonance), with energy bei g transferred,
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between the different waves components. If ressonance is

occuring, these components will contribute to the presence of

stresses in the upper layer.

Besides telling us that the velocity field was dominated

by the surface gravity waves, the low energy levels at high

frequencies also shows the noise floor of the instrument with

energy density on the order of 10-" (m/s)2/Hz in the velocity

spectra, and 10-"° (Deg C)2/Hz in the temperature spectra. This

value represents noise significant velocities of the order of

0.005 m/s, that are smaller than typical velocities associated

with active oceanic turbulence, typically of the order of 0.01

m/s [Ref.22]. Therefore, for turbulent flux observations we

should expect to obtain good SNR performances with this

instrument.

Integrating the velocity spectra, we obtain the kinetic

energy for each ensemble. These values and their evolution

over the 4 analyzed hours are important in the

characterization of the observed fields. We can see that the

total horizontal kinetic energy was significantly larger than

the vertical, due to the nature of the wave fields.

TABLE 7 - KINETIC ENERGIES

HOURS 15:30 16:30 17:30 18:30

w-component
( 0.0035 0.0040 0.0073 0.0179

(misoo10
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HOURS 15:30 16:30 17:30 18.30

u-component
0.0044 0.0049 0.0062 0.0119

(m2/s 2 )

v-component
0.0107 0.0118 0.0149 0.0238

(m2/s 2)

In order to compute and interpret the fluxes of

temperature and the Reynolds stresses, the co-spectra, phase

spectra and coherence were computed for the several

combinations of variables. Using Parseval theorem [Ref.14],

integrating the co-spectra over frequency provides estimates

of the scalar fluxes or the Reynolds stresses. Therefore, the

co-spectrum will tell us how these fluxes are distributed over

frequency. In figures 5.D.6, 7.a, 7.b and 7.c, we can see the

evolution of the co-spectrum between the perturbed quantities

of the temperature (t') and vertical velocity component (w')

hereafter designated by t'w', and between the three velocity

components u'w', v'w' and u'v'. The low values in the co-

spectrum and the negligible energy above 1 Hz are

characteristic of a linear wave field with low turbulence

levels.

The negative peak found at the very low frequency range in

the co-spectrum of the horizontal velocity components, Figure

5.D.7.a, confirms the presence of non-linear interactions
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between harmonically related wave components [Ref.23], as

suggested by the velocity spectra in Figure 5.D.5.

The co-spectra of temperature and vertical component of

the velocity, shows that the thermal energy flux is negative

in the short period wave range (deep water waves), and

positive over the long period waves range at the 1530 and 1630

hours. Later energy starts cascading into the smaller scales,

where previously the co-spectral density was almost zero

(Figure 5.D.6). This is partially consistent with an increase

in the horizontal momentum flux, though it remains restricted

in the low frequency range. No significant changes are seen in

the vertical momentum flux. This picture suggests that after

the 1730, due to the shallow depth of the instrument and to

the reduction of insolation generated stratification,

turbulent levels tend to increase.

After integrating equivalent estimates for each data set,

the time evolution of the temperature fluxes and stresses were

calculated:

TABLE 8 - TEMPERATURE AND MOMENTUM FLUXES

HOURS 15:30 16:30 17:30 18:30

-0.0046 -0.0051 -0.0063 -0.0108
(m2/s2)

<U 'W'>

(m-/s-) -0.0001 -0.0000 0.0002 0.0015
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HOURS 15:30 16:30 17:30 I 18:30

<V 'W'>

0.0011 0.0014 0.0020 0.0012
(m2/s 2 )

<t'w'> -2.2277 -1.0943 -2.5964 -10.5082

(m.0C/s) xl0-5 xl0 -5 x10 -5 xl0 -

This table shows that the Reynolds stresses and temperature

fluxes slightly increased with time, as stratification was

decreasing.

The phase spectra and coherence are tools that help the

interpretation of the co-spectrum. The phase spectra quantify

the phase lags between variables, showing departures from the

in-phase components shown in the co-spectra. These spectra are

useful in the identification of quadrature conditions,

characterizing linear wave components, and in the analysis of

non-linear characteristics. The coherence spectrum shows

whether cross-spectral components have constant phase

relationships in time. For linear wave fields, coherence

should be high, near 1 (no fluxes or stresses), while for

turbulent or non-linear fields the coherence should have low

values. Examples of these estimates are shown in the figures

5.D.8 and 9 for the temperature vertical flux and Reynolds

stresses at 1530. The features shown in these figures are

similar to the characteristics of the other data sets, with
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quadrature phase and high coherence through the spectral peaks

range, as expected for a linear wave field.

The low correlation between temperature and vertical

velocity hint that we cannot explain the observed temperature

variability only from the vertical stratification, in which

water is pumped up and down past the sensor following the wave

orbital motion. On other hand, if we assume that horizontal

stratification exists, then the horizontal velocities may

explain this variability, with patches of warmer or colder

water being advected by the mean horizontal flow and wave

orbits. To test this hypothesis, the horizontal temperature

fluxes were computed as is shown in the figure 5.D.10 for the

1530 data set. In fact, they do not show a stronger

correlation; however, the probable high variability on the

horizontal density gradient will introduce an additional

effect on these estimates. These estimates may also be

misleading if not computed from sufficiently long averaging

intervals as the sensor was stationary in the field.

The coherence spectra( Figure 5.D.9) again reinforce the

fact that the wave regime at the middle frequencies has a

linear character, showing high coherence between v and w

within this range. These characteristics are maintained

throughout the observation period. Similarly, the coherence

between the horizontal components of velocity is more

significant in the low frequency wave range, but with slightly

lower values.
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VI. CONCLUSIONS

The need to explicitly observe turbulent processes arises

from a wide class of problems in physical oceanography, as

described in the review in chapter II. The CDV package was

developed to simultaneously measure temperature, conductivity,

pressure, shear and the 3 components of velocity at sub-

centimeter scales.

The unique measurement techniques used in this instrument

require special data processing and analysis methods. The

three component velocity estimations rely on a doppler

frequency spectral estimator, working in real-time, that must

use a small number of coherently sampled data points. In order

to choose the mc~t suitable algorithm, and to assess its

physical limitations, Monte-Carlo simulations were performed

using several possible spectral estimators. From these

simulations, the Pulse Pair algorithm, or equivalently the

MUSIC order 2 algorithm, showed the best performance, followed

by the Peak FFT algorithm. The FFT estimator, corresponds to

a maximum likelihood estimator, but suffers from the fact that

for a small number of points, the discretization errors are

very dominant, and it's performance is seriously degraded.

Using these results, the Pulse Pair estimator was implemented,

together with the pre-processing of the other measured
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quantities, on a Digital Signal Processor for real-time pre-

processing and review.

To test the CDV software and hardware, the equipment was

deployed for the first time off Monterey Wharf #2, on the 2

and 3 of August 1991, along with measured environmental

conditions. This first analysis showed that the performance of

the bistatic velocity estimation is below that expected, with

some conspicuous spikes superimposed c(- valid data. By

introducing a change in the transmitting cycles of the

transducers this problem should be overcome in future

deployments. The calibration of the other scalar variables and

acceleration gave good results. To deglitch the bistatic

doppler frequencies and increase its confidence, we used the

redundancy in the velocity components observations, with two

independent estimates from each of the two reciprocal acoustic

bistatic paths. An adaptative procedure was developed, relying

on a one lag linear-predictor and predictively choosing the

best estimate of the doppler frequency. This procedure

significantly improved the SNR of the velocity estimates.

The CDV Wharf data shows a surface gravity wave field with

energy in two different ranges, superimposing near tield

generated high frequency wind waves with a low frequency

swell. The wind waves sho-4 the expected characteristics of

deep water waves while the low frequency waves clearly have

shallow water waves characteristics. The high resolution

spectra and the co-spectra show that resonance interactions
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may be occurring at the low frequency range. The high

frequency wind waves show a stronger coherence and do not

contribute significantly to the momentum flux, but

nevertheless the major contribution to the temperature flux

occur over these frequency ranges.

The fact that the observed temperature variability did not

correlate well with the measured vertical velocity, even at

the deep water wave frequency range, suggest that an irregular

horizontal stratification existed, with pools of warm or cold

water being advected past the sensor, by the wave orbits and

mean flow.

From the vertical velocity and temperature co-spectra

analysis, we also observed an increase in the temperature flux

associated with a shallow depth and reduction in the vertical

stratification, following the decrease in the solar heating

after 1730. However, due to remaining significant

stratification no significant turbulence develops, as we can

observe in the co-spectra of the velocity components.

At the high frequency ranges, we did not found significant

energy due to the absence of strong turbulence, allowing the

instrumentation noise floor to be seen. This noise floor

represents velocities in the order of 0.005 m/s, values below

the ones that we should expect to find during strong turbulent

conditions. Because this data was the first that was analyzed

with this equipment, we expect in future deployments to

improve the SNR in the velocity measurements by an order of
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magnitude by reducing the acoustic noise component 5 to 10

times and altering acoustic sampling methods. However, the

existing noise floor is already below the minimum requirements

for studying energetic turbulence.

The CDV data seems consistent with the observed

environmental conditions, confirming the expected capabilities

of the instrument to observe real data, including wind wave

fields, and showing the noise limitations that we should

expect when observing turbulence fields. However, in order to

further study its precision, this data should also be compared

with simultaneous observations of the ocean variables measured

by independent instruments. The CDV package will be able to

perform simultaneous measurements of oceanographic variables

at the sub-centimeter scales, determining all terms in the

Reynolds equations. This should improve our characterization

of turbulent fields, with applications in a variety of

oceanographic turbulence problems. These applications will be

explored using the instrument in a loose-tethered profiling

mode.
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