Induction of Interleukin-6 During Human Immunodeficiency Virus Infection

6. **AUTHOR(S)**
 Deborah L. Birx, Robert R. Redfield, Kathleen Tencer, Arnold Fowler, Donald S. Burke, and Giovanna Tosato

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Office of Biologics Research and Review
 8800 Rockville Pike
 Bethesda, Maryland 20892

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 U.S. Army Medical Research & Development Command
 Fort Detrick
 Frederick, MD 21702-5012

11. **SUPPLEMENTARY NOTES**
 Contract Title: Studies of Epstein-Barr Virus Infection and Immunoregulation in Patients with Aids and Aids-Related Disorders

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **ABSTRACT (Maximum 200 words)**
 DTIC ELECTED
 FEB 25 1992

14. **SUBJECT TERMS**
 Induction of Interleukin-6 During Human Immunodeficiency Virus Infection

15. **NUMBER OF PAGES**
 2

16. **PRICE CODE**
 Standard Form 298 (Rev 2-89)
 Unclassified

17. **SECURITY CLASSIFICATION OF REPORT**
 Unclassified

18. **SECURITY CLASSIFICATION OF THIS PAGE**
 Unclassified

19. **SECURITY CLASSIFICATION OF ABSTRACT**
 Unclassified

20. **LIMITATION OF ABSTRACT**
 Unlimited
Induction of Interleukin-6 During Human Immunodeficiency Virus Infection

By Deborah L. Birx, Robert R. Redfield, Kathleen Tencer, Arnold Fowler, Donald S. Burke, and Giovanna Tosato

Interleukin-6 (IL-6), a multifunctional cytokine produced in monocytes, fibroblasts, and other cell types, is induced by a variety of stimuli, including bacteria, viruses, and other cytokines. When normal monocyte cultures were exposed to a monocyte tropic strain of human immunodeficiency virus (HIV), HTLV-III, significant levels of IL-6 bioactivity were detected in the culture supernatants after 12 to 43 days of incubation, at a time when there was associated evidence of HIV production. Similarly, when normal monocyte cultures were cocultured with peripheral blood mononuclear cells from HIV-infected individuals, HIV replication in these cultures was associated with production of IL-6. In further studies, we determined that mean serum levels of IL-6 bioactivity were abnormally elevated in HIV-seropositive individuals with stage 1/4 infection (25.2 x ± 1.8 U/mL) and stage 2/4 infection (46.1 x ± 1.7 U/mL) when compared with normals (1.6 x ± 1.2 U/mL). In contrast, mean serum IL-6 levels were not different from normal in stage 2/4 infection (2.7 x ± 1.6 U/mL). A selected group of 12 HIV-seropositive individuals (stages 1, 2, and 3) who harbored HIV capable of replicating in T cells but not in monocytes had a mean serum IL-6 level of 5.3 U/mL (x ± 1.5), a value significantly lower (P < .004) than that measured in control HIV-seropositive individuals infected with monocyte tropic HIV (39 x ± 1.9 U/mL). In addition, serum IL-6 levels in HIV-seropositive individuals (stages 1 through 6) correlated directly with serum immunoglobulin G (IgG) levels (R = .74, P < .001). Monocytes but not T cells are capable of a high level IL-6 production in vitro, and monocyte-derived IL-6 stimulates Ig production in activated B cells. Thus, HIV-seropositive individuals who often are infected with monocyte tropic HIV and often display abnormally elevated serum IgG levels may exhibit these abnormalities as a consequence of abnormally elevated IL-6 levels induced by HIV.

This is a US government work. There are no restrictions on its use.

MATERIALS AND METHODS

Patient selection and serum samples. Serum samples and mononuclear cells were obtained with informed consent from individuals at Walter Reed Army Medical Center (WRAMC) during clinical HIV staging evaluations. HIV-infected patients were staged according to the WRAMC staging criteria for HIV infection. Briefly, stage 1 individuals have greater than 400 CD4 cells/mm³, while stage 2 individuals have greater than 400 CD4 cells/mm³ and chronic (>3 months) adenopathy. Stage 3 and 4 patients have less than 400 CD4 cells/mm³ with stage 4 patients demonstrating early defects in delayed-type sensitivity. Stage 5 and 6 patients have less than 400 CD4 cells/mm³ and increasing degrees of clinical immunodeficiency, with stage 5 patients having anergy or symptomatic.

From the Division of Retrovirology, Walter Reed Army Institute of Research and the Retroviral Research Group, Walter Reed Army Medical Center, SRA Technologies; and the Laboratory of Immunology, Center for Biologics Evaluation and Research, FDA, Washington, DC and Bethesda, MD.

Supported in part by the US Army Medical Research and Development Command.

The views of the authors do not purport to reflect the opinions of the Department of Defense (para 4-3, AR-360).

Address reprint requests to Deborah L. Birx, MD, Immunology Section, Department of Retroviral Research, Division of Retrovirology, Suite 201, 13 Tafci Ct, Rockville, MD 20830.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

This is a US government work. There are no restrictions on its use.

0006-4971/90/7611-0017$00/0

92-04040
biopsy-proven thrush, and stage 6 patients demonstrating opportunistic infections generally associated with HIV disease. Kaposi's sarcoma is not considered a stage identifier and none of the patients in this study had Kaposi's sarcoma. All patients were seropositive for HIV by enzyme-linked immunosorbent assay (ELISA) and Western blot. None of the patients were acutely ill with an intercurrent illness at the time of this study. Normal sera and mononuclear cells were also obtained from healthy HIV seronegative controls.

Virus isolation from peripheral blood. Patient or control peripheral blood mononuclear cells (PBMCs) were cocultured both with normal monocytic and normal PECs, essentially as described. Normal monocytic and, obtained by elutriation of PBMCs (>95% nonspecific esterase positive cells) were first incubated for 4 days (5 x 10^6 cells/mL in 24-well tissue culture plates, 0.5 mL/well) in monocytic isolation culture medium consisting of Dulbecco's modified Eagle's medium (DMEM) (GIBCO, Grand Island, NY) supplemented with 5% human sera and 1,000 U/mL colony-stimulating factor (CSF) (Cetus Corp., Emeryville, CA). Patient or control PBMCs (2 x 10^6 cells in 0.5 mL isolation culture medium) were then added to the 24-well plates containing 4-day precultured normal monocytes, and incubation continued.

Normal PBMCs (1 x 10^6 cells/mL in 75-cm² tissue culture flasks, 40 mL/flask) were first incubated for 3 days in culture medium (RPMI 1640 with 15% fetal calf serum (FCS), 20 mmol/L L-glutamine, all from GIBCO, and 5 μg/mL gentamicin (Sigma Chemical Co., St Louis, MO) supplemented with phytohemagglutinin (PHA) (Sigma; 1 μg/mL). During the final 60 minutes of incubation, cultures were supplemented with polybrene (Sigma; 2 μg/mL). After incubation, the PHA-stimulated and polybrene-treated PBMCs were washed, suspended (2 x 10^6 cells/mL) in T-cell isolation culture medium consisting of RPMI 1640 with 15% FCS, 20 mmol/L L-glutamine, 5 μg/mL gentamicin, and 100 U/mL recombinant IL-2 (Cetus), and transferred to tissue culture tubes (Falcon 3033; 1 mL/tube; Division at Becton Dickinson, Lincoln Park, NJ). Patient or control PBMCs (3 x 10^6 cells in 1.5 mL T-cell isolation culture medium) were then added to the culture tubes containing preactivated normal PBMCs, and incubation continued. All cultures were fed twice weekly by replacing 50% of the appropriate monocytic or T-cell isolation culture medium; the cell-free supernatants were stored at -70°C and analyzed for the HIV-antibody (p24) antigen and IL-6 bioactivity. A culture was considered positive for HIV when p24 levels were ≥250 pg/mL in culture supernatants obtained in 2 consecutive weeks, as measured in a standard ELISA, using the Coulter 24 kit (Coulter Electronics, Hialeah, FL). Cultures were maintained until evidence of HIV production was obtained or until day 84. Previous results had demonstrated that incubation beyond day 84 did not improve HIV isolation.

Monocyte infection with HTLV-IIIb IIIb. A monocytic strain of HIV, HTLV-IIIb IIIb (a gift of Drs S. Gartner and M. Popovic, National Cancer Institute, Bethesda, MD) was propagated and prepared as previously described. Monocytes (>95% nonspecific esterase positive cells) obtained from PBMCs by elutriation were precultured for 2 days (1 x 10^6 cells in 2 mL culture medium consisting of RPMI 1640 supplemented with 10% FCS, 2 mmol/L L-glutamine, and 5 μg/mL gentamicin) in 24-well plates (Costar). Triplicate cultures were then exposed to either medium or HTLV- IIIb (80,000 cpm/mL reverse transcriptase activity) or heat-inactivated (1 hour at 56°C) HTLV-IIIb. After 2 days of incubation, all monocyte cultures were washed (to remove excess virus where added) and then cultured in complete culture medium. Cells were fed every 4 to 5 days by replacing 50% of the medium. Culture supernatants, obtained every 4 to 5 days, were stored at -70°C and analyzed for p24 antigen and IL-6 bioactivity.

Assay for IL-6 activity. B9 cells were used in a standard assay for IL-6 bioactivity. Serial 1 to 4 dilutions of culture supernatants, sera, and recombinant Escherichia coli-derived IL-6 (Genzyme, Boston, MA; used as a standard throughout) were distributed in triplicate to 96-well round bottom plates. Exponentially growing B9 cells (2 x 10^3 cells/well) that had been extensively washed free of IL-6 were added to the plates. Culture medium (0.2 mL/well) consisted of RPMI 1640 supplemented with 10% FCS and 10 μL 2-mercaptoethanol. Plates were incubated for 84 hours at 37°C in a humidified (5% carbon dioxide) incubator, then pulsed with 0.5 μCi/well [3H]-thymidine (6.7 Ci mmol, New England Nuclear) for the last 4 hours of culture, harvested with an automated cell harvester, and counted (LKB beta plate system). Arithmetic means of triplicate wells were calculated and used for analysis. Activity is expressed as IL-6 U where 1 U is defined as causing one-half maximal B9 cell proliferation under the conditions described. An IL-6 concentration of 1 U/mL corresponds to approximately 7 pg/mL of a recombinant IL-6 laboratory standard, and to 5.5 U/mL of the interim IL-6 National Institutes of Health reference standard (pref 88/514).

Soluble IL-2 receptor determination. Serum samples were analyzed for content of soluble IL-2 receptor (sIL-2R) using a standard ELISA (T Cell Sciences).

Radiolabeling, immunoprecipitation, and polyacrylamide gel electrophoresis (PAGE). HIV positive (p24 ≥250 pg/mL) cultures of normal monocytes infected with HIV-IIIb IIIb, established as described above, were washed three times with methionine deficient MEM (GIBCO), then incubated in the same medium (2 mL) supplemented with 1% methionine-deficient FCS, 2 mmol/L L-glutamine, and 100 μCi/mL [35S]-methionine (New England Nuclear; 100 μCi/mmol) for 48 hours. After incubation, supernatants of triplicate cultures (6 mL) were precipitated at 4°C with a saturated solution of ammonium sulfate (50% vol/vol), centrifuged at 4,000g for 30 minutes, and the resulting pellets immunoprecipitated, as previously described. A rabbit heterologous antiserum to E coli-derived IL-6 and a control normal rabbit serum were used as immunoprecipitating agents at a dilution of 1:200. Immunoprecipitated material was electrophoresed through a 12.5% PAGE containing 0.1% sodium dodecyl sulfate (SDS). After electrophoresis, the gels were fixed, treated with Enlightening (New England Nuclear), dried, and autoradiographed at -70°C.

Statistical analysis. Geometric means, standard error, standard deviations of the means, Student's t-test, nonparametric Spearman Rank correlations, and correlation coefficients were calculated using conventional formulas.

RESULTS

HIV replication in normal monocytes is associated with IL-6 secretion. It was previously reported that normal monocytes exposed to the laboratory strain of HIV, HTLV-IIIb, display a transient increase in IL-6 messenger RNA after 2 hours and produce increased levels of IL-6 bioactivity after 24 hours. Both events were observed with either live or inactivated HIV, demonstrating that monocyte infection was not required. We have now examined whether HIV-replication in normal monocyte cultures is associated with IL-6 secretion. To this end, normal peripheral blood monocytic-enriched populations were infected with the monocytotropic strain of HIV, HTLV-IIIb IIIb, and cultures were tested for HIV and IL-6 production. As expected, in each of three experiments monocytes exposed to HTLV-IIIb IIIb had evidence of viral production beginning on day 7, as demon-
strated by the detection of greater than 250 pg/mL of p24 antigen (not shown). Also, monocyte cultures exposed to either medium alone or heat-inactivated HTLV-III _{III}L had no evidence of viral production (p24 < 10 pg/mL). As shown in Fig 1, in each of these experiments monocytes exposed to HTLV-III _{III}L secreted IL-6 bioactivity in the supernatant beginning on day 11, and increasing thereafter. No IL-6 bioactivity above background (medium alone) was detected in culture supernatants when the monocytes were exposed to medium alone (not shown) or medium supplemented with heat-inactivated virus (representative results from one of three experiments are shown).

To ensure that IL-6 was produced in these mononuclear cell cultures infected with HIV, [35S]-labeled supernatants were immunoprecipitated with a rabbit heteroantiserum to ^E coli-derived IL-6 and the immunoprecipitates analyzed by SDS-PAGE under reducing conditions. As shown in Fig 2, the characteristic bands attributable to IL-6 could be visualized in HIV-infected culture supernatants immunoprecipitated with an anti-IL-6 but not a control serum. Thus, monocyte cultures productively infected with HTLV-III _{III}L secrete IL-6 in the supernatants.

Natural isolates of HIV induce IL-6 secretion in human mononuclear cells. In further studies, we have examined whether natural isolates of HIV from infected individuals might also induce IL-6 production in culture. To this end, highly purified monocyte preparations (>95% nonspecific esterase positive cells) were cocultured with either normal mononuclear cells or mononuclear cells from HIV-infected individuals. At weekly intervals for 8 weeks, beginning on day 8, culture supernatants were analyzed for evidence of HIV infection. As expected, normal monocytes cocultured with normal mononuclear cells had no evidence of HIV production at any time point, as determined by measure of

Fig 1. HTLV-III _{III}L stimulates IL-6 secretion in monocyte cultures. Supernatants of peripheral blood monocytes, exposed to either live (O—O, △—△, ▲—▲) or heat-inactivated (□—□) HIV were tested for IL-6 bioactivity at the indicated time points. One unit of IL-6 bioactivity is defined as the activity inducing one-half maximal proliferation of the target B9 cells.

Fig 2. Detection of IL-6 protein in HIV-stimulated monocyte culture supernatants. [35S]-labeled supernatants of monocytes exposed to HTLV-III _{III}L and producing HIV (p24 levels in the supernatant >250 pg/mL) were immunoprecipitated with either a control normal rabbit serum or an anti-human IL-6 serum (both at a dilution of 1:200). Immunoprecipitates were analyzed by electrophoresis under reducing conditions and autoradiographed.

the HIV-associated antigen, p24, in the culture supernatants. In contrast, using the same assay system, monocyte cultures incubated with mononuclear cells from HIV-seropositive individuals had evidence of HIV production in 12 of 24 samples tested. When monocyte supernatants were tested for IL-6 bioactivity in a standard growth assay of B9 cells, we found that the levels of IL-6 bioactivity were significantly higher in monocyte supernatants with elevated p24 levels when compared to monocyte supernatants with low p24 levels (P < .04 Spearman Rank test). Table 1 shows the results of p24 antigen and IL-6 bioactivity determinations in monocyte culture supernatants obtained on day 84 of incubation or at an earlier time point (geometric mean = 36 days).
IL-6 Secretion in Normal Monocyte Cocultured With Mononuclear Cells From Normal or HIV-Seropositive Individuals

<table>
<thead>
<tr>
<th>Cocultures</th>
<th>p24 Levels (pg/mL)</th>
<th>IL-6 Activity (U/mL) Mean x/± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (HIV-seronegative)</td>
<td>5 <10</td>
<td>6.7 x/± 5</td>
</tr>
<tr>
<td>HIV seropositive</td>
<td>12 <10</td>
<td>5.1 x/± 2.5</td>
</tr>
<tr>
<td>HIV seropositive</td>
<td>12 >250</td>
<td>48 x/± 6.3</td>
</tr>
</tbody>
</table>

Cell-free culture supernatants of monocyte-enriched populations cocultured with either normal or HIV-seropositive PBMNC were tested in parallel for the presence of the HIV-associated antigen p24 and for IL-6 bioactivity. p24 Levels were determined by ELISA; a culture was considered HIV-positive if p24 levels in the supernatants were greater than 250 pg/mL in 2 consecutive weeks. IL-6 levels (expressed in units per milliliter) were determined by a standard growth assay for B9 cells. Data shown reflect parallel determinations on day 84 of coculture or at an earlier time point for HIV-positive cultures (mean = 36 days). Culture medium used for virus isolation had a mean of 2 x/± 1.3 U/mL of IL-6.

When p24 levels were found to be greater than 250 pg/mL in 2 consecutive weeks. These findings strongly suggest that HIV, isolated from the blood of HIV-seropositive individuals, induces secretion of IL-6 bioactivity in mononuclear cell cultures.

Serum IL-6 levels are elevated in HIV-seropositive individuals. Because HIV, isolated from infected individuals, induced IL-6 production in mononuclear cell cultures, we asked whether HIV-infected individuals might have abnormally elevated serum IL-6 levels. To this end, serum samples from 10 normal adults and 40 individuals with HIV infection were tested for the presence of IL-6 as determined by the B9 cell growth assay. As shown in Fig 3, the mean content of IL-6 in normal serum was 1.6 x/± 1.2 U/mL (geometric mean x/± SEM). In contrast, the mean serum content of IL-6 in 15 HIV seropositive individuals with stage (1/2) disease was 25.2 x/± 1.8 U/mL, and in HIV-seropositive individuals with stage (3/4) disease 46.0 x/± 1.7 U/mL. Both mean serum IL-6 values are significantly different from normal (P <.001). HIV-seropositive individuals with late stage (3/4) disease were found to have a mean serum IL-6 content of 2.7 x/± 1.6 U/mL, a value not different from normals (P = 1.0).

B9 cells have been reported to selectively respond to IL-6 and not to proliferate in response to other known growth factors. However, to ensure that IL-6 in the serum was responsible for growth stimulation of the IL-6-dependent B9 cells, neutralization experiments were performed as described. Medium, control rabbit IgG (20 µg/mL) or rabbit IgG anti-human IL-6 (20 µg/mL) were preincubated for 1 hour at 37°C in microtiter plates with either medium or appropriately diluted HIV seropositive sera (culture volume 0.1 mL). After incubation, B9 cells (2 x 10⁵ cells/well) were added to the wells, and culture continued for 48 hours. Proliferation was measured by [3H]-thymidine incorporation during the final 4.5 hours of the culture. Results are expressed as cpm/culture.
HIV-seropositive individual. These findings strongly suggest that HIV-positive individuals (stages 1 through 4) generally have abnormally high levels of IL-6 in their serum.

Serum levels of IL-6 directly correlate with serum levels of IgG, but not of soluble IL-2 receptor (sIL-2R). In vitro studies have demonstrated that IL-6 promotes B-cell proliferation and Ig production. HIV-infected individuals often have elevated serum Ig, particularly of the IgG isotype. We have now examined whether serum levels of IL-6 in HIV seropositive individuals (stages 1 through 6) might correlate directly with serum levels of IgG in the same individuals. As shown in Fig 5, in 40 HIV seropositive individuals there was a direct relationship between serum IL-6 levels and serum IgG levels ($r = .74; P < .001$).

As well as often having abnormally elevated serum Ig levels, HIV-infected individuals have been reported to frequently have abnormally elevated serum levels of sIL-2R. This is believed to reflect an underlying state of T-cell activation during HIV infection. However, unlike Ig, in vitro studies have demonstrated that IL-6 does not promote, either alone or with mitogenic costimuli, IL-2R expression in T cells. We have examined (Fig 6) the relationship between the two parameters (serum IL-6 levels and sIL-2R levels) in 19 HIV-seropositive individuals (stages 1/2) and found no direct relationship ($r = .01; P > .95$). Thus, IL-6, known to induce Ig production in vitro, was generally found to be abnormally elevated in sera of those HIV-infected individuals with high Ig levels. In contrast, IL-6, a T-cell costimulant that does not promote IL-2 secretion or IL-2 receptor expression in human T cells, was found to be present at variable concentrations in sera of HIV-seropositive individuals with high serum levels of sIL-2R.

Correlation between serum IL-6 levels and isolation of monocytotropic HIV in HIV-seropositive individuals. HIV preferentially infects CD4 positive lymphocytes and cells of the monocyte/macrophage lineage. Because monocytes, but not T cells, are capable of high-level IL-6 secretion, we tested whether increased serum IL-6 levels in HIV-seropositive individuals correlated directly with isolation of monocytotropic virus from these individuals. To this end, PBMCs from 96 HIV-seropositive individuals (stages 1, 2, and 3) were cocultured with normal peripheral blood monocytes and with normal PBMCs. These PBMCs were prestimulated for 3 to 4 days with PHA and IL-2, and thus contained predominantly activated T cells.

In most cases (no. 52) HIV could be isolated from HIV-seropositive individuals in both coculture systems. However, these were 24 HIV seropositive blood samples from which virus could only be isolated in coculture with PHA and IL-2, and thus contained predominantly activated T cells.

Mean serum IL-6 levels in 12 randomly chosen HIV-infected individuals who tested virus-positive in PHA-activated PBMC but not in monocyte cocultures were 5.3 U/mL ($x /+ 1.5$) (Fig 7). In parallel determinations, mean serum IL-6 levels in 12 randomly chosen HIV-infected individuals who tested virus positive in monocyte cocultures were 39 U/mL ($x /+ 1.9$) ($P < .004$). Together, these findings suggest a correlation between elevated serum IL-6 levels in HIV-seropositive individuals and infection with a monocytotropic strain of HIV.

Fig 6. Relationship between serum levels of sIL-2R and serum IL-6 levels in early-stage HIV infection. Serum levels of sIL-2R were plotted against serum levels of IL-6 and correlation was calculated by regression analysis ($r = .01; P > .950$).

DISCUSSION

In this study, we present evidence that a laboratory strain of HIV, HTLV-III L, as well as natural isolates of HIV from 12 seropositive individuals, promote IL-6 production in culture. Several features characterize in vitro IL-6 production induced by HIV, including a delayed onset after exposure to the virus, the associated occurrence of HIV replication, and the monocyte derivation. The laboratory strain HTLV-III L induced IL-6 production in monocyte cultures not before day 11 after addition to culture. At this time the monocytes had begun replicating and secreting HIV, as documented by the levels of HIV-associated p24 antigen in culture supernatants. No IL-6 was detected when
the virus was inactivated before the addition to monocyte cultures. Similarly, when HIV was derived from virus-infected individuals, secretion of IL-6 in culture occurred after a mean of 36 days of incubation. Secretion of IL-6 in the cultures correlated directly with evidence of HIV production in the same cultures, suggesting that HIV, isolated from HIV-infected blood, was responsible for eliciting IL-6 production.

The experiments presented here indicate that the monocytes are the cellular source of IL-6 production induced by HIV. In one set of experiments, the monocytes represented greater than 95% of the cell type in culture, and thus are the likely source of IL-6 induced by HTLV-III. In other experiments that used naturally occurring HIV as the IL-6 inducing agent, the monocytes represented only 50% of the cells in culture. However, among blood cells the monocytes are the principal source of IL-6 production in vitro. In addition, the monocytes are the predominant, if not the only, blood cell capable of long-term survival in vitro under the culture conditions used that excluded known T- and B-cell growth factors.

The mechanisms of IL-6 induction by HIV are unclear at present. The experiments presented here show that IL-6 secretion in culture was associated with evidence of HIV production in the same culture. It is possible that the monocytes secreting IL-6 are also those productively infected with HIV. This possibility is supported by the observation that individuals infected with HIV capable of replicating in monocyte cultures had significantly higher serum IL-6 levels than individuals infected with HIV capable of replicating in T-cell, but not monocyte, cultures. However, previous experiments have suggested that HIV can induce a rapid and transient increase of IL-6 gene expression in monocytes without infecting the cells, probably by signal transduction via a cell surface protein. Although the present experiments do not examine these early and transient cell-virus interactions, it could be that HIV, secreted in culture by productively infected monocytes, goes to stimulate IL-6 production in monocytes not infected with the virus. While further studies are required to address these issues, the present experiments demonstrate that HIV replication in monocyte cultures is accompanied by a sustained secretion of IL-6.

If these in vitro events have an in vivo counterpart, one would expect to find elevated levels of IL-6 in HIV-infected individuals. We have found that a proportion of HIV-seropositive individuals with stage 1 through 4 disease have abnormally elevated serum IL-6 levels. In contrast, HIV-seropositive patients with advanced disease, stages 5 and 6, displayed serum IL-6 levels not different from normal. Similar findings have recently been reported by others.

Patients with advanced HIV disease are also those who have the greatest HIV burden, and thus may be expected to display the highest levels of serum IL-6. In contrast, we found that patients with advanced HIV disease generally have normal serum IL-6 levels. It is possible that the cells capable of producing IL-6 in vivo are damaged in late-stage HIV disease, and functionally impaired. It is also possible that IL-6 is produced at a high rate in stage 1 HIV disease but is mostly bound to carrier proteins that would prevent its detection in biologic assays such as that used here. α-2-Microglobulin, identified as a carrier protein for IL-6, has been shown to inhibit the function of a number of growth factors by preventing their binding to the appropriate receptors. It is worth noting that serum β-2-microglobulin levels are markedly elevated in late-stage HIV disease.

Finally, it is possible that HIV is not the only, and perhaps, not even the principal inducer of IL-6 production in HIV seropositive individuals. It could be that HIV requires a costimulus (or costimuli) for IL-6 induction that is no longer present in late-stage HIV disease. Further studies are in progress to address these issues.

What might be the role of IL-6 in the pathogenesis of HIV disease? Previous studies have demonstrated that serum IL-6 levels are markedly elevated in severe burn victims, in septic individuals, and in volunteers injected with endotoxin or tumor necrosis factor; IL-6 levels then rapidly return to normal after the acute episode. The role attributed to IL-6 in these conditions is to elicit many of the acute-phase serum protein alterations that usually accompany an acute-phase response. Indeed, IL-6 in vitro is a potent inducer of C-reactive protein, fibrinogen, α-1-antichymotrypsin, and α-1-antitrypsin in liver cells, and an inhibitor of albumin production in the same cells. Abnormally high IL-6 levels have also been reported in sera and synovial fluids of a proportion of patients with rheumatoid arthritis. In this illness a significant correlation was found between serum IL-6 levels and disease activity.

Individuals with HIV infection often have circulating activated B cells and abnormally elevated serum Ig levels.
In addition, a proportion of these individuals display abnormally elevated numbers of EBV-infected B cells in the circulation that might predispose them to the occurrence of EBV-containing B-cell lymphoproliferations. In vitro IL-6 stimulates Ig production in B cells activated by a variety of signals and promotes the proliferation of EBV-infected B cells. It is tempting to speculate that IL-6, chronically induced by HIV, and perhaps a variety of other stimuli, are responsible for promoting Ig secretion and expanding the pool of B cells latently infected with EBV in HIV-infected individuals.

An additional possibility is that IL-6 might cause HIV disease progression by promoting T-cell proliferation. In vitro IL-6 stimulates T-cell proliferation and is known that activated T cells replicate HIV in preference to resting T cells. Thus, by inducing T-cell proliferation IL-6 may contribute to the expansion of the pool of HIV-infected T cells.

Many questions remain relating to the mechanisms of IL-6 production in HIV disease and the role of IL-6 in the pathogenesis of this illness. However, the results reported here demonstrate that natural isolates of HIV induce IL-6 secretion in vitro and that serum IL-6 levels are abnormally elevated in early-stage HIV disease. These findings provide further evidence for a role of IL-6 as an important mediator of host responses during virus infection.

ACKNOWLEDGMENT

We thank Drs L.T. May and P.B. Sehgal for providing a rabbit antiserum to E. coli-derived IL-6; Dr C.F. Perno for his suggestions; and Drs R. Yarchoan and Maryanne Vahey for their helpful discussions.

REFERENCES

35. Popovic M, Sarnagadarren MG, Read E, Gallo RC: Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497, 1984

41. Raines EW, Daniel FB, Russell R: Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors. Proc Natl Acad Sci USA 81:3424, 1984

