
AD-A246 668

DTIC

~OF~ o

AN APPLICATION OF INTER\CTIVE
COMPUTER GRAPHICS TO THE STUDY

OF INFERENTIAL STATISTICS AND

THE GENERAL LINEAR MODEL

THESIS

Stcphcn D. Pc.urcc. Captai,:. USAF

AFIT'GSN, ENC,9 S-2

Thi ; document h,= bi-je cyrp;.vodjfor pu li eieuse and solo ; tg
distlbuin is unlimitc-d 92 04 9

-uu o2u~~ 92-04899
DEPARTMENT OF THE AIR FORCE !I'I I!IlIIIII111III

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 2 25 088

AFIT/GSM/ENC/91S-22

.AR O I9K2 S

AN APPLICATION OF INTERACTIVE
COMPUTER GRAPHICS TO THE STUDY

OF INFERENTIAL STATISTICS AND
THE GENERAL LINEAR MODEL

THESIS

Stephen D. Pearce, Captain, USAF

AFIT/GSMENC/91 S-22

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

Acce ior, For

•PIED NT!S C AI I-
JUi.ti,ca.,O :,..: .

Dy.................

j A-j .: ..-

Dist .. :

At-1

AFIT/GSM/ENC/91S-22

AN APPLICATION OF INTERACTIVE

COMPUTER GRAPHICS TO THE STUDY OF

INFERENTIAL STATISTICS AND THE GENERAL LINEAR MODEL

Presented to the Faculty of the

School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Systems Management

Stephen D. Pearce, B.S.

Captain, USAF

September 1991

Approved for public release; distribution unlimited

Acknowledgements

The research conducted in this thesis was based on ideas generated

primarily by Professor Dan Reynolds of AFIT and Mr. Richard Lamb. For

their support and ideas I thank them. Without their constant enthusiasm for

the effort completed herein, this research could not have evolved to its

current level.

I would also like to thank my loving wife, Melissa, for her

understanding through all of those long days, afternoons, and late nights at

the computer while I performed this research and the other AFIT class work.

Table of Contents

Page

Acknowledgements ii

List of Figures .. v

List of Tables .. vi

A bstract ... vii

I. Introduction .. 1

General Issue 1
Specific Problem 4
Research Hypotheses 5
Justification of Research 5
Scope of Research 6

II. Background .. 7

III. M ethodology 15

O verview 15
Why Use the VVAM? 16
Development of the PPME 18

Overall Mathematical Framework for the GLM 21
Computer Program Development 28

Specific Scenarios 35
Scenario One 37
Scenario Two 38
Scenario Three 40

Evaluation Criteria 41

111

Page

IV. Analysis and Results 46

Sample Mean and Variance 47
General Linear Test about the Population Mean of a
Normally Distributed Random Variable 53
Linear Simple Regression to Estimate E(Y I X) 58

V. Conclusions and Recommendations 63

Final Conclusions 63
Recommendations for Future Research 64

Appendix A .. 66

Bibliography .. 156

V ita 158

iv

List of Figures

Page

Figure 1. PPME General Flow Diagram 19

Figure 2. Main Menu Screen 30

Figure 3. Sample Mean and Variance Screen 32

Figure 4. General Linear Test for Population Mean Screen 32

Figure 5. Simple Linear Regression Screen 35

Figure 6. Relationship Between Evaluation Criteria and Commonplaces 44

Figure 7. Data Set 1 48

Figure 8. Data Set 5 49

Figure 9. Data Set 2 50

Figure 10. Vector Toggle Help 51

Figure 11. Data Set 3 52

Figure 12. Data Set 4 52

Figure 13. Data Set 1, p0=2 54

Figure 14. Data Set I 55

Figure 15. Data Set 3, p0=2................................. 57

Figure 16. Data Set 3, 13=0 60

Figure 17. Data Set 3 60

Figure 18. Data Set 3, B 0.................................. 61

V

List of Tables

Page

Table 1. Data Sets 36

vi

AFIT/GSM/ENC/91S-22

Abstract

.- This research created a learning environment, known as the Pearce

Projection Modeling Environment (PPME) which is used as a tool by a

teacher and student. The PPME was developed in an effort to create a new

approach to the study of the General Linear Model through a constructive

and projective, geometric approach. While the geometric approach to the

GLM was developed over the past century, it has not been used extensively

because of the inherent complexities associated with visualizing vectQr

spaces. With the PPME, visualization is accomplished effortlessly. The

PPME is a computer program that allows the student to enter response

vectors and other vectors and data associated with the GLM and observe the

relationships of those vectors interactively and in three-dimensions. The

PPME encourages learning through constructive development by allowing

the student to modify the vectors and observe the results of his actions.

To validate the PPME as a learning tool, several data sets were

generated and used to study three scenarios: The Sample Mean and

Variance, A General Linear Test of the Population Mean, and An Ordinary

Least Squares Simple Linear Regression.

vii

AN APPLICATION OF INTERACTIVE COMPUTER

GRAPHICS TO THE STUDY OF INFERENTIAL

STATISTICS AND THE GENERAL LINEAR MODEL

I. Introduction

General Issue

The mathematics education level of students in the United States has

declined to crisis levels in recent years. According to Newsweek, "one

international study after another places U.S. school kids near the bottom of

the heap in mathematical achievement" and suggests "average Japanese 12th

graders have a better command of mathematics than the top 5 percent of

their American counterparts." Clearly something must be done to upgrade

our competency in teaching the mathematical sciences. (2:52)

This research will show how the technology of computers can be

blended with techniques developed over the past century- in statistics

education to increase students' mathematical competency in graduate level

statistical courses. One of the primary areas of statistical study at the Air

Force Institute of Technology (AFIT) is the General Linear Model (GLM),

which is the main focus of two courses in Statistics. The GLM is also at the

heart of this research.

Traditionally, the GLM is taught from an algebraic standpoint. This

approach limits one's ability to conceptualize the true essence of the GLM.

Students are encouraged to view modeling as a purely computational

exercise resulting in rote memorization of the critical concepts associated

with the GLM. As a consequence, students are inclined to work problems

without any true understanding of what they are doing.

David Herr's research has shown how mathematicians employ the

Geometric (Projective) Approach to facilitate a meaningful explanation of the

GLM. Herr characterizes such an approach to the study of the GLM as

"beautifully elegant [if you see it]." (6:45) Peter Bryant describes how

geometric images can provide a natural way to look at the basic conceptual

entities of statistics such as the mean and sample variance, and then lays a

foundation for a pedagogy that uses geometry to motivate the higher and

more inclusive concepts of the GLM. (1:43-46)

While Herr reviews historical efforts to justify a projective approach

toward the study of the GLM and Bryant lays the mathematical cornerstones

for an appropriate pedagogy, it took the thesis work of Captain Stone

Hansard (AFIT-GSM-90S) to create and implement a computer-based

methodology that provided a sufficient basis for the graphically-intensive

pedagogy developed by this thesis effort. Hansard demonstrated that

computers could be used to help reverse the dominant transfer-leaning

protocol to one that encourages students to experiment with the theory before

they construct a concept base that captures the essence of the theory.

Ernst von Glaserfeld proposes that the teacher's job is not to transfer

knowledge to the student. Rather, he suggests it is best to create an

environment in which the student employs his intuition, and experiences

success in the problem solving arena, BEFORE he is formally introduced to

mathematical theory. Glaserfeld, commenting on the evolution of such a

pedagogy, says,

A conceptual model of the formation of the structures and the
operations that constitute mathematical competence is essential
because it, alone, could indicate the direction in which the student is
to be guided. The kind of analysis, however, that would yield a step
by step path for the construction of mathematical concepts has barely
been begun. It is in this area that, in my view, research could make
advances that would immediately benefit education practice. (4:16)

It is just such a constructive learning approach that this research

attempts to implement via a system of interactive graphic computer programs

designed to assist the student in learning the General Linear Model through

heuristic exploration of underlying principles of the GLM from a geometric

point of view. It is believed such active and visual involvement with the

GLM will foster a clear visualization of its mathematical elegance and lead

to a rigorous mastery of the theoty of the GLM.

3

Specific Problem

To help close the gap between theory and competent practice of

general linear modeling, a systematic process for experimenting with

applications of the GLM needs to be developed. This system should portray

both the elegance and mathematical rigor of the GLM in a manner any

serious student can comprehend.

The student is introduced graphically to the General Linear Model in

three steps. First he can study the geometric structure of the sample mean

and sample variance. Next he is encouraged to conduct a hypothesis test of

the population mean visually. Finally he is encouraged to experiment with

the geometric structures representing a simple linear regression. Details

concerning the program flow and elements used to create a graphic

environment for experimenting with the GLM follow in Chapter 3.

Programs, alone, cannot satisfy the requirements for facilitating a

constructive learniig process: In order for the student to gain understanding

of the GLM, competent guidance must be available to him. The instructor

and learning protocols provide guidance for governing any educational event

which uses the computer as a tool in the exploration of the General Linear

Model.

4

Research Hypotheses

Three research hypotheses provided a framework for the development

and evaluation of this computer assisted learning system.

1. The learning protocol developed by Hansard known as the VVAM
(Visualization, Verbalization, Algorithmization and Mathematization)
can be used to orchestrate an experiment-based enironment for
constructively learning and applying the concepts of the General
Linear Model.

2. The projective approach toward the study of the Sample Mean,
Sample Variance, and inferences using the General Linear Model can
be represented and implemented graphically on an IBM compatible
computer.

3. Through the use of the VVAM protocol and relevant heuristics of
constructive learning, students will be able to gain an understanding
and experiential appreciation of the concepts associated with general
linear modeling.

Justification of Research

The basic premise of constructive or discovery learning is that the

student learns primarily through experimentation. Glaserfeld supports this

assumption when he says "although one can point the way with words and

symbols, it is the student who has to do the conceptualizing and the

operating ." Although learning is ultimately the student's responsibility, the

teacher's duty is "to help and guide the student in the conceptual

organization of certain areas of experience." (4:16) The thrust of the

5

research and the research hypotheses proposed for this thesis respond directly

to this requirement for a meaningful and experiential learning of

mathematics.

Joseph Scandura reiterates the argument for discovery learning after

reviewing the results of several experiments comparing it to "regular

learning" when he says:

The discovery group not only performed better than the expository
group on tests designed to measure the transfer of heuristics but they
better retained the material that had been originally taught. (11:119)

While discussing the geometric approach to statistics, D. J. Saville and

G. R. Wood also agree that

In fact, there appears to be a real need for a teaching method that
bridges -the gap between the two extremes: a method that conveys an
understanding of the underlying mathematical principles at an
elementary level. (10:205)

Clearly, constructive learning has a place in the study of mathematics.

Scope of Research

This research focuses on the development of computer programs to

implement a constructive approach to learning the General Linear Model and

the evaluation of the system's capacity to facilitate a student's ability to

experiment geometrically with various mathematical concepts and properties

of the GLM.

6

H. Background

The development of the geometric approach to the General Linear

Model is not a new idea. According to David Herr, one of the earliest

published accounts of the model was written in 1915 by Ronald A. Fisher.

Fisher's use of geometry to discuss the distribution of correlation coefficients

was elegant, but it was difficult to discern from his written paperq. (6:44-45)

In 1933-34, M. S. Bartlett combined the use of algebra and geometry

in his description of sample sizes as being vectors of dimension n. This

allowed the reader to follow Bartlett's progressions using as much, or as

little, geometry as the reader could competently engage: This meant the

reader could fall back on the-algebra, as required, and led'to increased

insight to the geometric approach. (6:45)

J. Durbin and M. G. Kendall studied the geometric approach to

estimation in 1961. Their findings were similar to Fisher's in that they

involved little or no algebra. While this type of approach is sometimes more

elegant, it can leave the reader lost if he does not "see" the developments.

(6:45)

William Kruskal used the geometric approach in the development of

the Gauss-Markov estimation methods. He thought the geometric approach

7

provided for a more elegant and general approach. Since the geometric

approach was understood by many statisticians,

Kruskal hoped his paper would encourage more statisticians to adopt
this approach to linear models. It does not appear that this hope was
realized during the next 10 years or so. (6:45)

As Kruskal says, the geometric approach is available but the mechanisms

needed in order to make it an effective teaching tool just do not exist. (6:46)

In 1967 G. S. Watson combined the algebraic and geometric

approaches in order to motivate a clearer understanding of the underlying

principles of least squares regression. Like Bartlett's paper, this allowed

readers to revert to the common ground of algebra if needed. (6:46)

Kruskal uses the geometric approach again and uses the coordinate-

free developnrent of the linear model in a comparison of earlier works

completed by Watson and Zyskind. Herr says, "the simplicity and beauty of

the coordinate-free approach is clearly demonstrated by such a comparison"

(6:46).

After analyzing the developments in this field, Herr describes several

theories that explain why the geometric development of the General Linear

Model is not used more widely. One theory is that while "the pure

geometric approach convinced two generations of statisticians that geometry

might be all right for a gifted few, it would never do for the masses" (6:46).

Another theory proposes

To fully appieciate the analytic geometric approach and to be able to
use it effectively in research, teaching, and consulting requires that the
statistician have an affinity for and talent in abstract thought. (6:46)

The common thread between the two theories is that understanding the

geometric approach requires considerable additional effort for the ordinary

student. While Herr discusses the historical development of the geometric

approach to the General Linear Model, Peter Bryant provides a more

teachable approach to the subject. (6:46)

Bryant discusses the geometry common to Statistics and Probability

and how a geometric approach can lead to a more unified understanding of

the concepts in each of these fields. (1:38)

"Perhaps one reason for this lack of unity is that the relevant material

has not been published in the appropriate elementary-level literature," (1:38)

he states. Bryant believes that if the student can understand the basic

concepts that are developed through the geometric approach, then there are

only "variations on a common theme," (1:38) any one of which can then be

understood relatively easily. (1:38)

Bryant considers least squares regression an ideal arena in which a

geometric approach can be employed. Through geometry the students can

obtain a visual confirmation of exactly how the best estimate of regression

parameters is obtained. Confirmation secured in two or three dimensions can

9

easily be extended to a subspace of n dimensions once the basic concepts are

mastered in two or three dimensions. (1:40)

Bryant then discusses the orthogonal projections of a given vector

onto a plane and demonstrates how the angle between the vector and plane

can also be calculated through the use of inner products. The concept of the

inner product can then be applied to the least squares regression where the

angle can be used to determine if a good fit exists. Thus the mean of the

data can be obtained geometrically. Geometrically, the error, which must be

examined in order to determine how good the fit is, is the difference between

the data and the mean vector. Using the Pythagorean theorem, the

magnitude of the error can be calculated. Statistically this is referred to as

the sum of squares of error or SSE. Sample variance is calculated by

dividing SSE by its degrees of freedom. (1:41-42)

Graphically, the degrees of freedom represent the number of

dimensions along which a vector is allowed to vary. Since the error vector

must be orthogonal to the original vector of data, its degrees of freedom are

based on the number of samples of data less one. The error vector must be

orthogonal because it represents the shortest distance between the mean of

the vector and the vector of data. (1:45)

The geometric approach is used with the General Linear Model in

order to see how one set of data correlates with another. Graphically we can

10

observe this by comparing the difference between the vector of data and the

projection of the mean along the model space. The inner product created by

the different vectors of two or more sets of data allows us zo assess the

relation of the data. (1:45-46)

Bryant's developments allow the student to understand more of

mathematics by allowing him to visualize what is happening. An algebraic

approach often can result in a cookbook approach to statistics. Application

of Bryant's methods are discussed in more detail in the analysis section of

this research found in Chapter 4.

Saville and Wood also discuss how they used the geometric approach

to the General Linear Model to teach two courses in statistics in which

the aim was to introduce students to the theory and methods of
analysis of variance and regression of a rigorous but elementary
geometric setting, at the same time highlighting the unity of the area.
(10:205)

First they present a basic overview comparing algebraic concepts such as the

vector and show the geometric analogy. They continue to show how vectors

are added, and how vectors are projected onto subspaces. After laying a

basic geometric foundation, they demonstrate an example and explain its

significance geometrically. The example is based on the reduced General

Linear Model with y = + ei , where ei = yi - y Then y is projected

onto the Model and this "best fit" is fi. By observing the vectors graphically.

11

the student can clearly visualize the orthogonality of the model space

projection and the error vector which, when summed, form the observation

vector. Other examples of the GLM are also described by the authors.

(10:205-213)

In 1979 Marvin Margolis presented an article in which "the emphasis

is on geometric thinking as a means of visualizing and thereby improving an

understanding of methods of data analysis" (8:131). He develops a

projection transformation P=X(XX)IX (where X is the model space)

which is used to obtain the projection of the observation matrix onto the

estimation space. Using this projection transformation he develops the mean

of the observation matrix. He then uses the perpendicular projection

transformation (I-P) to calculate the error vector and by dividing the

magnitude of the error vector by the degrees of freedom less one, the sample

standard deviation can be found. (8:132-133)

This research is largely based on applications developed by Saville,

Wood, and Margolis who have, as university instructors, used the geometric

approach to the General Linear Model in classrooms with much success.

This curriculum is but one of four commonplaces of education addressed by

Gowin and Novak. In order for a student to learn effectively, we must

consider the other three commonplaces: the teacher, the learner and the

12

governance (9:6). The commonplaces which are most accessible to

improvement are the teacher, learner, and curriculum (5:9).

To facilitate the interaction between all of these commonplaces,

Hansard developed a protocol that encourages a dialogue between the student

and instructor concerning the key elements of curriculum through a series of

learning heuristics known as the VVAM. This protocol was specifically

developed with the computer in mind as the preferred tool to enhance the

student/teacher interaction throughout the learning process. The first step

was for the student to visualize the mathematical activity operationally. At

this point the computer guided the student through an example step by step

based-on inputs from the student. The student was allowed to repeat these

mathematical operations varying he inputs until he felt he could verbally

express the logic of the mathematical actions under study. (5:23-24)

The next step was for the student to verbalize the steps of the process

to the instructor. This verified to the instructor that the student understood

what the steps of the process were. (5:25)

After the instructor felt that the student understood the process, the

student was asked to algorithmize the mathematical operations. The

algorithmization was different from the verbalization in that the student

would write down the steps of the process in a sort of pseudo code. In order

to assure an accurate pseudo code, Hansard suggests,

13

An excellent way to verify the accuracy of the algorithm is by
stepping through the algorithm and the program at the same time to
see if both yield the same results at every step. (5:26)

The final step in the protocol requires the student to mathematize the

process. At this point the student should review his algorithms and convert

them to mathematical form using the appropriate mathematical notation.

(5:26)

Together these four steps constitute the VVAM protocol. This

protocol is particularly applicable whenever a student and teacher are using

computers to facilitate the learning process. As a result of Hansard's

verification of the VVAM protocol's efficacy, it was selected as The learning

heuristic of choice for this thesis.

According to Herr, one of the major problems with the geometric

approach to the GLM lies in dealing with the abstraction. This can be

difficult if the student doesn't quite understand the steps. By using the

VVAM, the computer becomes a tool with which the student can manipulate

the subspace and gain greater insight into the General Linear Model.

The goal of this research is to combine the previous developments in

the projective geometry of the General Linear Model with the VVAM

learning protocol. The details explaining how this will be accomplished are

included in the next chapter.

14

III. Methodology

Overview

Chapter 2 clearly demonstrates that geometric methods have been used

by leading statisticians throughout the past century to rigorously develop the

General Linear Model. Previous researchers seem to agree that a major

challenge, involved in sharing this geometric development with more than a

few gifted students, is the visualization of key concepts of the GLM.

Although several scholars have developed different pedagogies to teach the

geometric approach to the GLM, they all agree on one thing: there is a need

for an interactive learning environment in which teachers and students

learning the GLM would be assisted by a competent (and ideally

computer-facilitated) visualization of GLM concepts. This research effort

developed such an environment.

Employing the VVAM learning protocol developed by Captain Stone

Hansard to govern the educating event, the system created by this thesis

guides the teacher and student in their mutual discovery and mastery of a

projective approach to the study of the GLM.

This chapter addresses the methodology that was used to confirm the

three research hypotheses proposed in Chapter 1.

15

Why Use the VVAM?

Before an educational tool can be used effectively, its impact on each

of the four commonplaces of educating (Governance, Curriculum, Teacher,

Student) must be considered and addressed. As outlined in Chapter 2, such

an environment should directly address the needs and interplay of three of

the commonplaces of any educating event: the teacher, the student, and the

subject matter. Since the fourth commonplace, governance, controls the

manner in which the teacher and student discuss the subject under study, it is

important that governance be given full and competent recognition during

any educating event. Employment of the VVAM ensures this takes place in

the environment created by the PPME.

According to Glaserfeld, one traditional approach to teaching

mathematics is based on the assumption that instructors shouid teach any

subject by pouring knowledge into the student. Unfortunately, complex

mathematical concepts such as those involved with the GLM cannot simply

be transferred. In fact, when the "transfer paradigm" is implemented.

students usually end up regurgitating course material in order to pass exams.

Little or no meaningful learning can take place. (4:16)

The VVAM reverses this traditional role of the teacher by allowing

the student to work through problems actively before the teacher presents the

theory motivating the problem-solving techniques. One of the reasons the

16

VVAM protocol was chosen as the learning protocol in this thesis was

because it specifically emphasizes visualization during the study of

mathematics. Since the most common barrier to implementing a geometric

approach to the GLM is a lack of ability to orchestrate competent

visualization, it seemed logical to employ a learning protocol that

emphasized such "seeing." The use of the computer to facilitate

visualization enlivens the curriculum. Through visualization, the teacher and

student can experiment with the concepts of the GLM and receive

extraordinary encouragement to discuss their mutual levels of understanding.

This exchange, or verbalization of mutual understanding between the

student and teacher, is the second requirement of the four step VVAM

protocol. It is the experience of this researcher that, until a student can

clearly articulate his understanding of a concept, his mastery of the subject

matter should not be- presumed by the teacher, or himself.

There is unanimous agreement that once a student understands a

concept of the GLM, he needs to demonstrate his ability to apply it. Hence,

the importance of the third step of the VVAM: algorithmization, is clear.

The ability of a student to construct an algorithm in pseudocode as a means

of demonstrating his understanding of a concept facilitates discussions

between the student and teacher concerning the steps involved in solving a

mathematical problem. Once the student has verified that his pseudocode

17

works, the teacher can be assured that the student understands both the

concept and its application. (5:25-26)

The final step of the VVAM is mathematization. This step requires

the student to translate his algorithm into the formal language of

mathematics using appropriate mathematical notation and operators.

Competent employment of matrix algebra is particularly important at this

stage. The MathCAD' software package provides a convenient medium for

assisting the student in meeting this final requirement of the VVAM. (5:26)

Because the VVAM approach emphasizes interaction between teacher

and student within the context provided by a competent visualization of

relevant mathematical concepts, it is an ideal protocol to govern the learning

system effort known as the PPME.

Development of the PPME

The Pearce Projective Modeling Environment (PPME) was developed

to facilitate the visualization of general linear modeling concepts on an IBM

compatible computer. The backbone of the environment is a computer

program that is used by students and instructors to demonstrate graphically a

'MathCAD version 2.5. MathSoft Inc., Cambridge MA, 1989 is a form free

electronic spreadsheet that performs a wide variety of mathematical functions.

Is

projection approach to the General Linear Model. Figure 1 contains a

flowchart that outlines the basic flow of the program.

I Di~ay fn7tw

Q~t

Figure 1. PPME General Flow Diagram

Once the program is run, the student can choose to experiment with

the Sample Mean and Variance, the General Linear Test of the Population

Mean, or Simple Linear Regression.

If the student chooses the Sample Mean and Variance option, he is

asked for the response vector, Y, and the design matrix, X. From this data

the computer calculates the projection of Y onto X and the error vector

19

associated with that projection. Several other pieces of explanatory

information are also provided and are discussed later in this chapter.

Alternatively, the student can opt to conduct a General Linear Test of

the Population Mean. The selected module then requests specific

information from the user relating to that chosen area. Next, inputs are

processed and displayed. At this point the user can observe the data

graphically by rotating the plotting axes to a preferred vantage point or by

turning selected vectors on and off. By modifying the input data

interactively, the student can see how changes to the input data affect the

displayed geometric structures of the GLM. More details on the program

follow later in this chapter and are accessible, during execution of the

PPME, as on-line help screens.

Our next task will be to present the mathematical framework that

serves as the formal foundation for a projective approach to the study of the

GLM. Details concerning how the mathematical framework was transformed

into a working interactive environment (known as the PPME) follow this

discussion. The chapter concludes with an overview of the three specific

scenarios that served as a test bed for evaluating the ability of the PPME to

generate a meaningful learning environment. Finally, the four criterion

which were used to make the evaluation are defined.

20

Chapter 4 presents six data sets, defined later in this chapter, to

confirn the research hypotheses specified in Chapter 1. The PPME's ability

to handle each data set is evaluated in terms of its constructiveness,

meaningfulness, livingness, and relatedness. The constructiveness criterion

will receive special attention in Chapter 4 since it is the criterion that is used

to evaluate how well the PPME system facilitates student construction of

new knowledge (at least from the student's perspective) about the GLM.

The meaningfulness criterion is employed to assess the assimilatability of

GLM concepts when the PPME is exercised. Assessing the PPME's

capability to stimulate interest in the subject matter is the task assigned to

the criterion of livingness. The PPME's ability to relate concepts of the

GLM to some real world situation is evaluated by applying the criterion of

relatedness.

Overall Mathematical Framework for the GLM. The concepts of the

theory of the GLM can be developed from a geometric standpoint. In order

to visualize this, consider the response vector, Y and the Estimation Space,

X shown as:

= = n =2or3

21

The response vector Y resides in the sample space of the GLM. This

research deals only with sample spaces of two or three dimensions.

However, once the student understands the basic concepts involved in

exercising the GLM, concepts displayed in two or three dimensions can be

extended quite naturally to sample spaces with any number of dimensions.

The design matrix, X, is a column of ones with the same length as Y.

The first concept to be demonstrated will be the estimation of the

mean of Y. The basic equation for least squares estimation of the mean is

Y= pX+ (1)

The estimate of the mean of Y known as Y, is actually a projection of Y

onto the Estimation Space, X, which is represented by a column matrix of

ones with the same number of rows as Y. Since f is a projection onto X, it

must lie on X, therefore, the Estimation Space must have a dimension of

one. The remaining two dimensions contain the error vector that resides in

what as known as the Error Space. The equations below show how to

calculate the projection matrix, M; the estimate of the mean of Y, Y and the

error vector, e.

M-X[X X]-YXT

Y=MY

e=Y-l

22

The dimensions of the space are obvious to the student who views

them graphically. The dimension of the sample space is equal to the sample

size. Hence, the Y vector will be plotted in two or three dimensions. The

dimensions of the Estimation Space for the Least Squares of the Sample

Mean is one since the Design Matrix, X has only one column. The error

space must consist of the remaining dimensions (n-1=2) because the

estimation and error space dimensions always sum to equal the dimension of

the sample space (1 +(n-l)= n)

The second concept to be examined is the estimation of the parameter

vector B which is known as the] vector, calculated as follows.

[L.'X]-1X'y = .(a scaler)

The 1 vector, in this case, will be the scaler estimate of p, or

General Linear Test about the Population Mean of a Normally

Distributed Random Variable. In the case of the General Linear Test for the

Population Mean, we have as the Full Model,

P0 + P3IX. + i = 1,.--,n (2)

and the Reduced Model,

Yi= PO + C i = l,.-.,n (3)

23

Since this is a test, a null hypothesis and alternate hypothesis must be

stated. These are, in general,

H0: p= p o versus H: p# pio

To actually conduct this test a value for p0 and a value for Type I error, ot,

must be specified.

Once these structures and entities to the PPME have been defined, the

projection matrix M can be calculated. The projection matrix is then used to

calculate f. In order to complete the test, the next step is to calculate the

estimated error (residual vector) e for the Full Model,

e =Y-Y

and the Reduced Model,

e R - E(_

Hence, E(Y) is simply the Po multiplied by the Design Matrix, X.

E(D =-

The next step is to compare the squared lengths of the two estimated

error vectors. These quantities are known as Error Sum of Squares of the

Full Model, SSEF, and Error Sum of Squares of the Reduced Model, SSER.

24

To determine if the null hypothesis should be rejected or not, a critical

value, FCRrr, is computed based on the F distribution and specified ct. This is

compared to F*, where

F* = SSER- SSE F . SSEF

dfR-dfF dfF

and df and dfR are the degrees of freedom for the Full and Reduced Models,

respectively. If F is greater than FCRIT, the null hypothesis is rejected and

the alternate hypothesis is accepted; otherwise, the null hypothesis cannot be

rejected. The estimates of fl for both Full and Reduced Models are

calculated as shown:

- T.-X]-IXT.y

Linear Simple Regression to Estimate E(Y IX). In this

application of the GLM, the PPME tests whether the slope parameter B1=60,

assuming fiis normally distributed.

Since .this is also a test, a level of Type I error, cc, must be given. As

with the previous two cases the design matrix, X, and response vector, Y,

must then be input. In this case the design matrix, X, has two columns.

While the sample space still contains three dimensions, the Estimation Space,

which is based on the number of columns in X, has dimension two. As a

result, the error space must lie in a subspace of dimension one.

25

Yx :i] nI3

In this test, we also have the Full Model,

Y,.=P0 + pl)X , + e, i= 1.-n (4)

and the Reduced Model,

Y1.= P0 + e, ,n (5)

We must next establish our null hypothesis, H0, and alternate

hypothesis, Ha:

H0 : 0, =010 versus H: lio

To do this, a value for Type I error, (x, needs to be selected.

Once these structures and entities of the PPME have been defined, the

projection matrix M can be calculated. The projection matrix is then used to

calculate Y. In order to complete the test, the next step is to calculate the

estimated error (residual vector) e for the Full Model,

e =Y-Y
e

F
=

and the Reduced Model,

26

eR = Y - E(Y)

Hence, E(Y) is simply the Po multiplied by the Design Matrix, X.

E(D = po0"

The next step is to compare the squared lengths of the two estimated

error vectors. These quantities are known as Error Sum of Squares of the

Full Model, SSEF, and Error Sum of Squares of the Reduced Model, SSER.

To determine if the null hypothesis should be rejected, a critical value,

FCRIT, must be computed based on the F distribution and specified c. This is

compared to F, where

SSEz - SSE SSEF

dfR-dfF dfF

and dfF and dfR are the degrees of freedom for the Full and Reduced Models,

respectively. If F* is greater than FcRrr, the null hypothesis is rejected and

the alternate hypothesis is accepted; otherwise, the null hypothesis cannot be

rejected. The estimates of f. for both Full and Reduced Models are

calculated as shown:

f_ -- [LT.X]-IXT.y

27

Computer Program Development. The mathematics involved in the

geometric approach to the GLM have been around for many years. The

revolutionary part of this research is the creation of the PPME which uses an

interactive three-dimensional graphics display to portray the vector spaces

associated with the GLM and computer. With the PPME the user can

visually study the vector spaces and subspaces associated with the GLM

from any viewpoint.

In order to facilitate the design of the program, the computer program

was broken down into three logical modules with one for the Sample Mean

and Variance, another for the General Linear Test of the Population Mean,

and a third for the Simple Linear Regression. Borland Company's Turbo

Pascal v6.0 was chosen as the programming language because of the

modular design capabilities of the Pascal language: A commercial set of

subroutines, AcroMol6, by AcroSpin, Inc was used to incorporate a

capability for interactive graphics into the program.

In order to keep the programming to a minimum, most of the code

was written so that each of the three modules could reuse the same code.

Because of the extensive reuse of code, most of the commands within each

module are very similar. For example, in each of the modules "Fl" accesses

help and AIt-Y modifies the Y matrix. It is believed that by reducing the

28

time required to learn each module, the student is given a better opportunity

to work with the mathematics.

In support of this philosophy the output of each of the modules was

designed to be as similar as possible. Specifically, the coding for the

response vector and design matrix reside at the same location in each

module. More importantly, the color of the Y vector and other vectors does

not change from scenario to scenario. By allowing the student to concentrate

on the mathematics, his understanding of the concepts of the GLM is

enhanced.

While the PPME is simple to use, it is not designed as a tutorial.

Therefore, no conceptual information is provided through its auspices. The

student needs to be guided by (1) the governance provided by the VVAM,

(2) the learning heuristics developed during this research and by (3) a GLM

competent instructor. The PPME was designed to be used this way because

it is believed that the required conceptual information is best assimilated

through a VVAM driven interaction of student and teacher.

Once executed, the program allows the user to choose any one of the

three major topics listed in Figure 2. If execution of the Sample Mean and

Variance or the General Linear Test of the Population Mean routine is

requested, the user is then asked to enter the size of the sample: n=2 or n=3.

The third module, which assists in Simple Linear Regression, assumes the

29

Which Program uould you like?

Ordinary Least Squares Regression for the Sample Mean an d Uariance

General Linear Test for the Population Mean

Ordinary Linear Siumple Regression with One Predictor Uariable

Exit

What is Your Choice?

Figure 2. Main Menu Screen

sample size is n=3.

Sample Mean and Variance. If the user chooses the Sample

Mean and Variance option, he is asked to input the observed values for the

response vector, Y, and the design matrix, X. Since the design matrix

should be a column of ones, it is set to ones by default: The input format

for the matrices is based on MathCAD's matrix input format because the

students who will use the PPME at the Air Force Institute of Technologv

(AFIT) are familiar with MathCAD. Numbers are limited to a size if four

digits (including the decimal point) because, for educational purposes, this

level of precision should be sufficient. Once the matrix inputs are entered.

the user must press the 'F10' key to indicate that he is finished.

After the user enters these initial inputs, the program calculates several

different entities. The projection matrix is calculated and displayed along

with the]. vector and f vector. The computer then plots the response

30

vector, Y, the Design Matrix vector, Z, the projection of Y onto the

Estimation Space, and the Error vector, e, in the lower left hand portion of

the screen. The dimensions of the Sample, Estimation, and Error Space are

also displayed. So that the student can visualize the explanatory power of

his selected response vector and design matrix, the Regression Sum of

Squares (SSR) and Error Sum of Squares (SSE) are also displayed as a

percentage of the Total Sum of Squares (SSTO) which is the total

unexplained variation in Y. These are plotted as an area to facilitate the

visualization of the explanatory power of the response vector when the

student compares the SSR to the SSE. In addition to the plot, the actual

values of SSR, SSE, and SSTO are also provided. Figure 3 gives the reader

an idea of how the data is displayed. Unfortunately, the static figures

printed in this thesis cannot portray the extraordinary dynamics the actual

program is able to facilitate. Additionally, on the actual computer display,

each of the vectors are easily distinguished by color and-by selective

deletion.

General Linear Test for the Population Mean. If the user

chooses the second option, then he will see the screen displayed in Figure 4.

He is asked to enter both the response vector, Y, and the Design Matrix, X.

Since this is a test, the user is then prompted for a ji and a level of Type I

31

OrdinarW Leasnt Squares Regression for the Sample Mean end Uariance

XEXX3IX EXX31 ly SSE 2)-

Dinensions "Y'C I ny-4
Sanple space n f = E 3 1Err

Es ainSpace = E 3 Error-
Eor Space =n t! L .

Pro~cio q Yonto Pro~rct on of Y onto
the simaton, pac ror Space

SSR SSEL0.20
IV = 14,1 +IErrorI

2

SSTO = S38 + SSE

* Pres-s F1 for Help

Figure 3. Sample Mean and Variance Screen

The General Linear Test for the Population MIean

Ho: CJJ VOp XCX'XJIx CXXIf t X'v

Y_[] = El'4-= F
Sanpie Dimensijons-([] C=

Sapespace = n = I I
Estimation Space = p = E I
Error Space n P-II

SSR SSR/dfmun SSR =

~-z-ff df Mu.,

SSEF SSEF/df~en SSEF

y .73 - df Den

SSTO Fstar=
________ P value=

Fcrit =
t~p for a =

Press Ft for Help

Figure 4. General Linear Test for Population Mean Screen

error, a. A default of 0.05 is provided for ac and a column of ones is the

default for the design matrix.

32

After the user completes these inputs the program begins to calculate

the projected vectors. The projection matrix is first calculated and displayed,

as are a. and Y. The computer then plots the response vector, Y the Design

Matrix, X., the projection of Y onto the Estimation Space, Y and both the

Reduced (.R) and Full (.F) Error vectors, in the lower left hand portion of the

screen. The dimensions of the Sample, Estimation, and Error Space are also

displayed. So that both the error and the explanatory power of the Full

Model can be seen, the Regression Sum of Squares (SSR) and Error Sum of

Squares (SSEF) are displayed as a percentage of the Total Sum of Squares

(SSTO) which is the total unexplained variation in Y. The SSR and SSEF

are then divided by their respective degrees of freedom and then plotted

again. SSEF and SSR are computed as shown below:

SSE, =Y-

SSR --112

P values are also generated to help the student decide whether to accept the

alternate hypothesis Ha, or reject the null hypothesis H0.

The dimensions of the sample space, and each subspace, will become

more obvious as the student views them graphically. The dimension of the

sample space is based on sample size and is either two or three dimensions.

Relevant vectors are plotted in two or three dimensions.

33

Simple Linear Regression. When the student chooses the third

option, Simple Linear Regression with One Predictor Variable, he will be

asked to enter the response vector, Y, and design matrix, X. Because the

sample size Was defined to be 3, the design matrix now has two columns.

The first column is all ones. Since this is a test, the user is then prompted

for the value of B10 and level of Type I error, a. A default of 0.05 is

provided for a. Once the data is input several calculations must be made

before it can be displayed as shown in Figure 5.

The program first calculates the projection matrix and then displays it

along with f and f. The computer then plots the response vector, Y, the

Design Matrix vector, X, the projection of Y onto the Estimation Space,

and both the Reduced () and Full (.) Error vectors, in the lower left hand

portion of the screen. The dimensions of the Sample, Estimation, and Error

Space are also displayed. As was done in the previous test, both the error

and the explanatory power of the Full Model can be seen as the SSR and

SSEF are displayed as a percentage of the SSTO. The SSR and SSEF are

then divided by their respective degrees of freedom and plotted again. SSEF

and SSR are computed as shown below:

SSE- Y

SSR = I1 I2

34

P values are also generated to help the student decide whether to accept the

alternate hypothesis H, or reject the null hypothesis H0 .

Ordinarg Linear Sinple Regression with One Predictor Uariable

YRed.]XRecJd] ;eiE)Red -[1 e.[-R 1
Dinens ions

E pi San S pac n --CNo: p : I=Estination pace= p = I]
Error Space -n-p = CI

I SSR SSR..dft~..,SSSFId f Hun

SSEF SSEF/dOE!n SSEF

IOdfoe
n

SSTO Fstar -
P "elue =
Ferit -
for a =

Press F1 for Help

Figure 5. Simple Linear Regression Screen

Specific Scenarios

The purpose of the PPME learning environment is to encourage the

student to explore the various aspects of the General Linear Model. In

support of this goal, six data sets were selected to help demonstrate the

ability of the PPME, employed under the guidance of the VVAM, to

facilitate a meaningful learning environment for studying the GLM.

The six data sets have different ranges of variability. One relative

measure of variability, the Coefficient of Variation, represents the ratio of

the standard deviation to the mean, and is calculated as follows:

35

Coefficient of Variation = -P

By using such diverse data sets it was possible to demonstrate how the

PPME can be employed to facilitate meaningful interaction between the

student and instructor, who as co-creators participating in a meaningful

learning process are required to construct concept maps of their personal

knowledge about the General Linear Model. (7:130-132)

The six data vectors and their specific elements and coefficients of

variation are listed in Table 1.

Table 1. Data Sets

.Set No General Specific Mean Standard Coeff of
Case Case .Deviation Var

--------- -------------- -------------- --------------------- --------------
0 [0,0,0]T [0,0,0]T 0 0 0

-- ---------------
I [-c,0,c]T , [0 2]T 0 2 00

----- --- ---. -------------------- --- --------- ---------

2 [c,c,c]T [2,2,2]T 2 0 0
---- ----------------------------------- - --------------------------

3 [c,c+ct,c+2a]T [2,4,6]T 4 2 50%
S---------------------------2------------

'[dCc+ctC+lla] T [2 ,4 ,2 4]T 10 12.2 122%
--- -------- ------- --------------- 4 -- - 4

[3cc,2c [- 6 2 ,4 '0 5.29 1

By allowing the student to observe the effect these different data sets

have on the visible geometry of a particular linear model, a better

36

understanding of the relationships of concepts and entities forming the

structures of the GLM can be obtained.

Three scenarios were proposed to provide a context in which students

and teachers could use the PPME to explore the concepts of the GLM under

governance by the VVAM protocol.

Scenario One. The first scenario suggests the General Linear Model

be used to carry out an Ordinary Least Squares Estimation of the Sample

Mean and Variance. Data sets 1 through 5 were employed as the PPME's

efficacy and ability to facilitate meaningful learning under this scenario was

evaluated.

The model required in this case is a subset of the GLM in which the

Estimation Space is a column of ones as shown below,

Y V1 +

The first assumption this model makes is that the error vector is independent

and normally distributed with an expected value of 0. In this first scenario,

the inputs are the response vector, Y and the Estimation Space, X. From

these inputs the following calculations are made: M, the projection

matrix; fl the estimate of the regression coefficients; Y the estimate of the

mean; oY, the estimate of the variance of Y; e, the estimated error vector;

37

SSTO, the total sum of squares; SSR, the regression sum of squares; and

SSE, the error sum of squares.

After calculation, several vectors, X, Y., Y and e are displayed

graphically for the teacher and student to discuss. The Estimation Space,

defined by X, is one-dimensional in this scenario.

Scenario Two. To conduct a General Linear Test about the population

mean of a normally distributed random variable both Full and Reduced

Models must be specified. In evaluating the PPME's capacity to orchestrate

meaningful learning under this second scenario, data set 3 was employed.

The Reduced Model associated with the null hypothesis, H0, can be

represented as shown:

Y =P 1 +

and the error vector for the Reduced Model is computed P = Y - p1

Since E(Y) = pol , the estimated error vector is caiculated ag

eR = Y - E()

The alternate Hypothesis, H, is identified with the Full Model and is

represented as shown:

Y = p1 +

38

so that when p is estimated by i, the error vector for the Full Model is

computed as shown:

eF- Y- Y= Y- 1

In this scenario, the inputs are Po, the response vector, Y, the level of Type I

error, a, and the Estimation Space, X, which is a column of ones. From

these inputs, M, f, , and error reduced, eR; error full, eF; SSR, SSE,

and SSTO can be computed.

From these calculations several vectors, Y Y and e, as well as E(Y),

e_ , and e_ are graphically displayed for the teacher and student to discuss.

Through the geometry of the GLM we know that the length of the error

vector for the Reduced Model squared is equal to the length of X squared

plus the length of the error vector for the Full Model squared, which is

written as:

Ie 12 - 112 + If 12

hence the regression sum of squares is equal to the length of Y squared or

the length of the reduced error vector squared minus the full error vector

squared as shown below:

SSR = ¢2

SSR = ei I'- IeFi

39

Scenario Three. When the General Linear Model is used to conduct a

Simple Linear Regression to estimate E(Y I X) or make a test about the slope

parameter B1, we assume that its estimator, 41, is normally distributed. As in

the previous scenario, the concepts motivated by this General Linear Test

require an understanding of hypothesis testing and the Full and Reduced

Models. Data set 3 used along with the Design Matrix X2. Employment of

Design Matrix X, is left to a future researcher. These two design matrices

were chosen to represent Estimation Spaces with an evenly distributed, and

positively skewed, independent variable.

X, = 14X, =13

The Reduced Model associated with the null hypothesis, Ho, is

represented as shown:

Y = hIP0] + e

where 630 is unknown. The error for the Reduced Model is given as the

difference between the YRad and the fRed and is written as shown:

e0R Red

40

where YRed Y - X(,,2),'lo and YRd!- XO = lA0

The Full Model is associated with the alternate hypothesis, Ha, and is

represented as shown:

If we estimate B with I , the error for the Full Model is given as the

difference between the YFuII and the YFu.l and is written as shown:

eR = Yl-YfFul

Evaluation Criteria

Once details for each of the scenarios were determined, four criterion

for evaluating the efficacy of the PPME's ability to orchestrate meaningful

learning experiences with the concepts of the GLM within the context

provided by the three scenarios were formulated. These four criteria were

invoked to evaluate this efficacy and were labeled: Constructiveness,

Meaningfulness, Livingness, and Relatedness. It is this researcher's belief

that all four criteria must be considered to adequately assess the pedagogical

value of any educating event. The analysis in Chapter 4 will give primary

emphasis to the constructiveness criterion because, in conjunction with the

other criteria, it is both necessary and sufficient to the attainment of a

41

meaningful learning experience. Each criterion was measured on a scale that

can be treated as ordinal in any future formal evaluation exercise.

The Constructiveness criterion evaluates the PPME's ability to

orchestrate the construction of new knowledge as the student and teacher

interact with the geometric display and the student attempts to assimilate key

concepts of the GLM with the teacher's assistance. It also is used to

measure the extent to which the student is able to manage his own learning.

Its scale represents a continuum of constructiveness with designated extreme

values of dormant, indicating no constructive ability, through constructive,

indicating all new knowledge is generated by the student.

The scale of Meaningfulness attempts to assign a measure that

documents the PPME's capacity to encouragq students to link and subsume

new concepts to concepts previously assimilated during prior learning

sessions. It's scale measures a continuum of meaningfulness with designated

extreme values of rote, implying mindless memorization of concepts, through

meaningful, suggesting complete assimilation and subsumption of all new

concepts introduced during the evaluated session.

Livingness, the third criterion, is a proposed measurement of the

ability of the PPME, during any encounter with the GLM, to make concepts

come alive for the student through dynamic visualizations of the subject

matter. This scale measures a continuum of iivingness with designated

42

extreme values of non-living, indicating a moribund encounter with the

subject matter, through living, indicating an evolving and deepening

relationship with the concepts of the GLM.

Finally, the criterion of Relatedness is used to evaluate the PPME's

ability to facilitate a concrete awareness of the applicability of the GLM to

real world problems. Students tend to be more inspired when they can see

links to the field while studying theory in the classroom. This measure is

used to record the PPME's ability to facilitate, under the VVAM governance

and the teacher's watchful eye, such linkage in the mind of the student.

These four measures clearly impact one another and represent a

system of criteria. Figure 6 considers their mutual relationships and their tie

to the real world via three of the four commonplaces of any educating event

(Teacher, Student, Governance, and Curriculum) and the real world. It

should be noted that the individual continuums of each criterion relate

specifically to one of several possible two-way interactions diagrammed by

Figure 6.

The onus is on the teacher to make the curriculum interesting for the

student. However, responsibility for learning is entirely on the shoulders of

the student and may or may not prove constructive depending on the

relationship between the student and the curriculum. A meaningful

educating event, while not exclusively the result of the student and teacher

43

Constructive

CStudent) (Curriculum
~Me~igfU1 Dormant

MearugfulLiving

P-be .-- NonjLIig

Teacher

Relatedness

C Real World
Figure 6. Relationship Between Evaluation Criteria and Commonplaces

interaction, typically occurs only when the student and teacher serve each

other as co-operating coequals during the process of constructing new

knowledge that always characterizes any meaningful learning actiyity.

Perhaps the most fundamental postulate suggested by Figure 6 is that while

the rich dynamics between the three commonplaces are necessary for

meaningful learning to take place, each of the three commonplaces, under

the governance of the VVAM protocol, must possess a credible and

continuous relationship to the real world if they are to serve as a sufficient

basis for the manifestation of a constructive and meaningful educating event.

44

In Chapter 4 the VVAM, the PPME and the six data sets presented in

this chapter are employed within the context of the three scenarios

previously described to allow dynamic visualization of GLM concepts

associated with each scenario. The four criterion are used to evaluate the

PPME's efficacy for creating a meaningful learning environment in

anticipation of future research efforts that would conduct a complete and

formal evaluation of the PPME's use within a much broader domain of

topics associated with the GLM and across a larger student population taking

course work in the GLM.

45

IV. Analysis and Results

To assess the efficacy of the Pearce Projective Modeling

Environment's (PPME) ability to orchestrate meaningful and self-managed

learning activities, each scenario introduced in Chapter 3 was evaluated by

exercising the PPME under VVAM governance using one or more of the

data sets (response vectors) which were presented in Chapter 3.

The evaluation consisted of executing the PPME with each scenario

using specific data sets determined from the generalized data sets presented

in Table 1 of Chapter 3. The specific data sets were obtained using c=2

and cL=2

The first scenario uses data sets one through five since a response

vector of all zeros merely suggests the possibility of sampling a system's

response to settings of a particular variable. This is continued for each of

three scenarios. The last two scenarios test null hypotheses H0: Po= 2 and

Ho:B=O , using data sets one and three. This resulted in five analyses for

scenario one, two analyses for scenario two and one analysis for scenario

three.

Once the PPME was executed for a particular scenario, the analysis

involved graphically displaying the GLM structures produced by the PPME

and making observations to compare and contrast differences and similarities

46

of the GLM's output generated in response to the entering of various data

sets.

Results of the analyses were evaluated with respect to the four

evaluation criteria introduced in Chapter 3, Constructiveness,

Meaningfulness, Livingness, and Relatedness, with special emphasis being

placed on the level of constructiveness attained under each scenario.

Sample Mean and Variance

Scenario 1 involved using the General Linear Model and Ordinary

Least Squares to estimate the Sample Mean and Sample Variance. As stated

previously, the model for this scenario is:

Y i1 + e

In this equation, both pj and _- are theoretical values and therefore are not

displayed. They are estimated by the f vector and the Error vector in the

PPME. The I's vector is entered as the Design Matrix X and the Y vector

as produced representing a particular data set.

The output of the PPME is displayed in Figure 7. It consists of the

response vector Y and Design Matrix X which are both input by the user.

The projection matrix M, which is also displayed, is used to calculate Y the

projection of Y onto the Estimation Space, X, and the Error vector, the

47

projection of Y onto the Error Space. The PPME displays the entered and

computed values in an interactive three-dimensional plot. The SSR and SSE

are computed and displayed as a percentage of SSTO above their

non-normalized values. The calculated estimates of 13 and variance are also

displayed.

The first data set evaluated has the general form of [-c,O,c] and the

specific form of [-2,0,2] and is shown in Figure 7.

OrdinarV Least Squares Regression for thq Sapi leon and Uariance

X [X °X - lX. X °X 3- X SSE ;2 t m .0

y[r[l0.3 0 .3 0.31 3 ro.o n-p
0 00 / 1-0 0 3 0 3 0 1.0 // 0.3 0.3 0. 31L 2.O L 1.oj L0.3 0.3 0.3

Dinensions M-4 (I - YI Y,

SagPle Space = n = E32 4 r Erro.0
Estianation Space p = E1] 0.0/
Error Space n -P = E23 o.0m

Projection of Y onto Pro~ectioh of Y onto

the Estination Space the Error Space

Y t . .SSR SSE

I Iy1 2
= 1912 * IErrorI2

SSTO = SSR + SSE
2.0 0.0 2.0

Figure 7. Data Set 1

The first thing to observe is the relationship between the projection of Y

onto the Estimation Space, f, and the estimated error vector, e. When the

angle between the vector f and Y is small, it is an indication that the

estimator Y has high explanatory value. However, data sets 1 [-2,0,2] and 5

48

[-6,2,4], shown in Figure 7 and Figure 8, both have a mean of 0 and a

coefficient of variation of infinity. Since the zero vector is orthogonal to

every other vector in a vector space and since Y= 0 , the correlation of Y

to Y is zero. This lack of correlation indicates a lack of explanatory power,

Ordinary Least Squares Regression for the Sampile Mean and Uarianca

XXX-X X-X-I X, SSE. 30
Va0 X .0 0- 03 0.3 0 3 =0.0 n-D
2- 1 a 0.3 0.3 p

0.3 0.3

Dimens ions 1W.'"

Sapple Space = n - 3J
Estiat ion Space p - l [[] Error
Error Space = n - P = 23

Projection of Y onto Projection of Y onto
the Estination Space the Error Space----------Z ---------------------------------------

SSR SSE

X IVl
2 1 91

2 + IErrorI
2

SSTO = SSR + SSE
6.0 0.0 6.0

Figure 8. Data Set 5

and as expected, the PPME shows an SSR of 0 and the SSE of 1. While the

estimate is perfectly correct, virtually none of the variation in the original

data is explained by the estimating process. The error vector e is the

difference between Y and f and since Y= 0 , the error vector was equal to

Y. As shown in Figure 7 and Figure 8, the Error Sum of Squares, SSE, is 1

49

which means it equals the Total Sum of Squares. Thus the data from these

two sets yields only error and is of no explanatory value.

Data set 2 [2,2,2], shown in Figure 9, was similar to 1 and 5 except

OrdinarUg Least Squares Regression for the Sauiple Mean and Unriance

XEX IX]- X V SSE

0.3 0 3 0.3]0 o1' 2.0 n'--P .
01 0 .3 0.3 0.

DiunsiosX (I -n)Y=V-

Sanle Space - n = 3] . 0.rEstiation Space = p E .. 2 Error- .Error Space = n - = 20] 0.0

ProjEction 9f V onto Projztion of Y onto
the Estination Space Error Space

. SSR SSE

I SSTO - SSR + SSE
2.0 2.0 0.0

Figure 9. Data Set 2

the error vector, e, is equal to zero and Y= Because of this perfect

collinearity, the value of r2 (the Coefficient of Determination) is I which

means SSR equals the Total Sum of Squares.

A student can verify that Y and f are equal by looking at the values

in their vectors in Figure 9 but this can also be verified graphically through

the PPME plot of the vector space. When the student presses the "F2" key,

a box like Figure 10 appears and indicates to the student what key to press

to turn individual vectors on and off. By pressirg Alt-Y, the Y vector

50

Turning Uectors On/Off

Alt A Toggle Axis
Alt C Toggle Cube
Alt E Toggle Error

Alt H Toggle V
Alt X Toggle X
Alt Y Toggle Y

Press F2 to Renove this Screen

Figure 10. Vector Toggle Help

disappears and the Y vector is visible. This capability is used during the

analyses of scenario 2 and scenario 3.

Data sets 3 [2,4,6] and 4 [2,4,24] provide more conventional

observations because neither their mean nor variance equals zero as indicated

by their coefficients of variation of 50% and 122%. The vectors generated

by these data sets are displayed in Figure 11 and Figure 12. Since most

investigations in which regression is used to study variability, these two sets

have practical value. Independence is visually demonstrated in Figure 11

and Figure 12. The orthogonality between the error vector, e, is apparent

since they are at right angles. The figures also show that the magnitude of

the error vector of data set 3 is greater than that of data set 4. This is

verified by noting the difference in their proportions of unexplained error

(0.44 vs 0.33). Since data set 3 has a smaller Coefficient of Variation than

set 4, it might be expected to have more explanatoty power.

51

Ordinary Least Squares Regression for the Sauple Mean and Usriance

o.x SSE- ;,c - 1.0
Y. 2 0.0 0.3 0.3 0 4.0 n-I

4: O- 1: I 0.3 0.3 0 3
. 0 0.3 0.3

DimensionsVX (I -M)Y-Y-V

simple S~ace = ni = (3] 4 01 Error-Estimation Space = p E13 0.Error Space n - 23
0

1 2.

ProjEction 9f V onto Projection of V onto
the Estination Space Error Space

SError SSR SSE

Error 6 -67 0.33

x
xII 2 = I9I2 + IError

2

SSTO = S3R * SSE
6.0 4.0 2.0

Figure 11. Data Set 3

Ordinary Least Squares Regression for the Sanple "ean and Uariance
XEXI Ix. x IXX-I xv

;=[-- X0.X
1] SSE. 2Cy 40

V-.20 1 0 " 0.3 0.3 0 3]. n-4
4.0 I 1:0 n- 0.3 0.3 0.3.

[
2 4 0 Lo 1 .04 10.3 0.3 0.3

Dimensions lV.x; (I-I-)Y-V-Y

Sa Ple Space = n = E33 2. 10 0
Estination Space = p = E13 - 0 rorError Space = n - p = r23 1.00

Proiection qf Y onto Projection of V onto
the Estination Space the Error Space

Z SSR SSE

Error
05 6 i.

44 "

IYI
2 = 1I2 + IError1

2

SSTO = S£R + SSE
18.0 10.0 8.0

Figure 12. Data Set 4

The ability to enter and modify any data set and to observe the angle

between the Y vector and the P vector and its relationship to the magnitude

52

of SSR and SSE to the angles magnitude is a solid confirmation of the

constructive value of the pedagogy facilitated by the PPME.

General Linear Test about the Population Mean of a Normally Distributed

Random Variable

The object of this scenario is to compare the error vectors from the

Reduced Model which is associated with the null hypothesis, H0, and

represented as shown:

Y= 1 +

and the Full Model which is associated with the alternate hypothesis, H, and

represented as shown:

Y =P +

In this scenario, tests will be conducted on two data sets. Data set 1 [-2,0,2]

has a mean of zero and a standard deviation of two which drives the

Coefficient of Variation to infinity. Data set 2 [2,4,6] is the second response

vector and has a mean of four, a standard deviation of two and a Coefficient

of Variation of 50%.

The first test consisted of establishing the nu!l hypothesis,

H0: Cp = po , in which Po equals 2. The images provided by the PPME for

this data set are shown in Figure 13. The projection of Y onto X for set i 1

53

The General Linear Test for the Population Mean

Ha: CP - Po XrX-X3-1X • [X'X3-tX-v

s'a[2-0] -Ooas) 0.3 ;.[0.0)
0.3 0.3 0 3
0.3 0.3 O".J

V ()R" 2° 0- 0 0

Diujensions 2.0 .0 .0 2.]
Sauile Space n = C32
E:tinat ion Space -p - E23
Error Space -n-p=_C23--- ----------7_ ----- -- ----,--,--- --- ----

eRSSR / SIR - 12.0

Y~eF E(Y)dftw" = I

SSEF SSEF/dfDn =qR- I VIr / O ISSE F - 8.0

L dfDnr - 2

SSTO Fstar - 3.00
P value - 0.79

Fcrit - 18.48
for a = 0.05

Figure 13. Data Set 1, p0= 2

is the zero vector. The Full Model error vector (p.) is the difference

between Y and i. therefore e =Y . The Reduced Model error vector (e)

is the difference between Y and E(Y. The significance of these two error

vectors is that their lengths form the basis for the F statistic below:

Ie 12 - 1 Ie If 2

dfR dfF dfF

As stated earlier, the PPME allows the user to toggle vectors on and off. By

turning off all of the vectors except e- and eR, Figure 14 illustrates how eR

forms the hypotenuse and er. forms a leg of a right triangle.

54

The missing2 leg is the vector Y- E(Y) and it is this right triangle that

elucidates the orthogonality which implies the independence of the Chi

ell

-~~Y -.-- K~Y-(Y)

Figure 14. Data Set 1

Square statistics involving their squared lengths. Such independence allows

the F statistic to be constructed. The orthogonal relationship of these two

vectors, graphically demonstrated, constitutes a rigorous proof of

independence which is infinitely more comprehensible to the mathematically

naive student than a calculus-based proof. The ratio between the length of

the missing triangle leg of Figure 14, 1 f-E(Y) [2 and the length of I e I 2 is

the core relationship involved in the construction of the F statistic which is

computed and displayed by the PPME.

The dimension of the Estimation Space is readily evident through this

visualization process. With a Sample Space of n=3 the estimate of the

2 The dotted line is not produced by the PPME. It is included here to
emphasize the conceptual presence of the vector Y - E(Y)

Fkull

55

E(Y) vector always lies on the [1,1,1] vector or on the [1,1] vector when

n=2. By visualizing this, the student easily transitions into hyper-dimensions

where E(Y) falls on the [1,l,...,In] vector. Algebraically, the P value is

computed in order to assess the statistical significance of the model fit but is

geometrically self evident. By observing the length of IY -E(_ 12 versus the

length of I eI1 2 the statistical significance, or justification for rejecting the

null hypothesis can be visually verified. This is exactly what should be

facilitated by a constructive learning environment.

The ratio SSR/SSTO, which is displayed by the PPME as SSR,

provides a numerical equivalent of what was just demonstrated visually and

can be used by the student to see whether or not the Reduced Model can be

rejected in favor of the Full Model.

Data set 3 [2,4,6] is the second data set under analysis and it is quite-

similar to data set 1. The predominant difference is in the value of their

means. The graphic depiction of this data set is shown in Figure 15.

Compared to the previous data set, the primary difference appears to be the
existence of E(Y(X.) and l as non-zero vectors. Graphically, the orthogonality

between e and Y- E(Y) is even more evident than with the previous data

set.

The PPME verifies the dimensionality of the Estimation Space

because Y is collinear with the Estimation Space, [1,1,1]. By comparing the

56

The General Linear Test for the Population ean

Ho: Cp - Po X -2X
t
X EX°X-I oV

P--[2-0] O.oo]_[0.3 0:30:.3.
0.3 0.3 03 30.3 0 .3 0O. 3

Y.2 X . -E(VI Y-;v-V

Dimensions 4.0 4.0 2.0
Sam',ple Space n E3
Est .ation Space Ep 3 £1
Error Space : n - p E [2]

.R SS~df~ n SSR = 12.0

en eF dfmu, -

df[un = 2

SSTO Fstar - 3.00
P value - 0.79

Fcrit - 18.48
for a = O.OS

Figure 15. Data Set 3, po= 2

E(Y) vector to the Y vector the user gains a visceral feeling for the fit of the

data. As the angle between E(Y) and Y decreases, their correlation

increases. This is illustrated by the PPME through the plots of the

SSR/SSTO and SSEISSTO; that is, as the explanatory power of the data

increases, so does the value of the ratio SSR/SSTO.

This scenario typifies a constructive learning process in which a

student can observe and experiment actively with the GLM. Such dynamic

experimentation, along with competent guidance, encourages a student to

build on previous mathematical foundations, and hence, truly understand the

significance of the GLM.

57

Linear Simple Regression to Estimate E(Y IX)

When the General Linear Model is used to conduct a Simple Linear

Regression to estimate E(Y I X) and test about the slope parameter B3 we

assume that its estimator, A. is normally distributed. As in the previous

scenario, the concepts motivated by this General Linear Test require an

understanding of hypothesis testing and the Full and Reduced Models. This

scenario uses data set 3 the Design Matrix X2:1 2:
X2 [1k]

-110

The Reduced Model is associated with the null hypothesis, Ho, and is

represented as shown:

Y = 1[3O] +

where B0 is unknown. The error for the Reduced Model is given as the

difference between the YRcd and the fRcd and is written as:

e R =' Y~ Y

where YR,, = Y - X(,2)'Pjf and R,,, X = -LO

58

The Full Model is associated with the alternate hypothesis, Ha, and is

represented as shown:

Y=Xi +

If we estimate B with f, the error for the Full Model is given as the

difference between the YFul, and the fF.ut and is written as:

eR =--Full F- ull

The third scenario uses the PPME to test the slope parameter where

6 1 = B10 For this test, data set 3 [2,4,6] is used in a single hypothesis test

of B = 0 using the values of X2 as specified in Chapter 3 and as shown:

[1 0

By looking at Figure 16 the student can see the error vectors and by

comparing the magnitudes of the error vectors for the Full Model, . and the

Reduced Model, eR, he can decide whether or not to reject the null

hypothesis.

The orthogonality between the e and Y was shown in the previous

scenario also applies in this scenario and is exemplified in Figure 17.

59

Ordinary Linear Sinple Regression with One Predictor Uariable

X'X3-lxV - 9

2-e0] .[1 -] 4 0 2 [
S 0 Dinensions 0J

CF 3 Eo] "SauinleSpa =n = C33
Ho: P, 0

.
0] =

0 -J Estination Space = p = E23

Error Space n - p = (1

ep Yf.Yr SSSR = 6.7

W_ dfNun =

SSEF $EF/d f[ernL SSEF = 1.3

? .16 dfDen = 1

SSTO Fstar = S-33
P value - 0.74

4' I Fcrit - 161.45
for a = O.OS

Figure 16. Data Set 3, B1=0

eF 2fYr
-R

Yr

Figure 17. Data Set 3

Figure 16 shows the results of the test of B,=0 . It also shows the

orthogonality between e, and Y - Y From the Pythagorean Theorem

the relationship between the vectors in Figure 16 can be defined as shown:

If 1 2 = le. 12 + I? F - ?,R 12

60

where IeR 12 - IeF 12 is a Chi Square statistic with degrees of freedom

dfR - dfF. I 1 2 is also a Chi Square statistic with dfF degrees of freedom.

The Estimation Space for the second scenario was one-dimensional,

which resulted in the estimator ? being restricted to one-dimension along the

[1,1,1] vector. The Estimation Space for this scenario is the plane defined

by the two column vectors of X2. Thus, the estimators, Y and fu"Reduced "-Full

must always lie on that plane as shown in Figure 18.

Notice how easily the PPME illustrates this concept. The PPME encourages

X<2>

Yr

X<1>

Front View Side View

Figure 18. Data Set 3, 610=0

the student to link his current learning experiences to previously mastered

concepts and, hence, to understand the GLM as a whole instead of in a

shattered and piecemeal fashion. It does this by relating the current General

Linear Test to the previous one. Notice how Yd lies on X<1> 3. In
"Reduced

3 X<i> refers to the ith column of the matrix X.

61

scenario two the Design Matrix was X<1> and the visualization implies that

for higher dimensions, the dimension of the Estimation Space will always be

the number of columns of the Design Matrix X.

The vectors of key interest for determining the explanatory power of

the model are e and eR. The F Statistic, which is calculated by squaring

these vectors and dividing them by their degrees of freedom, is used to

evaluate the data to determine whether or not the Reduced Model should be

rejected.

The PPME graphically demonstrates how different subsets of the GLM

relate to the whole. Through the VVAM governance, and the PPME, the

student is able to truly construct new personal knowledge. The real-time

interaction between the PPME, student and teacher makes the subject come

alive for the student.

All three scenarios confirm that the PPME, when used under the

guidance of a competent instructor and governance of the VVAM, can

encourage students to seek and understand more about the General Linear

Model than ever could occur in a passive learning environment and via rote

memorization. As a result, the three research hypotheses proposed in

Chapter 1 are accepted. Chapter 5 presents the final conclusions of this

thesis and recommendations for further research.

62

V. Conclusions and Recommendations

Final Conclusions

The research of this thesis relied heavily on the VVAM protocol

developed by Captain Stone Hansard. Its purpose was to determine if the

VVAM could be used to govern a computer-based graphically-supported

projective approach to teaching and learning the theory of the General Linear

Model. The central hypotheses this research effort sought to validate were

1) such a system could be built
and 2) such a system, once built, would facilitate a constructive,

meaningful, lively and real world focused mode of
learning of the .GLM.

Chapter 3 proposed three scenarios that were analyzed in Chapter 4,

scenarios that were specifically designed to, assess the validity of the three

research hypothesis presented in Chapter 1.

Once the Pearce Projective Modeling Environment (PPME) had been

developed, several data sets were employed to test the PPME's efficacy

under the three estimation/testing scenarios. The first scenario required the

least squares estimation of the Sample Mean and Variance. Five data sets

were employed, and the PPME's response to each of them was compared

and contrasted. The second scenario, in which a General Linear Test of the

Population Mean was made, exercised the PPME using two data sets. The

final scenario evaluated the PPME using one data set and a specially selected

63

Deign Matrix to conduct a Simple Linear Regression Analysis and test of the

Slope Coefficient.

In the final analysis, each scenario lead to a firm confirmation of the

PPME's ability, under VVAM governance, to foster a constructive mode of

learning. Given four criteria, Constructiveness, Meaningfulness, Livingness,

and Relatedness to evaluate the results of each experiment, actual evaluation

exercises focused on measuring Constructiveness, leaving full scale

evaluation of the other three criteria to some future research effort carefully

designed to conduct a more formal statistical assessment of the PPME's

ability to orchestrate constructive learning activities.

Recommendations for Future Research

Six data sets were used in the evaluation of the PPME. While these

data sets are fairly representative of real world system responses, and quite

varied, a future research effort could study a broader set of responses and

assess their impact on the PPME. Exploration could be made within a

hyper-dimensional vector space with the support of MathCAD.

While further evaluation of the PPME, as it stands, would be in order,

the PPME programming system, itself, could be modified, and extended, to

handle full scale Analysis of Variance (ANOVA). In fact, such research

64

probably should explore the two main approaches to ANOVA (i.e., means

and effect modeling).

Chapter 4 demonstrated how the General Linear Test of a Population

Mean can be conceived as a subset of Simple Linear Regression. Future

research could explore the ability of the PPME to visually portray subsets of

Multiple Linear Regression, and within MLR itself, to portray Step-Wise and

All Ways regression analyses. The possibilities are limitless.

In conclusion, this thesis effort was able to demonstrate a graphical

system (the PPME) that could be built and supporting experimental evidence

obtained to show employment of the PPME does orchestrate a constructive

learning environment, under VVAM governance.

As Chapter 2 clearly documents, support for a projective approach to

the teaching and learning of the General Linear Model has existed for a very

long time. With the availability of cheap and fast personal computers and

software to facilitate graphical displays, opportunities to operationalize an

even more sophisticated computer-based graphically-supported projective

approach to teaching and learning of the General Linear Model are abundant.

and most likely will grow exponentially in future years.

65

Appendix A

Source Code Listing for the PPME

Source Code for the Pearce Projection Modelling Environment was written
in Borland's Turbo Pascal V6.0. The Acromol graphic subroutines were
developed by Acrospin, Inc.

program PPME;
uses
Crt,Dos,MathMat,GraphMat,TGlobals,Support,Support2,Support3,Mole,Graph;{

Copyright 1991 by Stephen D. Pearce
I
(If your are interested in continuing this research, contact Capt Steve
Pearce or Professor Dan Reynolds (at the Air Force Institute of
Technology) for a copy of this source code on disk.}

var
i,j: Integer;
Choice: Char;
Output: Text;
GraphDriver: Integer;
GraphMode: Integer;
ErrorCode: Integer;
msg: String;
char H,char W:Integer; (Heigth & Width of char in pixels}
OldStyle: TextSettingsType;

(Main Program I

[Sample Mean Section)
begin
Assign(Output, 'prn');
Rewrite(Output);

GraphDriver :- 3; (Set Flag to EGA)
GraphMode := 1; (Set EGA High Mode)
InitGraph(GraphDriver, GraphMode, 'C:Language\TP\Drivers');
ErrorCode := GraphResult;
if ErrorCode <> grOK then
begin
writeln('Graphics error: ', GraphErrorMsg(ErrorCode));
Writeln('Program Aborted...');
Halt(l);

end;

MoleInit;
MoleVideolnit(BackgroundKolor);
MoleClip(Xlo,Ylo,Xhi,Yhi);

charH:=TextHeight('H');
char W:=TextWidth('H');
SetBkColor(BackgroundKolor); (Background Blue)

SetTextJustify(l,l);

SetColor(15); OutTextXY (GetMaxX div 2,charH,'Welcome to the Pearce
Projective Modeling Environment');

OutTextXY (GetMaxX div 2,4*charH,'Which Program would you
like?');

OutTextXY (GetMaxX div 2, 7*charH,'Ordinary Least Squares
Regression for the Sample ean and Variance');

66

SetColor(12); OutTextXY (GetMaxX div 2, 7*char_-H,1
Mf)

SetColor(l5); OutTextXY (GetMaxX div 2, 9*charH,'General inear Test
for the Population Mean');
SetColor(12); OutTextXY (GetMaxX div 2, 9*charH,' L

SetColor(15); OutTextXY (GetMaxX div 2,ll*charH,'Ordinary Linear Simple
egression with One Predictor Variable');
SetColor(12); OutTextXY (GetMaxX div 2,ll*charH,'
R)
SetColor(15); OutTextXY (GetMaxX div 2, 13*char_--H,'E it');
SetColor(12); OutTextXY (GetMaxX div 2, 13*charH,' x ');

SetColor(15); OutTextXY (GetMaxX div 2, 16*charH,'What is Your
Choice?');

repeat
Choice:- Readkey;
Choice: -UpCase (Choice);
OutTextXY (GetMaxX div 2 + 14*charW, l6*charH,Choice);
case Choice of

IMProgramName :'Mean';

fL/ProgramName :='Ltest';

'R' ProgramName :='Bivariate';

fx, ExitRoutine;
else OutTextXY (GetMaxX div 2, 18*char H,'Please Choose M, L,

R, or X.');
end;

until (Choice - 'M') or (Choice 'L'1) or(Choice ='R') or(Choice=

ClearDev ice;

Repeat
Repeat
SetisualPageC 0); SetActivePage(0);
If ProgramName - 'Mean' Then MeanRoutine
else If Program~ame = 'Ltest' Then.LtestRoutin.e

else If ProgramName = 'Bivariate' Then Bivariateoutine;

KeyAction;

If GetXFlag or GetYFlag or GetetaiFlag or GetAlphaFlag or GetMuFlag
Then

While Length(ScreenStack)>0 do Screen(0);

Until (CheckBreakVar.ReturnCode<>AMOkay) Or (*CTRL BREAK or CTRL
C. *

((GetKeyboardStatusVar.DownEO] And 2)<>0) Or (*ESC key held down.

((GetKeyboardStatusVar.MissedfO] And 2)<>0); (*ESC key tapped.

LeaveProgram;
Until False

end.

67

Unit TGlobals;

interface
uses MathMat;

(Include object code and Pascal definitons for Acroole.

JSL MOLE9I (Include object code for Acroole subroutines.

J Note: Most of this subroutine is provided a part of the AcroMole
package}
(AcroMole Variable Definitions)

(Return codes.

Const AMOkay =0; AMQueueWaiting = 11;
AMInvalidVersion -1; AMSecondsOverf low -12;
AMlnvalidRevision - 2; AMBreak = 13;
AMInvalidAcroMoleSize =3; AMPrintScreen 14;
AMNoVideoModeSet = 4; AMPrintScreenError =15;

AMlnvalid~ameraPosition = 5; AMlnvalidClippingBits -16;

AMUnsupportedVideoMode - 6; AMlnvalidBuffer =17;

AMUndetectedVideoMode = 7; AMVerticalRetrace =18;

AMClippedOutOf~~indow = 8; AMlnvalidScaleFactor ='19;

AMQueueFull = 9; AMlnvalidDOSVersion = 20;
AMQueueEmpty =10; AMlnvalidResetFlag = 21;

(Divisors for musical notes.

Const CO =18243; C1 =9121; C2 =4561; C3 -228-0; C4 =1140; CS
=570;

COs =17219; Cls =8609; C2s =4305; C3s =2152; C4s =1076; C~s
=538;

Dab =17219; Dlb -8609; D2b =4305; D3b--2152; D4b =1076; D5b
=538;

DO -16252; Dl =8126; D2 =4063; D3 =2032; D4 =1016; DS
=508;

DOs -15340; Dls =7670; D2s =3835; D3s -1918; D4s = 959; D5s
=479;

E~b =15340; Elb =7670; E2b -3835; E3b =1918; E4b = 959; E~b
=479;

EQ =14479; El -7240; E2 -3620; E3 =1810; E4 = 905; ES
=52;

FO =13666; Fl =6833; F2 =3417; F3 =1708; F4 - 854; F5
=27;

FOs =i2899; Fls =6450; F2s =3225; F3s =1612; F4s - 806; F~s
=403;

GOb =12899; Glb =6450; G2b =3225; G3b =1612; G4b = 806; G5b
=403;

GO =12175; Gl =6088; G2 =3044; G3 =1522; G4 - 761; G5
-380;

GOs =11492; Gls -5746; G2s =2873; G3s =1437; G4s = 718; G5s
-359;

AOb =11492; Alb -5746; A2b =2873; A~b -1437; A4b - 718; A5b
=359;

AO =10847; Al =5424; A2 =2712; A3 -1356; A4 = 678; AS
-339;

68

-2;AOs -10238; Als =5119; A2s -2560; A3s =1280; M~s = 640; A~s

BOb -10238; Bib, -5119; B2b, -2560; B3b, -1280; B4b = 640; B5b
-320;

B0 = 9664; BI =4832; B2 -2416; B3 =1208; B4 = 604; B5
-302;

(Data Blocks types for all of the subroutines except for
BegincroMole.
Type CalculateScaleFactorsRecord=Record ReturnCode, Reserved:Word;

ScaleFactorX, ScaleFactorY: Integer;
ResolutionX, Resolutiony,
SizeX,SizeY,
ScaleFactorLo,ScaleFactorHi :Word; End;

CheckBackgroundSoundRecord=Record ReturnCode: Word; End;
CheckBreakRecord=Record ReturnCode :Word; End;
CheckForegroundSoundRecord=Record ReturnCode: Word; End;
CheckPrintScreenRecord=Record ReturnCode: Word; End;
CheckVerticalRetraceRecord=Record ReturnCode:Word; End;
ClearBackgroundSoundRecord-Record ReturnCode: Word; End;
ClearForegroundSoundRecord=Record ReturnCode: Word; End;
ClearKeyboardBufferRecord=Record ReturnCode: Word; End;
Clip2DLineRecord-Record ReturnCode :Word;

ScreenXl, ScreenYl ,ScreenX2, ScreenY2: Integer;
ClippingBitsl,ClippingBits2:Byte; End;

Clip3DLineRecord=-Record ReturnCode :Word;
ScreenXl ,ScreenYl, ScreenX2 ,ScreenY2: Integer;
ClippingBitsl,ClippingBits2 :Byte;
CameraXi, CameraYl, CameraZi,
CareraX2,CameraY2,CameraZ2 :Integer; End;

ConvertSecondsToTicksRecord=Record ReturnCode, Ignored:Word;,
SecondsLo ,Secondsgi :Word;
TicksLo,Ticks~i:Word; End;

ConvertTicksToSecondsRecord=Record ReturnCode, Ignored: Word;
TicksLo,TicksHi :Word;
SecondsLo,SecondsHi:Word; End;

DetectVideoModeRecord-Record
ReturnCode,VideoMode,MaximumBuffer:Word; End;

DrawL in eRecord-Record
ReturnCode :Word;
ScreenXl,ScreenYJ.,ScreenX2,ScreenY2: Integer;
Color:Word; End;

DrawPointRecord=Record
ReturnCode: Word;
ScreenX,ScreenY: Integer;
Color:Word; End;

DrawectangleRecord-Record
ReturnCode:Word;
ScreenXl, ScreenYl, ScreenX2, ScreenY2: Integer;
Color:Word; End;

EndAcroMoleRecord=Record ReturnCode: Word; End;
GetExecutionTimeRecord=Record

ReturnCode,Ignored, SecondsLo, SecondsHi:Word;
End;

GetKeyboardStatusRecord-Record
ReturnCode:Word;
Down,Missed:Array(0. .7] Of Word; End;

GetMaxinumVideoModeRecord=Record ReturnCode, VideoMode:Word; End;
GetuggestedVideoModeRecord-Record ReturnCode, VideoMode:Word; End;
GetimeOf DayRecord-Record

ReturnCode, Ignored,SecondsLo, SecondsHi :Word;
End;

GetideoMode In foRecord=Record

69

ReturnCode, VideoMode, BIOSMode :Word;
MinimumScreenX, Mm imumScreenY,
MaximumScreenX, MaxirnumScreenY: Integer;
MaximumColor,MaximumBuffer :Word; End;

PrintScreenRecord=Record ReturnCode :Word; End;
QueueBackgroundSouindRecord-Record ReturnCode, Divisor, Ticks :Word;

End;
QueueForegroundSoundRecord-Record ReturnCode, Divisor,Ticks :Word;

End;
RestoreriginalVideoModeRecord-Record ReturnCode :Word; End;
Set3DCameraRecord=Record

ReturnCode :Word;
WorldX, WoridY, WorldZ,
Direct ionX, Direct ionY, DirectionZ,
UpX,UpY,UPZ,
ScaleFactorX, ScaleFactorY, Perspective: Integer;
End;

SetDisplayedBufferRecord=Record ReturnCode,Buffer :Word; End;
SetDrawingBufferRecord=Record ReturnCode, Buffer: Word; End;
S etVideoModeRecord=Record

ReturnCode :Word;
VideoMode :Word;
Reset:Word; End;

SetWindowRecord='Record
ReturnCode :Word;

MinimumFilmX,M.inimumFilmY,MaximumFilmX,MaximunFilmY: Integer;
MinimumScreenX,MinimumScreenY: Integer;
End;

StartlmmediateSoundRecord=Record ReturnCode,Divisor :Word; End;
StoplmmediateSoundRecord=Record ReturnCode: Word; End;
Transform3DEndpointRecord=Record

ReturnCode :Word;
ScreenX, ScreenY,
WorldX,WorldY,WorldZ,
Came'raX,CameraY,CameraZ :Integer;
ClippingBits:Byte; End;

Trans form3DPointRecord=Recordi
ReturnCode :Word;
ScreenX, ScreenY,
WorldX,WorldY,WorldZ :Integer; End;

(Acroole Address Block type.

AcroMoleAddressBlockRecord=Record
CalculatecaleFactors : Procedure(Var

Data :CalculateScaleFactorsRecord);
CheckBackgroundSound : Procedure(CVar

Data :CheckBackgroundSoundRecord);
CheckBreak :Procedure(Var Data:CheckBreakRecord);
CheckForegroundSound : Procedure (Var

Data :CheckForegroundSoundRecord);
CheckPrintScreen :Procedure(Var Data:CheckPrintScreenRecord);
CheckerticaiRetrace : Procedure(Var

Data :CheckVerticalRetraceRecord);
ClearBackgroundSound : Procedure (Var

Data :ClearBackgroundSoundRecord);
ClearForegroundSound : Procedure (Var

Data:Clear~oregroundSoundRecord);
ClearKeyboardBuffer :Procedure(Var

Data :ClearKeyboardBufferRecord);
Clip2DLine :Procedure(Var Data:Clip2DLineRecord);
Clip3DLine :Procedure(Var Data:Clip3DLineRecord);

70

ConvertSecondsToTicks : Procedure(Var
Data :ConvertSecondsToTicksRecord);

ConvertTicksToSeconds :Procedure(Var
Data :ConvertTicksToSecondsRecord);

DetectideoMode : Procedure (Var Data: DetectideoModeRecord);
DrawLine :Procedure(Var Data:DrawLineRecord);
DrawPoint :Procedure(Var Data:DrawPointRecord);
DrawRectangle :Procedure(Var Data:DrawRectangleRecord);
EndAcroMole :Procedure(Var Data:EndAcroMoleRecord);
GetExecutionTime :Procedure(Var Data:GetExecutionTimeRecord);
GetKeyboardStatus : Procedure(Var

Data:GetKeyboardStatusRecord);
GetMaximumVideoMode :Procedure(Var

Data:GetMaximumVideoModeRecord);
GetuggestedVideomode :Procedure(Var

Data:GetSuggestedVideoModeRecord);
GetTimeOfDay : Procedure(CVar Data: GetTimeOfDayRecord);
GetideoModelnfo : Procedure CVar Data:GetVideoModelnfoRecord);
PrintScreen :Procedure(Var Data:PrintScreenRecord);
QueueBackgroundSound : Procedure(Var

Data:QueueBackgroundSoundRecord);
QueueForegroundSound : Procedure(Var

Data :QueueForegroundSoundRecord);
RestoreriginalVideoMode: Procedure(CVar

Data: RestoreriginalVi-deoModeRecord);
Set3DCamera :Procedure(Var Data:Set3DCameraRecord);
SetDisplayedBuffer :Procedure(Var

Data: SetDisplayedBufferRecord);
Setrawing~uffer :Procedure(Var Data:SetDrawingBufferRecord);
SetideoMode :ProcedureCVar Data:SetVideotlodeRecord);
SetWindow :Procedure(Var Data:SetWindowRecord);
StartlmmediateSound : Procedure(Var

Data:StartlmmediateSoundRecord);
StoplmmediateSound :Procedure(Var

Data: StoplmmediateSoundRecord);
Transform3DEndpoint : Procedure CVar

Data:Transform3DEndpointRecord);
Transform3DPoint' : Procedure.(Var Data:Transform3DPointRecord);

End;

CData Block type for BegincroMole.

BeginAcroMoleRecord=Record
ReturnCode: Word;
Revision: Word;
Version :Word;
AcrooleSize :Word;
AcroolePointer: AAcroMoleAddressBlockRecord; End;

-- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -

(*- Procedure definition for BegincroMole.

($F+) Procedure BeginAcroMole(Var Data:BeginAcroMoleRecord); ($F-)

(Constants.

71

Const
Xlo:RealO0.0; (*Window Boundry *
Xhi:RealO0.55; (*Window Boundry *
Ylo:RealO0.0; (*Window Boundry *
Yhi:Real-0.55; (*Window Boundry *
Increment=0.05; (Angle Change}
NE-80;
NL=60;
FirstPoint: Integer=30;
Firs tLine: Integer-29;

BackgroundKolor:Word=l; [Blue)

MuColor :Word'-15;
AlphaColor: Word=15;
ObservationColor:Word=4; (Red}
Observation2Color:Word=12; (Light Red}

ModelSpaceColor:Wordl14; (Yellow}
ModelSpace2Color :Word=6; (Brown)

ErrorColor:Word=13; (Light Magenta)I
ErrReducedColor: Word=9; (Light Blue}
YhatColor :Word=3; (Cyan)
MatForeground: Word=7; (Light Gray}
SSTOColor:Word=2; (Green}
MuVColor:Word=12;
eRColor :Word-9;
YhatRedColor:Word=10;
YhatFullColor :Word~ll;

LabelColor:Word='7;

(* These override colors produce a black & white version of the
program *

ScaleSize:Real=3000; (Scale used to size arrows)
ToggleDelay:Real=0.75; (Time to wait before toggling the Cube

on/off)

(Initialized variables.

VideoModeFlag:Boolean=True; (*Always start by setting video mode.

ScreenSize:Longlnt=16383; C~Always start with screen size ratio
of 4:3.*)

DeltaVideoMode:Integer=0; C~Always start with suggested video
mode.

RotMat:Array[0. .2,0. .2] of Real-
((24945, -6782, -20124),

(712, 31294, -9664). (Rotation Matrix, Initial Camera
Position}

(21224, 6921, 23976));
LayerScreen:Word=65535; (0 = All Off)

(1 -Cube On]
(2 - Axis On)

72

(3 - Cube and Axis On)
(4 - Vectors On)
(7 - All On)

CubeFlipTime:Real-O; (Time th32 cube was last toggled}
AxislipTime:Real-O;
XFlipTime:Real-0; YFlipTime:Real-O; EFlipTime:Real=O;

FFlipTime:RealO0;
RFlipTime:Real-O; HFlipTime:Real=Q; JFlipTime:Real-O;

ZFlipTime:Real-O;
UFlipTime: Real-O;
GetXFlag:Boolean=False; GetYFlag:Boolean-False;

GetetaiFlag: 3oolean=False;
GetMuFlag:Boolean-False; GetAlphaFlag:Boolean-False;

HelpScreen~n :Boolean-False;
ToggleKeyScreen~n :Boolean=False;
Regression~creen~n:Boolean=False;
MScreen~n:Boolean=False;
FirstRunFlag : oolean=True;

ScreenStack:String-'';

C~Uninitialized variables.

Var (*These are the data blocks for the Acroole subroutines
used. *

Acroole :AcroMoleAddressBlockRecord;
BeginAcroroleVar :BegincroMoleRecord;
CalculateScaleFactorsVar :CalculateScaleFactorsRecord;
CheckBreakVar :CheckBreakRecord;
CheckVerticalRetraeeVar :CheckVerticalRetraceRecord;
ClearKeyboardBufferVar :ClearKeyboardBufferRecord;
Clip3DLineVar :Clip3DLineRecord; -

DetectideoModeVar :DetectideoModeRecord;
DrawectangleVar :DrawectangleRecord;
EndAcroMoleVar :EndAcroMoleRecord;
GetExecutionTimeVar :GetExecution'rimeRecord;
GetKeyboardStatusVar :GetKeyboardStatusRecord;
GetMax imumVideoMode Var :GetMaxirnumVideoModeRecord;
GetSuggestedVideo~odeVar :GetSuggestedVideoModeRecord;
GetideoModelnfoVar :GetideoModelnfo~ecord;
Restore riginalVideoModeVar: RestoreriginalVideoModeRecord;
Set3DCameraVar :Set3DCameraRecord;
SetDisplayedBufferVar :SetDisplayedBufferRecord;
SetDrawing3ufferVar :SetDrawingBufferRecord;
SetideoMode Var :SetideoModeRecord;
SetWindowVar :SetWindowRecord;

(These arrays are for the points and lines actually drawn on the
screet.. *

ScreenLine:Array[0. .2,0. .NL [(NurberOfLines-1))] Of Record
DrawLineVar:DrawLineRecord; End;

73

(* These arrays describe the object in the world coordinate system.

WorldEndpoint:Array(..NE((NumberOfEndpoints-l)}] Of Record
Transform3DEndpointVar:Transform3DEndpointRecord; End;

WorldLine:Array(0..NL ((NumnberOfLines-l)1]
Of Record Endpointl,Endpoint2,LineColor:Word;Layer:Word; End;

(* Miscellaneous uninitialized variables.

ToDraw,ToErase:Word; (* Which points and lines to draw or
erase. *)

PreviousTime,DeltaTime:Word; (* Previous time and change in time.

Radius:Real; (* Distance from center of object.

MinimumColor:Word; (* Minimum color to use for lines.

Points,Lines:Array(O..21 Of Uzrd; (* How many points to draw or
erase.

SinAngle,SinPosAngle,CosAngle: Real;
ScreenWidth,ScreenHeight: Integer;
NumberOfEndpoints:Integer; (* Number of endpoints,

NumberOfLines:Integer; (* Number of lines,

X,Y,BetaHat,M,Mred,Yhat,Error,Error2,Mu,MuO,Alpha,eF,eR,eRplusY:
matx;

Betal,Yred,Xred,BhatFull,BhatRed,YhatFull,YhatRed,YhatFulleF,YhatRedeR:
matx;

Scale: real; (Used to set scale for vectors)
Xmax,Ymax,Zmax:Real; (Max size of object; Used to set scale)
SSEF,SSER: Real; [SSE Full & Reduced}
SSR,SSTO: Real;
SSRF,SSRR: Real;
dfR, dfF, dfSSR: Integer; {degrees of Freedom)
Fstar, Fcrit, Pvalue: Real;
LastPoint,LastLine: Integer;
MPointer,RegressionPointer,HelpPointer,ToggleKeyPointer: Pointer;
ProgramName:String;

Implementation

(* Procedure definition for BeginAcroMole.

($F+} Procedure BeginAcroMole(Var Data:BeginAcroMoleRecord); External;
($F-)

74

begin

NumberOfEndpoints:-22; C*Number of endpoints,

NumberOfLines:-17; (*Number of lines,

SinPosAngle:-Sin(Increment);

CosAngle: -Cos (Increment);

(These override colors produce a black &white version of the program

f ackgroundKolor: =0;

MuColor:-15;
AlphaColor: -15;
ObservationColor: =15;
Observation 2Color: =15;
ModelpaceColor : 15;
ModelSpace2Color: =15;

ErrorColor: =15;
ErreducedColor: =15;
YhatCo 1cr: -15;
MatForeground: =15;
SSTOColor: =15;
MuVCo 1cr: =15;
eRColor: -15;
YhatRedColor:=15;
YhatFullColor: -15;
*LabelColor:-15;

End.

75

Unit Support;

Interface
uses TGlobals,Graph,Crt,MathMat,GraphMatDos,Mole,Support2;

function FPercentPoint(p: real; kl,k2: integer): real;

function FProb(f: real; kl,k2: integer): real;

Procedure Help;

Procedure ScreenOff;

Procedure ToggleKeyScreen;

Procedure Colors;

Procedure ChangeColors(var Color: Word);

Procedure ListColors;

Procedure MathRoutines;

Procedure RegressionMath;

Procedure BivariateMath;

Procedure RegressionScreen;

Procedure MScreen;

procedure chart(xl,yhi: Integer; (Upper Left Location)
x2,y2: Integer; (Lower Right Location)

Percent: Real; [between 0 and 1}
Color: Word; (Color of chart)
Title: String); [Title of chart)

function TimeInSeconds: Real;

procedure BarGraphs;

Procedure Screen(ScreenNumber: Integer);

procedure KeyAction;

Implementation

function FPercentPoint(p: real; kl,k2: integer): real;

(* Calculates the inverse F distribution function based on *)

(* k1 and k2 degrees of freedom.

(* This function was obtained from the book 'Statistical Computing in
Pascal by D Cooke, A H Craven and G M Clarke, pages 82-89.
Published by Edward Arnold, London: 1985
book obtained at Wright State University

var hl,h2: real; [half degrees of freedom kl,k2)
LnBeta: real; (Log of complete beta function with parameters hl and

h2}
Ratio: real; [Beta ratio)
x: real; (Inverse Beta ratio)

76

function LnGamma(w: real): real;

(* Calculates the logarithm of the gamma function; *)
(* w must be such that 2*w is an integer > 0

var
a,Sum: real;

begin
a:- Ln(sqrt(Pi));
Sum:-0;
w:- w-l;
while w>0.0 do
begin

sum:- sum + ln(w);
w: w-l;

end;
if w<0.0 then LnGamma:=sum+a

else LnGamma:=sum;
end; (Function LnGammaj

function BetaRatio(x,a,b,LnBeta: real): real;

(* Calculates the incomplete beta function ratio with *)
(* parameters a and b. LnBeta is the logarithm of the *)
(* complete beta function with parameters a and b.

const
error=l.OE-7;

var
c: real; (c=a+b]
Factorl,Factor2,Factor3: real; (factors multiplying terms in series)
i,j: integer; (counters)
sum: real; (current sum of series)
Temp: real;
Term: real;
xLow: boolean; (status of xwhich determines the end from which series

is evaluated1
y: real; (adjusted argument)

begin
if (x-0) or (x=l) then sum := x
else begin

c:= a+b;
if a<c*x then begin
xLow:=true;
y:=X;
x:=l-x;
Temp:=a;
a:=b;
b:=Temp; end

else begin
xLow:-false;
y:-l-x; end;

Term:-l;
j:-0;
Sum:-l;
i:-trunc(b+c*y)+l;
Factorl:-x/y;
repeat

j :-j+l;
i: i-l;
if i>-0 then begin

77

Factor2:=b-j;
if i-0 then Factor2:-x;

end;
Term: =Term*Factor2*Factorl/(a+j);
Sum: =Sum+Term;

until (abs(Term) <=Sum) and (abs(Term) <- error*sum);
Factor3:=exp(a*ln(x)+(b-l)*ln(y)-LnBeta);
Sum: =Sum*factor3/a;
If xLow then Sum:-l-Sum;

end;
BetaRatio: -Sum;

end; [function BetaRatio}

function InverseBetaRatio(Ratio,a,b,LnBeta: real): real;

(*Calculates the inverse of the incomplete beta function ratio *
(*with parameters a and b. LnBeta is the logarithm of the
(*complete beta function with parameters a and b.

const
error=l. OE-7;

var
c: real; (c-a+b}
LargeRatio: boo lean;
temp1, temp 2, temp 3, temp4: real;
x,xl: real; [successive estimates of inverse ratio)
y: real; (adjustment during Newton iteration)

begin
if (ratio=0) or (ratio=l) then x:=Ratio
else begin

LargeRatio:-false;
if Ratio>0.5 then begin

LargeRatio: =true;
Ratio: =1-Ratio;
templ :-a;

a:=templ; end;
c: =a+b;
(* claculates initial estimate for x *
if Ratic<-0 then begin
writeln~output,' Ratio = ',Ratio);
writeln(output,' This is too small or negative.'); Halt; end;

templ := sqrt(-ln(Ratio*Ratio));
temp2:= l.0+templ*(O.99229 + 0.04481*templ);
temp2:= templ-(2.30753 + 0.27061*templ)/temp2;
if (a>l) and (b>l) then begin
templ:= (temp2*temp2-3.0)/6.0;
temp3:= l.0/(afa-1.0);
temp4:= l.0/Cb+b-l.0);
xl:= 2.0/(temp3+temp4);
x:- templ+5.0/6.0-2.O/(3.O*xl);
x:- temp2*sqrt(xl+templ)/xl-x*(temp4-temp3);
x:- a/(a+b*expcx+x)); end

else begin
templ:- b+b;
temp3 :=l.0/(9. 0*b);
temp3:=l.O-temp3+temp2*sqrt(temp3);
temp3 :- templ*temp3*temp3*temp3;
if temp3>0 then begin

temp3 :-(4. 0*a+templ-2 .0)/temp3;
if temp3>l then x:=l.0-2.0/(l+temp3)
else x:- exp((ln(Ratio*a)+LnBeta)/a); end

78

else x:-1.0-exp((ln((l-Ratio)*b)+LnBeta)/b);
end;

(* Newton Iteration *)
repeat
y:-BetaRatio(x,a,b,LnBeta);
y:- (y-Ratio)*exp((l-a)*Ln(x)+(l-b)*Ln(l-x)+LnBeta);
temp4:- y;
xl:- x-y;
while (xl <- 0) or (xl >-1) do begin

temp4:-temp4/2;
xl:- x-temp4; end;

x:- xl;
until abs(y) < error;
if LargeRatio then x:=l-x;

end;
InverseBetaRatio:-x;

end; (Function InverseBetaRatio}

begin [FPercentPoint)
hl:- 0.5*k2;
h2:- 0.5*kl;
Ratio:- l-p;
LnBeta:-LnGamma(hl) + LnGamma(h2) - LnGamma(hl+h2);
x:- InverseBetaRatio(Ratio,hl,h2,LnBeta);
FPercentPoint:= k2*(l-x)/(kl*x);

end; (Function FPercentPoint]

function FProb(f: real; kl,k2: integer): real;

(.* The distribution function of the F distribution, based on k and k2

(* degrees of freedom;

(* -This function was obtained from the book 'Statistical Computing in
Pascal by D Cooke, A H Craven and G M Clarke, pages 82-89.
Published by Edward Arnold, London: 1985
book obtained at Wright State University

var
hlh2: real; (modified degrees of freedom)
LnBeta: real; (Log of complete beta function with parmaters hl & h2}
x: real; {argument of incomplete beta function)

function LnGamma(w: real): real;

(* Calculates the logarithm of the gamma function; *)
w murst be such that 2*w is an integer > 0

var
a,Sum: real;

beg.n
a:- Ln(sqrt(Pi));
Sum:-0;
w:- w-l;
while w>0.0 do
begin

sum:- sum + In(w);
w:-w-l;

79

end;
if w<0.0 then LnGamma:=sum+a

else LnGamma:-sum;
end; [Function LnGamma}

function BetaRatio(x,a,b,LnBeta: real): real;

(*Calculates the incomplete beta function ratio w 'ith *
(*parameters a and b. LnBeta is the logarithm of the *
(*complete beta function with parameters a and b.

cons t
error-i. OE-7;

var
c: real; [c-a+b}
Factorl,Factor2,Factor3: real; (factors multiplying terms in series}
i,j: integer; (counters}
sum: real; (current sum of series)
Temp: real;
Term: real;
xLow: boolean; [status of x which determines the end from which series

is evaluated)
y: real; (adjusted argument}

begin
if (x-0) or (x=l) then sum :=x

else begin
c:- a+b;
if a<c*x then begin

xLow: -true;

Temp : a;

b:=Temp; end
else begin

xLow: -false;
y:=l-x; end;

Term: =1;
S:0O;
Sum: =1;
i : trunc(b+c*y)+l;
Factori :=x
repeat

j :j+l;
1: =i-l;
if i>=O then begin
Factor2:=b-j;
if i=O then Factor2:=x;

end;
Term:=Term*Factor2*Factorl/(a+j);
Sum:-Sum+Term;

until Cabs(Term) <-Sum) and (abs(Term) <= error*sum);
Factor3:=exp(a*ln~x)+(b-1)*ln(y)-LnBeta);
Sum: =Sum* factor3/a;
If xLow then Sum:-l-Sum;

end;
BetaRatio:.-Sum;

end; (function BetaRatiol

begin (nain function)
hl:- O.5*kl;
h2:- O.5*k2;

80

x:- h2/(h2+hl*f);
LnBeta:- LnGamma(hl)+LnGamma(h2) -LnGamma(hl+h2);
FProb:- l-BetaRatio(x,h2,hl,LnBeta);

end; (Function FProbJ

Procedure Help;

COflst
Xl: Integer-3 60;
Y1: Integer-158;
X2: Integer-639;
Y2: Integer-349;
col:Integer=25;

var
i: Integer;
Size: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;

begin
If Not HelpScreenOn Then begin (If the Help Screen is not}-

GetTextSettings(OldStyle); [Displayed then Display it)
Setis ualPage(0);
SetActivePage (1);
Size := ImageSize(X1,Yl,X2,Y2);
If Size>MemAvail Then writeln(output, 'Size-' ,Size,'

MemAvail-' ,MemAvail);
Mark(HelpPointer);
GetMem(HelpPointer, Size);
Getlmage(Xl,Yl,X2,Y2,HelpPointer A);
For i:- 1 to 2 do begin
.SetViewPort(Xl,Yl,X2,Y2,True);
GetViewSettings (ViewPort);
SetFillStyle(1,15);
Bar(O,O,X2-Xl,Y2-Yl); (Clear ViewPort)
SetFillStyle(1,7);
Bar(5,4,X2-Xl-5,.Y2-Yl-4);
SetColor(O);
SetTextJustify(l,l);
OutTextXY((X2-Xl) div 2,10,'Help');
SetTextJustify(0,l);
MoveTo(col,GetY+20);
OutText('F. Toggle fhe Help Screen'); MoveTo(col,GetY+ '10);

OutText('F2 Vector Toggling Info'); MoveTo(col,GetY+l0);
If (ProgramName -'Ltest') or (ProgramName ='Bivariate') Then Begin
OutText('F3 Toggle Regression Info'); MoveTo(col,GetY+l0);

end;
If ProgramName I Ltest' Then Begin
OutText('F5 Modify '#230'o'); MoveTo(col,GetY+l0); end;

If ProgramName ='Bivariate' Then Begin
*OutText('F4 Toggle Projection Matrix'); MoveTo(col,GetY+10);
OutText('F5 *Modify '#225'1'); MoveTo(colGetY+lO); end;

If (ProgramName -'Ltest') or (ProgramName - 'Bivariate') Then Begin

OutText('PG Modify '#224); MoveTo(col,GetY+l0); end;
OutText('F7 Modify Y Matrix'); MoveTo(col,GetY+10);
OutText('F8 Modify X Matrix'); MoveTo(col,GetY+10);
OutText('F9* Print Vector Array'); MoveTo(col,GetY+l0);
OutText('Fl0* Print New Colors'); MoveTo(col,GetY+10);
OutText('FlO Complete Matrix Entry'); MoveTo(col,GetY+15);
OutText('Home Return to Initial View'); MoveTo(col,GetY+10);
OutText('ESCape Exit Program'); MoveTo(col,GetY+10);
SetTextJustify(1,2); MoveToC(X2-Xl) div 2,GetY+10);

OutText('Press Fl to Remove Help'); MoveTo((X2-X1) div 2,GetY+lS);
(OutText('* Development Version Only'); }
MoveTo((X2-X1) div 2,Y2-Y1-15); OutText('Written by Steve Pearce');
SetColor(15);
SetVisualPage(1);
SetActivePage(0);

end;
HelpScreen~n:=True;

end
else begin {If the Help Screen is

SetVisualPage(0); (Displayed then Erase it)
SetActivePage (1);
for i:= 1 to 2 do begin

SetViewPort(O, 0,GetMaxX,GetMaxY,True);
Putlmage(X1,Y1,HelpPointerA,Q); [O=Copyl
SetisualPage (1);
SetActivePage(0);

end;
Release(HelpPointer);
HelpScreen~n:-False;

end;
end; (Procedure Help}

Procedure ToggleKeyScreen;

const
Xl: Integer=360;
Yl: Integer=120;
X2:Integer=639;
Y2: Integer=349;
col:Integer=25;

var
i: Integer;
Size: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;

begin
If ProgramName - 'Ltest' Then Y1:=200;
If ProgramName - 'Mean' Then Yl:-200;
If Not ToggleKeyScreenOn Then begin (If the Help Screen is not)
GetTextSettings(OldStyle); (Displayed then Display it)
SetViewPort(0, 0,GetMaxX,GetMaxY,True);
SetVisualPag6 C0);
SetActivePage(1);
Size := ImageSize(Xl,Yl,X2,Y2);
If Size>MemAvail Then writeln(output, 'Size=' ,Size,'

MemAvail=' ,MemAvail);
Mark(ToggleKeyPointer);
GetMem(ToggleKeyPointer, Size);
Getlmage(Xl,Yl,X2,Y2,ToggleKeyPointerA);
For i:- 1 to 2 do begin
SetViewPort (Xl, Yl, X2, Y2,True);
GetViewSettings(ViewPort);
SetFillStyle(l,15);
Bar(0,0,X2-Xl,Y2-Yl); (Clear ViewPort)
SetFillStyle(l,7);
Bar(5, 4,X2-X1-5, Y2-Yl-4);
SetColor(O);
SetTextJustify(l,1);
OutTextXY((X2-X1) div 2,10,'Turning Vectors On/Off');
SetTextJustify(0,l);
MoveTo(col,GetY+30);

82

OutText('Alt A Toggle Axis'); MoveTo(col,GetY+1O);
OutText('Alt C Toggle Cube'); MoveTo(col,GetY+15);
If ProgramName - 'Mean' Then Begin
OutText('Alt E Toggle Error'); MoveTo(col,GetY+lO); end;

If ProgramName - 'Ltest' Then Begin
OutText('Alt E Toggle E(Y) '); MoveTo(col,GetY+lO); end;

If (ProgramName ='Ltest') or (ProgramName - 'Bivariate') Then
begin

OutText('Alt F Toggle e '); MoveTo(col+l,GetY+5);
OutText(' F'); MoveTo(col,GetY+lO); end;

OutText(' A ' MoveTo(col,GetY+5);
OutText('Alt H Toggle Y
If ProgramName - 'Bivariate' Then Begin
MoveTo (col ,GetY+5);
OutText(' Reduced'); MoveTo(col,GetY+lO);
OutText(' A MoveTo(col,GetY+5);
OutText('Alt J Toggle Y ';MoveTo(col,GetY+5);
OutText(' Full'); end;

MoveTo(col,GetY+lO);
If (ProgramName ='Ltest') or (ProgramName - 'Bivariate') Then

begin
OutText('Alt R Toggle e '); MoveTo(col,GetY+5);
OutText(' R'); MoveTo(col,GetY+lO); end;

If ProgramName = 'Bivariate' Then Begin
OutText('Alt U Toggle Y '); MoveTo(col,GetY+5);
OutText(' Reduced'); MoveTo(col,GetY+lO);
*OutText('Alt X Toggle Column 1 of X'); MoveTo(col,GetY+15);

end;
If (ProgramName ='Mean') or (ProgramName - 'Ltest') Then Begin
OutText('Alt X Toggle X ');-Mov6To(col,GetY+1O); end;

OutText('Alt Y Toggle Y ');.MoveTo(col,GetY+5);
If ProgramName - 'Bivariate' Then Begin-
OutText(' full'); MoveTo(col,GetY+1O);
OutText('Alt Z -Toggle Column 2 of X'); MoveTo(col,GetY+lO);

end;
SetTextJustify(1,2); MoveTo((X2-Xl) div 2,GetY+1O);
OutText('Press F2 to Remove this Screen'); MoveTo((X2-X1) div

2,GetY+15);
SetColor(15);
SetVisualPage(1);
SetActivePage(0);

end;
ToggleKeyScreen~n:=True;

end
else begin (If the Help Screen is

SetisualPage(O); (Displayed then Erase it)
SetActivePage Cl);
for i:= 1 to 2 do begin

SetViewPortCO, 0,GetMaxX,GetMaxY,True);
Putlmage(Xl,Yl,ToggleKeyPointerA,0); (O=Copyl
SetisualPage Cl);
SetActivePage(0);

end;
Release(ToggleKeyPointer);
ToggleKeyScreenon:=False;

end;
end;

Procedure ScreenOff;

begin
If BivariatecreenOn then Bivariatecreen;

If ToggleKeyScreenOn then ToggleKeyScreen;
If HelpScreenOn then Help;

end;

Procedure Colors;

const
Xl: Integer-360;
Y1 Integer-2 50;
X2: Integer-639;
Y2: Integer-349;
col: Integer-25;

var
i: integer;
P: Pointer;
Size: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;

begin
GetTextSettings (OldStyle);
SetVisualPage(O);
SetActivePage (1);
SetViewPort(0, 0,GetMaxX,GetMaxY,True);
Size := ImageSize(Xl,Y1,X2,Y2);
If Size>MemAvail Then writeln(output, 'Size=',Size,'

MemAvail' ,MemAvail);
Mark(P);
GetMem(P, Size);
Getlmage(Xl,Yl,X2,Y2,pA);
SetViewPort(Xl,Yl,X2,Y2,True);
GetViewSettings (ViewPort);
SetFillStyle(l,15);
Bar(0,0,X2-X1,Y2-Yl); [Claar ViewPort}

Bar(5,4,X2-Xl-5,Y2-Yl-4);
SetColor(15);
OutTextXY((X2-Xl) div 2,l0,'Colors');
SetTextiustify(0,1);
MoveTo(col,GetY+20);
OutText(' 1 1 1 ';MoveTo(col,GetY+1O);

OutText(' 0 2 4 6 8 0 2 4 ';MoveTo(col,GetY+30);

OutText(' 1 3 5 7 9 1 1 1. ') MoveTo(col,GetY+10);
OutText(' 1 3 5 ')

SetTextJustify(l,2); MoveTo((X2-Xl) div 2,GetY+10);
OutText('Hit Return to Continue'); MoveTo((X2-X1) div 2,GetYi-l);

for i := 0 to 15 do begin
SetFillStyle(l,i);
case odd(i) of

True: Bar(68+8*i,40,68+8*Ci+l)-8,53); (Draw Bar}
False: Bar(68+8*i,35,68+8*(i+l)-8,48); (Draw Bar)

end; end;

SetColor(15);
SetVisualPage(l);
repeat
until KeyPressed;
SetVisualPage(0);
SetViewPort(0,0,GetMaxX,GetMaxY,True);
Putlmage(X1,yl,pA,0); (0=Copyj
Release(P);

end;

84

Procedure ChangeColors(var Color: Word);

const
Xl: Integer-360;
Yl: Integer-24 9;
X2: Enteger-639;
Y2: Integer'34 9;
col: Integer-25;

var
Key: char;
Number: String;
Ok: Boolean;
i,code: integer;
P: Pointer;
msg: String;
Size,Kolor: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;

begin
GetTextSettings (OldStyle);
SetVisualPage(O);
SetActivePage (1);
SetViewPort(O,O,GetMaxX,GetMaxY,True);
Size :- ImageSize(X1,Y1,X2,Y2);;
If Size>MemAvail Then writeln(output, 'Size=' ,Size,'

MemAvail=' ,MemAvail);
Mark(P);
GetMem(P, Size);
Getlmage(X1,Y1,X2,Y2,pA);
SetViewPort(X1,Yl,X2,Y2,True)l
GetViewSettings(ViewPort);
SetFillStyle(l,15);
BarCO,O,X2-X1,Y2-Yl); (Clear ViewPort)
getFillStyle(l, 1);
Bar(5,4,X2-X1-5,Y2-Yl-4);
SetolorC 15);

SetTextJustify(l,l);
Str(Color: 2,msg);
msg:-'Current Color Number is '+msg;
OutTextXY((X2-X1) div 2,1O,msg);
SetTextJustify(O,1);
MoveTo(col,GetY+20);

OutText(' 1 1 1 ';MoveTo(col,GetY+lQ);

OutText(' 0 2 4 6 8 0 2 4 ';MoveTo(col,GetY+30);

OutText(' 1 3 5 7 9 1 1 1 ';MoveTo(col,GetY+1O);

OutText(' 1 3 5 ')

SetTextJustify(0,l); MoveTo(colGetY+10);
OutText('Which Color # do you want?');

for i :- 0 to 15 do begin
SetFillStyle(l,i);
case odd(i) of

True: Bar(64+8*i,4O,78+8*i-8,53); (Draw Bar)
False.: Bar(64+8*i,35,78+8*i-s,48); (Draw Bar)

end; end;

SetColor(15);

85

SetisualPage (1);
Ok :=False;
rnsg:='';
repeat

Key :-ReadKey;
If (Ord(Key)>47) and (Ord(Key)<58) and (length(msg) <2) then begin
msg:=msg+key;
OutText key);
end

else if Ord.(Key)-l3 then begin
val(msg,Kolor,code);
If (code = 0) and (Kolor>=0) and (Kolor<=l5) then Color:-Kolor
else OutTextXY(col,GetY+10, 'Color NOT Changed'); Delay(750);
Ok:-True;

end;

until Ok;
SetVisualPage(0);.
SetViewPort (0,0 GetMaxX, GetMaxY, True);
PiUtlmage(Xl,Yl,P^,0); {0=Copyl
Release(P);

end; {Procedure ChangeColors)

Procedure ListColors;

var
i: integer;
Color: String;

procedure PrintColor(i: integer);

begin
Case i of

0: Writeln(output,'Black');
1: Writeln(output, 'Blue');
2: Writeln(output, 'Green');
3: Writeln(output, 'Cyan');
4: Writeln(output,'Red');
5: Writeln(output, 'Magenta');
6: Writeln(output, 'Brown');
7: Nriteln(output, 'White');
8: Writeln(output,'Dark Gray');
9: Writeln(output,'Light Blue');

10: Writeln(output, 'Light Green');
11: Writeln(output,'Light Cyan');
12: Writeln(output,'Light Red');
13: Writeln(output, 'Light Magenta');
14: Writeln(output, 'Yellow');
15: Writeln~output,'Intense White');

end;
end; (Procedure Printolori

begin
Write(output,'Alt-X X[l,i] ',Mode1SpaceColor:2,':');

PrintColor (ModelpaceColor);
Write(output,'Alt-Z X[2,i] ',ModelSpace2Color:2,:');

PrintColor(ModelSpace2Color);
Write(output,'Alt-Y Y full ',ObservationColor:2,':');

PrintColor(ObservationColor);
Write(output,'Alt-U Y red ',Observation2Color:2,':');

PrintColor(Observation2Color);
Write(output, 'Alt-F eF ',ErrorColor: 2, ' :')

PrintColor(ErrorColor);

86

Write(output,'Alt-R eR ',ErrReducedColor:2,':');
PrintColor(ErrReducedColor);
Write(output,'Alt-H Yhat~ed ',YhatRedColor:2,':');

PrintColor(YhatRedColor);
Write(output,'Alt-J YhatFull ',YhatFullColor:2,':');

PrintColor(YhatFullColor);

end;

Procedure MathRoutines;

var
XP,XPX,XPXI,T1,T2,XI,One,Xtemp, ErrorT: matx;

begin
MatTranspose(X,XP);
Mat~ult(XP,X,XPX);
Matlnvert(XPX,XPXI);
MatMult(XPXI,XP,T1);
MatMultCTl,Y,BetaHat); (BetaHat-[CX'X)^-l]XIY}
MatMult(X,T1,M); [M=Xf (X'X)A71]X' I
MatMult(M,Y,Yhat);
MatSub(Y,Yhat,Error); (Error Vector - Y - Yhat)
MatAdd(Error,Yhat,Error2); (Error Vector added to Yhatj

end; (Procedure MathRoutines}

Procedure RegressionMath;

var
SEF,SER,eFT,eRT: matx;
n,p! Integer;

begin
MatSub(Y,Yhat,eF);z
MatSub(Y,Mu,eR);
writeln(output,'Y= ',Y.data[l,l]:4,' ',Y.data[2,1]:4,'

,Y data (3,1]:4);
writeln(output,'Yhat= ',Yhat.data(1,1D:4,' ',Yhat.data[2,1]:4,'

S, Yhat data (3, 1]: 4);

/ ,Mu data [3,11:4);
writeln(output,'eR- ',eR.data(1,I]:4,' ',eR.data[2,1]:4,'
,eR.data[3,1J:4);
MatTranspose(eF,eFT); Mat Transpose(eR,eRT);
Mat~ult~eFT,eF,SEF); SSEF:=:SEF.data[1,11;.
MatMult(eRT,eR,SER); SSER:=SER.data(l,l];
SSR: 'SSER-SSEF;
SSTO:-SSER;

Error :- eF;
MatAdd(Error,Yhat,Error2); (eF + Yhat)
MatAdd(eR,Mu,eRplusY); feR + E(Y) (Mu=E(Y)]1
writeln(output.'eR+Mu-',eRplusY.data(l,1J:4,'

,eRplusY.data(2,1]:4,' ',eRplusY.datat3,1]:4);

n :X.rows;

p :X.cols;

dfR n - (p-1);
dfF :n - p; fdf.denominator)

87

dfSSR :- dfR-dfF; (df.numerator}

(Writeln(output,'dfr=',dfr:2,' dff=',dff:2,' dfssr=',dfssr:2);}
If (dfSSR-O) or (SSEF-O) or (dfF-O) Then
writeln(output, 'dfSSR-' ,dfSSR,' SSEF-' ,SSEF,' dfF-' ,dfF)
else Fstar :- (SSR/dfSSR) / (SSEF/dfF);

Fcrit:-FPercentPoint((l-Alpha.data(l,l]),dfSSR,dfF);
Pvalue:- FProb(Fstar,dfSSR,dfF);

end; (Procedure RegressionMath}

Procedure Bivariateath;

var
i,n,p: Integer;
X2,X2k,
eFt,eRt,SEF,SER: matx;

Procedure Bhat(X,Y: matx;
var Z: matx);

var
XT,XTX,XTXI,XTXIXT: matx;

begin
Mat_-Transpose(X,XT);
MatMult.(XT,X,XTX);
Matlnvert(XTX,XTXI);
MatMult(XTXI,XT,XTXIXT);
MatMult(XTXIXT,Y,Z);

end;

Procedure Mprojection(X: matx;
var M: matx);

var
XT, XTX,XTXI ,XXTXI: matx;

begin
Mat Transpose(X,XT);
Mat~ult(XT,X,XTX);
Matlnvert(XTX,XTXI);
MatMult(X,XTXI,XXTXI);
MatMultCXXTXI,XT,M);

end;

begin
for i:- 1 to X.rows do begin

Xred.datafi,l] : 1; (Calculate X reduced]
X2.data(i,l] : X.data~i,2]; end;

X2.rows:-X.rows; X2.cols:=l; [X2 is second Column of X)

Mat kMult(X2,X2k,Betal.data 1,1l);
Mat~ub (Y,X2k,Yred); (Calculate Y reduced)
Bhat(X,Y,BhatFull); (Calculate BhatFull)
Bhat(Xred,Yred,BhatRed); (Calculate BhatReduced)

MatMult(X,BhatFull,YhatFull); (Calculate YhatFull)
MatMult(Xred,BhatRed,YhatRed); (Calculate YhatRed}

MatSub(Y,YhatFull,eF); (Calculate eF1
MatSub(Yred,YhatRed,eR); (Calculate eR1

Mprojection(X,M); (Calculate MI
Mprojection(Xred,Mred); (Calculate Mreduced)

Mat_-Transpose(eF,eFT); Mat_-Transpose(eR,eRT);
MatMult(eFT,eF,SEF); SSEF:SEF.data[l,l];
MatMult(eRT,eR,SER); SSER:-SER.data[l,11;
SSR:-SSER-SSEF;
SSTO : SSER;

n X.rows;
p :X.cols;

dfR :-n - (p-1);
dfF n - p; (df.denominator)
dfSSR :-dfR-dfF; (df.numerator}

MatAdd(YhatFull, eF, YhatFulleF);
MatAdd (YhatRed, eR, YhatRedeR);

If (dfSSR-O) or (SSEF=O) or (dfF-O) Then Fstar:-999
else Fstar :- CSSR/dfSSR) / (SSEF/dfr);

Fcrit:-FPercentPoint((l-Alpha.data~l,l]),dfSSR,dfF);
Pvalue:= FProb(Fstar,dfSSR,dfF);

end;

Procedure RegressionScreen;

const
Xl: Integer=360;
Yl:Integer=14; (Location of Window on Screen)
X2: Integer-639;
Y2: Integer-349;
col: Integer=25;

var
i: integer;
Size: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;
msg: string;

begin
SetVisua.Page(O);
SetActivePage (0);
GetTextSettings (OldStyle);
SetTextJustify(1,1);

SetFillStyle(l,7);
Bar(430,335,580,345); SetColor(0);
OutTextXY(505,340,' Working 1);
SetColor(15);

If Not Regressioncreenan Then begin (If the Help Screen is
not)

SetActivePage (1); (Displayed then Display
it)

SetViewPort(0,0, GetMaxX ,GetMaxY,True);
Size :- ImageSize(Xl,Yl,X2,Y2);
If Size>MemAvail then writeln(output,'Size-',Size,'

MemAvail-' ,MemAvail);
Mark(RegressionPointer);
GetMem(RegressionPointer, Size);
Getlmage(Xl,Yl,X2,Y2,RegressionPointerA);

For i:- 1 to 2 do begin

89

SetViewPort(X1,Y1 ,X2,Y2,True);
GetViewSettings (ViewPort);
SetFillStyle(l,15);
Bar(0,0,X2-X1,Y2-Yl); [Clear ViewPort)
SetFillStyle(l,7);
Bar(5,4,X2-Xl-5,Y2-Yl-4);
SetColor(0);
SetTextJustify(1,1);
OutTextXY((X2-Xl) div 2,10, 'Regression Calculations');

SetTextJustify(0,l);

If ProgramName - 'Bivariate' Then begin
MoveTo(col+J.29,GetY+31); QutText(IA/);

MoveTo(col-15,GetY+5);
OutText('CI-M)Y - e - Y - Y);MoveTo(col-14,GetY+5);

OutText(' F Full ');
end;

If ProgramName -'Ltest' Then Begin
MoveTo(col,GetY+31);
OutText(' A 1) MoveTo(col,GetY+5);
OutText('(I-M)Y = e -Y - Y =';MoveTo(col,GetY+5);

OutText(' F
end;

If eF.rows = 3 then
GMatWrite(eF,4,l,'',Xl+col+177,Yl+GetY-25,ErrorColor,7,0)

else
GMatWrite(eF,4,1,'',Xl+col+177,Yl+GetY-20,ErrorColor,7,0);

MoveTo(col,GetY+60);
OutText('SSE = e
Str(SSEF:4:2,msg); OutText(msg);
MoveTo(col+l,GetY+5); OutText(' F F');
SetLineStyle(0i,,1);
Line(col+60,GetY-9, col+60,GetY+2);
Line(col+83,GetY-9, col+83,GetY+2);
OutTextXY(col+87,GetY-8, '2');,

If ProgramName = 'Bivariate' Then begin
MoveTo(col+25jGetY+25);
OutText(' A 1) MoveTo(col+25,GetY+5);
OutText('e -Y - Y -'); MoveTo~col+26,GetY+5);
OutText(' R Red ');

end;

If ProgramName = 'Ltest' Then Begin
MoveTo(col+25,GetY+30);
OutText('e -Y - E(Y) -'); MoveTo~col+34,GetY+5);
OutText('R');

end;

If eR.rows - 3 then
GMatWrite(eR,4,l,'',Xl+coll-147,Yl+GetY-25,ErrReducedColor,7,0)

else
GMatWriteieR,4,1, ',Xl+col+147,Yl+GetY-20,ErrReducedColor,7,0);

MoveTo(col,GetY+125);
OutText('SSE - e
Str(SSER:4:2,msg); OutText(msg);
MoveTo(col+l,GetY+5); OutText(' R R)
SetLineStyle(0, 0,1);
Line(col+60,GetY-9, col+60,GetY-2);
Line(col+83,GetY-9, co1-83GetY+2);
OutTextXY~col+87,GetY-8,'2');

90

MoveTo(col,GetY+15);
OutText('SSR - SSE - SSE'); MoveTo(coll-,GetY+5);
OutText(' R F)

MoveTo (col,GetY+16);
If ProgramName - 'Bivariate' Then begin
OutText(' -Y - Y - e '); MoveTo(col,GetY-5);
OutText(' A 2 2'); MoveTo(col+l,GetY+1O);
OutText(' Red F ');

end;

If ProgramName - 'Ltest' Then Begin
OutText(' Y - E(Y) - e '); MoveTo(col,GetY-5);
OutText(' A 2 2'); MoveTo(col+1,GetY+1O);
OutText(' F ');

end;

Line(col+52,GetY-11, col+52,GetY);
Line(col+125,GetY-11, col+125,GetY);

Line(col+164,GetY-9, col+164,GetY+2);

Line(col+188,GetY-9, col+188,GetY+2);

MoveTo(col,GetY+14);

OutText(' - e =

Str(SSR:5:2,msg); OutText(msg);

MoveTo (col+ , GetY+5);
OutText(' R F');
SetLineStyle(0,0, 1)
Line(col+52,GetY-9, col+52,GetY+2);
Line (col+75,GetY-9, col--75,GetYI2);

Line(col+108,GetY-9, coJ.+108,GetY-2);
Line(col+131,GetY-9, col+131,GetY+2);
OutTextXY(colA-78,GetY-8, '2');
OutTextXY~col+134,GetY-8, '2');

MoveTo(col+25, GetY+20);
OutText('df - n - (p-1) -=)
Str(dfR:2,msg); OutText(msg);
MoveTo(col+i+25,GetY+5);
OutText(' R');

MoveTo(col+25, GetY+i0);
OutText('df - n - p =

Str(dfF:2,msg); OutText(msg);
MoveTo(col+1+25,GetY+5);
OutText(' F'); MoveTo(col+25,GetY+i0);

OutText('df - df - df =-)
Str(dfSSR:2,msg); OutText(msg);
MoveTo(col+1+25,GetY+5);
OutText(' SSR R F');

col:'7; MoveTo(col,GetY-18);
OutText('Fstar - (SSR/df)/(SSE /df)';MoveTo(col+i,

GetY+5);
OutText(' SSR F F'); MoveTo(coi, GetY414);

OutText('Fcrit - (1i'#224'; df df)'); MoveTo(coi+i, GetY+5);
OutText(' SSR, F'); coi:-25;

91

SetTextJustify(l,2);
MoveTo((X2-Xl) div 2,Y2-Yl-l5); OutText('F3 Toggles this Screen

Off');
SetColor(15);
SetVisualPage(1);
SetActivePage(Q);

end;
Regress jonScreen~n:-True;

end
else begin (If the Help Screen is

SetVisualPage(O); (Displayed then Erase it)
SetActivePage (1);
for i:- 1 to 2 do begin

SetViewPort(O,O,GetMaxX,GetMaxY,True);
Putlnage(Xl,Yl,RegressionPointerA,O); (O=Copyl

SetActivePage(0);
SetVisualPage(l);

end;

Regressioncreenan :=False;
SetColorC 15);
SetTextJustify(OldStyle.Horiz, OldStyle.Vert);

Release(RegressionPointer);-
end;

end; (procedure Regressioncreeni

Procedure MScreen;

cons t
Xl: Integer-360;
Y1:Integerl14; {Location of Window on Screen}
X2: Integer-639;
Y2: Integer.J50;
col:Integer=70;

var
i: integer;
Size: Word;
ViewPort: ViewPortType;
OldStyle: TextSettingsType;
rnsg: string;

begin
SetVisualPage(0);
SetActivePage(1);

GetTextSettings(OldStyle);
SetTextJustify(l,l);

If Not MScreenOn Then begin [If the Help Screen is not)
SetViewPort(0,0,GetMaxX,GetMaxY,True); (Displayed then Display

it)
Size :- ImageSize(Xl,Y1,X2,Y2);
If Size>MemAvail then writeln(output, 'Size-' ,Size,'

MenAvail-' ,MemAvail);
Mark(MPointer);
GetMem(MPointer, Size);
Getlmage(Xl,Yl,X2,Y2,MPointerA);

For i:- 1 to 2 do begin

92

SetViewPort(Xl,Yl,X2,Y2,True);
GetViewSettings (ViewPort);
SetFillStyle(1,15);
Bar(0,0,X2-Xl,Y2-Yl); (Cl.ear ViewPort)
SetFillStyle(l,7);
Bar(5,4,X2-Xl-5,Y2-Yl-4);
SetColor(0);
SetTextJustify(l,l);
OutTextXY((X2-Xl) div 2,10, 'M Projection Matrix');

SetTextJustify(0, 1);
MoveTo(col,GetY+31); SetColor(2);
GMatWrite(M,4 ,1, 'M. Full' ,Xl+col,Yl+GetY, 15,7,0);

MoveTo(col,GetY+85);
GMatWrite(Mred,4,l,'M.Red ',X1+col,Y1+GetY,15,7,O);

SetisualPage (1);
SetActivePage(0);

end;
MScreen~n:-True;

end
else begin (If the Help Screen is

for i:- 1 to 2 do begin

SetViewPort(0, 0,Get~axXGetMaxYTrue);
Putlmage(Xl,Yl,MPointerA,0); (0=Copy)

SetActivePage(0);
SetisualPage C1;

end;

MScreenOn := False;
SetColor(15);
.SetTextJustify(OldStyle.Horiz, OldStyle.Vert);

Release(MPointer);
end;

end; (Procedure MScreen)-

procedure chart(xl,yhi: Integer; (Upper Left Location)
x2,y2: Integer; (Lower Right Location)

Percent: Real; (between 0 and 1)
Color: Word; (Color of chart)
Title: String); (Title of chart)

const
AxisColorlS5; (White)
MaxSize-0.80; (At MaxSize, the bar will go up to this proportion

(of the length of the Axis)

var
OldStyle: TextSettingsType;
OldView: ViewPortType;
OldFill: FillSettingsType;
msg: string;
XWidth, Yheight, yl: Integer;
i: Integer;
UpperTitle,LowerTitle: String;
WritePercent.Upper: Boolean;

begin
If abs(Percent) > I then writeln(output,'Graph Percent should '

'be between 0 and 1. Percent - ',Percent);
If Percent > 0 then WritePercent :- True

93

else begin WritePercent :- False; Percent
abs(Percent); end;

GetTextSettings COldStyle);
GetViewSettings (OldView);

SetFillStyle(l, GetBkColor);
Bar(xl,yhi, x2,y2); (Erase the old Graph}

yl:=yhii-0;
SetColor(AxisColor);
SetLineStyle(0, 0,1);

Line(xl,yl,xl,y2); (Draw Y Axis)
Line(xl,y2,x2,y2); (Draw X Axis)

SetTextiustify(1,2); (Center Horizontally & to the top Vertically)

[The routine below looks for a decimal point and assumes that
characters

following the decimal point will be placed as a subscript.
Only 1 level of subscripting is supported.)

Upper:-True; [Title starts in normal Text)
UpperTitle:=''; LowerTitle:-'';

for i:=l to Length(Title) do
If Copy(Title,i,l) - '.' then Upper:=Not Upper
else Case Upper of

True begin UpperTitle:=UpperTitle+Copy(Title,i,l);
LowerTitle:=LowerTitle+' '; end;

False begin LawerTitle:=LowerTitle+Co-py(Title,i,l);
UpperTitle:=UpperTitlei- ' end;

end;

(writeln(butput,'.',Title,'.');
writeln(output,'. ',UpperTitle,'.');
writeln(output,'.' ,LowerTitle,' .1);

writeln(output,' ');1

OutTextXY(xl+(x2-xl) div 2, Yhi, UpperTitle);
OutTextXY(xl.(x2-xi) div 2+1, Yhi+4, LowerTitle);

XWidth:=Round((x2-xl)*MaxSize*Percent);
YI-eight:=Round((y2-yl)*MaxSize*Percent);

SetFillStyle(l,Color); (Color of Bar Graph)
Bar(xl+1,y2-1,xl+XWidth, (Graph the chart)

y2-YHeight);

Str(Percent:4 :2,msg);
SetTextJustify(l,l); (Center Vertically & Horizontally)
If WritePercent then begin
If Percent>0.75 then begin
SetFillStyle~l,GetBkColor); (Erase

a portion so that we can)
Bar(xl+XWidth div 2 - Length(msg)*4, y2-Yueight div 2 - 6, (Write

out the percentagel
xl-iXWidth div 2 + Length(msg)*4+l, y2-YHeight div 2 + 4);

OutTextXY(x14-XWidth div 2, y2-YHeight div 2, msg); end
else

94

OutTextXY(Round(xl+Round((x2-xl)*O.65)), Round(y2-(y2-yl)*O.65),
msg); I

SetFillStyle(l,BackgroundKolor);
(Erase a portion so that we can)

Bar(xl+(x2-xl) div 2 - Length(msg)*4, yl + (y2-yl) div 2 - 6,
[Write out the percentage)

xl+(x2-xl) div 2 + Length(msg)*4+1, yl + (y2-yl) div 2 + 4);
OutTextXY~xl+(x2-xl) div 2, yl + (y2-yl) div 2, msg); end;

{setcolor(15);
setLineStyle(O,O,1);
rectangle(xl,yhi,x2,y2);3

SetTextJustify(OldStyle.Horiz, OldStyle.Vert);
SetFillStyle(Qi -dFill.Pattern, OldFill.Color);
With OldView do SetViewPort~xl,yl,x2,y2,Clip);

end;

function TimelnSeconds: Real;
var

hr,rnin,sec,seclOO: Word;

begin
GetTime(hr,min,sec,seclOQ);
TimelnSeconds:=hr*3600+'in*6O+sec+seclOO/100;

end;

procedure BarGraphs;

const
RowHeight=80; (Height of graphs)
XFrame=O.05; (Distance from Quadrant to dotted box)
Y Frame=O.05;
X2_-Frame=O.25; [Keeps the quadrants seperate)
Y2_Frame=O.25;

Type
Location - Record X,Y: Integer; end;

var
row3,Xoffset: Integer;
UpperLeft,UpperRight, LowerLeft,LowerRight: Location;
OldStyle: TextSettingsType;
SSRS,dfSSRS,SSEFS,dfFS,msg: String;

begin
UpperLeft.X:-Round((l+XFrame)*Xhi*GetMaxX+2);

tpperLeft.Y:=Round((l+Y_Frame)*(l-Yhi)*GetMaxY-l);
UpperRight.X:=Round((l-XFrame)*GetMaxX); EUpperRight.Y:-UpperLeft.Y;
LowerLeft.X:-UpperLeft.X; LowerLeft.Y:-Round((l-Y_Frame)*GetMaxY);
LowerRight.X:=Round((1-XFrame)*GetMaxX);

LowerRight .Y: -Round((1-Y_Frame) *GetMaxY);

(Writeln(output,'UpperLeft=',UpperLeft.X,', ',UpperLeft.Y);
Writeln(output, 'tpperRight=' ,UpperRight.X,', ',LpperRight.Y);
Writeln(output,'LowerLeft=',LowerLeft.X,', ',LowerLeft.Y);
Writeln(output, 'LowerRight=',LowerRight.X,', ',LowerRight.Y);
Writeln(output,')

95

fill)

chart(UpperLeft.X,UpperLeft.Y,Round((l-X2 Frame)*(tlpperRight .X-(JpperLeft
.X)) div 3 + UpperLeft.X,

Round((l-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3 +
tUpperLeft.Y, SSR/SSE9R, YhatColor, 'SSR');

(2,11
chart(UpperLeft.X,UpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3,

Rourid((1-X2_Frame)*(UpperRight.X-UpperLeft.X)) div 3 +
UpperLeft .X,

LowerLeft.Y-Round((1+Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3,
SSEF/SSER, ErrorColor, 'SSE.F');

(3,11
chart(UpperLeft.X, LowerLeft.Y- (LowerLeft.Y-UpperLeft .Y) div 3,

Round((1-X2_Frame)*(UpperRight.X-UpperLeft.X)) div 3 +
UpperLeft.X

LowerLeft.Y-Round(Y2_Frame*(LowerLeft.Y-UpperLeft.Y)) div 3,
SSTO/SSER, SSTOColor, 'SSTQ');

(1,2)
chart(UpperLeft.X + (UpperRight.X-UpperLeft.X) div 3, UpperLeft.Y,

UpperRight.X - Round((+X2_Frame)*CUpperRight.X-UpperLeft.X))
div 3,

Round((1-Y2 Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3 +
UpperLeft.Y, - CSSR/S§SER)/dfSSR, YhatColor, 'SSR/df.Num');

(2,2)
chart(UpperLeft.X + (UpperRight.X-UpperLeft.X) div 3,

EUpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3,
UpperRight.X - Round((l+X2 Frame) *(UpperRight .X-UpperLeft .X)

div 3,
LowerLeft.Y-RoundC(l+Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3,

-(SSEF/SSER)/dfF, ErrorColor, 'SSE.F./df.Den');

GetTextSettings (OldStyle);
SetTextiustifyCO,1);

Str(SSR:4 :1,SSRS);
Str(dfSSR:1,dfSSRS);
Str(SSEF:4:1,SSEFS);
Str(dfF:1,dfFS);

OutTextXY(tUpperRight.X - (UpperRight.X-UpperLeft.X) div 3,
UpperLeft.Y + (Round(1-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y))

div 3) div 3,
f'SSR -1

OutTextXY(UpperRight.X -(UpperRight.X-UpperLeft.X) div 3 + 64,
UpperLeft.Y + (Round((1-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y))

div 3) div 3,
SSRS);

OutTextXY(UpperRight.X -(UpperRight.X-UpperLeft.X) div 3,
UpperLeft.Y +

2*(Round((l-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3) div 3,
'df =1);

OutTextXY(UpperRight.X - (UpperRight.X-UpperLeft.X) div 3 + 80,
UpperLeft.Y +

2*(Round((1-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3) div 3,

96

dfSSRS);

OutTextXY(UpperRight.X - (UpperRight.X-UpperLeft.x) div 3 + 1,
UpperLeft.Y +

2*(Round((l-Y2_Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3) div 3 + 4,
Num');

OutTextXY(rUpperRight.X - (UpperRigjht.X-UpperLeft.X) div 3,
UpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3 +

* (Round((l-Y2_Frame)*CLowerLeft.Y-tUpperLeft.Y)) div 3) div 3,
'SSE =/);

OutTextXY(UpperRight.X - (UpperRight.X-UpperLeft.X) div 3 + 1,
UpperLeft.Y +I (LowerLeft.Y-UpperLeft.Y) div 3 +

(Round((1-Y2 Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3) div 3 + 4,
SF ');

OutTextXY(UpperRight.X - (UpperRight.X-UpperLeft.X) div 3 + 64,
UpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3 +

(Round((l-Y2_Frame)*(LowerLeft.Y-tUpperLeft.Y)) div 3) div 3,
SSEFS);

OutTextXY(UpperRight.X - (UpperRight.X-UpperLeft.X) div 3,
tpperLeft.Y + (LowerLeft.Y-UrperLeft.Y) div 3 +

2*(Round((l-Y2 Frame)*(LowerLeft.Y-jpperLeft.Y)) div 3) di-v 3,
'df =');

OutTextXY(U.pperRight.X - (UpperRight.X-tUpperLeft.X) div 3 + 1,
EpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3 +.

2*(Round(Cl-Y2 Frame)*(LowerLeft.Y-UpperLeft.Y)) div 3) div 3 + 4,
IDen');

OutTextXY(Upper~ight.X - (UpperRight.X-UpperLeft.X) div 3 + 80,
UpperLeft.Y + (LowerLeft.Y-UpperLeft.Y) div 3 +

2*i(Round((1-Y2 Frame)*CLowerLeft.Y-UpperLeft.Y)) div 3) div 3,
dfTS);

Xoffset: =25;

If Fstar<>999 then Str(Fstar:4:2,lsg)
else msg:-#236;
msg:='Fstar = +msg;
OutTextXY(UpperLeft.X + (tpperRight-.X-UpperLeft.X) div 3 + Xoffset,

LowerLeft.Y - (LowerLeft.Y-UpperLeft.Y) div 3+5, rnsg);

Str (Pvalue:4:2,mrsg);
rnsg:='P value = '+msg;
OutTextXY(UpperLeft.X + (UpperRight.X:UpperLeft.X) div 3 + Xoffset,

LowerLeft.Y - CLowerLeft.Y-UpperLeft.Y) div 3+17, rnsg);

Str,'Fcrit:4:2,msg);
msg:='Fcrit -'+msg;
OutTextXY(UpperLeft.X + (UpperRight.X-UpperLeft.X) div 3 + Xoffset,

LowerLeft.Y - (LowerLeft.Y-UpperLeft.Y) div 3+17+17, msg);

Str(Alpha.datafl,l] :4 :2,rnsg);
msg:='for 'I92241 - '+msg;
OutTextXY.(tlpperLeft.X + (UpperRight.X-EUpperLeft.X) div 3 + Xoffset,

LowerLeft.Y - (LowerLeft.Y-LlpperLeft.Y) div 3+17+17+12,
msg);

SetTextJustify(OldStyle.Horiz, OldStyle.Vert);

97

end; (Procedure BarGraphs)

Procedure Screen(ScreenNumber: Integer);

Procedure ScreenCall(ScreenChar:String);

begin
If ScreenChar - '1' Then Help;
If ScreenChar - '2' Then ToggleKeyScreen;
It ScreenChar - '3' Then RegressionScreen;
If ScreenChar - '4' Then MScreen;

end; [Procedure ScreenCall)

var
Screen~n: Boolean;
ScreenChar: String;
i, Position, ScreenStackLength: Integer;

begin
Str(CScreen~urnber:l, Scr. enChar);
Position:-Pos(ScreenChar,ScreenStack);
ScreenStackLength: =Length(ScreenStack);
If ScreenChar = '0' Th-in Begin [ESCape was pressed}

ScreenCall(Copy(ScreenStack,Length(ScreenStack) ,l));
ScreenStack:=Copy',ScreenStack,l,Length(ScreenStack) -1); end

else
If Position > 0 Then (Screen is being displayed)
While Pos(ScreenChar,ScreenStack) > 0 do begin

ScreenCall(Copy(ScreenStack,Length(ScreenStack) ,l));
ScreenStack:=Copy(ScreenStack,l,Length(ScreenStack) -1);

end
else Begin [Screen is not being Displayedj

ScreenCall (ScreenChar);
Sc!reenStack := ScreenStack + ScreenChar;

end;
end;

procedure F9Procedure;-

var
i: Integer;

begin
Writeln(Output,'Line # From To Color');
For I:-FirstLine to LastLine do

With WorldLine[l] do
Writeln(Output, 1 ,1:2,' ',Endpoint1:5,' ',Endpoirvt2:5,'

',LineColor);
Writein (Output,')
Writeln(Output, ''

Writein(Output,'Point x X YI)
For I:-FirstPoint to LastPoint do
With WorldEndpoint[I) .Transform3DEndpointVar do

Writeln(Output, ' ,1:2,' ',WorldX:6,' ',WorldZ:6,'
',WorldY: 6);
end;

procedure KeyAction;

begin
Repeat

98

MolePlot(BackgroundKolor);

(* Get the keyboard status, check the status of the CTRL and BREAK (or

(* CTRL and C) keys, and clear the keyboard buffer.

AcroMole.GetKeyboardStatus(GetKeyboardStatusVar);
AcroMole. CheckBreak(CheckBreakVar);
AcroMole. ClearKeyboardBuffer(ClearKeyboardBufferVar);

If (GetKeyboardStatusVar.Down[4] And 16384+1024)<>O (Plus/Minus
key held down)

Then MolePlusMinus;

If (GetKeyboardStatusVar.Down(4] And (2048+8192))<>O Then (Left/Right
Arrows)

MoleLeftRight;

If (GetKeyboardStatusVar.Down[4] And 256<>0) or (Up/Down
Arrows}

(GetKeyboardStatusVar.Down(5] And 1 <> 0) Then
MoleUpDown;

If (GetKeyboardStatusVar.Down[4] And 128<>0) Then begin (Home Key)
Radius:=0.62; (Initial Position}
LayerScreen:-65535; (Bring Everything Back)
RotMat(0,0]:= 24945;
RotMat[0,1]:- -6782;
RotMat[0,2]:=-20124;
RotMat[l,0]: = 712;
RotMat(l,l]:- 31294; (Rotation Matrix, Initial Camera Position)
RotMatfl,2]:= -9664;
RotMat[2,0]:= 21224;
RotMat[2,1]:= 6921;
RotMat(2,2]:- 23976;

end;

If (GetKeyboardStatusVar.Down[0] And 2<>0) and (Length(ScreenStack) >
0) [ESCape Pressed}

Then Begin Screen(0); GetKeyboardStatusVar.Down(]:=0;
GetKeyboardStatusVar.Missed[0 :-0; end;

If (GetKeyboardStatusVar.Down[3] And 2048<>0) Then Screen(l);
[F1 Pressed, Help)

If (GetKeyboardStatusVar.Down[3] And 4096<>0) Then Screen(2);
(F2 Pressed, ToggleKeyScreen)

If GetKeyboardStatusVar.Down(4] And 2<>O Then GetYFlag:=True;
[F7 Pressed)

If GetKeyboardStatusVar.Down[4] And 4<>0 Then GetXFlag:-True;
[F8 Pressed)

(If (GetKeyboardStatusVar.Down(41 And 8<>0) Then F9Procedure;
(F9 Pressed)

(If GetKeyboardStatusVar.Down[4] And 16<>O Then ListColors; (FlO
Pressed)

9N

(Print out Current Colors)

If (GetKeyboardStatusVar.Down[3l And 256<>O) and
(GetKeyboardStatusVar.Down(l) And 16384<>O) Then [Alt A

Pressed)
If TimelnSeconds> (AxisFlipTime+ToggleDelay) then begin
If LayerScreen And 2 <> 0 then LayerScreen:-LayerScreen And

(65535-2)
else LayerScreen:=LaeyerScreen Or 2;
Axisliptime:=TimelnSeconds;

end;

If (GetKeyboardStatusVar.Down(3] And 256<>0) and
(GetKeyboardStatusVar.Down[2] And 16384<>0) Then (Alt C

Pressed)
If TimelnSeconds> (CubeFlipTime+ToggleDelay) then begin
If LayerScreen And 1 <> 0 then LayerScreen:=LayerScreen And

(65535-1)
else LayerScreen:=LayerScreen Or 1;
Cubeliptime: =TimelnSeconds;

end;

If (GetKeyboardStatusVar.Downt3) And 256<>0) and
(GetKeyboardStatusVar.Down(2] And 8<>0) Then (Alt H

Pressed)
If TirenSeconds> (H~lipTime4ToggleDelay) then begin
If LayprScreen And 256 <> 0 then LayerScreen:=LayerScreen And

(65535-256)
else begin

(ChangeColors(YhatRedColor); GenerateivariatePoints;l
LayerScreen:=LayerScreen Or 256; end;

HFliptine: -TimelnSeconds;
end;

If CGetKeyboardStatusVar.Down 1 And 256<>0) and
(GetKeyboardStatusVar.Down (2] And 8192<>0) Then (Alt X

Pressed}
If TimelnSeconds> (XFlipTime+ToggleDelay) then begin
If LayerScreen And 8 <> 0 then LayerScreen:=LayerScreen And

(65535-8)
else begin

(ChangeColors(ModelSpaceColor); GenerateivariatePoints;}
LayerScreen:=LayerScreen Or 8; end;

XFliptime: =TimelnSeconds;
end;

If (GetKeyboardStatusVar.Downf3] And 256<>0) and
(GetKeyboardStatusVar.Down[l] And 32<>O) Then -(Alt Y

Pressed)
If TimelnSeconds> CYFlipTirne+Toggleoelay) then begin
If LayerScreen And 16 <> 0 then LayerScreen:-LayerScreen And

(65535-16)
else begin

(ChangeColors(ObservationColor); GenerateivariatePoints;)
LayerScreen:-LayerScreen Or 16; end;

YFliptime :-TimelnSeconds;
end;

If (GetKeyboardStatusVar.Down[3J And 256<>0) and
(GetKeyboardStatusVar.Down[O] And 4<>0) Then begin (Alt

1 Pressed)
SetVisualPage(0); readin; end;

100

If ProgramName - 'Mean' Then (This version of
Alt-E applies)

If (GetKeyboardStatusVar.Down[3] And 256<>0) and (Only to the Mean
Program I

(GetKeyboardStatusVar.Down~l] And 4<>0) Then (Alt E
Pressed)

if TimelnSeconds> (EFlipTime4ToggleDelay) then begin
If LayerScreen And 32 <> 0 then LayerScreen:-LayerScreen And

(65535-32)
else begin

(ChangeColors(MuColor); GenerateataPoints; I
LayerScreen:-LayerScreen Or 32; end;

EFliptime:-TimelnSeconds;
end;

If ProgramName - 'Ltest' Then Begin (This version of
Alt-E applies}

If (GetKeyboardStatusVar.Down[31 And 256<>0) and (Only to the
Ltest Program I

(GetKeyboardStatusVar.Down (1] And 4<>0) Then (Alt E
Pressed]

If TimelnSeconds> (EFlipTime+ToggleDelay) then begin
If LayerScreen And 4096 <> 0 then LayerScreen:-LayerScreen And

(65535-4096)
else begin

[ChangeColors(MuColor); GenerateataPoints; I
LayerScreen:=LayerScreen Or 4096; end;

EFliptime:=TimelnSeconds;
end;

If GetKeyboardStatusVar.Down(3] And 32768<>0 Then GetMuFlag:-True;
(F5 Pressed}
end;

If ProgramName = 'Bivariate' Then begin IThese Routines
Apply only to

(the Bivariate
Program

if GetKeyboardStatusVar.Down(3] And 16384<>0 Then Screen(4);
fF4 Pressed, MScreenj

(Display Projection Matrix)
If GetKeyboardStatusVar.Down (3] And 32768<>0 Then

GetBetalFlag:=True; {F5 Pressed)

If (GetKeyboardStatusVar.Down[3) And 256<>0) and
(GetKeyboardStatusVar.Down(2] And 16<>0) Then (Alt J

Pressed I
If TinelnSeconds' (JFlipTine+ToggleDelay) then begin

If LayerScreen And 512 <> 0 then LayerScreen:-LayerScreen And
(65535-512)

else begin
(ChangeColors(YhatFullColor); GenerateiivariatePoints;)
LayerScreen:-LayerScreen Or 512; end;

JFliptime:-TirnelnSeconds;
end;

If (GetKeyboardStatusVar.Down(3] And 256<>0) and
(GetKeyboardStatusVar.Down(l] And 64<>0) Then (Alt U

Pressed)
If TimelnSeconds> (UFlipTime+ToggleDelay) then begin

If LayerScreen And 2048 <> 0 then LayerScreen:-LayerScreen And
(65535-2048)

else begin

101

(ChangeColors(Observation2Color); GenerateivariatePoints; I
LayerScreen:-LayerScreen Or 2048; end;

UFliptime:-TimelnSeconds;
end;

If (GetKeyboardStatusVar.Down[3] And 256<>0) and
(GetKeyboardStatusVar.Down(21 And 4096<>O) Then [Alt Z

Pressed)I
If TimelnSeconds> CZFlipTime+ToggleDelay) then begin

If LayerScreen And 1024 <> 0 then LayerScreen:=LayerScreen And
(65535-1024)

else begin
(ChangeColors(ModelSpace2Color); GenerateivariatePoints; I
LayerScreen: -LayerScreen Or 1024; end;

ZFliptime: -TinielnSeconds;
end;

end;

If (Program'ame - 'Bivariate') or (Programame -'Ltest') Then begin
(These Routines Apply only to I

(the Ltest &
Bivariate Programs)

If GetKeyboardStatusVar.Down[3] And 8192<>0 Then Screen(3);
(F3 Pressed, Regression Info)

[Display all Possible Colors}

If GetKeyboardStatusVar.Down[4] And l<>0 Then GetAlphaFlag:-True;
(F6 Pressed}

If (GetKeyboardStatusVar.Down[3) And 255<>O) and
(GetKeyboardStatusVar.Down[2] And 2<>0) Theft (Alt F

Pressed)
If TimelnSeconds> CFFlipTime+ToggleDelay) then begin

If LayerScreen And 32 <> 0 then LayerSzreen:=LayerScreen And
(65535-32)

else begin
(ChangeColors(ErrorColor); GenerateivariatePoints; I
LayerScreen:-LayerScreen Or 32; end;

FFliptime: =TimelnSeconds;
end;

If (GetKeyboardStatusVar.Down(3] And 256<>O) and
(GetKeyboardStatusVar.Downfl] And 8<>O) Then (Alt R

Pressed)
If TimelnSeconds> (RFlipTime+ToggleDelay) then begin

If LayerScreen And 64 <> 0 then LayerScreen:=LayerScreen And
(65535-64)

else begin
(ChangeColors(ErrReducedColor); GenerateivariatePoints;)
LayerScreen:-LayerScreen Or 64; end;

RFliptime =TimelnSeconds;
end;

end;

If (GetKeyboardStatusVar.Down(l] And 8192<>0) and [Control
Key and)

(GetKeyboardStatusVar.Down[4] And (2048+8192)<>0) Then
(Left/Right Arrows)

MoleranslateHorizontal;

10(2

(* Keep looping till the user presses CTRL and BREAK, CTRL and C, or
ESC.

Until (CheckBreakVar.ReturnCode<>AMOkay) Or (* CTRL BREAK or
CTRL C. *)

((GetKeyboardStatusVar.Down[0] And 2)<>O) Or (* ESC key held
down.

((GetKeyboardStatusVar.Missed[0] And 2)<>0) Or (* ESC key tapped.

GetXFlag Or GetYFlag Or (* X or Y matrix
needs updating*)

GetBetalFlag Or GetAlphaFlag Or GetMuFlag;

{Writeln(output,'CheckBreak-',CheckBreakVar.ReturnCode<AMOkay,
Escape Down=',(GetKeyboardStatusVar.Down[0] And 2)<>0,
Escape Missed=',(GetKeyboardStatusVar.Missed[0] And

2)<>0);

Writeln(output,'XFlag=',GetXFlag,' YFlag-',GetYFlag,'
BetaFlag=',GetBetalFlag);)
end; (Procedure KeyAction)

end. (Unit Support)

I03

Unit Support2;

Interface
uses TGlobals,Graph,Crt,MathMat,GraphMat;

function VectorLength(X,Y,Z:Real): Real;

Procedure GenerateArrowhead (ALine: Integer; (Line Needing Arrow}
var Xl,Yl,Zl, (ist Arrow Segment}

X2,Y2,Z2:Integer); [2nd Arrow Segment)
Procedure GenerateAxis;

Procedure GenerateCube(X,Y,Z: Integer);

Procedure GenerateDataPoints;

Procedure GenerateBivariatePoints;

Implementation

function VectorLength;

begin VectorLength:=Sqrt(Sqr(X)+Sqr(Y)+Sqr(Z)); end;

Procedure GenerateCube(X,Y,Z: Integer);

var
I,J,K,L: Integer; (Misc Dummy Variables}

Begin
L:-22; (1st Point allocated to the Cube)
For I:=O. to 1 Do

For J:= 0 to 1 Do
For K:- 0 to 1 Do

With WorldEndpoint[L] do begin
Transform3DEndpointVar.WorldX:=(K*X*2)-X; (X,Y, & Z are the

relative}
Transform3DEndpointVar.WorldY:-(J*Y*2)-Y; (Sizes of the object}
Transform3DEndpointVar.WorldZ:=(I*Z*2)-Z;
Writeln(output,'X=',Transform3DEndpointVar.WorldX,'

Y=',Transform3DEndpointVar.WorldY,
I Z=' ,Transform3DEndpointVar.WorldZ); I

Inc(L);
End; (With]

(* Calculate which endpoints to connect to form the.Cube's lines.

For L:=17 To 28 Do
With WorldLine[L] Do begin

Case L-17 Of
0 begin Endpointl:-22+0; Endpoint2:=22+ 1; end;
1 begin Endpointl:-22+l; Endpoint2:-22+ 3; end;
2 begin Endpointl:=22+3; Endpoint2:=22+ 2; end;
3 begin Endpointl:=22+2; Endpoint2:=22+ 0; end;
4 begin Endpointl:-22+4; Endpoint2:-22+ 5; end;
5 begin Endpointl:=22+5; Endpoint2:-22+ 7; end;
6 begin Endpointl:=22+7; Endpoint2:=22+ 6; end;
7 begin Endpointl:=22+6; Endpoint2:=22+ 4; end;

104

8 begin Endpointl:-22+2; Endpoint2:-22+ 6; end;
9 begin Endpointl:-22I0; Endpoint2:=22+ 4; end;
10 begin Endpointl:=22+l; Endpoint2:=22+ 5; end;
11 begin Endpointl:-22+3; Endpoint2:=22+ 7; end;
end; [Case}
LineColor:-LabelColor; Layer:=l; end; (With)

end; (Procedure GenerateCube]

Procedure GenerateArrowhead;

const
base-0.10; (base of arrow)
awidth-l0; (half width of arrow)

var
dx,dy,dz: real; (direction vector)
bx,by,bz: real; (base coordinate along arrow line)
vhead,vtail: integer; [Endpoint Number of head and tail]
vheadx,vheady,vheadz: real; (Head Coordinates]
vtailx,vtaily,vtailz: real; (Tail Coordinates]
CosAngle: real; (Cosine of angle between vectors (In Radians)]
orthox,orthoy,orthoz,olength: real; (Orthogonal Coordinates}
dlength: real; (length of vector]
Point:Boolean; (Not a vector but a point}

begin
vhead:-WorldLine[ALine] .Endpointl; (Vector H-ead Endpoint Number]
vtail:=WorldLine[ALine] .Endpoint2; (Vector Tail Endpoint Number]

vheadx:-WorldEndpoint [vhead] .Transform3DEndpointVar.WorldX;
vheady:=WorldEndpoint~vhead] .Transform3DEndpointVar.WorldY;

(Coordinates of Head]
vheadz:-World~rndpoint[vhead) .Transform3DEndp'ointVar.WorldZ;

vtailx:=WorldEndpoint(vtail] .Transform3DEndpointVar.WorldX;
vtaily:=WorldEndpoint[vtail) .Transform3DEndpointVar.WorldY;

(Coordinates of Tail]
vtailz:=WorldEndpoint~vtailj .Transform3DEndpointVar.WorldZ;

If (vheadx=vtailx) and (vheady=vtaily) and (vheadz-vtailz) then
Point: =True

else
Point.--False;

dx:-vheadx - vtailx;
dy:-vheady - vtaily; (Direction Vector]
dz:-vheadz - vtailz;

(Now we must see if either the head or tail is at the origin.
If it is, we can shift if over.]

If not Point then begin
If (vheadx=0] and (vheady-0) and (vheadz=0) then vheadx:-l;
If (vtailx-0) and (vtaily-0) and (vtailz=0) then vtaii'x:-l;

(Now let's see if the angle between the two vectors is very small.)

Repeat
CosAngle:-Cvheadx*vtailxfvheady*vtaily+vheadz*vtailz)/

(VectorLength(vheadx,vheady,vheadz)*VectorLength(vtailx,vtaily,vtailz));

If (abs(CosAngle) < 0.005) or (abs(CosAngle) > 0.995) then begin
vtaily:-vtaily-l; (This are just arbitrary used to}
vtailz:-vtailz+l; end (make the angle non parallel]

105

else If (abs(CosAngle)>0.990) or (abs(CosAngle)<-0.010) then begin
vtailx:-vtailx - dx; [If the angle isn't large enough, widen

it.)
vtaily:-vtaily - dy; [But keep it in the same plane.)
vtailz:=vtailz - dz; end;

Until (abs(CosAngle) > 0.010) and (abs(CosAngle) <0.990); (Angle
must be atleast 0.010 radians}

(For the Cross Product Routine)

orthox: vheady*vtailz-vheadz*vtaily;
orthoy: =vheadz*vtailx-vheadx*vtailz; (vector orthogonal to original}
orthoz :=vheadx*vtaily-vheady*vtailx; (two vectors}

olength:-VectorLength(orthox,orthoy,orthoz); (Orthogonal Vector
Length)
dlength:-VectorLength(Dx,Dy,Dz); (Vector Length)
if dlength>0 then dlength:=Ln(dlength); ('Nomalize' it)

bx:=vheadx - base*dx;
by:-vheady - base*dy; ('height' of triangle formed

by arrowhead)
bz:-vheadz - base*dz;

Xl:=Round (bx+orthox*awidth*dlength/olength);
Yl:-Round(by+orthoy*awidth*dlength/olength); (Base of one of the

arrow lines)
Zl: Round(bz+orthoz*awidth*dlength/olength);

X2 : Round(bx-orthox*awidth*dlength/olength);
Y2:-Round(by-orthoy*awidth*dlength/olength); (Base of one of the

arrow lines)
Z2:-Round(bz-orthoz*awidth*dlength/olength);
end

else begin
Xl:=round(vheadx); X2:=Xl;
Yl:=round(vheady); Y2:=Y1;
Zl:-round(vheadz); Z2:=Z1; end;

end; (Procedure GenerateArrowhead)

Procedure GenerateAxis;

Cons t

Size:Real-0.05; (Size of X,Y,Z relative to Axis)
DistX:Reall1.13; (Distance from arrowhead to center of 'X')
DistY:Real=l.2; (Dist ance from arrowhead to center of 'Y'l
DistZ:Real=1.09; (Distance from arrowhead to center of 'Z').
Magnify:Real-l.7; (Indicates relative length of Axes to object)

var
I,J: Integer; (Looping Variables)
DX,DY,DZ: Integer; (Dummy Variables)
MX,MY,MZ: Real;
Center: Real; (Center of Label)
Leg: Real; (Label variable)

Begin
MX :- Xmax; MY := Ymax; MZ :- Zmax;
If Xmax<((MY+MZ)/3) then Xmax:-(MY+MZ)/3;
If Ymax<((MX+MZ)/3) then Ymax:-(MX+MZ)/3;
If Zmax<((MX+MY)/3) then Zmax:-(MX+MY)/3;

106

[Now generate the right sized cube}
GenerateCube(Round(Xnax) ,Round(Ymax) ,Round(Zmax));

Xmax: - Magnify*Xmax;
Ymax:- Magnify*Ymax; [We want the Axes to go past the object)
Zmax:- Magnify*Zmax;

For 1:- 0 to 16 do (Note: If # of Axis Lines change, Update the
'16']
With WorldLine[I) do begin (Endpointl - Head]

Case I Of (Endpoint2 - Tail}
0 :begin Endpointl:=1; Endpoint2:-O; end; (X-Axis)
1 :begin Endpointl:-2; Endpoint2:0O; end; (Y-Axis)
2 begin Endpointl:=3; Endpoint2:=O; end; (Z-Axis)
3 begin Endpointl:=l; Endpoint2:=4; end; {X-Arrowheadl
4 :begin Endpointl:-l; Endpoint2:=5; end; (X-Arrowhead]
5 :begin Endpointl:-2; Endpoint2:-6; end; (Y-Arrowheadl
6 begin Endpointl:=2; Endpoint2:-7; *end; (Y-Arrowhead}
7 :begin Endpointl:=3; Endpoint2:=8; end; (Z-Arrowhead)
8 :begin Endpointl:=3; Endpoint2:=9; end; (Z-Arrowhead)
9 begin Endpointl:=12; Endpoint2:-l3; end; ('X'1
10 begin Endpointl:-10; Endpoint2:=11; end; ['X'}
11 :begin Endpointl:=16; Endpoint2:-14; end; ('Z')
12 begin Endpointl:=14; Endpoint2:-15; end; J'Z'}
13 begin Endpointl:-15; Endpoint2:=17; end; t'Z']
14 begin Endpointl:=18; Endpoint2:-l9; end; ['Y']
15 begin Endpointl:=19; Endpoint2:=20; end; [j'Y')
16 :begin Endpointl:-l9; Endpoint2:-21; end; ('Y')

end; (Case]
LineColor:=15; Layer:=2; end; (Color & Layer of Axis]

For 1:- 1 to 9 do
With WorldEndpoint(I] .Transform3DEndpointVar- do
Case I Of

1 :begin WorldX:=Round(Xnax); Wor~ldY:-0; WorldZ:=0; end;
tX-Axis]

2 :begin WorldX:=0; WorldY:=0; WorldZ:=Round(Zmax); end;
(Y-Axis}

3 begin WorldX:0O; WorldY:-Round(Ymax); WorldZ:-0; end;
(Z-Axis)

tX-Axis Arrowhead]
4 :begin GenerateArrowHead(0,WorldX,WorldY,WorldZ,DX,DY,DZ);

end;
5 begin GenerateArrowHead(0,DX,DY,DZ,W7orldX,WorldY,WorldZ);

end;

tY-Axis Arrowhead]
6 :begin GenerateArrowHead(l,WorldX,WorldY,WorldZ,DX,DY,DZ);

end;
7 begin GenerateArrowHead(l,DX,DY,DZ,WorldX,WorldY,WorldZ];

end;

(Z-Axis Arrowhead]
8 begin GenerateArrowHead(2,WorldX,WorldY,WorldZ,DX,DY,DZ);

end;
9 :begin GenerateArrowHead(2,DX,DY,DZ,WorldX,WorldY,WorldZ];

end;

end; (Case)

Leg: -l 2*Size*Xnax; Center: =DistX*Xmax;
For I:- 10 to 13 do
With WorldEndpoint(I] .Transform3DEndpointVar do begin

107

Case I of
10 begin WorldX:-Round(Center+Leg); WorldY:-Round(-Leg);

WorldZ:=0; end;
11 :begin WorldX:-Round(Center-Leg); WorldY:-Round(Leg);

WorldZ:-0; end; {'X' Label}
12 :begin WorldX:-Round(Center+Leg); WorldY:=Round(Leg);

WorldZ:-0; end;
13 :begin WorldX:=Round(Center-Leg); WorldY:-Round(-Leg);

WorldZ:-0; end;
end; (Case} end; (With)

Leg: =1. 2*Size*Zmax; Center: =DistY*Ymax;
For 1:- 14 to 17 do
With WorldEndpoint(r] .Transform3DEndpointVar do begin
WorldZ :-O;
Case I of

14 :begin WorldX:=Round(+Leg); WorldY:-Round(Center+Leg); end;
15 :begin WorldX:=Round(-Leg); WorldY:=Round(Center-Leg); end;

('Y' Label}
16 :begin WorldX:=Round(-Leg); WorldY:=Round(Center+Leg); end;
17 :begin WorldX:-Round(+Leg); WorldY:-Round(Center-Leg); end;

end; [Case) end; (With}

Leg:=Size*Ymax; Center:-DistZ*Zmax;
For 1:= 18 to 21 do
With WorldEndpoint(I1 .Transform3DEndpointVar do begin
WorldX: -0;
Case I of

18 :begin WorldY:=Round(+Leg); WorldZ:=Round(Center+Leg); end;
19 :begin WorldY:-0; WorldZ:-Round(Center); end;

('Z' Label)
20 :begin WorldY:=Round(+Leg); WorldZ:=Round(Center-Leg); end;
21 :begin WorldY:=Round(-Leg>; WorldZ:-Round(Center).; end;

end; (Case) end; (Withj

end; (Procedure GenerateAxis)

Procedure GenerateataPoints;

var
I: Integer; (Dummy Variable)
Point,Endpointl,Endpoint2: Integer;
DX,DY,DZ: Integer;

Function GetMaxValue(i,j: Real): Real;

var

k: real;

.begin
If i>=j then k:-i

else k:=j;
GetMaxValue: =k;

end; (Function GetMaxValue}

begin

(First, Generate the points for the actual vectors that will be plotted.
Note: The first (0-161 lines are the Axes and labels

The first [0721) points are for the Axes and labels

108

The next [17-28] lines are for the Cube
The next [22-29] points are for the Cube

Therefore, the actual data points start at Line FirstLine and point
FirstPoint I

with worldEndpoint(O] .Transform3DEndpointVar do begin
WorldX:-0; WorldY:=0; WorldZ:0O; end; (Origin}

For I:- FirstLine to LastLine do
With WorldLine(I) do (Endpointl - Head)
Case I-FirstLine Of (Endpoint2 - Tail}

0 :begin Layer:=8; Point:-FirstPoint; Endpointl:-Point;
Endpoint2:=0; LineColor:=ModelSpaceColor; end; (Model Space, X)

1 :begin Layer:-8; Endpointl:=Point; Endpoint2:=Point+l;
LineColor: =ModelSpaceColor; end; (Arrowheadl

2 :begin Layer:=8; Endpointl:-Point; Endpoint2:-Point+2;
LineColor: =ModelSpaceColor; end; [Arrowhead)

3 :begin Layer:=16; Point:=FirstPoint+3; Endpointl:=Point;
Endpoint2:-0;

LineColor:=ObservationColor; end; (Observed Value, Y}
4 :begin Layer:=16; Endpointl:=Point; Endpoint2:=Pojnt+1;

LineColor: -ObservationColor; end; (Arrowhead}
5 : begin Layer:=16; Endpointl:=Point; Endpoint2:=Point+2;

LineColor: -ObservationColor; end; (Arrowhead)

6 :begin Layer:=32; Point:=FirstPoint+6; Endpointl:=Point;
Endpoint2:-0; LineColor:=ErrorColor; end; (Error Space,eFj

7 begin Layer:-32; Endpointl:=Point; Endpoint2:=Point+l;
LineColor:-ErrorColor; end; (Arrowhead}

8 begin Layer:=32; Endpointl:=Point7; Endpoint2:=Point+2;
LineColor: -ErrorColor; end; (Arrowhead}

9 :begin Layer:=256; Point:=FirstPoint+9; End pointl:=Point;
Endpoint2:-0; LineColor:-YhatColor; end; (Yhat}

10 :begin Layer:=256; Endpointl:-Point; Endpoint2:=Point+l;
LineColor: =YhatColor; end; (Arrowhead}1

11 :begin Layer:=256; Endpointl:=Point; Endpoint2:=Point+2;
LineColor: =YhatColor; end; (Arrowhead}

12 : begin Layer:-32; Point:=FirstPoint+12; Endpointl:=Point;
Endpoint2:-FirstPoint+9; LineColor:=ErrorColor; end;

(Yhat + Error Space~er)}
13 begin Layer:-32; Endpointl:=Point; Endpoifit2:=Point+1;

LineColor: -ErrorColor; end; (Arrowhead}
14 :begin Layer:-32; Endpointl:=Point; Endpoint2:=Point+2;

LineColor: -ErrorColor; end; (Arrowhead)

15 :begin Layer:=4096; Point:=FirstPoint+15; Endpointl:=Point;
Endpoint2:=0; LineColor:=MuColor; end; (Mu,E(Y) I

16 : begin Layer:=4096; Endpointl:=Point; Endpoint2:=Point+l;
LineColor:=MuColor; end; (Arrowhead)

17 : begin Layer:=4096; Endpointl:=Point;- Endpoint2:=Point+2;
LineColor: -MuColor; end; (Arrowhead)

18 begin Layer:-64; Point:-FirstPoint+15+3; Endpointl:-Point;
Endpoint2:=0;

LineColor:-eRColor; end; (eR]
19 :begin Layer:-64; Endpointl:-Point; Endpoint2:-Point+l;

LineColor: -ERColor; end; (Arrowhead)
20 : begin Layer:-64; Endpointl:=Point; Endpoint2:=Point+2;

LineColor:-ERColor; end; (Arrowhead)

109

21 begin Layer:-64; Point:-FirstPoint+15+6; Endpointl:-Point;
Endpoint2:-45; LineColor:-ERColor; end; JeR + E(Y)1

22 : begin Layer:-64; Endpointl:-Point; Endpoint2:-Point+1;
LineColor: -ERColor; end; {Arrowhead)

23 :begin Layer:-64; Endpointl:=Point; Endpoint2:-Point+2;
LineColor: =ERColor; end; (Arrowhead)

end; [Case)

(Calculate Max Size)
Xmax:-O; Ymax:-O; Zniax:-O;
for i:-l to X.cols do Xmax:=GetMaxValue(Xmax,Abs(X.data~l,i]));
for i:-1 to Y.cols do Xmax:-GetMaxValue(Xmax,Abs(Y.data~l,i]));
for i:-l to Error.cols do Xmax:=GetMaxValue(Xmax,Abs(Error.datafl,i]));
for i:-l to Yhat.cols do Xmax:=GetMaxValue(Xxnax,Abs(Yhat.datatl,i]));
for i:-l to Error2.cols do
Xmax:=GetMaxValue(Xmax,Abs(Error2.data~l, i]));

for i:-l to X.cols do Ymax:=GetMaxValue(Ymax,Abs(X.dataf2,i)));
for i:-J. to Y.cols do Ymax:=GetMaxValue(Ymax,Abs(Y.data[2,il));
for i:-l to Error.cols do Ymax:=GetMaxValue(Ymax,Abs(Error.dataE2,il));
for i:-l to Yhat.cols do Ymax:-GetMaxValue(Ymax,Abs(Yhat.dataf2,i]));
for i:-J. to Error2.cols do
Ymax:=GetMaxValue(Ynax,Abs(Error2.data:2,i]));

If X.Rows>2 then begin
for i:=1 to X.cols do Zmax:-GetMaxValue(Zmax,Abs(X.data[3,iJ));
for i:-1 to Y.cols do Zmax:=GetMaxValue(Zmax,Abs(Y.dataE3,i)));
for i:-l to Error.cols do Zmax:-GetMaxValue(Zmax,Abs(Error.data[3,i)));
for i:=1 to Yhat.cols do Zmax:-GetMaxValue(Zmax,Abs(Yhat..data[3,i]));
for i:-1 to Error2.cols do
Zmax:-GetMaxValue(Zinax,Abs(Error2.data[3,i])); end;

If (Xmax>=Ymax) and (Xrnax>=Zmax) Then Scale:=ScaleSize/Xmax;
If (Ymax>=Xnax) and (Ymax>=Zmax) Then Scale:=ScaleSize/Ymax;
If (Zmax>=Ymax) 'and CZmax>-Xmax) Then Scale:=ScaleSize/Zmax;
(Writeln(output, 'Scale=' ,scale,' Xmax=' ,Xmax,' Ymax=' ,Ymax,'
Zmax=' ,Zrnax);

Xniax:=Xniax*Scale; Ymax:-Ymax*Scale; Zmax:-Zmax*Scale; (These track to
plotting maximums}

For I:= FirstPoint to LastPoint do
With WorldEndpoint[II .Transform3DEndpofntVar do
Case I-FirstPo-:nt Of

0 begin WorldX:-Round(Scale*X.data(1,lI); (Locate Point for)
WorldZ:-Round(Scale*X.dataf2,1]); (X, the Model Space)
If X.rows-2 then WorldY:=0 else
WorldY:-RoundCScale*X.data[3,1]); end;

1 :begin GenerateArrowllead(29,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
2*: begin GenerateArrow-ead(29,DX,DY,DZ,WorldX,,WorldY,WorldZ); end;

3 :begin WorldX:-Round(Scale*Y.data[1,l)); (Locate Point for)
WorldZ:=Round(Scale*Y.data(2,1I); (Y, the observed

value)
If Y.rows-2 then WorldY:-0 else
WorldY:-Round(Scale*Y.data(3,1]); end;

4 begin GenerateArrowHead(32,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
5 :begin GenerateArrowl-ead(32,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

6 :begin WorldX:=Round(Scale*Error.data[l1f; (Locate Point
for]

WorldZ:-Round(Scale*Error.data[2,1J); (Error Space)

110

If Error.rows=2 then WorldY:0O else
WorldY:-Round(Scale*Error.data[3,1]); end;

7 begin GenerateArrowHead(35,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
8 begin GenerateArrowHead(35,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

9 begin WorldX:-Round(Scale*Yhat.data[l,l)); (Locate Point for)
WorldZ:-Round(Scale*Yhat.data(2,11); {Yhat}
If Yhat.rows=2 then 4orldY:=0 else
WorldY:=Rouhd(Scale*Yhat.data[3,l]); end;

10 begin GenerateArrowHead(38,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
11 begin GenerateArrcwHead(38,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

12 begin WorldX:-Rcund(Scale*Error2.data[1,lD); (Locate Point
for)

WorldZ:-Round(Scale*Error2.data(2,1]); (Error2}
If Error2.rows-2 then WorldY:-0 else
WorldY:-Round(Scale*Error2.data[3,1]); end;

13 begin GenerateArrowHead(41,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
14 begin GenerateArrowHead(41,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

15 begin WorldX:-Round(Scale*Mu.data[1,11); (Locate Point for)
WorldZ:-Round(Scale*Mu.data2,.2); (Mu, the Model

Space)
If Mu.rows-2 then WorldY:0O else
WorldY:-Round(Scale*Mu.data13,1]); end;

16 :begin
-,rateArrowHead(FirstLine+15,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
.7:begin

GenerateArrowHead(FirstLine+l5,DX,DY,DZ,WorldX,WorldYAorldZ); end;

18 :begin WorldX:-Round(Scale*eR.dataf1,1J); (Locate Point for)
WorldZ:-RoundCScale*eh.data[2,1]); (eR, the observed

value)
If eR.rows-2 then WorldY:=0 else -

WorldY:-Round(Scale*eR.data(3,l)); end;
19 :begin

GenerateArrowHead(FirstLine+15+3,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
20 :begin

GenerateArrowHead(FirstLine+15+3,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

21 begin WorldX:-RoundCScale*eRplusY.data(1,1P); (Locate Point
for)

WorldZ:=RoundCScale*eRplusY.data[2,1]); (eR + Yhat}
If eRplusY.rows=2 then WorldY:=0 else
WorldY:-RoundCScale*eRplusY.data[3,l)); end;

22 begin
GenerateArrowHeadCFirstLine+15+6,WorldXWorldY,WorldZDX,DY,DZ); end;
23 :begin

GenerateArrowffead(FirstLine+15+6,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

end; (Case/With/For)

GenerateAxis;
NumberOfEndpoints:-LastPointi-;
NumberOfLines: -LastLine+1;
end; (Procedure GenerateataPoints}

Procedure GenerateivariatePoints;

var
I: Integer; (Dummy Variable)
Point,Endpointl,Endpoint2: Integer;
DX,DY,DZ: Integer;

Function GetMaxValue(i,j: Real): Real;

var

k: real;

begin
If i>-j then k:-i

else k:-j;
GetMaxValue:-k;

end; (Function GetMaxValuej

begin

(First, Generate the points for the actual vectors that will be plotted.
Note: The first (0-16] lines are the Axes and labels

The first [0-21] points are for the Axes and labels

The next [17-28] lines are for the Cube
The next (22-29] points are for the Cube

Therefore, the actual data points start at Line FirstLine and point
FirstPoint)

With WorldEndpoint(01 .Transform3DEndpointVar do begin
WorldX:0O; WorldY:=0; WorldZ:0O; end; (Origin]

For 1:= FirstLine to LastLine do
With WorldLine[I) do (Endpointl - Head)
Case I-FirstLine Of (Endpoint2 = Tail)

0 :begin Layer:-8; Point:-FirstPoint; Endpointl:=Point;
Endpoint2:=0; LineColor:=ModelSpaceColor; end;

(Model Space, X~l,ifl
1 :begin Layer:-8; Endpointl:-Point; Endpoint2:=Poi~t$-;

LineColor: =ModelSpaceColor; end; [Arrowhead)
2 :begin Layer:-8; Endpointl:=Point; Endpoint2:-Pointi2;

LineColor: =ModelSpaceColor; end; (Arrowhead}

3 :begin Layer:=1024; Point:=FirstPointf3; Endpointl:-Point;
Endpoint2 :=0;

LineColor:=ModelSpaceColor; end; [X[2,i]}
4 :begin Layer:=1024; Endpointl:=Point; Endpoint2:-Point+l;

LineColor: =ModelSpaceColor; end; (Arrowhead)
5 : begin Layer:=1024; Endpointl:=Point; Endpoint2:=Point+2;

LineColor: =ModelSpaceColor; end; (Arrowhead}

6begin Layer:=16; Point:=FirstPoint+6; Endpointl:=Point;
Endpoint2:=0; LineColor:=ObservationColor; end; (Yfull)

7 : begin Layer:-16; Endpointl:=Point; Endpoint2:=Point+1;
LineColor: -ObservationColor; end; (Arrowhead)

8 : begin Layer:=16; Endpointl:=Point; Endpoint2:=Point+2;
LineColor:=ObservationColor; end; (Arrowhead)

9 : begin Layer:=2048; Point:=FirstPoint+9; Endpointl:=Point;
Endpoint2:-0; LineColor:=Observation2Color; end; (Yreduced)

10 : begin Layer:-2048; Endpointl:-Point; Endpoint2:-Point+1;
LineColor:-Observation2Color; end; (Arrowhead)

11 : begin Layer:=2048; Endpointl:=Point; Endpoint2:-Point+2;
LineColor:-Observation2Color; end; (Arrowhead)

12 : begin Layer:-32; Point:-FirstPoint+12; Endpointl:=Point;
Endpoint2:-0; LineColor:=ErrorColor; end; (eF)

112

13 begin Layer:-32; Endpointl:-Point! Endpoint2:-Point+1;
LineColor: -ErrorColor; end; (Arrowhead)I

14 :begin Layer:-32; Endpointl:=Point; Endpoint2:-Point+2;
LineColor:-ErrorColor; end; j xrowhead}

15 :begin Layer:=64; Point:-FirstPoint+15; Endpointl:-Point;
Endpoint2:-0; LineColor:=ErrReducedColor; end; (eR]

16 : begin Layer:-64; Endpointl:-Point; Endpoint2:=Point+1;
LineColor: -ErrReducedColor; end; [Arrowhead]

17 :begin Layer:-64; Endpointl:-Point; Endpoint2:-Point+2;
LineColor: -ErrReducedColor; end; (Arrowhead]

18 1:begin Layer:-256; Point:-FirstPoint+18; Endpointl:-Point;
Endpoint2:-0; LineColor:-YhatRedColor; end; (YhatRed}

19 : begin Layer:-256; Endpointl:=Point; Endpoint2:-Point+l;
LineColor: -YhatRedColor; end; (Arrowhead)

20 : begin Layer:=256; Endpointl:=Point; Endpoint2:-Point+2;
LineColor: -YhatRedColor; end; (Arrowhead}

21 :begin Layer:-512; Point:=FirstPoint+21; Endpointl:=Point;
Endpoint2:-O; LineColor:-YhatFullColor; end; (YhatFull]

22 :begin Layer:=512; Endpointl:-Point; Endpoint2:-Point+l;
LineColor: -YhatFullColor; end; (Arrowhead)

23 :begin Layer:=512; Endpointl:=Point; Endpoint2:=Point+2;
LineColor: -YhatFullColor; end; (Arrowhead]

24 :begin Layer:-64; Point:=FirstPoint+24; Endpointl:=Point;
Endpoint2:-48; LineColor:-ErrReducedColor; end; (YhatRed+eRl

25 :begin Layer:-64; Endpointl:-Point; Endpoint2:-Point+l;
LineColor: -ErrReducedColor; end; [Arrowhead)

26 :begin Layer:-64; Endpointl:=Point; Endpoint2:-Point+2;
LineColor:-ErrReducedColor; end; (Arrowhead)

27 begin Layer:=32; Point:-FirstPoint4+27; Endpointl:=Point;
Endpoint2:-51; LineColor:=ErrorColor; end; (YhatFull+eF]

28 :begin Layer:-32;-Endpointl:=Point; Endpoint2:-Point+l;
LineColor:-ErrorColor; end; (Arrowhead)

29 :begin Layer:=32; Endpoint1:-Point; Endpoint2:-Point+2;
LineColor: -ErrorColor; end; (Arrowhead]

end; (Case}

(Calculate Max Size]
Xniax:-0; Ymax:-0; Zmax:0O;
for i:-l to X.cols do Xmax:=GetMaxValueCXmax,Abs(X.data~l,l]]];
for i:-1 to Y.cols do Xmax:=GetMaxValue(Xmax,Abs(Y.datatl,ifl);
for i:=1 to Yred.cols do Xmax:-GetMaxValue(Xmax,Abs(Yred.data[1,i]));
for i:-l to eF.cols do Xmax:=GetMaxValue(xmax,Abs(eF.data(1,i]));
for i:-1 to eR.cols do Xmax:-Get~ax'/aiue(Xmax,Abs(eR.datafl,i]));

for i:-1 to X.cols.do Ymax:-GetMaxValue(Ymax,Abs(X.data[2,iI));
for i:=l to Y.cols do Yrax:-GetMaxtValue(Ymax,Abs(Y.data[2,i);
for i:-1 to Yred.cols do Ymax:-GetMaxValue(Yrnax,Abs(Yred.data[2,i])];
for i:-1 to eF.cols do Ymax:-GetMaxValue(Ymax,Abs(eF.data[2,i]]];

*for i:-l to eR.cols do Ymax:-GetMaxValue(Ymax,Abs(eR.data(2,i])];

If X.Rows>2 then begin
for i:-l to X.cols do Zmax:-Get!4axVaiue(Zmax,Abs(X.data(3,iJ));

*for i:-l to Y.cols do Zmax:-GetMaxValue(Zmax,Abs(Y.data[3,i);
for i:-l to Yred.cols do Zmax:-GetMaxValue(Zmax,AbsCYred.data[3,i]]];
for i:-1 to eF.cols do Zmax:-GetMaxValue(ZmaxAbs(eF.data(3,iJ]];
for i:-1 to eR.cols do Zmax:-GetMaxValue(Zmax,Abs~eR.data[3,i]]); end;

If (Xmax>-Ymax) and (Xmax>-Zmax) Then Scale:-ScaleSize/Xmax;

113

If (Ymax>-Xmax) and (Ymax>-Zmax) Then Scale:-ScaleSize/Ymax;
If (Zmax>-Ymax) and (Zmax>-Xmax) Then Scale:-ScaleSize/Zmax;
fWriteln(output, 'Scale-' ,scale,' Xmax-' ,Xmax,' Ymax-' ,Ymax,'
Zmax-' ,Zmax);

Xmax:-Xmax*Scale; Ymax:=Ymax*Scale; Zmax:-Zmax*Scale; (These track to
plotting maximums}

For I:- FirstPoint to LastPoint do
With WorldEndpoint (I] .Transform3DEndpointVar do
Case I-FirstPoint Of

0 :begin WorldX:=Round(Scale*X.data[l,l]); (Locate Point for]
WorldZ:=Round(Scale*X.data[2,l)); MX[,i], the Reduced

Space)
.WorldY:=Round(Scale*Xdata[3,ll); end;

1 :begin
GenerateArrowHead(FirstLine+0,WorldX,WorldY,WorldZ,DX,DY,DZ); end;

2 :begin
GenerateArrowHead(FirstLine+O,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

3 :begin WorldX:=Round(Scale*X.data[1,2)); (Locate Point for)
WorldZ:=Round(Scale*X.data(2,2)); (XE2,i], the 'Full'

Space}
WorldY:=Round(Scale*X.datat3,2]); end;

4 :begin
GenerateArrowHead(FirstLine+3 ,WorldX,WorldY,WorldZ,DX,DY,DZ); end;

5 :begin
GenerateArrowHead(FirstLine+3,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

6 begin WorldX:-Round(Scale*Y.data(1,1)); (Locate Point for)
WorldZ:-Round(Scale*Y.data[2,1]); (Yfull)
WorldY:=Round(Scale*Y.data[3,l]); end;

7 begin
GenerateArrowHead(FirstLine+6,WorldX,WorldY,WorldZ,DX,DY,DZ); end;,

8 :begin
GenerateArrowaeadCFirstLine+6,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

9 begin WorldX:=Round(Scale*Yred.data(1,11); (Locate Point
for]

WorldZ:=Round(Scale*Yred.data(2,1J); (Yreduced)
WorldY:=Round(Scale*Yred.data[3,1J); end;

10 begin
GenerateArrowHead(FirstLine+9,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
11 :begin

GenerateArrowHeadCFirstLine+9,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

12 begin WorldX:-Round(Scale*eF.data(l,i]); (Locate Point for)
WorldZ:-Round(Scale*eF.data(2,l]); (Error Space, Full)
WorldY:=Round(Scale*eF.data(3,1l); end;

13 begin
GenerateArrowflead(FirstLine4-12,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
14 :begin

GenerateArrowHead(FirstLine+12,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

15 :begin WorldX:=Round(Scale*eR.datatl,l]); (Locate Point for)
WorldZ:-Round(Scale*eR.data[2,l]); (Error Space,

Reduced)
WorldY:-Round(Scale*eR.data(3,1I); end;

16 :begin
GenerateArrowHead(FirstLine+15,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
17 :begin

GenerateArrowHead(Fir~tLihe+15,DX,DY,DZ,WorldX..WorldY,WorldZ); end;

1 14

18 begin WorldX:-Round(Scale*YhatRed.data[1,1]); {Locate Point
for)

WorldZ :=Round(Scale*YhatRed.data[2,1]); (Yhateduced)
WorldY:-Round(Scale*YhatRed.data[3,1]); end;

19 begin
GenerateArrowHead(FirstLine+18,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
20 :begin

GenerateArrowHead(FirstLine+18,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

21 begin WorldX:=Round(Scale*YhatFull.data[1,11); (Locate Point
for)

WorldZ:=-Round(Scale*YhatFull.data[2,1]); {YhatFull)
WorldY:-Round(Scale*YhatFull.data[3,11); end;

22 begin
GenerateArrowHead(FirstLine+21,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
23 :begin

GenerateArrowHead(FirstLine+21,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

24 :begin WorldX:-Round(Scale*YhatRedeR.data(1,1]); (Locate Point
for}

WorldZ :-Round(Scale*YhatRedeR.dataE2,1]); (Yhateduced
+ eRI

WorldY:=Round(Scale*YhatRedeR.data[3,1]); end;
25 :begin

GenerateArrowHead(FirstLine+24,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
26 :begin

GenerateArrowHead(FirstLine+24,DX,DY,DZ,WorldX,orldY,WorldZ); end;

27 :begin WorldX:-Round(Scale*YhatFu11eF.data[1,1]); (Locate
Point Earl

WorldZ:-=Round(Scale*YhatFu11eF.dataI2,1J); (YhatFull +
eF}

WorldY:=Round(Scale*YhatFulleF.dataV3,1)); end;
28 :begin

GenerateArrowllead(FirstLine+27,WorldX,WorldY,WorldZ,DX,DY,DZ); end;
29 :begin

GenerateArrowHead(FirstLine+27,DX,DY,DZ,WorldX,WorldY,WorldZ); end;

end; (Case/With/For)

GenerateAxis;
NumberOf Endpoints :=LastPoint+l;
NumberOfLines:=LastLine+1;
end; (Procedure GenerateBivariatePoints)

end.

115

unit Support3;

interface

uses Crt,Dos,MathMat,GraphMat,TGlobals,Support,Support2,Mole,Graph;

Procedure MeanRoutine;

Procedure LtestRoutine;

Procedure BivariateRoutine;

Procedure ExitRoutine;

Procedure LeaveProgram;

implementation

Procedure MeanRoutine;

var
i,j: Integer;
SampNum: Char;
msg: String;
char_-H,charW:Integer; (Heigth & Width of char in pixels}
OldStyle: TextSettingsType;
BetaX,rowl,row2,row3,row4,row5: Integer; fist row on which the

data is displayed)
SSE,SSR,SSTO,Sigma: Real;
SSES ,SSRS, SSTOS: String;
SSEP,SSRP: Integer;
ErrorT,SSEM,SSRM,YhatT: matx;

Main Prograp

(Sample mean Section)
begin

char_-H:=TextHeight('H');
char_-W:=TextWidth('H');
rowl:=4*charH;
If FirstRunFlEag Then Begin

SetBkColor(BackgroundKolor);
SetTextJustify(l,l);
OutTextXY (GetMaxX div 2,charH,'Ordinary Least Squares Regression

for the Sample Mean and Variance');

repeat
LastLine:=43; LastPoint:=44; (These show which vectors will be

displayed)
Msg:-'Do you want the sample size to be 2 or 3?';
OutTextXY (GetMaxX div 2,Round(5*l.2*charH),Msg);
SampNum:- Readkey;
OutTextXY

(Round(l.O5*(GetMaxX+TextWidth(Msg))/2),Round(5*l.2*charH),SampNum);
OutTextXY CGetMaxX div 2,Round(6*l.2*char_H),'

case SampNum of
'2' begin Y.rows:-2; Y.cols:=l; X.rows:-2; X.cols:-l; end;
'3' begin Y.rows:=3; Y.cols:1l; X.rows:-3; X.cols:=l; end;
else OutTextXY (GetMaxX div 2,Round(6*l.2*charH),'Sorry,

only a sample size of 2 or 3 are demonstrated.');
end;

until CSampNum = '2') or (SampNum - '3');

116

SetFillStyle(l,BackgroundKolor); (Solid,BackgroundKolor)
Bar(O,Round(4 .l*char_-H) ,GetMaxX,GetMaxY); (Clear the Screen)
Mat_-Zero(Y); Mat_Zero(X);
For i :- 1. to X.rows do X.data~i,l] :-1;
GetXFlag: -True; GetYFlag:-True;
FirstRunFlag :=False;

end;
(*************Input Routines *********

If GetYFlag then
Repeat

GMatlnput(Y,4,1, 'Y' ,15,rowl,ObservationColor,BackgroundKolor,MatForegrou
nd); (***** Get Y ***

GetYFlag: -False;
Until (abs(Y.data~l,lI) + abs(Y.data[2,1]) + abs(Y.data[Y.rows,l]))

> 0;

If GetXFlag then begin

GMatlnput(X,4 ,1, 'X' ,100,rcwl,ModelSpaceColor,BackgroundKolor,MatForegrou
nd); {***Get X

GetXFlag :=False; end;
~~~ ~~Input Routines **********

MathRoutines;

(Now that all the calculations are done, we must generate a list
of points and lines to send to Acroole for plotting.)

GenerateataPoints;

SetActivePage ( );
SetViewPort( 0, ,GetMaxX,GetMaxY, True);
SetTextJustify( 1,2);
SetColor(15); [White)
OutTextXY (GetMaxX div 2,charH,'Ordinary Least Squares Regression

for the Sample Mean and Variance')

GMatWrite(Y, 4,., 'Y' ,15,row2,ObservationColor,BackgroundKolor,MatForegrou
nd);

GMatWrite(X,4,1, 'X' ,100,row2,ModelSpaceColor,Background~olor,MatForegrou
nd);

For i:- 1 downto 0 do begin (Write to Both Buffers)
SetActivePage (i);
GMatWrite(M,4,1, 'K',205,rowl,15,BackgroundKolor,MatForeground);
If M.rows-3 then begin
OutTextXY(282,rowl-7,'X(X''X] X''');

OutTextXY(297,row2.-12,'-1'); end
else begin
OutTextXY(257,rowl-7,'X[X' 'X] X'' ');

OutTextXY(272,rowl-12,'-l'); end;

BetaX:-3 80;

GMatWrite(Betahat,4,1,#225,BetaX,rowl,15,BackgroundKolor,MatForeground);
SetColor(15); OutTextXY(BetaX-4,rowl+5,1A1);

SetColor(LabelColor); OutTextXY(BetaX+25,rowl-7,' [X''X] X''Y');
OutTextXY(BetaX+31,rowl-12, '-1');

row2:=11*charH;
OutTextXY(2.20,row2, 'Dimensions');
SetTextJustify(0,1);

117



OutTextXY(1,round(row2+1.5*charH),'Sample Space - n -

Str(X.rows,msg); OutTextXYC225,round(row2+l.5*char_-H) ,msg);
QutTextXY(1,round(row2+2.7*charH),'Estimation Space = p -

Str(X.cols,msg); OutTextXY(225,round(row2+2.7*charH),msg);
OutTextXY(l,round(row2+3.9*charH),'Error Space - n - p

Str(X.rows-X~cals,msg); OutTextXY(225,round(row2+3.9*charH),msg);
SetTextJustify(l,1);

GMatWrite(Yhat,4, 1, 'Y',300,row2,YhatColor,BackgroundKolor,MatForeground)
SetColor(15);

If Y.rows-3 then begin
OutTextXY(297,row2+12,f A); SetColorCLabelColor);

OutTextXY(337,row2-7, 'MY=X'#225);
OutTextXY(353,ow2-.2, tAf); end

else begin
OutTextXY(296,row2+8, A,); SetColor(LabelColor);

OutTextXY(338,row2-8, 'MY=X'#225);
OutTextXY(354,row2-l3,1A1); end;

SetColor(LabelColor);
OutTextXY(335,row2+48,'Projection of Y onto');
OutTextXY(335,row2+56, 'the Estimation Space');

GMatWrite(Error,4,l, 'Error' ,510,row2,ErrorColor,BackgroundKolor,MatForeg
round);

SetColor(LabelColor);
OutTextXY(557,row2-7,'(I-M)Y=Y-Y'); OutTextXY(593,row2-12,tA1);
OutTextXY(540,row2+48, 'Projection of X( onto');
OutTextXY(540,row2+56, 'the Error Space');

MatTranspose(Error,ErrorT);
MatRult (Error,ErrorT, SSEM);
SSE: =Sqrt( SSEM .Data 11, 11);
MatTranspose(Yhat,YhatT);
Mat~ult(Yhat,YhatT,SSRM);
SSR:-Sqrt(SSRM.DataJ.,l]);
SSTO: 55R+SSE;
SSEP:-Round(lOO*SSE/SSTO); (Percent SSE)
SSRP:-Round(1OO*SSR/SSTO); (Percent SSR)
Sigma:-SSE/(X.rows-X.cols);

SetFillStyle(l,GetBkColor); Bar(584,rowl+l,639,rowl+1l); (Erase
old Variance)

Str(Sigma:4:l,msg); If Sigma>99 Then Str(Sigma:4:O,msg);
OutTextXY(605,rowl+7,msg);
OutTextXYC500,rowl, 'SSE');
SetLineStyle(O,O, 1);

LineC487,rowl+6,513,rowl+6);
OutTextXY(500,row1l1, 'n-p');
OutTextXY(550,rowl+7,'- '#229' (Y) -');
OutTextXY(542,rowl+3. '2');
OutTextXY(534,rowl+3, IA');
row3:=3l*charH;
chart(510,row3-80,630,row3, SSEP/100, ErrorColor, 'SSE');
chart(370,row3-80,500,row3, SSRP/lOO, YhatColor, 'SSR');

row4:-35*char h;

11[8



OutTextXY(505,row4,'Y Y Error');
OutTextXYC493,row4-5,,AI);
OutText.XY(518,row4-5,'2 2 2');
OutTextXY(466,row4,'-'); OutTextXY(520,row4,'+');

Line(487,row'4+3,487,row4-5); [Yhat}
Line(500,row4+3,500,row4-5);

Line(444,row4+3,444,row4-5); (Y) [Absolute Value
Signs)

Line(431,row4+3,43l,row4-5);

Line(580,row4+3,580,row4-5); (Error}
Line(535,row4+3,535,row4-5);

Str(SSR:4:l,SSRS); Str(SSE:4:l,SSES); Str(SSTO:4:l,SSTOS);
If SSR>99 Then Str(SSR:4:0,SSRS);
If SSE>99 Then Str(SSR:4:O,SSES);
If SSTO>99 Then Str(SSR:4:O,SSTOS);

OutTextXY(495,row4+16, 'SSTO SSR SSE');
OutTextXY(466,row4+6,=-'); OutTextXY(520,row4+16,'+')

SetFillStyle(l,GetBkColor); Bar(415,row4+23,575,row4+33); (Erase
old Stats}

OutTextXY(4 38, row4+29,SSTOS);
OutTextXY(485,row4+29,SSRS); (Display values for these

statistics)
OutTextXY(550,row4+29,SSES);

SetFillStyle(l,LabelColor);
Bar(430,335,580,345); Setolor(O);
OutTextXY(505,340,'Press Fl for Help');
SetColor(15);

SetLineStyle(2,O,l); (Block around spin area)
MoveTo(round(Xlo*GetMaxX) ,round( (1-Yhi)*Get~axY) -1);
LineTo(round(Xhi*GetMaxX)+2,round( (l-Yhi)*GetMaXY) -1);
LineTo(round(Xhi*Get~axX)+2,round( (1-Ylo)*GetMaxY));

Line~round(Xhi*GetMaxX)+2,roundC(1-Yhi)*GetMaxY)-l,GetMaxX,rou'nd((l-Yhi)
*GetMaxY) -1);

end;
end; (Procedure MeanRoutine)

Procedure LtestRoutine;

var
i,j: Integer;
Samp'um: Char;
Output: Text;
msg: String;
charH,charW:Integer; (Heigth & Width of char in pixels)
OldStiyle: TextSettingsType;
BetaX,rowla,rowlb,rowlc,row2a,row2b,row3,row3h,row4,row5: Integer;

(1st row on which the data is displayed)
SSE,SSR,Sigma: Real;
SSESSSRS,SSTOS: String;
SSEP,SSRP: Integer;
ErrorT,SSEM,SSRM,YhatT: matx;

Main Program

1 19



begin
charH:-TextHeight( 'H');
charW:-TextWidth('H');
rowla: -round( 8. 5*char H);
rowlb:-4*char H;
rowic:-.4*char-H;
SetTextJustify(l,1);
OutTextXY (GetMaxX div 2,charH,'The General Linear Test for the

Population Mean');

If FirstRun~lag Then Begin
repeat

Msg:-'Do you want the sample size to be 2 or 3?';
OutTextXY CGetMaxX div 2,Round(5*l.2*charH) ,Msg);
SampNum: - Readkey;
OutTextXY

(Round(l.05*(GetMaxX+TextWidth(Msg))/2),Round(5*1.2*charH),SampNum);
OutTextXY (GetMaxX div 2,Round(6*l.2*charH),'

Case SampNum of
'2' begin Y.rows:=2; Y.cols:-l; X.rows:-2; X.cols:=l;

Mu .rows:-2;
LastLine:=52; LastPoint:=54; end;

'3' begin Y.rows:=3; Y.cols:1l; X.rows:-3; X.cols:-l;
Mu .rows:-3;

LastLine:=52; LastPoint:-54; end;
else OutTextXY (GetMaxX div 2,Round(6*l.2*charH),'Sorry,

only a sample size of 2 or 3 are demonstrated.');
end;
Alpha.rows:=l; Alpha.cols:1l; Mu.cols:-l; MuO.rows:-l; MuOcols:1l

until (SampNum - '2') or (SampNum '3');

SetFillStyle(l,EackgroundKolor); . Solid,Blue Background)
Bar(O,Roun?(4 .l*char H) ,GetMaxX,GetMaxY); [Clear the Screen)
Mat_Zero(Y); Mat_Zero(X); MatZero(Mu); MatZero(MuO);

Alpha.data[l,l] :=O.05;
For i := 1 to X.rows do X.data(i,l] - 1;
GetXFlag :=True; GetYFlag.:=True; GetMuFlag:-True; GetilphaFlag: -True;

OutTextXY(50, rowlc-J.O,'Ho: C'#230' - #230'o');
FirstRunFlag:- False;

end;

(*************Input Routines. ***************.**)
If GetMuFlag then begin

GMatlnputCMuO,4,l,#230'o' ,15,rowlc,MuColor,BackgroundKolor,Matroreground
(***** Get MuO ***

GetMuFlag:-False;
For I:=l to Mu.rows do Mu.data~i,1]:=MuO.datafl,l]; end;

If GetAlphaFlag then begin

GMatlnput(Alpha,4,2, *224,100,rowlc,AlphaColor,BackgroundKolor,MatForegro
und); (*** Get Alpha

GetAlphaFlag: -False; end;

If GetYFlag then
Repeat

GMatlnput (Y,4,1, 'Y',15, rowla,ObservationColor, EackgroundKolor, Matoregro
und); (*** Get Y ~~~

GetY~lag: -False;

120



Until (abs(Y.datatl,11) + abs(Y.data[2,1]) + abs(Y.data[Y.rows,l]))

> 0;

If GetXFlag then begin

GMatlnput(X, 4,1, 'X' , 00,rowla,ModelSpaceColor,BackgroundKolor,MatForegro
und); [***** Get X ~*~

GetXFlag: -False; end;
~********~***~~*End of Input Routines **********

MathRoutines;
RegressionMath; (More Calculations)

(Now that all the calculations are done, we must generate a list
of points and lines to send to AcioMole for plotting.}

GenerateataPoints;

SetActive~age (1);
SetViewPort (0,0, GetMaxX ,GetMaxY, True);

SetColor(lS); (Whitel
OutTextXY CGetMaxX div 2,charH,'The General Linear Test for the

Population Mean');
OutTextXY(50, rowlc-10,'Ho: C'#230' -=#30o)

GMatWrite(MuO,4,l, #230'o' ,15,rowlc,MuColor,Backgrou-ndKolor,MatForeground

GMatWrite(Alpha,4, 2, #224, l00,rowlc,AlphaColor,BackgroundKolor,MatForegro
und);

GMatWrite(Y, 4,1, 'Y' ,l5,rowla,ObservationColor,BackgroundKolor,MatForegro
und);

GMatWriteCX, 4,1, 'X' ,l00, rowla,ModelSpaceColor,BackgroundKolor,MatForegro
und);

For i:= 1 downto. 0 do begin (Write to Both Buffers}
SetActivePage (i);
GMatWrite(M,4,1,'M',205,rowlb,15,BackgroundKolor,MatForeground);
If M.rows-3 then begin
OutTextXY(282,rowlb-7,'X(X''XJ X''');

OutTextXY(297,rowlb-12,'-l'); end
else begin
OutTextXY(257,rowlb-7,'X(X''X] X''');

OutTextXY(272,rowlb-12,'-l'); end;

BetaX: 3 80;

GMatWrite(Betahat,4,1,#225,BetaXfrowlb,15,BackgroundKolor,MatForeground)
*SetColor(15); OutTextXY(BetaX-4,rowlb+5, ,A,);

SetColorcLabelColor); OutTextXY(betaX+25,rowlb-7,'EX''X] X''Y');
OutTextXY(BetaX+3l,rowlb-12, '-1');

row2a:-round(14.5*charH);
OutTextXY(120,row2a, 'Dimensions');
SetTextJustify(0,l);
OutTextXY(l,round~row2a+1.5*charH),'Sanple Space n -

Str(X.rows,msg); OutTextXY(225,round(row2a+1.5*char_-H),msg);
OutTextXY(1,round(row2a+2.7*charH),'Estimation Space - p =

Str(X.cols,msg); OutTextXY(225,round(row2a+2.7*char-H),msg);

121



OutTextXY(1,round(row2a+3.9*charUH),'Error Space -n - p

Str(X.rows-X.cols,msg); OutTextXY(225,round(row2a+3.9*charH),msg);
SetTextJustify(1, 1);

row2b:=11*charH;

GMatWrite(Mu,4,1, 'E(Y) ',225,row2b,MuColor,BackgroundKolor,MatForeground)

GMatWrite(eR,4,1, 'e.R , 325,row2b,eRColor,BackgroundKolor,MatForeground);
SetColor(LabelColor);
OutTextXY(367,row2b-7, 'Y-E(Y)');

GMatWrite(Yhat,4, 1, 'Y',425,row2b,YhatColor,BackgroundKolor,MatForeground

SetColor(LabelColor);
OutTextXY(462,row2b-7, 'MY-X' #225);
OutTextXY(478,row2b-12, ,A,);
SetColorr.15);
If Y.rows-3 then OutTextXY(422,row2b+12, ,Al)

else OutTextXY(422,row2b+8, ,A,);

GMatWrite(eF, 4,1, 'e. F',525,row2b,ErrorColor,BackgroundKolor,MatForegroun
d);

SetColor(LabelColor);
OutTextXY(569,row2b-7, 'Y-Y');
OutTextXY(569,row2b-13,' A,);

{***Bar Graphs **1
row3:=31.*charH;
row3h: =80;
SetiliStyle C 1,GetBkColor);
Bar(round(Xlo*GetMaxX)+1, round( C1-Yhi) *GetMaxY) ,GetMaxX,GetMaxY);
BarGraphs;

SetFillStyle(l,LabelColor);
Bar(430,335,580,345); SetColor(0);
OutTextXY(505,340,'Press Fl for Help');
SetColor(15);

Set-LineStyle(2,0,1); (Block around spin area)
MoveTo(round(Xlo*GetMaxX) ,round( C1-Yhi)*GetMaxY) -1);
LineTo(round(Xhi*GetMaxX)+2,round( (l-Yhi)*GetMaxY) -1);
LineTo~round(Xhi*GetMaxX)+f2,round( (l-Ylo)*GetMaxY));

Line(round(Xhi*GetMaxX)+2,round((l-Yhi)*GetMaxY)-1,GetMaxX,round((l-Yhi)
*GetMaxY) -1);

end;
end; (Procdure LtestRoutine)

Procedure Bivariateoutine;

var
i,j: Integer;
msg: String;
charH,char W:Integer; [Heigth & Width of char in pixels)
BetaX,rowl,row2,row2a,row2b,row3,row3h~row4,row5: Integer;
SSE,SSR: Real;
SSES,SSRS,SSTOS: String;

122



SSEP,SSRP: Integer;
ErrorT, SSEM, SSRM, YhatT: matx;

begin
char_-H:-TextHeight( 'H');
charW:-TextWidth('H');
rowl:-round(4.5*cha- H);
row2:-rowl + 44;

Y.rows:'=3; Y.cols:-l;
Yred.rows:=3; Yred.cols:-1;
X.rows:-3; X.cols:-2;
Xred.rows:-3; Xred.cols:-l;
Betal.rows:=1; Betal.cols:-1;
Alpha.rows:-l; Alpha.cols:=l;

LastLine:-58; LastPoint:=59;

If FirstRunFJlag Then Begin
Mat_Zero(Y); MatZero(X); MatZero(Yred); Mat_Zero(Xred);

MatZero(Betal); Alpha.data(l,l]D=O.05;,
For i 1 to X.rows do begin X.datali,l] := 1; Xred.data~i,1] 1;

end;
GetXFlag:=True; GetYFlag:=True; GetBetal~lag:=True;

GetilphaFlag:-True;
SetTextJustify(l,l);
OutTextXY (GetMaxX div 2,charH,'Ordinary Linear Simple Regression

with One Predictor Variable');
QutTextXY(1 2,rowl+97, 'Ho:');
FirstRunFlag :=False;

end;

~~~ ~~Input Routines *********
If GetetaiFlag then begin
GMatlnput(Betal,4, 1, #2251O

',44,rowl+88,15,BackgroundKolor,MatForeground); Get Betal

GetetaiFlag:=FaLse;, end;

If GetAlphaFlag then begin

GMatlnput(Alpha,4,2,#224,150,rowl+88,15,BackgroundKolor,MatForeground);
(***** Get Beta. *****)
GetAlphaFlag :=False; end;

If GetYFlag then
Repeat

GMatlnput(Y,4,l, 'Y.Full',33,rowl,ObservationColor,BackgroundKolor,MatFor
eground); (***** Get Y ***

GetYFlag:=False;
Until (abs(Y.data~l,1]) + absCY.data!12,1]) + abs(Y.data(Y.rows,l]))

> 0;

If GetXFlag then begin
If X.cols = 1 Then

GMatlnput(X,4,l, 'X.Full' ,150,rowl,ModelSpaceColor,BackgroundKolor,MatFor
eground) (***Get X ~

else
Repeat

GMatlnput(X,4,l,'X.Full',150,rowlModelSpaceColor,BackgroundKolor,MatFor
eground) Get X ***

123

Until (abs(X.data[l,2]) + abs(X.data(2,2]) + abs(X.dataf3,2])) >
0;

GetXFlag: -False; end;

(********** End of Input Routines **********

Bivariateath; (Calculations)

(Now that all the calculations are done, we must generate a list
of points and lines to send to Acroole for plotting.)

GenerateivariatePoints;

SetActivePage (1);
SetViewPort(O, 0,GetMaxX,GetMaxYTrue);
SetTextJustify(l,l);
SetColor(15); (White}
OutTextXY (GetMaxX div 2,char_11H,'Ordinary Linear Simple Regression

with One Predictor Variable');

OutTextXY(12,rowl+97, 'Ro:');
GMatWrite(Betal,4,l..#225/j0
,44,rowl+88,15,BackgroundKolor,MatForeground); (***Get Betal

GMatWrite(Alpha, 4, 2,#224, 150,rowl+88, 15,BackgroundKolor,MatForeground);
{***** Get Betal *****]

GMatWrite (Y,4,l, 'Y.Full',33,rowlObservationColor,BackgroundKolor,MatFor
eground);

GMatWrite(X,4,l, 'X.Full' ,l50,rowlModelSpaceColor,BackgroundKolor,MatFor
eground);

For i:= 1 downto 0 do begin (Write to Both Buffersl
SetActivePage(i);

GMatWrite(Yred,4,1, 'Y.Red
,33,row2,Observation2Color,BackgroundKolor,MatForeground);

GMatWrite(Xred,4,l, 'X.Red
,150,row2,ModelSpaceColor,BackgroundKolor,MatForeground);

BetaX: 315;

GMatWrite(BhatFull,4,l,#225' .Full' ,BetaX,rowl,15,BackgroundKolor,MatFore
ground);

SetColor(15); OutTextXY(BetaX-2l,rowl+9,IA1);
SetColor(LabelColor); OutTextXY(BetaX+29,rowl-l0,'EX''X] X''Y');

OutTextXY(BetaX+35,rowl-15,'-l');

BetaX: -440;

GMatWrite(YhatFull,4,l, 'Y.Full' ,BetaX,rowJ.,YhatFullColor,BackgroundKolor
,MatForeground);

SetColor(15); OutTextXY(BetaX-20,rowl+12, fAt);
SetColor(LabelColor); OutTextXY(BetaX+60,rowl-10, 'X'#225);

OutTextXY(BetaX+60,rowl-14,' At);

GMatWrite(eF,4,1l e.F',560,rowl,ErrorColor,BackgroundKolor,MatForeground

SetColor(LabelColor); OutTextXY(604,rowl-10,'Y - Y');
OutTextXY(604,rowl-15,' At);

1 24

(******Next Row *****

BetaX:-3 15;
GMatWrite(BhatRed,4, 1, *225' .Red

',BetaX,row2,15,BackgroundKolor,MatForeground);
SetColor(15); OutTextXY(BetaX-21,row2+5, iA,);

BetaX:-440;
GMatWrite(YhatRed,4,1, 'Y.Red

',BetaX,row2,YhatRedColor,BackgroundKolor,MatForeground);
SetColor(15); OutTextXY(BetaX-20,row2+12, ,A,);

GMatWrite(eR,4,1, 'e. R',560,row2,ErrReducedColor,BackgroundKolor,MatForeg
round);

row2a: -round(14.5*harH);
OutTextXY(355',row2a, 'Dimensions');
SetTextiustify(O,1);
OutTextXY(235,round(row2a+1.5*char_H),'Sample Space n =

Str(X.rows,msg); OutTextXY(460,round(row2a+1.5*char_-H),msg);
OutTextXYC235,round(row2a+2.7*charH),'Estimation Space = p =

Str(X.cols,msg); OutTextXY(460,round(row2a+2.7*char_-H),msg);
OutTextXY(235,round(row2a+3.9*char_H),'Error Space =n - p -

Str(X.rows-X.cols,msg); OutTextXY(460,round(row2a+3.9*char-H),msg);
SetTextJustify(l,l);

(***** Bar Graphs***1
row3:=31*charH;
row3h:=80;
SetFillStyle(l,GetBkColor);-
Bar(round.(Xlo*GetMaxX)+l,roundC (1-Yi) *GetMaxY) ,GetMaxX,GetMaxY);
BarGraphs;

.SetFillStyle (I, LabelColor);
Bar(430,335,580,345); Set2',,)or(O);
OutTextXY(505,340,'Press Y-. for Help');
SetolorC 15);

SetLineStyle(2,O,1); - (Block around spin area)
MoveTo(round(Xlo*GetMaxX),round(C1-Yhi)*GetMaxY)-1);
LineTo(round(Xhi*GetMaxX)+2,roundC(1l-Yhi)*GetMaXY) -1);
LineTo(round(Xhi*GetMaxX)+2,round((l-Ylo)*GetMaxY));

Line(round(Xhi*GetMaxX)+2,round(Cl-Yhi)*GetMaxY)-l,GetMaxX,roundC Cl-Yhi)
*GetMaxY) -1);

end;
end; (Procedure BivariateRoutine)

Procedure ExitRoutine;

begin
MoleExit;
CloseGraph;
Halt;

end; (Procedure ExitRoutine)

Procedure LeaveProgram;

const

Xl: Integer=159;

125

Y : Integer-135;
X2: Integer-479;
Y2:Integer-J.90;
col: Integer-25;

var
i: integer;
P: Pointer;
Size: Word;
ViewPort: ViewPort Type;
OldStyle: TextSettingsType;
Answer: Char;

begin
GetTextSettings (OldStyle);
SetVisualPage(O);
SetActivePage C);
SetViewPort(O, O,GetMaxX,GetMaxY,True);
Size :-ImageSize(XJ.,Y1,X2,Y2);
If Size>MemAvail Then writeln(output, 'Size-' ,Size,'

MemAvail-' ,MemAvail);
Mark(P);
GetMem(P, Size);
Getlmage(Xl,Yl,X2,Y2,pA);
SetViewPort(Xl,Yl,X2,Y2,True);
GetViewSettings (ViewPort);
SetFillStyle(l,15);
Bar(O,O,X2-Xl,Y2-Yl); (Clear ViewPort)
SetFillStyle(l,BackgroundKolor);
Bar(5,4,X2-Xl-5,Y2-Yl-4);
SetolorC 15);
SetTextJustify(l,l);
OutTextXY((X2-X1) div 2,(Y2-Yl) div 2,'Ready to Quit?');
Setolor(iS);-
SetVisualPage(l);
repeat

Answer: -UpCase(CReadKey);
until (Answer - 'Y') or (Answer -'N');
If Answer = 'Y' Then ExitRoutine;
SetVisualPage(O);
SetViewPort(O, O,GetMaxX,GetMaxY,True);
Putlmage(X1,yl,pA,O); (O=Copyl
Release(P);

end;

end.

126

unit GraphMat;

interface

uses Crt,Dos,Graph,MathMat,TGlobals;

Procedure GMatlnput(var matrx: matx;
cell,_length: Integer;
dec_places: Integer;

mat: String; (Input Matrix Name}
x,y: Integer; fLocation]

MatColor: Word; [Color of Matrix)
MatBackground: Word; (Color of Matrix Background}
MatForeground: Word); (Color of Characters}

Procedure GMatWrite(var matrx: matx;
cell length: Integer;
dec places: Integer;

mat: String; (Input Matrix Name)
x,y: Integer; (Location)

MatColor: Word; [Color of Matrix}
MatBackground: word; (Color of Matrix Background)
MatForeground: Word); (Color of Characters)

implementation

var
i,j: integer;
TLX, TLY, BLX,BLY,TRX, TRY, BRXBRY: integer;
ViewPort: viewPortType;
P :Pointer;

(**The following routines are used in GMatlnput and GMatWrite **

function Max~f(a,b: integer): integer;

begin
if a>b then Max~f:= a
else Max~f:- b;

end;

procedure cursor to cell~i,j: integer; (Move Cursor to Current Cell]
x,y: integer; (Location of Entire Matrixj
W,H: integer; (Width & Height of Char Set)
mat: string; (Name of Matrix)
cell lIength:integer); J# of digits per cell]

begin
case j of

0 :SetViewPort(X+(W-4)*length~mat),Y+H*i,
X+W*(cell__ength+length~mat)),Y+Hi*(l+i)-l,False);

1 :SetViewPort(Round(X+(W-4)*Length(mat)+15) ,Y+fH*i,

Round(X+(W-4)*Length(mat)+15+cell length*W),Y+H*Cl+i)-l,False);
2 :SetViewPort(Round(X+(W-4)*Length(mat)+10+40),Y+H*i,

Round(X+(W-4)*Length(mat)+lO+40+cell-length*W),
Y+H* (l+i) -1,False);

3 SetViewPort(Rournd(X+(W-4)*Length(mat)+10-80),Y+H*i,
Round(X+(W-4)*Length(mat)+10+80+celllength*W),
Y+11* (+i) -1, False);

127

else Writeln(output,'Look at else in Cur sorCell in GraphMat');

end; (case j)

GetViewSettings (ViewPort);
With ViewPort Do begin
Write(Output,'i-',i,' j=',j,' Xl-',Xl,' Yl=',Yl,

IX2-',X2,' Y2-',Y2);
if graphresult - -11 then Write(output,' error')

else Write(output,' ViewPort Set');
writein;
SetLineStyle(0, 0,1);
Rectangle(0,0,X2-Xl,Y2-Yl) ;end;
Delay(500);}

end; (cursor-to-cell)

procedure brackets(x,y: integer; (Location of Entire Matrix)
W,H: integer; (Width & Height of Char Set}
mat: string; (N'ame of Matrix)

matrx: matx; (Matrix containing data}
cell-length: integer; (# of digits per cell}

F10: Boolean; (Press F10 or Not)
BracketColor: Word; (Color of Bracket}

MatBackground: Word); (Color of Background}
var

i,j: integer;
UpperTitle,LowerTitle,mat2: string;
Upper: Boolean;
OldColor: Word;
OldStyle: TextSettingsType;
Size: Word;

begin
mat2:='';
GetTextSettings(OldStyle); (So we can set them back)
OldColor' =GetColor;
SetTextJustify~l,l); (Center Horizontally & Vertically)
SetColorC 15);

(The routine below looks for a decimal point and assumes that
characters

following the decimal point will be placed as a subscript.
Only 1 level of subscripting is supported.)

Upper:=True; (Title starts in normal Text)
UpperTitle:=''; LowerTitle:='';

for i:=l to Length(mat) do
If Copy(mat,i,l) - '.1 then Upper:=Mot Upper
else Case Upper of

True :begin UpperTitle:=UpperTitle+Copy(mat,i,l);
LowerTitle:=LowerTitle+' '; end;

False :begin LowerTitle:-LowerTitle+Copy(mat,i,l);
UpperTitle:=UpperTitle+' '; end;

end;

If length~mat)>0 then begin mat2:=UpperTitle+'-';
LowerTitle:-LowerTitle+' '; end;

TLX :-Round(X4-(W-4)*(Length(mat)+2)); TLY :- Y
TRX :-TLX+W*(natrx.cols*CellLength+2+ord(matrx.cols>2)*l); TRY:-Y;
BLX :TLX; BLY:- Y+round(H*(matrx.rows+l.5));
BRX :TRX; BRY:- BLY;

128

OutTextXY (x,y+Round(O.5*H*(matrx.rows+l.5)),mat2);
OutTextXY (x,y+RoundCO.5*H*(matrx.rows+l.5))+4,LowerTitle);
SetLineStyle(O,O,3); (Solid, No Pattern, Thick)
SetColor(BracketColor);
MoveTo(TLX+W,TLY); LineTo(TLX,TLY); LineToCBLX,BLY);

LineTo(BLX+W,BLY);
MoveTo(TRX-W,TRY); LineTo(TRX,TRY); LineTo(BRX,BRY);

LineTo(BRX-W,BRY);
SetColor(l5);
If FlO then begin

SetViewPort(O, O,GetMaxX,GetMaxY,True);
Size :-ImageSize((BLX+BRX) div 2-W*7, Round(BLY+2.5*H), (BLX+BRX)

div 2+W*7, Round(BLY+3.5*H));
If Size>MemAvail Then writeln(output, 'Size=' ,Size,'

MemAvail-' ,MemAvail);
Mark(P);
GetMem(P, Size);
Getlmage(Max~f C(BLX+BRX) div 2-W*8,O), Round(BLY+3) ,(BLX+BRX) div

2+W*8, Round(BLY+5*H),pA);
SetFillStyle(l,MatBackground);
Bar((BLX+BRX) div 2-W*8, Round(BLY+3.),(BLX-BRX) div 2+W*8,

Round(BLY+5*H));
OutTextXY ((BLX+BRX) div 2, BLY+3*H, 'FlO to finish'); end
else begin
SetFillStyle(l,MatBackground);
BarCTLX+2,TLY+2,BRX-2,BRY-2); end;

SetTextJustify(OldStyle.Horiz, OldStyle.Vert);
SetColor(OldCoior);

end; (brackets}

procedure SetUp(x,y: integer;
W,H: integer; (Width & Height of Char Set)
mat: string; (Name of Matrix)

matrx: matx; (Matrix containing data)
cell-length:integer; f# of digits per cell!

F10: Boolean);. .(Press FiG or Not).

begin
SetViewPortCO, O,GetMaxX,GetMaxY,True);
If (y+(2+matrx.rows*H))>GetMaxY then begin
Writeln(output,'Sorry, cursor position is to near the bottom of the

screen.');
Writeln~output, 'X=',X,' (W-4)-',W-4,'

length(mat)-',length(mat),' cell length-',
cell length,' matrx.cols=',matrx.cols);

Writeln~output,'Hit <Enter> to Continue');
readln;
closegraph; Halt;
end

else
If Roundo(+(W-4)*(Length(mat)+2))+W*(matrx.cols*CellLength+2+
ord(matrx.cols>2)*2)>GetMaxX then begin
Writeln(output, 'Sorry, cursor position is to near the right edge

of the screen.');

length(mat)-',length(mat),' cell length-',
cell length,' matrx.cols-',matrx.cols);
Writeln(output, 'Hit <Enter> to Continue');
readln;
closegraph; halt;
end;

1 29

end; (Setup)

procedure cell-write (number: string;
dec__places: integer;

cell_length: integer);

var
k, errorcode, dplaces: integer;
s: string;
x: real;
OldStyle: TextSettingsType;

begin
GetTextSettings-(OldStyle); (So we can set them back)
SetTextJustify(O,2); {Center Horizontally & Vertically)
dplaces:-dec-places;
val (number, x,errorcode);
repeat

sti(x:cell length:dplaces,s);
if 1l'ength(s)>cell_length then Dec(dplaces);

until ((length(s)<=cell length) or (dplaces<O));
OutTextXY(O,l,s);
SetTextJustify(OldStyle.Horiz, OldStyle.Vert);

end; (cell-write}

function strq(x:real;
cell_length:integer;
dec-places:integer) : string;

var
s5: string;

begin
str(x:cell_length:dec-places,s);
strg :- s;

end; (strg)

Procedure GMatlnput(var matrx: matx;
cell length: Integer;
dec places: Integer;

mat: String; (Input Matrix Name)
x,y: Integer; (Location)

MatColor: Word; (Color of Matrix)
MatBackground: Word; (Color of Matrix Background)
MatForeground: Word); (Color of Characters)

var
H: Integer; (Height in Pixels of 1 character)
W: Integer; (Width in Pixels of 1 character)

CM: Integer; (Center of Matrix (X-wise))
ViewPort 2: ViewPortType;
OldStyle2: TextSettingsType;

procedure CursorCell(i,j: integer);

begin
cursor to cell(i,jx,yW,H,mat,cell_length);

end; (proce-dure CursorCell)

130

procedure CellRite(number:string);
begin

Cell Write(number,decplaces,celllength);
end; (Procedure CellRite)

procedure celltext; (Set Colors to Highlight Current Cell)

begin

With ViewPort do begin
SetFillStyle(l, (Solid Pattern}

7); (Light Gray is Highlighted Cell Background)
Bar(0,O,X2-XI,Y2-YI); end;

SetColor(15); [White is the Highlighted Cells' Foreground}
end; (cell-text}

procedure normal text(CellColor:Word); (Reset Colors)

begin
SetColor(Cell Color); (Normal Cell Foreground}
With ViewPort do begin

SetFillStyle(l, (Solid Pattern)
MatBackground); (Blue is the cell background)

Bar(0,0,X2-Xl,Y27Yl); end;
end; (normal-text)

procedure input_number(var matrx: matx); (input matrix)

const
left-arrow - 75; (0 is returned first for arrow keys!)
rightarrow = 77;
uparrow = 72;
down arrow .80;
backspace - 8;
return - 13;
escape - 27;
plus = 43;
minus = 45;
FI0 - 68;
decimal - 46;

var
keykey2 : char;
k,decimals,exit cell,exit_procedure,errorcode Integer;
number : string; (input string)

procedure execreturn (var numberstring: string;
var value: Real;
var exit-cell: integer);

var
k: integer;

begin
val(number,valueerrorcode);
exit cell :- 1; (input is complete]
If errorcode <> 0 then writeln(output,'error in exec return

procedure');
CursorCell(i,j);
normaltext(LabelColor);
CellRite(number);

end; (execreturn]

131

procedure too-long;

var
ViewOld: ViewPortType;
By,Rx,Lx: Integer;
msg,cs: String;
OldStyle: TextSettingsType;

begin
GetTextSettings(OldStyle); (So we can set them back)
GetViewSettings (ViewOld);
SetViewPort(O, O,GetMaxX,GetMaxY,True);
By:- Y+round(H*(matrx.rows+l.5));
Lx :Round(X+(W-4)*(Length(nlat)+2));

Rx :Round(Lx+W*(matrx.cols*CellLength+5));

SetFillStyle(l, (Solid Pattern)
MatBackground);

Bat(Round((Lx+Rx)/2-12*W) ,Trunc(8y+3 .5*H) ,Round((Lx+Rx)/2+12*W) ,Round(By
+2.5*11));
SetTextJustify(1,1);
Str(Cell_-Length,cs);
msg:-'to '+cs+' digits';

OutTextXY ((Lx+Rx) div 2,By+H,'Input Limited');
OutTextXY ((LxIRx) div 2,By+2*H,msg);
OutTextXY ((Lx+Rx) div 2, By+3*H,'(Press RETURN)');
readin;
SetFillStyle(l, (Solid Pattern)

MatBackground);

Bar(Round((Lx4.Rx)/2-7*W) ,Tz-unc(By+O. 5*1) ,Round((Lx+Rx)/2+7*W) ,Round(By+3
* 5*H));
O~utTextXY ((LX+RX) div 2, BY+3.*H, 'F10 to finish');

SetTextJustify(OldStyle.Ioriz, OldStyle.Vert);

With ViewOld do SetViewPort(Xl,Y1,X2,Y2,False);
end; (too_long)

procedure char--ok(key:char;
var number: string);

var
x,y,i: integer;
OldStyle: TextSettingsType;

begin
GetTextSettings(OldStyle); (So we can set them back]
SetTextJustify(O,2); (Center Horizontally & Vertically)

number :- number + key;
If. length(number) - 1 then (Blank out old number)
With ViewPort do begin

SetFillStyle(l, (Solid Pattern]
MatBackground); (Highlighted Cell Background)

Bar(O,O,X2-Xl,Y2-Yl); end;

OutTextXY(GetX,l,key); MoveRel(W,O);
With OldStyle do (Reset TextSettings]
begin

SetTextJustify(IHoriz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;

132

end; (charok)

function strg(x:real) string;

var
s: string;

begin
str(x:cell -length:dec_places,s);
strg :- s;

end; (strgl

procedure WrapAround;

begin
if i > matrx.rows then i 1
if i < 1 then i :- matrx.rows
if j > matrx.cols then j :- 1;
if j < 1 then j :=matrx.cols

end; {WrapAround)

procedure ReWrit(i,j: Integer;
number: string);

begin
CursorCell(i,j);
normal -text(CLabelColor);
If length~number) = 0 then Cell Rite(strg(matrx.datalli,jD))
else Cell -Rite(number);-

end; (ReWrit}

procedure initialize;

var
i,j: integer;
number: string;

begin
number
for i :=1 to matrx.rows do begin

for j := 1 to matrx.cols do rewrit(i,j,number);
end; [for i begin)

end; (Initialize}

(** Main Procedure Input Number**)

begin
Assign(output, 'pm');
Rewrite(output);
Initialize;
i :-1;
j':- matrx.cols;
exit-Procedure :- 0;
rep-neat

number:
exit cell :0;

decimals :0;

Cursor -Cell(i,j);
cell text;
CellRite(strg(matrx.datati,j]));
CursorCell (i, j);

133

repeat
key :-readkey;
if Ord(key) - 0 then key2 :- readkey; {Read Extended Key Code}

(Writeln(output,'key l=',key,' key2-',key2);
case Ord(key) of

48. .57 If length(number) -(CellLength then
char--ok(key,number)

Numbers I else too_long;

return If length(number) > 0 then begin
exec -return(number,matrx.data~i,j],exit_cell);
If i =matrx.rows then begin

i 1; (was on bottom row)
j j+l;
end [if i begin}

else i :-i+l;
end (if length begin)

else begin
rewrit (i, j,number);
i :- i+l;
exit cell :-1;
end; [else begin)

decimal If decimals = 0 then
If lenqth(number) < CellLength then begin

char -ok(key,number);
decimals :- 1;
end (begin}

else too-long;

0 begin
case Ord(key2) of

left-arrow :begin
If length(number)>0 then

exec return(number,matrx.data(i,j] ,exit cell)
else rewrit(i,j,number);
j :- j-1;

end;
right-arrow :begin

If length(number)>0 then

exec-return(number,matrx.data~i,jl ,exit_cell)
else rewrit(i,j ,number);
j : j+l;

end;
up-arrow begin

If length(number)>0 then

exec return~number,matrx.data~i,jI ,exit-cell)
else rewrit(i, j,number);
1 -l

end;
down-arrow :begin

If length(number)>0 then

exec_return(number,matrx.datafi,j] ,exit_cell)
else rewrit Ci, j,number);
i :il

end;
F10 begin

If length(number) > 0 then

exec -return(number,matrx.data[i,jJ ,exit_cell)

134

else rewrit (i, j,number);
exityprocedure :-1;

end;
end; (case Ord(key2)}
exit--cell :-1;

end; (begin}
backspace If length(number)>O then begin

If numbertlength(number) 3-'.' then decimals:=O;
number :- Copy (number,l,(length(number)-l));
SetFillStyle(l, (Solid Pattern).
7); (Light Gray is Highlighted Cell

Background}
Bar(GetX-W,GetY+H-l,GetX,GetY);
MoveRel(C-W, 0);

end;

escape begin
number:
With ViewPort do begin

SetFillStyle(l, (Solid Pattern)
7); (Light Gray is Highlighted

Cell Background)
Bar(0,0,X2-Xl,Y2-Yl); end;

CursorCell(i,j);
end;-

plus If length(number) = 0 then char ok(key,number);

minus If length(number) - 0 then char ok(key,number);

else ; (Do Nothing if other keys are pressed)

end; (case Ord~key))
WrapAround;

until exit cell -1;
until exit-procedure -1;
SetViewPort(0, 0,GetMaxX,GetMaxY,True);
Putlmage(Max~fU(BLX+BRX) div 2-W*8,O), Round(BLY+3),PA1,0); [0=Copyi
Release(P);

end; finput number)

begin.
H:- Textfleight('H');
W:- TextWidth('W');
CM:- X+ (W*(Length(mat)+3)+W*(matrx.cols*CellLength+l) div 2);
GetTextSettings(OldStyle2);
GetViewSett ings (ViewPort2);

SetUp(x,y,W,H,mat,matrx~cell length,True);
brackets(x,y,W,H~mat,matrx,cell-length,True,MatColor,MatBackground);
input_number Cmatrx);
With ViewPort2 do SetViewPort(Xl,Yl,X2,Y2,Clip);
With OldStyle2 do

begin
SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;

end; (MInput)

135

Procedure GMatWrite(var matrx: matx;
cell-length: Integer;
dec_places: Integer;

mat: String; (Input Matrix Name)
x,y: Integer; (Location)

MatColor: Word; (Color of Matrix)
MatBackground: Word; (Color of Matrix Background)
MatForeground: Word); (Color of Characters)

var
H: Integer; {Height in Pixels of 1 character)
W: Integer; (Width in Pixels of 1 character)
ViewPort:.ViewPortType;
OldStyle: TextSettingsType;

begin
GetTextSettings (OldStyle);
GetViewSettings (ViewPort);

H:-TextHeight('H');
SetUp(x,y,W,H~mat,matrx,cell_length,False);
brackets(x,y,W,H,mat~matrx~cell-length,False,MatColor,Mat~ackground);
SetColor(MatForeGround);-
for i:-l to matrx.rows do for j:-l to matrx.cols do begin

cursor to cell(i,j,x,y,W,H,mat,cell_length);
CellWrite (strg(matrx.datahi,j] ,cell length~dec places),

dec-places,cell_length);
end;

With ViewPort do SetViewPort(X1,Yl,X2,Y2,Clip);
With OldStyle do

begin
SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;

end; [procedure GMatWrite)

end. (unit)

136

unit MathMat;

interface
uses Crt,Dos,Graph;

Const
np-5; (Matrix can be up to 5 x 5, modify np for larger matrics}

Type
RealArrayNPbyNP - ARRAY[I..np,I..np] of real;
matx - Record Data: RealArrayNPbyNP;

Rows,Cols: Integer; end;

Procedure MatInvert (var b,y: matx); ty-invert of matrix b}

Procedure MatMult (var a,b,c: matx); (C-A*B)

Procedure MatAdd (var a,b,c: matx); (C-A+B}

Procedure MatSub (var a,b,c: matx); (C-A-B}

Procedure Matk__Mult (var a,c: matx; (C=k*A}
k: Real); (k is a scalarl

Procedure MatZero (var a: matx);

Procedure MatTranspose (var a,b: matx); fb is transpose of a)

Procedure MatWrite (var a: matx); [Writes an rowxcol matrix)

Proceduke MatInput(var matrx: matx;
celllength': Integer; (Width of each cell}
dec_places: Integer; (Number of Decimal Places per

Cell}
mat: String; [Input Matrix Name}
x,y: Integer); (Location)

Procedure MatAugment(var augmat,matl,mat2: matx);

implementation

Type
RealArrayNP - ARRAY [l..np] of real;
IntegerArrayNP - ARRAY [l..np] of integer;

var
i,j: integer;

Procedure ludcmp (var a: RealArrayNPbyNP;
n: integer;

var indx: IntegerArrayNP;
var d: real);

(Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pascal by William H. Press and others,
Published by the Press Syndicate of the University of Cambridge,
New York, 1989.
Pages 42-46}

Const
tiny - 1.Oe-20;

Var
k,j,imax,i: integer;

137

swn,dum,big: real;
vv: ARealArrayNP;

Begin
new(vv);
d:-1.0;
For i:1l to n do begin
big :-0.0;
for j :- 1 to n do

if abs(a~i,j])>big then big :=abs(a[i,j]);
if big - 0.0 then begin
writein ('pause in LUDCMP - singular matrix');
readin

end;
vvA~il : 1.0/big

end;
for j :-1 to n do begin

for i :-1 to j-1. do begin
sum :=a~i,j];
for k 1~J to i-l do
sum: sum-a~i,k]*a~k,j];

afi,j] :sum

end;
big :- 0.0;
for i :=j to n do begin

sum :ati,j];

for k I- to j-1 do
sum :sum-a~i,k)*a[k,jj;

a[i,j.] :sum;

dum :- VVA(i]*abs(sum);
if dum >=big then begin
big :dum;

imax :-i
end

end;
if j <> imax then begin

for k :-l to n do begin
dum := a~imax,kJ;
a~imax,k] :- a~j,k];
atj,k] dum

end;
d :- -d;
VVAlimax] :dum

end;
*indx [j I :imax;

if a(j,j] -0.0 then a~j,j] :~tiny;
if j<> n then begin

dum := 1.0/atj,j);
for i := j+l to n do

a~i,j1: a~i,jl*dum
end

end;
dis,5ose(vv)

end;

Procedure lubksb (var a: RealArrayNPbyNP;
n: integer;

var indx: IntegerArrayNP;
var b: RealArrayNP);

(Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pascal by William H. Press and others,
Published by the Press Syndicate of the University of Cambridge,
New York, 1989.

I 38

Pages 42-461

var
j,ip,ii,i: integer;
sum: real;

begin
ii:0O;

for i :-l to n do begin
ip :indx~i];

sum :b(ip];

b~ipl : b(i);
if ii <> 0 then

for j :ii to i-i do
sum :sum-~a~i,jJ*b~j]

else if sum <> 0.0 then
ii :- i;

b~iJ sum;
end;
for i :~n downto 1. do begin

sum :~]
for j:- i+l to n do

' sum sum-afi,jJ*bfj];
b(i] sum/a~i,iJ;

end;
end;

Procedure MatInvert (var b,y: matx);

(Inversion Routine primarily based on routines from the book:
Numerical Recipes in Pascal by William H1. Press and others,
Published by the Press Syndicate of the University of Cambridge,
New York, 1989.
Pages 42-46)

var
a: RealArrayNPbyNP;
i,j: integer;
col: RealArrayNP;
mndx: IntegerArrayNP;
d: Real;

* begin
a :- b.data;
ludcmp(a,b.rows,indx,d);
for j:- 2. to b.rows do begin

for i:- 1 to b.rows do col~il :0O.0;
col~j] :- 1.0;
lubksb(a,b.rows, indx,col);
for i := 1 to b.rows do y.data[i,j] :col~i]

end;
y. rows:-b. rows; y. cols :-b. cols;

end;

Procedure Matult (var a,b,c: matx); (C=A*B)

var
row,col,i: Integer;
sum: Real;

begin
if a.cols -b.rows then begin

for col 1-2 to b.cols do begin

139

for row I- to a.rows do begin
sum :- 0;
for i :=1 to b.rows do

sum :-sum + a.data~row,i]*b.data~i,col];
c.data~row,col] :- sum;

end;
end;

c.rows a.rows;
c.cols :b.cols;

end
else begin
writein ('The number of columns of the first matrix must equal

the');
writeln ('number of rows of the second matrix in orde~r to

multiply');
writein ('matrices.')
end;

end;

Procedure MatWrite (var a: natx);

var
i,j: integer;

begin
writein;
for i :-1 to a.rows do begin

for j :- 1 to a.cols do
write (a.data~i,jD:5,')

writein ()
end;

end;

Procedure MatAdd (var a,b,c: matx); (C=A+Bl

var
i,j: Integer;

begin
for i :- 1 to a.rows do begin

for j :- I to a.cols do
c.data~i,j] :- a.datati,j] + b.data[i,j];

end;
c.rows :=a.rows;

c.cols :=a.cols;

end;

Procedure MatSub (var a,b,c: matx); fC=A-B)

var
i.,j: Integer;

begin
for i :- 1 to a.rows do begin

for j :- 1 to a.cols do
c.data[i,j] : a.data~i,j] - bz.data[i,j];

end;
c.rows :-a.rows;

c.cols :a.cols;

end;

1 40

Procedure Mat kMult (var a,c: matx; {C-k-A}
k: Real); [k is a scalar)

var
i,j: Integer;

begin
for i :- 1 to a.rows do begin

for j :- 1 to a.cols do
c.data[i,j] :- k*a.datafi,j];

end;
c.rows a.rows;
c.cols a.cols;

end;

Procedure Mat Zero (var a: matx);

var
m,n: Integer;

begin
for m := 1 to a.rows do

for n :- 1 to a.cols do
a.data(m,n] :- 0;

end;

Procedure MatTranspose (var a,b: matx);

var
i,j: Integer;

begin
for i :- 1 to a.rows do begin

for j :- 1 to a.cols do
b.data[j,i] :- a.data[i,j];

end; (for i begin)
b.rows :- a.cols;
b.cols :- a.rows;

end; [Mat_Transpose}

Procedure MatInput(var matrx: matx;
cell-length: Integer;
dec-places: Integer;

mat: String; (Input Matrix Name}
x,y: Integer); (Location)

procedure cursor to cell(i,j: integer); (Move Cursor to Current, Cell)

begin
case j of

0 : GotoXY(length(mat)+3,i+l);
1 : GotoXY(length(mat)+5,i+l);

e se GotoXY(length(mat)+j*celllength,i+l)
end; (case j)

end; (cursor to cell)

procedure brackets;

const
open top bracket - chr(218); (ASCII Codes)

141

open-bottom -bracket chr(192);
vertical bar - chr(179);
close topbracket - chr(191);
close-bottom-bracket - chr(217);

var
i,j: integer;

begin
GotoXY(l,trunc((matrx.rows+3)/2));
Write (mat,'=');
for i :- 0 to matrx.rows+l do begin

j :-0;
cursor to cell(i,j);
If i =- 0 then write(open -top__bracket)
else If i = matrx.rows+l then write(open-bottom-bracket)

else write(vertical-bar);

matrx.cols+l;
cursor to cell(i,j);
If i =- 0 then write(close -top__bracket)
else If i = matrx.rows+. then write(close-bottom-bracket)

else write(vertical bar);

end; (loop ii
GotoXY(2,matrx.rows +4);
Write('Press FlO when finished');

end; [brackets)

procedure SetUp(x,y:integer); (Location of window)

var
width: integer;

begin
If (y+matrx.rows +2)>24 then begin
writein ('Sorry, cursor position is to near the bottom of the

screen.');
writeln ('x=',x,' y=',y);
writein ('Hit <Enter> to Continue');
readln;
end

else
If (x+cell_length*(matrx.cols+l)+3+length(mat))>80 then begin
writeln ('Sorry, cursor position is to near the right edge of the

screen.');
writeln ('x=' ,x,/ -t)
writeln ('Hit <Enter> to Continue');
readin;
end;

Width :- cell -length*(matrx.cols+l)+length(mat)+3;
if Width < 28 then Width :- 28;
Window(x,y,x+Width,y+matrx.rows +3);
TextBackground(Blue);
ClrScr;
brackets;

end; (Setup)

procedure cell-text; (Set Colors to Highlight Current Cell)

begin

142

TextBackground(LightGray);
TextColor(Black);

end; (celltext)

procedure normaltext; [Reset Colors)

begin
TextBackground(Blue);
TextColor(LightGray);

end; [normaltext}

procedure inputnumber(var matrx: matx); [input matrix}

const
left arrow - 75; (0 is returned first for arrow keys!}
right arrow = 77;
uparrow = 72;
down arrow - 80;
backspace - 8;
return = 13;
escape = 27;
plus - 43;
minus = 45;
FIO = 68;
decimal - 46;

var
key,key2 : char;
k,dec,exitcell,exitprocedure,errorcode Integer;
number : string; (input string}

procedure cell_write(number:string);

var
k,errorcode: integer;
s: string;
x: real;

begin
val(number,x,errorcode);
str(x:celllength:decplaces,s);.
write(s);

end; [cellwrite)

procedure execreturn (var numberstring: string;
var value: Real;
var exit cell: integer);

var
k: integer;

begin
val(number,value,errorcode);
exit cell :- 1; (input is complete}
If errorcode <> 0 then writeln ('error in execreturn procedure');
Cursor to Cell(i,j);
normal text;
cell write(number);

end; (execreturn)

143

procedure too-long;

var
h,m,s,slOO,s-delay,s-count: Word;

begin
GotoXY (2, matrx. rows +3);
Write('Input Limited to ',CelJ._Length,' digits');
GetTime(h,m,s,slOO);
s delay :- s+3;
G OtoXY(2,matrx.rows +3);
repeat
GetTime(h,m,s,slOO);

until s -~ s -delay;
TextBackgroufld(Blue);
Write('

end; (too-long)

procedure char~ok (key: char;
var number: string);

var
x,y,i: integer;

begin
write~key);
number :- number + key;
If length(number) - 1 then begin
x : WhereX;

-Y WhereY;
For i :- 2 to CellLength do write('')
GotoXY(x,y);-

end; (if)
end; (charok)

function strg(x:real) :string;

var
s: string;

begin
str(x:cell_length:dec_places,s);
strg :- s;

end; (strg)

procedure WrapAround;

begin
if i > matrx.rows then i :- 1;
if i < 1 then i :- matrx.rows;
if j > matrx.cols then j := 1;
if j < I. then j :- matrx.cols

end; (WrapAround)

procedure ReWrit(i,j: Integer);

begin
Cursor toCell(i,j);
normal text;
If length(number) - 0 then cell write(strg(matrx.datafi,jj))
else cell write(number);

end; [ReWritl)

procedure initialize;

144

var
i,j: integer;
number: string;

begin
number :
for i := 1 to matrx.rows do begin

for j := 1 to matrx.cols do ReWrit(i,j);
end; (for i begin)

end; (Initialize)

(**** Main Procedure InputNumber ****)

begin
Initialize;
i : 1;
j :-i;

exit_procedure :- 0;
repeat
number
exitcell := 0;
dec :- 0;
cursor to cell(i,j);
celltext;
cellwrite(strg(matrx.datai,j]));
cursor to cell(i,j);
repeat

key := readkey;
if Ord(key) - 0 then key2 :- readkey; (Read Extended Key Code)
case Ord(key) of

48..57 : If length~number) < CellLength then
charok Ckey,number)

[Numbers } else too_long;

return If length(number) >.0 then begin
execreturn(number,matrx.data[i,j],exitcell);
If i matrx.rows then begin

i :1 1; (was on bottom row)
j : j+l;
end (if i begin)

else i :- i+l;
end [if length begin)

else begin
ReWrit(i,j);
i := i+l;

exit cell :- 1;
end; felse begin)

decimal If dec = 0 then
If length(number) < Cell Length then begin
charok(key,number);
dec :- 1;
end (begin}

else toolong;

0 :begin

case Ord(key2) of
left-arrow : begin

If length(number)>0 then

exec_return(number,matrx.data(i,j],exitcell)
else ReWrit(i,j);

145

j j-1;
end;

right-arrow :begin
If length(number)>O then

exec-return(number,matrx.data~i,j] ,exit-cell)
else ReWrit(i,j);
j :-j+l;

end;
up arrow begin

If length(number)>O then

exec-return(number,matrx.data~i,j] ,exit-cell)
else ReWrit(i,j);
1 i il

end;
down-arrow :begin

If length(number)>O then

exec_return(number,matrx.data[i,jJ ,exit-cell1)
else ReWrit(i,j);
1 : i+l;

end;
FIO begin

If length(number) > 0 then

exec return(number,matrx.data~i,j] ,exit cell).
else ReWrit(i,j);
exit procedure :=1;
GotoXY (2, matrx. rows +4);
Write('

end;
enid; (case Ord(key2))
exit cell :=1;

end; (begin)
backspace begin

number : Copy (number,l, (length(number) 1));
GotoXY (WhereX -1, WhereY);
write (I ');
GotoXY(WhereX-l,WhereY);

end;

escape begin
number
Cursor to Cell(i,j);
for k 1: to CellLength do write ()
Cursor-to-Cell(i,j);

end;-

plus If length(number) - 0 then char-ok(key,number);

minus If length(number) - 0 then char-ok(key,number);

else ; (Do Nothing if other keys are pressed)

end; (case Ord(key))
WrapAround;

until exit cell - 1;
normal-text;

until exit-procedure =1;
end; (input-number)

146

begin
Setup(x,y);
input -number(matrx);
Window(1, 1,80, 25)

end; fbM_Input)

Procedure MatAugment(var augmat,matl,mat2: matx);

var
i,j: Integer;

begin
for i :- 1 to matl.rows do begin

for j :=1 to (matl.cols+mat2.cols) do
if j <- matl.cols then augmat.data(i,j] :- matl.data(i,j]
else augmat.data[i,j] :-mat2.data~i,j-matl.cols);

end; (for ij
augmat.rows :~matl.rows;
augmat. cols =mat . cols+mat2 .cols;

end; (MatAugment)

end. [unit}

147

Unit mole;

interface

uses TGlobals,Graph,Dos;

Procedure Molenit;
Procedure MoleVideolnit(Background: Integer);
Procedure MoleClip(Xlo,Ylo,Xhi,Yhi: Real);
Procedure MolePlot(Background: Integer);
Procedure MolelusMinus;
Procedure MoleLeftRight;
Procedure MoleUpDown;
Procedure MoleExit;
Procedure MoleranslateHorizontal;

implementation

Procedure Molenit;

Begin

(Call BegincroMole to initialize Acroole, and to ensure that
Acroole can *j
Srun on this system.

BeginAcroMoleVar.Version:-l; BeginAcroMoleVar.Revision :=0;
BegincroMoleVar .AcrooleSize:=Size~f (Acroole);
BeginAcroMoleVar.AcroMolePointer: =Addr(AcroMole);
BegincroMole (Beg inAcroMoleVar);
If BeginAcroMoleVar.ReturnCode<>AMOkay Then

If BeginAcroMoleVar.ReturnCode=AM rvalidDOEVersion Then Begin
Writeln('AcroMol'#130' requires DOS 2.0 or greater.'); Halt(l);

End
Else Begin Writeln('Internal error.'); Halt(2); End;

(~Get Acroole's suggested video mode, and ensure that this system
supports *)
(at least one video mode.

DetectideoModeVar .VideoMode:6
DetectideoModeVar. MaximumBuffer: 1;
Acroole .DetectideoMode(CDetectideoModeVar);

If DetectideoModeVar .ReturnCode<>AMOkay Then Begin
Writeln('This program requires a 256K EGA video adapter');

AcroMole.EndAcroMole(EndAcroMoleVar); Halt(3); End;

(Initialize various fields in the data blocks for the Acroole
subroutines. *)

GetideoModelnfoVar .VideoMode:-6;
CalculateScaleF'actorsVar.SizeX:-65535; C~Initialize the screen
size to *)
CalculateScaleFactorsVar.SizeY:-49152; (~the standard 4:3 ratio.

148

CalculateScaleFactorsVar.ScaleFactorLo:-0; (~Magnify the picture by
a
CalculateScaleFactorsVar.ScaleFactorHi:-120; (*factor of 120.

C~Initialize some miscellaneous variables.

(---

Radius:-0 .62; (Initial Position)
Set3DCameraVar.Perspective:=l000; (*Enable perspective for camera.

(This is the top of the main loop.

End;

Procedure MoleVideolnit(Background: Integer);

var
I,J: Integer;

begin
Assign(Output, 'pmn');
Rewrite(Output);

Acroole .GetVideoModelnfo(GetVideoModelnfoVar);

(Calculate-the scale factors for Set3DCamera so that the object

~will be the sane size independent of. the video mode's
resolution.

CalculategcaleFactorsVar. ResolutionX: =

GetVideoModelnfoVar.MaximumScreenX-GetVideoModelnfoVar.MinimumScreenX+l;
CalculateScaleFactorsVar .ResolutionY :-

GetVideoModeInfoVar.MaximumScreenY-GetVideoModeInfoVar.MiniunScreenY+l;
Acroole .CalculatecaleFactors CCalculateScale~actorsVar);

Set3DCameraVar. ScaleFactorX: =CalculateScaleFactorsVar .ScaleFactorX;

Set3DCameraVar .ScaleactorY: =CalculateScaleFactorsVar .ScaleactorY;

(Set the video mode.

SetideoModeVar .VideoMode: -GetideoModelnfoVar .VideoMode;
SetVideoModeVar.Reset:-0; (1 resets hardware, 0 doesn't)
Acroole. SetideoMode (SetideoModeVar);
Acromole .GetVideoModelnfo(GetVideoModelnfoVar);
ScreenWidth: -RoundCGetVideoModelnfoVar.MaxirnumScreenX-

GetVideoModelnfoVar.MinimumScreenX);

149)

ScreenHeight: -Round(GetVideoModelnfoVar .MaximumScreenY-
GetVideof~odelnfoVar. MinimwnScreenY);

(Set the clipping window to the screen.

-- et----- w- ar--- n-- u-------- -- u--- ----c -- ---- --- ---h--- ---

SetWindowVar.MinimumFilmY:--Round(Screen~eight/2);
SetWindowVar . MaimumFilmX: =Round(Screenit/2);
SetWindowVar .MaximumFilmY: =Round(Screen~eight/2';
SetWindowVar .Maximum~creen: -Getdceen foar. Mhium2ren
SetWindowVar .MinimumScreenY :-GetVideoModelnfoVar .MinimumScreenY;

Acroole .SetWindow (SetWindowVar);

(Clear the screen. If the video mode supports two or more
buffers, *

(so that we can double buffer, clear the first two buffers.

(--

DrawectangleVar. ScreenXl :=GetVideoModeln foVar .MininumScreenX;
DrawectangleVar. ScreenYl :=GetVideoModelnfoVar .MinimumScreenY;
DrawectangleVar .ScreenX2 :=GetVideoModeln foVar .MaximumScreenX;
DrawectangleVar .ScreenY2 :=GetVideoModeln foVar .MaximumocreenY;

DrawectangleVar .Color: -Background; ToErase: =0;
If GetVideoModelnfoVar.MaximumBuffer=0 Then ToDraw:=l
Else Begin ToDraw:-2;

AcroMole.DrawRectangle(DrawRectangleVar);
SetDrawingBufferVar .Buffer :=1;
Setisplayed~ufferVar.Buffer: -0;
Acroole .SetDrawingBuffer(CSetDrawingBufferVar);

End;
Acroole .DrawRectangle (DrawectangleVar);

(Set the number of points and lines on the screen to zero.

For 1:-0 To 2 Do Begin Points[I]:=0; Lines[I]:=0; End;
end; (Procedure Moleideolnit)

Procedure MoleClip(Xlo,Ylo,Xhi,Yhi: Real);

var
ScreenWidth,ScreenHeight: Integer;

begin
ScreenWidth:-Round(GetVideoModelnfoVar.MaximumScreenX-

GetVideoModelnfoVar.MinimumScreenX);
ScreenHeight: -Round(GetVideoModelnfoVar .MaximumocreenY-

GetideoModelnfoVar .MinimumScreenY);

150

A* Set the clipping window to the screen.

-------d --w ----------u---------Ro (---- ---- -creen -- --dth--- ---

SetWindowVar.MinimumFilmY: --Round((Yhi-Ylo) *Screen~eight/2);
SetWindowVar.MaximumFilmX:--Round((Xhi-lo)*Screenffit/2);
SetWindowVar.MaximumFilm:=sRound((Yhi-Ylo) *Screen~eight/2);

SetWindowVar.MinimumScreenX:=-Round(Xlo*Screenklidth+GetVideoModeInfoVar.M
inimumScreenX);

SetWindowVar.MinimumScreenY:=-Round(Ylo*ScreenHeight+GetVideoModeInfoVar.
MinimumScreenY);

Acroole .SetWindow (SetWindowVar);
end; (Procedure MoleClip)

Procedure MolePlot(Background: Integer);

var
IJ: Integer;

Begin

(Set the camera position. The camera rotates around the object,

(which makes the paddlewheel look like it is spinning.

With Set3DCameraVar Do
Begin
WorldX:=-Round(Radius*RotMat[O,2D);
WorldY:--RoundCRadius*RotMattl,2]);
WorldZ:=-Round(Radius*RotMat[2,2]);
DirectionX:=RoundCRotMatEO,2]l;
DirectionY:=Round(RotMattl,21);
DirectionZ:=Round(RotMat[2,2));
tUpX:-Round(RotMat[O,1]);
UpY:=Round(RotMat~l,1J);
UpZ:=Rcund(RotMat(2,lI);

end;

Acro'ole .Set3DCamera(Set3DCameraVar);

(Transform the endpoints of the lines.

For I:=l To NumberOfEndpoints Do

AcroMole.Transform3DEndpoint(WorldEndpoint[I-l.Transform3DEndpointVar);

151

(Clip any lines that we cannot immediately accept or reject. If
the

(OR of the clipping bits is zero, then we can immediately accept
the

(line, and if the AND is non-zero, then we can immediately reject
the *

(~line.

Lines [ToDraw]: 0;
For I:-l To NumberOfLines Do

With WorldLine(I-1], ScreenLine[ToDraw,Lines[ToDrawJ Do

If Layer and LayerScreen <> 0 then

if
'CWorldEndpoint[Endpointl] .Transform3DEndpointVar.ClippingBits Or

WorldEndpoint[Endpoint2] .Transform3DEndpointVar.ClippingBits)-0
Then Begin

With WorldEndpoint(Endpointl] Do Begin
DrawLineVar.ScreenXl: =Transfcrm3DEndpointVar.ScreenX;
DrawineVar .-ScreenYl:-Trans form3DEndpointVar .ScreenY;

End;
With WorldEndpoint[Endpoint2] Do Begin

DrawLineVar. ScreenX2: -Trans form3DEndpointVar .ScreenX;
DrawineVar. ScreenY2: =Transform3DEndpointVar .ScreenY;

End;
DrawLineVar.Color:=LineColor; Inc(Lines[ToDraw]); End

Else If
(WorldEndpoint[Endpointl] .Transform3DEndpointVar.ClippingBits

And
- WorldEndpoint(Endpoint2] .Transform3DEndpointVar.ClippingBits)-0

Then Begin
With WorldEndpoint[Endpointl] Do Begin

Clip3DLineVar.ClippingBitsl:=Transform3DEndpointVar.ClippingBits;
Clip3DLinevar .ScreenXl:=Transform3DEndpointVar. ScreenX;
Clip3DLineVar.ScreenYl:=Transforrn3DEndpointVar .ScreenY;
Clip3DLineVar .CameraXl:=Transforn3DEndpointVar. CameraX;
ClipJDLinpvar.CameraYl :=Transform3DEndpointVar.CameraY;
Clip3DLineVar .CarneraZl:=Transform3DEndpointVar.CameraZ;

.End;
With WorldEndpoint[Endpoint2] Do Begin

Clip3DLineVar.ClippingBits2:=Transform3DEndpointVar.ClippingBits;
Clip3DLineVar .ScreenX2:=Trans form3DEndpointVar.ScreenX;
Clip3DLineVar .ScreenY2:=Transform3DEndpointVar .ScreenY;
Clip3DLineVar .CameraX2 :=Transform3DEndpointVar.CameraX;
Clip3DLineVar .CameraY2:=Trans form3DEndpointVar.CameraY;
Ctlip3DLineVar .CameraZ2:-Transform3DEndpointVar.CameraZ;

End;
AcroMole.Clip3DLine(Clip3DLineVar);
If Clip3DLineVar. Returnode-AMOkay Then Begin

DrawineVar. ScreenXl:-Clip3DLineVar. ScreenXl;
DrawineVar. ScreenYl -Cl ip3DLineVar .ScreenYl;
DrawineVar. ScreenX2: -Cl ip3DLineVar .ScreenX2;
DrawineVar. ScreenY2: -Clip3DLineVar .ScreenY2;

152

DrawLineVar.Color:-LineColor; Inc(Lines (ToDraw]); End;
End;

(Draw the points and lines on the screen.

If GetVideoModelnfoVar.MaximumBuffer>-l Then Begin

(If we are double buffering, first erase all of the old points
and *

(* lines in the non-visible buffer, then draw all of the new
points and *)

(lines, and then switch buffers.

(---

For I:=l To Lines[ToErase] 1Do Begin (*Erase old
lines. *)

With ScreenLine[ToErase,I-lJ Do Begin
DrawLineVar .Color: =Dackground;

AcroMole.DrawLine(DrawLineVar); End; End;
-or I:=l To Lines([ToDrawl Do (*Draw new

lines. *)'

AcroMole.DrawLine(ScreenLine[ToDraw,I-l] .DrawLineVar);
SetDrawingBufferVar.Buffer:-(SetDrawing~ufferVar.Buffer+l) Mod 2;
AcroMole.SetDrawingBuffer(SetDrawingBufferVar); (Switch

drawing. *
SetDisplayedBufferVar.Buffer:C(SetDisplayedBufferVar.Buffer+l) Mod

2;
AcroMole.SetDisplayedBufferCSetDisplayedBufferVar); (* Switch

displayed. *)
ToErase:-(ToErase+l) Mod 3; ToDraw:-CToDraw+l) Mod 3;
Repeat AcroMole.CheckVerticalRetrace(CheckVerticalRetraceVar);
Until CheckerticaiRetraceVar. ReturnCode=AMOkay; End

(If we are single buffering, erase and redraw one point and one
line *)

C~at a time, so that the screen is never entirely blank.

Else Begin J:-Points[rToErase]; If J>Points(ToDraw] Then
J:-Points[ToDraw];

J:-Lines[ToErase); If J>Lines[ToDraw] Then J:=Lines[ToDraw];
For I:-J+l To Lines[ToErase] Do

With ScreenLine[ToErase,I-1] Do Begin
DrawLineVar .Color: -Background;

AcroMole.DrawLineCDrawLineVar); End;
For I:-J+l To Lines(ToDraw] Do

AcroMole.DrawLineCScreenLine[Tooraw,I-l] .DrawLineVar);
ToErase:-(ToErase+l) Mod 2; ToDraw:-(ToDraw+1) Mod 2; End;

153

(Synchronize with vertical retrace.

Repeat Acroole. CheckverticaJ.Retrace(CheckVerticalRetraceVar);
Until CheckVerticalRetraceVar. ReturnCode-AMverticalRetrace;

(Get the keyboard status, check the status of the CTRL and BREAK
(or

(CTRL and C) keys, and clear the keyboard buffer.

Acroole .GetKeyboardStatus (GetKeyboardStatusVar);
Acroole .CheckBreak (Check~reakVar);
Acroole .Cleareyboard~uffer CCleareyboard~ufferVar);

end; (Procedure MolePlot)

Procedure MolelusMinus;
var

i,j: integer;

(~The pius and minus arrow keys move you in and out from the box.

(Don't move any closer than 0, nor any further than 32767.

Begin

If (GetKeyboardgtatusVar.Down[4) And l6384)<>0 (* Plus key held d6wn.

Then Radius:-Radius-O.005; (*Move toward Box. *
If (GetKeyboardStatusVar.Down[4] And 1024)<>O (* Minus key held down.

Then Radius:=Radius+0.005; (*Move away from Box. *
If Radius<0.000000l Then Radius:-0.000000l; If Radius>l.O Then

Radius:=1. 0;
end; (Procedure MolelusMinus)

P-ocedure MoleLeftRight;

(~The left and right arrow keys change the angle along the X and Z
axi..

(Save the new scale factors for Set3DCamera.

--

var
TempReal: Real;

Begin

154

If (GetKeyboardStatusVar.Down(4] And 8192)<>0 (Right arrow held
down}I

Then SinAngle:-SinPosAngle
else SinAngle:--SinPosAngle; (Left Arrow)
TempReal: =RotMat[0, 0];
RotMat[0,0] :-CosAngle*RotMat(0,0] -SinAngle*RotMat[0,2];
RotMattO, 2] :-SinAngle*TempReal+CosAngle*RotMat(0,2];
TempReal :=RotMat[l, 0];
RotMattlO] :=CosAngle*RotMat[l,0] -SinAngle*RotMat(l,2];
RotMat[l,2 :=SinAngle*TempReal+CosAngle*RotMat[l,2];
Te'pReal:=RotMat [2,0];
RotMat[2,0] :=CosAngle*RotMat(2,0] -SinAngle*RotMat[2,2J;
RotMat[2,2] :=SinAngle*TempReal+CosAngle*RotMat[2,2];

end; [Procedure MoleLeftRight;}

Procedure MoleUpDown;

var
TempReal: Real;

Begin
If CGetKeyboardStatusVar.Down[4] And 256)<>0 (Up arrow held down]
Then SinAngle:=SinPosAngle
else SinAng-le:=-SinPosAngle; (Down Arrow)
TempReal: =RotMat [0,1li;
RotMat[0',l]:=CosAngle*RotMat[0,l] -SinAngle*RotMat[0,2];
RotMat[0,2] :-SinAngle*TempReal+CosAngle*RotMat[0,2I;
TempReal:=RotMat [1,1];
RotMat[ll] :-CosAngle*RotMat~l,l] -SinAngle*RotMatfl,2];
RotMat(l,2] :=SinAngle*Temp~eal+CosAngle*RotMat[l,2];
TempReal :=RotMat[2, 1];
RotMat(2,l] :=CosAngle*RotMat[2,l] .SinAngle*RotMat[2,2,;
RotMat[2,2] :=SinAngle*TempReal+CosAngle*RotMat[2,2];

End; (Procedure MoleUpDownl

Procedure MoleExit;

(Restore the original video mode, clear extraneous keystrokes from the

(~keyboard buffer, end Acroole, and return to DOS.

Begin
Acroole. RestoreOriginalVideoMode(RestoreOriginalVideoModeVar);
AcroMole.ClearKeyboardBuffer(ClearKeyboardBufferVar);
AcroMole.EndAcroMoleCEndAcroMoleVar);

End;

End.

155

Bibliography

1. Bryant, Peter. "Geometry, Statistics, Probability: Variations on a
Common Theme," The American Statistician, 38: 38-48 (February
1984).

2. Cowley, Geoffrey and others. "Not Just for Nerds," Newsweek, 52-54
(9 April 1990).

3. Devore, Jay L. Probability and Statistics for Engineering and the
Sciences (Second Edition). Monterey CA: Brooks/Cole Publishing
Company, 1987.

4. Glaserfeld, Ernst Von. "Learning as a Constructive Activity," Problems
of Representation in the Teaching and Learning of Mathematics, edited
by Claude Janvier. Hillsdale NJ: Lawrence Eribaum Associates,
Publishers, 1987.

5. Hansard, Capt Stone W. An Interactive System of Computer Generated
Graphic Displays for Motivating Meaningful Learning of Matrix
Operations and Concepts of Matrix Algebra. MS Thesis,
AFIT/GSM/ENC/90S-12. School of Systems and Logistics, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, September
1990 (AD-A229557).

6. Herr, David G. "On the History of the Use of Geometry in the General
Linear Model," The American Statistician, 34: 43-47 (February 1980).

7.- Levin, Richard I. Statistics for Management (Fourth Edition).
Englewood Cliffs NJ: Prentice-Hall, Inc., 1987.

8. Margolis, Marvin S. "Perpendicular Projections and Elementary
Statistics," The American Statistician, 33: 131-135 (August 1979).

9. Novak, Joseph D. and D. Bob Gowin. Learning How to Learn. New
York: Cambridge University Press, 1984.

10. Saville, D. J. and G. R. Wood. "A Method for Teaching Statistics Using
N-Dimensional Geometry," The American Statistician, 40: 205-213
(August 1986).

156

11. Scandura, Joseph M. "Research in Mathematics Education - An
Overview and a Perspective," Research in Mathematics Education,
Edited by Joseph M. Scandura. Washington: National Council of
Teachers of Mathematics, 1967.

157

Vita

Captain Stephen D. Pearce was born on 2 September 1963 in

Chattanooga, Tennessee. He graduated from Hixson High School in

Chattanooga in 1981. With a four year Air Force Reserve Officer Training

Corps scholarship, he attended Auburn University. In 1985 he graduated

with a Bachelor of Electrical Engineering degree and was commissioned in

the USAF as a Second Lieutenant: His first assignment was to the

Armament Division at Eglin AFB, Florida as a configuration manager in the

Advanced Medium Range Air-to-Air Missile Joint Systems Program Office.

Three years later he was promoted to chief of the configuration management

division. As a configuration manager Captain Pearce conducted many

Physical Configuration Audits, Functional Configuration Audits, and

Engineering Drawing Reviews. In May 1989 he married Melissa Conrad. In

May 1990 he entered the Air Force Institute of Technology at Wright

Patterson AFB, Ohio where he worked to obtain a Master of Science in

Systems Management degree.

Permanent Address:

2211 Belmont Road
Amoldsville, GA 30619

158

Form Approved
REPORT DOCUMENTATION PAGE 0MB No. 0704-0188

Puoic reporting ouraen for -mis collection of information s estimated to average I hour Der response. including the time for reviewing instructions. searching evstil aata sources,
;3athering ano mlrntaining the data needed, ind comoleting and reviewing the ,zollection of information Sena comments rThiadfng this burden estimate :r 3ni ;ther asect of this
collection of information, including suggestions for reIucing this ouren to Washington Headauarters Services. Directorate 'or information Operatiors and Reports. le15 -1fterson
Davis Highwa. Suite 1204. Arlington. VA 22202-4302. and to the Offce of Management and udget. Paperwork Reduction Project (07040 188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I September 1991 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN APPLICATION OF INTERACTIVE COMPUTER GRAPHICS TO THE
STUDY OF INFERENTIAL STATISTICS AND THE GENERAL LINEAR
MODEL

6. AUTHOR(S)

Stephen D. Pearce, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433

AFIT/GSM/ENC/91S-22

9. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING- MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a.'DISTRIBUTIONiAVAILABILITY STATEMENT . 12b. DISTRIBUTiON CODE

,Approved for public release; distribution unlimited

13. ABSTRACT (Maximum200words) This research created a learning environment, known as the

Pearce Projection Modeling Environment (PPME) which is used as a tool by a teacher
and student. The PPME was developed in an effort to create a new approach to the
study of the General Linear Model through a constructive and projective, geometric
approach. While the geomeLric approach to the GLM was developed over the past
century, it has not been used extentively because of the inherent complexities

associated with visualizing vector spaces. With the PPME, visualization is
accomplished effortlessly. The PPME is a computer program that allows the student to
enter response vectors and other vectors and data associated with the GLM and observe
the relationships of those vectors *nteractively and jn three-dimensions. The PPME
encourages learning through constructive- development by allowing the student to
modify the vectors and observe the results of his actions.

To validate the PPME as a learning tool, several data sets were generated and
used to study three scenarios: The Sample Mean and Variance, A General Linear Test
of the Population Mean, and An Ordinary Least Squares Simple Linear Regression.

14. SUBJECT TERMS 15. NUMBER OF PAGES

169
Statistics, Learning, Graphics, Vector Spaces, Computer Programs, 16. PRICE CODE
General Linear Model

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF. REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

"ISI 54-01-80-50 ,ar'aard il 299 Zv -, 191

AFIT Control Number AFIT/GSM/ENC/91S-22

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for cur-
rent and future applications of AFIT thesis research. Please return
completed questionnaires to: AFIT/LSC, Wright-Patterson AFB OH
45433-6583.

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another
agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency received by virtue of AFIT performing the research.
Please estimate what this research would have cost in terms of manpower
and/or dollars if it had been accomplished under contract or if it had
been done in-house.

Man Years $ m

4. Often it is not possible to attach equivalent dollar values to
research, although the results of the research may, in fact, be important.
Whether or not you were able to establish an equivalent value for this
research (3 above), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant . Significant Significance

5. Comments

Name and Grade Organization

Position or litle Address

