
AD-A246 569

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Underwater Multi-dimensional Path Planning for the
Naval Postgraduate School Autonomous Underwater Vehicle II

by

Joseph Bonsignore, Jr.

September, 1991

Thesis Advisor: Yuh-jeng Lee

Approved for public release; distribution is unlimited.

92-05001

UNCLASSIFIED
'CUPMI1 CASSICATION OF ThIS PAGE

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATI43N UNCLASSIFIED 1b. RESTRICTIVE MARINGS

2a SECURITY CLASSIFICATION AUTHORITY3.05RBTOA ILIIYOFW UI

2b. 0ECLA-SSFIGATION/DOWNGRADING SCHEDULE dAstrbutid isr punlimitedese

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITOING ORGANIZATION REPORT NUMBER(S)

W NAM E FORAIhG ORGANIZATION 6b. OFFICE SYMBOL 17a. NAME OF MONITORING ORGANIZATION
Coptr ecflC xpt. (itappkicable) Naval Postgraduate School

Naval Postgraduate School CS(52)
6c. ADDRESS (Cif, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943-5000

541.8pNAMEOF UNINGISPONSORING T1). OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZTION j (if 4appkbAI)

a-- ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBEFIS
P90GRAM PROJECT TASK I ORK UNT
ELEMENT NO.]N.NO. ACCESSION NO.

4 IlE(kvicluSo C11assifeo
tiirater Mulim enion Path Planning for the Naval Postgraduate School Autonomous Underwater Vehicle II

OW1TME 1:1RE 14. DATE OF REPORT (Yea, otD ') 15. PA GE CONT

_____pls RO /8 O 9 September 199115
I&. SUPPLEMAWNOATIONI_! _ 1115
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Departmnent of Defense or
the U.S. government.

17. COSATI CODES 18. SUBJECT TERMS (Continue an reverse if necessury andientify by block number)
FIELD__GROUP_ SUB-GROUP Path planning, Path replanning, Tendril search, Wavefroint search, Real-tim A* search,

FIELDAutoomous Underwater Vehicle, AUV, Ada in ArtificuIailtefigence.

19. ABSTRACT (Contiue on rewtwse, #1 &Wee andenbiy block number)
Traditionally path planning softwm a be developed in LISP or C. With the recent government mandate for the use of Ada. this thesis seelts to

demnonstrate the feasibility of using Ada for both path preplanning and real-timne path repilanning. Land vehicle path planning can be accomplished with two

horizontal components. However, for muonomnous underwater vehicles the two horizontal components and! a vertical componment are required. leinory mid

computational speed restrictions dictate that special processing of the search space be conducted to optimize the time-space nuade-off. In this research, a four

dimensional amy of nodes (two horizontal comiponents, one vertical component and one orientation component) is used to represent the search space. By

use of an orientation component, the nunber of nodes tha can be legally mnoved to is limted in effect pnzning the search space. Three search methods were

inrvestigated- the Tendril search, the Direction search and the Real-time A* search. The Tendril search is a wavefront breadth-first search. Thie Direction

search uses a vector field for path planning. The Real-timne A* search uses the Tendril search to a specified search depth then applies a heuristic to determine

the beat path to expand upon.

[UNCLASSIFIED/UNLIMITED Q] SAME AS RPT. Q DTIC USERS UJNCLASSIFIED
uh-jeng 1"Cde

00 FORM 1473,84 MAR 83 APR edition may be used unti euxhausted SECURITY CLASSIFICATION OF THIS-PAGE
All other editions wes obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

Underwater Multi-dimensional Path Planning
for the Naval Postgraduate School
Autonomous Underwater Vehicle H

by
Joseph Bonsignore, Jr.

Captain, United States Marine Corps
B.S., The Virginia Military Institute, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

Author: .1.osel&hBonsignore, Jr.

Approvedl By:

By: ng eThesis Advisor

Leigh Bradbury, Secon&Rd er

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Traditionally path planning software has been developed in LISP or C. With the recent

government mandate for the use of Ada, this thesis seeks to demonstrate the feasibility of

using Ada for both path preplanning and real-time path replanning. Land vehicle path

planning can be accomplished with two horizontal components. However, for autonomous

underwater vehicles, the two horizontal components and a vertical component are required.

Memory and computational speed restrictions dictate that special processing of the search

space be conducted to optimize the time-space trade-off. In this research, a four

dimensional array of nodes (two horizontal components, one vertical component and one

orientation component) is used to represent the search space. By use of an orientation

component, the number of nodes that can be legally moved to is limited, in effect pruning

the search space. Three search methods were investigated: the Tendril search, the Direction

search and the Real-time A* search. The Tendril search is a wavefront, breadth-first search.

The Direction search uses a vector field for path planning. The Real-time A* search uses

the Tendril search to a specified search depth then applies a heuristic to determine the best

path to expand upon.

Accession For

NT' 7n!'j
DT :; T 2?-

t_ ". d El

111 I ,, a u I I

TABLE OF CONTENTS

I. IN TRO D U CTIO N .. 1

A . O BJECTIIVES .. 1

B. B A CK G RO U N D ... 2

1. Naval Postgraduate School AUV I (NPS AUV 1) ... 2

2. M ission Planning Expert System ... 3

3. N PS AU V Sim ulator ... 3

C. TH ESIS O RG AN IZATIO N .. 4

II. AUTONOMOUS UNDERWATER VEHICLE RESEARCH ... 6

A. VEHICLE ARCHITECTURE .. 6

1. Texas A & M .. 6

2. Naval Ocean Systems Center (NOSC) ... 6

3. Massachusetts Institute of Technology (MIT) ... 6

4. Defense Advance Research Projects Agency ... 7

5. International Subm arine Engineering ... 7

B. PATH PLA N N IN G ... 7

1. G eneral Path Planning .. 7

2. Fast, Three-dimensional, Collision-free Motion Planning ... 8

a. G eneral D escription .. 8

b. W orld Representation ... 8

iv

c. Search Techniques .. 10

d. Conclusions .. 10

3. Bidirectional Staged Heuristic Search (BS) ... 10

a. General Description .. 10

b. Trees ... 12

C. Cost. .. 12

d. Advantages and Disadvantages .. 12

4. Configuration Space (C-space) .. 14

a. General Description .. 14

b. C-Space Obstacles ... 14

c. Conclusion .. 14

5. Potential Field ... 14

a. General Description .. 14

b. W orld Representation ... 15

c. Conclusion .. 16

6. Rem arks ... 16

I. THE TENDRIL SEARCH ... 18

A. GENERAL .. 18

B. LISP VERSION .. 18

1. Two Dim ensional Problem .. 18

2. Four Dimensional Problem .. 19

C. ADA VERSION DESCRIPTION .. 19

1. General ... 19

v

2. D i t Translation .. 21

a. M em ory Problem ... 21

b. Speed .. 21

3. Four D im ensional Problem .. 22

4. M odifications ... 22

a. Sm aller records .. 22

b. "F _M O V ES" .. 22

c. W aypoint capability .. 24

5. The Tendril Search A lgorithm .. 25

D. TENDRIL BIDIRECTIONAL SEARCH ... 27

1. Concept .. 27

2. Lim itations ... 27

E. EVALUATION AND RESULTS ... 27

IV . V ECTO R FIELD M ETH O D ... 29

A . G EN ERA L D ESCRIPTIO N .. 29

B. ADVANTAGES AND DISADVANTAGES ... 31

C. BA SIC PRO G RA M FLO W .. 31

D. THE DIRECTION SEARCH ALGORITHM ... 33

E. RESULTS A ND EVA LU A TIO N ... 33

V . PA TH REPLA N N IN G ... 34

A . G EN ERA L D ESCRIPTIO N .. 34

B. JU STIFICA TIO N ... 35

C. D ISA D VA NT A G ES .. 36

vi

D. EVALUATION .. 36

VI. CONCLUSIONS AND RECOMMENDATIONS .. 37

A. SUMMARY AND CONCLUSIONS ... 37

B. RECOMMENDATIONS ... 37

APPENDIX A - Data Flow Diagram for the NPS AUV II .. 39

APPENDIX B - NPS AUV II System Block Diagram .. 40

APPENDIX C - Three Dimensional Tendril Search in LISP ... 41

APPENDIX D - Data Dictionary, DFD, and program code for the TENDRIL Search 48

APPENDIX E - Data Dictionary, DFD, and program code for the TENDRILWP Search 76

APPENDIX F - Data Dictionary, DFD, and program code for the DIRECTION Search 86

APPENDIX G - Data Dictionary, DFD, and program code for the RTA* Search 110

LIST OF REFERENCES ... 135

BIBLIOGRAPHY .. 138

INITIAL DISTRIBUTION LIST ... 141

vii

LIST OF FIGURES

Figure 1 - 1 NPS AUV II .. 2

Figure 1 - 2 Mission Planner Program Diagram ... 5

Figure 2 - 1 Two Dimensional Legal Moves .. 9

Figure 2 - 2 Three Dimensional Legal Moves ... 9

Figure 2 - 3 Bidirectional Search Process .. 11

Figure 2 - 4 Bidirectional Search Process with Waypoint 13

Figure 2 - 5 Expanded C-Space Obstacle

for a Vehicle with a Fixed Orientation ... 15

Figure 2 - 6 Potential Field Representation .. 17

Figure 3 - 1 Nine Legal Moves when Heading is Considered (Heading North) 20

Figure 4 - 1 Representation of a Vector Field ... 30

viii

L INTRODUCTION

Autonomous underwater vehicle (AUV) research continues to grow as more

applications are devised. From industry and scientific research to military applications,

AUV technology has generated great interest. Currently, there are nearly 30 different

organizations researching AUV technology, of which 18 are government funded [Busby

and Vadus, 90]. This indicates the strong interest the government has in this technology.

The benefits provided by unmanned autonomous vehicles are many. They provide a

means to accomplish missions which are considered too dangerous for human involvement

[Cloutier 90]. "Progress is aimed toward minimizing need for man's physical presence,

intervention underwater" [Busby and Vadus 90]. Underwater vehicles can be categorized

as either tethered or autonomous [Rogers 89]. In contrast to a remotely operated vehicle

(ROV), an AUV is not restricted by an umbilical which can hinder task performance in

some cases.

Due to the AUV's nature, mission planning and execution are very complex problems

to solve. Accurate world models must be made and complex path planning performed prior

to mission execution. During task performance, continued evaluation of the many aspects

of the mission must be performed. If necessary, adjustment or replanning must be

conducted to insure successful mission completion or a decision to abort.

A. OBJECTIVES

This thesis intends to focus on path planning and replanning using the Ada

programming language [Healey 90). Several objectives are listed below:

1. Implement a multi-dimensional Tendril search in Ada.

2. Investigate the feasibility of waypoint utilization.

3. Implement a Real-time A* (RTA*) path replanner in Ada.

4. Investigate the feasibility of a vector field method of path planning.

I

5. Examine the feasibility of utilizing Ada reusable modules.

B. BACKGROUND

1. Naval Postgraduate School AUV H (NPS AUV U)

The basic component layout of the NPS AUV I is illustrated in Figure 1-1. It is

of aluminum box construction with a 16" beam, 10" height, 92" length and displaces 390

pounds [Cloutier 90]. It uses eight independent control surfaces, four tunnel thrusters and

two main screws, and has a top speed of two knots (three feet per second) with a 20 feet

Sonar transducers Tunnel thrusters Drive motors

SIDE VIE W

NPSAUVn
Figure 1-1

2

turning diameter. Power is provided by on-board lead-acid batteries with an approximate

two and one half hour operating time [Floyd 91]. Current on-board systems include a

GESPAC MPU 20HF board with Motorola 68020 and 68882 processors. OS - 9 was

chosen as the operating system for its multi-tasking capabilities. As recommended by

Bihari, a full GESPAC suite is expected to be used for its suitability to AUV applications

[Bihari 90]. Appendix A and B are Data Flow Diagrams (DFD) and Software Heirachy for

this project.

2. Mission Planning Expert System

The mission planning Expert System (MPES) is hosted on a Symbolics 3675

LISP machine. Using the KEE expert system shell, it has four major components: the

Mission Receiver, Mission Planner, Mission Constructor and Mission Executor. The

Mission Receiver acts as the interface agent for user input. This information is passed to

the Mission Planner which decides which path planning algorithm is best suited for the user

supplied circumstances. Using various search technique including A*, and best-first search,

the Mission Constructor does the actual path planning. The Mission Executor interfaces

with the AUV/simulator and provides the appropriate mission data for execution. Figure 1-

2 illustrates the MPES structure. [Ong 90]

3. NPS AUV Simulator

The NPS AUV 11 simulator contains a full set of submarine motion and

hydrodynamics equations providing accurate, real-time simulation. Implemented on a SGI

IRIS 4D/240 GTX graphics workstation, it displays a detailed underwater mapping of the

Monterey Bay. Variable terrain resolution is used automatically to allow real-time

operations. Its development is a joint effort between the computer science and mechanical

engineering departments at the Naval Postgraduate School. [Jurewicz 90]

3

C. THESIS ORGANIZATION

Chapter II reviews previous and current work in AUV technology. A detailed look at

various path planning techniques is provided.

Chapter I1 introduces the Tendril search. The original two dimensional and the

expanded four dimensional version in LISP are examined. Several learning points from the

task of translating the LISP program to Ada are reviewed. Limiting features of the four

dimensional Tendril search are presented as well as a look into the feasibility of the Tendril

bidirection search (TBS).

Chapter IV presents a vector field approach to path planning with a discussion of

advantages and disadvantages.

Chapter V presents a real-time path rt 'anner using the Real-time A* Search (RTA*).

Many questions are posed and plausible justification for the use of the RTA* is presented.

Chapter VI provides conclusions and recommendations for further research. Heavy

emphasis is placed on the recommendations, which provide good insight to the perceived

goals of the NPS AUV research.

4

MMission

Planm.nrolntuco xeuo

..... Construction nfDrtailo

Figure 1-2 Mission Planner Program Diagram

I1 AUTONOMOUS UNDERWATER VEHICLE RESEARCH

A. VEHICLE ARCHITECTURE

1. Texas A&M

Texas A & M University has made major contributions to AUV technology

conducting feasibility research. Reliability and fault tolerance were the primary concerns,

and no vehicle construction was intended. To accommodate this, 16 Sun Sparc stations,

fully distributed, were used (fully loosely coupled). [Cloutier 90]

Programmed in the C language, it incorporated nine embedded knowledge based

systems (KBS). Some important findings resulted from this research. The use of a "watch

team" knowledge base (KB) was overly centralized. This KB simulated the tasks and duties

performed by a human team aboard Navy submarines. By its centralized nature, results and

decisions were predictable, however, flexibility was reduced. There is a trade-off between

flexibility and predictability which must be closely considered [Cloutier 90].

2. Naval Ocean Systems Center (NOSC)

NOSC pioneered AUV research in the 1980's after extended involvement with

remotely operated vehicle (ROV) research since the 1960's. NOSC has several on-going

research efforts. Advanced unmanned search system (AUSS) was developed for search and

survey. The free-swimming mine neutralization vehicle (FSMNV) is also under

development. [Busby and Vadus 90]

3. Massachusetts Institute of Technology (MIT)

The Massachusetts Institute of Technology developed Sea Squirt with funding

from the National Oceanic & Atmospheric Administration and in cooperation with Draper

Labs. It is a light weight, low-cost AUV primarily used as a test platform for intelligent

algorithms. The research goal is to make a vehicle capable of operations in an adaptive

6

manner with respect to its environment in an uncharted area [Busby and Vadus 90].

Onboard systems include a GESPAC MPU - 20 board with a Motorola 68020 cpu and runs

OS - 9, like the NPS AUV I [Bellingham 90].

4. Defense Advance Research Projects Agency

The Defense Advance Research Projects Agency (DARPA) has been actively

involved in AUV research. It has provided about 90% of the research funding throughout

the research community and industry. As early as 1988, DARPA initiated projects with

Draper Laboratory and Martin Marietta. These projects focused on the research and

development of two vehicles and intelligence task research. Martin Marietta also planned

to develop a "hard time" aspect to navigation that entailed planning a path where arrival

times at specific way points are known before hand and met during execution. In 1989

DARPA in conjunction with Lockheed Missiles and Space Company began development

of an autonomous mine avoidance vehicle. [Busby and Vadus 1990]

5. International Submarine Engineering

Over the years, International Submarine Engineering, Ltd. (ISE) has developed

several unmanned underwater vehicles (UUV). Its DOLPHIN was a diesel powered vehicle

designed for offshore hydrographic mapping. The interesting aspect of this vehicle is the

use of GESPAC components. After an extensive market survey, GESPAC was chosen for

its price, performance, size, ruggedness and availability. [Zheng et. al. 90]

B. PATH PLANNING

1. General Path Planning

The ultimate goal of a path planner is to derive a continuous set of free space

points from the starting position to the goal position [Latombe 91]. For control of

autonomous vehicles this can be done at various levels of resolution. A route planner is

used at low resolution and a path planner provides a more specific solution to the path

planning problem. In essence, the path planner provides a detailed path for the various path

7

segments generated by the route planner [Ong 901. This thesis concentrates on the path

planning resolution.

Path planning is a well researched topic with many search techniques being used

in various research efforts. Most commonly used methods are: Breadth-first, A*, Hill

climbing, Depth-first and Best-first. Some of these will be presented later in this chapter.

Important to note is the complexity of the search methods. As search space

increases, some techniques, especially exhaustive methods, tend to be restrictive either due

to memory or time requirements. Branching factor is an important aspect to consider. In a

two dimensional search space there may be as many as eight adjacent nodes that the vehicle

can legally move to as illustrated in Figure 2-1. With the addition of a third dimension these

legal moves increase to 26 as illustrated in Figure 2-2. Methods are required to sufficiently

reduce the branching factor to make these techniques viable. [Ong 90]

2. Fast, Three-dimensional, Collision-free Motion Planning

a. General Description

Implemented in a nodal search space representation, this method successively

divides the search space into homogeneous octrees or to a set resolution limit (section b

below provides more detail on octrees). The less node division that is necessary, the easier

for the path planner to process the search space. It is evident that planning a path in a search

space with a small number of nodes is easier than to do so in a search space with a large

number of nodes. [Herman 86]

b. World Representation

Upon initialization, the world is represented as a single node. If the node is

not homogeneous (either wholly obstacle or free space) it is divided into eight children

nodes. Each new node is evaluated for homogeneity and if necessary divided further. This

process continues until all nodes are either wholly obstacles or free space, or the resolution

limit is reached. A tree structure is formed with the original node as the parent and the

resulting octree nodes as the children.

8

NORTH NORTH NORTH
WEST EAST

WEST START-- EAST

SOUTH SOUTH SOUTH
WEST EAST

Figure 2-1 Two Dimensional Legal Moves

Figure 2-2 Three Dimensional Legal Moves

9

I I I I I I

i-,

c. Search Techniques

Several search methods were incorporated in this method, to optimize time

and memory use:

1. Hypothesis and Test,

2. Hill Climbing,

3. A*.

The process started with the hypothesis and test method and switched to the hill climbing

method. When local maxima were encountered the A* process was used to overcome them.

Once past the local maxima, the program continued with the hill climbing process.

d Conclusions

It is important to note that this method may not find the minimal cost path and

only finds an adequate cost path. This may or may not be sufficient for some path planning

needs.

Another consideration is the use of several methods for path determination.

The advantage of using multiple methods is to avoid "traps" such as local maxima that

could stop a search from finding a path to the goal where one exists. Other individual

methods may not encounter local maxima "traps" but may be time restrictive. Thus for

timing considerations a less exhaustive method is used and the "traps" must be considered.

By making this time trade-off, other methods are required where one method may fail.

Although acceptable, using multiple methods adds to the complexity of the problem and

appears to provide little overall advantage in computational speed.

3. Bidirectional Staged Heuristic Search (BS*)

a. General Description

This technique can use any of the basic methods listed in the first paragraph

of this chapter. What makes this approach unique is how that basic method is used. BS* is

actually two searches: one starting at the starting point and working towards the goal, the

10

other starting at the goal and working towards the starting point. After each iteration a
"wave" of acceptable moves is generated for each search. When the two waves meet at a

connecting point a path from the starting point to the goal is completed. Figure 2-3

illustrates the BS*. [Kwa 89]

Wave front for START to GOAL search

START

GOAL

Wave front for QeAL to START search

Figure 2-3 Bidirectional Search Process

11

b. Trees

As the search expands on a node finding its subsequent legal moves, a tree-

like structure is generated. Here the branching factor becomes a problem: the trees grow

exponentially. Various methods, like pruning and trimming have been used to reduce the

size of the trees and provide more efficient processing. It has been proposed that generating

two trees, vice one, reduces the total effort of processing the search space. Therefore, by

dividing the search process into two halves (start-to-goal, and goal-to-start) the trees

generated are overall smaller than that generated by a single direction search. [Kwa 89]

c. Cost

With the reduction of tree size and search space, it would be logical to assume

the process to require less time to generate a path. This, however, is not the case. After each

iteration a check must be made to determine if the two search halves have met. This check

can be a costly process and may not reduce overall computational time.

Other researchers have tried to "push" or "nudge" the search tree growth

along an expected path and thereby reduce the number of "open" nodes. This, however, can

lead to a non-admissable solution to the problem and a less then optimal path may be

generated. Kwa uses nipping, pruning, trimming and screening to help reduce the number

of open nodes and reduce run-time. Nipping, pruning, trimming and screening are

techniques used to eliminate paths that are obviously too costly.

d. Advantages and Disadvantages

The most noteworthy advantage is that this method can be executed on a

parallel processing computer. With a multi-processor system such as the T-800 transputer,

each processor could perform a search. Taking this one step further, consider a path with

an intermediate way-point as indicated in Figure 2-4. A multi-processor system could

process each path segment (start-to-waypoint, waypoint-to-start, goal-to-waypoint,

waypoint-to-goal) on different processors. The same problem of checking for the

connecting point is still unavoidable.

12

WAVE FRONTS

START

Point

Figure 2-4 Bidirectional Search Process with Waypoint

13

4. Configuration Space (C-space)

a. General Description

The underlying assumption of C-space path planning is that it is easier to plan

for a point size vehicle then for a rigid body vehicle. By reducing the vehicle representation

to a point, the world model must be altered so that a safe path can be planned. How the

world is changed is the interesting aspect of this technique. [Warren 90]

b. C-Space Obstacles

Since the rigid body vehicle is represented as a point something must be done

to insure a safe path is planned [Lozano-Perez 83]. To accomplish this, obstacle size is

altered to reflect a vehicle size buffer as shown in Figure 2-5 [Latombe 91]. It is important

to note that obstacle buffer size varies depending on the vehicle orientation. Each

orientation specific obstacle is called a shield and can be calculated at run-time to reduce

preprocessing workload. [Latombe 91]

c. Conclusion

C-space obstacle representation may be good where very precise navigation

is necessary. Calculations for vehicle representation are reduced by representing the

vehicle as a point but computational time is increased by the requirement for calculating

the shields for each orientation. The four-dimensional Tendril search uses a very simplified

C-space concept. Orientation is limited to the four cardinal headings and each node is

represented by four shields.

5. Potential Field

a. General Description

Given a girded or nodal search space, potentials are assigned to each node.

These potentials are based upon proximity of a node to the goal or an obstacle. Nodes with

obstacles in close proximity will have a repulsion potential since it is undesirable to

position a vehicle in these nodes. Other nodes provide a free and clear path to the goal and

14

thus are assigned an attraction potential. Once the potential field is established any search

technique can be used to find the least cost path.[Warren 90]

Expanded obstacle

Obstacle/

Vehicle

Figure 2-5 Expanded C-Space Obstacle for a Vehicle with Fixed Orientation

b. World Representation

Figure 2-6 shows how a potential field can be represented. Free space is

assigned a potential based on the square of the distance from the goal. Nodes near obstacles

are assigned a potential based on the reciprocal of the distance from the obstacle, squared.

After preprocessing the search space, assigning potentials, a topology or landscape is

developed that allows a vehicle to travel "downhill" to the goal.[Warren 90]

15

c. Conclusion

Again, local maxima can cause a problem by "trapping" the search. Figure 2-

6 displays this and indicates the need for an alternate search method. In the figure, the

shortest path would be along the diagonal between the start and goal. The potentials,

however may drive the path in a less optimal direction or worse; trap the path at the local

maxima. The Direction search incorporates the potential field concept at a very abstract

level. Values are not assigned to each node, however, a "pointer" to the next node in the

shortest path to the goal is stored at each node in the search space.

6. Remarks

Each of the techniques presented have been researched well and the use of

multiple methods has been explored, yet combination of techniques in a single search is

somewhat rare. Each has its merit and could easily be incorporated in varying degrees of

complexity to produce an efficient path planner. The search techniques to be presented in

the following chapters use some variation of these techniques. The predominant difference

from previous research is that some of these techniques are combined into a single search

process.

16

START Potential Local Maxima

FREE

OBSTACLES

GOAL

Figure 2-6 Example Potential Field Representation

17

IlL THE TENDRIL SEARCH

A. GFNERAL

In the Tendril search, the search space is represented by an multi-dimensional array,

or lattice of nodes. Each node maintains several attributes to facilitate the path planning

process. One of the attributes is a list of the node's immediate neighbors, with an associated

cost to move to each neighbor. Only non-obstacle neighbors are maintained in this list and

represent the legal moves that can be made from the node. The legal moves from the

starting point represent the first WAVE. Legal moves are found for each node of this

WAVE and the process continues generating subsequent waves until the goal is reached.

B. LISP VERSION

1. Two Dimensional Problem

Originally written for a two dimensional search space [McGhee 90], there are

eight potential legal moves (one for each cardinal direction and one for each diagonal

move) that can be made from the starting poinL These legal moves are placed in an "open"

list, WAVE, of nodes to be expanded upon. The next wave is determined by finding the

legal moves for each node in the WAVE list. As each node is processed it is assigned a

tendril length representing the length of the current path from the start to that specific node.

There is an exponential increase in the number of nodes for each wave which could cause

limitations due to memory requirements. Since individual nodes can be reached via

multiple paths, it is important to consider each one so the shortest can be selected. By

pruning previously processed nodes whose assigned tendril length is less than that of the

current waves calculation for the tendril length, the longer and redundant pahss are

eliminated. This specifies that the node can be reached by a shorter path and the cunent path

need not be investigated. The pruning process helps to reduce the time required to

18

preprocess the search space. Even so, preprocessing of the search space for each node's

legal successor is not feasible, especially for real-time constraints.

2. Four Dimensional Problem

When a third dimension (depth) is considered, the problem becomes very

complex. Each node has 26 possible legal moves. This is unacceptable if real-time path

planning is needed. To reduce this number an additional dimension is considered, heading.

It is not unreasonable and is only natural to consider orientation when planning a path. Only

the cardinal headings (North, East, West and South) are considered in this program. Since

a vehicle must have a heading the number of legal moves can be reduced to nine as shown

in Figure 3-1. Thus the two dimensional problem is easily expanded to four dimensions

with little increase in computational complexity. More details of this program are found in

[Bonsignore 90]. Appendix C lists the four Dimensional LISP code (3dh.lisp).

C. ADA VERSION DESCRIPTION

1. General

"Why use Ada?" is a question surely posed by some researchers. Through a recent

mandate, the government requires the use of Ada for its software projects. This, however,

is not the driving force behind the use of Ada for this thesis. Ada was designed for use in

large programming projects. With characteristics such as separate compilation and generic

procedures, it facilitates the modularization of programming projects and allows several

programmers to work individually. Modularity also helps with program maintainability.

Ada provides multitasking and timing constructs which facilitate real-time systems

programming [Voltz, et al 84]. All of these attributes make Ada especially suitable for

AUV programming.

The initial intent of this thesis was to build a path planner with Ada reusable code.

Some difficulties with reusable code were encountered. The Ada software repository at

White Sands Missile Range is not quite "user friendly". Very general procedures, such as

building linked lists, were acceptable. More sophisticated code, however, was often

19

UP UP UP
NORTH j NORTH NORTH
WEST EAST

/4

WEST NORTH EAST

DOWN DOWN DOWN
SOUTH SOUTH SOUTH
WEST EAST

AUV

Figure 3-1 Nine Legal Moves When Heading is Considered
(Heading North)

20

difficult to find. Some of these procedures were not stored with "user friendly" file names

and often stored with coded names, making quick access difficult. Even when the

appropriate code was obtained and the module found to be usable, many modifications

were required. On large projects these modifications and subsequent testing may be more

costly then writing the procedures from scratch [Gaffney 89]. For these reasons this thesis

does not take advantage of reusable Ada software.

2. Direct Translation

An initial attempt at programming in Ada was made by making a direct

translation from LISP. All the LISP structures and functions were translated into Ada

records and procedures. This task was not easy since the two languages are very different.

Many modifications, although small, were required in the Ada code due to these language

differences.

a. Memory Problem

A major difficulty with the direct translation was that of memory usage. The

LISP version preprocesses the search space assigning a list of possible legal moves from

each node. In a two dimensional problem there are eight legal moves for each node (the test

search space is a 10 x 20 array resulting in approximately 1600 legal moves). The memory

requirement for this can be too large for some systems (as was the case for a modestly

configured 386SX). Preprocessing is wasteful since nodes that do not require processing

were processed anyway. These problems were solved by modification in the Ada version

which will be presented in subsequent sections of this chapter.

b. Speed

Due to the extensive search process requirements, the speed at which the

LISP version ran was slow. The directly translated Ada version did not run at all due to

system memory constraints, therefore no timing characteristics are available.

21

3. Four Dimensional Problem

Expanding the two dimensional problem to incorporate depth and heading

drastically increased memory requirements since the number of legal moves over tripled

resulting in a combinatorial explosion. As earlier stated, this was solved by considering

only those moves that the vehicle can immediately transition to when the vehicles heading

is taken into account By considering orientation in the search process unnecessary path

searches were eliminated.

4. Modifications

Many modifications were required to enable the four dimensional Ada Tendril

search to run. Some changes were very simple and others required a complete rewrite to

achieve the efficiency required. Appendix D is a data dictionary, DFD, and code for this

process.

a. Smaller records

The LISP version record structure for a node maintained a list of all legal

moves possible from that node. By eliminating this attribute the size of the record was

substantially reduced thus easing the limitations imposed by memory restrictions. Section

b. below describes how the legal moves are determined.

b. "F_"OVES"

To reduce memory requirements the preprocessing of the search space was

eliminated. Instead, the legal moves were determined as each node was reached in the

search process. Thus if looking for a path between two adjacent nodes the legal moves for

the nodes far removed from the possible path are not determined. Listed below, is the

pseudo-code representation of this process.

procedure FMOVES (NARRAY: in out NODE..ARRAY;
ROOT in out LIST-PTR) is

22

HEADING : INT_TYPE := ROOT.LOC(4);

begin
case HEADING is

when the heading is north=>
check the upper northwest node
check the upper north node
check the upper northeast node
check the northwest node
check the north node
check the northeast node
check the lower northwest node
check the lower north node
check the lower northeast node

when heading east => ...
when heading south =>...
when heading west =>...
when others =>

null;
end case;

end FMOVES;

procedure FPATH (NARRAY : in out NODEARRAY) is

ROOT LIST-PIR := WAVE;

begin
while the root contains valid information loop
FMOVES (NARRAY, ROOT);
ROOT:= WAVE.NEXT;

end loop;
if the goal is found then

return to the main process (DO-SEARCH)
end if,

end FPATH;

FJMOVES, called from within FPATI, takes as input the search space (NARRAY) and

the current node being processed (ROOT). Using the ROOT's heading the nine legal moves

are determined. Each legal move is processed and if the GOAL is among them, the search

is complete, otherwise they are assigned to a list called WAVE. The legal moves for each

23

node in WAVE are then generated and the process of checking for GOAL is repeated. This

continues until the goal is found or all nodes are processed without reaching the GOAL.

e. Waypoint capabifiy

It is conceivable that an AUV may need to navigate to some intermediate

points that may not be along the optimal path between the start and goal. For this reason a

waypoint capability is required. The algorithm below illustrates the TENDRILWP search

in pseudo-code which allows multiple waypoint path generation.

procedure TENDRILWP is

begin
GET_.DATA;
DOSEARCH;

end TENDRILWP

procedure GETDATA is

wbe there are still points to enter loop
get way point coordinates
exit when done

end loop

procedure DO-SEARCH is

begin
read in the terrain data

create the output file
loop

exit when the second node in WAVE is null
while WAVE is not empty and the goal isn't found
FPATH

end loop;
print the path
reset the search space and variables to initials values

end loop
close the output file

end DOSEARCH

24

The tendril search technique is used in each path planning segment. A "while...loop"

construct was added to the DOSEARCH procedure (in the PATHWP package). Each

waypoint is processed in order, finding a path between each of two successive points. The

generated path segment is printed to a file and the next two points are processed until

complete. Upon completion of a path segment many variables need to be reset to their

initial values to allow the next path segment to be generated. The RESETALL procedure

resets global variables.

This path planning technique divides the search into several small searches

lending itself to concurrent processing. While one processor finds a path from the start to

the waypoint, another processor could find the path from the waypoint to the goal. This

version does not take advantage of concurrent processing, it finds each path segment

sequentially. Appendix E contains the Data Dictionary, DFD and program code.

Limitations

As previously indicated, memory and speed have continued to be a concern in this

methods efficiency [Richbourg et. al. 87]. If the whole search space needs to reside in

memory, it is restricted by the machines capabilities. If time constraints permit, reading and

writing to a file may be a feasible solution. This aspect was not investigated in this thesis.

It is interesting to note that as the obstacle density increases, a larger search space can be

stored in memory without causing memory problems. This is a result of "pruning" the

obstacle nodes from the legal move and open node lists. As the number of obstacle nodes

increases the free space is logically decreased.

5. The Tendril Algorithm

The Tendril search takes as input the starting coordinates including orientation

(row, col, dep, hdg) and the goal. Terrain data is read from a file and is implemented in a

dynamic array described by the first few items (array dimensions) read from the file. From

the starting point and consistent with the initial heading, the legal moves are determined

and assigned to WAVE. Each node in WAVE is assigned a parent node (in this case the

25

parent is the starting point) and its tendril length is calculated from the tendril length of the

parent plus the distance from the parent to that node. Checks are made to ensure nodes

previously processed are not reprocessed unless the resulting tendril length is shorter than

the nodes current tendril length. This process is performed on each node in WAVE which

generates another wave. Iteratively, it continues until a wave reaches the goal. Once the

wave containing the goal is fully processed, the program stops the search and backtracks

from the goal, via its parent "pointer" to the start, printing out the path (or writing it to a

file). Listed below is the pseudo-code of the Tendril search.

procedure TENDRIL is

begin
GETDATA;
DO-SEARCH;

end TENDRIL;

procedure GETDATA is

begin
get the terrain file name
get array data
get START and GOAL coordinates

end GET_DATA

procedure DO-SEARCH is

begin
get the terrain data
while the WAVE list is not empty loop

FnPATH
exit when the goal is found

end loop;
print the path

end DO-SEARCH

As previously described the F.MOVES procedure performs most of the work. It

checks for the ROOT's heading and uses a case statement to handle each of the cardinal

headings. For example, when the vehicle is heading north (HDG = 1) only the nine nodes

26

in a northerly direction are evaluated. These evaluations are performed in the

THEMOVES package. Each CHECK_ NODE (where NODE represents one of the nine

legal moves) procedure determines the coordinates of the legal node being evaluated and

calls the CKSTATE procedure. In CKSTATE the node's state is determined to be either

free space or obstacle space. If the node is free space, the GROWTEND process is called.

This process adjusts the tendril length, assigns the parent (ROOT), and attaches that node

to the NEWWAVE list. Other procedures are used to process the WAVE and

NEWWAVE lists in support of the FMOVE procedure.

D. TENDRIL BIDIRECTIONAL SEARCH

1. Concept

Although not implemented in this research the Tendril Bidirectional search (TBS)

appears to be a viable solution to real-time processing problems. This method lends itself

well to concurrent processing as previously described for the Tendril search with

waypoints. With the installation of a T-800 transputer board into the NPS AUV 11,

concurrent processing is highly desirable and achievable.

2. Limitations

An important consideration is the need to check for completion after each wave

iteration. This could be a difficult problem, reducing the advantages of concurrency by

requiring a high degree of communication between each search process.

E. EVALUATION AND RESULTS

For ease of comparison, a smaller terrain representation was used in the evaluation (5

rows X 5 columns X 5 depths X 4 headings). When tested with an obstacle free model, the

paths generated in both the Ada and LISP (compiled) versions were identical. The Ada

code was much faster (.24 seconds vice .933 seconds for LISP). It is especially significant

considering the following facts: While the LISP version has the terrain data hard coded, the

Ada version must open and read the data from a disk file. The Ada version writes its results

27

to the screen and to a file. Both of these differences are 1/0 processes which are time
intensive. Even with these !/) hindrances the Ada version was the fastest. In an obstacle

intense terrain model, results were similar.

28

IV. VECTOR FIELD METHOD

A. GENERAL DESCRIPTION

Although a very simple process, this method has proven to be the most efficient of

those investigated in this thesis. Listed below, is the pseudo-code for the DIRECTION

procedure.

procedure DIRECTION is

begin
GETDATA
DODIR

end DIRECTION

procedure GETDATA is

begin
get the terrain file name
get array data
get START and GOAL coordinates

end GETDATA

procedure DODIR is

begin
get the terrain data
FINDMOVES
FINDPATH
P_PATH

end DODIR

The legal moves are determined by searching backwards from the goal. The node attribute,

NEXT, stores the coordinates of a successor node having the shortest distance to traverse.

As legal moves are determined the NEXT attribute is assigned the coordinates of the node

being expanded. Therefore the nodes generated from the goal will have the goals

coordinates stored in the NEXT attribute. Figure 4-1 illustrates the backwards search

process and direction assignment for a three dimensional problem (row, column, and

29

heading) with the GOAL having a southerly orientation. The numbers in each node

represent the order that they were processed during the search. Two nodes adjacent to the

GOAL remain unassigned because it is impossible for these nodes to move directly to the

\ 22

_ _ *13 /

19 14 /5 /8

18 10 lp \ 1 # 2 7

// GOAL
20 12 9

Figure 4-1 Representation of a Vector Field

GOAL with the proper orientation. This is not the case in the four dimensional problem

(including depth). A transition in depth will allow all paths to the GOAL to be generated.

Nodes are processed with a priority. A move not requiring a heading change is

less expensive than moves that do. Nodes are put into a search queue based on the cost to

move into the next node. The entire search space is processed this way, resulting in
"vectors" being assigned to every free space node. Once the starting point is entered, all

moves to the goal are immediately available.

30

B. ADVANTAGES AND DISADVANTAGES

The most obvious advantage is the speed at which this process runs as compared to the

Tendril search. To find a path, the user provides the starting point. Each individual node

"knows" its next move to reach the goal. Path determination is just a matter of following

the NEXT attributes until the goal is reached. No calculations are required during the path

planning process making it very fast.

Other searches need both the starting point and the goal to preprocess the search

space. The Direction process needs only the goal to prepare the search space. Since the

preprocessing is not dependent on the starting point, many trials with various starting points

can be investigated with only the cost of the preprocessing once.

Another advantage is the ease at which obstacles are handled during the process.

Originally written for only non-obstacle terrain, a small modification was required to

handle obstacles (i.e. an obstacle is an illegal NEXT move).

As can be seen in Figure 4-1, all the paths to the GOAL may not be generated. If the

starting point is the node just to the right of the GOAL, a path may not be found (where one

exists) to reach the GOAL with the appropriate orientation (southerly heading). This

disadvantage can be overcome when considering a four dimensional problem.

C. BASIC PROGRAM FLOW

Similar to the Tendril search, terrain, starting point and goal information are taken as

input. Some of the procedures are exactly the same as those used in the Tendril search,

while others required minor modifications. Most notably is that FINDMOVES procedure

processes legal moves in "reverse" from the FMOVES procedure in the Tendril search. A

pseudo-code version of this procedure is listed below. It finds all the legal moves from

which the goal can be reached as opposed to which node can be move into from the starting

point. The legal moves are placed into a queue of active nodes, ACTIVE, based upon a

predefined order relative to heading. The ordering results in the nodes with the least cost

being at the head of the queue and the rest follow in increasing cost order. Each member of

31

the ACTIVE queue is processed in a similar manner with its legal moves being appended

to the end of the queue. As each node is processed its NEXT attribute is assigned the

coordinates of its parent. This is, essentially, a pointer to the shortest move to attain the

procedure FIND_MOVES (N.ARRAY : in out NODE_ARRAY) is

heading INTTYPE:= ACTIVE.LOC(4);
list LOCARRAY:= ACTIVE.LOC;
newlist: LOCARRAY := ACTIVE.LOC;

begin
while the ACTIVE list is not empty loop
heading := ACTIVE.LOC(4);
list := ACTIVE.LOC;
newlist:= ACTIVE.LOC;
case heading is

when heading north =>
check the southern node
check the upper south node
check the lower south node
check the southeast node
check the upper southeast node
check the lower southeast node
check the southwest node
check the upper southwest node
check the lower southwest node

when heading east => ...
when heading south => ...
when heading west => ...
when others =>

null
end case;

end FINDMOVES;

goal. Processing the entire search space results in every free space node being assigned a

NEXT node to move to and a cost associated with that move. Obstacles are not processed

and a NEXT move cannot be assigned the coordinates of an obstacle. The A_AND_A

(analyze and assign) procedure insures the assignment of the NEXT attribute is done

32

properly. The PPATH process generates the path. Beginning with the starting node, it

follows the NEXT "pointers" until the goal is reached and writes the nodes to a file.

Appendix E contains the Data Dictionary, DFD, and program code.

D. THE DIRECTION SEARCH ALGORITHM

Producing most of the work for this technique is the, previously mentioned,

FIND_MOVES procedure. Having passed in NARRAY (the array of nodes) it uses the

GOAL and a case statement to determine legal moves. It is very similar to the FMOVES

procedure in the Tendril search except that it works in "reverse." Looking at the orientation

required in the GOAL, it determines what node an AUV can transition from to attain that

GOAL. Procedures in the THEMOVES package then determine the coordinates of these

nodes and calls the AANDA procedure (analyze and assign). In this procedure it is

determined if the nodes are free or obstacle space. If a node is free space it is assigned a

value, DIST, equal to the distance that must be traversed to enter that node. It is also

assigned to the ACTIVE queue in a specified order as previous detailed. Other procedures,

similar to the Tendril search, are supporting means for processing the ACTIVE list.

E. RESULTS AND EVALUATION

Similar to the timing results of the Ada version of the Tendril search, the Direction

search is significantly faster then the LISP Tendril search. The results of a search conducted

in an obstacle free space produced similar results, although slightly faster (.2271 seconds

vice .233 for Ada Tendril). This timing variance may be explained by I/O differences. A

significant timing difference was noted between the searches in an obstacle intense

environment. The Direction search was much faster (.11 seconds vice .329 seconds). This

is attributed to the different way obstacles are handled in the two programs. The Direction

search has much less overhead for handling obstacles.

33

V. PATH REPLANNING

A. GENERAL DESCRIPTION

A path replanner is a path planner with more stringent time constraints. It is needed

when an AUV is required to circumnavigate an unexpected obstacle to continue its mission.

This replanner must, therefore, operate in real-time to facilitate an efficient transition to an

alternate path.

The Real-time A* (RTA*) algorithm presented by Korf [Korf 88] was modified to

incorporate four dimensions. This method can use any of the previously mentioned

techniques for searching (Best-first, Tendril, etc.) but only searches to a specified search

depth. Nodes at the search depth ae called frontier nodes.The method implemented in this

thesis uses the Tendril search to a search depth of three nodes. As the search progresses, the

cost of reaching the frontier nodes is calculated. Adding this cost to an estimate to reach the

goal, the frontier node with the lowest overall cost is chosen to be expanded upon. The

process is repeated at this intermediate frontier node and successively until the goal is

reached. Appendix F contains the Data Dictionary, DFD and program code. Pseudo-code

for the RTA* search is listed below.

procedure RTA is

begin
GETDATA
DO-SEARCH

end RTA

procedure DOSEARCH is

begin
get the terrain data from file
while the goal is not found loop

find the frontier nodes

34

pick the node with the estimated least cost
end loop
print the path

end DOSEARCH

B. JUSTIFICATION

Previously presented search methods may not be efficient enough for real-time path

replanning. As a possible solution to this problem, the RTA* technique was investigated.

Due to the nature of the AUV's working environment it is feasible to "expect the

unexpected." The dynamic nature of the undersea environment can alter terrain and

obstacles swiftly, rendering preprogrammed paths obsolete. For this reason an on-board

replanner is required which must operate in real-time.

Many considerations went into the implementation of the RTA* for this thesis:

1. What search method should be used to find the frontier nodes?

2. What should the search depth be?

3. Would the old path be completely disregarded or should a new path try to return to the

old path as soon as possible?

4. Should this procedure handle the initial collision avoidance maneuver?

5. How "real" is real-time?

These questions had to be properly answered to produce a true real-time path

replanner. Since this thesis predominately examined the Tendril search, it was determined

that it should be used for the search method in the RTA*. The search depth was arbitrarily

chosen at five nodes and later reduced to three because of memory limitations. Old path

data is discarded and the new path does not attempt to "get back on" the old path. Initial

collision avoidance is to be performed by a different procedure and this RTA* would be a

path replanner only. Strict real-time constraints have not been set.

35

C. DISADVANTAGES

Although good for two dimensional problems, the RTA* is very memory intensive for

multi-dimensional problems. As waves are processed the legal moves for all nodes up to

the search depth must be retained. To illustrate the exponential growth of search nodes,

consider a starting point that has only three legal moves in its first frontier. At a two node

frontier distance (or second frontier) 27 legal moves must be maintained and 243 legal

moves at a three frontier. A combinatorial explosion results with further processing. For a

moving vehicle, a three node length look ahead capability may be insufficient (depending

on node size) for obstacle avoidance reaction time.

1). EVALUATION

Due to the massive memory requirements, this process appeared to be fruitless

especially when the good results of the previously presented methods are considered. Upon

a second consideration, it is feasible to incorporate pruning methods to help eliminate

unnecessary processing of nodes which should not be processed. Pruning techniques were

successfully used in the other methods and therefore should not be difficult to implement

into the RTA* search. Further research with this method is recommended.

36

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

This thesis investigated several path planning techniques using a nodal representation

of the search space. A four dimensional Tendril search was implemented in Ada and a time

comparison to a LISP version was made. The results indicate that it is feasible to use Ada
for intelligent, real-time path planning. One version of the Tendril search incorporated a

waypoint capability. It is an important aspect that should be looked at more carefully for

implementation in the NPS AUV II.

The Direction search, using a vector field was implemented. This method proved to be

the fastest of the methods investigated. Due to its speed and simplicity, it is highly
recommended for the NPS AUV II replanner for the near term.

The RTA* search initially appeared to be cumbersome for multi-dimensional path

replanning. Upon reconsideration, it could be modified to take advantage of pruning

techniques to eliminate unnecessary node processing.

B. RECOMMENDATIONS

Each method of path planning investigated was valuable for various reasons.

Simplicity was the prevailing aspect in all methods which, in turn, resulted in small time

requirements for search space processing. Of these procedures the Direction search was the

simplest and fastest, thus recommended for further research to incorporate into the NPS

AUV H as the onboard path replanner.

It should be noted that there are limited orientation capabilities for each method.

Although only the cardinal headings were used, the results are sufficient for path-planning

purposes. The guidance module of the NPS AUV II does not use the orientations produced

in the path planning process. It uses only three dimensional coordinates, generating

37

orientation more accurately itself. Thus, the course orientations of these path planners are

only for their internal use to accommodate more accurate planning. [Magrino 91]

The use of waypoints is a very important feature of path planning, whether for an

aircraft, AUV, or a trip to the corner market. Use of the Direction search with a waypoint

capability is recommended for further research. It may be difficult or time restrictive since

the vector field generated depends on the goal. A new vector field is required for each path

segment. Consideration should be given to dividing the search space into portions, each

path segment having its own portion of the search space eliminating the requirement to

reinitialize the entire search space after each path segment is planned.

The Tendril Bidirectional Search (TBS) lends itself to concurrent processing. The use

of transputers could make this an exceptional method for real-time path planning.

Consideration should be given to the use of multiple path planning and replanning

methods. Planning for obstacle intense environments is significantly different from

obstacle sparse environments. In most cases it appeared that the easiest path to plan (no

obstacles) took the longest time. The Mission Planning Expert System has the capability to

determine appropr dte p'anning methods yet it has very few methods implemented. Further

research is required to build upon the MPES path planning methods.

38

"PENDEK A - Data Flow Diagram for the NPS AUV H

ta

8R oocq
z§Lug

cn
0 doz

z E
caW8

0 z
ON
MY zop

Eg 6y

0
'n

oz
0

39

APPENDIX B -
NPS AUV UI System Block Diagram

E~nviiuwnenal Mio Missai
models Execuaorer

Dataase Sse

Incremental
Maneuvers

GeograhWapoinus
andsTakclae

RecogitionLOS

Heading
speed

Mode
Comnmds

Navigation Autopilot
Sysyste

Vehicle
Soas Spe.Vehicle Condition

DphSystams Montoring
Sensou

40

APPENDIX C
Three Dimensional Tendril Search in LISP

defstruct node state parent tendril-length link-list)
(defvar *new-active-node-list* nil)
(defvar *active-node-list* nil)
(defvar *goal* nil)
(defvar *goal-flag* nil)
(defvar *node-armay* (make-array '(6 7 7 7)))
(defvar *cycle-number* 0)
(defvar *terrain* (make-array '(6 7 7 7) :initial-contents (ommitted)

(defun create-node (h k i j)
(setf (aref *node-array* h k i j) (make-node)))

(defun initialize-state (h k i j)
(if (= I (aref*terrain* h k i j))
(setf (node-state (aref *node-array* h k i j)) 'obstacle)))

(defun set-state (heading depth row column state)
(setf (node-state (aref *node-array* heading depth row column)) state))

(defun set-parent (heading depth row column parent)
(setf (node-parent (aref *node-array* heading depth row column)) parent))

(defun set-tendril-length (heading depth row column length)
(setf (node-tendril-length (aref *node-array* heading depth row column)) length))

(defun set-link-list (heading depth row column list)
(setf (node-link-list (aref *node-array* heading depth row column)) list))

(defun state (heading depth row column)
(node-state (aref *node-array* heading depth row column)))

(defun parent (heading depth row column)
(node-parent (aref *node-array* heading depth row column)))

(defun tendril-length (heading depth row column)
(node-tendril-length (aref *node-array* heading depth row column)))

(defun link-list (heading depth row column)
(node-link-list (aref *node-array* heading depth row column)))

41

(defun make-terrain (heading-size depth-size row-size column-size)
(dotimes (h heading-size 'terrain-initialized)
(dotimes (k depth-size)
(dotimes (i row-size)
(dotimes Ci column-size)
(create-node h k i j)
(initialize-state h k i j))))))

(defun legal-fwd-connected-link-list (heading depth row column)
(non-nil-cons (4-link heading depth (1- row) column)
(non-nil-cons (diag-link-ul 2 depth (1- row) (1- column))
(non-nil-cons (diag-link-ur 4 depth (1- row) (1+ column))
(non-nil-cons (diag-up-link-ul 2 (1- depth) (1- row) (1- column))
(non-nil-cons (diag-up-link-u heading (1- depth) (1- row) column)
(non-nil-cons (diag-up-link-ur 4 (1- depth) (1- row) (1+ column))
(non-nil-cons (diag-down-link-ul 2 (1+ depth) (1- row) (1- column))
(non-nil-cons (diag-down-link-I heading (1+ depth) (1- row) column)
(non-nil-cons (diag-down-link-ur 4 (1+ depth) (1- row) (1+ column)) nil))))))))))

(defun legal-left-connected-link-list (heading depth row column)
(non-nil-cons (4-link heading depth row (1- column))
(non-nil-cons (diag-link-ul 1 depth (1- row) (1- column))
(non-nil-cons (diag-link-il 3 depth (1+ row) (1- column))
(non-nil-cons (diag-up-link-ul I (1- depth) (1- row) (1- column))
(non-nil-cons (diag-up-link-I heading (1- depth) row (1- column))
(non-nil-cons (diag-up-link-li 3 (1- depth) (1+ row) (1- column))
(non-nil-cons (diag-down-link-ul 1 (1+ depth) (1- row) (I- column))
(non-nil-cons (diag-down-link-I heading (1+ depth) row (1- column))
(non-nil-cons (diag-down-link-ni 3 (1+ depth) (1+ row) (1- column)) nil))))))))))

(defun legal-back-connected-link-list (heading depth row column)
(non-nil-cons (4-link heading depth (1+ row) column)
(non-nil-cons (diag-link-il 2 depth (1+ row) (1- column))
(non-nil-cons (diag-link-ir 4 depth (1+ row) (1+ column))
(non-nil-cons (diag-up-link-li 2 (1- depth) (1+ row) (1- column))
(non-nil-cons (diag-up-link-d heading (1- depth) (1 + row) column)
(non-nil-cons (diag-up-link-lr 4 (1- depth) (1+ row) (1+ column))
(non-nil-cons (diag-down-link-il 2 (1+ depth) (1+ row) (1- column))
(non-nil-cons (diag-down-link-d heading (1+ depth) (1+ row) column)
(non-nil-cons (diag-down-link-ir 4 (1+ depth) (1+ row) (1+ column)) nil))))))))))

(defun legal-right-connected-link-list (heading depth row column)
(non-nil-cons (4-link heading depth row (1+ column))

42

(non-nil-cons (diag-hnk-Ir 3 depth (1+ row) (1+ column))
(non-nil-cons (diag-link-ur 1 depth (1- row) (1+ column))
(non-nil-cons (diag-up-link-ir 3 (1- depth) (1+ row) (1+ column))
(non-nil-cons (diag-up-link-r heading (I- depth) row (I+ column))
(non-nil-cons (diag-up-link-ur (I- depth) (1- row) (1+ column))
(non-nil-cons (diag-down-link-ir 3 (1+ depth) (1+ row) (1+ column))
(non-nil-cons (diag-down-link-r heading (1+ depth) row (1+ column))
(non-nil-cons (diag-down-link-ur 1 (1+ depth) (1- row) (1+ column)) ni))))))

(defun 4-link (heading depth row column)
(if (not (equal (state heading depth row column) 'obstacle))
(list (list heading depth row column) 2)))

(defun diag-link-ul (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading depth row (1+ column)) 'obstacle))
(not (equal (state heading depth (1+ row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-link-li (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading depth (1- row) column) 'obstacle))
(not (equal (state heading depth row (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-link-Ir (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading depth (1- row) column) 'obstacle))
(not (equal (state heading depth row (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-link-ur (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading depth row (1- column)) 'obstacle))
(not (equal (state heading depth (1+ row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-ul (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

43

(defun diag-up-link-I (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth row (1+ column)) 'obstacle))))
(list (list heading 6epth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-li (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-d (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-lr (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-r (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth row (I- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-ur (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-up-link-u (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1+ depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-ul (heading depth row column)

44

(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-I (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth row (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-li (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) (1+ column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-d (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-lr (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1- row) (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-r (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth row (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-ur (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))
(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) (1- column)) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun diag-down-link-u (heading depth row column)
(if (and (not (equal (state heading depth row column) 'obstacle))

45

(or (not (equal (state heading (1- depth) row column) 'obstacle))
(not (equal (state heading depth (1+ row) column) 'obstacle))))
(list (list heading depth row column) (* 2 (sqrt 2)))))

(defun non-nil-cons (item list)
(if (null item) list (cons item list)))

(defun initialize-heading-connected-map (heading-size depth-size row-size column-size)
(make-terrain heading-size depth-size row-size column-size)
(dotimes (h(- heading-size 2))
(dotimes (k (- heading-size 2))
(dotimes (i (row-size 2))
(dotimes (j (- column-size 2))
(set-tendril-length (1+ h) (1+ k) (1+ i) (1+ j) 0)
(if (= (+ h) 1)
(set-link-list (1+ h) (1+ k) (1+ i) (l+j)
(legal-fwd-connected-link-list (1+ h) (1+ k) (1+ i) (1I+ j))))
(if(= (1+ h) 2)
(set-link-list (1+ h) (1+ k) (1+ i) (l+j)
(legal-left-connected-link-list (I+ h) (1+ k) (1+ i) (I+ j))))
(if(= (1+ h) 3)
(set-link-list (1+ h) (1+ k) (1+ i) (1+j)
(legal-back-connected-link-list (1+ h) (I+ k) (I+ i) (I+ j))))
(if (= (1+ h) 4)
(set-link-list (1+ h) (1+ k) (1+ i) (1+ j)
(legal-right-connected-link-list (I+ h) (I+ k) (1+ i) (I+j)))))))

(defun update-root-node (heading depth row column new-tendril-length new-link-list)
(set-tendril-length heading depth row column new-tendril-length)
(set-link-list heading depth row column new-link-list))

(defun activate-end-node (root node residue)
(if (equal node *goal*) (setf *goal-flag* t))
(set-state (first node) (second node) (third node) (fourth node) *cycle-number*)
(set-parent (first node) (second node) (third node) (fourth node) root)
(set-tendril-length (first node) (second node) (third node) (fourth node) residue)
(setf *new-active-node-list* (cons node *new-active-node-list*)))

(defun verify-parent (root node residue)
(when (> residue (tendril-length (first node) (second node) (third node) (fourth node)))
(set-parent (first node) (second node) (third node) (fourth node) root)
(set-tendril-length (first node) (second node) (third node) (fourth node) residue)))

46

(defun test-link (root link tendril-length)
(let ((residue (- tendril-length (second link)))

(end-node-state (state (first (first link)) (second (first link)) (third (first link)) (fourth (first
link)))))
(cond ((and (null end-node-state) (>= residue 0))
(activate-end-node root (first link) residue) nil)
((and (numberp end-node-state) (= *cycle-number* end-node-state)
(>= residue 0))
(verify-parent root (first link) residue) nil)
((null end-node-state) link))))

(defun grow-tendrils (root tendril-increment)
(let* ((heading (first root)) (depth (second root)) (row (third root)) (column (fourth root))
(new-tendril-length (+ tendril-increment (tendril-length heading depth row column)))
(new-link-list nil))
(dolist (link Oink-list heading depth row column)
(update-root-node heading depth row column new-tendril-length new-link-list))
(setf new-link-list (non-nil-cons (test-link root link new-tendril-length)
new-link-list)))))

(defun increment-wavefront (tendril-increment) ;returned value not used
(dolist (root *active-node-list* *new-active-node-list*)
(setf *new-active-node-Ust*
(non-nil-cons (test-root root tendril-increment) *new-active-node-list*))))

(defun test-root (root tendril-increment) ;returns root if any tendrils alive
(if (grow-tendrils root tendril-increment) root))

(defun find-path (start goal tendril-increment)
(initialize-heading-connected-map 6 7 7 7)
(set-state (first start) (second start) (third start) (fourth start) 0)
(setf *goal* goal *cycle-number* 0 *active-node-list* (list start)
goal-flag nil)
(loop (if (or (null *active-node-list*) (not (null *goal-flag*)))
(return (if (not (null *goal-flag*)) (pprint (path-to-goal goal)))))
(setf *new-active-node-list* nil)
(setf *cycle-number* (1+ *cycle-number*))
(setf *active-node-list* (increment-wavefront tendril-increment))))

(defun path-to-goal (goal)
(let ((parent (parent (first goal) (second goal) (third goal) (fourth goal))))
(if parent (cons goal (path-to-goal parent)))))

47

APPENDIX D (part 1)

Table 1: Data Dictionary for the Tendril Search

PACKAGE
PROCDURR TYPE

VARIABLE

GLOBALS

DATA.JILE FILE-TYPE
PATH-YILE

LOC-ARRAY amy (1..4) of INT TYPE

LIST rwcod (LOC: LOC-ARRAY
INC: NTTYPE
NEXT: LISTPTR)

NODE record (STATE : INT-TYPE
PARENT : LOCARRAY
TENDLEN: NTTYPE)

NODEARRAY armay (INT-TYPE range <>,
DNTYPE range <>,
INTJYPE range <>,
INT-.TYPE range <>) of NODE

START_-TIME TIME
END..TIME
TIE DURATION

MAX-.ROW NT_1TYPE
MAXCOL1
MAX-DEP
MAX-HDG
DIAG-COST := 99
CARDCOST := 70

48

Table 1: Data Dictionary for the Tendril Search

PACKAGE
EBOEDURE TYPE

VARIABLE

WAVE LISTIR:= null
NEWWAVE
NWTAIL
LASTNEWWAVE
WAVEHEAD
WAVETAIL
THE_PATH
THEPATH_CURRENT
TRASH

START LOCARRAY

GOAL

GOALFOUND BOOLEAN:= FALSE

PATH

GET ATA

FILENAME STRING (L..12)

NAME_LEN NT_TYPE
P PATH

NEXTLOC LOCARRAY

HEADING INTTYPE:= ROOT.LOC (4)

F PATH

ROOT LISTR:= WAVE

DOARCH

N_ARRAY NODEARRAY (1..MAXROW,
1..MAXCOL,
1..MAXDEP,
1..MAX-HDG)

49

Table 1: Data Dictionary for the Tendril Search

PACKAGE
]PROCMURETYPE

VARIABLE

THE-MOVE
C K S ATE

NEWELE LIST-FIR

NEWLOC LOCARRAY: ROOTIOC

50

DATA FLOW DIAGRAM for the TENDRIL SEARCH (part 2)

TENDRIL.DO

SEARCH

NARRAY

RooRRA

TER fPATH P

N _ARRAY

~~N Y

NEW LOC

N~~~ AIMAGR YlEC
ROOT ROOT

NENE WAVEE

51

TENDRIL SEARCH CODE (part 3)

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : TENDRIL.ADA
--DESCRIPTION : Main procedure for the Tendril search
--CALLS : GET-DATA and DOSEARCH in the PATH package
--NOTES

with TEXT_10, GLOBALS, PATH;
use TEXTIO, GLOBALS, PATH;

procedure TENDRIL is

begin
GETDATA;
DO__SEARCH;

end TENDRIL;

52

.l l I I

--NAME : J. Bonsignore, Jr.
--DATE 22 Jan, 1991
--REVISED
--TITLE : GLOBALS.ADS
--DESCRIPTION : Global variables for the searches
--CALLS
--NOTES

with TEXT_10, CALENDAR;
use TEXT_1O, CALENDAR;

package GLOBALS is

subtype INT TYPE is INTEGER;
package INT_10 is new INTEGERIO (INTTYPE);
package FLOATIO is new FLOATIO (FLOAT);
use INTIO, FLOATIO;

type LOCARRAY is array (1..4) of INTTYPE;

type LIST;
type LIST PTR is access LIST;
type LIST is

record
LOC : LOC ARRAY:= (others => 0);
INC : INT-TYPE := 0;
NEXT : LISTPTR;

end record;

type NODE;
type NODE PTR is access NODE;
type NODE is

record
STATE : INT TYPE := 0;
PARENT : LOC ARRAY := (others => 0);
TEND LEN : INTTYPE := 0;

end record;

type NODEARRAY is array (INTTYPE range <>, INTTYPE range
<>,INTTYPE range <>, INTTYPE
range <>) of NODE;

53

DATAFILE : FILETYPE;
PATHFILE : FILETYPE;

STARTTIME : TIME;
ENDTIME : TIME;

T_TIME : DURATION;

MAXROW : INTTYPE;
MAXCOL : INT-_TYPE;
MAXDEP : INTTYPE;
MAXHDG : INTTYPE;

DIAGCOST : INTTYPE := 99;
CARDCOST : INTTYPE := 70;

WAVE : LIST PTR := null;
NEWWAVE : LIST PTR := null;
NWTAIL : LISTPTR := null;
LASTNEWWAVE : LISTPTR := null;

WAVEHEAD : LIST PTR := null;
WAVETAIL : LIST PTR := null;
THEPATH : LISTPTR := null;
THEPATHCURRENT : LISTPTR : null;

TRASH : LISTPTR := null;

START : LOC ARRAY;
GOAL : LOC ARRAY;

GOALFOUND : BOOLEAN := FALSE;

end GLOBALS;

54

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE PATH.ADS
--DESCRIPTION :

--CALLS
--NOTES

with TEXT_10, GLOBALS, THEMOVE,

UNCHECKEDDEALLOCATI ON, CALENDAR;
use TEXTIO, GLOBALS, THEMOVE, CALENDAR;

package PATH is

procedure DOSEARCH;

procedure GETDATA;

procedure READ-TER (NARRAY : in out NODEARRAY);

procedure PPATH (NARRAY : in out NODEARRAY);

end PATH;

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : PATH.ADB
--DESCRIPTION:

--CALLS
--NOTES

package body PATH is

procedure GETDATA is

FILE NAME : STRING (1..12);

55

NAMELEN : INTTYPE;

begin
put ("Enter the name of data file: ");
get_line (FILENAME, NAMELEN);
FILENAME ((NAME_LEN + 1)..12) := (others => '

FILE NAME (9..12) := ".DAT";
OPEN (DATAFILE, MODE => IN FILE, NAME => FILENAME);
INTIO.get (DATAFILE, MAXROW);
INTIO.get (DATAFILE, MAXCOL);
INTIO.get (DATAFILE, MAXDEP);
INT IO.get (DATAFILE, MAXHDG);
NEWLINE;
put ("Enter the starting row: ");
INT IO.get (START(1));
NEWLINE;
put ("Enter the starting col: ");
INT IO.get (START(2));
NEWLINE;
put ("Enter the starting dep: ");
INT IO.get (START(3));
NEWLINE;
put ("Enter the starting hdg: ");
INT IO.get (START(4));
NEWLINE;
put ("Enter the goal row: ");
INT IO.get (GOAL(1));
NEW LINE;
put ("Enter the goal col: ");
INT IO.get (GOAL(2));
NEWLINE;
put ("Enter the goal dep: ");
INT IO.get (GOAL(3));
NEWLINE;
put ("Enter the goal hdg: ");
INTIO.get (GOAL(4));
WAVE := new LIST;
WAVE.LOC :- START;
WAVE.INC := 0;

end GETDATA;

procedure READTER (NARRAY : in out NODEARRAY) is

56

begin
for ROW in l..MAXROW loop

for COL in 1..MAXCOL loop
for DEP in 1..MAXDEP loop

for HDG in 1..MAXHDG loop
INTIO.get (DATAFILE, NARRAY(ROW, COL,

DEP, HDG).STATE);
N-ARRAY(ROW, COL, DEP, HDG) .TEND_-LEN :=0;
NARRAY(ROW, COL, DEP, HDG) .PARENT

(0, 0, 0, 0);
end loop;

end loop;
end loop,

end loop;
close (DATAFILE);

end READTER;

procedure PPATH (NARRAY :in out NODEARRAY) is

NEXTLOC : LOCARRAY;
PATHFILE : FILETYPE;

begin
if GOALFOUND then
CREATE (PATHFILE, NAME => "path.file");
put VV1);
INTIO.put (GOAL(1));
INTIO.put (GOAL(2));
INTIO.put (GOAL(3));
INTIO.put (GOAL(4));
put V')');
INTIO.put (PATHFILE, GOAL(1));
INTIO.put (PATHFILE, GOAL(2));
INTIO.put (PATHFILE, GOAL(3));
INTIO.put (PATHFILE, GOAL(4));
new-line;
new -line (PATHFILE);
NEXTLOC := N ARRAY(GOAL(1), GOAL(2), GOAL(3),

GOALM().PARENT;
while NEXTLOC /= START loop

put VV();
INT_-IO.put (NEXTLOC(1));
INTIO.put (NEXTLOC(2));

57

INT_-IO.put (NEXTLOC(3));

INT_-IO.put (NEXTLOC(4));
put V')');
INT_-IO.put (PATHFILE, NEXTLOC(1));

INT_-IO.put (PATHFILE, NEXTLOC(2));

INT_-IO.put (PATH_-FILE, NEXTLOC(3));
INT_-IO.put (PATHFILE, NEXTLOC(4);

NEXTLOC := N -ARRAY(NEXT_-LOC(1, NEXT_-LOC(2),
NEXTLOC(3),NEXTLOC(4)).PARENT;

NEWLINE;
new-line (PATHFILE);

end loop;

put VV();
INTIO.put (STARTMl);
INTIO.put (START(2));
INTIO.put (START(3));
INT_-IO.put (START(4));

put (')');
INTIO.put (PATHFILE, START(1));

INT_-IO.put (PATHFILE, START(2));
INT_-IO.put (PATH_-FILE, START(3))

INT_-IO.put (PATHFILE, START(4));
new line;
new-line (PATHFILE);
INTIO.put (NARRAY (GOAL(l), GOAL(2), GOAL(3),

GOAL (4)).TEND-LEN);
new-line;
CLOSE (PATHFILE);

else
put ("PATH NOT FOUND");
new-line;

end if;
end PPATH;

procedure FMOVES (NARRAY : in out NODEARRAY;
ROOT :in out LISTPTR) is

HEADING :INTTYPE := ROOT.LOC(4;

begin
case HEADING is
when 1 =>

CHECKUPNW (N ARRAY, ROOT);

58

CHECKUPN (NARRAY, ROOT);
CHECK UPNE (N ARRAY, ROOT);
CHECK_NW (NARRAY, ROOT);
CHECKN (NARRAY, ROOT);
CHECKNE (NARRAY, ROOT);
CHECKDOWN_NW (NARRAY, ROOT);
CHECKDOWNN (NARRAY, ROOT);
CHECKDOWN_NE (N_ARRAY, ROOT);

when 2 =>

CHECK UP NE (N ARRAY, ROOT);
CHECKUPE (NARRAY, ROOT);
CHECK UPSE (N ARRAY, ROOT);
CHECKNE (N_ARRAY, ROOT);
CHECK._E (NARRAY, ROOT);
CHECKSE (NARRAY, ROOT);
CHECKDOWNNE (NARRAY, ROOT);
CHECKDOWNE (NARRAY, ROOT) ;
CHECKDOWNSE (N_ARRAY, ROOT);

when 3 =>

CHECKUPSE (N ARRAY, ROOT);
CHECKUPS (NARRAY, ROOT);
CHECKUPSW (NARRAY, ROOT);
CHECKSE (NARRAY, ROOT);
CHECK_-S (N_ARRAY, ROOT);
CHECKSW (NARRAY, ROOT);
CHECKDOWNSE (NARRAY, ROOT);
CHECKDOWN-S (NARRAY, ROOT);
CHECKDOWNSW (NARRAY, ROOT);

when 4 ->

CHECK-UPSW (NARRAY, ROOT);
CHECKUPW (NARRAY, ROOT);
CHECKUPNW (NARRAY, ROOT);CHECKSW (NARRAY, ROOT);
CHECKW (NARRAY, ROOT);
CHECKNW (NARRAY, ROOT);
CHECKDOWNSW (NARRAY, ROOT);
CHECKDOWNW (NARRAY, ROOT);
CHECKDOWNNW (NARRAY, ROOT);

when others =>

59

null;

end case;
end FMOVES;

procedure FREE is new UNCHECKEDDEALLOCATION (LIST,
LISTPTR);

procedure FPATH (NARRAY : in out NODEARRAY) is

ROOT : LISTPTR := WAVE;

begin
while ROOT /= null loop

F_MOVES (NARRAY, ROOT);
ROOT := WAVE.NEXT;
FREE (WAVE);
WAVE := ROOT;

end loop;
if GOAL FOUND then

return;
end if;
WAVE := NEWWAVE;
NEW WAVE := null;
LASTNEWWAVE := null;

end FPATH;

procedure DOSEARCH is

NARRAY : NODE ARRAY (1..MAXROW, 1..MAXCOL,
1..MAXDEP, l..MAXHDG);

begin
STARTTIME := CLOCK;
READTER (NARRAY);
while WAVE /= null loop

F_PATH (NARRAY);
exit when GOALFOUND;

end loop;
P_PATH (NARRAY);

ENDTIME := CLOCK;
TTIME := ENDTIME - STARTTIME;

60

NEWLINE;
FLOATIO.put (FLOAT(TTIME));
put (" seconds of cpu time.");

end DOSEARCH;

end PATH;

61

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE THE MOVE.ADS
--DESCRIPTION Contains the procedures for checking and
-- : processing individual
-- :nodes sent from FMOVES.
--CALLS
--NOTES

with TEXT_10, GLOBALS;
use TEXTIO, GLOBALS;

package THEMOVE is

procedure NNC (ELEMENT : in LIST PTR;
HEAD : in out LISTPTR;
TAIL : in out LISTPTR);

procedure GROWTEND (ELE : in out LISTPTR;
N_ARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CKSTATE (NEWLOC : in out LOCARRAY;
NARRAY : in out NODE-ARRAY;
NEWINC : in out INTTYPE;
ROOT : in out LISTPTR);

procedure CHECKN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPN (NARRAY in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNN (NARRAY in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPNE (NARRAY : in out NODEARRAY;
ROOT : in out LIST PTR);

62

procedure CHECKDOWNNE (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR);

procedure CHECK E (NARRAY in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNE (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR);

procedure CHECKSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKS (N ARRAY : in out NODE ARRAY;

ROOT : in out LISTPTR);

procedure CHECKUPS (NARRAY : in out NODE ARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNS (NARRAY : in out NODE ARRAY;
ROOT : in out LISTPTR);

procedure CHECKSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNSW (NARRAY in out NODEARRAY;

ROOT in out LISTPTR);

procedure CHECKW (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR);

63

procedure CHECKUPW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPNW (NARRAY : in out NODE-ARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

end THEMOVE;

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : THE MOVE.ADB
--DESCRIPTION : The package body for THEMOVE

with TEXT_10, GLOBALS;
use TEXTIO, GLOBALS;

package body THEMOVE is

procedure NNC (ELEMENT : in LIST PTR;
HEAD : in out LISTPTR;
TAIL : in out LISTPTR) is

Creates and performs list maintanence.
begin

if HEAD = null then
HEAD := ELEMENT;
TAIL := ELEMENT;

else
TAIL.NEXT := ELEMENT;
TAIL := TAIL.NEXT;

end if;

64

end NNC;

procedure GROWTEND (ELE in out LISTPTR;
N ARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

-- Determines if nodes have been previously processed and if
-- necessary reassignes.

procedure ASSIGN (NARRAY : in out NODEARRAY;
ELE : in out LISTPTR;
ROOT : in out LISTPTR) is

-- Once a node is determined to be a legal move its

-- attributes
-- are assigned, and the GOAL is checked for completion.

begin
N ARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).PARENT := ROOT.LOC;
N ARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).TEND LEN := ELE.INC +
N ARRAY(ROOT.LOC(1),ROOT.LOC(2),ROOT.LOC(3) ,

ROOT.LOC(4)).TENDLEN;
if ELE.LOC = GOAL then

GOALFOUND := TRUE;
end if;
NNC (ELE, NEWWAVE, NW TAIL);

end ASSIGN;

begin
if N ARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),
ELE.LOC(4)).TEND LEN = 0 then
ASSIGN (NARRAY, ELE, ROOT);

elsif NARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),
ELE.LOC(4)).TENDLEN >

(NARRAY(ROOT.LOC(1),ROOT.LOC(2),ROOT.LOC(3),
ROOT.LOC(4)).TEND LEN + ELE.INC) then

ASSIGN (NARRAY, ELE, ROOT);
end if;

end GROWTEND;

procedure CKSTATE (NEWLOC in out LOCARRAY;

65

NARRAY : in out NODEARRAY;

NEWINC : in out INTTYPE;
ROOT : in out LISTPTR) is

-- Checks if the node is an obstacle. If not it calls the
-- GROWTEND procedure.

NEWELE : LISTPTR;

begin
if NARRAY(NEWLOC(i), NEWLOC(2), NEWLOC(3),

NEW LOC(4)).STATE = 0 then
NEW ELE := new LIST;
NEW ELE.LOC := NEWLOC;
NEWELE.INC := NEW-INC;
GROWTEND (NEWELE, N_ARRAY, ROOT);

end if;
end CKSTATE;

-- The remaining procedures are for individual "moves." The
-- coordinates are calculated and a cost is assigned to the
-- move. Each calls CKSTATE.

procedure CHECKN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 then
NEW LOC(1) := NEWLOC(1) - 1;
CKSTATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;
end CHECKN;

procedure CHECKUPN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEW LOC(3) > 1 then

NEW LOC(1) := NEWLOC(1) - 1;

66

NEW LOC(3) := NEW LOC(3) - 1;
CK STATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPN;

procedure CHECKDOWNN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEW LOC(3) < MAXDEP then
NEWLOC(1) := NEW LOC(1) - 1;

NEW-LOC(3) NEW-_LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNN;

procedure CHECKNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
if NEW LOC(1) > 1 and NEW LOC(2) < MAXCOL then
NEW LOC(1) := NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) + 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 2;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKNE;

procedure CHECK UP NE (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEWLOC(2) < MAXCOL and

67

NEWLOC(3) > 1 then
NEW LOC(1) := NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) := NEW LOC(3) - 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 2;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPNE;

procedure CHECKDOWNNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) > 1 and NEWLOC(2) < MAXCOL and
NEWLOC(3) < MAXDEP then
NEW LOC(1) := NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) NEW LOC(3) + 1;
if ROOT.LOC(4) = 1 then

NEW LOC(4) := 2;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNNE;

procedure CHECKE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(2) < MAXCOL then
NEW LOC(2) := NEWLOC(2) + 1;
CKSTATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;

68

end CHECK E;

procedure CHECKUPE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(2) < MAXCOL and NEW LOC(3) > I then
NEW LOC(2) NEW LOC(2) + 1;
NEW LOC(3) NEWLOC(3) - 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPE;

procedure CHECK_DOWNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(2) < MAXCOL and NEWLOC(3) < MAX DEP
then
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) := NEW LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNE;

procedure CHECKW (NARRAY in out NODEARRAY;

ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(2) > 1 then
NEW LOC(2) := NEW LOC(2) - 1;
CKSTATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;

end CHECKW;

procedure CHECKUPW (NARRAY in out NODEARRAY;
ROOT in out LISTPTR) is

69

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(2) > 1 and NEWLOC(3) > 1 then
NEW LOC(2) :- NEW LOC(2) - 1;
NEWLOC(3) := NEWLOC(3) - 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPW;

procedure CHECKDOWNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(2) > 1 and NEWLOC(3) < MAXDEP then
NEW LOC(2) := NEW LOC(2) - 1;
NEW LOC(3) := NEW LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNW;

procedure CHECKS (NARRAY : in out NODEARRAY;

ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW then
NEWLOC(1) := NEWLOC(1) + 1;
CKSTATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;
end CHECKS;

procedure CHECKUPS (NARRAY : in out NODEARRAY;

ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(3) > 1 then

70

NEW LOC(1) NEW LOC(1) + 1;
NEW LOC(3) := NEWLOC(3) - 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPS;

procedure CHECKDOWNS (NARRAY : in out NODEARRAY;

ROOT : in out LISTPTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(l) < MAXROW and NEWLOC(3) < MAXDEP
then
NEW LOC(1) NEW LOC(1) + 1;
NEW LOC(3) := NEWLOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNS;

procedure CHECKSE (NARRAY : in out NODEARRAY;

ROOT in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) < MAXCOL
then
NEW LOC(1) := NEW LOC(1) + 1;
NEWLOC(2) := NEWLOC(2) + 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;
else

NEWLOC(4) := 2;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKSE;

procedure CHECKUPSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

71

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) < MAX COL
and NEW LOC(3) > 1 then
NEW LOC(1) := NEW LOC(1) + 1;
NEW LOC(2) := NEW LOC(2) + 1;
NEWLOC(3) := NEWLOC(3) - 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;
else

NEWLOC(4) := 2;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPSE;

procedure CHECKDOWNSE (NARRAY : in out NODE ARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) < MAXCOL
and NEW LOC(3) < MAXDEP then
NEW LOC(1) := NEW LOC(1) + 1;
NEWLOC(2) := NEWLOC(2) + 1;
NEW LOC(3) := NEW LOC(3) + 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;
else

NEWLOC (4) := 2;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;

end CHECKDOWNSE;

procedure CHECKSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAXROW and NEWLOC(2) > 1 then

72

NEWLOC(1) NEWLOC(1) + 1;
NEW LOC(2) NEW LOC(2) - 1;
if ROOT.LOC(4) = 3 then

NEWLOC(4) := 4;

else
NEWLOC(4) 3;

end if;
CKSTATE (NEWLOC, NARRAY, DIAG COST, ROOT);

end if;
end CHECKSW;

procedure CHECKUPSW (NARRAY in out NODEARRAY;
ROOT in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(l) < MAXROW and NEWLOC(2) > 1 and
NEWLOC(3) > 1 then
NEW LOC(1) := NEW LOC(1) + 1;
NEW LOC(2) NEW LOC(2) - 1;
NEW LOC(3) NEW LOC(3) - 1;
if ROOT.LOC(4) = 3 then

NEWLOC(4) := 4;
else

NEWLOC(4) := 3;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPSW;

procedure CHECKDOWNSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(l) < MAXROW and NEWLOC(2) > 1 and
NEWLOC(3) < MAXDEP then

NEW LOC(1) NEW LOC(1) + 1;
NEW LOC(2) NEWLOC(2) - 1;
NEW LOC(3) := NEW LOC(3) + 1;
if ROOT.LOC(4) = 3 then

73

NEWLOC(4) 4;

else
NEW LOC(4) 3;

end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNSW;

procedure CHECKNW (NARRAY in out NODEARRAY;

ROOT in out LISTPTR) is

NEWLOC : LOCARRAY ROOT.LOC;

begin
IF NEW LOC(1) > I and NEWLOC(2) > I then
NEW LOC(1) NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) - 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 4;
else

NEWLOC(4) := 1;

end if;
CKSTATE (NEWLOC, N ARRAY, DIAGCOST, ROOT);

end if;
end CHECKNW;

procedure CHECK UP NW (NARRAY in out NODEARRAY;
ROOT in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > I and NEWLOC(2) > I and NEWLOC(3)
> 1 then
NEW LOC(1) NEW LOC(1) - 1;
NEW LOC(2) NEW LOC(2) - 1;
NEW LOC(3) NEW LOC(3) - 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) 4;
else

NEWLOC(4) 1;

end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

74

end if;
end CHECK UP NW;

procedure CHECKDOWNNW (NARRAY in out NODE_ARRAY;
ROOT in out LIST PTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) > I and NEWLOC(2) > I and NEWLOC(3)

MAXDEP then
NEW LOC(1) NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) - 1;

NEW LOC(3) NEW LOC(3) + 1;
if ROOT.LOC(4) = 1 then

NEW LOC(4) 4;
else

NEWLOC(4) 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNNW;

end THE MOVE;

75

APPENDIX E (part 1)

Table 1: Data Dictionary for the TENDRILWP Search

PACKAGE
PREEDUE~ TYPE

VARIABLE

PATHWP
GET ATA

FILENAME STING (L.12)

NAMELEN INT_-TYPE

CONT CHARACTER:=Y

P ATHI

NEXT_-LOC LOCLARRAY

HEADING INTTYPE: ROOTIOC (4)

ROOT LISTFIR WAVE

NARRAY NODE_-ARRAY (I..MAXROW,
1..MAXCOL,'
1..MAXDEP,
1..MAX HDG)

76

DATA FLOW DIAGRAM for the TENDRILWP SEARCH (pan 2)

TEND
WP

NEW WAL

N ARA AJ8IA

GE7 -DANWDO ALNEW ~FNN ARRA

ROOTT

NEEW WAVE

CNWTAIL

_S COST7

TENDRILWP SEARCH CODE (part 3)

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : TENDRILWP.ADA
--DESCRIPTION : Main procedure for the Tendril search with
waypoints.
--CALLS : GETDATA, and DOSEARCH in the PATHWP package
--NOTES

with TEXT_10, GLOBALS, PATHWP;
use TEXT_10, GLOBALS, PATHWP;

procedure TENDRILWP is

begin
GETDATA;
DOSEARCH;

end TENDRILWP;

78

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE PATHWP.ADS
--DESCRIPTION : Contains the major procedures for the Tendril
with waypoint
-- : search
-- CALLS
--NOTES

with TEXT_10, GLOBALS, THEMOVE, UNCHECKEDDEALLOCATION;

use TEXTIO, GLOBALS, THEMOVE;

package PATHWP is

procedure DOSEARCH;

procedure GETDATA;

procedure READ TER (NARRAY : in out NODE ARRAY);

procedure PPATH (NARRAY : in out NODEARRAY);

end PATHWP;

--NAME J. Bonsignore, Jr.
--DATE 22 Jan, 1991
--REVISED
--TITLE : PATHWP.ADB
--DESCRIPTION :Package body for PATHWP package
--NOTES Differences from PATH package: GETDATA
-- : makes a

: list of waypoints, P PATH creates a list of
: records in each path segment and writes to
: file only (no screen output), RESET ALL
: resets global variables to initial settings
: after each path segment is completed.

package body PATHWP is

79

procedure GETDATA is

-- Opens the terrain data file, reads in the array dimensions
-- and takes the starting and goal coordinates as input.

FILENAME : STRING (1..12);
NAME LEN : INTTYPE;
CONT : CHARACTER := 'Y';

begin
put ("Enter the name of data file: ");
get_line (FILENAME, NAMELEN);
FILENAME ((NAME LEN + 1)..12) := (others => ' I);

FILE NAME (9..12) := ".DAT";
OPEN (DATAFILE, MODE => INFILE, NAME => FILENAME);
INT IO.get (DATA FILE, MAXROW);
INTIO.get (DATAFILE, MAXCOL);
INTIO.get (DATAFILE, MAX_DEP);
INTIO.get (DATAFILE, MAX_HDG);
NEWLINE;

WAVE HEAD := new LIST;
WAVE TAIL := WAVE HEAD;
while CONT = 'y' or CONT = 'Y' loop

put ("Enter the position row: ");
INTIO.get (WAVETAIL.LOC(1));
NEWLINE;
put ("Enter the position col: ");
INTIO.get (WAVETAIL.LOC(2));
NEW LINE;
put ("Enter the position dep: ");
INT IO.get (WAVETAIL.LOC(3));
NEWLINE;
put ("Enter the position hdg: ");
INTIO.get (WAVETAIL.LOC(4));
NEW LINE;
put ("Enter another position?");
get (CONT);
if CONT = 'y' or CONT = 'Y' then
WAVETAIL.NEXT := new LIST;
WAVETAIL := WAVETAIL.NEXT;

end if;
end loop;

80

end GETDATA;

procedure READTER (NARRAY : in out NODEARRAY) is

-- Reads the terrain data from the data file and initializes
-- the NARRAY.

begin
for ROW in 1..MAX ROW loop

for COL in 1..MAXCOL loop
for DEP in 1..MAX DEP loop

for HDG in I..MAX HDG loop
INTIO.get (DATAFILE, NARRAY(ROW, COL, DEP,

HDG).STATE);

NARRAY(ROW, COL, DEP, HDG).TEND LEN 0;
NARRAY(ROW, COL, DEP, HDG).PARENT

(0,0, 0,0);
end loop;

end loop;
end loop;

end loop;
close (DATAFILE);

end READTER;

procedure PPATH (NARRAY : in out NODEARRAY) is

-- Creates a list, THEPATH and writes it to a file.

NEXTLOC : LOCARRAY;

begin
if GOAL FOUND and THE PATH = null then

THE PATH := new LIST;
THEPATH.LOC := GOAL;
loop
NEXTLOC := NARRAY(GOAL(1), GOAL(2), GOAL(3),

GOAL(4)) .PARENT;
THE PATH CURRENT := new LIST;
THE PATH CURRENT.LOC := NEXT LOC;
THE PATH CURRENT.NEXT THE PATH;
THEPATH := THEPATHCURRENT;
GOAL := NEXT LOC;
exit when THEPATH.LOC = START;

81

end loop;
elsif GOALFOUND and THEPATH /= null then

loop
NEXTLOC := NARRAY(GOAL(1), GOAL(2), GOAL(3),

GOAL (4)). PARENT;
THE PATH CURRENT := new LIST;
THEPATHCURRENT.LOC := NEXTLOC;
THE PATHCURRENT.NEXT := THEPATH;
THEPATH := THEPATHCURRENT;
GOAL := NEXT LOC;
exit when THEPATH.LOC = START;

end loop;
else

put ("PATH NOT FOUND");
new line;

end if;
while THEPATH /= null loop
INTIO.put (PATHFILE, THEPATH.LOC(1));
INTIO.put (PATHFILE, THEPATH.LOC(2));
INTIO.put (PATHFILE, THEPATH.LOC(3));
INT IO.put (PATHFILE, THEPATH.LOC(4));
new line (PATHFILE);
THEPATH := THEPATH.NEXT;

end loop;
put (PATHFILE, "END PATH SEGMENT");
newline (PATHFILE);

end PPATH;

procedure FMOVES (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR) is

-- Using the heading of the current node being processed,
-- F_MOVES determines the legal moves that can be made and
-- calls the CHECK_??? procedure in the THEMOVE package.

HEADING : INTTYPE := ROOT.LOC(4);

begin
case HEADING is
when 1 =>

CHECK UP NW (NARRAY, ROOT);
CHECK UP N (NARRAY, ROOT);
CHECKUPNE (NARRAY, ROOT);

82

CHECK NW (N ARRAY, ROOT);
CHECK_N (NARRAY, ROOT);
CHECK_NE (N_ARRAY, ROOT);
CHECKDOWN_NW (NARRAY, ROOT);
CHECKDOWNN (NARRAY, ROOT);
CHECKDOWNNE (N_ARRAY, ROOT);

when 2 =>
CHECK UP NE (NARRAY, ROOT);
CHECKUPE (N ARRAY, ROOT);
CHECK UP SE (NARRAY, ROOT);
CHECKNE (NARRAY, ROOT);
CHECKE (NARRAY, ROOT);
CHECKSE (NARRAY, ROOT);
CHECKDOWNNE (NARRAY, ROOT);
CHECKDOWNE (N ARRAY, ROOT);
CHECKDOWNSE (NARRAY, ROOT);

when 3 =>
CHECK UP SE (NARRAY, ROOT);
CHECK UP S (N ARRAY, ROOT);
CHECKUPSW (N_ARRAY, ROOT);
CHECK SE (N ARRAY, ROOT);
CHECK_S (N_ARRAY, ROOT);
CHECK_SW (N ARRAY, ROOT);
CHECKDOWNSE (NARRAY, ROOT);
CHECK DOWNS (NARRAY, ROOT);
CHECKDOWNSW (N_ARRAY, ROOT);

when 4 =>
CHECK UP SW (NARRAY, ROOT);
CHECK UP W (N ARRAY, ROOT);
CHECK UPNW (N_ARRAY, ROOT);
CHECKSW (NARRAY, ROOT);
CHECKW (NARRAY, ROOT);
CHECK NW (NARRAY, ROOT);
CHECKDOWNSW (NARRAY, ROOT);
CHECKDOWNW (NARRAY, ROOT);
CHECKDOWNNW (N_ARRAY, ROOT);

when others =>

null;

83

end case;
end FMOVES;

procedure FREE is new UNCHECKEDDEALLOCATION (LIST,
LISTPTR);

-- Clears old memory space.

procedure FPATH (NARRAY : in out NODEARRAY) is

-- Processes the WAVE list in order calling the FMOVE

-- procedure. Also reinitializes the WAVE list.

ROOT : LISTPTR :- WAVE;

begin
while ROOT /= null loop

FMOVES (N ARRAY, ROOT);
ROOT := WAVE.NEXT;
FREE (WAVE);
WAVE := ROOT;

end loop;
FREE (WAVE);

if GOAL FOUND then
return;

end if;
WAVE : NEWWAVE;
NEW WAVE := null;
LASTNEW WAVE := null;

end FPATH;

procedure RESETALL (NARRAY : in out NODEARRAY) is

-- Used to reset the various attributes in N ARRAY changed
-- during each path segment search. This allows a path to

-- go to a waypoint/goal and return using many of the nodes
-- previously used in the outbound trip.

begin
GOAL FOUND := FALSE;
for ROW in l..MAXROW loop

for COL in 1..MAX COL loop
for DEP in 1..MAXDEP loop

84

for HDG in i..MAXHDG loop
N_ARRAY (ROW, COL, DEP, HDG) .PARENT := (others => 0);

N ARRAY(ROW,COL,DEP,HDG).TENDLEN 0;
end loop;

end loop;
end loop;

end loop;
end RESETALL;

procedure DOSEARCH is

-- Calls the major procedures in the search and creates the
-- N ARRAY.

N_ARRAY : NODEARRAY (i..MAXROW, 1..MAXCOL,
i..MAXDEP, 1..MAXHDG);

begin
READTER (NARRAY);
CREATE (PATHFILE, NAME => "path.file");
loop
exit when WAVE HEAD.NEXT = null;
WAVE := new LIST;
WAVE.LOC := WAVEHEAD.LOC;
START := WAVEHEAD.LOC;
GOAL := WAVEHEAD.NEXT.LOC;
while WAVE /= null and NOT GOALFOUND loop
F_PATH (NARRAY);

end loop;
P_PATH (NARRAY);

RESETALL (NARRAY);
WAVEHEAD := WAVE HEAD.NEXT;

end loop;
CLOSE (PATHFILE);

end DOSEARCH;
end PATHWP;

85

APPENDIX F (part I)

Table 1: Data Dictionary for the DIRECTION Search

PACKAGE
PROCED~UE TYPE

GLOALSVARIABLEI

DATAFELE FILE_.TYPE

LOC_-ARRAY array (1..4) of INT _TYPE

LIST record (LOC : LOC_ARRAY

NEXT: USTPTR)

NODE record (STATE : TNT_TYPE
DIST: INTTYPE: =0
INC: INTTYPE: =0
NEXT : LOCARRAY:

____ ___ ___ ___ ____ ___ ___ ___(9,9,9,9))

NODEARRAY army (INL-TYPE range <>,
INTTYPE range <>,
TNTTYPE range <>,
INTTYPE range o) of NODE

START_-TIME TIME
ENDTLME
T-TIME DURATION

MAX-ROW TNT_-TYPE
MAXCOL
MAX-DEP
MAX HDG
DIAGCOST:= 120
CARDCOST := 100

ACTIVE LISTPTR:= null
TAIL
CLEAR
PATH

START LOCARRAY
GOAL

GOAL_.FOUND BOOLEAN := FALSE

86

Table 1: Data Dictionary for the DIRECTION Search

PACKAGE
PROCDURETYPE

VARIABLE

B
GET ATA

FILENAME STRING (L.12)

NAME _LEN INTTYPE

P-TAIL LISTPTR:= null

HDG: ACTIVE_LOC (4) INT_-TYPE

L LOCARRAY: ACTIv7EOC
NL

FIND RAM

F_-TALL LISTPTR:= null

N_-ARRAY NODEARRAY (1..MAX_-ROW,
1..MAX-COL,
1..MAXDEP

____ ___ ..MAX-HDG)

87

DATA FLOW DIAGRAM for the DIRECTION SEARCH (part 2)

DIRECTION

GETDATADOLDIR

/ NLARRAY
N_ARRAY NARRAY

READD

®MOMES c
L
NL
NARRAY

NODE

COST

88

DIRECTION SEARCH CODE (part 3)

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : DIRECTION.ADA

--DESCRIPTION : Main procedure for the Direction search
--CALLS : GETDATA and DODIR in the B package (like PATH

- package).
--NOTES

with TEXT_10, A, B;
use TEXT_10, A, B;

procedure DIRECTION is

begin
GETDATA;
DO DIR;

end DIRECTION;

89

--NAME J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : A.ADS
--DESCRIPTION : Global variables for the Direction search.
--CALLS
--NOTES

with TEXTIO, CALENDAR;
use TEXTIO, CALENDAR;

package A is

subtype INT TYPE is INTEGER;
package INT_10 is new INTEGERIO (INTTYPE);
package FLOATIO is new FLOATIO (FLOAT);
use INTIO, FLOATIO;

type LOCARRAY is array (l..4) of INTTYPE;

type LIST;
type LISTPTR is access LIST;
type LIST is
record

LOC : LOCARRAY;
NEXT : LISTPTR;

end record;

ACTIVE : LIST PTR;
TAIL : LISTPTR;
CLEAR : LIST PTR;
PATH : LIST PTR;

type NODE is
record

STATE : INT TYPE := 0;
DIST : INT TYPE : 0;
INC : INTTYPE := 0;

NEXT : LOCARRAY := (9,9,9,9);
end record;

90

type NODEARRAY is array (INTTYPE range <>, INTTYPE range
<>,INT TYPE range <>, INTTYPE
range <>) of NODE;

DATA FILE : FILE TYPE;

START TIME : TIME;
ENDTIME : TIME;

TTIME : DURATION;

MAXROW : INTTYPE;
MAXCOL : INTTYPE;
MAXDEP : INTTYPE;
MAXHDG : INTTYPE := 4;

DIAGCOST : INTTYPE := 120;
CARDCOST : INT TYPE := 100;

GOAL : LOCARRAY;
START : LOC ARRAY;

end A;

91

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : B.ADS
--DESCRIPTION : This package is similar to the PATH package
in other programs.
-- : It contains the major procedures for the
Direction search.
--CALLS
--NOTES

with TEXT_10, A, C, UNCHECKEDDEALLOCATION, CALENDAR;

use TEXTIO, A, C, CALENDAR;

package B is

procedure DODIR;

procedure GETDATA;

end B;

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : B.ADB
--DESCRIPTION : Package body for the B package

package body B is

procedure GETDATA is

-- Opens the Data file containing terrain information and gets
-- the array dimensions. It also takes as input the starting
-- and goal coordinates.

FILENAME : STRING (1..12);
NAMELEN : INTTYPE;

92

begin
put ("Enter the name of data file: ");
get_line (FILENAME, NAMELEN);
FILE NAME ((NAME LEN + 1)..12) := (others => '

FILE NAME (9..12) := ".DAT ";
OPEN (DATAFILE, MODE => INFILE, NAME => FILENAME);
INTIO.get (DATAFILE, MAXROW);
INTIO.get (DATAFILE, MAXCOL);
INTIO.get (DATA FILE, MAXDEP);

INTIO.get (DATAFILE, MAXHDG);
NEW LINE;
put ("Enter the starting row: ");
INT IO.get (START(l));
NEW LINE;
put ("Enter the starting col: ");
INT IO.get (START(2));
NEW LINE;
put ("Enter the starting dep: ");
INT IO.get (START(3));
NEW LINE;
put ("Enter the starting hdg: ");
INT IO.get (START(4));
NEW_LINE;
put ("Enter the goal row: ");
INTIO.get (GOAL(l));
NEW_LINE;
put ("Enter the goal col: ");
INT IO.get (GOAL(2));
NEW LINE;
put ("Enter the goal dep: ");
INT IO.get (GOAL(3));
NEW LINE;
put ("Enter the goal hdg: ");
INTIO.get (GOAL(4));
ACTIVE := new LIST;
ACTIVE.LOC := GOAL;

end GETDATA;

procedure READTER (NARRAY : in out NODEARRAY;
DFILE : in out FILETYPE) is

-- Reads in the terrain data from the file and initializes the

93

-- N ARRAY.

begin
for ROW in 1..MAX ROW loop

for COL in 1..MAX COL loop
for DEP in 1..MAX DEP loop

for HDG in 1..MAXHDG loop
INTIO.get (DFILE, NARRAY(ROW, COL,

DEP,
HDG) STATE);

end loop;
end loop;

end loop;
end loop;
close (DFILE);

end READTER;

procedure FREE is new UNCHECKEDDEALLOCATION (LIST,
LISTPTR);

-- Used to free old memory space.

procedure FINDMOVES (NARAY : in out NODEARRAY) is

-- Using the REVERSE heading of the node being processed,
-- FIND MOVES determines which nodes can legally move into
-- it. This is OPPOSITE from the other search methods. Again
-- procedures in the C package (just like THEMOVE) are

-- called to process the individual nodes.

HDG : INT TYPE := ACTIVE.LOC(4);
L : LOC ARRAY := ACTIVE.LOC;
NL : LOC ARRAY := ACTIVE.LOC;

begin
while ACTIVE /= null loop

HDG := ACTIVE.LOC(4);
L := ACTIVE.LOC;
NL := ACTIVE.LOC;
case HDG is

when 1 =>

S (L, NL, NARRAY);
NL := L;

94

US (L, NL, NARRAY);

NL := L;
DS (L, NL, NARRAY);

NL := L;
NL(4 := 4;
SE (L, NL, NARRAY);
NL(1..3) := L(1..3);
USE (L, NL, NARRAY);
NL(1..3) := Ll.)
DSE (L, NL, NARRAY);
NL(1..3) := L(1..3);
NL(4) := 2;
SW (L, NL, NARRAY);
NL(1..3) := L(1..3);
USW (L, NL, NARRAY);
NL(1..3) := Ll.)
DSW (L, NL, NARRAY);

when 2 =>
W (L, NL, NARRAY);

NL := L;
UW (L, NL, NARRAY);
NL := L;
DW (L, NL, NARRAY);
NL := L;
NL(4) := 3;
NW (L, NL, NARRAY);
NL(1..3) := L(1..3);
UNW (L, NL, N ARRAY);
NL(1..3) := L(1..3);
DNW (L, NL, NARRAY);
NL:=L
NL(4) := 1;
SW (L, NL, NARRAY);
NL(1..3) :=L13;
USW (L, NL, NARRAY);
NL(1..3) := L(1..3);

DSW (L, NL, NARRAY);

when 3 =>
N (L, NL, NARRAY);
NL := L;
UN (L, NL, NARRAY);

95

NL : = L;
DN (L, NL, NARRAY);
NL := L;
NL(4 := 2;
NW (L, NL, N_-ARRAY);
NL(1..3) := L(1..3);
UNW (L, NL, NARRAY);
NL(1..3) := L(1..3);
DNW (L, NL, NARRAY);
NL := L;
NL(4 := 4;

NE (L, NL, NARRAY);
NL(1..3) := L(1..3);
UNE (L, NL, NARRAY);
NL(1..3) := L(1..3);
DNE (L, NL, NARRAY);

when 4 =>

E (L, NL, NARRAY);
NL := L;
UE (L, NL, NARRAY);
NL := L;
DE (L, NL, NARRAY);
NL := L;
NL(4) := 3;
NE (L, NL, N_-ARRAY);
NL(1..3) := L(1..3);
UNE (L, NL, NARRAY);
NL(1..3) := L(1..3);
DNE (L, NL, NARRAY);
NL :- L;

NL(4) := 1;
SE (L, NL, N_-ARRAY);
NL(l..3) := L(1..3);

U _SE (L, NL, N_-ARRAY);
NL(1..3) := L(1..3);
DSE (L, NL, NARRAY);

when others =>

null;

end case;
CLEAR := ACTIVE;

96

ACTIVE := ACTIVE.NEXT;
CLEAR.NEXT := null;

FREE (CLEAR);
end loop;

end FINDMOVES;

procedure PPATH is

-- Processes the PATH list for printing.

PTAIL : LISTPTR := PATH;

begin
loop

put (');
INTIO.put (PTAIL.LOC(1));
INTIO.put (PTAIL.LOC(2));
INT-IO.put (PTAIL.LOC(3));
INT_IO.put (P_TAIL.LOC(4));
put (')');
NEW_LINE;
exit when P TAIL.LOC = GOAL;
P TAIL := P TAIL.NEXT;

end loop;
end PPATH;

procedure FINDPATH (NARRAY : in out NODEARRAY) is

-- Used to process the PATH list adding nodes as the vectors
-- are traced.

F TAIL LIST PTR;

begin
FTAIL := new LIST;
F TAIL.LOC := START;
PATH := FTAIL;
loop

exit when F TAIL.LOC = GOAL;
F TAIL.NEXT := new LIST;

FTAIL.NEXT.LOC := N ARRAY(FTAIL.LOC(1),FTAIL.LOC(2),
F TAIL.LOC(3),FTAIL.LOC(4)).NEXT;

F TAIL := F TAIL.NEXT;

97

end 3 Jop;
end FINDPATH;

procedure DODIR is

-- Creates the NARRAY dynamically and calls the major
-- procedures for the search. Some timing constructs are
-- added for evaluation purposes.

N_ARRAY : NODEARRAY(1..MAXROW,1..MAXCOL,
I..MAXDEP,1..MAXHDG);

begin
START TIME := CLOCK;
READTER (NARRAY, DATAFILE);
FINDMOVES (NARRAY);
FIND -PATH (NARRAY);
P_PATH;
END TIME := CLOCK;
TTIME := ENDTIME - STARTTIME;
FLOATIO.put (FLOAT(TTIME));
put (" seconds.");
NEWLINE;

end DODIR;

end B;

i

98

--NAME : J. Bonsignore, Jr.
--DATE 22 Jan, 1991
--REVISED
--TITLE C.ADS
--DESCRIPTION : The package containing THEMOVE type
-- : procedures

--CALLS
--NOTES Although similar to THE MOVE in other
-- . programs, the procedures are somewhat

: different due to the "reverse" nature of the
: search.

with TEXT 10, A;
use TEXTIO, A;

package C is

procedure AAND_A (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N ARRAY : in out NODE-ARRAY;
I : in out INTTYPE);

procedure N (L : in out LOC ARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODEARRAY);

procedure NE (L : in out LOC ARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODEARRAY);

procedure E (L : in out LOC ARRAY;
NL : in out LOC ARRAY;
NARRAY : in out NODEARRAY);

procedure SE (L : in out LOC ARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure S (L : in out LOC ARRAY;
NL : in out LOC ARRAY;
N ARRAY : in out NODE ARRAY);

99

procedure SW (L : in out LOCARRAY;
NL : in out LOC-ARRAY;
N_ARRAY : in out NODEARRAY);

procedure W (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure NW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure UN (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure UNE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure IE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODEARRAY);

procedure USE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODE_ARRAY);

procedure US (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure USW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure UW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY);

procedure UNW (L : in out LOCARRAY;
NL : in out LOCARRAY;

100

N ARRAY : in out NODEARRAY);

procedure DN (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODEARRAY);

procedure DNE (L : in out LOCARRAY;
NL : in out LOCARRAY;

N_ARRAY : in out NODEARRAY);

procedure DE (L : in out LOCARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODEARRAY);

procedure DSE (L : in out LOCARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODEARRAY);

procedure DS (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODEARRAY);

procedure DSW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODE ARRAY);

procedure DW (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODEARRAY);

procedure DNW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODEARRAY);

end C;

--NAME J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : C.ADS
--DESCRIPTION : The package body for the C package

101

package body C is

procedure A-ANDA (L : in out LOCARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODE-ARRAY;
I : in out INTTYPE) is

-- Analyzes and assigns the legal nodes to the ACTIVE list and
-- sets the various attributes in the NARRAY node.

begin
if NARRAY(NL(1), NL(2), NL(3), NL(4)).STATE = 0 then

if NARRAY(NL(1), NL(2), NL(3), NL(4)).DIST = 0
then

if ACTIVE.NEXT = null then
TAIL := new LIST;
TAIL.LOC := NL;
ACTIVE.NEXT := TAIL;

else
TAIL.NEXT := new LIST;
TAIL := TAIL.NEXT;
TAIL.LOC := NL;

end if;
NARRAY(NL(1),NL(2),NL(3),NL(4)).NEXT : L;
N ARRAY(NL(1),NL(2),NL(3),NL(4)).INC -I;
NARRAY(NL(1),NL(2),NL(3),NL(4)).DIST :=
NARRAY(L(l),L(2),L(3),L(4)).DIST + I;

end if;
end if;

end A ANDA;

-- The following procedures all determine the coordinates for
-- the given move based on the current node coordinates.
-- Calls the A ANDA procedure.

procedure N (L : in out LOC ARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODE-ARRAY) is

begin
if L(1) > 1 then

102

NL(1) := NL(1) - 1;
A_ANDA (L, NL, NARRAY, CARDCOST);

end if;
end N;

procedure NE (L : in out LOC ARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) > 1 and L(2) < MAXCOL then
NL(l) := NL(1) - 1;
NL(2) := NL(2) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end NE;

procedure E (L : in out LOCARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODE ARRAY) is

begin
if L(2) < MAX COL then

NL(2) := NL(2) + 1;
AANDA (L, NL, NARRAY, CARDCOST);

end if;
end E;

procedure SE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODEARRAY) is

begin
if L(1) < MAX ROW and L(2) < MAXCOL then

NL(1) := NL(1) + 1;
NL(2) := NL(2) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end SE;

procedure S (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

103

begin
if L(1) < MAX ROW then

NL(1) := NL(1) + 1;
AANDA (L, NL, NARRAY, CARDCOST);

end if;
end S;

procedure SW (L : in out LOCARRAY;
NL : in out LOC ARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(1) < MAX ROW and L(2) > 1 then

NL(l) :- NL(1) + 1;
NL(2) := NL(2) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end SW;

procedure W (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODE ARRAY) is

begin
if L(2) > 1 then
NL(2) := NL(2) - 1;
AANDA (L, NL, NARRAY, CARDCOST);

end if;
end W;

procedure NW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) > 1 and L(2) > 1 then

NL(1) := NL(1) - 1;
NL(2) := NL(2) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end NW;

104

procedure UN (L : in out LOCARRAY;
NL : in out LOC ARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(1) > 1 and L(3) > 1 then

NL(1) := NL(1) - 1;
NL(3) := NL(3) - 1;
A AND A (L, NL, N ARRAY, DIAGCOST);

end if;
end UN;

procedure UNE (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODE-ARRAY) is

begin
if L(1) > 1 and L(2) < MAXCOL and L(3) > 1 then
NL(1) : NL(1) - 1;
NL(2) := NL(2) + 1;
NL(3) NL(3) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end UNE;

procedure UE (L : in out LOC ARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(2) < MAX COL and L(3) > 1 then
NL(2) := NL(2) + 1;
NL(3) NL(3) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end UE;

procedure USE (L : in out LOC ARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODEARRAY) is

begin
if L(1) < MAXROW and L(2) < MAXCOL and L(3) > 1

105

then
NL(1) := NL(1) + 1;
NL(2) := NL(2) + 1;
NL(3) := NL(3) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end USE;

procedure US (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) < MAX ROW and L(3) > 1 then

NL(1) := NL(1) + 1;
NL(3) NL(3) - 1;
A_ANDA (L, NL, N_ARRAY, DIAGCOST);

end if;
end US;

procedure USW (L : in out LOCARRAY;
NL : in out LOC ARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(1) < MAX ROW and L(2) > 1 and L(3) > 1 then

NL(1) := NL(1) + 1;
NL(2) := NL(2) - 1;
NL(3) := NL(3) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end USW;

procedure UW (L : in out LOCARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(2) > 1 and L(3) > 1 then

NL(2) := NL(2) - 1;
NL(3) := NL(3) - 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;

106

end UW;

procedure UNW (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) > 1 and L(2) > 1 and L(3) > 1 then

NL(1) := NL(1) - 1;
NL(2) := NL(2) - 1;
NL(3) NL(3) - 1;
A_ANDA (L, NL, N ARRAY, DIAGCOST);

end if;
end UNW;

procedure DN (L : in out LOCARRAY;
NL : in out LOC_ARRAY;
N ARRAY : in out NODE_ARRAY) is

begin
if L(1) > 1 and L(3) < MAXDEP then

NL(1) NL(1) - 1;
NL(3) :- NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DN;

procedure DNE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N ARRAY : in out NODE ARRAY) is

begin
if L(1) > 1 and L(2) < MAXCOL and L(3) < MAX DEP
then

NL(1) := NL(1) - 1;
NL(2) NL(2) + 1;
NL(3) := NL(3) + 1;
AANDA (L, NL, NARRAY, DIAG COST);

end if;
end DNE;

procedure DE (L : in out LOCARRAY;

107

NL : in out LOC ARRAY;
NARRAY : in out NODEARRAY) is

begin
if L(2) < MAX COL and L(3) < MAXDEP then

NL(2) := NL(2) + 1;
NL(3) := NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DE;

procedure DSE (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) < MAX ROW and L(2) < MAXCOL and L(3) <

MAXDEP then
NL(1) := NL(l) + 1;
NL(2) := NL(2) + 1;
NL(3) :- NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DSE;

procedure DS (L : in out LOCARRAY;
NL : in out LOC ARRAY;
N ARRAY : in out NODEARRAY) is

begin
if L(1) < MAXROW and L(3) < MAXDEP then

NL(1) := NL(1) + 1;
NL(3) := NL(3) + 1;
A_ANDA (L, NL, N_ARRAY, DIAG_COST);

end if;
end DS;

procedure DSW (L : in out LOC ARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin

108

if L(1) < MAX ROW and L(2) > 1 and L(3) < MAX DEP
then

NL(1) := NL(1) + 1;
NL(2) := NL(2) - 1;
NL(3) := NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DSW;

procedure DW (L : in out LOC ARRAY;
NL : in out LOCARRAY;
NARRAY : in out NODE-ARRAY) is

begin
if L(2) > 1 and L(3) < MAXDEP then

NL(2) := NL(2) - 1;
NL(3) := NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DW;

procedure DNW (L : in out LOCARRAY;
NL : in out LOCARRAY;
N_ARRAY : in out NODEARRAY) is

begin
if L(1) > 1 and L(2) > 1 and L(3) < MAX DEP then
NL(1) := NL(1) - 1;
NL(2) := NL(2) - 1;
NL(3) := NL(3) + 1;
A_ANDA (L, NL, NARRAY, DIAGCOST);

end if;
end DNW;

end C;

109

APPENDIX G (part 1)

Table 1: Data Dictionary for the RTA* Search

PACKAGE
PTYPE

VARIABLE

PATHWP
G rET ATA

FILE-NAME STRING (1.. 12)

NAME_LEN INTTYPE

LEATH

NEXT_.LOC LOC_ARRAY

HEADING INTTYPE:= ROOTLOC (4)

ASTARCOST INTEGER:= 999

ROW.-COST INTEGER:= 0
COL_COST
DEPCOST
HDG_COST
NEWCOST

NARRAY NODEARRAY (1..MAXROW,
1..MAXCOL,'
1..MAXDEP,
I..MAXHDG)

110

DATA FLOW DIAGRAM for the RTA* SEARCH (part 2)

RTA

TER F.YFRONT PICK

NEW WAVEE
YJ NWTARRY ATRC

WAV N

REAL-TIME A* SEARCH CODE (part 3)

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : RTA.ADA
--DESCRIPTION : Main procedure for the RTA* search
--CALLS : GET DATA and DOSEARCH in another PATH
-- :package for

-- : the RTA.
--NOTES
with------------------------

with TEXTTO, GLOBALS, PATH;
use TEXT_10, GLOBALS, PATH;

procedure RTA is

begin
GET DATA;
DO SEARCH;

end RTA;

112

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE PATH.ADS
--DESCRIPTION :Contains the major procedures for the RTA
-- :search

--CALLS
--NOTES

with TEXT_10, GLOBALS, THEMOVE, UNCHECKEDDEALLOCATION;
use TEXTIO, GLOBALS, THEMOVE;

package PATH is

procedure DOSEARCH;

procedure GET DATA;

procedure READTER (NARRAY : in out NODEARRAY);

procedure P PATH (N ARRAY : in out NODE ARRAY);

end PATH;

--NAME J. Bonsignore, Jr.
--DATE 22 Jan, 1991
--REVISED
--TITLE : PATH.ADB
--DESCRIPTION : Package body for the Path package used for
-- : the RTA search.

package body PATH is

procedure GETDATA is

-- SAME AS OTHER PATH PACKAGE.

113

FILE NAME : STRING (1..12);
NAMELEN : INTTYPE;

begin
put ("Enter the name of data file: ");
get_line (FILENAME, NAMELEN);
FILENAME ((NAMELEN + 1)..12) := (others => '

FILE NAME (9..12) := ".DAT";
OPEN (DATAFILE, MODE => IN-FILE, NAME => FILENAME);
INTIO.get (DATAFILE, MAXROW);
INTIO.get (DATAFILE, MAXCOL);
INTIO.get (DATAFILE, MAXDEP);
INTIO.get (DATAFILE, MAX_-HDG);
NEWLINE;
put ("Enter the starting row: ");
INTIO.get (START(1));
NEW LINE;
put ("Enter the starting col: ");
INTIO.get (START(2));
NEW LINE;
put ("Enter the starting dep: ");
INTIO.get (START(3));
NEWLINE;
put ("Enter the starting hdg: ");
INTIO.get (START(4));
NEW LINE;
put ("Enter the goal row: ");
INTIO.get (GOAL(I));
NEW LINE;
put ("Enter the goal col: ");
INTIO.get (GOAL(2));
NEW LINE;
put ("Enter the goal dep: ");
INTIO.get (GOAL(3));
NEW LINE;
put ("Enter the goal hdg: ");
INTIO.get (GOAL(4));
WAVE :- new LIST;
WAVE.LOC :- START;
WAVE.INC := 0;

end GETDATA;

procedure READ-TER (NARRAY : in out NODEARRAY) is

114

-- SAME AS OTHER PATH PACKAGE.

begin
for ROW in 1..MAXROW loop

for COL in l..MAXCOL loop
for DEP in 1..MAXDEP loop

for HDG in 1..MAX_-HDG loop
INTIO.get (DATAFILE, NARRAY(ROW, COL,

DEP, HDG).STATE);
N ARRAY(ROW,, COL, DEP, HDG).TEND_-LEN 0;
NARRAY(ROW, COL, DEP, HDG).PARENT :

(0, 0,0,0);
end loop;

end loop;
end loop;

end loop;
close (DATAFILE);

end READTER;

procedure PPATH (NARRAY : in out NODEARRAY) is

-- SANE AS OTHER PATH PACKAGE.

NEXTLOC : LOCARRAY;

begin
if GOALFOUND then

put VV();
INTIO.put (GOAL(1));
INTIO.put (GOAL(2));
INTIO.put (GOAL(3));
INTIO.put (GOAL(4));
put V')');
new-line;
NEXTLOC := N ARRAY(GOAL(1), GOAL(2), GOAL(3),

GOAL (4)) . PARENT;
while NEXT_-LOC /= START loop

put C(();
INT_-IO.put (NEXTLOC(1));
INT_-IO.put (NEXTLOC(2));
INT_-IO.put (NEXTLOC(3))
INTIO.put (NEXTLOC(4));

115

put (') ');
NEXTLOC := N_ARRAY(NEXTLOC(1), NEXT LOC(2),

NEXT LOC(3),
NEXT LOC(4)) .PARENT;
NEWLINE;

end loop;
put ('(');
INTIO.put (START(i));
INTIO.put (START(2));
INTIO.put (START(3));
INTIO.put (START(4));
put (')');
newline;
INTIO.put (NARRAY (GOAL(1), GOAL(2), GOAL(3),

GOAL(4)).TENDLEN);
new-line;

else
put ("PATH NOT FOUND");
newline;

end if;
end PPATH;

procedure FMOVES (NARRAY : in out NODE ARRAY;
ROOT : in out LISTPTR) is

-- SAME AS OTHER PATH PACKAGE.

HEADING : INTTYPE := ROOT.LOC(4);

begin
case HEADING is
when 1 =>

CHECKUPNW (NARRAY, ROOT);
CHECK UP N (N ARRAY, ROOT);
CHECKUPNE (NARRAY, ROOT);
CHECKNW (NARRAY, ROOT);
CHECKN (NARRAY, ROOT);
CHECKNE (NARRAY, ROOT);
CHECKDOWNNW (NARRAY, ROOT);
CHECKDOWNN (NARRAY, ROOT);
CHECKDOWNNE (NARRAY, ROOT);

when 2 =>

116

CHECK UP NE (NARRAY, ROOT);
CHECK UP E (NARRAY, ROOT);
CHECK UP SE (NARRAY, ROOT);
CHECKNE (NARRAY, ROOT);
CHECKE (NARRAY, ROOT);
CHECKSE (NARRAY, ROOT);
CHECK DOWN NE (N ARRAY, ROOT);
CHECK-DOWN-E (NARRAY, ROOT);
CHECK-DOWNSE (NARRAY, ROOT);

when 3 =>

CHECK UP SE (NARRAY, ROOT);
CHECK UP S (NARRAY, ROOT);
CHECK UP SW (NARRAY, ROOT);
CHECK__SE (NARRAY, ROOT);
CHECK__S (NARRAY, ROOT);
CHECKSW (NARRAY, ROOT);
CHECK DOWN SE (NARRAY, ROOT);
CHECK-DOWNS (N_ARRAY, ROOT);
CHECKDOWNSW (NARRAY, ROOT);

when 4 =>

CHECK UP SW (NARRAY, ROOT);
CHECKUPW (NARRAY, ROOT);
CHECK UP NW (NARRAY, ROOT);

CHECKSW (NARRAY, ROOT);
CHECKW (NARRAY, ROOT);

CHECKNW (NARRAY, ROOT);
CHECKDOWNSW (NARRAY, ROOT);
CHECKDOWNW (NARRAY, ROOT);
CHECKDOWNNW (NARRAY, ROOT);

when others =>
null;

end case;

end FMOVES;

procedure FREE is new UNCHECKED DEALLOCATION (LIST,

LISTPTR);

-- SAME AS OTHER PATH PACKAGE.

117

procedure FFRONT (NARRAY : in out NODEARRAY) is

-- This procedure makes two calls to the FMOVES procedure.
-- Each call extends the search depth an additional node
-- distance. For further frontier nodes subsequent calls to
-- FMOVES can be made.

begin
F_MOVES (NARRAY, WAVE);
WAVE := NEWWAVE;
NEW WAVE := null;
while WAVE /= null loop

TRASH := WAVE;
F_MOVES (NARRAY, WAVE);
WAVE := WAVE.NEXT;
FREE (TRASH);

end loop;
end FFRONT;

procedure PICKNODE (NARRAY : in out NODEARRAY) is

-- Estimates the cost to reach the GOAL from the frontier
-- nodes and picks the least cost frontier node for further
-- expansion. This is currently working in a limited manner.
-- Absolute values must be used during the substraction
-- of the GOAL from the LOC.

ASTAR COST : INTEGER := 999;

procedure LEASTCOST (LOC : in out LIST PTR;
ASTAR COST : in out INTEGER;
N_ARRAY : in NODEARRAY) is

-- Estimates the cost to the GOAL and assigns that nodes

-- coordinates to ASTAR
-- COST if it is less then previously processed nodes cost.

ROWCOST : INTEGER :=0;
COLCOST : INTEGER 0;
DEPCOST : INTEGER 0;
HDGCOST : INTEGER 0;
NEWCOST : INTEGER 0;

118

begin
ROW COST := GOAL(1) - LOC.LOC(1);

COL COST := GOAL(2) - LOC.LOC(2);
DEP COST := GOAL(3) - LOC.LOC(3);

HDG COST := GOAL(4) - LOC.LOC(4);
NEWCOST : ROWCOST + COLCOST + DEPCOST + HDGCOST;

-- + NARRAY(LOC.LOC(1), LOC.LOC(2),
LOC.LOC(3), LOC.LOC(4)).TENDLEN;

if NEW COST < ASTAR COST then
ASTAR COST := NEWCOST;
WAVE := new LIST;
WAVE.LOC := NEWWAVE.LOC;

end if;
end LEASTCOST;

begin
while NEWWAVE /= null loop
LEASTCOST (NEWWAVE, ASTARCOST, NARRAY);
if NEWWAVE.LOC = GOAL then
GOALFOUND := TRUE;

end if;
exit when GOAL FOUND;
NEW WAVE := NEW WAVE.NEXT;

end loop;
P NODE (WAVE);

end PICKNODE;

procedure DOSEARCH is

-- Calls the major procedures in the search and creates the

-- N ARRAY.

N_ARRAY : NODEARRAY (1..MAXROW, 1..MAXCOL,
l..MAXDEP, l..MAXHDG);

begin
READTER (NARRAY);
while not GOALFOUND loop
F_FRONT (NARRAY);
PICKNODE (NARRAY);
while NEW WAVE /= null loop

TRASH := NEW WAVE;

119

NEWWAVE := NEWWAVE.NEXT;
FREE (TRASH);

end loop;
NEW WAVE := null;

end loop;
GOAL := WAVE.LOC; -- Just for testing purposes!
GOALFOUND := TRUE; -- Just for testing purposes!
P_PATH (NARRAY);

end DOSEARCH;

end PATH;

I

--NAME J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : THE MOVE.ADS
--DESCRIPTION : Package containing the procedures for

individual node processing.
--CALLS
--NOTES

with TEXTIO, GLOBALS;
use TEXTIO, GLOBALS;

package THEMOVE is

procedure NNC (ELEMENT : in LIST PTR;
HEAD : in out LISTPTR;
TAIL : in out LISTPTR);

procedure GROWTEND (ELE : in out LISTPTR;
N_ARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CKSTATE (NEWLOC : in out LOCARRAY;
NARRAY : in out NODE-ARRAY;
NEW INC : in out INT TYPE;
ROOT : in out LIST_PTR);

procedure CHECKN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPN (N ARRAY : in out NODE-ARRAY;
ROOT in out LISTPTR);

procedure CHECKDOWNN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPNE (NARRAY : in out NODEARRAY;
ROOT in out LIST PTR);

121

procedure CHECKDOWNNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKE (NARRAY in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKS (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPS (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNS (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKW (NARRAY : in out NODE ARRAY;
ROOT : in out LIST PTR);

procedure CHECKUPW (NARRAY : in out NODEARRAY;

122

ROOT : in out LISTPTR);

procedure CHECKDOWNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKUPNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR);

procedure CHECKDOWNNW (NARRAY : in out NODE ARRAY;
ROOT : in out LISTPTR);

end THEMOVE;

--NAME : J. Bonsignore, Jr.
--DATE : 22 Jan, 1991
--REVISED
--TITLE : THE MOVE.ADB
--DESCRIPTION : Package body for THEMOVE package.

with TEXTIO, GLOBALS;
use TEXTIO, GLOBALS;

package body THEMOVE is

procedure NNC (ELEMENT : in LISTPTR;
HEAD : in out LISTPTR;
TAIL : in out LISTPTR) is

-- Creates and maintains lists.

begin
if HEAD = null then

HEAD := ELEMENT;
TAIL := ELEMENT;

else
TAIL.NEXT := ELEMENT;
TAIL := TAIL.NEXT;

end if;

123

end NNC;

procedure GROWTEND (ELE :in out LISTPTR;
NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

-- Expands the search similar to that in the Tendril search.

procedure ASSIGN (NARRAY : in out NODE_-ARRAY;
ELE : in out LISTPTR;
ROOT : in out LISTPTR) is

begin
if NARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).TENDLEN = 0 then
NNC (ELE, NEWWAVE, NW TAIL);

end if;
NARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).PARENT := ROOT.LOC;
NARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).TENDLEN := ELE.INC +
N ARRAY(ROOT.LOC(1),ROOT.LOC(2),ROOT.LOC(3),,

ROOT.LOC(4)) .TEND LEN;
if ELE.LOC = GOAL then
GOALFOUND := TRUE;

end if;
end ASSIGN;

begin
if NARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),

ELE.LOC(4)).TENDLEN = 0 then
ASSIGN (NARRAY, ELE, ROOT);

elsif N ARRAY(ELE.LOC(1),ELE.LOC(2),ELE.LOC(3),
ELE.LOC(4)).TENDLEN >

(NARRAY(ROOT.LOC(1),ROOT.LOC(2),ROOT.LOC(3),
ROOT.LOC(4)).TENDLEN + ELE.INC) then

ASSIGN (NARRAY, ELE, ROOT);
end if;

end GROWTEND;

procedure CKSTATE (NEWLOC :in out LOCARRAY;
N ARRAY :in out NODE ARRAY;
NEWINC :in out INTTYE

124

ROOT : in out LISTPTR) is

Similar to CKSTATE in the Tendril search.

NEW ELE : LIST PTR;

begin
if NARRAY(NEWLOC(I), NEWLOC(2), NEWLOC(3),

NEWLOC(4)).STATE = 0 then

NEW ELE := new LIST;
NEWELE.LOC := NEWLOC;
NEW ELE.INC := NEW INC;
GROWTEND (NEWELE, NARRAY, ROOT);

end if;
end CKSTATE;

-- Following procedures are similar to those in the Tendril
-- search's THEMOVE
-- package.

procedure CHECKN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) > 1 then
NEW LOC(1) := NEWLOC(1) - 1;
CKSTATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;
end CHECKN;

procedure CHECKUPN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY :--ROOT.LOC;

begin
IF NEWLOC(1) > 1 and NEWLOC(3) > 1 then
NEWLOC(1) := NEWLOC(l) - 1;
NEW LOC(3) :- NEWLOC(3) - 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;

125

end CHECKUPN;

procedure CHECKDOWNN (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEW LOC(3) < MAX DEP then
NEWLOC(1) := NEWLOC(1) - 1;
NEW LOC(3) := NEW LOC(3) + 1;
CK STATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNN;

procedure CHECKNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
if NEW LOC(1) > 1 and NEWLOC(2) < MAXCOL then
NEWLOC(1) : NEWLOC(1) - 1;
NEW LOC(2) : NEW LOC(2) + 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 2;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKNE;

procedure CHECKUPNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) > 1 and NEWLOC(2) < MAXCOL and
NEWLOC(3) > 1 then
NEWLOC(1) := NEWLOC(1) - 1;
NEWLOC(2) := NEWLOC(2) + 1;

126

NEWLOC(3) :- NEWLOC(3) - 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 2;
else

NEWLOC(4) 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPNE;

procedure CHECKDOWNNE (NARRAY : in out NODEARRAY;
ROOT in out LIST PTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEWLOC(2) < MAXCOL and
NEW LOC(3) < MAXDEP then
NEWLOC(1) : NEWLOC(1) - 1;
NEWLOC(2) := NEWLOC(2) + 1;
NEWLOC(3) := NEW LOC(3) + 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 2;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNNE;

procedure CHECKE (NARRAY : in out NODE-ARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(2) < MAX COL then
NEWLOC(2) := NEWLOC(2) + 1;
CKSTATE (NEW_LOC, NARRAY, CARDCOST, ROOT);

end if;
end CHECKE;

procedure CHECKUPE (NARRAY : in out NODEARRAY;

127

ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(2) < MAXCOL and NEWLOC(3) > 1 then
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) := NEW LOC(3) - 1;
CKSTATE (NEWLOC, N_ARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPE;

procedure CHECK_DOWNE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(2) < MAXCOL and NEWLOC(3) < MAXDEP
then
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) :- NEW LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNE;

procedure CHECKW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(2) > 1 then
NEW LOC(2) := NEW LOC(2) - 1;
CK STATE (NEWLOC, NARRAY, CARDCOST, ROOT);

end if;
end CHECKW;

procedure CHECK UP W (N ARRAY : in out NODE-ARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOCARRAY : ROOT.LOC;

128

begin
IF NEW LOC(2) > 1 and NEWLOC(3) > 1 then
NEW LOC(2) := NEW LOC(2) - 1;
NEWLOC(3) := NEWLOC(3) - 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPW;

procedure CHECKDOWNW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(2) > 1 and NEW LOC(3) < MAX DEP then
NEW LOC(2) := NEW LOC(2) - 1;
NEW LOC(3) := NEW LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNW;

procedure CHECKS (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAXROW then
NEW LOC(1) := NEWLOC(1) + 1;
CK_-STATE (NEWLOC, N_ARRAY, CARDCOST, ROOT);

end if;
end CHECKS;

procedure CHECK UPS (N ARRAY : in out NODE ARRAY;

ROOT : in out LIST PTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAXROW and NEWLOC(3) > 1 then
NEW LOC(1) := NEW LOC(1) + 1;
NEW LOC(3) := NEWLOC(3) - 1;
CKSTATE (NEWLOC, N_ARRAY, DIAGCOST, ROOT);

129

end if;
end CHECKUPS;

procedure CHECKDOWNS (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(3) < MAXDEP
then
NEWLOC(1) := NEW LOC(1) + 1;
NEW LOC(3) := NEW LOC(3) + 1;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNS;

procedure CHECKSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) < MAXCOL
then
NEWLOC(1) := NEW LOC(1) + 1;
NEWLOC(2) := NEWLOC(2) + 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;
else

NEW LOC(4) : 2;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKSE;

procedure CHECKUPSE (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) < MAXCOL

130

and NEW LOC(3) > 1 then
NEW LOC(1) NEW LOC(1) + 1;
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) := NEWLOC(3) - 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;
else

NEWLOC(4) := 2;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKU '_SE;

procedure CHECKDOWNSE (NARRAY : in out NODEARRAY;
ROOT : in out LIST PTR) is

NEW LOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAXROW and NEWLOC(2) < MAXCOL
and NEW LOC(3) < MAXDEP then
NEW LOC(1) :- NEW LOC(1) + 1;
NEW LOC(2) := NEW LOC(2) + 1;
NEW LOC(3) := NEWLOC(3) + 1;
if ROOT.LOC(4) = 2 then

NEWLOC(4) := 3;

else
NEWLOC(4) := 2;

end if;
CKSTATE (NEWLOC, N_ARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNSE;

procedure CHECKSW (NARRAY in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAX ROW and NEW LOC(2) > 1 then
NEW LOC(1) :- NEW LOC(1) + 1;
NEW LOC(2) := NEW LOC(2) - 1;
if ROOT.LOC(4) - 3 then

131

NEWLOC(4) 4;
else

NEWLOC(4) : 3;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKSW;

procedure CHECKUPSW (NARRAY : in out NODEARRAY;
ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEW LOC(1) < MAXROW and NEWLOC(2) > 1 and
NEWLOC(3) > 1 then
NEWLOC(1) := NEW LOC(1) + 1;
NEWLOC(2) := NEWLOC(2) - 1;
NEW LOC(3) := NEW LOC(3) - 1;
if ROOT.LOC(4) = 3 then

NEWLOC(4) := 4;
else

NEWLOC(4) : 3;
end if;
CKSTATE (NEWLOC, N_ARRAY, DIAGCOST, ROOT);

end if;
end CHECKUPSW;

procedure CHECKDOWN SW (NARRAY : in out NODEARRAY;
ROOT : in out LIST PTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEWLOC(1) < MAXROW and NEWLOC(2) > 1 and
NEWLOC(3) < MAXDEP then

NEW LOC(1) := NEWLOC(1) + 1;
NEWLOC(2) := NEWLOC(2) - 1;
NEW LOC(3) := NEWLOC(3) + 1;
if ROOT.LOC(4) = 3 then

NEWLOC(4) := 4;
else

NEWLOC(4) := 3;

132

end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;

end CHECKDOWNSW;

procedure CHECKNW (NARRAY : in out NODEARRAY;
ROOT in out LISTPTR) is

NEWLOC : LOCARRAY ROOT.LOC;

begin
IF NEWLOC(1) > 1 and NEWLOC(2) > 1 then

NEW LOC(1) := NEW LOC(1) - 1;
NEW LOC(2) := NEWLOC(2) - 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 4;

else
NEWLOC(4) 1;

end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;

end CHECKNW;

procedure CHECKUPNW (NARRAY in out NODEARRAY;
ROOT in out LISTPTR) is

NEW LOC : LOC ARRAY := ROOT.LOC;

begin
IF NEW LOC(1) > 1 and NEWLOC(2) > 1 and
NEWLOC(3) > 1 then

NEW LOC(1) := NEW LOC(1) - 1;
NEW LOC(2) := NEW LOC(2) - 1;
NEW LOC(3) := NEWLOC(3) - 1;

if ROOT.LOC(4) = 1 then
NEWLOC(4) := 4;

else
NEWLOC(4) := 1;

end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;

end CHECK UP NW;

133

procedure CHECKDOWNNW (NARRAY : in out NODEARRAY;

ROOT : in out LISTPTR) is

NEWLOC : LOCARRAY := ROOT.LOC;

begin
IF NEWLOC(1) > 1 and NEWLOC(2) > 1 and NEWLOC(3)

MAXDEP then
NEWLOC(1) := NEWLOC(1) - 1;
NEWLOC(2) := NEW LOC(2) - 1;
NEW LOC(3) := NEW LOC(3) + 1;
if ROOT.LOC(4) = 1 then

NEWLOC(4) := 4;
else

NEWLOC(4) := 1;
end if;
CKSTATE (NEWLOC, NARRAY, DIAGCOST, ROOT);

end if;
end CHECKDOWNNW;

end THE-MOVE;

134

LIST OF REFERENCES

[Busby and Vadus 90]
James G. Busby and Joseph R. Vadus, "Autonomous Underwater Vehicle R & D
Trend Sea Technology, Vol. 31, no. 3, pp 66 -73, May 1990.

[Rogers 89]
Ray Charles Rogers, A Study of 3-D Visualization and Knowledge-based Mission
Planning and Control for the NPS Model 2 Autonomous Underwater Vehicle,
Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1989.

[Cloutier 90]
John Cloutier, Guidance and Control System for an Autonomous Vehicle, Master's
Thesis, Naval Postgraduate School, Monterey, CA, June 1990.

[Healey 90]
A. J. Healey, et al, "Mission Planning, Execution,and Data Analysis for the NPS
AUV II Autonomous Underwater Vehicle," paper presented at Monterey Bay Area
Research Institute Workshop on Mobile Undersea Robotics, October 1990.

[Floyd 91]
Charles Floyd, Design and Implementation of a Collision Avoidance System for
the NPS Autonomous Underwater Vehicle (AUV II) Utilizing Ultrasonic Sensors,
Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1991.

[Bihari 90]
T. E. Bihari, "Comments on the Computer Software and Hardware of the AUV-H,"
unpublished paper presented to the NPS AUV research effort, June 1990.

[Ong 90]
S. M. Ong, A Mission Planning Expert System with 3D Path Optimization for the
NPS Model 2 Autonomous Underwater Vehicle, Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1990.

[Jurewicz 90]
Thomas A. Jurewicz, A Real-time Autonomous Underwater Vehicle Simulator,
Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1990.

[Bellingham and Consi 90]
James G. Bellingham and Thomas R. Consi, "Robots Underwater - Ongoing
Research at MIT Sea Grant," Sea Technology, Vol. 31, no. 3, pp. 23 - 29, May
1990.

135

[Zheng et. al. 901
X. Zheng, E. Jackson, M. Kao, "Object-oriented Software Architecture for
Mission-configurable Robots," Proceedings of the first IARP Workshop on Mobile
Robots for Subsea Environments, Monterey, CA, 23 - 26 October 1990.

[Latombe 91]
Jean-Claude Latombe, Robot Motion Planning, ch 1 - 3, Kluwer Academic
Publishers, 1991.

[Herman 86]
M. Herman, "Fast, Three-dimensional, Collision-free Motion Planning," paper
presented at the IEEE International Conference on Robotics and Automation,
1986.

[Kwa 89]
J. B. H. Kwa, "BS*: An Admissible Bidirectional Staged Heuristic Search
Algorithm," Artificial Intelligence, pp. 95 - 109, February 1989.

[Warren 90]
C. W. Warren, "A Technique for Autonomous Underwater Vehicle Route
Planning," IEEE 1987, pp. 199 - 204, 1987.

[Lozano-Perez 83]
Tomas Lozano-Perez, "Spatial Planning: A Configuration Space Approach," IEEE
1983, pp. 109- 119, 1983.

[Mcghee 90]
R. E. Mcghee, "wo Dimensional Tendril Search," class notes presented at the
Naval Postgraduate School, Monterey, CA, 1990.

[Bonsignore 90]
J. Bonsignore, Jr., "Four Dimensional Tendril Search," class presentation at the
Naval Postgraduate School, Monterey, CA, 1990.

[Voltz, et al 84]
R. A. Volz, et al, "CAD, Robot Programming and Ada," NATO ASI Series,
Robotics and Artificial Intelligence, Vol. F1 1, pp. 237 - 246.

[Gaffney 891
Software Productivity Consortium, SWREUSEECONOM-89040-N, An
Economics Foundation for Software Reuse, by John E. Gaffney, Jr., July 1989.

136

[Korf 88]
Richard E. Korf, "Real-time Heuristic Search: New Results*," Automated
Reasoning, pp. 149 - 144.

[Magrino 91]
Chris Magrino, Three Dimensional Guidance for the NPS Autonomous
Underwater Vehicle, Master's Thesis, Naval Postgraduate School, Monterey, CA,
September 1991.

137

BIBLIOGRAPHY

1. Bennett, S. and Linkens, D. A., Real-Time Computer Control, Peter Peregrinus
Ltd., London, U.K., 1984.

2. Bonsignore, Jr., J., "Introduction to Configuration Space," class presentation at the
Naval Postgraduate School, Monterey, CA, May 1991.

3. Bonsignore, Jr., J., "Real-time Expert Systems," class presentation at the Naval
Postgraduate School, Monterey, CA, November 1990.

4. Booch, Grady, Software Engineering with Ada, Second Edition, The Benjamin/
Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

5. Byrnes, Ron, "A C Implementation of Tendril Search," class presentation at the
Naval Postgraduate School, Monterey, CA, Sepetember 1990.

6. Caddell, Tymothy W., "3 Dimensional Path Planning Using a Tangential Method,"
presentation at the Naval Postgraduate School, Monterey, CA, 1990.

7. Compton, Mark A., "Robot Simulator for NPS AUV Track and Obstacle
Avoidance Analysis," class presentation at the Naval Postgraduate School,
Monterey, CA, May 1991.

8. Fu, R. S., Gonzalez, R. C., Lee, C. S. G., Robotics Control, Sensing, Vision, and
Intelligence, McGraw-Hill Book Company, New York, NY, 1987.

9. Glass, Robert L., Real-Time Software, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1983.

10. Healey, Anthony J., "Planning, Navigation, Dynamics and Control of Autonomous
Underwater Vehicles," proposal for research, Naval Postgraduate School, October
1990.

11. Hecker, Michael, "Artificial Potential Fields," class presentation at the Naval Post
graduate School, Monterey, CA, June 1991.

12. Kanayama, Yutaka and De Haan, Gregory R., "A Mathematical Theory of Safe
Path Planning," class notes at the Naval Postgraduate School, Monterey, CA, April
1991.

138

13. Khatib, Oussana, "Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots," The International Journal of Robotics Research, Vol. 5, No. 1, pp. 9 0 -
98, Spring 1986.

14. Levi, Shem-tov and Agrowala, A. K., Real-Time System Design, McGraw-Hill
Publishing Company, New York, NY, 1990.

15. Levitt, Tod S., Lawton, Daryl T., "Qualitative Navigation for Mobile Robots,"
Artificial Intelligence and International Journal, Vol. 44, No. 3, August 1990.

16. Manber, Udi, Introduction to Algorithms a Creative Approach, pp. 204 - 208,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

17. O'Sullivan, Stephani, "Autonomous Control Logic Industry Brief," presentation
made by Stephanic O'Sullivan, presentation slides, Panama City, FL, October
1989.

18. Richbourg, R. F., Rowe, Neil C., Zyda, Michael J., McGhee, R. B., "Solving
Global, Two-Dimensional Routing Problems using Snell's Law and A* Search,"
IEEE International Conference on Robotics and Autonomous Vehicles, Vol. 3,
1987.

19. Sharma, D.D. and Sridharan, "Knowledge-Based Real-Tune Control: A Parallel
Processing Perspective," Machine Architectures and Computer Languages for Al,
1987.

20. Skansholm, Jan, Ada From the Beginning, Addison-Wesley Publishing Company,
Woking England, 1988.

21. Software Productivity Consortium, Tools for Static Analysis of Ada Source Code,
Software Productivity Consortium, Herndon, VA, June 1990.

22. Wildkinson, Paul, "High Level Control of an AUV," class presentation at the Naval
Postgraduate School, Monterey, CA, May 1990.

23. Wildnson, Paul, "Tendril Search Path Planning/Path Replanning with Dynamic
Obstacles," class presentation at the Naval Postgraduate School, Monterey, CA,
September 1990.

24. Yourdon, Edward, Modern Structured Analysis, Yourdon Press, Englewood Cliffs,
NJ, 1989.

139

25. Zyda, Michael J., et al, "Three-Dimensional Visualization of Mission planning and
Control for the NPS Autonomous Underwater Vehicle," IEEE Journal of Oceanic
Engineering, Vol. 15, no. 3, pp. 217 - 22 1, July 1990.

140

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

Gleen Reid, Code U401
Naval Surface Warfare Center
Silver Spring, MD 20901

RADM Evans, Code SEA92
Naval Sea Systems Command
Washington, D.C. 20362

Dr. G. Dobeck, Code 4210
Naval Coastal Systems Center
Panama City, FL 32407-5000

Dick Blidberg
Marine Systems Engineering Lab
SERB Building 242
University of New Hampshire
Durham, NH 03824

141

Mack O'Brien
Charles Stark Draber Laboratory, Inc.
Mail Station 5C
555 Technology Square
Cambridge, MA 02139

Dr. Dana Yoerger
Woods Hole Oceanographic Institute
Woods Hole, MA 02543

Dr. Yuh-jeng Lee 2
Computer Science Department code CS/LE
Naval Postgraduate School
Monterey, CA 93943

142

