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ABSTRACT

A pure pursuit guidance law is combined with a heading

autopilot to provide accurate path keeping of submersible

vehicles. The scheme is implemented and analyzed in both the

horizontal and vertical planes. A complete stability analysis

is performed in order to evaluate regions of stable vehicle

cpcrations. Numerical integrations support the analytic

predictions. Two distinct stability boundaries are

established. In the first, the vehicle loss of stability is

accompanied by the generation of oscillatory motions around

the commanded path. In the second, loss of stability occurs

with linearly increasing path deviation. The horizontal and

vertical plane schemes are combined with a propulsion control

law in order to achieve path tracking of a general commanded

route composed of several straight line segments in three

dimensional space.
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I INTRODUCTION

One of the most significant functions of an underwater

vehicle is accurate path control for transiting along

prescribed routes in three dimensional space. The commanded

path is usually described by a series of way points in space

and time either by the commander or by a path planner function

in the case of an unmanned vehicle. Without significant loss

of generality we can assume that the commanded path can be

approximated by straight iine segments between consecutive way

points. This assumption does not alter the important features

of the path keeping problem since every smooth path can be

approximated arbitrarily closely by a series of straight line

segments. Once a desired straight line path has been

generated, the vehicle guidance and autopilot functions are

called upon to ensure satisfactory path keeping through the

use of the vehicle actuators.

One way to ensure that the vehicle goes through a

specified sequence of way points is by using a heading

autopilot coupled with a line of sight guidance scheme [1].

The scheme proved to be robust enough so that when coupled

with an independently developed depth autopilot [2], accurate

depth control was maintained while transiting between way

points in the horizontal plane. The disadvantage associated

with this technique is that the actual vehicle path between

1



two consecutive way points differ significantly from the

corresponding straight line segment.

In order to overcome this problem and achieve accurate

path control in the presence of obstacles and underwater

currents, a cross track error autopilot was developed for the

horizontal [3] as well as the combined horizontal and vertical

planes [4]. A cross track error autopilot incorporates the

deviation of the assumed straight line path into the control

law design. This requires the introduction of additional

kinematic relations in the control design and, as a result,

the controller tends to be more sensitive to actual system /

mathematical model mismatch.

The main drawback of a cross track error autopilot is that

it represents a combined guidance / control scheme with no

clear distinction between these two functions. Thus it is very

vehicle specific and offers little flexibility in the design.

Path control is limited to cross track error only and analysis

of alternate schemes [5] is not possible unless the combined

scheme is redesigned. For this reason we decide to separate

once more the guidance and autopilot functions of the vehicle.

An orientation controller is designed in order to provide

accurate vehicle headings in response to guidance commands.

The controller is, thus, based on the vehicle dynamical

equations and Euler angle rates. A guidance scheme is used to

provide appropriate heading commands through the kinematic

equations of inertial position rates. A line of sight guidance

2



command law is employed as in [6] and [7). We consider a

reference point that is moving ahead of the vehicle at a

constant distance on the desired straight line path. We refer

to this distance as the lookahead distance. The commanded

heading is then equal to the line of sight angle between the

center of the vehicle and the lookahead point. By suitably

selecting the lookahead distance the degree of convergence of

the guidance law can be varied from very slow to very rapid

onto the straight line path.

Although the above scheme appears to be trouble free on

the surface, a significant complication arises in the case of

underwater vehicles. Since the actual vehicle response is

relatively slow as dominated by the existence of important

dynamical lags there is the possibility of instability when

the guidance and control functions are combined. High values

of the lookahead distance result in very slow vehicle

response. The problem is then to evaluate these regions of

stable and unstable vehicle response. Chapter II of this

thesis summarizes the stability analysis results for the

horizontal plane. In Chapter III we proceed with the analysis

of motions under the guidance and control scheme for the

vertical plane. It is shown that the existence of hydrostatic

restoring moments here due to the nonzero (positive)

metacentric height brings in an additional form of instability

not present in the horizontal plane. Finally in Chapter IV the

previous two guidance and control schemes for the horizontal

3



and vertical planes are combined and with a speed autopilot,

accurate path tracking in three dimensional space is achieved.

The main conclusion of this work is that guidance and control

laws for underwater vehicles must be designed together even if

they are kept separated, in order to ensure stable and

satisfactory path keeping. All computations in this work are

performed for the Swimmer Delivery Vehicle [8] for which a

complete set of hydrodynamic coefficients and geometric

properties is available.

4



II. HORIZONTAL PLANE

In this section the vehicle equations of motion for the

horizontal plane (x,y), the design of a heading autopilot and

simulations and stability results are presented.

A. EQUATIONS OF MOTION

For the horizontal plane the mathematical model consists

of the nonlinear sway and yaw differential equations shown

below:

m(V+ur+xGt-YGr2 )=Y (2.1)

I'z+mxG (" ur) -mYGUr=N (2.2)

Equations (2.1),(2.2) can be easily derived from the general

six degrees of freedom equations for a vehicle by assuming all

terms off the horizontal plane to be zero. The equations for

the sway force Y and yaw moment N are presented below:

(v+ r) 3 ]d +Nsu26
N=N.t+ (N,.Y%+N.ur)-+Nuv--.p-f[Ch(t) 'v+ &r)tI N62

5



To complete the model, expressions of the inertial

position rates and yaw rate are required. These are the

kinematic equat ions:

f~r (2.3)

- =ucos*J-vsin*I (2.4)

_3'=usirj-vcos4I (2.5)

B. CONTROL LAW

It is more convenient for the design of a linear state

space heading controller to represent the above equations

(2.1),(2.2),(2.3) in the following form (with YG=Q):

4r=r (2.6)

V'=a1 1uv+a12ur+b1u 2 8 +dv(v,r) (2.7)

2=a2 ,uv+a2 2ur+b2 U
28+dr(v,') (2.8)

where:

D= (I.-N.) (in-Y.~) - (mxG-Y) (rnxG-NV,)

D

6



a!, t (I,-ANr) (M- Yr) - (fll)%Yj) ( TfX,3+N,

1
a.,: (m [- -v,) AT,- (mx -NO) Yj]

a. [ (m-Yo ) (-mxG+N) - (mxc -N,) (-m+Y )]

b,: [(I -Nt) Y6 -(mxG-Y)N8]

1

b 2  Df (n-Y-) 16 (nx, -M ) Y6

D 1',C) [ (CI-Ni) II+YI2]

11
dr~v'r D 2 2 Iy( -N±) I 1 +Y 1 I 2 ]

1.=f(h() (v&r) (v+&r) 11d&

/,=f [h(&) (v+[r) (v+&r) I&] dZ

The nonlinear terms dv(v,r),dr(u,r) are small and can be

neglected for control law design. They are kept, however, in

all numerical simulations that follow.

I. ZERO YAW ANGLE

When the commanded yaw angle of the vehicle is zero the

control law has the following form:

7



6 =k1*+k 2 v+k 3r (2.9)

where kl,k 2,k3 are computed so the system will have the desired

dynamics. The closed loop characteristic equation has the

following form:

)X +a 1 2 +a2l+a3=O (2.10)

where:

a1 =a1 u+a22 u+b1 u 2k2 +b2 u 2k-

a2 = (aria 22 +ab 2 uk 3 +bla22 uk 2 -a 1 2a21-a 2b 2 uk 2 -a2 1b uk 3 -b uk ) u 2

a3 = (b2a11 -bla21 ) u 3k,

The characteristic equation is specified in the following

way. It can be chosen to satisfy the minimum ITAE criterion

where it assumes the form:

13 +a 12 +a2X +a3 =0 (2.11)

where:

a 1=l .75 0

a 2 =2. 15o2

3

8



lou

and tH represents the dimensionless settling time for the

system. Equating the coefficients of equation (2.10) with the

desired equation (2.11) and after some algebra we find:

k i =3 3 (2.12)
(b 2a11 1-bia2)

k 2 (bla22 -b 2 a12 ) ul+k- (b 2a,1 -b 1a2,) =u 2 +b2u'k, (2.13)

k2blu 2+kb 2u2 =- a - (a1 1 +a22 ) u (2.14)

Selecting a value for tH according to the ITAE criterion,

dictates complex conjugate dominant poles with oscillatory

transient response. It was found that other poles selections

(for example real negative) do not change significantly the

nature of the results and the stability boundaries that are

presented later.

2. NON ZERO YAW ANGLE

If the commanded yaw angle is non zero and equal to r c

then the control law (2.9) is simply modified to:

8=k1(- *,)+kv+k3r (2.15)

9



, Z44

Figure 1. Horizontal plane geometry
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No feedforward term is necessary in (2.15) since no rudder

angle is required to keep the vehicle to a constant non zero

heading angle at steady state.

C. GUIDANCE

The heading autopilot that was designed in the previous

section is called upon now to provide vehicle path in the

sense of passing through a series of way points in the

horizontal plane. In order to achieve it without changing the

previously designed heading autopilot we have to couple it

with a suitable navigation scheme such as line of sight

guidance.

The simplest such guidance law is a pure pursuit

navigation which is accomplished as follows. The autopilot

attempts to point the longitudinal axis of the vehicle towards

a point D which is located ahead to the vehicle on the nominal

straight line path at a fixed distance xd as shown in Figure

1. This target distance xd to as the visibility, lookahead, or

preview distance. The line of sight angle a is defined by:

tan(;= - -Y  (2.16)
Xd

Pure pursuit navigation then corresponds to taking:

*(,=a (2.17)

11



as the commanded heading angle in the control law (2.15).

It can be seen now that the commanded vehicle heading

angle is not constant but it is function of the vehicle

position y. This introduces the lateral deviation equation

(2.5) into the problem, and since the control law was based on

equations (2.6),(2.7) and (2.8) only, stability of the

combined autopilot-guidance scheme is no longer guaranteed.

Therefore, we need to develop conditions which will guarantee

stability and ensure satisfactory path keeping.

D. STABILITY

The complete system is given by the differential equations

(2.6),(2.7),(2.8), the control law (2.15), and the guidance

equations (2.16),(2.17). The trivial equilibrium state

corresponding to a straight line motion is characterized by:

*=v=r=y=O

Linearization of the state equations gives the following

linear system:

X=AX

where the complete state vector is:

X= [*' V, r,y]

12



Local stability properties are established by the eigenvalues

of [A] The characteristic equation is found to be:

AX 4 +BXL3 +CX2 +DX+E=O (2.18)

where:

A=1

B=-Bi-C,

C= -D1 +B1 C2 - CB -A 2

D:-CD2 +DC 2 -uD 2 -AB 2 +A2B,

and

A1 =bl u 2ki

A2=b2u 
2 ki

B1 =a1 1u+bu 2k2

B2 =a 21 u+b2 u 2k 2

C1 =a1 2 u+bI u 2 k3

C2 =a22 u+b2 u 2k3

D1 =b u 2ki 1-
Xd

13



D2 =b 2 U2 ki
Xd

Loss of stability occurs when:

BCD-B2E-AD2=0 (2.19)

Equation (2.19) is derived from Rooth's criterion for (2.18),

and it corresponds to a pair of complex conjugate roots

crossing the imaginary axis. After some algebra equation

(2.19) is simplified to:

2alxd+a 2xd+a3=0 (2.20)

where:

ai=ala2-al

(aa 2 - 2 a3 ) (bla22 -b 2a12-b2) biala3  2b2a11-b a.1  (b 2a.1 -b a2l) u-alu

- (b 1a22 -b 2a12 -b2 ) [blo,+ (bla22 -b 2a1 2 -b 2 ) u] a 3(b2a,,-bla
21 ) 2u

The positive root of equation (2.20) determines the

critical value of xd for stability. For every xd > xdcr i t icat the

system is stable which means that the vehicle will follow the

path. In the opposite case where xd < xd criticaL the system

14



becomes unstable and the motion of the vehicle becomes

oscillatory as a result of a complex conjugate pair of

eigenvalues with positive real parts.

Results for the dimensionless critical visibility versus

settling time tH are presented in Figure 2. These results are

independent of the forward speed since gains kl,k 2,k3 are

functions of u. It can be seen from Figure 2 that for higher

t H (softer controller) higher lookahead distance Xd is required

in order for the system to remain stable. It is obvious that

very high values of xd correspond to a very slow navigator

with a loss in speed of response and navigational accuracy.

The results of this section establish analytically the minimum

required lookahead distance that is required for stability

based on linear approximations.

It should be mentioned that all results in this work are

presented in dimensionless form unless otherwise mentioned.

Nondimensionalizations are performed by using the vehicle

length and the vehicle forward speed.

15
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0
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0

0.000 0.200 0.400 0.600 0.800

Xd

Figure 2. Regions of stability in the horizontal plane
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E. SIMULATIONS

Numerical simulations confirm the results of the stability

analysis of Figure 2. The simulated lateral distance y (in

vehicle lengths) versus time t (in dimensionless seconds) is

shown in Figure 3 for two cases. The nominal straight line

path is y=O Case 1 is located in Region 1 of Figure 2 and it

can be seen that the vehicle response is unstable. Case 2

corresponds to a stable (tH,xd) combination and the vehicle

converges to the desired path.

17



1: t, = 4, Xd = 0.3

2: tH = 4, Xd = 2

0

'-/2

0.0 2.0 4.0 6.0 8.0 10.0

t

Figure 3. Stable and unstable numerical simulations

18



III. VERTICAL PLANE

In this section the vehicle equations of motion for the

vertical plane (x,z), the design of a vertical heading

autopilot and simulations and stability results are presented.

A. EQUATIONS OF MOTION

Restricting our attention to the vertical plane the

mathematical model consists of the nonlinear heave and pitch

differential equations shown below:

m (;--uq-xGd-ZGq
2 ) =Z (3.1)

Iyq-mx G ( 0- uq) +mzGWq=M (3.2)

where only vertical plane related terms have been kept. The

heave force Z and pitch moment M are written as:

Z=Z¢t+ (ZOw+Zquq) +ZwUW--CDb (x) (w-xq) 3 dx+ (W-B) cos6+

Iw-xq I
u 2 (Z65 s+Z68b)

M=M d+ (Mo,+Mquq) +Mwuw+- E b (x) w-xq 3 xdx- GW-xB) cosO

2 f~ lw-xql

- (zGW-zBB) sinO+u2 (M6 
68S+M6a 8 b)

In the above equations is the vehicle weight, B the buoyancy,

(XG,ZG) the coordinates of the center of gravity, and (xBzB)

19



the coordinates of the center of buoyancy. Also, provision for

two sets of control surfaces (stern and bow planes) is made.

The kinematic equations are:

- =ucosO+wsinO(3)

2=-usin6+wcosO (3.4)

O~q (3.5)

B. CONTROL LAW

The linearized state space form of equations (3.1),(3.2)

and (3.5) is used for vertical plane heading control:

V'=a 1l uw+al 2uq+a 36O+bl u 2 6 +bl~ ' 36

q-a21 uw+a22 uq+a230 +b2 l u28 S+b2 2U 28 b (3.7)

O=q

where:

all= - r (IY -M4') Z+ +M6Z)M

(912 (IT-MJ) (M+Zq) + (rnXG+Z~,) (Mq-m)

20



a1 3  I-I [(zG-zB) (nvcG+Z& W]

1ii (YM: z61+ (MXG+Z.2) M851
DV

b12'!- Iy-,:)Zbb+ (MXG+Zll) M6 b]

a22 = -- I(-~ (M-r) M1+ (MG+M.Y (Zq)]
V

a23 =-- [ (r-ZO.) (zG-zBl) W]

DVD

2 DV

In these W=B and x G=X B have been assumed. Considering that the

effect of the bow and the stern planes is the same we have:

21



so

b, =b11 -b- 2

b2 =b 2l -b 22

From the above the final form of the equations of motion

is:

O=q

i=a1 uw+a1 2 uq+a 3O +bl u 28 (3.8)

I=a21 uw+a22 uq+a23O+b2 u 26 (3.9)

1. ZERO PITCH ANGLE

When the commanded direction of the underwater vehicle is

horizontal the control law has the following form:

8=k1O+k2 w+k 3q (3.10)

where kj,k 2,k3 are calculated below. From the system of the

three differential equations (3.5), (3.8), (3.9) the closed loop

characteristic equation has the following form:

)3 +a 1 2 +a2) +a 3=o (3.11)

where:

22



a1 =-a1 1 u-biu 2 k2 -a22u-b 2U2 k 3

a 2 =a1 1 a22 u +a1 1 b 2u 3.k3+a, b u 2 21 a12 21u b2 iUk-bia2 1 UkQ 23-b

a3 =al3a2lu-al3b2u 2k2 -bla2 , U3 kl+alla2 u+allb2 U
3 kl+ 2 3b U 2 k2

23



0

\ 0

Z

Figure 4. Vertical plane geometry: Horizontal commanded path
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The desired characteristic polynomial according to the ITAE

criterion is:

13 d.2 +a2l +a3 =0 (3.12)

where:

a 1 =l .75(c 0

a2=2.15 2o

_lOu

tv 1

and tv represents the dimensionless settling time for the

vertical plane autopilot. Equating the coefficients of

equation (3.11) with equation (3.12) we get:

biuk2 +b2 uIk3 = -a1- (a,.+a22) U (3.13)

(bia22-b 2a12) u 3k 2 + (b2aii-bia2i) U3k3=a,, b.u2ki
+a 2 3+ (a12a 2i-aila22 ) u 2  (3.14)

(b 2a11 -bia21 ) u 3ki+ (a 23bi-a 3b2 ) u 2k 2 = (3.15)
a3 + (a 13a 21 -an1 a 23 ) u

To simplify notations, equations (3.13),(3.14) and (3.15) are

written as:

25



A2 k2 +A3k3 =Dl (3.16)

Blk1 +B2k 2 +B3k 3 =D2  (3.17)

Clk 1 +C2k2 =D3  (3.18)

where:

A2 =b u 
2

A3 =b2 U'

B1=b~u2

B2 = (bla2 ,-b 2 al2 ) U 3

B3 = (b2a11-bla2l) U 3

C1= (b2a11-bla21 ) U 
3

C2 = (a23b,-al3b2) U2

D,=-,- (all~22)U

D2 =12 +a2 3 + (al 2a2l -alla2 2) U 2

D3 =43+ (al3a.1 -a11a23) U

From the above system of equations (3. 16), (3.17), (3. 18) we

can find 3xpressions for the gains kl1k2,k3

26



D3 -C 2k 2  (3.19)
C,

k2 = A 3BjD3 +C1B 3D -D 2 C1A 3  (3.20)
A 3B1C2 +C1B3A 2 -CA 3B2

k 3 = Di -A 2 k 2  (3.21)
A 3

2. NON ZERO PITCH ANGLE

When the commanded pitch angle of the vehicle is not equal

to zero, we have:

O=av+O' (3.22)

where: av is the commanded pitch angle

8' is the deviation from the commanded angle

Then

sinO=sina vcosOl+cosavsin l =sinav+Ocosa,,

for small deviations 0'. The system of equations of motion

(3.5),(3.8),(3.9) takes the form:

0/= q (3.23)

0=a 11uw+a 12uq+a13cosa,6'+b, u28 +a1 3sinav (3.24)
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z

Figure 5. Vertical plane geometry: Inclined commanded path
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(j=a2 1uw+a 22 uq+a23cosa,0'+b2 u2
8 +a23sina, (3.25)

The control law now takes the form:

8 =kl (O-a,) +k2w+k 3 q+k 4  (3.26)

where kl,k 2,k3 can be calculated with the some procedure as

before, and the feedforward gain k4 is calculated from the

desired steady state accuracy. At steady state we have:

q=O

o=a v

01=0

so that the system of the equations of motion

(3.23),(3.24),(3.25) yields:

al uw+b, u 26 +a1 3sinav=O (3.27)

a2 1uw+b2u 28 +a 23sinav=O (3.28)

Equations (3.27),(3.28) can be solved for the steady state

values of 6 and w, and by substitution into equation (3.26),

after some calculations k4 is found to be:

29



a13 (a21+b2uk2) -a23 (a11+bluk2)k4=-(ilbal U sinav  (3.29)
(bla21 -b 2a1 1 ) u-

Note that if aV=0 or zG=zB then k4=0.

C. GUIDANCE LAW

A similar to the horizontal plane case guidance law can be

used here to allow path keeping in the vertical plane. To the

previous system of differential equations (3.1),(3.2),(3.5)

one more equation is added, the kinematic equation (3.4). The

new system is now going to be examined for two different

cases.

a) Horizontal path (no change in depth)

b) Inclined path (change in depth)

1. HORIZONTAL PATH

In this case where the commanded depth remains the same

the control law is:

8=k1 (O-0,) +k2w+kq (3.30)

where 0C is the commanded line of sight (pitch angle)

6 3=tan-1 z  (3.31)Xd
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where k,,k 2,k3 are already known from the previous section, and

xd is the visibility distance similar to the horizontal case,

shown in Figure 4.

2. INCLINED PATH

Here the commanded depth changes linearly so that the

angle 6 is given by:

8=k, (O-av-e/¢) +kw+k3q+k4  (3.32)

where klk 2,k3,k4 are the same as previously determined.

The k4 term exists here because an angle 6 * 0 has to remain

when the underwater vehicle changes depth to equalize the

restoring moment due to the pitch angle. The commanded pitch

angle is:

ecl=tan - z-1 (3.33)X d

where z* is the cross track error off the inclined path as

shown in Figure 5.

D. STABILITY

The complete system is given by the equations of motion

(3.1), (3.2), (3.4), (3.5), the control law (3.30), and the

guidance law (3.31). Horizontal motion at the commanded depth

is characterized by:

O=w~q=z=O
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Linearization of the above equations produces the linear

system:

X=AX

where:

x= [0, W, q, z]

and

0 0 1 0

al3zGB+blu2K, a 11 u+bj u 2K2 a 12 u+bJ u 2K3 -bl u 2 K (

a 2 3zGB+b 2 u K, a2,ub 2u 2 K2 a 22u+b2 u 2K3 -b 2u2 Xd

-u 1 0 0

where:

ZGB=ZG-ZB (3.35)

is the metacentric height. Stability properties of the

straight line motion are established by the eigenvalues of

matrix [A]. It should be mentioned that from now until the end

of this chapter a13, a23 have been redefined to show explicitly

the metacentric height ZGB.

A program is written to compute the eigenvalues of matrix

(3.34) over a range of (tv,xd) values, and detect whether one
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or more eigenvalues become unstable. Typical results are shown

in Figure 6 for u=5 ft/sec and zGB=0.1.

1. REGIONS OF STABILITY

It can be seen that the stability boundary of Figure 6

separates the parameter space (xd,tv) into three regions:

1: Unstable region, one pair of complex conjugate

eigenvalues of [A] has positive real parts.

2: Stable region, all eigevalues of [A] have negative

real parts.

3: Unstable region, one real positive eigenvalue of

[A).

Obviously, stable vehicle response is not possible unless the

parameters (xd,tv) are chosen in region 2.
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1: One pair of complex conjugate eigevalues with

positive real parts.

2: Region of stability.

3: One real positive eigenvalue.

LO

3

0
C%)

4J

o

0

0. 000 0. 200 0. 400 0. 600 0. 800
Xd

Figure 6. Regions of stability for u=5 ft/sec and z,=0.1 ft
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2. SIMULATIONS

Before proceeding further with the stability analysis,

numerical integrations are first performed in order to examine

the response of the vehicle in each of the above three regions

of stability of Figure 6. The same parameters u=5 ft/sec and

ZGB=0.1 ft are used. Simulations for the pitch angle 8 and the

commanded line of sight angle Oc for the case tv=5 and Xd= 4 are

shown in Figure 7. This corresponds to region 2 of Figure 6

which is the region of stability. The simulation results show

that the actual vehicle pitch angle approaches the commanded

angle, after some oscillations, and the depth reaches its

commanded value at zero as predicted.

When the visibility distance is Xd=0.4 with the same tv,

the vehicle moves into the unstable region 1 of Figure 6. The

simulated response is shown in Figure 8 where oscillatory

characteristics are exhibited. If we keep the same value for

Xd= 4 and we change the controller time constant tv=15 we enter

the unstable region 3 of Figure 6. The simulated vehicle

response is shown in Figure 9 where it appears that 0 and 0c

diverge and they both reach nonzero steady state values. As a

result the vehicle depth is now a linear function of time,

without ever stabilizing. These results require a more

detailed analysis of the regions of stability of the

controller / guidance combination.
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z~i= 0.-1 (ft)

u 5 (ft/sec)

tv 5

Xd =4

0

5-4

0

L6 I

0.0 5.0 10.0 *15.0 20.0

t

Figure 7. Numerical simulations in region 2
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ZB=- 0 .1 (ft)

u 5 (ft/sec)

=, 15

Xd =4

LOl

I00

0;

0 1 1 1 1. I . r - -

0.0 50.0 100.0 150.0 200.0

t

Figure 9. Numerical simulation in region 3
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Figure 10. Regions of stability for z~j=O and for any speed

u
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E. ANALYSIS

The stability properties of the system are characterized

by the eigenvlues of the linearized matrix [A], given by

equation (3.34). The characteristic equation of [A] has the

form:

AA 4 +BL 3 +CA2 +DX+E=O (3.36)

where:

A=1

B=( 1

C=a2+blu2k 1 1
Xd

D=a3+ (b2a.2-bia.2) u13ki--L -b2 U3 k,-
Xd Xd

E=zGB (b 2 a1 3 -bla2 3 ) U2 - + (b 2a11-ba 21 ) u4k,
Xdx d

According to Routh's criterion (3.36) has one pair of complex

conjugate roots crossing the ..maginary axis when:

BCD-AD 2 -B2 E=O (3.37)

After some algebra , equation (3.37) can be written as
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a3(ala2-aO) x d + [ d l ( ala 2- a3 ) 1 1C 3- a~d l - e ] (3.38)
xd+dl (alc 1-dl) =0

where:

C1 =A2k i

d1= (-B 2 -A 3 u) k,

el= ( -C2 +Cu) k,

and A2 ,A 3 1 B2,CIC 2 were defined previously following equations

(3.16),(3.17) and (3.18).

The positive root of equation (3.38) provides the critical

value of xd for stability. This produces the curve separating

the regions 1 and 2 of Figure 6. As the (xd,tV) combinations

cross into region 1, the response of the system becomes

oscillatory as a result of the pair of complex conjugate

eigenvalues with positive real part. This explains the

simulations observed in Figures 7 and 8.

A different kind of instability occurs when one real root

of (3.36) crosses zero. For this to happen the condition is:

E=0 (3.39)

and using the previous definition of E, this happens when
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k, =0 (3.40)

Equations (3.40) and (3.19) yield

k D3  (3.41)

Equations (3.41),(3.20) define then the critical condition for

stability. In our case this can be simplified as follows. The

expression for C2 is reproduced here.

C2 = (a 23 b1 -a 13 b2 ) zGBu 2  (3.42)

Since we have assumed that bow and stern planes have the same

strength

Z 6 S=Zab< 0

M6S= -M6b' 0

and substituting the expressions for a23,b,a 13,b2 we can find

that

C2 =0 (3.43)

Equations (3.43) and (3.41) then require that
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D3=0 (3.44)

and using the definition for D3 we get

a,+ (a13a21-alla 23) ZGBU=O

or

(OU3  + (a 13a21 -aria 23 ) ZGB=O

tvl

and we can find the critical value of tv as

t v ical = i (3.45)
1 [ (aia 23-a1 3a21 ) ZGB]

Condition (3.45) shows that the critical value of tv is

independent of xd which is demonstrated in Figure 6 as a

straight line parallel to the xd axis. Furthermore, the other

stability curve, equation (3.38), intersects the tv axis at

xd=O when k1=0 which is the same condition as (3.45). This

means that the stability conditions (3.38) and (3.45) separate

the (xd,tv) parameter space into three regions of stability,

as shown in Figure 6.

Results of the stability regions for z GB =0 are shown in

Figure 10. These are independent of the forward speed u just

as in the horizontal plane case. It should be mentioned that
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for ZGB=O, tvcriticaL 4 m and therefore ,region 3 of figure 6

never appears.

For ZGB > 0, the stability regions depend heavily on the

forward speed u. This is demonstrated in Figure 11 for ZGB=0.1

(ft) and various values of u in (ft/sec). As the speed is

decreased the critical value of tv from (3.45) also decreases

with the effect of reducing region 1 and enlarging region 2

and 3.

The effect of varying the metacentric height zGB while

keeping u constant is evaluated in Figure 12 for u=2. Similar

conclusions can be drawn for this case as previously.

The critical value of tv as given by (3.45) is shown in

Figure 13 for different values of the forward speed u and the

metacentric height ZGB. The surface shown in the figure

separates the stability regions 2 and 3.

The final task of this section is to explain the

simulations observed in Figure 9 when the vehicle operates in

region 3.
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Figure 11. Regions of stability for z,=O.l ft
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Figure 13. Critical value of t, versus u and Z.,
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F. STEADY STATE SOLUTIONS

It was shown in the previous section that transition

between Regions 2 and 3 is associated with a real eigenvalue

crossing zero. Usually when such a loss of stability occurs

and the primary equilibrium solution becomes unstable,

additional stable equilibrium solutions appear. To evaluate

these new steady state solutions we consider the complete

system given by equations (3.4), (3.5), (3.6), (3.7), (3.30),

and (3.31). At steady state the time derivetives vanish and we

get

q=0 (3.46)

w= C2 sinO (3.47)

8= D 3 -a 3 sinO (3.48)

C,1

Substituting equations (3.46),(3.47), and (3.48) into equation

(3.4) we get:

(-u+--cos) sinO=0 (3.49)
C,

Equation (3.49) may accept besides the normal solution 6=0,

another solution given by:
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1= (b2a1 1-bja21 ) (3.50)cosO= qu= (.0

C2  (bja23-b 2a 13 ) ZGB

Equation (3.50) is valid provided cosG _< 1 which means:

S2 (bla23 -b2 al3 ) ZGB~(3.51)b2a n -bla2l

If (3.51) is satisfied the equilibrium angle e can be

determined from (3.50) provided:

D3 -a 3 sinS<6sat (3.52)
C,

where 6,,t is the maximum dive plane angle typically set at

0.4 radians.

In our case conditions (3.51) and (3.52) are not

satisfied, which means that the non zero equilibrium pitch

angle cannot be computed from (3.50). Furthermore z * 0 at

steady state, which means that =constant. Therefore, z is

linearly increasing with time, and

tan-1 - - , as...t-o (3.53)
Xd 2
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Substituting equations (3.46), (3.47), (3.48), and (3.53) into

the control law (3.30) and (3.31) we can find the equation for

the unknown steady state pitch angle.

(D3-a 3 ) sinO =k1 C, (6- -1) +k .sin0 (3.54)
2

If we call 0 - T/2 = 0', equation (3.54) reduces to:

k1c10'+ (a3-k, C)cos0/=O (3.55)

It can now be seen that equation (3.55) has a solution when ki

crosses zero which is the same condition for transition

between regions (2) and (3) found in the previous section. The

steady state solution is then computed from (3.55) if:

D3-a3 sinO 6 sat (3.56)
C,

or from:

sine= C, 8sat (3.57)

otherwise.

Results for the steady values of 0 and 6 are presented in

Figures 14 and 15 versus zGB for u=5 and tv=15.
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Solid lines correspond to stable and dashed lines to unstable

equilibrium positions. It can be seen that the simulation

results for ZGB =0.1 of Figure 9 are verified.

The steady state pitch angle 0=0 loses its stability at

ZGB=0.0 7 and begins to increase together with the dive plane

angle 6. This is up to ZGB=0.12 where 6 reaches its maximum

value. For increasing ZGB beyond this point, the pitch angle

o begins to decrease since 6 remains constant. These results
are for fixed tv and u. Results for different values of the

controller settling time tv and vehicle speed u are shown in

Figures 16 and 17 respectively.
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IFigure 14. Steady state pitch angle 0versus zca
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u = 5 (ft/sec)
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Figure 15. Steady state dive plane angle 8versus Z.,

53



u =5 (ft/sec)

CC

02

0t 1

0

' 0. 000 0. 100 0. 200 0. 300 0. 400 0. 500

Zc;B (ft)

Figure 16. Steady state e versus zr. for several values of t,
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IV THREE DIMENSIONAL GUIDANCE CONTROL

The horizontal and vertical plane guidance and control

laws that were developed in the previous two chapters are

combined here to provide accurate path keeping in three

dimensional space. The other requirement is that the forward

speed along the path should be constant and equal to a

commanded value. This will enable path tracking instead of

simply path keeping.

A. PROPULSION CONTROL

Just as the horizontal (vertical) plane path control

design was based on the linearized lateral (vertical)

equations of motion, the propulsion control law will be based

on the linearized form of the surge equation only. The surge

equation is:

mJ=X0+x.w 2 +uw(XW6 -4) +u2 (6 6 b) 2 +CD (a 2n2 -u 2) (4.1)

where:

a=-u  (4.2)nma

n is the propeller revolutions, and 6 the dive plane angle.

Only w and 6 terms remain in equation (4.1) because only these
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terms are nonzero at steady state for a constant commanded

dive or rise angle. A propulsion control law is introduced of

the form:

n=no+kn (u-u¢) (4.3)

The feedback gain k, is computed from stability

requirements whereas the feedforward term nO is computed from

steady state accuracy. When n=n0 the forward speed u must

equal the commanded speed uc. Therefore, (4.1) becomes:

f(u) +Coa2n 2=O (4.4)

where we defined

f(u) =XWw 2 +uW(Xw6 -X.6) 6 +u2 (X 6,6 +Xb6 8b) 82 -CDCu 2  (4.5)

The terms w and 6 are given as functions of uc and the

commanded pitch angle a v by

w= (bla23-b 2ai3) ZGBsinaV (4.6)( anb-a2b i ) u c

(4.7)

Solving (4.4) for no we get
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2=_ f(u,) (4.8)
n CD, 2(48

This term n. guarantees the required steady state accuracy. To

evaluate k, we substitute (4.3) and (4.8) into (4.1) and we

get:

(m-X 1 ) u-2 CD.a 2nok n (u-uC) =0 (4.9)

The characteristic equation of (4.9) is

s- 2cDa 2nok=0 (4.10)

m-X,

The desired characteristic equation is

l 6 IOuc (4.11)
tn 1

where tn is the desired dimensionless settling time for the

speed control. Comparing (4.10) with (4.11) we can solve for

the control gain.

kn = - 5 u c (m-XL) (4.12)
CDo a 2ntl(4 )
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With the choice of gains (4.12) and (4.8), the propulsion

control law (4.3) is complete.

B. THREE LIMENSIONAL PATH KEEPING

Suppose the commanded path is a general straight line in

three dimensions, from point 0 to point F as shown in Figure

18. The vehicle position is at point A. With respect to the

inertial coordinate frame (x,y,z) the commanded path is

characterized with the two angles a. and av as shown in the

Figure. In order to achieve the commanded path, a coordinate

frame rotation by an angle a. is performed first as shown in

Figure 19. The necessary geometric relations are:

a=tan-1 YF-YO 
(4.13)

XFXo

x'= (y-yo) sina+ (x-x o) cosaH (4.14)

y'= (y-y) cosa.- (x-x) sina, (4.15)

The rudder control law is then of the form:

8=k1 (*-aH-c) +k2v+k3r (4.16)

where the line of sight angle for horizontal plane control oH

is defined by:
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tano,=- (4.17)

XdH is the lookahead distance determined according to the

stability analysis of Chapter II, and kI, k2, k3 are the

horizontal plane control gains from Chapter II.

Another rotation by an angle av is conducted next as shown

in Figure 20. The geometric relations here are:

a v=tan -1 Z ZO (4.18)X F

X/F = ( YF-YO) sinaH+ (XF-Xo) COS(XH (4.19)

X"=- (Z-Z.) sinav+X'cosav (4.20)

z'= (z-z.) cosav+xsinav (4.21)

The dive plane control law is:

8=k, (6-av- v) +k2w+k 3q+k 4  (4.22)

where the line of sight angle for vertical plane control av is

defined by:

tan o 
v-
Xd,
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Xdv is the lookahead distance determined according to the

stability analysis of Chapter III, and k1 , k2, k3 , k4 are the

vertical plane control gains as computed in Chapter III. The

existence of two distinct distances XdH , Xdv is for maximum

flexibility in the design and to allow for the possibly

different stability conditions for horizontal and vertical

plane, as analyzed in the previous two chapters.

Results are presented for a typical three dimensional

commanded route that consists of the following way points (x,

y, z) = (20, 0, 5), (40, 5, 5), (60, -5, -3), (100, 0, -5)

vehicle lengths with individual straight line paths connecting

them. Switch from one to the next straight line path was

initiated when the vehicle position, measured along the

current commanded path, was within a specified target distance

(TD) from the way point. Parameters used for the simulation

were the following: tH= 7
, tv=5, zG=0.1, tN=0.2, XdM= 3 , x dv=2.5

commanded speeds u=(4, 4, 5, 5) for the four straight line

segments respectively, and TD=I. Simulation results are

presented in Figure 21 through 25. It can be seen from Figures

21 that accurate path control is maintained in both the

horizontal and vertical planes. Speed control is also very

accurate, see Figure 22, despite the course changes and

nonzero dive and rise angles. The speed controller revolutions

per minute are shown in Figure 23, where the maximum

saturation limit is set 500 rpm. Rudder response is shown in

Figure 25 where the steady state nonzero values occur during
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a nonzero commanded pitch angle. Comparing Figures 24 and 25

with 22, it can be observed that the vehicle slows down

momentarily when the control surfaces become active, a

situation which is quickly corrected by the speed controller.
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Figure 18. Coordinate transformation for 3-D path keeping
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Figure 19. Horizontal plan, rotation
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Figure 20. Vertical plane rotation
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Figure 21. Numerical simulation for 3-D path keeping
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Figure 22. Time history of vehicle speed u
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Figure 24. Time history of rudder angle
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CONCLUSIONS AND RECOMMENDATIONS

The main conclusions and contributions of this work can be

summarized as follows:

1. Pursuit guidance law and decoupled horizontal and

vertical plane orientation controllers were shown to provide

accurate vehicle path keeping in three dimensions.

2. The scheme proved to be robust enough so that it could

handle the nonlinear coupling between speed response, and

horizontal and vertical plane motions without performance

degradation.

3. It was shown that the guidance and control schemes must

be designed together in order to avoid loss of stability or

excessive oscillatory response.

4. Analytic conditions for stability were derived. The

conditions were expressed explicitly in terms of the vehicle

hydrodynamic characteristics and the guidance and control law

design specifications.

5. An extensive study of the mechanism of loss of

stability was undertaken for the vertical plane motions. Two

distinct possibilities were discovered and analyzed. In the

first one pair of complex conjugate eigenvalues crosses the

imaginary axis and results in an oscillatory vehicle behavior

around the commanded path. In the second , one real eigenvalue

crosses zero and the vehicle drifts off to a steady state path
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with its deviation from the commanded path linearly increasig

with time. This new path was computed and explicit conditions

to avoid such a undesirable situation were given.

Some recommendations for further research include the

following:

1. Comparisons from the point of view of path keeping

response under physical system / mathematical model mismatch.

2. State estimators must be included in the analysis to

evaluate performance under partial state knowledge and sensor

noise.

72



APPENDIX A

C PROGRAM SIM_3D.FOR
C
C FOTIS A. PAPOULIAS/ANGELLOS G. PAPASOTIRIOU
C NAVAL POSTGRADUATE SCHOOL
C AUGUST 1991
C
C VEHICLE THREE DIMENSIONAL PATH KEEPING
C HEADING AUTOPILOTS
C PURE PURSUIT NAVIGATION
C SIMULTANEOUS RUDDER/DIVE PLANE SWITCHINGS
C
C DECLARATIONS
C

REAL L,MASS,IX,IY,IZ,IXZ,IYZ,IXY
REAL K1H,K2H,K3H,K1V,K2V,K3V,K4V,KN
REAL KPDOT, KRDOT, KPQ, KQR, KVDOT, KP, KR, KVQ, KWP, KWR, KV, KVW,
& KPN,KDB
REAL MQDOT,MPP,MPR,MRR,MWDOT,MQ,MVP,MVR,MW,MVV,

& MDS,MDB,NDRB
REAL NPDOT, NRDOT,NPQ, NQR, NVDOT, NP, NR, NVQ, NWP, NWR,

& NV,NVW,NDRS
REAL MM(6,6),INDX(100)
DIMENSION X(9) ,BR(9),HH(9),VECH1(9) ,VECH2(9) ,XMMINV(6,6)
DIMENSION VECV1(9),VECV2(9) ,F(12) ,FP(6),DISV( 100)
DIMENSION XDES(100),YDES(100),ZDES(100),UDES(100),
& DISH(100)

C
C GEOMETRIC PROPERTIES
C

WEIGHT=12000 .0
IX = 1760.0
IY =9450.0
IZ =10700.0
IXY = 0.0
IYZ = 0.0
IXZ 0.0
L = 17.425
RHO 1.94
G = 32.2
XG = 0.0
YG = 0.0
XB = 0.0
YB = 0.0
ZB = 0.0
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AO - 2.0
CDO = 0.0057
MASS =WEIGHT/G
BOY =WEIGHT
RPMMAX= 500.0
RPMMIN= -500.0
UTMAX - 6.0
UMIN = 0.1
ALPHA =UMAX/RPMMAX

C
C SURGE HYDRODYNAMIC COEFFICIENTS
C

XPP =7.03OE-~03*O.5*RHO*L**4

XQQ =-1.470E-02*0.5*RHO*L**4
XRR = 4.010E-03*0.5*RHO*L**4
XPR = 7.640E-04*0.5*RHO*L**4
XUDOT =-7.580E-03*0.5*RHO*L**3
XWQ =-1.920E-01*0.5*RHO*L**3
XVP =-3.240E-03*0.5*RHO*L**3
XVR = 1.890E-02*0.5*RHO*L**3
XQDS =2.61OE-02*0.5*RHO*L**3
XQDB =-2.600E-.03*0.5*RHO*L**3
XRDR =-8.180E-04*0.5*RHO*L**3
XVV = 5.290E-02*0.5*RHO*L**2
XWW = 1.710E-01*0.5*RHO*L**2
XVDR = 1.730E-03*0.5*RHO*L**2
XWDS = 4.600E-02*0.5*RHO*L**2
XWDB = 9.660E-03*0.5*RHO*L**2
XDSDS =-1.160E-02*0.5*RHO*L**2
XDBDB =-8.070E-~03*Q.5*RHO*L**2
XDRDR =-1.010E-02*0.5*RHO*L**2
XRES =CDO*0.5*RHO*L**2

XPROP =XRES*ALPHA**2

C
C SWAY HYDRODYNAMIC COEFFICIENTS
C

YPDOT = 1.270E-04*0.5*RHO*L**4
YRDOT = 1.240E-03*0.5*RHO*L**4
YPQ = 4.125E-03*0.5*RHO*L**4
YQR =-6.510E-03*0.5*RHO*L**4
YVDOT =-5.550E-02*0.5*RHO*L**3
YP = 3.055E-03*0.5*RHO*L**3
YR = 2.970E-02*0.5*RHO*L**3
Y VQ = 2.360E-02*0.5*RHO*L**3
YWP = 2.350E-01*0.5*RHO*L**3
YWR =-1.880E-02*0.5*RHO*L**3
YV =-9.310E-02*0.5*RHO*L**2
YVW =6.840E-02*0.5*RHO*L**2

YDRS =+2.270E-02*0.5*RHO*L**2
YDRB =+2.270E-02*0.5*RHO*L**2

C
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C HEAVE HYDRODYNAMIC COEFFICIENTS
C

ZQDOT =-6.81OE-O3*O.5*RHO*L**4
Zpp = 1.27OE-O4*O.5*RHO*L**4
ZPR = 6.67OE-O3*O.5*RHO*L**4
ZRR =-7.35OE-O3*O.5*RHO*L**4
ZWDOT =-2.43OE-01*O.5*RHO*L**3
ZQ =-l1 5OE-0Ol*O.5*RHO*L**3
ZVP =-4.8lOE-Q2*O.5*RHO*L**3
ZVR = 4.55OE-O2*O.5*RHO*L**3
ZW =-3.O20E-O1*O.5*RHO*L**2
ZVV =-6.84OE-O2*O.5*RHO*L**2
ZDS =-2.27OE-O2*O.5*RHO*L**2
ZDB =-2.27OE-O2*O.5*RHO*L**2

C
C ROLL HYDRODYNAMIC COEFFICIENTS
C

KPDOT =-1.O1OE-O3*O.5*RHO*L**5
KRDOT =-3.37OE-O5*O.5*RHO*L**5
KPQ =-6.93OE-.O5*O.5*RHO*L**5
KQR = 1.68OE-O2*O.5*RHO*L**5
KVDOT = 1.27OE-O4*O.5*RHO*L**4
KP =-1.1OOE-0Q2*O.5*RHO*L**4
KR =-8.41OE-O4*O.5*RHO*L**4
KVQ =-5.115E3*Q.5*RHO*L**4
KWP =-1.27OE-Q4*O.5*RHO*L**4
KWR = 1.39OE-Q2*O.5*RHO*L**4
KV =3.O55E-O3*O.5*RHO*L**3
KVW =-1.87OE-O1*Q.5*RHO*L**3

C
C PITCH HYDRODYNAMIC COEFFICIENTS
C

MQDOT =-1.68OE-O2*O.5*RHO*L**5
MPP = 5.26OE-O5*O.5*RHO*L**5
MPR = 5.O4QE-O3*O.5*RHO*L**5
MRR =-2.86OE-0O3*O.5*RHO*L**5
MWDOT =-6.81OE-Q2*O.5*RHO*L**4
MQ =-~6.86OE-O2*O.5*RHO*L**4
MVP = 1.18OE-O3*O.5*RHO*L**4
MVR = 1.73OE-O2*O.5*RHO*L**4
MW = 9.86OE-O2*O.5*RHO*L**3
MVV =-2.51OE-O2*O.5*RHO*L**3
MDS =-1.1l3E-0O2*O.5*RHO*L**3
MDB 1.113E-O2*O.5*RHO*L**3

C
C YAW HYDRODYNAMIC COEFFICIENTS
C

NPDOT =-3.37OE-O5*O.5*RHO*L**5
NRDOT =-3.4OOE-Q3*O.5*RHO*L**5
NPQ =-2.11OE-0O2*O.5*RHO*L**5
NOR =2.75OE-O3*O.5*RHO*L**5
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NVDOT = 1.24OE-0O3*O.5*RHO*L**4
NP =..8.45E..4*5*RHO*L**4
NR =-1.64OE-Q2*Q.5*RHO*L**4
NVQ =-9.99OE-O3*O.5*RHO*L**4
NWP =-1.75OE-0O2*O.5*RHO*L**4
NWR = 7.35OE-O3*O.5*RHO*L**4
NV =-7.42OE-O3*O.5*RHO*L**3
NVW =-2.67OE-0O2*Q.5*RHO*L**3
NDRS =-1.113E-0O2*O.5*RHO*L**3
NDRB =+1.113E-O2*O.5*RHO*L**3

C
C OPEN DATA AND RESULTS FILES
C

OPEN (1O,FILE='PATH_3D.DAT',STATUS='OLD')
OPEN (11,FILE='XY.RES,STATUS=NEW')
OPEN (12,FILE='XZ.RES',STATUS='NEW')
OPEN (13,FILE=sDRS.RES',STATUS=9NEW')
OPEN (14,FILE='DS.RES',STATUS='NEW )
OPEN (15,FILE='YCTE.RES',STATUS='NEW')
OPEN (16,FILE='ZCTE.RES',STATUS='NEW')
OPEN (17,FILE='XYZ.RES',STATUS='NEW')
OPEN (18,FILE='U.RES',STATUS='NEW')
OPEN (19,FILE='RPM.RES',STATUS='NEW')
OPEN (2O,FILE='PHI.RES',STATUS='NEW-)
OPEN (21,FILE='TH-ETA.RES,STATUS='NEW-)
OPEN (22,FILE='PSI.RES,STATUS=NEW-)
OPEN (23,FILE='V.RES',STATUS='NEW')
OPEN (24,FILE='R.RES',STATUS='NEW')
OPEN (25,FILE='W.RES',STATUS=NEW')
OPEN (26,FILE='Q.RES',STATUS='NEW')
OPEN (27,FILE='YZ.RES',STATUS='NEW')

C
C READ DATA FILE
C

READ (1O,*) TSIM,DELTA,IPRNT
READ (1O,*) IPTS,TARGET
READ (1O,*) TN,TH,TV,ZG
IF (IPTS.GT.100) IPTS=100
DO 1 I=1,IPTS

READ (1O,*) XD,YD,ZD,XDH,XDV,UO
XDES( I)=XD*L
YDES( I)=YD*L
ZDES( I)=ZD*L
UDES( I)=U0
DISH( I)=XDH*L
DISV( I)=XDV*L

1 CONTINUE
C
C MASS MATRIX INITIALIZATION AND DEFINITION
C

DO 15 J=1,6
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DO 10 K=1,6
XMMINV(J,K)=0 .0
MM(J,K)=0.0

10 CONTINUE
15 CONTINUE

C
!4M(1,1)= MASS-XUDOT
MM(1,5)= MASS*ZG
MM( 1, 6)=-MASS*YG

C
MM(2,2)= MASS-YVDOT
MM( 2,4) =-MASS*ZG-YPDOT
MM( 2,6) = MASS*XG-YRDOT

C
MM~(3,3)= MASS-ZWDOT
MM(3,4)= MASS*YG
MM( 3,5) =-MASS*XG-ZQDOT

C
MM(4,2 )=-MASS*ZG-KVDOT
MM(4,3)= MASS*YG
MM(4,4)= IX-KPDOT
MM(4, 5)=-IXY
MM(4, 6)=-IXZ-KRDOT

C
MMv(5,1)= MASS*ZG
MM(5, 3)=-MASS*XG-MWDOT
MM(5,4 )-IXY
MM(5,5)= IY-MQDOT
MM(5,6)=-IYZ

C
MM(6, 1)=-MASS*YG
MM(6,2)= MASS*XG-~NVDOT
MM(6 4 )=-IXZ-NPDOT
MM(6,5)=-IYZ
MM(6,6)= IZ-NRDOT

C
C MASS MATRIX INVERSION
C

DO 12 I=1,6
DO 11 J=1,6

XMIINV (I ,J )= 0. 0
11 CONTINUE

XNMINV( 1,1)=1 .0
12 CONTINUE

CALL INVTA(MMv,6,INDX,D)
DO 13 J=1,6

CALL INVTB(MM,6,INDX,XMMINV(1,J))
13 CONTINUE

C
C VARIABLES INITIALIZATION
C
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PISIM =TSIM/DELTA
ISIM =PISIM
ECHO =1.0/DELTA
IECHO =ECHO
YAW =0.0
SWAY =0.0
PITCH =0.0
HEAVE =0.0
U =UDES(1)
RPM =UDES (1)/ALPHA
V =0.0
w =0.0
P =0.0
Q =0.0
R =0.0
DS =0.0
DB =0.0
DR =0.0
TWOPI =8.0*ATAN(1.0)
P1 =0.5*TWOPI
PHI =0.0
ISTART=1
TARGET=TARGET*L
xPOS =0.0
YPOS =0.0
ZPOS =0.0
CDY =0.5
CDZ =0.5
JPRNT =0
IJK =0
JE =0
DRS =0.0
DRB =0.0
DS =0.0
DB =0.0

C
C DEFINE THE LENGTH X, BREADTH BR, AND HEIGHT HH TERMS
C

X(1) =-105.9/12.0

X(2) = -99.3/12.0
X(3) = -87.3/12.0
X(4) = -66.3/12.0
X(5) = 72.7/12.0
X(6) = 83.2/12.0
X(7) = 91.2/12.0
X(8) = 99.2/12.0
X(9) = 103.2/12.0

C
HH(1) = 0.00/12.0
HH(2) = 8.24/12.0
HH(3) = 19.76/12.0
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HH(4) = 29.36/12.0
HH(5) = 31.85/12.0
HH(6) = 27.84/12.0
HH(7) = 21.44/12.0
HH(8) = 12.00/12.0
HH(9) = 0.00/12.0

C
BR(1) = 0.00/12.0
BR(2) = 8.24/12.0
BR(3) = 19.76/12.0
BR(4) = 29.36/12.0
BR(5) = 31.85/12.0
BR(6) = 27.84/12.0
BR(7) = 21.44/12.0
BR(8) = 12.00/12.0
BR(9) = 0.00/12.0

C
C AUXILLIARY VARIABLES FOR HORIZONTAL PLANE CONTROL
C

DH =(IZ-~NRDOT)*(MASS-YVDOT)-
& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)
A11H=( (IZ-NRDOT)*YV-~(MASS*XG-YRDOT)*NV)/DH
A12H=( (IZ-NRDOT)*(-MASS+YR)-
& (MASS*XG-YRDOT)*(-MASS*XG+NR) )/DH
A21H=( (MASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH
A22H= ((MASS-YVDOT) * (MASS*XG+NR) -
& (MASS*XG-NVDOT)*(-MASS+YR) )/DH
B11H=( (IZ-~NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/DH
B12H=( (IZ-~NRDOT)*YDRB-(MASS*XG-YRDOT)*NDRB)/DH
B21H=( (MASS-YVDOT)*NDRS-(MASS*XG-NVDOT )*YDRS)/DH
B22H=((MASS-YVDOT) *NDRB-(ASS*XG-NVDOT) *YDRB)/DH
B1H =B11H-B12H
B2H =B21H-B22H

C
C AUXILLIARY VARIABLES FOR VERTICAL PLANE CONTROL
C

DV = (MASS-ZWDOT) * (IY-MQDOT) -ZQDOT*MWDOT
Al 1V= ((IY-MQDOT) *ZW+ZQDOT*W) /DV
A12V=( (IY-MQDOT)*(ZQ+MASS)+ZQDOT*MQ)/DV
A13V=-(ZG-ZB)* (MSS*XG+ZQDOT)*WEIGHT/DV
A21V= (MWDOT*ZW+ (MASS-ZWDOT) *MW) /DV
A22V=(MWDOT*(ZQ+MASS)+(MASS-ZWDOT)*MQ)/DV
A23V=- (ZG-ZB) *(MASS-ZWDOT) *WEIGHT/DV
B11V= ((IY-MQDOT) *ZDS+ZQDOT*MDS) /DV
B12V=( (IY-~MQDOT)*ZDB+ZQDOT*MDB)/DV
B21V=(MWDOT*ZDS+(MASS-ZWDOT) *MDS )/DV
B22V= (MWDOT*ZDB+ (MASS-ZWDOT) *MDB) /DV
B1V =B11V-B12V
B2V =B21V-B22V

C
C
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C SIMULATION BEGINS
C
C LOOP OVER WAY POINTS
C

DO 200 IP=1,IPTS
IF (IP.GE.2) GO TO 210
XDH=DISH( 1)
XDV=DISV( 1)
UO =UDES(1)
XD =XDES(1)
YD =YDES(1)
ZD =ZDES(1)
XD1=O .0
YD1=0.0
ZD1=0 .0
XD2=XD
YD2=YD
ZD2=ZD
GO TO 211

210 XDH=DISH(IP)
XDV=DISV( IP)
UO =UDES(IP)
XD =XDES(IP)
YD =YDES(IP)
ZD =ZDES(IP)
XD1=XD2
YD1=YD2
ZD1=ZD2
XD2=XD
YD2=YD
ZD2=ZD

211 ZD12=ZD2-ZD1
XD12=XD2-XD1
YD12=YD2-YD1

C
C HORIZONTAL HEADING CONTROL GAINS
C

OMEGAH=( 10.0*UO)/(TH*L)
AD1H=1 .75*OMEGAH
AD2H=2.15*OMEGAH**2
AD3H=OMEGAH* *3
A1=B1H*UO*UO
B1=B2H*UO*UO
C1=-AD1H- (A11H+A22H) *UJ
A2=(BlH*A22H-B2H*Al2H) *UO**3
B2=(B2H*A11H-.BlH*A21H) *UO**3
K1H=AD3H/( (B2H*A11H-B1H*A21H)*U0**3)
C2=AD2H-(A11H*A22H-A12H*A21H)*U0**2+B2H*U0*U0*KlH
K2H=(C1*B2-C2*B1 )/(A1*B2-A2*B1)
K3H=(C2*Al-C1*A2 )I(A1*B2-A2*B1)

C
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C VERTICAL HEADING CONTROL GAINS
C

OMEGAV=( 10. 0*UO) /(TV*L)
ADlV=1.75*OMEGAV
AD2V=2. 15*OMEGAV**2
AD3V=OMEGAV* *3
A2=B1V*UO*UO
A3=B2V*UO *UJ
D1=-AD1V- (A11V+A22V) *UO~
Bl=-B2V*U0*U0
B2=(B1V*A22V-B2V*A12V) *UO**3
B3=(B2V*A11V-BIV*A2 lV) *UO**3
D2=AD2V+A23V+(Al2V*A21V-A11V*A22V)*U0**2
Cl=(B2V*AllV-B1V*A2 lV) *UO**3
C2=(A23V*BlV-A13V*B2V) *UO**2
D3=AD3V+(A13V*A21V-A11V*A23V) *UQ
K2V= (A3*B1*D3+C1*B3*D1-D2*C1*A3)
K2V=K2V/(A3*B1*C2+Cl*B3*A2-Cl*A3*B1)
K1V=(D3-C2*K2V) /C1
K3V= (D1-A2*K2V) /A3

C
ALPHAH=ATAN(YD12/XD12)
ALPHAH=ABS (ALPHAH)
IF ((XD12.GE.0.0).AND.(YD12.GE.0.0)) ALPHAH= ALPHAH
IF ((XD12.GE.0.0).AND. (YD12.LT.Q.0)) ALPHAH= -ALPHAH
IF ((XD12. LT. 0.0) AND. (YD12. GE. 0.0) )ALPHAH=PI-ALPHAH
IF( (XD12.LT.0.0).AND. (YDl2.LT.0.0) )ALPHAH=PI+ALPHAH
XCTEH=(YPOS-YD1)*SIN(ALPHAH)+(XPOS-XD1)*COS(ALPHAH)
YCTE =(YPOS-~YD1)*COS(ALPHAH)-(XPOS-XD1)*SIN(ALPHAH)
X1P =YD12*SIN(ALPHAH)+XD12*COS(ALPHAH)
ALPHAV=ATAN( ZD12/X1P)
ALPHAV=ABS (ALPHAV)
IF (ZD12.GE.0.0) ALPHAV=-ALPHAV
K4V=-(A13V*(A21V+B2V*UQ*K2V)-A23V*(A11V+BlV*UO*K2V))
K4V=K4V*SIN(ALPHAV)/( (B1V*A21V-B2V*A11V)*U0*U0)
ZCTE = (ZPOS-ZD1)*COS(ALPHAV)+XCTEH*SIN(ALPHAV)
XCTEV=- (ZPOS-ZD1 )*SIN(ALPHAV) +XCTEH*COS (ALPHAV)

C
C PROPULSION CONTROL GAIN
C

WSS=(B1V*A23V-B2V*A13V)*SIN(ALPHAV)
WSS=WSS/( (A11V*B2V-A21V*B1V)*U0)
DSS=(A21V*Al3V-A11V*A23V) *SIN(ALPHAV)
DSS=DSS/( (Al1V*B2V-A21V*B1V)*U0*UO)
FUC=XWW*WSS**2+UO*WSS* (XWDS-XWDB) *DSS

& +U0*U0*(XDSDS+XDBDB)*DSS**2-~XRES*U0**2
RPMO=-FUC/ (XRES*ALPHA**2)
RPMO=SQRT(RPMO)
WRITE (*,*) RPMO,UO/ALPHA
KN=-5.0*U0*(MASS-~XUDOT)/(XRES*ALPHA*ALPHA*RPM0*TN*L)

C
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WRITE (*,201) XD/L,YD/L,ZD/L
C
C SIMULATION FOR EACH WAY POINT
C

DO 100 I=ISTART,ISIM
ICOUNT= I

C
IF (U.LT.UMIN) U=UMIN

C
C CALCULATE THE DRAG FOCE INTEGRATE THE DRAG OVER
C THE VEHICLE
C

DO 600 K=1,9
UCF=(V+X(K) *R) **2+(W-X(K)*Q) **2
UCF=SQRT (UCF)
IF (UCF.LT.1.E-6) GO TO 601
CFLOW=CDY*HH(K) *(V+X(K)*R) **2+CDZ*BR(K) *

& (W-X(K)*Q)**2
VECHi (K)=CFLOW* (V+X(K) *R) /UCF
VECH2(K)=CFLOW*(V+X(K)*R)*X(K)/UCF
VECV1 (K)=CFLOW* (W-X(K)*Q)IUCF
VECV2 (K)=CFLOW*(W-X(K)*Q)*X(K)/UCF

600 CONTINUE
CALL TRAP(9,VECV1,X,HEAVE)
CALL TRAP(9,VECV2,X,PITCH)
CALL TRAP(9,VECH1,X,SWAY)
CALL TRAP(9,VECH2,X,YAW)
HEAVE=-0.5*RHO*HEAVE
PITCH=+0.5*RHO*PITCH
SWAY -0.5*RHO*SWAY
YAW -0.5*RHO*YAW
GO TO 602

601 HEAVE=0.0
PITCH=0 .0
SWAY =0.0
YAW =0.0

602 CONTINUE
C
C FORCE EQUATIONS
C
C
C SURGE FORCE
C

FP( 1) = MSS*V*R-MSS*W*Q+MSS*XG*Q**2+ASS*XG*R**2.
& MAISS*YG*P*Q-MA4SS*ZG*P*R+XPP*P**2+XQQ*
& Q**2+XRR*R**2+XPR*P*R+XWQ*W*Q+XVP*V*P+
& XVR*V*R+U*Q* (XQDS*DS+XQDB*DB)+
& U*R* (XRDRS*DRS+XRDRB*DRB)+XVV*V**2+XWW*
& W**2+U*V* (XVDRS*DRS+XDRB*DRB)+U*W*
& (XWDS*DS+XWDB*DB) +(XDSDS*DS**2+XDBDB*DB**2+
& XDRDR*(DRS**2+DRB**2))*U**2-(WEIGHT-BOY)*
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& SIN(THETA)+XPROP*RPM*RPM-XRES*U*U
C
C SWAY FORCE
C

FP(2) =-MASS*U*R-MASS*XG*P*Q+MASS*YG*R**2-MASS*ZG*Q*R+
& YPQ*P*Q+YQR*Q*R+YP*U*P+YR*U*R+YVQ*V*Q+
& W**YW**YVUVYWVWYR**2DS
& YDRB*U**2*DRB+(WEIGHT-BOY) *
& COS(THETA)*SIN(PHI)+MASS*W*P+MASS*YG*P**2+SWAY

C
C HEAVE FORCE
C

FP(3) = MASS*U*Q-~MASS*V*P-MASS*XG*P*R-MASS*YG*Q*R+
& MASS*ZG*P**2+MASS*ZG*Q**2+ZPP*P**2+
& ZPR*P*R+ZRR*R**2+ZQ*
& U*Q+eZVP*V*P+ZVR*V*R+ZW*U*W+ZVV*V**2+HEAVE+
& U**2*(ZDS*DS+ZDB*DB)+(WEIGHT-BOY)*
& COS(THETA)*COS(PHI)

C
C ROLL MOMENT
C

FP(4) = -IZ*Q*R+IY*Q*R-~IXY*P*R+IYZ*Q**2-
& IYZ*R**2+IXZ*P*Q+MASS*YG*U*Q-MASS*
& YG*V*P-MASS*ZG*W*P+KPQ*P*Q+KQR*Q*R+
& KP*U*P+KR*U*R+KVQ*V*Q+KWP*W*P+
& KWR*W*R+KV*U*V+KVW*V*W+ (YG*WEIGHT-YB*BOY) *
& COS(THETA)*COS(PHI)-(ZG*WEIGHT-
& ZB*BOY)*COS(THETA)*SIN(PIII) MASS*ZG*U*R

C
C PITCH MOMENT
C

FP(5) = IX*P*R+IZ*P*R+IXY*Q*R-IYZ*P*Q-
& IXZ*P**2+IXZ*R**2-MASS*XG*U*Q+
& MASS*XG*V*P+MASS*ZG*V*R-
& MASS*ZG*W*Q+MPP*P**2+
& MPR*P*R+MRR*R**2+MQ*
& U*Q+MVP*V*P+MVR*V*R+MW*U*W+
& MV1V*V**2+U**2*(MDS*DS+MDB*DB)-(XG*WEIGHT-
& XB*BOY)*COS(THETA)*COS(PHI)-
& (ZG*WEIGHT.-ZB*BOY)*SIN(THETA)+PITCH

C
C YAW MOMENT
C

FP(6) zz IY*P*Q+IX*P*Q+IXY*P**2-IXY*Q**2+IYZ*P*R-
& IXZ*Q*R-MASS*XG*U*R+MASS*XG*W*P-MASS*YG*
& V*R+MASS*YG*W*Q+NPQ*P*Q+NQR*Q*R+NP*U*P+NR*
& U*R+NVQ*V*Q+NWP*W*P+NWR*W*R+NV*U*V+
& NVW*V*W+NDRS*U**2*DRS+NDRB*U**2*DRB+
& (XG*WEIGHT-XB*BOY)*COS(THETA)*SIN(PHI)+
& (YG*WEIGHT-YB*BOY)*SIN(THETA)+YAW

C
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C
C COMPUTE THE RIGHT HAND SIDE OF XDOT=F(X)
C

DO 610 J = 1,6
F(J) = 0.0
DO 611 K = 1,6

F(J) = XMMINV(J,K)*FP(K) + F(J)
611 CONTINUE
610 CONTINUE

C
C INERTIAL POSITION RATES
C

F(7) = U*COS(PSI)*COS(THETA)+V*(COS(PSI)*SIN(THETA)*
& SIN(PHI)-SIN(PSI)*COS(PHI) )+W*(COS(PSI)*
& SIN(THETA)*COS(PHI)+SIN(PSI)*SIN(PHI))

C
F(8) = U*SIN(PSI )*COS(THETA)+V*(SIN(PSI )*SIN(THETA) *

& SIN(PHI)+COS(PSI)*COS(PHT) )+W*(SIN(PSI)*
& SIN(THETA)*COS(PHI)-COS(PSI)*SIN(PHI))

C
F(9) = -U*SIN(THETA)+V*COS(THETA)*SIN(PHI)+

& W*COS(THETA)*COS(PHI)
C
C EULER ANGLE RATES

F( 10)= P+Q*SIN(PHI)*TAN(THETA)+R*COS(PHI)*TAN(THETA)
C

F(11)= Q*COS(PHI)..R*SIN(PHI)
C

F(12)= Q*SIN(PHI)/COS(THETA)+R*COS(PHI)/COS(THETA)
C
C ASSIGN XDOT VECTOR
C

UDOT = F(1)
VDOT = F(2)
WDOT = F(3)
PDOT = F(4)
QDOT = F(5)
RDOT = F(6)
XDOT = F(7)
YDOT = F(8)
ZDOT = F(9)
PHIDOT = F(10)
THEDOT = F(11)
PSIDOT = F(12)

C
C FIRST ORDER INTEGRATION
C

U = U + DELTA*UDOT
V = V + DELTA*VDOT
W = W + DELTA*WDOT
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P = P + DELTA*PDOT
Q = Q + DELTA*QDOT
R = R + DELTA*RDOT
XPOS = XPOS + DELTA*XDOT
YPOS = YPOS + DELTA*YDOT
ZPOS = ZPOS + DELTA*ZDOT
PHI = PHI + DELTA*PHIDOT
THETA = THETA + DELTA*THEDOT
PSI = PSI + DELTA*PSIDOT

C
C VELOCITY INPUT CALCULATION
C

UC=Uo
IF (UC.GE.UMAX) UC=UMAX
IF (UC.LE.UMIN) UC=UMIN

C
C RPM INPUT CALCULATION
C

RPMO=UC /ALPHA
RPM=RPMO+KN* (U-UC)
IF (RPM.GE.RPMMAX) RPM=RPMMAX
IF (RPM.LE.RPMMIN) RPM=RPMMIN

C
C COORDINATE TRANSFORMATIONS
C

XCTEH= (YPOS-YD1)*SIN(ALPHAH)+(XPOS-XD1)*COS(ALPHAH)
YCTE =(YPOS-YD1)*COS(ALPHAH)-(XPOS-XD1)*SIN(ALPHAH)

ZCTE =(ZPOS-ZD1)*COS(ALPH~AV)+XCTEH*SIN(ALPHAV)

XCTEV=-(ZPOS-ZD1)*SIN(ALPHAV)+XCTEH*COS(ALPHAV)
C
C HIT CRITERIA
C

VTOTAL=(XD2-XD1 )**2+(ZD2-ZD1)**2
VTOTAL=SQRT (VTOTAL)
HTOTAL=(XD2-XD1 )**2+(YD2-YD1 )**2
HTOTAL=SQRT (HTOTAL)
VAWAY =VTOTAL-XCTEV
VAWAY =ABS(VAWAY)
HAWAY =HTOTAL-XCTEH
HAWAY =ABS(HAWAY)
IF ((VAWAY.LT.TARGET).OR.(HAWAY.LT.TARGET)) GO TO

& 101
C
C DIVE PLANE INPUT CALCULATION
C

ZPHI=ZCTE
SIGV=ATAN( ZPHI/XDV)
DS=K1V* (THETA-ALPHAV-SIGV)+K2V*W+K3V*Q+K4V

C
IF (DS.GE. 0.4) DS= 0.4
IF (DS.LE.-0.4) DS=-0.4
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C
DB=-DS

C
C RUDDER INPUT CALCULATION
C

YPH I=YCTE
SIGH=-ATAN (YPHI /XDH)
DRS=K1H* (PSI-ALPHAH-SIGH)+K2H*V+K3H*R

C
IF (DRS.GE. 0.4) DRS= 0.4
IF (DRS.LE.-0.4) DRS=-0.4

C
DRB=-DRS

C
C PRINT RESULTS
C

TIME=I*DELTA
JE=JE+l
IF (JE.NE.IECHO) GO TO 99
JE=0

99 JPRNT=JPRNT+l
IF (JPRNT.NE.IPRNT) GO TO 100
IJK=IJK+1
TIME=I *DELTA
WRITE (11,*) XPOS/L,YPOS/L
WRITE (12,*) XPOS/L,ZPOS/L
WRITE (13,*) TIME,DRS*180.0/PI
WRITE (14,*) TIME,DS*180.0/PI
WRITE (15,*) TIME,YCTE/L
WRITE (16,*) TIME,ZCTE/L
WRITE (17,*) XPOS/L,YPOS/L,ZPOS/L
WRITE (18,*) TIME,U
WRITE (19,*) TIME,RPM
WRITE (20,*) TIME,PHI*180.0/PI
WRITE (21,*) TIME,(THETA-ALPHAV)*180.0/PI
WRITE (22,*) TIME,(PSI-ALPHAH)*180.0/PI
WRITE (23,*) TIME,V
WRITE (24,*) TIME,R
WRITE (25,*) TIME,W
WRITE (26,*) TIME,Q
WRITE (27,*) YPOS/L,ZPOS/L
JPRNT= 0

C
100 CONTINUE

GO TO 500
101 ISTART=ICOUNT
200 CONTINUE
500 STOP
201 FORMAT (' HEADING FOR (X,Y,Z) =(',F9.3,' ,,F9.3,'

& 1,F9.3- )l)
END

86



C

C
SUBROUTINE TRAP(N,A,B,OUT)

C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

DIMENSION A(1),B(1)
N1=N-1
OUT=O0
DO 1 I=1,N1

OUT =OUT+OUT1
1 CONTINUE
RETURN
END

C

C
SUBROUTINE INVTA(MM,N, INDX,D)
PARAMETER (NMAX=100,TINY=1.OE-20)
DIMENSION INDX(6),VV(NMAX)
REAL MM(6,6)
D=l1
DO 12 I=1,N

AAMAX=0.
DO 11 J=1,N

IF(ABS(MM(I,J)).GT.AA4AX) AAMAX=ABS(MM(I,J))
11 CONTINUE

IF (AAMAX.EQ.0.) PAUSE 'SINGULAR MATRIX-
VV( I)=1 ./AAMAX

12 CONTINUE
DO 19 J=1,N

DO 14 I=1,J-1
SUM=MM( I,J)
DO 13 K=1,I-1

SUM=SUM-MM( I,K) *MM(KJ)
13 CONTINUE

MM( I,J)=SUM
14 CONTINUE

AAMAX=0.
DO 16 I=J,N

SUM=MM( I,J)
DO 15 K=1,J-1

SUM=SUM-MM( I,K)*MM(K,J)
15 CONTINUE

MM( I,J)=SUM
DUM=VV( I)*ABS(SUM)
IF (DUM.GE.AAMAX) THEN

IMAX= I
AAMAX=DUM
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ENDIF
16 CONTINUE

IF (J.NE.IMAX)THEN
DO 17 K=1,N

DUM=MM( IMAX,K)
MM( IMAX,K)=MM(J,K)
MM(J,K)=DUM

17 CONTINUE
D=-D
VV( IMAX)=VV(J)

ENDIF
INDX(J)=IMAX
IF(MM(J,J).EQ.0.)MM(J,J)=TINY
IF(J.NE.N)THEN

DO 18 I=J+1,N
MM( I,J)=MM( I,J)*DUM

18 CONTINUE
ENDIF

19 CONTINUE
RETURN
END

C

C-

SUBROUTINE INVTB(MM,N, INDX,B)
DIMENSION INDX(N),B(N)
REAL MM(6,6)
11=0.
DO 12 I=1,N

LL=INDX( I)
SUM=B(LL)
B(LL)=B( I)
IF (II.NE.0)THEN

DO 11 J=II,I-1
SUM=SUM-MM( I,J) *B(J)

11 CONTINUE
ELSE IF (SUM.NE.0) THEN

II=I
END IF

B( I)SUM
12 CONTINUE

DO 14 I=N,1,-1
SUM=B( I)
IF (I.LT.N)THEN

DO 13 J=I+1,N
SUM=SUM-MM( I,J)*B(J)

13 CONTINUE
ENDIF
B( I)=SUM/MM( 1,1)

14 CONTINUE
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RETURN
END
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APPENDIX B

C PROGRAM VERTSTAB.FOR
C
C REGIONS OF STABILITY - VERTICAL PLANE
C PARAMETERS ARE: XD AND TV
C NUMERICAL OR ANALYTIC COMPUTATION
C IT NEEDS FILE "SUBRTNS.FOR" OR ANY STANDARD EIGENVALUE
C SOLVER
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION K1V,K2V,K3V,L
DOUBLE PRECISION MQDOT,MQ,MW,MWDO .,MDS,M4DB, MSS,IY
DIMENSION A(4,4) ,FV1(4) ,IVI(4) ,ZZZ(4,4) ,WR(4) ,WI(4)

C
OPEN (10,FILE='BIF0.RES',STATUS=NEW')
OPEN (11,FILE='BIF1.RES',STATUS='NEW')
OPEN (12,FILE='BIF2.RES',STATUS='NEW')
OPEN (13,FILE='BIF3.RES ,STATUS='NEW')

C
WEIGHT=12 000 .0
IY 9450.0
L = 17.425
RHO = 1.94
G = 32.2
XG = 0.0
ZB = 0.0
MASS =WEIGHT/G
BOY =WEIGHT
ZQDOT =-6.810E-03*0.5*RHO*L**4
ZWDOT =-2.430E-01*0.5*RHO*L**3
ZQ =-1.350E-01*0.5*RHO*L**3
ZW =-3.020E-01*0.5*RHO*L**2
ZDS =-2.270E-02*0.5*RHO*L**2
ZDB =-2.270E-02*0.5*RHO*L**2
MQDOT =-1.680E-02*0.5*RHO*L**5
MWDOT =-6.810E-02*O.5*RHO*L**4
MQ =-6.86OE-02*0.5*RHO*L**4
MW = 9.860E-02*0.5*RHO*L**3
MDS =-1.113E-02*0.5*RHO*L**3
MDB =1.113E-02*0.5*RHO*L**3

C
WRITE (*,1001)
READ (*,*) TVMIN,TVMAX,ITV
WRITE (*,1002)
READ (,) XDMIN,XDMAX,IXD
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XDMIN=XDMIN*L
XDMAX=XDMAX *L
WRITE (*,1003)
READ (*,*) U,ZG
WRITE (*,1004)
READ (*) ISOL

c
C AUXILIARY VARIABLES
C

DV =(MASS-ZWDOT)*(IY-MQDOT)-~ZQDOT*MWDOT
Al lV= ((IY-MQDOT) *ZW+ZQDOT*MW) /DV
A12V=( (IY-~MQDOT)*(ZQ+MASS)+ZQDOT*MQ)/DV
Al3V=- (ZG-ZB) * (MSS*XG+ZQDOT) *WEIGHT/DV
A2lV=(MWDOT*ZW+(MASS-~ZWDOT) *MW) /DV
A22V= (MWDOT* (ZQ+MASS ) +(MASS-ZWDOT) *MQ) /DV
A23V=- (ZG-ZB) *(MASS-ZWDOT) *WEIGHT/DV
Bl1V= ((IY-MQDOT) *ZDS+ZQDOT*MDS) /DV
Bl2V=( (IY-MQDOT)*ZDB+ZQDOT*MDB) /DV
B2lV=(MWDOT*ZDS+(MASS-ZWDOT) *MDS) /DV
B22V=(MWDOT*ZDB+(MASS-ZWDOT) *MDB) /DV
B1V =BllV-B12V
B2V =B2lV-B22V

C
EPS =1.D-5
I LMAX= 1500

C
C LOOP OVER TV
C

DO 1 I=1,ITV
WRITE (*,2001) I,ITV
TV=TVMIN+( I-i) *(TVMAX-TVMIN)/( ITV-1)
OMEGAV=( 0.0*U)/(TV*L)
ADlV=1. 75*OMEGAV
AD2V=2.15*OMEGAV**2
AD3V=OMEGAV* *3
A2=B1V*U*U
A3=B2V*U*U
Dl=-AD1V- (A11V+A22V) *U
Bl=-~B2V*U*U
B2=(BlV*A22V-B2V*A12V) *U**3
B3= (B2V*AllV-BlV*A21V) *U**3
D2=AD2V+A23V+(Al2V*A21V-AllV*A22V)*U**2
Cl=(B2V*AllV-BlV*A21V) *U**3
C2=(A23V*BlV-Al3V*B2V) *U**2
D3=AD3V+(A13V*A21V-Al1V*A23V) *U
K2V= (A3*Bl*D3+C1*B3*Dl-D2*C1*A3)
K2V=K2V/ (A3*Bl*C2+Cl*B3*A2-Cl*A3*B2)
K1V= (D3-C2*K2V) /Cl
K3V=(Dl-A2*K2V) /A3
D333=(Al3V*A21V-A11V*A23V) *U
XAAA=CBRT( -D333)
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D334=(D3*B2*Cl*A3+B3*C*A2*A3-B3*C1*Dl*C2-Dl*C1*C2*A3)
D335=B3*C1*A2+B2*Cl*A3.-B1*C2*A3
D336=D334/D335

C XBBB=CBRT (D3 36)

C ANALYTICAL COMPUTATION
C

IF (ZG.NE.0.0) TVCR1=(10. *U)/(XAJ-AA*L)
IF (ZG.NE. 0.0) TVCR2=( 10.*)(A*L
IF (ISOL.EQ.0) GO TO 22
CXD2=AD3V* (AD1V*AD2V-AD3V)
CXD1=-~(B2+A3*U) *K1V* (AD1V*AD2V-AD3V)+AD3V*KlV*

& (A2*AD1V+B2+A3*U)-ADlV*ADlV*K1V*(-C2+C'1*U)
CXD0=-(B2+A3*U)*KlV*KlV*(AD1V*A2+B2+A3*U)
DET=CXD1*CXD1~4 . 0*CXD2*CXDO
IF (DET.LT.0.0) GO TO 1
XD1=(-CXD1+DSQRT(DET))/(2.0*CXD2)
XD2=(-CXD1-DSQRT(DET) )/(2.0*CXD2)
IF (XD1.NE.0.0)

& VAL1=AD3V+( (B2V*A12V-B1V*A22V-B2V)*KlV*U**3) /XD1
IF (XD2.NE.0.0)

& VAL2=AD3V+( (B2V*A12V-B1V*A22V-~B2V)*KlV*U**3)/XD2
GO TO 23

C
C NUMERICAL COMPUTATION
C LOOP OVER XD
C

22 DO 2 J=1,IXD
XD=XDMIN+ (J- 1) *(XDMAX-XDMIN)/I( IXD- 1)
THETA= . ODO
CT=DCOS (THETA)
ST=DSIN(THETA)
W= . ODO
A1, 1) =0.ODO

A(1,2)=0.ODO
A( 1, 3}=1.ODO
A(1,4)=0.ODO
A(2, 1)=B1V*U*U*K1V+A13V*CT
A( 2,2 )=BlV*U*U*K2V+fAllV*U
A( 2,3 )=BV*U*U*K3V+A12V*U
A( 2,4) =-BlV*U*U*K1V/XD
A(3, 1 )B2V*U*U*K1V+A23V*CT
A (3,2 )=B2 V*U*U*K2 V+A2 1V*U
A( 3, 3)=B2V*U*U*K3V+A22V*U
A( 3,4 )=-B2V*U*U*KlV/XD
A(4, 1)=-U*CT-W*ST
A(4,2)=CT
A(4,3)=0.ODO
A(4,4)=0.ODO

C
C COMPUTE EIGENVALUES
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C
CALL RG(4,4,A,WR,WI,0,ZZZ,IV1,FV1, IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

C
IF (J.GT.1) GO TO 10
DEOSOO=DEOS
XDOO =XD
LL= 0
GO TO 2

10 DEOSNN=DEOS
XDNN =XD
PR=DEOSNN*DEOSOO
IF (PR.GT.0.DO) GO TO 3
LL=LL+ 1
IF (LL.GT.3) STOP 1000
I L=0
XDO=XDOO
XDN=XDNN
DEOSO=DEOSOO
DEOSN=DEOSNN

6 XDL=XDO
XDR=XDN
DEOSL=DEOSO
DEOSR=DEOSN
XD=(XDL+XDR) /2 .DO
A(1, 1)=0.ODO
A(1,2)=0.ODO
A(1,3)=1.ODO
A(1,4)=0..ODO
A(2, 1)=BlV*U*tJ*KlV+Al3V*CT
A( 2,2 )=B1V*U*U*K2 V+A1 1V*U
A( 2, 3) =BV*U*U*K3V+A12V*U
A( 2,4) =-B1V*U*U*KlV/XD
A( 3, 1)=B2V*U*U*KV+,A23V*CT
A( 3,2) =B2 V*U*U*K2V+A2 1V*U
A( 3, 3)=B2V*U*U*K3V+A22V*U
A( 3,4) =-B2V*U*U*K1V/XD
A(4, 1)=-U*CT-W*ST
A(4,2 )CT
A(4,3)=0.ODO
A(4,4)=0.ODO

C
CALL RG(4,4,A,WR,WI,0,ZZZ, IV1,FV1, IERR)
CALL DSTABL(DEOS,WR,WI ,FREQ)

C
DEOSM=DEOS
XDM=XD
PRL=DEOSL*DEOSM
PRR=DEOSR* DEOSM
IF (PRL.GT.O.DO) GO TO 5
XDO=XDL
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XDN=XDM
DEOSO=DEQSL
DEOSN=DEOSM
IL=IL+l
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS (XDL-XDM)
IF (DIF.GT.EPS) GO TO 6
XD=XDM
GO TO 4

5 IF (PRR.GT.0.DO) STOP 3200
XDO=XDM
XDN=XDR
DEOSO=DEOSM
DEOSN=DEOSR
IL=IL+l
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS (XDM-XDR)
IF (DIF.GT.EPS) GO TO 6
XD=XDM

4 LLL=10+LL
WRITE (LLL,*) XD/L,TV

3 XDOO=XDNN
DEOSOO=DEOSNN

2 CONTINUE
GO TO 1

23 IF (VAL1.GT.0.0) WRITE (11,*) XD1/L,TV
IF (VAL2.GT.0.0) WRITE (12,*) XD2/L,TV

1 CONTINUE
IF (ZG.NE.0.0) WRITE (10,*) XDMIN/L,TVCR1
IF (ZG.NE.0.0) WRITE (10,*) XDMAX/L,TVCR1

C
1001 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF TV')
1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF XD')
1003 FORMAT ('ENTER U AND ZG')
1004 FORMAT ('ENTER 0 : NUMERICAL',/,

& '1 :ANALYTICAL')
2001 FORMAT (215)

END
C

SUBROUTINE DSTABL(DEOS,WR,WI ,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
DEOS=-1 OD+20
DO 1 I=1,4

IF (WR(I).LT.DEOS) GO TO 1
DEOS=WR( I)
IJ=I

1 CONTINUE
OMEGA=WI (IJ)
OMEGA=DABS (OMEGA)
RETURN
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END
C

FUNCTION CBRT(A)
IF (A.GT.O.O) CBRT= A,**(1./3.)
IF (A.LE.O.O) CBRT=-(-A)**(l./3.)
RETURN
END
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APPENDIX C

C PROGRAM VERTSTEADY.FOR
C
C COMPUTATION OF STEADY STATE SOLUTIONS IN THE VERTICAL
C PLANE
C (CHAPTER III, PARAGRAPH F)
C

REAL K1V,K2V,K3V,L,MQDOT,MQ,MW,MWDOT,MDS,MDB,MASS,IY
C

WEIGHT=12 000.0
IY =9450.0

L = 17.425
RHO = 1.94
G = 32.2
XG = 0.0
ZB = 0.0
MASS =WEIGHT/G
BOY =WEIGHT

C
ZQDOT =-6.810E.-03*0.5*RHO*L**4
ZWDOT =-2.430E-01*0.5*RHO*L**3
ZQ =-1.350E-01*0.5*RHO*L**3
ZW =-3.020E-01*0.5*RHO*L**2
ZDS =-2.270E-~02*0.5*RHO*L**2
ZDB =-2.270E-02*0.5*RHO*L**2

C
MQDOT =-1. 680E-02*0.5*RHO*L**5
MWDOT =-6.810E-02*0.5*RHO*L**4
MQ =-6.860E-02*0.5*RHO*L**4
MW = 9.860E-~02*0.5*RHO*L**3
MDS =-1.113E-02*0.5*RHO*L**3
MDB =1.113E-02*0.5*RHO*L**3

C
OPEN (11,FILE='THETA1.RES',STATUS='NEW')
OPEN (12,FILE='THETA2.RES' ,STATUS='NEW')
OPEN (13,FILE='THETA3.RES ,STATU5= NEW-)
OPEN (14,FILE='THETA4.RES' ,STATUS='NEW')
OPEN (21,FILE='DELTA1.RES ,STATUS='NEW')
OPEN (22,FILE='DELTA2.RES' ,STATUS= NEW')

SAT =0.4
SATP= SAT
SATM=- SAT
PI =4.O*ATAN(1.0)

C
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WRITE (*,1001)
READ (*,*) IVAR
GO TO (10,20,30), IVAR

10 WRITE (*,1002)
READ (*,*) UMIN,UMAX,IU
INCR=IU
WRITE (*,1003)
READ (*,*) ZG
WRITE (*,1006)
READ (*,*) TV
GO TO 15

20 WRITE (*,1004)
READ (*,*) ZGMIN,ZGMAX,IZG
INCR=IZG
WRITE (*,1005)
READ (*,*) U
WRITE (*,1006)
READ (*,*) TV
GO TO 15

30 WRITE (*,1007)
READ (*,*) TVMIN,TVMAX,ITV
INCR=ITV
WRITE (*,1003)
READ (*,*) ZG
WRITE (*,1005)
READ (,) U

C
15 DO 1 I=1,INCR

IF (IVAR.EQ.1) U =UMIN +(UMAX -UMIM )*(I-1)/(INCR1)
IF (IVAR.EQ.2) ZG=ZGMIN+(ZGMAX-ZGMIN)*(I~1 )/(INCR-1)
IF (IVAR.EQ.3) TV=TVMIN+(TVMAX-TVMIN)*(I1 1)/( INCR-1)
DV = (MASS-ZWDOT) *( IY-MQDOT) -ZQDOT*MWDOT
A11V=( (IY-MQDOT) *ZW+ZQDOT*W) /DV
A12V=( (IY-MODOT)*(ZQ+MASS)+ZQDOT*MQ)/DV
A13V=- (ZG-ZB) *(MASS*XG+ZQDOT) *WEIGHT/DV
A21V=(MWDOT*ZW+(MASS-ZWDOT)*MW) /DV
A22V= (MWDOT* (ZQ+MASS ) +(MASS-ZWDOT) *MQ) /DV
A23V=- (ZG-ZB) *(MASS-ZWDOT) *WEIGHT/DV
B11V= ((IY-MQDOT) *ZDS+ZQDOT*MDS) /DV
B12V=( (IY-MQDOT) *ZDB+ZQDOT*MDB) /DV
B21V=(MWDOT*ZDS+(MASS-ZWDOT) *MDS) /DV
B22V=(MWDOT*ZDB+(MASS-ZWDOT)*MDB)/DV
B1V =B11V-B12V
B2V =B21V-B22V

C
OMEGAV=( 10.0*U)/(TV*L)
AD1V=1.75*OMEGAV
AD2V=2. 15*OMEGAV**2
AD3V=OMEGAV* *3
A2=BlV*U*U
A3=B2V*U*U
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Dl=-AD1V- (AllV+A22V) *U
Bl=.-B2V*U*U
B2=(BlV*A22V-B2V*Al2V) *U**3
B3=(B2V*AllV-BlV*A2lV) *U**3
D2A2+2V(lVA1-lVA2)U*
Cl=(B2V*AllV-BIV*A21V) *U**3
C2= (A23V*BlV-Al3V*B2V) *U**2
D3=AD3V+(Al3V*A2LV-AllV*A23V) *U
K2V= (A3*Bl*D3+4Cl*B3*Dl-D2*Cl*A3)
K2V=K2V/ (A3*Bl*C2+Cl*B3*A2-~C1*A3*B2)
KlV=(D3-C2*K2V) /C1
K3V=(Dl-.A2*K2V) /A3

C
IF (IVAR.EQ.1) OUT=U
IF (IVAR.EQ.2) OUT=ZG
IF (IVAR.EQ.3) OUT=TV
D3P= (Al 3V*A2 1V-Al lV*A2 3V) *U
XAAA=CBRT (-D3P)
TVCR=( l0.*U)/(XAAA*L)
IF (TV.LT.TVCR) GO TO 1

C
CALL SOLSET(INUM,THSOLS,K1V,C1,AD3V,SSTH)
ICHECK=0
DO 2 III=l,INUM

THCH=2 .0* (TH-SOLS-0. 5*PI)
CHECK=SIN(THCH) *(D3...AD3V)/Cl
IF (ABS(CHECK).GT.SATP) GO TO 2
WRITE (13,*) OUT, THCH*180.0/PI
WRITE (14,*) OUT,-~THCH*l80.0/PI
WRITE (21,*) OUT, ABS(CHECK)*180.0/PI
ICHECK=1

2 CONTINUE
IF (ICHECK.EQ.0) GO TO 3
GO TO 1

C
3 STHETA=SATP*Cl/ (D3-AD3V)

SSTH=AS IN (STHETA)
THETA1= SSTH*180.O/PI
THETA2=-SSTH* 180. 0/PI
WRITE (ll,*) OUT,THETA1
WRITE (12,*) OUT,THETA2
WRITE (22 *) OUT, SATP*l8O.0/PI

1 CONTINUE
STOP

1001 FORMAT ('ENTER 1 U VARIATION',/,
& '2 :ZG VARIATION',/,
& 3 :TV VARIATION')

1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS IN U')
1003 FORMAT ('ENTER ZG')
1004 FORMAT ('ENTER MIN, MAX, AND INCREMENTS IN ZG')
1005 FORMAT ('ENTER U-)
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1006 FORMAT ('ENTER TV')
1007 FORMAT ('ENTER MIN, MAX, AND INCREMENTS IN Tv')

END
C

FUNCTION CBRT(A)
IF (A.GT.0.0) CBRT= A **(1./3.)
IF (A.LE.0.0) CBRT=-~(-A)**(l./3.)
RETURN
END

C
SUBROUTINE SOLSET(L,ANS,K1V,C1,AD3V,SSTH)
REAL K1V
DIMENSION VF(1,2)

C
PI=4.0*ATAN( 1.0)

C
C FIND FIRST ESTIMATE OF THE SOLUTIONS

L= 0
VMIN= 0.0
VMAX=+90 .0
I V= 100
VA=VMIN*PI/180.0
VAO=VA
VO=THETEQ( 1,VA,K1V,C1,AD3V)
DO 10 I=2-,IV
VA=VMIN+(VMAX-VMIN)* (I-1)I( IV-1)
VA=VA*PI/180 .0
VAN=VA
VN=THETEQ( 1,VA, K1V, Cl,AD3V)
VP=VO*VN
IF (VP.GE.0.0) GO TO 11
L=L+1
VF (L,1) =VAO
VF(L,2)=VAN
GO TO 12

11 VO=VN
VAO=VAN

10 CONTINUE
C
C EXACT COMPUTATION OF SOLUTIONS VIA NEWTON'S METHOD

12 E=1.E-5
IEND=500
DO 20 J=1,L

X=(VF(J,1)+VF(J,2) )/2.0
F=THETEQ( 1,X,K1V,C1,AD3V)
FDER=THETEQ(2,X,K1V,C1 ,AD3V)
DO 30 K=1,IEND

IF (FDER.EQ.0.0) STOP 1001
DX=F/FDER
X1=X-DX
F=THETEQ( 1,X1, K1V, Cl,AD3V)
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FDER=THETEQ(2,Xl,Klv,C1 ,AD3V)
IF (F.EQ.O.) GO TO 35
A=ABS(Xl-X)
IF (A-E) 35,35,40

40 X=X1
30 CONTINUE

GO TO 20
35 ANS=Xl
20 CONTINUE

RE TURN
END

C
FUNCTION THETEQ(K,THETA,K1V,C1,AD3V)
REAL KlV
GO TO (10,20), K

10 THETEQ=KlV*Cl*THETA+(AD3V-KlV*C1)*COS(THETA)
GO TO 50

20 THETEQ=KIV*Cl-(AID3V.KlV*C1)*SIN(THEI'h)
50 RETURN

END
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