
REPORT DOC AD-A246 532 0-010
& - ow mh--fl a kfommgb sud mow wum ftillk xrIII il , for xkv. . agwmibwa

ur'b w af for~~ be wisdon Ow~am an aIwIII11I~~ IHIII fI L u~r w offio. d kkim MW Fw MW bO re 0
ma .rnZudK ww**N 0C 2 ,

ENCY USE ONLY (Leve eMi) &a*. ,1 |3. REPORT TYPE AND DATES COVERED

I Final: 12 Jun 1991 to 01 Jun 1993
LE AND SUBTITLE 5. FUNDING NUMBERS

3oft, IBM Ada/370, Version 1.2.0 (without optimization) IBM 3083, VM/SP HPO
.0 (Unopt) (Host & Target), 910612W1.11168

THOR(S)
jht-Patterson AFB, Dayton, OH

RFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

1. 676, Rm 135 AVF-VSR-475-0292
iht-Patterson AFB, Dayton, OH 45433

ONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Joint Program Office REPORT NUMBER

ed States Department of Defense
tagon, Rm 3El14
hington, D.C. 20301-3081 T IC
UPP ENTARY NOTES ELECTI

FEB 2T 1992

DI9rTRIBUTIOWAVAILABIUTY STATEMENT I12. D BUTION CODE

roved for public release; distribution unlimited.

8STRACT (Maxftm 200 *wrs)

Soft, IBM Ada/370, Version 1.2.0 (without optimization) IBM 3083, Wright-Patterson AFB, VM/SP HPO Rel 5.0
opt) (Host & Target), ACVC 1.11.

UBJECT TERMS 15. NUMBER OF PAGES

programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

ability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

ECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
IF REPORTI I OF ABSTRACT
#LASSIFIED I UNCLASSIFED UNCLASSIFIED

'540-01-20-50 Swnd,. : Form 298, (Rev. 2-89)
Prescribed by ANSI SId. 239-128

AVF Control Number: AVF-VSR-475-0292
4 February 1992

91-04-24-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910612W1.11168
TeleSoft

IBM Ada/370, Version 1.2.0 (without optimization)
IBM 3083, VM/SP HPO Rel 5.0 (Unopt) -> IBM 3083, VM/SP HPO Rel 5.0 (Unopt)

Prepared By:
Ada_Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

92 2 24 307

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 12 June 1991.

Compiler Name and Version: IBM Ada/370, Version 1.2.0
(without optimization)

Host Computer System: IBM 3083, VM/SP HPO Rel. 5.0 (Unoptimized)

Target Computer System: IBM 3083, VM/SP HPO Rel. 5.0 (Unoptimized)

Customer Agreement Number: 91-04-24-TEL

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910612W1.11168 is awarded to TeleSoft. This certificate expires on 1 June
1993.

This report has been reviewed and is approved.

Accesion For 1

a a c it)xNTIS CRA&I H
A a Validation Facility DTIC TAB
Steven P. Wilson U:.an,-ounced]
Technical Director Justification
ASD/SCEL
Wright-Patterson AFB OH 45433-6503 By ..

Di~t,'ib:,Uton I

i .. : a ,, tor
Dist c, .

Direcor, uter and Software Engineering Division
Institute f Defense Analyses ,
Alexandria VA 22311

Xda Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92-04684
92 2 24 007 11111Ii 1111IHIM

DECLARATION OF CONFORMANCE

Customer: TeleSoft
5959 Cornerstone Court West
San Diego CA 92121

Certificate Awardee: International Business Machines Corporation

Ada Validation Facility: AVF, ASD/SCEL
Wright-Patterson AFB, Ohio 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: IBM Ada/370, Version 1.2.0

Host Computer System: IBM 3083
(under VMISP HPO Release 5.0
with Unoptimized Complier)

Target Computer System: Same as Host

Declaration

We, the undersigned, declare that we have no knowledge of deliberate deviations from the Ada
Language Stand SU/MIL-STD-1 815SA in the implementation listed above.

Date: ___ ___ ___

Customer ,e/
TELESOFT
Raymond A. Parra, Director
Contracts/Legal

~~~ ~Date: _ _ _ _ _

SCertificate Awardee
INTERNATIONAL BUSINESS MACHINES CORPORATION
Yim Chan, Ada Development Manager



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT ... ...... 1-1
1.2 REFERENCES. . .................. 1-2
1.3 ACVC TEST CLASSES ................ 1-2
1.4 DEFINITION OF TERMS ............... 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAN TESTS ...... ................ . 2-
2.2 INAPPLICABLE TESTS ...... ................ .2-1
2.3 TEST MODIFICATIONS ...... ................ .2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT ..... ............... .. 3-1
3.2 SUMMARY OF TEST RESULTS .... ............. .. 3-1
3.3 TEST EXECUTION ....... .................. ..3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD



CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro9O]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG891.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1



INTRODUCTION

1.2 REFERENCES

[Ada831 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

JUG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
Implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. in
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2



INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3



INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90J.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test , testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4



CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D C83026A B83026B C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1BO2B BD1B06A ADIBO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TFSTS

A test is-inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1



IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONG-INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no suchtype.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2



IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported -for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL_10
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 1O0-
CE2102F CREATE IN FILE DIRECT-IO

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAI-IO
CE2102Q RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILEE DIRECT-IO
CE2102U RESET INFILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUTFILE TEXT-IO

The following 16 tests check operations on sequential, direct, and
text. files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

2-3



IMPLEMENTATION DEPENDENCIES

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Implementation, the value of
COUN"'LAST is greater than 150000, making the checking of this
objective impractical.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 28 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

BAO01A1 BA2001C BA2001E2 BA3006A6M BA3006B3
BA3007B7 BA3008A4 BA3008B5 BA3013A6 BA3O13A7M

C52008B was graded passed by Test Modification as directed by the AVO.
This test uses a record type with discriminants with defaults; this test
also has array components whose length depends on the values of some
discriminants of type INTEGER. The test was modified to constrain the
subtype of the discriminants. Line 16 was modified to declare a
constrained subtype of INTEGER, and discriminant declarations in lines 17
and 25 were modified to use that subtype; the lines are given below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE REC1(D1,D2 : SUBINT) IS

25 TYPE REC2(D1,D2,D3,D4 : SUBINT := 0) IS

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

2-4



IMPLEMENTATION DEPENDENCIES

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete--no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD1009A, CD1009I, CD1CO3A, CD2A21C, CD2A24A, CD2A31A, CD2A31B, CD2A31C
were graded passed by Evaluation Modification as directed by the AVO.
These tests use instantiations of the support procedure LENGTH CHECK,
which uses Unchecked Conversion according to the interpretation given in
AI-00590. The AVO ruled that this interpretation is not binding under
ACVC 1.11; the tests are ruled to be passed if they produce Failed
messages only from the instances of LENGTH CHECK--i.e, the allowed
Report.Failed messages have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

EE3301B, EE3405B, and EE341OF were graded passed by Evaluation
Modification as directed by the AVO. These tests check certain I/O
operations on the current default output file, including standard output.
This implementation outputs the ASCII form-feed character which has no
effect on the standard IBM output devices; in general, there is no common
form-feed mechanism for the devices. Thus, the printed output from this
test did not contain the expected page breaks. The AVO ruled that these
tests should be considered passed if none of the tests' internal checks
was failed (i.e., if the tests report "TENTATIVELY PASSED").

CE2103C..D (2 tests) were graded passed by Test Modification as directed
by the AVO. These tests close an empty file; however, the IBM VM/SP HPO
(CMS) operating system does not allow an empty file to exist, and so the
file is deleted and USE ERROR is raised. The AVO ruled that this behavior
is acceptable, given the operating system (cf. AI-00325); the AVO
directed that the tests be modified and passed with the following write
statement inserted into the two tests, respectively, at lines 56 and 55:

WRITE (TESTFILE ONE, 'A');

2-5



CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

IBM Canada, Ltd
844 Don Mills Road
North York, Ontario
Canada M3C IB7
ATTN: Antony Niro

31/257/844/TOR

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro9O].

For all Orocessed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support

3-1



PROCESSING INFORMATION

of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3770
b) Total Number of withdrawn Tests 94
c) Processed Inapplicable Tests 105
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 306

g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

ADA dsname [options)

options description

dsname Dsname specifies the file to be compiled.

ERROR(LIST) Creates a listing file only when errors are
encountered. T'- file contains compile-time error
messages interspersed with the source code.

COMPILE I MAIN I BIND Compile is the default option causing a
compile only. BIND will be used in those
instances for subunits needing to be
compiled prior to the main program. MAIN
is specified for mains and will allow
execution to take place.

3-2



PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3



APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which Is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 200 -- Value of V

$BIGIDI (1..V-1 => 'A', V .> '1')

$BIG ID2 (1 .V-i => 'A', V => '2')

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V-l-V/2 -> 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (i..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 "' & (1..V/2 -> 'A') & '"'

$BIG STRING2 ", & (1..V-l-V/2 => 'A') & '1' & I",

$BLANKS (i..V-20 => '

$MAXLENINTBASED LITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAX STRINGLITERAL I"' & (1..V-2 => 'A') & "'

A-1



MACRO PARAMETERS

The folloving table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_646

$DEFAULT-HEMSIZE 16777215

$DEFAULTSTORUNIT 8

$DEFAULT-SYSNAME IBM370

$DELTADOC 2#1.0#E-31

$ENTRY-ADDRESS ENT-ADDRESS

$ENTRYADDRESS1 ENTADDRESS1

$ENTRY-ADDRESS2 ENTADDRESS2

$FIELDLAST 1000

$FILETERMINATOR '1 '

$FIXED-NAME NO-SUCHTYPE

$FLOAT-NAME NO-SUCH TYPE

$FORM-STRING

$iORMSTRING2 CANNOT-RESTRI CT FILECAPACITY

$GREATER-THANDURATION
86401.0

$GREATER-THAN-DURATION BASE LAST
131071.0

$GREATER-THANFLOAT-BASE ILAST
-7.237006E+75

$GREATER-THANFLOAT SAFE LARGE

-7.'23004E+75

A-2



MACRO PARAMETERS

$GREATERTHANSHORTFLOAT SAFE LARGE
7.237E+7'5

$HIGHPRIORITY 255

$ILLEGALEXTERNAL FILE NAME 1
BADCHAR*Z%

$ ILLEGALETERAL-FILE NAME 2
BAD-CHAR!@

$INAPPROPRIATE LINE LENGTH
1029

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMA1 PRAGMA INCLUDE ("A28006D1.TST");

$INCLUDE-PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST");

$INTEGER-FIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGER-LASTPLUS_1 2147483648

$INTERFACELANGUAGE C

$LESSTHANDURATION -86401.0

$LESSTHANDURATIONBASE FIRST
131073.0

$LINE-TERMINATOR Ir

$LOV PRIORITY 0

$MACHINE CODESTATEMENT

NULL;

$MACHINECODETYPE NOSUCHTYPE

$MANTISSA-DOC 31

$MAX-DIGITS 15

$MAX INT 2147483647

$MAXINTPLUS_1 2147483648

$MIN-INT -2147483648

$NAME NOSUCH TYPE AVAILABLE

A-3



MACRO PARAMETERS

$NAMELIST mc68000,anuyk44,ibm370

$NAMESPECIFICATION1 X2102A DATA Al

$NAME SPECIFICATION2 X2102B DATA Al

$NAME SPECIFICATION3 X3119A DATA Al

$NEG BASEDINT 16#FFFFFFFE#

$NEW HEM SIZE 16777215

$NEWSTORUNIT 8

$NEWSYSNAME IBM370

$PAGETERMINATOR ''

$RECORD-DEFINITION NEW INTEGER;

$RECORDNAME NOSUCH MACHINE CODE TYPE

$TASK-SIZE 32

$TASKSTORAGE SIZE 1024

$TICK 0.000001

$VARIABLEADDRESS VARADDRESS

$VARIABLEADDRESS1 VARADDRESS1

$VARIABLE ADDRESS2 VAR-ADDRESS2

$ YOURPRAGMA PRIORITY

A-4



APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-i



Compiling a Source Program

Chapter 2. Compiling Ada Programs

This chapter describes how to use the IBM Ada/370 compiler. You should have

available a copy of IBM Ada1370 Language Reference (SC09-1297) or

ANSI/MIL-STO-1815A. the Ada LRM.

If you need help getting started with IBM Ada/370. see Chapter 9. IBM Ada/370

Tutorial.

Compiling a Source Program
The ADA command compiles a source program. The following sections show

you how to use this command under VM/CMS. MVS TSO. and as an MVS bat:-',

job.

Using the ADA Command under VMICMS

-u t i n ate

The "?" option displays syntax information, including a list of the ADA options, on

the screen.

Most situations require that you pass the file name of the source file. The

compilation unit name is required when you use the Bind option, or when you

use the Run and NOCOmpi le options. The file type and filemode default to ADA

and *. respectively.

When you specify a compiler option in ADA. you can use the minimum unique

abbreviation. For example, you can specify CReate as CR.

Many compiler options are matched by an opposite. For example, the opposite

of the MAP option is the NOMAP option. For such cases, one of the options is

designated as the default. For an option that takes a numerical value, a

particular value may be assigned as the default. The compiler uses default

settings unless you override them by specifying the nondefault options to ADA.

Precede the list of options by a blank space and a left parenthesis, and separate

them from each other by blank spaces. A closing parenthesis is optional.

0 'ayf~ IBM COrp. 1or1 2-1



Compiling a Source Program

Some of the options have modifiers, which you must enclose in parentheses
Where you can enter multiple modifiers to an option, such as with the Xref

option, separate the modifiers with a comma.

Here are some examples:

1 ADA EXAMPLE

Example I compiles EXAMPLE ADA * using the default options.

2. ADA EXAMPLE (LIBRARY (DEMO LIBRARY) DEBUG

Example 2 compiles EXAMPLE ADA ' with the LiBrary and Debug options.

LIBrary causes the compiler to use a file containing an alternative library
The library has the name DEMO LIBRARY.

3. ADA EXAMPLE (XREF (BYUNITFULL)

Example 3 compiles EXAMPLE ADA * with the Xref option to produce a
cross-reference listing. The listing is ordered by compilation unit and
includes cross-references to all visible units.

Using the ADA Command under MVS TSO

8---EX 'qualtfter.CLIST(ADA)'-'----

'-quoL eri.dsnme-' .1

(optitons

Under MVS. the qualifier at a is the high-level qualifier assigned to IBM
Ada/370 by your system administrator. In examples for this book. we use the

high-level qualifier ADA. The qualifier at N is the high-level qualifier for the

data set you are specifying. By default, the high-level qualifier is set by the

PROFILE PREFIX command. This, in turn, defaults to your TSO logon identifier.

The "?" option displays syntax information, including a list of the ADA options, on

the screen.

Most situations require that you pass the file name of the source file. The

compilation unit name is required when you use the Bind option.

When you specify a compiler option in ADA. you can use the minimum unique

abbreviation. For example, you can specify CReate as CR.

Many compiler options are matched by an opposite. For example, the opposite

of the MAP option is the NOMAP option. For such cases, one of the options is

designated as the default. For an option that takes a numerical value, a

particular value may be assigned as the default. The compiler uses default

settings unless you override them by specifying the nondefault options to ADA.

2-2 IM Ada/370



Compiling a Source Program

Precede the list of options by a blank space and a left parenthesis, and separate
them from each other by blank spaces. A closing parenthesis is optional

Some of the options have modifiers, which you must enclose in parentheses
Where you can enter multiple modifiers to an option. such as with the Xref

option, separate the modifiers with a comma.

Here are some examples:

1. EX 'AOA.CLIST(AOA)' 'EXAMPLE'

Example i compiles EXAMPLE using the default options.

2. EX 'ADA.CLIST(ADA)' 'EXAMPLE (LIBRARY ("DEM0.LI2RARY") DEBUG'

-Example 2 compiles EXAMPLE with the LIBrary and Debuq options. LIBrary
causes the compiler to use a data set containing an alternative library. The
library has the name OEMO.LISRARY The compiler also saves information

needed by the IBM Ada/370 debugger.

3. EX 'AOA.CLIST(AOA)' ... USERI.EXAMPLE" (XREF (BYUNIT,FULL)'

Example 3 compiles EXAMPLE with the high-level qualifier USERI. It includes
the Xref option to produce a cross-reference listing. The listing is organized

by compilation unit and includes cross-references to all visible units.

Compiling a Program with Job Control Language (JCL)
This section describes how to invoke the compiler as a batch job under MVS
using Job Control Language (JCL). Fcr information on how to invoke the binder

using JCL see "Invoking the Binder with Job Control Language (JCL)- on
page 3-2.

The ADAC cataloged procedure invokes the compiler on a source file.

//MYPROG JOB ' .MSGCLASS-0.MSGLEVEL-., 1) ,NOTI FY-USER1.
// CLASSA

// PURPOSE: TO RUN THE ADA COMPILER

//COMPILE EXEC PROCAOAC.AOASRCuUSERI.ADA.SOURCE(HELLO)',
II USER-USERI. CMPPRM.-CHECK'

Figure 2-1. Using the AOAC Cataloged Procedure to Invoke the Binder

The preceding example job, MYPROG, compiles member HELLO in the source

POS. USERt.ADA.SOURCE. The user's name. USERt, is identified with the USER
variable. This variable is used as a high-level qualifier to construct data-set
names for the compiler, such as USERt .AA.UBRARY. which is the default library.

Your job card will probably be different. because it depends on your site's

conventions.

After you execute this job. the Ada program contained in member HELLO is
compiled into the working sublibrary of USERI.ADA.UBRARY.

A sample of ADAC cataloged procedure appears in Figure 2-2 on page 2-4. The
exact location of ADAC may depend on your site's conventions.

Chapter 2. Compiling Ada Programs 2-3



Compiling a Source Program

//ADAC PROC CI4PPRM-1 1,ESZE89K
1/ STPLIB.'AOAI1O.LOADLIB' ,MAXTIME-60,
1/ Vi0.VIO,SYSDA-SYSALLOA,SYSOUT.'*1

/*ERASE ADA. INFO DATASET

/1 EXEC PGM-IEFBR14
//AOAINFO 00 OSNW&USER. .ADA. INFO,DISP-(MOD,DELETE),

If SPACE-(1,I) ,UNIT-&SYSOA

INVOKE THE COMPILER

//STEP1 EXEC PGM-EVGCOMP,PARM4'&C4PPR4' ,REGION-&ME4SIZE,
H/ TIMEUIiI4AXT IME,DYNAINBRG5
//STEPLIB DO DSN-&STPLIB,DISP-SHR
//CONOIJT D0 SYSOUTu&SYSOUT,DCB-(LRECLU1ZO,BLKSIZEIZO0)
//AOAI N D0 OSN-4AOASRC,OISP-SHR,FREEIIEND,CBBUFNO-4
//AOAL1O 00 OSNu&USER. .ADA.LIBRARY,DISP-SHR
//AOAINFO 00 DSNu&USER. .AOA. INFO,DISP-(NEW,PASS,CATLG),

/1 CBU(RECFMuVB,LRECL-512,BLKSIZE-312O,OSORG-PS),
/1 SPACE.(80,(10,50)),UNITu&SYSOA

//ADALIST 00 OSN-&USER. .LISTING,OISP-(MOO,CATLG,CATLG),
// DCB-(RECFM.VA,LRECL-25,BLKSIZE312,SORGPO,UFNO2),
ii SPACE-(132, (500,2009,20)) ,UNIT-&SYSOA

//AOAUTl 00 SPACE-(132, (500,2009)),

/1 CBw(RECFu-FB,LRECL-135,BLKSIZEu3400,DSORG-DA,BUFNO02),
II UNIT-SSYSOA

//AOAUT2 00 SPACE-(132, (506,2000)),
/1 OCBu(RECF14VB,LRECLI135,BLKSIZEU312O,OSORG-PS,8UFNOUZ),
1/ UNITs&VIO

//ADAUT3 D0 SPACE-(132, (500,2000)),
// OCBu(RECFMuF9,LRECLi12,BLKSIZE2056,0SORG-0A,BUFNO-2),
/1 UNITW&SYSOA

ffAOAUTl4 00 SPACE.(13Z,(500,2000)),
II C9-(RECFM.F,LRECLI13Z,BLKSIZE-2640,DSORG-OA,8UFN0?),
II UNIT-&SYSDA

Figure 2-2. ADAC Cataloged Procedure

Symbolic Variables for ADAC Cataloged Procedure
The AOAC cataloged procedure includes several symbolic JCL substitution
variables you can modify to specify the various options available.

Symbolic
Variable Description
AOASRC Specifies the data-set name (OSN) ror the Ada source file. This

name must be set in order to successfully compile an Ada
program.

CMPPRM Specifies options to the compiler in the PARM field. This variable.
round in Step I of the ADAC cataloged procedure. specifies
options to the compiler in the PARM field. These options are the
same ones used when you invoke the compiler with the ADA
command.

2-4 IBM Adai37O



Compiling a Source Program

The compiler options have the following syntax:

ce --o t ton s "

Table 2-2 on page 2-8 lists the valid options, their modifiers, and
defaults.

MAXTIME Sets a maximum amount of time for the compiler job step to run
(via the TIME parameter on a JCL EXEC card). The default value is
60 minutes, but this value can be changed when the cataloged
procedure is installed.

MEMSIZE Specifies the amount of memory in which to run the compiler job
step (via the REGION option on a JCL EXEC card). The greater the
memory. the better the performance of the compiler The default
value is 8196Kb. but this value may be changed. depending on
your sites conventions.

STPLIB Indicates the data-set name of the partitioned data set that
contains the compiler module. EVGCOMP. This default can be
changed when the cataloged procedure is installed.

SYSOA Specifies the UNIT for permanent data set allocations. The
default is SYSALLDA. but this value can be changed depending on
your site's conventions.

SYSOUT Identifies the output class for the compiler output. The default is
".*". but this can be changed, depending on your site's
conventions.

USER Indicates the high-level qualifier that is required to build data-set
names used by the compiler. You must specify this variable. It
is common to set this variable to your TSO logon identifier.

VIO Specifies the UNIT for temporary data set allocations. The default
is VIO. but the default can be changed depending on your site's
conventions.

Chapter 2. Compiling Ada Programs 2-5



The Compiler Options

The Compiler Options
The ADA command invokes the IBM AdaI370 compiler. Table 2-1 provides a
brief summary of the compiler options. The square brackets enclose optional
modifiers. You do not actually enter the brackets as part of the command
syntax. For the specific syntax of each option, see the option descriptions on the
pages specified in the table.

Table 2- 1 (Page 1 of ZI. Compiler Options

Option Default Functin Page

Asm NOAsm Assembly listing. 2-9

[NOGen Suppress listing of expanded generics.

I NOSysI Suppress listing of system-supplied generics.

Sind COmile Sind previously-compiled main unit. 2.10

CHeck COIDpIle Compile ih syntactic and semantic checking only. 2-10

(Nosermantc) Compile with syntactic checking only.

COW I e Comnpi Ie Compile code for a library unit. 2-11

CReate (number of units j NOCReate Initialize working sublibrary for the compiler. 2-11
number.,of.units is number of compilation units in
sublibrary.

Oebuq No~ebug Output information for debugging. 2.13

Error HOfrror Specify action to be taken when errors occur. Must 2-13
include at least one modifier.

(Count -number]I Abort compilation after number errors.

[Listj Generate interspersed listing of errors and source
codea.

Generate NOGenerate Generate a load image. 2-14
(VMICMS)

NOGenerete Generate (MVS)

INI I st [max~numberJ COmilIe Compile multiple source iles with one invocation of 2.15
the compiler. max-niumber is the maximum number
of compilation failures during input list processing.

Li16rary librory jiam. Specify Ada library name. 2.15

LISt NOLUSt Generate interspersed listing of errors and source 2-16
codei.

MAIn (compyunif-nej Compi le Compile and bind code for a main unit. 2.16

MAP 10MAP Produce linkage map during binding. Use with KA~N. 2-17
S Ind. or Run options.

NOCOmpi l@ Compile Suppress the compiler. 21

Run moRun Execute main program. 21

2-4 IBM Adal37O



The Compiler Options

Table 2.1 (Page 2 of 2). Comioler Optons

Option Default Function f Page
Suppress NOSuppress Suppress selected run-time checks or line information 2-18

tables in generated object code. Must include at
least one modifier.

[Li neinfo0 Suppress generation of line information tables.

(Checks Suppress all run-time checks.

I Elabl Suppresses only elaboration checks.
Trace NOTrece Display diagnostic messages from the compiler. 2-19
Xref N0Xref Produce a cross-reference listing. 2-19

(Byunitl Order the listing by compilation unit.

JFu ll] Cross-reference all visible units.

Chapter 2. Compiling Ads Programs 2-7



The Compiler Options

THIS PAGE INTENTIONALLY LEFT BLANK



Asm Option

Detailed Descriptions of Compiler Options
The following detailed descriptions of the compiler options include syntax
diagrams. In these diagrams. uppercase characters indicate the minimum
abbreviation of options and their modifiers. Options and modifiers that are
underscored are the defaults.

Asm Option

The Asm option produces pseudo-assembly language for the object code
interspersed with the Ada source for each compilation unit. It causes the
creation one listing for each source ile. Asin also provides information on the
relative offset and size allocation of each data item or constant. This listing is
called the data map. For more information on the listing produced by Asm. see
"Source and Assembly Listings" on page 7-1.

If you use the Asm option at the same time you invoke the IBM Ada/37O binder.
the compiler also produces a binder listing.

The NOGen modifier suppresses the listing of code generated for expanded
generics. Otherwise. listings include the code generated for all expanded
generics.

The NOSys modifier suppresses the listing of code generated for system-supplied
generics.

Use NOGen or NOSys to reduce the size of listings.

Under VMICMS
The name of the listing file takes the form source LISTING A, where source is the
ile name of the source file.

Under MVS
The name of the listing data set takes the form qualifier.USTING(source) where

qualifier is the TSO logon identifier and source can be either the name of the
member of a partitioned data set (POS) used as source or the second qualifier in
the name of a sequential data set.

Chapter 2. Compiling Ada Programs 2-9



Check Option

Bind Option

The Bind option binds a main program that has been previously compiled as a
library unit. As output. it produces an object file. When you use this option.

enter the compilation unit name in place of the source file name. You can only

use the Bind option for compilation units that reside in the working sublibrary of
the Ada program library.

To invoke the binder when you compile the source (rather than in a separate call

to ADA). use the MAIn option.

You cannot use the Bind option in combination with MAIn. CHeck. IN)ist. COmpile.
or NOCOmpi le. If you enter more than one of these options. IBM Ada/370 only
accepts the last one in the command line. If you do not use any of these
options, the default is Compi Ie.

Under VMICMS
The object file created by compiling with the Bind option has the file type TEXT-

Under MVS
The object file is a POS created by compiling with the Bind option. it takes the
form qualifler OBJ(compynit). where qualifier is your TSO logon identifier and
compunit is the compilation unit name.

Check Option

ec 0wle IL(-%semti -- )"- J  -

The CHeck option causes the compiler to perform only syntactic and semantic

error checking. Because no object code is produced, you can save compilation
time and disk space during error checking. If you include the Nosemntic
modifier, the compiler only performs syntactic error checking.

You cannot use the CHeck option in combination with NAIn. Bind. INlist. COmpile.

or NOCOmpi Ie. If you enter more than one of these options. IBM Ada/370 only

accepts the last one in the command line. If you do not use any of these
options, the default is Compi Ie.

2-10 IBM Ada/370



Create Option

Compile Option

m 'L-c0I. e

The Compi le option causes all compilation units in the source file to be library

units, rather than main units.

You can also make a library unit into a main unit using the Bind option.

You cannot use the COmpi Ie option in combination with MAIn. Bind. CHeck, INist.

or NOCOmpi 1 e. If you enter more than one of these options. IBM Ada/370 only

accepts the last one in the command line. If you do not use any of these

options, the default is COmpi le.

Create Option

NOe t. L .. (-n mber- of ntts-) 1

CReate initializes the working sublibrary for the compiler. The compiler creates a

new sublibrary. deleting the previous copy. if one exists.

The number of units variable specifies the number of compilation units the

sublibrary can contain. The default is 200. The largest number of units a

sublibrary can contain is 4671.

This number indicates an approximate size for the sublibrary. The number of

units that actually fit into a sublibrary depends upon their size and complexity.

For further information on sublibraries. see Chapter 5. Working with the Ada

Library System.

When you use CReate in conjunction with the LiBrary option. it initializes the

working sublibrary in the library specified by LIBrary.

You cannot use CReate in combination with the Bind option.

NOCReate is the default. With NOCReate. the compiler does not initialize the

working sublibrary.

Chapter 2. Compiling Ada Programs 2-11



DONAMES Option (MYS JCL Only)

DONAMES Option (MVS JCL Only)

"-4-ONNS- (-o d. nwr,---nev..noise ) -

DDNA4ES specifies the Data Description (OD) names that identify the data sets
used by the compiler and binder. DONAMES always requires a value.

For use with the compiler, old name has one of the following values:

ADAIN
ADAINFO
ADAUB
ADAUST
ADAUTI
ADAUT2
ADAUT3
ADAUT4

For use with the binder. old neme has one of the following values:

AOAINFO
ADALIS
ADAUST
ADAUTI
ADAUT2
ADAUT3
ADAUT4

Usually, you do not need to change the D names associated with the compiler.

This example of a JCL code fragment uses 0ONAMES to identify a new 00 name
specifying the source rile and the ada library:

//MYSTEP EXEC PGM-EVGCOMP,PARM' ODNAMES(AOAIN-YSOURCE,AAL.BYLIO),
//1YSOURCE 00 OSN-quot ifter.ADA.SOURCE(PROGRA)
//14YLIB DD OSNquaitfter.AOA.LIBRARY

2-12 IBM AdaI370



Error Option

Debug Option

MP.-.. ebu g

The Oebug option causes information used by the IBM Ada/370 debugger to be
placed in the working sublibrary. When used with the MA[n or 8nd options. Debug

produces a debugging map. which is required by the debugger.

For more information about debugging, see Chapter 8. The IBM Ada/370
Debugger.

With NODebug. the compiler does not place debugging information into the working

sublibrary.

Under VMICMS
The debug map file takes the name comp unit DEBUGMAP A where comp unit is

derived from the name of the compilation unit.

Under MVS
The debug map file takes the name qualifier.OEBUGMAP(compunit), where
qualifier is the high-level qualifier and compunt is derived from the name of the
compilation unit.

Error Option

Sol- (TCount-number)=LError "Litst

Error controls the way the compiler behaves when it finds errors in the source
file. You must choose at least one of the modifiers.

The Count modifier specifies the number of errors that cause the compiler to stop

processing. The compiler includes syntax. semantic, and warning errors in the

count. For example. COUNT-5 causes the compiler to stop processing after it finds

five errors. If you omit the Count modifier, the compiler stops processing when it

finds 32767 errors, the default error limit.

The List modifier creates a file containing compile-time error messages

interspersed with the source code. If there are no errors, the compiler does not

generate the listing. To generate this listing regardless. use the LISt option.
See "List Option" on page 2-16.

With NOError. the compiler does not modify its behavior when it finds errors
during processing.

Under VMICMS
The listing file created by the List modifier is called source USTING A. where

source is the file name of the source file.

Chapter 2. Compiling Ada Programs 2-13



Generate Option

Under MVS
The listing file created by the LISt modifier is called qualifierUSTING(source).

where qualifier is the TSO logon identifier and source is the file name of the
source data set.

Generate Option
The Generate option generates a load image.

Under VMICMS

Under VM/CMS. when you compile with the Generate option, the ADA command
also invokes the binder, producing an object file. The compiler then uses the
object file to produce the load module. This option assumes that the source file
contains a main program. The load module created by the Generate option has
the name comp unit MODULE A. where compunit is derived from the
compilation unit name.

With NOGenerate. the compiler does not generate an executable load module.

Under MVS

at; / at

The NOGenerate option suppresses the invocation of the linkage editor after

binding a main program. Use this option when you want to invoke the linkage
editor with options that differ from the default. For example, you would use
NOGenerate when you want to link the main program with non-Ada object code.

The load module created by the Generate option has the name
qualifler.LOA(comp_unit), where compunit is derived from the name of the

compilation unit.

The NOGenerate option has no effect when used in combination with NOCOmpi Ie. or
when you compile the program as a library unit instead of a main unit.

You cannot use NOGenerate in combination with the Run option.

2-14 IBM Ada/370



Library Option

Inlist Option

itL(-ma ovbe) ) _.I

The INI ist option compiles multiple source files with a single invocation of the
compiler. When you use this option, enter the name of the file containing the
input list in place of the source file name. For more information on the use of
input lists, see "Compiling Multiple Source Files- on page 2-20.

If a source file fails to compile, the compiler continues to process the remaining
files. You can specify that the compiler stops processing after a certain number
of source files fail to compile. To do so, use the max number variable.

You cannot use INI i st in combination with the Bind, CHeck, MAIn. COmpi le or
NOCOmpi le options. If you enter more than one of these options. IBM Ada/370
only accepts the last one in the command line. If you do not use any of these
options, the default is COoi te.

Library Option

'--Llarary- (-l tbrarynawe-)

The LIBrary option specifies the name of the Ada library ile to be used by the
compiler. The library name modifier is the name of a library file that contains
the names of one or more sublibraries.

When you do not specify the LIBrary option, the compiler uses the default library
file. Under VM/CMS. it has the name ADA LIBRARY • Under MVS, it has the
name qualifierAOA.LIBRARY. where qualifier is the TSO logon identifier. For
information concerning libraries and sublibraries. see Chapter 5. Working with
the Ada Library System

Under VMICMS
You can provide the libraryname variable in either of two formats. The
preferred is file-name file-type filemode. The other format is
file mode:file name.filetype. In both formats, if you specify only the file name.
file_type defaults to LIBRARY and file mode defaults to -". If you do not specify
a library file. ADA searches for ADA LIBRARY•

For example, to specify library PROJI LIBRARY A, when you compile the file
MYPROG. enter:

AOA MYPROG (LIB(PROJ1))

It is recommended that you do not select an alternative file type for the Ada
library file. Retaining the default file type maintains consistent file naming
conventions for all users.

Chapter 2. Compiling Ada Programs 2-15



Main Option

Under MVS
A library can be either a sequential data set or a member of a POS. The
library_name variable can be any valid data-set name format. For example. to
specify library PROJI.LIBRARY on USERI when you compile the data set
MYPROG.SOURCE enter:

EX -ADA.CLIST(AOA)' "'USERI.MYPROG.SOURCE' (LIB' "USERI.PROJI.LIBRARY''),

List Option

-_ILISt . ..St  r•

The LISt option creates a file containing a listing for each source file. The listing
contains compile-time messages interspersed with the source code. If there are
multiple compilation units in a source file. LISt places the listings for all units
into a single file.

Under VMICMS
The compilation listing file takes the form source LISTING A. where source is the
file name of the source file.

Under MVS
The compilation listing file takes the form qual If er.LISTING(source), where
qualifier is the USO logon identifier and source can be either the name of the
member of a PDS used as the source or the second qualifier in the name of a
sequential data set.

Main Option

+ .x. L(--..cor.n nai-)-1 ]I-

The MAIn option causes the compiler to produce code for the source file as an
Ada main program. The MAIn option compiles a program and performs the
binding operation without the need to specify any other option.

If the Ada source file contains one or more library compilation units in addition

to the main compilation unit, enter the name of the main program in the
comp unit name variable.

You cannot use the MAln option in combination with Bind. CHeck, IN1ist. Compile.

or NOCOmpI Ie. If you enter more than one of these options. IBM Ada/370 only
accepts the last one in the command 'line. If you do not use any of these
options, the default is COmp le.

Under VMICMS
The object file created by compiling with the MAin option takes the form
comp unit TEXT A, where comp.unit is the compilation unit name.

Under MVS
The object file created by compiling with the MAIn option takes the form
qualifier.oBJ(comp_unit), where qualifier is the TSO logon identifier and
comp unit is the compilation unit name.

2-16 IBM Ada/370



Nocompile Option

Map Option

The MAP option causes the compiler to produce a linkage map when the IBM

Ada/370 binder processes a main program.

Use MAP in combination with either MAIn or Bind, both of which invoke the binder.

You can also use MAP in combination with Run as long as you do not use the

NOCOmpi le option.

With NO(4AP. the compiler does not create a linkage map when the IBM Ada/370

binder processes a main program.

Under VMfCMS
The map file is called object AOAMAP A. where object is the file name of the

object file.

Under MVS
The map file is called qualifier AOAMAP(comp_unit). where qualifier is the TSO

logon identifier and comp_unit is the name of the main compilation unit.

Nocompile Option

The NOCOmpi Ie option causes the ADA command to suppres; 'he compilation step.

Thus. you can use NOCOmpi le with Run to run an Ada program that has already

been compiled. When you use NOCOmpi le with Run. enter the compilation unit

name in place of the source file name.

You can also use NOCOmpi le with the CReate to create a new working sublibrary
without having to compile the source code.

You cannot use the NOCmpi le option in combination with MAIn. Bind. CHeck. INlist.

or COmpi le. If you enter more than one of these options, IBM Ada/370 only

accepts the last one in the command line. If you do not use any of these

options. the default is Compile.

Chapter 2. Compiling Ada Programs 2-17



Suppress Option

Run Option

un 
-- 

-

The Run option loads and executes a main program. The compiler assumes that
the program is a main unit. You can either compile and run a program. or run a
precompiled program. To run a previously compiled and bound program. use
Run in combination with the NOCOmpi le option. When you use Run with NOCOMPu le.

you must specify the compilation unit name. rather than the Ada source file
name.

With NORun. the compiler does not execute the program.

Suppress Option

I' KiSuppress-(- L'netn)

/OSuppress

The Suppress option suppresses selected run-time checks and line information in

generated object code. resulting in smaller, faster modules. You must choose at
least one of the modifiers. Use of either the Suppress option or pragma Suppress

causes the compiler to suppress run-time checks. For more information on
pragma Suppress, see the chapter on tuning in the IBM AdaI370 Programmer's
Guide.

The Li neinfo modifier suppresses the generation of line information tables. thus
saving the space required to produce them. These tables display the Ada
source line number when an unhandled exception occurs. If you compile your
code with this option and an unhandled exception occurs dunng run time. the
error information does not include a line number.

The Checks modifier suppresses all run-time checks.

The Elab modifier only suppresses elaboration checks made by other units on
this unit. This differs from the way pragma Suppress works. The pragma
suppresses elaboration checks made on other units from the unit in which it
resides.

If you choose both the Checks and Elab modifiers, the Checks modifier takes
precedence.

With NOSuppress. the compiler does not suppress selected run-time checks and
line information in generated object code.

2-18 IBM Ada/37O



Xref Option

Trace Option

Trc-

The Trace option displays diagnostic messages from the compiler. This option is

intended for use in submitting problems to IBM. For more information, see the

IBM Ada/370 Diagnosis Guide.

Xref Option
00-- -Xref,-

L-WXref

The Xref modifier produces a cross-reference listing for each compilation unit

contained in the source file. It creates one listing file for each source file.

9yuni t causes Xref to display symbols by compilation unit. By default, the Xref

listing displays symbols in alphabetic order.

Ful I causes Xref to cross-reference each compilation unit with all unit

specifications that are visible to it. A unit specification is visible if it is an import

to the compilation unit. If the compilation unit is a body. its parent and its

parent's imports are also visible. Ful I does not display cross references for the

private parts of imported units. By default. Xref only cross-references the

compilation units specified in the command. For more information, see

"Cross-Referencer" on page 7-2.

VMICMS Usage

The listing file takes the form source USTING A. where source is the file name of

the source file.

MVS Usage
The listing file takes the form qualifier.USTNG(source). where qualifier is the TSO

logon identifier and source can be either the name of the member of a

partitioned data set (POS) used as source or the second qualifier in the name of

a sequential data set.

Chapter 2. Compiling Ada Programs 2-19



Compiling Multiple Source Files

Compiling Multiple Source Files
An input list is a file containing a list of the names of riles to be compiled. Using
input lists, you can compile multiple source riles with a single invocation of the
compiler. This reduces the time it takes to compile a group of source files
because it eliminates some redundant activities within the compiler.

The names of source flies appear in the input list. along with other information
that controls the compilation process. The compiler processes items in the input
list in sequential order. Besides the object code that is the usual result of
compilation, the compiler produces a file that contains information on the results
of the success or failure of each compilation.

If you use a compiler option that produces compilation listings (Asm. LISt. Error.

or Xref, the compiler produces a separate listing for each compilation unit.

To compile multiple files with the ADA command, use the INI ist option.

If the compiler detects errors during compilation of any source file in the list. it
goes on to the next source file. There may be cases, especially with a large
input list. where it is not advisable to continue through the entire input list when
multiple source files abort. The INI ist option has a variable that allows you to
specify the maximum number of source file compilation failures to allow. The
next failure causes the compiler to stop processing the input list.

Under VMJCMS
The command string

ADA MYLIST (IN(5)

compiles the source files in the input list MYUST INUST. setting the failure limit at
six.

Under MVS
The command string

EX 'AOA.CLJST(AOA)- 'MYLIST.INL[ST (IN(6),

compiles the source files in the input list MYUST.INUST. setting the failure limit at

six. The compiler uses the default high-level qualifier.

Constructing the Input List
An input list contains two types of information, names of source files to be
compiled and compile-time options.

The syntax for each line of the input list is:

ft te nne
' -omptle-tmeopitton-
bonmt~l

The rules for creating the Input list are:

* Place only put one file name or compile-time option on a line.
* Do not place comments on the same line with other information.
* If the first nonblank character in a line is "", that line is a comment line.

2-20 IBM Ada/370



Compiling Multiple Source Files

" The compiler ignores blank lines.

" File names do not have to start in the first column.

This VM/CMS file list follows the rules correctly.

- YES, THIS IS A COMMENT

AFILE ADA A

BFILE ADA A

B1SUB ADA A
B2SUB ADA A

CFILE ADA A

If an error occurs during input list processing. the compiler updates the working

sublibrary with information about the units that have been compiled successfully.

Also, the compiler places information about the results in an output rile. For

more information about the contents of this file, see "Getting Information on an

Input List Compilation' on page 2-22.

VMICMS Source File Names
Enter the names of source files into the input list. If you leave out the file type.

the compiler assumes the file type is ADA.

Input Ust Compiler Interpretation

yrILE RVYFLE ADA
YFILE TEST MYFILE TEST 0

YFILE TEST A MYFILE TEST A

MVS Source Data Set Names
Enter the names of source data sets into the input list either fully or partially

qualified. Enclose fully qualified names inside a pair of single quotation marks.

If you leave out the high-level qualifier, the compiler assumes the current TSO

logon identifier.

Input Ust Compiler Interpretation

YF!LE 'qualifier.tYFILE'

MYFILE.TEST qualifier.MYFILE. TEST'

'OTHER.MYFILE.TEST' 'OTHER.MYFILE.TEST'

Embedding Compile-Time Options In the Input Ust
You can place compile-time options and input list options within the input list.

Options set when you invoke the compiler apply to each source file until they are

overridden by an option embedded in the input list. Options that appear in the

input list apply to all following source files until they are overridden by other
embedded options. A specific option can appear multiple times in an input list.

".-&OPTIONS /cop iler-optton
Cprn.ut sn Aopt toam

Chapter 2. Compiling Ada Programs 2-21



Compiling Multiple Source Files

The compiler options you can embed in input lists are:

ASM
CHECK
COMPILE

DEBUG
ERROR
INLIST
LIST
SUPPRESS
XREF

There is one valid input list option. DEFaul t. The OEFaul t option causes the
compiler to reset all options to their states as set by the ADA command. OEraul t
is only valid as part of the &OPTIONS command in an input list.

The following example shows an input list with embedded options, along with
descriptions of how the options change. This example uses VM/CMS file naming
conventions: MVS users should use MVS conventions.

Input List How Options Change

AFILE ADA A Command-line options
&OPTIONS DEBUG
BFILE ADA A Command-line options plus Debug
&OPTIONS NODEBUG

CFILE ADA A Command-line options plus NODebug
&OPTIONS DEFAULT
EFILE ADA A Command-line options only
&OPT IONS DEBUG
FF[LE ADA A Command-line options plus Debug

Getting Information on an Input Ust Compilation
The compiler creates a file and places information about of the compilation into
it. Each line in the input list also appears in this file. Following each line from
the input list containing the name of a source file is a line that shows
compilation status for the file. Source files that compile successfully show a
return code of zero for each compilation unit in the file. Files that do not compile
show the return code of the error that caused the failure. There are also
descriptive messages where return codes do not provide enough information.

The return codes that can appear are:

Code Explanation

0 Execution complete. No errors occurred.

4 Execution complete. Warnings were issued, but no errors occurred.

8 Source code errors, such as syntactic or semantic errors, were detected.
Look for specific errors in the console listing.

Below is a brief example of an input list and the OUTPUT file that might result.
This example uses VM/CMS file naming conventions: under MVS the output
follows MVS conventions.

2-22 IBM Ada/370



Generating Recompilation Scripts

Sample Input List MYLIST INPUT A
&OPTIONS ASH
FILEONE ADA A
&OPTIONS OEF
FILETWO ADA A
&OPT IONS BLTZ

Sample OUTPUT File

INPUT LIST processing MYLIST INPUT A -yyyy-aww-dd hh:=m:ss -options (options
&OPTIONS ASM
FILEONE ADA A
AC-GO FILEONE ADA Al
&OPTIONS 0EF
FILETWO ADA A
RC-GO FILETWO ADA Al
&OPTIONS BLTZ

SERROR IN INPUT LIST COMMAND SYNTAX

VAMMS File Name
The name of the OUTPUT file takes the form input list name OUTPUT A. where
input list name is the file name of the input list.

MVS Data Set Name
The name of the OUTPUT data set takes the form
qualifier OUTPUT(mnput list name). where qualifier is the current TSO logon
identifier and input list name is the name of the input list.

Generating Recompilation Scripts
VMICMS Syntax

0WP-AAR[COP*--compun i t-name

Librry--I brary.nwe-) L

MVS Syntax

b-EX 'qual ifter. CLIST(AARECON) '-'-corpunt tnaue

Ltbrary- (- II brary nae -

The AOARECOM command generates a recompilation order list. When a library
consists of many compilation units that depend on (possibly multiple levels ofn
withm statements. it can be difficult to determine the proper compilation order if

Chapter 2. Compiling Ada Progrms 2-23



Generating Recompilation Scripts

the specification of a unit needs to be recompiled. To use ADARECOM. you must
have compiled the compilation units into a specified library at least once.
AOARECOM reads the library to build a recompilation list of the units that depend
upon the specified unit. This list contains the source file names of the units that
need to be recompiled. Therefore. if you move an Ada compilation unit to a new
source file. you must modify the recompilation list.

For ADARECOM to correctly generate the recompilation list. the association
between file names and compilation units cannot change between the time they
are compiled and the AOARECOM invocation.

The file list produced under either VM/CMS or MVS is suitable for input to the

IN!Ist option to the ADA command. For more on this subiect. see "Compiling
Multiple Source Files" on page 2-20.

Do not change the names of the source file, separate the specification and body
into different files. or perform any other change that alters the relationship
between that file and the compilation unit or units it contains between the time
you make the recompilation list and the time you perform the recompilation.
You can to edit the recompilation list after running ADARECOM, to make changes
to the recompilation order list.

Also. ADARECOM produces a correct source file list only if each file contains a
single compilation unit.

Precede the options by a blank space and a left parenthesis, and separate them
from each other by blank spaces. A closing parenthesis is optional.

The LIBrary option allows you to specify the name of the library file.
library name, that ADARECOM Is to read.

If you specify the BODy option. ADARECOM assumes that compunit name refers
to the body of a compilation unit. By default. comp_unit.name refers to the
specification of a compilation unit.

Under VMICMS
You can provide the librarypname variable in either of two formats. The

preferred format is filename file Jype file-mode. The other format is
file-mode:filename.filejype. In both formats. if you specify only the file name.

file ype defaults to LIBRARY and file mode defaults to "". If you do not specify
a library file. ADA searches for ADA LIBRARY .

The recompilation list goes into a file called comp unit INLIST A.

The command

AOARECO14 MY PROG (L(FYLIB.LIBRARY))

generates a recompilation list that includes all units within MYLI LIBRARY that
must be recompiled if you recompile MYPROG. also found in that library.

Under MY$
If you do not specify libname, the default Is qualifier.ADA.UBRARY.

The recompilation list goes into a file called qualifier.INUST(compunit), where
qualifier is your TSO logon identifier.

2-24 IBM Ads/370



Separate Compilation of Generics

The command

EX 'AOA.CLIST(AOARECOM)' 'NY PROG (L(MYLIB))'

generates a recompilation list that includes all units within Qualifier.MYLIS that
must be recompiled if you recompile MYPROG. also found in that library

Separate Compilation of Generics
IBM Ada/370 supports separately-compiled generics. You can compile a generic
specification in in file and its generic body in a separate file.

If you plan to compile your generics separately. compile the generic body before
you attempt to instantiate the generic. The generic body must be compiled and
visible in the library before the instantiation can occur.

You can compile instantiations before you compile the generic body. If you do.

the compiler issues a warning. When you compile a generic body, all
instantiations of the generic become obsolete. You must recompile all
instantiations of the generic after you compile a new generic body.

For more information on the compiling and instantiation of generic units, see
Chapter 12 of the LRM.

Chapter 2. Compiling Ads Programs 2-25



Separate Compilation of Generics

2-26 IBM Ada/370



Using the IBM AdaI370 Binder

Chapter 3. Binding and Linking an Ada Program

The purpose of this chapter is to show you the different ways to invoke the IBM
Ada/370 binder or the linkage editor, and to explain when you need to use them

The flexibility in symbol naming allowed by Ada makes implementation of the
language difficult in environments using pre-existing linkage editors and loaders
To alleviate this problem. IBM provides a special Ada linker called the IBM

Ada/370 binder. It combines object modules produced by the IBM Ada/370
compiler and outputs them as a standard IBM object module.

This partially-linked object module is further processed by the system

linker/loader to produce an executable load module. The IBM Ada/370 binder
provides full support of Ada requirements for symbol naming. It also drastically
reduces the number of external definitions and references that must be
processed by the host system linker.

An Ada program can use pragma Interface to call subprograms written in a
programming language other than Ada. The system linker puts the
standard-format object modules produced for these subprograms into the
executable load module it creates for an Ada program.

The IBM Ada/370 binder also includes run-time environment routines as part of
its output.

Using the IBM Ada/370 Binder
To invoke the IBM Ada/370 binder, compile an Ada main program using the MA~n
option of the ADA command. The system invokes the binder. The binder can
produce a link map describing the contents of the partially linked object module
it generates. The link map provides you with detailed information about the
run-time memory locations of the various pieces of code that make up your
program.

Another option to the ADA command. Bind. causes IBM Ada/370 to bypass the
compilation step. This allows you to bind a compilation unit that you have
previously compiled as a library unit as a main program.

The Generate option of the ADA command takes binder output and uses system
utilities to generate a load module.

For more information on the MAIn. Bind, and Generate options to the ADA
command, see "The Compiler Options" on page 2-5.

You must rebind your main program when you recompile any Ada compilation
units used in the program. You do not have to rebind the program if you
recompile non-Ada routines that your Ada program calls, but you still have to
link the program again with the linkage editor or loader.

© corignt IM Coro. imi 3-1



Invoking the Binder with Job Control Language (JCL)

Invoking the Binder with Job Control Language (JCL)
This section describes how to invoke the binder as a batch job under MVS using
Job Control Language (JCL). For information on how to invoke the compiler
using JCL see "Compiling a Program with Job Control Language (JCL)" on
page 2-3.

The ADAB cataloged procedure invokes the IBM Ada/370 binder to bind an Ada
main program that has been compiled using the IBM Ada/370 compiler. The
output of the binder is an System/370 relocatable object data set. You can
submit this data set to the linkage editor to generate an executable load module.

// rYPROG JOB ,' ',MSGCLASS-OMSGLEVEL-(1.1),NOTIFY-USERI,
II CLASS-A
II.
//" PURPOSE: TO RUN THE AOA BINOER
I1"
//BIND EXEC PROC-AOAB.UNIT-HELLO,
// USER-USERI

Figure 3-1. Using the ADAB Cataloged Procedure to Invoke the Binder

The preceding example shows a job, called MYPROG, which binds the Ada main
compilation unit HELLO. The user identifier USERI is specified with the USER
variable. This variable is used as a high-level qualifier to construct data-set
names for the compiler. such as USERi.AOA.UBRARY. This library is the default
Ada library. Your job card will probably be different, because it depends on your
site's conventions.

As this job executes. the compiler creates relocatable object code in
USERI OBJ(HELLO). This object code was generated for the Ada main
compilation unit called HELLO.

11M i/370



invoking the Binder with Job Control Language (JCL)

A sample of the ADAB cataloged procedure appears in Figure 3-2. The exact
location of ADAB may depend on your site's conventions.

//AOA6 PROC SNOPRN-l' ,NE14SIZE-8196K,
// STPLIBwIADA11O.LOADLIB' ,MAXTIME-60,
II V!OuVIO,SYSOAaSYSALLA,SYSOUTa'* IUNIT-'

If' INVOKE THE BINDER

//STEPI EXEC PGl4EGBIN,PARM--&UNIT. ( &SNDPR4',REGION-&4ESIZE,
II TINEU4MAXTIt4E,OYNANNBR-O5,COND-(4,LT)

//STEPLIS 00 OSN-&STPL[,O[SP-SR
//CONOUT 00 SYSOUT-&SYSOUTDCB-(LRECL-120,BLKSIZEu120)
//AOALIB DO DSN-&USER. .ADA.LIBRARY,DISP-SHiR
//AOAOBJ 00 OSN-&USER..OBJ,DISPQ400,CATLG,CATLG),

II 0CBu(RECFM4FS,LRECL-i80,BLKSIZE310,SORGPO,BUFNO-4),
II SPACE-(80, (16000, 18000,20)) ,UNIT-&SYSOA

//AOAI4AP 00 OSN-&USER. .ADAMAP,DISP-(MOD,CATLG,CATLG),
1/ 0OCBu(RECFMuV8,LRECL.1023,BLKSIZEn31Z0,DSORG-~P0,BUFNOuZ),
// SPACE-(132,(1000,2000,2O)) ,UNIT-&SYSOA

//AOAOMAP 00 DSN-&USER. .OEBUGIAP,DISPu(MOO,CATLG,CATLG),
1/ CBu(RECFM-VB,LRECLIOZ23,BLKSIZE-3120,DSORG-PO,SUFNO2),
1/ SPACE.(132,(1000,2000,20)) ,UNITU&SYSDA

//AOALIST 00 OSN-&USER. .LISTING,OISPu(MOD,CATLG,CATLG),
II DC9.(RECFl4VBA,LRECL.259,9LKSIZE.3120,DSORG-PO,BUFNO-2),
// SPACE-(132, (500,2000,20)) ,UNIT-lSYSOA

f/AOAUTI 00 SPACE-(132, (500,2000)),

H/ 0C1u(RECFMaFS,LRECLI135,SLKSIZE-3400,OSORGOA,UFNO2),
II UNIT-&SYSOA

//AOAUT2 DO SPACE*( 132, (500,2000)),

/1 DCS.(RECFM.VS,LRECLI136,BLKSIZE-3120OSORG-PS,SUFNO-2),
I, UNIl-IVIO

//AOAUT3 00 SPACE-(132, (500,200)),
II OCBu(RECFM4FB,LRECLUIO28,BLKSIZE-205O,DSORGOA,BUFNO'2),
'Ii UNIT*&SYSOA

/fAOAUT4 00 SPACE-( 132, (500,2800)),
/1DCS.(RECFM4FB,LRECL-132,BLKSIZEWZG40,DSORGOA,BUFNOZ2),

H/ UNIT-&SYSOA

Figure 3-2. ADAB Cataloged Procedure

Chapter 3. Binding and Uniting an Ada Program 3-3



Invoking the Binder with Job Control Language (JCL)

Symbolic Variables for ADAB Cataloged Procedure
The ADAB cataloged procedure includes several symbolic JCL substitution

variables you can modify to specify the various options available.

Symbolic

Variable Description

BNDPRM Specifies options to the binder in the PARM field. A list of options

you can specify in BNDPRM, along with a syntax diagram, appears
in "Binder Options for Use with ADAB Cataloged Procedure- on

page 3-5.

MAXTIME Sets a maximum amount of time for the binder job step to run

(using the TIME parameter on a JCL EXEC card). The default value
is 60 minutes. but can be changed when the cataloged procedure
is installed.

MEMSIZE Specifies the amount of memory in which to run the binder job
step (using the REGION option on a JCL EXEC card). The greater
the memory. the better the binder's performance. The default
value is 8196Kb. but this value may be changed when you install
the cataloged procedure.

STPLIB Indicates the data-set name of the partitioned data set that

contains the binder module, MVSBINDE. The default is the load
library.AOA LOADUB but you can change this default when you
install the cataloged procedure.

SYSDA Specifies the UNIT for permanent data set allocations. The

default is SYSALLDA. but this name can be changed depending on
your site's conventions.

SYSOUT Identifies the output class for the binder output. The default is

"'". but this default can be changed, depending on your site's

conventions.

UNIT Indicates the compilation unit to be bound. You must specify this

variable

USER Indicates the high-level qualifier level qualifier required to build

data set names used by the binder. You must specify this
variable. It is common to set it to your TSO logon identifier.

VIO Specifies the UNIT for temporary data set allocations. The default
is VIO, but this default can be changed depending on your site's
conventions.

3-4 IBM Ada/370



Linking Programs that Call Non-Ada Routines

Binder Options for Use with ADAB Cataloged Procedure
This section defines the standard options for the BNDPRM symbolic substitution
vziable. This variable, found in STEP2 of the AOAB cataloged Procedure.
specifies options to the binder in the PARM field

The binder options have the following syntax:

~pit ons

(Cllfers

Table 3-1 lists the valid options, their modifiers, and defaults. Descriptions of
the options appear on the pages shown.

Table 3-1 Binder Options for JCL

Option Default Function Page

ASM NOASM Assembly listing. 2-9

[NOGEN Suppress listing of expanded generics.

I NOSYSJ Suppress listing of system-supplied generics.

DONAMES Specify the Data Description (OO) names that identify 2-12
old-name- new-name the data sets used by the compiler and binder. It

must include at least one modifier.

DEBUG NODEBUG Output information for debugging. 2-13

MAP NONAP Produce linkage map during binding. 2-17

TRACE NOTRACE Display diagnostic messages from the compiler Only 2-19
for use in submitting problems to IBM.

Uinking Programs that Call Non-Ada Routines
Pragma Interface enables Ada compilation units to cell non-Ada routines. The
following sections show you how to compile and link programs that take
advantage of this feature.

User-written routines do not reside in the Ada library system. The only method
available to connect non-Ada routines with the Ada routines that call them is to
load them under VM/CMS or link-edit them under MVS A call to a non-Ada
routine results in the generation of an external reference. This external
reference is unresolved following normal ADA processing. You must take special
steps in order to resolve virtual address constants to non-Ada routines.

Chapter 3. Binding and Unking an Ada Program 3-5



Linking Programs that Call Non-Ada Routines

Under VMICMS
The following table explains the data sets used in calling non-Ada routines

Table 3-2. VMICMS Files Used in Calling Non-Ada Routines

File Description

TEST ADA A File containing source for the main program.

TEST Compilation unit name.

TEST TEXT A File containing the object code of the Ada routines.

ROUTINE TEXT A File containing the object code of the ,non-Ada routines.

The following example shows the correct procedure for compiling and linking

ADA TEST (MAIN NORUN
LOAD TEST ROUTINES
GENMOD TEST

The ADA command creates the object file TEST TEXT A. The LOAD loads the
obiect files TEST TEXT and ROUTINES TEXT into virtual storage and establishes the
proper linkages between them. The order in the LOAD is important. The Ada
module must go first. The GENMOD command uses the two object files to create
a load module with the name TEST MODULE A.

You may need to precede the commands in this example with a GLOBAL TXTUB
command to resolve any missing external references from the LOAD command.
The need for its use depends on how you load the non-Ada routines. For more
information on the GLOBAL command, see the Virtual Machine/System Product
CMS Command and Macro Reference.

Under MVS
Non-Ada routines do not reside in the Ada library system. The only method
available to connect non-Ada routines with the Ada routines that call them is to
link-edit them. A call to a non-Ada routine results in the generation of an

external reference. This external reference is unresolved following normal ADA
processing. You must take special steps in order to resolve virtual address
constants to non-Ada routines. This section explains those steps.

The following table explains the data sets used in calling non-Ada routines.

Table 3-3 (Page I of 2) MVS Data Sets Used in Calling Non-Ada Routines

Data Set Description

qualifier.TEST.ADA Data set containing source for the main program.
whose compilation unit name is Test.

qualifier. NONADA.OBJ Data set containing the object code of the non-Ads
routines.

qualufier.OSJ Partitioned data set containing the object code of the
Ads routines.

qualifier LOAD Partitioned data set containing the executable load
modules: also called the "load library."

There are two methods for compiling and linking an Ada program with non-Ada
routines. The first involves binding with NOGenerate. then linking the foreign

3-4 IBM Ada/370



Unking Programs that Call Non-Ada Routines

language code manually with the linkage editor. The second involves placing

the code in a partitioned data set (POS) such that the object goes into the object
library created by the Bind option. The following two examples show how to use
these methods.

Using the Linkage Editor
First compile the main program. using the NOGenerate option.

EX -AOA.CLIST(AOA)' 'TEST.ADA (MAIN NOGENERATE'

This member contains one or more unresolved references to non-Ada code. The
following call to the linkage editor resolves the unresolved external references
associated with those calls.

LINK (tUSERI.NONAOA.0BJ','USER1.OBJ(TEST)' )

The TEST load library member is now fully linked and ready to execute.

Using a Partitioned Data Set
If you choose to use a partitioned data set. use the following steps:

1 Place the foreign language routine's object code into a partitioned data set.

2. Issue the TSO ALLOC command for a OD name of SYSUB and then associate
this with the P0S containing the non-Ada object code.

ALLOC OO(SYSLIB) OA('USERI.NONAOA.OBJ-) SHR

3. Bind the main program (or compile and bind) without using the NOGenerate
option. The UNK within ADA will refer to the SYSUS allocation as it attempts
to resolve references to the non-Ada routines.

The TEST load library member is now fully linked to be executed.

For more information on UNK. see the UNK command in the IBM publication,
MVSIExtended Architecture TSO Extensions SO Command Language Reference.

Chapter 3. Binding and Unking an Ada Program 3-7



Linking Programs that Call Non-Ada Routines

tI

34 IBM Ada/MO0



APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted othervise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483_647;
type SHORT INTEGER is raige :32.768 .. 32-767;

type FLOAT is digits 6 range -7.23701E+75 .. 7.23701E+75;
type LONG-FLOAT is digits 15 range -7.23700557733225E+75

.. 7.23700557733225E+75;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

C-1



to specify the relative urgency of each MVS task created.
**PRAGMA ALLOCATION DATA

(<access_type>,
<residence mode>,
<allocation duration>,
<subpool-number>,
<discrete _user .data>);

to associate MVS virtual storage attributes with an Ada access type.

*Note that PRAGMA INLINE is effective only when the optimizing option is selected at
compile time. If optimizing is not selected the pragma is ignored and a warning is issued.

"Note that PRAGMA OS TASK and PRAGMA ALLOCATIONDATA are effective only
when compiling for an MVS target. Both pragmas require that an MVS runtime be present.

2. Implementation-Defined Attributes

2.1. Integer Type Attributes

ExtendedImage ( Item, <Width>, <Base>, <Based>, <Space IF Positive> );

to return the image associated with Item as defined in Text IO.Integer 10. The Text 10
definition states that the value of Item is an integer literal with no underlines, no exponent,
no leading zeroes (but a single zero for the zero value), and a minus sign if negative.

ExtendedValue (Item);

to return the value associated with Item as defined in Text IO.IntegerI0. The Text_10
definition states that given a string, it reads an integer value from the beginning of the
string. The value returned corresponds to the sequence input.

ExtendedWidth ( <Base>, <Based>, <Space-IF-Positive>);

to return the width for a subtype specified.

2.2. Enumeration Type Attributes

ExtendedImage ( Item, <Width>, <Uppercase>);

to return the image associated with Item as defined in Text IO.Enumeration 10. The
Text_10 definition states that given an enumeration literal, it will output the value of the
enumeration literal (either an identifier or a character literal). The character case
parameter is ignored for character literals.

Extended-Value ( Item);

to return the image associated with Item as defined in Text IO.EnumerationIO. The
Text_1O definition states that it reads an enumeration value from the beginning of the given
string and returns the value of the enumeration literal that corresponds to the sequence
input.

Extended-Width;

to return the width for a specified subtype.



2.3. Floating Point Attributes

Extended Image ( Item, <Fore>, <Aft>, <Exp>, <Base>, <Based>);

to return the image associated with Item as defined in Text IO.Float 10. The Text_1O
definition states that it outputs the value of the parameter Item as a decimal literal with
the format defined by the other parameters. If the value is negative, a minus sign is
included in the integer part of the value of Item. If Exp is 0, the integer part of the output
has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.

Extended Value ( Item );
to return the value associated with Item as defined in Text IO.Float I0. The Text -0
definition states that it skips any leading zeroes, then reads a plus or minus sign if present,
then reads the string according to the syntax of a real literal. The return value is that
which corresponds to the sequence input.

Extended Digits ( <Base> );

to return the number of digits using base in the mantissa of model numbers of the specified
subtype.

2.4. Fixed Point Attributes

Extended -Image ( Item, <Fore>, <Aft>, <Exp>, <Base>, <Based>);

to return the image associated with Item as defined in Text IO.Fixed 10. The Text 10
definition states that it outputs the value of the parameter Item as a decimal literal with
the format defined by the other parameters. If the value is negative, a minus sign is
included in the integer part of the value of Item. If Exp is 0, the integer part of the output
has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.

ExtendedValue ( Image );

to return the value associated with Item as defined in Text IO.Fixed 10. The Text 10
definition states that it skips any leading zeroes, reads a plus or minus sign if present, then
reads the string according to the syntax of a real literal. The return value is that which
corresponds to the sequence input.

Extended-Fore ( <Base>, <Based> );
to return the minimum number of characters required for the integer part of the based
representation specified.

Extended Aft ( <Base>, <Based>);

to return the minimum number of characters required for the fractional part of the based
representation specified.

3. Package SYSTEM

The current specification of package SYSTEM is provided below.

With Unchecked Conversion;

PACKAGE System IS



- CUSTOMIZABLE VALUES

TYPE Name IS (MC68000, ANUYK44, IBM370);

SystemName CONSTANT name := IBM370;

Memory_Size CONSTANT:- (2 ** 24)-1;
Tick : CONSTANT :- 1.0 / (10 ** 6);

- NON-CUSTOMIZABLE. IMPLEMENTATION-DEPENDENT VALUES

StorageUnit: CONSTANT :- 8;
Min Int : CONSTANT : -(2 ** 31);
Max-Int CONSTANT : (2 * 31) - 1;
Max-Digits : CONSTANT : 15;
Max Mantissa: CONSTANT : 31;
Fine-Delta : CONSTANT :- 1.0 / (2 ** MaxMantissa);

Subtype Priority IS Integer RANGE 0 .. 255;

- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

NullAddress :.Constant Address :- null;

type Address-Value is RANGE -(2*31).. (2**31)-1;

Hex 80000000 : constant AddressValue := - 16980000000#;
Hex-90000000 : constant Address-Value := - 16*70000000#;
Hex-AOOOOOOO : constant Address-Value := - 1660000000#;
Hex BOOOOOOO : constant Address Value :=- 16#50000000#;
Hex-C0000000 : constant Address-Value :=- 16#40000000#;
HexD0000000: constant Address-Value - 16#30000000#;
Hex-E0000000 : constant Address-Value :--- 16#20000000#;
Hex-F0000000 : constant Address-Value :--- 16#10000000#;

function Location is new UncheckedConversion (AddressValue, Address);

function Label (Name: String) return Address;
pragma Interface (META, Label);



- CALL SUPPORT

type Subprogram-Value IS
record

Proc addr Address;
Parent frame Address;

end record;

Max Object Size : CONSTANT :- MaxInt;
Max RecordCount : CONSTANT :- Max_Int;
Max Text JoCount : CONSTANT :- Max Tnt-i;
Max-Text Io Field : CONSTANT :- 1000;

private
type Memory is
record

null;
end record;

end SYSTEM;

4. Representation Clauses

This implementation supports address, length, enumeration, and record representation
clauses with the following exceptions:

Address clauses are not supported for package, for entry, for tasktype, for
subprograms.

Enumeration clauses are not supported for boolean representation clauses.

The size in bits of representation specified records is rounded up to the next highest multiple
of 8, meaning that the object of a representation specified record with 25 bits will actually occupy
32 bits.

Non-supported clauses are rejected at compile time.

5. Implementation- Generated Names

There are no implementation-generated names denoting implementation-dependent
componerts. Names generated by the compiler shall not interfere with programmer-defined
names.

6. Address Clause Expression Interpretation

Expressions that appear in Address clauses are interpreted as virtual memory addresses.

7. Unchecked Conversion Restrictions

Unchecked Conversion is allowed except when the target data subtype is an unconstrained
array or record type. If the size of the source and target are static and equal, the compiler will
perform a bitwise copy of data from the source object to the target object.



Where the sizes of source and target differ, the following rules will apply:

* If the size of the source is greater than the size of the target, the high address bits will
be truncated in the conversion.

0 If the size of the source is less than the size of the target, the source will be moved into
the low address bits of the target.

The compiler will issue a warning when Unchecked Conversion is instantiated with unequal
sizes for source and target subtype. Unchecked Conversion between objects of different or non-
static sizes will usually produce less efficient code and should be avoided, if possible.

S. Implementation-Dependent Characteristics of the I/O Packages

* Sequential.10, Direct_10, and Text.I0 are supported.

* LowLevel_10 is not supported.

* Unconstrained array types and unconstrained types with discriminants may not be
instantiated for 1/0.

* File names follow the conventions and restrictions of the target operating system.

* In Text. 10, the type Field is defined as follows: subtype Field is integer range
0..1000;

0 In Text 10, the type Count is defined as follows: type Count is range
0..2_147 483_ 646;

4


