REPORT DOC AD 4 532 OPw No. 07040188 L

e T e

ENCY USE ONLY (Leave Biank) — e s URIS 3. REPORT TYPE AND DATES COVERED
| I Final: 12 Jun 1991 to 01 Jun 1993
LE AND SUBTITLE 5. FUNDING NUMBERS

Soft, IBM Ada/370, Version 1.2.0 (without optimization) IBM 3083, VM/SP HPO
1.0 (Unopt) (Host & Target), 910612W1.11168

FHOR(S)
iht-Patterson AFB, Dayton, OH

b

RFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

1. 676, Rm 135 AVF-VSR-475-0292

jht-Patterson AFB, Dayton, OH 45433

ONSORINGMONITORING AGENCY NAME(S) AND ADDAESS(ES) 10. SPONSORING/MONITORING AGENCY |
Joint Program Office REPORT NUMBER

ed States Department of Defense

tagon, Rm 3E114
shington, D.C. 20301-3081

UPPLEMENTARY NOTES
' FEB 27 1992 '

DISTRIBUTIONAVAILABILITY STATEMENT

roved for public release; distribution unlimited.

BSTRACT (Maximum 200 words)
1Soft, IBM Ada/370, Version 1.2.0 (without optimization) IBM 3083, Wright-Patterson AFB, VM/SP HPO Rel 5.0

opt) (Host & Target), ACVC 1.11.

UBJECT TERMS 15. NUMBER OF PAGES |
. programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. I
ability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

ECURITY CLASSIFICATION] 18. SECURI IFICA [79. SECURITY CLASSIFICATION] 20. LMITATION OF ABSTRACT |
¥ REPORT OF ABSTRACT

SLASSIFIED UNCLASSIFED UNCLASSIFIED

7540-01-280-550 Standz:J Form 298, (Rev. 2-89)

Prescribed by ANS! Sid. 239-128

AVF Control Number: AVF-VSR-475-0292
4 February 1992
91-04-24-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910612w1.11168
TeleSoft
IBM Ada/370, Version 1.2.0 (without optimization)
IBM 3083, VM/SP HPO Rel 5.0 (Unopt) => IBM 3083, VM/SP HPO Rel 5.0 (Unopt)

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

92 2 24 {07

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 12 June 1991.

Compiler Name and Version: IBM Ada/370, Version 1.2.0

Host Computer System:

(vithout optimization)

IBM 3083, VM/SP HPO Rel. 5.0 (Unoptimized)

Target Computer System: IBM 3083, VM/SP HPO Rel. 5.0 (Unoptimized)

Customer Agreement Number: 91-04-24-TEL

See section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, Validation Certificate }
910612W1.11168 is avarded to TeleSoft. This certificate expires on 1 June

1993.

This report has been reviewed and is approved.

Accesion For \
NTIS CRA&I o
OTiIC TAB 3
Steven P. Wilson Unag;ougced 0
Technical Director Justification |
ASD/SCEL
Vright-Patterson AFB OH 45433-6503 By]
Distiibution/
S

Alexandria VA 22311

rganization o
uter and Software Engineering Division (;
Institute fof Defense Analyses A -

Avaizbitly Codes

- e ot

Dist g

E%a Jo;nt Program Office

Dr. John Solomond, Director
Department of Defense

Vashington DC 20301

14
GILOVIENI
AdDD

Ditg

92-04684

92 2 24 oo LT

DECLARATION OF CONFORMANCE

Customer: TeleSoft

5959 Cornerstone Court West

San Diego CA 92121
Certificate Awardee: international Business Machines Corporation
Ada Validation Facility: AVF, ASD/SCEL

Wright-Patterson AFB, Ohio 45433-6503
ACVC Version: 1.1
Ada implementation:
Compiler Name and Version: IBM Ada/370, Version 1.2.0
Host Computer System: IBM 3083
(under VM/SP HPO Release 5.0
with Unoptimized Compiler)

Target Computer System: Same as Host

Decilaration

We, the undersigned, declare that we have no knowledge of deliberate deviations from the Ada
Language Stand SI/MIL-STD-1815A in the implementation listed above.

Date: _é// sgj 9/

Customer
TELESOFT
Raymond A. Parra, Director
Contracts/Legal

M w6/ 13 /7 “

~— Certificate Awardee
INTERNATIONAL BUSINESS MACHINES CORPORATION
Yim Chan, Ada Development Manager

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPORT
1 . 2 REFERENCES . L] L4 * - . . - L . . -* L .
1.3 ACVC TEST CLASSES « « ¢« &« .« .
1.4 DEFINITION OF TERMS . . . « . ¢« « « &
CHAPTER 2 IMPLEMENTATION DEPENDENCIES
2.1 VITHDRAWN TESTS « . « « « &
2.2 INAPPLICABLE TESTS. . . . « « « « .+ &
2.3 TEST MODIFICATIONS. . . « « « « « « &
CHAPTER 3 PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT « .« &
3.2 SUMMARY OF TEST RESULTS
3.3 TEST EXECUTION. ¢« ¢« ¢« ¢« « « &
APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

s o o o

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [AdaB83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
{Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or wvarrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF vwhich performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions. regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 86§%—1§87.

[Pro90} Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and

class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -~ for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1in
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organrization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-vritten or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0
LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Vithdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
vhich validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and IS0 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdraving each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C - B28006C C34006D C355081 C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B c45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D C83026A B83026B C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BD1B02B BD1B0O6A AD1B0O8A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A - CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 1INAPPLICABLE TPSTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONG_INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001V C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT_INTEGER; for this implementation, there is no such type.

C35713B, (C45423B, B86001T, and C86006H check for the predefined type
SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531H.;P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size

for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BDB8003A, BDBQO04A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
vith wunconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE_ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN_FIEE DIRECT I0
CE2102J CREATE OUT_FILE DIRECT:IO
CE2102N OPEN IN FILE SEQUENTIAL_IO
CE21020 RESET IN_FILE SEQUENTIAL_IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT_FILE DIRECT IO
CE21028 RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT I0
CE2102v RESET OUT_FILE DIRECT IO
CE3102E CREATE IN FILE TEXT_IO0
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = oo TEXT_IO
CE31021I CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The following 16 tests check operations on sequential, direct, and
text. files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is attempted. -

CE2107B..E CE2107G..H CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

2-3

IMPLEMENTATION DEPENDENCIES

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that VWRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict

file capacity.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUN™’LAST is greater than 150000, making the checking of this
objective impractical.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 28 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
vay expected by the original tests.

BA1001A1l BA2001C BA2001E2 BA3006A6M BA3006B3
BA3007B7 BA3008A4 BA3008B5 BA3013A6 BA3013A7M

C52008B was graded passed by Test Modification as directed by the AVO.
This test uses a record type with discriminants with defaults; this test
also has array components whose length depends on the values of some
discriminants of type INTEGER. The test was modified to constrain the
subtype of the discriminants. Line 16 was modified to declare a
constrained subtype of INTEGER, and discriminant declarations in lines 17
and 25 wvere modified to use that subtype; the lines are given below:

16 SUBTYPE SUBINT IS INTEGER RANGE -128 .. 127;
17 TYPE REC1(D1,D2 : SUBINT) IS

25 TYPE REC2(D1,D2,D3,D4 : SUBINT := 0) IS

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

2-4

IMPLEMENTATION DEPENDENCIES

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete--no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD1009A, CD10091, CD1CO3A, CD2A21C, CD2A24A, CD2A31A, CD2A31B, CD2A31C
wvere graded passed by Evaluation Modification as directed by the AVO.
These tests use instantiations of the support procedure LENGTH_ CHECK,
vhich uses Unchecked Conversion according to the interpretation given in
AI-00590. The AVO ruled that this interpretation is not binding under
ACVC 1.11; the tests are ruled to be passed if they produce Failed
messages only from the instances of LENGTH CHECK--i.e, the allowed
Report.Failed messages have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE_ID> FAILED."

EE3301B, EE3405B, and EE3410F were graded passed by Evaluation
Modification as directed by the AVO. These tests check certain 1/0
operations on the current default output file, including standard output.
This implementation outputs the ASCII form-feed character which has no
effect on the standard IBM output devices; in general, there is no common
form-feed mechanism for the devices. Thus, the printed output from this
test did not contain the expected page breaks. The AVO ruled that these
tests should be considered passed if none of the tests’ internal checks
vas failed (i.e., if the tests report "TENTATIVELY PASSED").

CE2103C..D (2 tests) were graded passed by Test Modification as directed
by the AVO. These tests close an empty file; howvever, the IBM VM/SP HPO
(CMS) operating system does not allow an empty file to exist, and so the
file is deleted and USE_ERROR is raised. The AVO ruled that this behavior
is acceptable, given the operating system (cf. AI-00325); the AVO
directed that the tests be modified and passed with the following write
statement inserted into the two tests, respectively, at lines 56 and 55:

VRITE (TEST_FILE ONE, ’A’);

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TFESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

IBM Canada, Ltd

844 Don Mills Road

North York, Ontario

Canada M3C IB7

ATTN: Antony Niro
31/257/844/TOR

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
othervise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support

3-1

PROCESSING INFORMATION

of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3770

b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 105
d) Non~Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 306
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

ADA dsname ioptions}

options description

dsname Dsname specifies the file to be compiled.

ERROR(LIST) Creates a listing file only when errors are
encountered. The £ile contdins compile-time error

messages interspersed with the source code.

COMPILE | MAIN | BIND Compile is the default option causing a
compile only. BIND will be used in those
instances for subunits needing to be
compiled prior to the main program. MAIN
is specified for mains and will allow
execution to take place.

3-2

PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
SMAX IN_LEN 200 -- Value of V
$BIG_ID1 (1..V-1 => 'A’, V => '1’)
$BIG_ID2 (1..V-1 => 'A’, V => 12')
$BIG_ID3 (1..V/2 => 'A') & '3’ & (1..V-1-V/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & 4" & (1..V-1-V/2 => 'A’)
$BIG_INT LIT (1..V-3 => ’0’) & "298"
$BIG_REAL LIT (1..V-5 => '0’) & "690.0"
SBIG_STRING1 e & (1..V/2 => 'A') & '
SBIG_STRING2 e & (1..V-1-V/2 2> 'A’) & 717 & '
$BLANKS (1..v-20 => ' ")

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 => 0') & "11:"

$MAX_LEN REAL_BASED LITERAL
"16:" & (1..V-7 => ‘0’) & "F.E:"

$MAX_STRING LITERAL '"’ & (1..V-2 => 'A’) & '™/
A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
SACC_SIZE 32
SALIGNMENT 4
SCOUNT _LAST 2_147_483_646

$DEFAULT_MEM_SIZE 16777215
SDEFAULT_STOR_UNIT 8
$DEFAULT_SYS_NAME IBM370

SDELTA_DOC 241.04E-31

SENTRY_ADDRESS ENT_ADDRESS

SENTRY_ADDRESS1 ENT_ADDRESS1

SENTRY_ADDRESS2 ENT_ADDRESS2

SFIELD_LAST 1000

SFILE_TERMINATOR '

SFIXED_NAME NO_SUCH_TYPE

SFLOAT_NAME NO_SUCH_TYPE

$FORM_STRING n

$FORM_STRING2 CANNOT_RESTRICT FILE_CAPACITY

SGREATER_THAN_DURATION
86401.0

S$GREATER_THAN DURATION BASE LAST
131073.0

SGREATER_THAN_FLOAT BASE_LAST
7.237006E+75

SGREATER_THAN_FLOAT_SAFE_LARGE
7.23004E+75

$GREATER;THAN_SHORT_FLOAT SAFE LARGE
7.237E+75

SHIGH_PRIORITY 255

$ILLEGAL_EXTERNAL FILE_ NAME1
BADCHAR*Y

SILLEGAL_EXTERNAL FILE NAME2
BAD-CHAR! @™

SINAPPROPRIATE LINE LENGTH
1029

SINAPPROPRIATE PAGE_LENGTH
-1

MACRO PARAMETERS

SINCLUDE_PRAGMA1l PRAGMA INCLUDE ("A28006D1.TST");
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST");
SINTEGER_FIRST -2147483648
SINTEGER_LAST 2147483647

SINTEGER_LAST PLUS 1 2147483648
SINTERFACE_LANGUAGE C
$LESS_THAN_DURATION -86401.0
$LESS_THAN_DURATION BASE FIRST

131073.0
$LINE_TERMINATOR o
$LOW_PRIORITY 0

SMACHINE_CODE_STATEMENT
NULL;

$MACHINE CODE_TYPE NO_SUCH_TYPE

$MANTISSA_DOC 31

$MAX DIGITS 15

$MAX_INT 2147483647

$MAX_INT PLUS 1 2147483648

$MIN_INT ~2147483648

SNAME , NO_SUCH_TYPE_AVAILABLE

A-3

MACRO PARAMETERS

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE
$NEV_STOR_UNIT
$NEV_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

mc68000, anuyké4,ibm370
X2102A DATA Al

X2102B DATA Al

X3119A DATA Al
16#FFFFFFFE#

16777215

8

IBM370

'

NEV INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
32

1024

0.000001

VAR_ADDRESS

VAR _ADDRESS1
VAR_ADDRESS2

PRIORITY

A-4

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS
The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

othervise, references in this appendix are to linker documentation and not
to this report.

B-1

Compiling a Source Program

Chapter 2. Compiling Ada Programs

This chapter describes how to use the IBM Adas370 compiler. You should have
available a copy of /8M Ada/370 Language Relerence (SC08-1297) or
ANSI/MIL-STD-1815A, the Ada LRM.

If you need help getting started with IBM Ada/370. see Chapter 8. IBM Adas370
Tutorial.

Compiling a Source Program

The ADA command compiles 3 source program. The following sections show
you how to use this command under VM/CMS. MVS TSO. and as an MVS bat~-

job.

Using the ADA Command under VM/CMS

»o—ADA—T-?
-file_name
thle_

]
t e
7P 1] t le_mde—J

omp_untt_name

I_(-optlons L r’ L)J
(-modtfters—-—)—

The "?7" oplion displays' syntax information. including a list of the ADA options. on
the screen.

Most situations require that you pass the file name of the source file. The
compilation unit name is required when you use the Bind option, or when you
use the Run and NOCOmpi le options. The file_{ype and file_mode defauit to ADA

and °. respectively.

When you specify a compiler option in ADA, you can use the minimum unique
abbreviation. For example, you can specify CReate as CR.

Many compiler options are matched by an opposite. For example, the opposite
of the MAP option is the NOMAP option. For such cases, one of the options is
designated as the defauit. For an option that takes a numerical value, a
particular value may be assigned as the default. The compiler uses default
settings uniess you override them by specifying the nondefault options to ADA.

Precede the list of options by a blank space and a left parenthesis, and separate
them from each other by blank spaces. A closing parenthesis is optional.

@ Copyrgnt 18M Corp. 1991

Compiling a Source Program

Some of the options have modifiers, which you must enclose in parentheses.
Where you can enter multiple modifiers (0 an option. such as with the xref
option. separate the modifiers with a comma.
Here are some exampies:
1. ADA EXAMPLE
Example 1 compiles EXAMPLE ADA ° using the default options.
2. ADA EXAMPLE (LIBRARY (DEMO LIBRARY) DEBUG

Exampie 2 compiies EXAMPLE ADA ° with the LIBrary and Debug options.
LIBrary causes the compiler to use a file containing an aiternative library
The library has the name DEMO LIBRARY °.

3. ADA EXAMPLE (XREF (BYUNIT,FULL)

Example 3 compiles EXAMPLE ADA * with the Xref option to produce a
cross-reference listing. The listing is ordered by compiiation unit and
includes cross-references to 3ll visible units.

Using the ADA Command under MVS TSO

2-2

IBM Ada/370

»o—FX ‘qualifter.CLIST(ADA)'—' ?
. T—rdsnm _] >
! ter.dsname~'"'

‘-qualté

117

'

(-opttons | L) T

(~mod1 flers——i=—)—

Under MVS, the qualifier at is the high-level qualifier assigned to IBM
Ada/370 by your system administrator. In examples for this book. we use the
high-level qualifier ADA. The qualifier at [is the high-level qualifier for the
data set you are specifying. By defauit, the high-level qualifier is set by the
PROFILE PREFIX command. This, in turn, defauits to your TSO logon identifier.

The “?" option displays syntax information, including a list of the ADA options, on
the screen.

Most situations require that you pass the file name of the source file. The
compilation unit name is required when you use the 8ind option.

When you specify a compifer option in ADA, you can use the minimum unique
abbreviation. For example, you can specify CReate as CR.

Many compiler options are matched by an opposite. For example, the opposite
of the MAP option is the NOMAP option. For such cases, one of the options is
designated as the default. For an option that takes a numericai value, a
pariicular value may be assigned as the default. The compiler uses defauit
setftings unless you override them by specifying the nondefauit options to ADA.

Compiling a Source Program

Precede the list of options by a blank space and a left parenthesis. and separate
them from each other by blank spaces. A closing parenthesis is optionai.

Some of the options have modifiers. which you must encfose in parentheses.
Where you can enter multiple modifiers to an option, such as with the Xref
option. separate the modifiers with a comma.

Here are some examples:
1. EX 'ADA.CLIST(ADA}' 'EXAMPLE'
Exampie 1 compiles EXAMPLE using the defauit options.
2. EX 'ADA.CLIST(ADA)' 'EXAMPLE (LIBRARY ('‘'DEMO.LIBRARY'') DEBUG'

.Example 2 compiles EXAMPLE with the L[8rary and Oebug options. LIBrary
causes the compiler to use a data set containing an alternative library. The
library has the name DEMO.LIBRARY. The compiler also saves information
needed by the IBM Ada/370 debugger.

3. EX 'ADA.CLIST(ADA)' '''USERL.EXAMPLE'' (XREF (BYUNIT,FULL)'

Exampie 3 compiles EXAMPLE with the high-level qualifier USER1. It includes
the Xref option to produce a cross-reference listing. The listing 1s organized
by compilation unit and includes cross-references to all visible units.

Compiling a Program with Job Control Language (JCL)
This section describes how to invoke the compiler as a batch job under MVS
using Job Control Language (JCL). Fcr information on how to invoke the binder
using JCL, see “Invoking the Binder with Job Control Language (JCL)" on

page 3-2.

The ADAC cataloged procedure invokes the compiler on a source file.

)
r//MVM!(JG Jog . JMSGCLASS=D MSGLEVEL=(1,1) ,NOTIFY=USER],

/7 CLASS=A

/"

//* PURPOSE: TO RUN THE ADA COMPILER

/1

//COMPILE EXEC PROC=ADAC,ADASRC='USER1.ADA.SOURCE(MELLO) ",

1l USER=USER], CMPPRMs'CHECK'
\ _J

Figure 2-1. Using the ADAC Cataloged Procedure to Invoke the Binder

The preceding example job, MYPROG, compiles member HELLO in the source
PDS. USER1 ADA SOURCE. The user’s name, USER1, is identified with the USER
variable. This variable is used as a high-levei qualifier to construct data-set
names for the compiler, such as USER! ADA.UBRARY, which is the defauit library.
Your job card will probably be different, because it depends on your site’s
conventions.

After you execute this job. the Ada program contained in member HELLO is
compiled into the working sublibrary of USER1.ADA.LIBRARY.

A sample of ADAC cataloged procedure appears in Figure 2-2 on page 2-4. The
exact location of ADAC may depend on your site's conventions.

Chapter 2. Compiling Ada Programs 2-3

Campiling a Source Program

//ADAC

/]
"

/"t
/f
//ADAINFO

//
/I

//STEP
/!
//STEPLIB
//CONOUT
//ACAIN
//ADALI8
//ADAINFO

/7

//ADALIST
/!

/"
//ADAUTY

//

i
//ADAUT2

/!
//
//ADAUT3
/!
/
//ADAUT4
/l
//

PROC CMPPRM=' ' MEMSIZE=8196K,

//* ERASE ADA.INFO DATASET

//'".""".""""'..'.".""'...".'.."""""'.""""""""'

//"'."'..'"""'.".'."."'."'.'."..""..".'."""""""'."'

STPLIB='ADA110.LOADLIB' ,MAXT[ME=60,
VI0=V10,SYSDA=SYSALLDA,SYSOUT="*"

EXEC PGM=[EFBR14
D0 OSN=&USER..ADA. INFO,DISP=(MOD,DELETE),

SPACE=(1,1),UNIT=8SYSDA
INVOKE THE COMPILER

EXEC PGM=EVGCOMP,PARM=*&CMPPRM' ,REGION=BMEMSIZE,
TIME=BMAXT IME , DYNAMNBR=65

DD DSN=ASTPLIB,DISPsSHR

D0 SYSOUT=ASYSOUT,DCB=(LRECL=120,BLKSIZE=120)

00 DSNe8ADASRC,DISP=SHR, FREE=END,DCB=BUFNO=4

00 OSN=GUSER..ADA.LIBRARY,DISP=SHR

00 DSN=SUSER..ADA. INFO,DISP=(NEW, PASS,CATLG),
0CB=(RECFM=VB, LRECL=512, BLKSIZE=3120,0S0RG=PS) ,
SPACE=(80, (10,50)) ,UNIT=&SYSDA

0D DSN=BUSER..LISTING,DISP=(M0D,CATLG,CATLG),
DCB=(RECFM=VBA, LRECL=259,BLKSIZE=3120,0S0RG=P0,BUFNO=2) ,
SPACE=(132, (560,2000,20)) ,UNIT=&SYSDA

DO SPACE=(132,(560,2000)),

0CB=(RECFM=FB, LRECL=136,BLKS1ZE=3400,DSORG=0A ,BUFNO=2),
UNTT=8SYSOA

DD SPACE=(132,(506,2000)),

DCB=(RECFM=VB, LRECL=136,BLKS1ZE=3120,050RG=PS , BUFNO=2) ,
UNIT=8VIO

DO SPACE=(132,(568,2000)),

0CB=(RECFM=FB, LRECL=1028,BLKS]1ZE=2056 ,DSORG=DA,, BUFNO=2) ,
UNIT=85YSDA

00 SPACE=(132,(508,2000)),

0CB=(RECFM=FB, LRECL=132, BLKS1ZE=2640, 0SORG=DA, BUFNO=2) ,
UNIT=8SYSDA

Figure 2-2. ADAC Cataloged Procedure

Symbolic Variables for ADAC Cataloged Procedure
The ADAC cataloged procedure includes several symbolic JCL substitution

variables you can modify to specify the various options available.

2-4 1BM Ada/370

Symbolic
Variable

ADASRC

CMPPRM

Description

Specifies the data-set name (OSN) for the Ada source file. This
name must be set in order to successfully compile an Ada
program.

Specifies options to the compiier in the PARM fieid. This variable,
found in Step 1 of the ADAC cataloged procedure, specifies
options to the compiler in the PARM field. These options are the
same ones used when you invoke the compiler with the ADA
command.

Compiling a Source Program

The compiier options have the following syntax:

!

»o———optilons L
(-modifters——)—

Table 2-2 on page 2-8 lists the valid options. their modifiers. and
defauits.

MAXTIME Sets a maximum amount of time for the compuier job step to run
{via the TIME parameter on 3 JCL EXEC card). The default value is
60 minutes. but this value can be changed when the cataloged
procedure is installied.

MEMSIZE Specifies the amount of memory in which to run the compiler job
step (via the REGION option on a JCL EXEC card). The greater the
memory. the better the performance of the compiler. The default
value is 8196Kb. but this value may be changed. depending on
your site’'s conventions.

STPLIB Indicates the data-set name of the partitioned data set that
contains the compiler module, EVGCOMP. This default can be
changed when the cataloged procedure is installed.

SYSDA Specifies the UNIT for permanent data set allocations. The
defauit is SYSALLDA, but this value can be changed depending on
your site’'s conventions.

SYSOUT " identifies the output class for the compiler output. The default is
“ ** but this can be changed, depending on your site’s
conventions.

USER Indicates the high-level qualifier that is required to build data-set
names used by the compiler. You must specify this variable. It
is common to set this varniable to your TSO logon identifier.

viO Specifies the UNIT for temporary data set allocations. The default ”
is VIO. but the default can be changed depending on your site’'s
conventions.

-

Chapter 2. Compiling Ada Programs 2-5

The Compiler Options

The Compiler Options

The ADA command invokes the IBM Ada/370 compiler. Tabie 2-1 provides a
brief summary of the compiler options. The square brackets enciose optional

modifiers. You do not actually enter the brackets as part of the command

syntax. For the specific syntax of each option, see the option descriptions on the
pages specified in the table.

Tabie 2-1 (Page ! of 2). Compiler Options

Option Defsauit Function Page
Asm NOAsm Assembly listing. 29
[NOGen Suppraess listing of expanded generics.
| NOSYS) Suppress listing of system-supplied generics.
8ind COmpile 8ind previously-compiled main unit. 2.10
CHeck Compile Compile with syntactic and semantic checking only. 2-10
[Nosemantic] Compile with syntactic checking only.
COmpiie COmpile Compile code for a library unit. 2-11
CReate {number _of_units} NOCReate Initialize working sublibrary for the compiler. 2-11
number_of_units is number of compilation units in
sublibrary.
Oebug NODebug Qutput information for debugging. 2-13
Error NOError Specify action to be taken when errors occur. Must 2-13
include at least one modifier.
[Count = number] Abort compilation after number errors.
[List) Generate interspersed listing of errors and source
. code.
Generate NOGenerate Generate a ioad image. 2-14
(VM/CMS)
NOGenerate Generate (MVS)
INlVist {max_number) COmpile Compile muitiple source files with one invocation of 2-15
the compiler. max_number is the maximum number
of compiiation failures during input list processing.
LiBrary /ibrary_name Specify Ada library name.] 2-15
LISt NOLISt Generate interspersed listing of errors and source 2-16
. code.
MAIn [comp_unit_name) Compile Compile and bind code for a main unit. 2-16
MAP NOMAP Produce linkage map during binding. Use with MAIn, 2-17
Bind. or Run options.
NOCOmpile COmpile Suppress the compiler. 2-17
Run NORun Execute main program. 2-18

2-8

18M Ada/370

The Compiier Options

Table 2-1 (Page 2 of 2). Comprier Options

Option Defauit Function Page |
Suppress NOSuppress Suppress seiected run-time checks or fine information 2-18
tables in generated object code. Must inciude at
least one modifier.
[Lineinfo] Suppress generation of line information tables.
[Checks Suppress ail run-time checks.
| E1ab] Suppresses only elaboration checks.
Trace NOTrace Display diagnostic messages from the compiler. 2-19
Xref NOXref Produce a cross-reference listing. 2-19
{Byunit] Order the listing by compilation unit.
[Full] Cross-reference all visible units.

Chapter 2. Compiling Ada Programs 27

The Compiler Options

THIS PAGE INTENTIONALLY LEFT BLANK

Asm Option

Detailed Descriptions of Compiler Options

Asm Option

The foliowing detailed descriptions of the compiier options inciude syntax
diagrams. in these diagrams. uppercase characters indicate the minimum
abbreviation of options and their modifiers. Options and modifiers that are
underscored are the defaults.

sm— T - J
A I —

se-

——

The Asm option produces pseudo-assembly language for the object code
interspersed with the Ada source for each compilation unit. it causes the
creation one listing for each source file. Asm also provides information on the
relative offset and size aillocation of each data item or constant. Thig listing is
called the data map. For more information on the listing produced by Asm. see
“Source and Assembiy Listings” on page 7-1.

If you use the Asm option at the same time you invoke the IBM Ada/370 binder.
the compiier aiso produces a binder listing.

The N0Gen modifier suppresses the listing of code generated for expanded
generics. Otherwise, listings include the code generated for all expanded

generics.

The N0Sys modifier suppresses the listing of code generated for system-supplied
generics.

Use NOGen or NOSys o reduce the size of listings.

Under YMICMS
The name of the listing file takes the form source LISTING A, where source is the

file name of the source file.

Under MVS

The name of the listing data set takes the form qualifier LISTING{source} where
qualifier is the TSO logon identifier and source can be either the name of the
member of a partitioned data set (POS) used as source or the second qualifier in
the name of a sequential data set.

Chapter 2. Compiling Ada Programs 2-9

Check Option

Bind Option

Check Option

2-10 181 Ada/370

Coomite—]

The Bind option binds a main program that has been previously compited as a
library unit. As output. it produces an object file. When you use this option,
enter the compilation unit name in place of the source file name. You can only
use the 8ind option for compilation units that reside in the working sublibrary of
the Ada program library.

To invoke the binder when you compile the source (rather than in a separate call
to ADA). use the MAIn option.

You cannot use the 8ind option in combination with MAIn, CHeck, IN1ist. COmpile.
or NOCOmpile. If you enter more than one of these options. IBM Ada/370 only
accepts the last one in the command line. If you de not use any of these
options. the default is COmpile,

Under VMICMS
The object file created by compiling with the 8ind option has the file type TEXT.

Under MVS

The object file is a PDS created by compiling with the 8ind option. It takes the
form qualifier OBJ(comp_unit), where qualifier is your TSO logon identifier and
comp_unit is the compilation unit name.

¢

~ L(-ﬂouuntic——-—-)-—]
[:_ow_u

The CHeck option causes the compiler to perform only syntactic and semantic
error checking. Because no object code is produced. you can save compilation
time and disk space during error checking. {f you inciude the Nosemantic
modifier. the compiler only performs syntactic error checking.

You cannot use the CHeck option in combination with MAIn, Bind, INTist, COmpile,
or NOCOmpi le. If you enter more than one of these options, iBM Ada/370 only
accepts the last one in the command line. If you do not use any of these
options, the defauit is COmpile.

Compile Option

Create Option

Create Optian

..——M-gf -

The COmpi le option causes ali compilation units in the source file to be library
units, rather than main units.

You can also make a library unit into a main unit using the Bind option.

You cannot use the COmpiie option in combination with MAIn, Bind, CHeck, [Nlist,
or NOCOmpi te. If you enter more than one of these options. 1BM Ada/370 only
accepts the last one in the command line. If you do not use any of these
options. the defauit is COmpile.

Reate— v
I '——{ -number of untts—) il
NOCReate

CReate initializes the warking sublibrary for the compiler. The compiler creates a
new sublibrary, deleting the previous copy, il one exists.

The number_of_units vanable specifies the number of compilation units the
sublibrary can contain. The defauit is 200. The fargest number of units a
sublibrary can contain is 4671.

This number indicates an approximate size for the sublibrary. The number of
units that actually fit into a sublibrary depends upon their size and complexity.
For further information on sublibraries, see Chapter S. Working with the Ada

Library System.

When you use CReate in conjunction with the L1Brary option. it initializes the
working sublibrary in the library specified by LiBrary.

You cannot use CReate in combination with the 8ind option.

NOCReate is the defaull. With NOCReate. the compiler does not initialize the
working sublibrary.

-

Chapter 2. Compiling Ada Programs 2-11

DDNAMES Option (MVS JCL Only)

DDNAMES Option (MVS JCL Only)

212

18M Ada/370

~

*>——DONANES— (-0 ld_name—=-new_name) >

DDNAMES specifies the Data Description (OD) names that identify the data sets
used by the compiler and binder. DONAMES always requires a value.

For use with the compiler, old_name has one of the following vaiues:

ADAIN
ADAINFO
ADALIB
ADALIST
ADAUTH
ADAUT2
ADAUT3
ADAUT4

For use with the binder. o/d_name has one of the foliowing vailues:

ADAINFO
ADAL!B
ADALIST
ADAUTY
ADAUT2
ADAUTI
ADAUT4

Usually, you do not need to change the DD names associated with the compiier.

This example of 3 JCL code fragment uses ODNAMES to identify a new DO name
specifying the source file and the ada library:
J/MYSTEP EXEC PGMs=EVGCOMP,PARM='00ONAMES (ADAIN=MYSOURCE ,ADAL 1B=MYLIB)"

J/MYSOURCE 00 OSN=qualifter.ADA.SOURCE(PROGRAM])
/MYLIB D0 OSN=qualifter.ADA.LIBRARY

Debug Option

Error Optlbn

Error Option

>d

ebug: —
NODebug———

The Debug option causes information used by the {BM Ada/370 debugger to be
placed in the working sublibrary. When used with the MAIn or 8ind options. Jebug
produces a debugging map. which is required by the debugger.

For more information about debugging, see Chapter 8. The IBM Ada/370
Debugger.

With NODebug. the compiler does not place debugging information into the working
sublibrary.

Under YMICMS
The debug map file takes the name comp_unit DEBUGMAP A where comp_unit is

derived from the name of the compiiation unit.

Under MVS
The debug map file takes the name qualifier DEBUGMAP(comp_unit), where

qualifier is the high-levei qualifier and comp_unit is derived from the name of the
compilation unit.

Error—— (~—Count=number—1—)
| Tiige—
E’ K14

Error controis the way the compiler behaves when it finds errors in the source
file. You must choose at least one of the modifiers.

The Count modifier specifies the number of errors that cause the compiier to stop
processing. The compiler inciudes syntax, semantic, and warning errors in the '
count. For example. COUNT=5 causes the compiler to stop processing after it finds
five errors. If you omit the Count modifier, the compiler stops processing when it
finds 32767 errors, the defauit error limit.

The List modifier creates a file containing compile-time error messages
interspersed with the source code. If there are no errors, the compiler does not
generate the listing. To generate this listing regardless, use the LISt option.

See "List Option” on page 2-16.

With NOError. the compiler does not modify its behavior when it linds errors
during processing.

Under VMICMS

The listing file created by the List modifier is called source LISTING A, where
source is the file name of the source file.

Chapter 2. Compiling Ada Programs 2-13

Generate Option

Generate Option

- 2714 IBM Ada/370

Under MVS
The listing file created by the LISt modifier is called qualifier LISTING(source).

where qualifier is the TSO logon identifier and source is the file name of the
source data set.

The Generate option generates a load image.

Under YMICMS

e ~
NOGenerate

Under VM/CMS. when you compile with the Generate option. the ADA command
aiso invokes the binder. producing an object file. The compiler then uses the
object file to produce the load module. This option assumes that the source file
contains a main program. The load module created by the Generate option has
the name comp_unit MODULE A, where comp_unit is derived from the
compifation unit name.

~ With NOGenerate, the compiler does not generate an executable ioad module.

Under MVS

erate—
erat

The NOGenerate option suppresses the invocation of the linkage editor after
binding a main program. Use this option when you want to invoke the linkage
editor with options that differ from the default. For example, you woulid use
NOGenerate when you want to link the main program with non-Ada object code.

The load module created by the Generate option has the name
qualifier.LOAD(comp_unit), where comp_unit is derived from the name of the

compilation unit.

The NOGenerate option has no effect when used in combination with NOCOmpile, or
when you compile the program as a library unit instead of a main unit.

You cannot use NOGenerate in combination with the Run option.

inlist Option

Library Option

Library Option

1

INTist
L(—max_number-———)—-l
[c_ow_l;

The INlist option compiles muiltiple source files with a singie invocation of the
compiler. When you use this option, enter the name of the file containing the

input list in place of the source file name. For more information on the use of
input lists, see "Compiling Multiple Source Files” on page 2-20.

If a source file fails to compile, the compiler continues 10 process the remaining
files. You can specify that the compiler stops processing after a certain number
of source files fail to compile. To do so, use the max_number variable.

You cannot use INlist in combination with the Bind, CHeck, MAIn. COmpile oOr
NOCOmpi e options. If you enter more than one of these options, IBM Ada/370
only accepts the last one 1n the command line. if you do not use any of these
options. the defauit is COmpiie.

o—LIBrary—(—!tbrary_name—)

The LIBrary option specifies the name of the Ada library file to be used by the
compiler. The library_name modifier is the name of a library file that contains
the names of one or more sublibraries.

When you do not specify the LIBrary option, the compiler uses the defauit library
file. Under VM/CMS. it has the name ADA LIBRARY *. Under MVS, it has the
name qualifier ADA LIBRARY. where quaiifier is the TSO logon identifier. For
information concerning libraries and sublibraries. see Chapter 5. Working with
the Ada Library System.

Under YMICMS

You can provide the /ibrary_name variable in either of two formats. The
preferred is file_name file_type file_mode. The other format is
file_mode:file_name file_type. in both formats, if you specify only the file name,
file_type defauits to LIBRARY and file mode defauits to “*". if you do not specify
a library file, ADA searches for ADA LIBRARY °.

For example, to specify library PROJI LIBRARY A, when you compile the file
MYPROG, enter:

ADA MYPROG (LIB(PROJ1))

It is recommended that you do not select an aiternative file type for the Ada
library file. Retaining the defauit file type maintains consistent file naming
conventions for ali users.

Chapter 2. Compiling Ada Programs 2-15

Main Option

List Option

Main Option

2416

18BM Ada/a70

- comp_unit_name variable.

Under MVS

A library can be either a sequential data set or 3 member of a PDS. The
library_name variable can be any valid data-set name format. For exampie. to
specify library PROJ1.LIBRARY on USER1 when you compiie the data set
MYPROG.SOURCE enter:

EX 'ADA.CLIST(ADA)' ''*USER1.MYPROG.SOURCE'* (LIB(''USER1.PROJ1.LIBRARY'')’

D.--E.L.:S-—L;ﬁ l

The LISt option creates a file containing a listing for each source file. The listing
contains compile-time messages interspersed with the source code. If there are
muitipie compiiation units in a source file, LISt places the listings for ail units
into a single file.

Under YMICMS
The compilation listing file takes the form source LISTING A, where source is the

file name of the source file.

Under MVS

The compilation listing file takes the form qualtfter.LISTING(source), where
qualifier is the TSO logon identifier and source can be either the name of the
member of a POS used as the source or the second qualifier in the name of a
sequential data set.

MAL >
I " l—(—comp_unt t_nm—)-J
Ompiie—

The MAIn option causes the compiler to produce code for the source file as an
Ada main program. The MAln option compiles a program and performs the
binding operation without the need to specify any other option.

If the Ada source file contains one or more library compilation units in addition
to the main compilation unit, enter the name of the main program in the

"

You cannot use the MAln option in combination with Bind, CHeck, IN1ist, COmpile,
or NOCOmpile. If you enter more than one of these options, IBM Ada/370 only
accepts the last one in the command fine. If you do not use any of these
options, the default is COmpile.

Under YMICMS
The object file created by compiling with the MAIn option takes the form
comp_unit TEXT A, where comp_unit is the compiiation unit name.

Under MVS
The object file created by compiling with the MAIn option takes the form
qualifier OBJ(comp _unit), where qualifier is the TSO logon identifier and

comp_unit is the compilation unit name.

Nocompile Option

Map Option

“Tow—

The MAP option causes the compiier to produce a linkage map when the |IBM
Ada/370 binder processes a main program.

Use MAP in combination with either MAIn or 8ind, both of which invoke the binder.
You can aiso use MAP in combination with Run as iong as you do not use the

NOCOmpi le option.

With NOMAP. the compiler does not create a linkage map when the IBM Ada/370
binder processes a main program.

Under YMICMS
The map file is called object ADAMAP A. where object is the file name of the

object file.

Under MVS
The map file is called qualifier ADAMAP(comp_unif). where qualifier is the TSO

logon identifier and comp_unit is the name of the main compilation unit.

Nocompile Option

»—-E:OCO:?HV] -

The NOCOmpi 1e option causes the ADA command to suppress the compilation step.
Thus. you can use NOCOmpiie with Run lo run an Ada program that has aiready
been compiled. When you use NOCOmp11e with Run, enter the compilation unit
name in place of the source file name.

You can aiso use NOCOmp:ie with the CReate to create a new working sublibrary
without having to compiie the source code.

You cannot use the NOCOmpi 1e option in combination with MAIn, Bind, CHeck, INlist,
or COmpile. If you enter more than one of these options. |BM Ada/370 only
accepts the last one in the command line. If you do not use any of these
options, the default is COmpile.

Chapter 2. Compiling Ada Programs 2-17

Suppress Option

Run Option

Suppress Option

2-18 18M Ada/3T0

The Run option loads and executes a main program. The compiler assumes that
the program is a main unit. You can either compile and run a program. or run a
precompiled program. To run a previously compiled and bound program. use
fun in combination with the NOCOmpile option. When you use Run with NOCOmp1 ie,
you must specify the compilation unit name, rather than the Ada source file
name.

With NORun, the compiler does not execute the program.

Suppress—(Lineinfo) >
L—Eﬂltcks

El ab——]

NOSuppress

The Suppress option suppresses selected run-time checks and line information in
generated object code, resuiting in smaller, faster modules. You must choose at
least one of the modifiers. Use of either the Suppress option or pragma Suppress
causes the compiler to suppress run-time checks. For more information on
pragma Suppress, see the chapter on tuning in the /BM Ada/370 Programmer’s

Guide.

The Lineinfo modifier suppresses the generation of line information tables. thus
saving the space required to produce them. These tables display the Ada
source line number when an unhandied exception occurs. If you compile your
code with this option and an unhandied exception occurs during run time. the
error information does not include a line number.

The Checks modifier suppresses ail run-time checks.

The E1ab modifier only suppresses efaboration checks made by other units on
this unit. This differs from the way pragma Suppress works. The pragma
suppresses elaboration checks made on other units from the unit in which it

resides.

If you choose both the Checks and ETab modifiers, the Checks modifier takes
precedence.

With NOSuppress, the compiler does not suppress selected run-time checks and
line information in generated object code.

Trace Option

Xref Option

Xref Option

T -
Cootrace————

The Trace option displays diagnostic messages from the compiier. This option is
intended for use in submitting probiems to IBM. For more information. see the
IBM Ada/370 Diagnosis Guide.

Xref T
|~—(yunit ~)—

full————

Xref

The Xref modifier produces a cross-reference listing for each compilation unit
contained in the source file. It creates one listing file for each source file.

8yunit causes Xref to display symbois by compilation unit. By default. the Xref
listing displays symbois in alphabetic order.

Full causes Xref to cross-reference each compilation unit with all unit
specifications that are visible to it. A unit specification is visible if it is an import
to the compitation unit. If the compilation unit is a body. its parent and its
parent’s imports are aiso visible. Full does not display cross references for the
private parts of imported units. By defauit, Xref only cross-references the
compilation units specified in the command. For more information, see

“Cross-Referencer” on page 7-2.

VMICMS Usage _
The listing file takes the form source LISTING A. where source is the file name of

the source file.

MVS Usage
The listing file takes the form qualifier.LISTING(source). where qualifier is the TSO

logon identifier and source can be either the name of the member of a
partitioned data set (PDS) used as source or the second qualifier in the name of
a sequential data set.

Chapter 2. Compiling Ada Programs 2-19

Compiling Multiple Source Files

Compiling Multiple Source Files

An input list is a file containing a list of the names of files to be compiled. Using
input lists, you can compile multipie source files with a single invocation of the
compiler. This reduces the time it takes to compiie a group of saurce files
because it eliminates some redundant activities within the compiier.

The names of source files appear in the input list, along with other information
that controls the compilation process. The compiler processes items in the input
list in sequential order. Besides the object code that is the usual result of
compilation, the compiler produces a file that contains information on the resuits
of the success or failure of each compilation.

If you use a compiler option that produces compilation listings (Asm, LISt. Error,
or Xref, the compiler produces a separate listing for each compilation ynit.

To compile muitiple files with the ADA command. use the INlist option.

If the compiler detects errors during compilation of any source file in the list. it
goes on to the next source file. There may be cases, especially with a large
input list, where it is not advisable to continue through the entire input list when
mulliple source files abort. The INlist option has a variable that allows you to
specify the maximum number of source file compilation failures to aliow. The
next failure causes the compiler to stop processing the input list.

Under YMICMS
The command string

ADA MYLIST (IN(6)

compiles the source files in the input list MYLIST INUIST, setting the failure limit at
six.

Under MVS

The command string

EX 'ADA.CLIST(ADA) ' *MYLIST.INLIST (IN(6)*

compiles the source files in the input list MYLIST.INLIST, setting the failure fimit at
six. The compiler uses the default high-level qualifier.

Constructing the Input List

'2-20 IBM Ada/370

An input list contains two types of information. names of source files {0 be
compiied and compile-time options.

The syntax for each line of the input list is:

ftle_name —
omptle-time_optton—

* comment——————
lank_l tne————

The rules for creating the input list are:

* Place only put one file name or compile-time option on a line.
* Do not place comments on the same line with other information.
« If the first nonblank character in a line is "°", that line is a commaent line.

Complling Multiple Source Files

+ The compiler ignores blank lines.
« File names do not have to start in the first column.

This VM/CMS file list follows the rules correctly.
* YES, THIS IS A COMMENT

AFILE ADA A
BFILE ADA A

B1SUB ADA A
B2SUB ADA A

CFILE ADA A

if an error occurs during input list processing. the compiler updates the working
sublibrary with information about the units that have been compiled successfully.
Also, the compiler piaces information about the resuits in an output file. For
more information about the contents of this file. see “Getting information on an

Input List Compilation” on page 2-22.

VMICMS Source File Names
Enter the names of source files into the input list. [f you ieave out the file type,

the compiler assumes the file type is ADA.

input List Compiler interpretation
MYFILE MYFILE ADA *
MYFILE TEST MYFILE TEST *

MYFILE TEST A MYFILE TEST A

MVS Source Data Set Names

Enter the names of source data sets into the input list either fully or partiaily
qualified. Enclose fully qualified names inside a pair of single quotation marks.
If you leave out the high-level qualifier. the compiler assumes the current TSO

logon identifier.

input List Compiier Interpretation
MYFILE ‘qualifier WYFILE'
MYFILE.TEST ‘qualifier MYFILE, TEST!

*OTHER.MYFILE.TEST' 'OTHER.MYFILE.TEST'

Embedding Compile-Time Options in the Input List
You can place compile-time options and input list options within the input list.
Options set when you invoke the compiler apply to each source file until they are
overridden by an option embedded in the input list. Options that appear in the
input list apply to all following source files uniil they are overridden by other
embedded options. A specific option can appear multiple times in an input list.

»—m"lous———[cmt ler_optton >
tnput_list_optto

Chapter 2. Compiling Ada Programs 2-21

Compiling Muitiple Source Files

The compiler options you can embed in input lists are:

ASM
CHECK
COMPILE
DEBUG
ERROR
INLIST
LIST
SUPPRESS
XREF

There is one valid input_list_option, DEFault. The DEFault option causes the
compiler to reset all options to their states as set by the ADA command. 0ffault
is only valid as part of the A0FTIONS command in an input list.

The following exampie shows an input list with embedded options. along with
descriptions of how the options change. This example uses VM/CMS file naming
conventions: MVS users should use MVS conventions.

input List How Qptions Change

AFILE ADA A Command-line options

SOPTIONS DEBUG

BFILE ADA A Command-liine options plus Debug
S0PTIONS NODEBUG

CFILE ADA A Command-line options plus NOOebug
SOPTIONS DEFAULT

EFILE ADA A Command-line options only
SOPTIONS DEBUG

FFILE ADA A Command-line options plus Debug

Getting information on an Input List Compilation

'2-22 18M Ad/370

The compiler creates a file and places information about of the compilation into
it. Each line in the input list also appears in this file. Following each line from
the input list containing the name of a source file is a iine that shows '
compilation status for the file. Source files that compiie successfully show a
return code of zero for each compilation unit in the file. Files that do not compile
show the return code of the error that caused the failure. There are also
descriptive messages where return codes do not provide enough information.

The return codes that can appear are: .

Code Explanstion

0 Execution complete. No errors occurred.

4 Execution complete. Warnings were issued, but no errors occurred.

8 Source code errors, such as syntactic or semantic errors, were detected.
Look for specific errors in the console listing.

Below is a brief example of an input list and the OUTPUT file that might result.
This examplie uses VM/CMS file naming conventions; under MVS the output
follows MVS conventions.

Generating Recompilation Scripts

Sampie Input List MYLIST INPUT A

SOPTIONS ASM
FILEONE ADA A
SOPTIONS OEF
FILETWO ADA A
S0PTIONS BLTZ

Sampie OUTPUT File

INPUT LIST processing MYLIST INPUT A - yyyy-mmm-dd hh:mm:ss - options {options
SOPTIONS ASM

FILEONE ADA A

RC=00 FILEONE ADA Al

S0PTIONS DEF

FILETWO ADA A

RC=00 FILETWO ADA Al

SOPTIONS 8LTZ

>»> ERROR IN INPUT LIST COMMAND SYNTAX

VMICMS File Name
The name of the QUTPUT file takes the form input_list_name QUTPUT A. where

input_list_name is the file name of the input list.

MVS Data Set Name

The name of the QUTPUT data sel takes the form

qualifier QUTPUT(input_list_name). where qualifier is the current TSO logon
identifier and input_list_name is the name of the input list.

Generating Recompilation Scripts
VMICMS Syntax

»>——ADARECON——comp_unit_ngme

[—

'——(Library—(-ltbrary_nome-)
-[m, L)

MVS Syntax

»o—EX ‘qualifier.CLIST(ADARECOM)'—'—~comp_untt_nome >

1

[—)

(-Ellbrary—(=l1brory_nome=-) L)

8od y

The ADARECOM command generates a recompilation order list. When a library
consists of many compilation units that depend on (possibly muitiple levels of)
with statements. it can be difficult to determine the proper compiiation order if

Chapter 2. Compiling Ada Programs 2-23

Generating Recompilation Scripts

2-24 18M Ada/370

the specification of 3 unit needs to be recompiled. To use ADARECOM, you must
have compiled the compilation units into a specified library at least once.
ADARECOM reads the library to build a recompilation list of the units that depend
upon the specified unit. This list contains the source file names of the units that
need to be recompiled. Therefore. if you move an Ada compilation unit to a new
source file, you must modify the recompilation list.

for ADARECOM to correctly generate the recompilation list, the association
between file names and compifation units cannot change between the time they

are compiled and the ADARECOM invocation.

The file list produced under either VM/CMS or MVS is suitable for input to the
IN1ist option to the ADA command. For more on this subject. see “Compiling

Multipie Source Files” on page 2-20.

Do not change the names of the source file, separate the specification and body
into different files. or perform any other change that aiters the relationship
between that file and the compilation unit or units it contains between the time
you make the recompilation list and the time you perform the recompitation.
You can to edit the recompilation list after running ADARECOM, to make changes
to the recompiiation order list.

Also. ADARECOM produces a correct source file list only if each file contains a
single compilation unit.

Precede the options by a blank space and a leRt parenthesis, and separate them
from each other by biank spaces. A closing parenthesis is optional.

The L18rary option aliows you o specify the name of the library file,
library_name, that ADARECOM is to read.

If you specify the B0Dy option, ADARECOM assumes that comp_unit_name refers
to the body of a compiiation unit. By default, comp_unit_name refers to the
specification of a compilation unit.

Under YMICMS
You can provide the library_name variabie in either of two formats. The

preferred format is file_name file_type file_mode. The other format is
file_mode:file_name.file_type. in both formats, if you specify only the file name.
file_type defaults to LIBRARY and file mode defauits to "°". If you do not specify
a library file, ADA searches for ADA LIBRARY °.

The recompilation list goes into a file calied comp_unit INLIST A.

The command
ADARECOM MY_PROG (L(MYLIB.LIBRARY})

generates a recompilation list that inciudes all units within MYLI8 LIBRARY that
must be recompiled if you recompile MY_PROG, aiso found in that library.

Under MVS
If you do not specify /ib_name, the defauit is qualifier ADA.LIBRARY.

The recompilation list goes into a file called qualifier INLIST(comp_unit), where
qualifier is your TSO logon identifier.

Separate Compilation of Generics

The command
EX 'ADA.CLIST(ADARECOM)' ‘MY _PROG (L(MvLIB))?

generates a recompilation list that includes ail units within qualifier MYLIB that
must be recompiled if you recompile MY_PROG, aiso found in that tibrary

Separate Compilation of Generics

IBM Adas370 supports separately-compiled generics. You can compile a generic
specification in in file and its generic body in a separate file.

If you pian to compile your generics separately, compile the generic body before
you attempt to instantiate the generic. The generic body must be compiled and
visible in the library before the instantiation can occur.

You can compile instantiations before you compile the generic body. if you do.
the compiler issues a warning. When you compile a generic body, all
instantiations of the generic become obsolete. You must recompiie ail
instantiations of the generic after you compile a new generic body.

For more information on the compiling and instantiation of generic units, see
Chapter 12 of the LRM.

Chapter 2. Compiling Ada Programs 2-25

R R R TEEE—EE——TTTT————..

Separate Compilation of Generics

'2-28 1BM Ada/370

Using the IBM Ada/370 Binder

Eapter 3. Binding and Linking an Ada Program

The purpose of this chapter is to show you the different ways to invoke the IBM
Ada/370 binder or the linkage editor. and to explain when you need to use them.

The flexibility in symbol naming aliowed by Ada makes implementation of the
tanguage difficult in environments using pre-existing linkage editors and ioaders.
To alleviate this probiem. IBM provides a special Ada linker called the 1BM
Ada/370 binder. }t combines object modules produced by the I1BM Ada/370
compiler and outputs them as a standard IBM object module.

This partially-linked object moduie is further processed by the system
linker/loader to produce an executable load module. The IBM Ada/370 binder
provides full support of Ada requirements for symbol naming. It also drastically
reduces the number of external definitions and references that must be

processed by the host system linker.

An Ada program can use pragma interface to call subprograms written in a
programming language other than Ada. The system linker puts the
standard-format object modules produced for these subprograms into the
executable load moduie it creates for an Ada program.

The IBM Ada/370 binder also includes run-time environment routines as part of
its output.

Using the IBM Ada/370 Binder

To invoke the |1BM Ada/370 binder, compile an Ada main program using the MAIn
option of the ADA command. The system invokes the binder. The binder can
produce a link map describing the contents of the partially linked object module
it generates. The link map provides you with detailed information about the
run-time memory locations of the various pieces of code that make up your

program.

Another option to the ADA command, Bind, causes IBM Ada/370 to bypass the
compilation step. This allows you to bind a compilation unit that you have
previously compiled as a library unit as a main program.

The Generate option of the ADA command takes binder output and uses system
utilities to generate a load module.

For more information on the MAIn, Bind, and Generate options to the ADA
command. see “The Compiler Options” on page 2-6.

You must rebind your main program when you recompile any Ada compilation
units used in the program. You do not have to rebind the program if you
recompile non-Ada routines that your Ada program calls, but you still have to
link the program again with the linkage editor or ioader.

® Cooyrignt 1BM Corp. 1991

Invoking the Binder with Job Control Language (JCL)

Invoking the Binder with Job Control Language (JCL)

3-2 18M Ada/a70

This section describes how to invoke the binder as a batch job under MVS using
Job Controi Language (JCL). For information on how to invoke the compiier
using JCL. see "Compiling a Program with Job Control Language (JCL)" on
page 2-3.

The ADAB cataloged pracedure invokes the IBM Ada/370 binder to bind an Ada
main program that has been compiied using the IBM Adas370 compiier. The
output of the binder is an System/370 relocatable object data set. You can
submit this data set to the iinkage editor to generate an executabie ioad module.

()

] /MYPROG JoB ,' ',MSGCLASS»D,MSGLEVEL=(1,1) ,NOTIFY=USER],

/1 CLASS=A

/*

//* PURPOSE: TO RUN THE ADA BINDER
A

//BIND EXEC PROC=ADAB,UNIT=HELLO,

1 USER=USERI
- J

Figure 3-1. Using the ADAB Cataloged Procedure to Invoke the Binder

The preceding example shows a jab, cailed MYPROG, which binds the Ada main
compilation unit HELLO. The user identifier USER1 is specified with the USER
variable. This variable is used as a high-leve| qualifier to construct data-set
names for the compiler. such as USER1. ADA.LIBRARY. This library is the defauit
Ada library. Your job card will probably be different. because it depends on your
site’s conventions.

As this job executes, the compiler creates relocatabie object code in
USER! OBJ(HELLO). This object code was generated for the Ada main
comptlation unit called HELLO.

invoking the Binder with Job Control Language (JCL)

A sample of the ADAB cataloged procedure appears in Figure 3-2. The exact

location of ADAB may depend on your site’s conventions.

//ADAB PROC BNOPRM=' ‘' MEMSIZE=8196K,

// STPLIB='ADA110.LOADLIB' ,MAXTIME=60,

// V10=VI0,SYSDA=SYSALLDA,SYSOUT='** UN[T=* '

//""""'.'""""."""""'."'.'."""..."'.""."'.""'-""

" INVOKE THE BINDER

//'Q"Q.'..."Q"Q'"".."'.'."Q"Q"'.Q"'00"."""".."'Q'Q'...'.

//STEP1 EXEC PGM=EVGBIND,PARM='SUNIT. (&BNOPRM' REGION=SMEMSIZE,

// TIME=&MAXT IME ,0YNAMNBR=65,COND=(4,LT)

//STEPLIB OD OSN=&STPLIB,0ISP=SHR

//CONOUT 0D SYSOUT=&SYSOUT,DCB=(LRECL=120,BLKSIZE=120)

//AOALIB DD DSN=BUSER..ADA.LIBRARY,DISP=SHR

//ADAOBJ 0D DSN=&USER..0BJ,DISP=(MOD,CATLG,CATLG),

// 0CB=(RECFM=FB ,LRECL=80,BLKSIZE=3120,0SORG=PO,BUFNO=4)

/! SPACE=(80, (16066, 16000,208)) ,UNI T=&SYSDA

//ADAMAP DD DSN=8USER..ADAMAP,DISP=(M0D,CATLG,CATLG),

// 0CB=(RECFM=V8,LRECL=1023,BLKSI2E=3120,0S0RG=P0,BUFNO=2),

// SPACE=(132, (1000,2000,20)) ,UNIT=4SYSDA

//ADADMAP 0D DSN=&USER..DEBUGMAP,DISP=(M0D,CATLG,CATLG),

// DCB~(RECFM=v8,LRECL=1023,8LKSIZE=3120,DSORG=PC,BUFNO=2)

// SPACE=(132, (1000,2000,20)) ,UNIT=8SYSDA

//ADALIST DD DSN=SUSER..LISTING,DISP=(MOD,CATLG,CATLG),

/! 0C8= (RECFM=VBA,LRECL=259,BLKS1ZE=3120,0S0RG=P0,BUFNO=2),

// SPACE=(132, (500,2000,20)),UNIT=&SYSOA

J/ADAUTL DD SPACE=(132,(500,2000)),

// DCB=(RECFM=FB,LRECL=136,BLKS1ZE=3400,0S0RG=0A,BUFN0=2) ,
UNIT=&SYSDA

//ADAUT2 DD SPACE=(132,(500,2000)),

// 0CB=(RECFM=V8,LRECL=136,BLKSIZE=3120,0S0RG=PS ,BUFNO=2),

/! UNIT=8VI0

//ADAUT3 0D SPACE=(132,(560,2000)),

// 0CB=(RECFM=FB,LRECL=1028,BLKSIZE=2056 ,0SORG=0A ,BUFNO=2) ,

1/ UNIT=&SYSDA

//ADAUTS DD SPACE=(132,(560,2000)),

// DCB=(RECFM=FB,LRECL=132,BLKSIZE=2640,0S0RG=0A,BUFNO=2),

// UNIT=&SYSDA

Figure 3-2. ADAB Catajoged Procedure

Chapter 3. Binding and Linking an Ada Program

Invoking the Binder with Job Control Language (JCL)

Symbolic Variables for ADAB Cataloged Procedure
The ADAB cataloged procedure includes several symbolic JCL substitution
variables you can modify to specify the various options available.

Symbolic
Variable

BNDPRM
MAXTIME

MEMSIZE

STPLIB

SYSDA
SYSOUT

UNIT

USER

VIO

‘34 18Mm Ada/3T0

Description

Specifies options to the binder in the PARM fieid. A list of options
you can specify in BNDPRM, along with a syntax diagram. appears
in “Binder Options for Use with ADAB Cataloged Procedure” on
page 3-5.

Sets 3 maximum amount of time for the binder job step to run
(using the TIME parameter on a JCL EXEC card). The defauit vaiue
is 60 minutes. but can be changed when the cataloged procedure
is installed.

Specifies the amount of memory in which to run the binder job
step (using the REGION option on a JCL EXEC card). The greater
the memory. the better the binder’'s performance. The default
value is 8196Kb, but this value may be changed when you install
the cataloged procedure.

indicates the data-set name of the partitioned data set that
contains the binder moduie, MVSBINDE. The default is the ioad
library-ADA.LOADLIB but you can change this defauit when you
install the cataloged procedure.

Specifies the UNIT for permanent data set ailocations. The
default is SYSALLDA, but this name can be changed depending on
your site’s conventions.

Identifies the output class for the binder output. The defauit is

“*=_ but this defauit can be changed, depending on your site’s
conventions.

Indicates the compiiation unit to be bound. You must specify this
variable.

Indicates the high-level qualifier level qualifier required to build
data set names used by the binder. You must specify this
variable. It is common to set it to your TSO logon identifier.

Specifies the UNIT for temporary data set allocations. The defauit
is VIO, but this default can be changed depending on your site’s
conventions.

Linking Programs that Call Non-Ada Routines

Binder Options for Use with ADAB Cataloged Procedure

This section defines the standard options for the BNOPRM symbolic substitution

variable. This variable. found in STEP2 of the ADAB cataloged procedure.

specifies options to the binder in the PARM field

The binder options have the following syntax:

'

*o————emgp t LONS l_

(~-modtfters——)—

i

Table 3-1 lists the valid options, their modifiers, and defauits. Descriptions of
the options appear on the pages shown.

Table 3-1. Binder Options for JCL

Option Defauit Function Page
ASM NOASM Assembly listing. 2-9
[NOGEN Suppress listing of expanded generics.
| NOSYS) Suppress listing of system-supplied generics.
DONAMES Specify the Data Description (OD) names that identify 2-12
old_name = new_name the data sets used by the compiler and binder. It
must include at least one modifier.
DEBUG NODEBUG Qutput information for debugging. 2-13
MAP NONAP Produce linkage map during binding. 2-17
TRACE NOTRACE Display diagnostic messages from the compiler. Only 2-19
for ugse in submitting probiems to IBM.

Linking Programs that Call Non-Ada Routines

Pragma interface enables Ada compilation units to czll non-Ada routines. The

following sections show you how to compile and link programs that take

advantage of this feature.

User-written routines do not reside in the Ada library system. The only method
avsilable to connect non-Ada roulines with the Ada routines that call them is to

load them under VM/CMS ar link-edit them under MVS A call to 3 non-Ada
routine resuits in the generation of an external reference. This external

reference is unresoived following normal ADA processing. You must take special
steps in order o resolve virtual address constants {0 non-Ada routines.

Chapter 3. Binding and Linking an Ada Program 3-5

Linking Programs that Call Non-Ada Routines

Under VM/CMS

The following table explains the data sets used in calling non-Ada routines.

Table 3-2. VMICMS Files Used in Caliing Non-Ada Routines

File Description

TEST ADA A File containing source for the main program.

TEST Compilation umt name.

TEST TEXT A File containing the object code of the Ada routines.

ROUTINE TEXT A File containing the object code of the non-Ada routines.

The following example shows the correct procedure for compiling and linking

ADA TEST (MAIN NORUN
LOAD TEST ROUTINES
GENMOD TEST

The ADA command creates the object file TEST TEXT A The LOAD loads the
object files TEST TEXT and ROUTINES TEXT into virtual storage and establishes the
proper linkages between them. The order in the LOAD is important. The Ada
module must go first. The GENMOD command uses the two object files to create
a load module with the name TEST MODULE A.

You may need to precede the commands in this example with a GLOBAL TXTLIB
command to resoive any missing external references from the LOAD command.
The need for its use depends on how you load the non-Ada routines. For more
information on the GLOBAL command, see the Virtual Machine/System Product
CMS Command and Macro Relerence.

Under MVS
Non-Ada routines do not reside in the Ada library system. The only method
available to connect non-Ada routines with the Ada routines that call them is to
link-edit them. A cail to a non-Ada routine resuits in the generation of an
external reference. This external reference is unresolived following normai ADA
processing. You must take special steps in order {0 resoive virtual address
constants to non-Ada routines. This section explains those steps.

The following table expiains the data sets used in calling non-Ada routines.

Table 3-3 (Page 1| of 2). MVS Data Sets Used in Calling Non-Ada Routines

Oata Set Description

qualifier TEST.ADA Data set containing source for the main program,
whose compilation unit name is Test.

qualifier NONADA.OBJ Data set containing the object code of the non-Ada
routines.

qualifier.0BJ Partitioned data set containing the object code of the
Ada routines.

qualifier LOAD Partitioned data set containing the executable joad

modules; also called the “load library.”

There are two methods for compiling and linking an Ada program with non-Ada
routines. The first involves binding with NOGenerate, then linking the foreign

3-8 18M Adas370

Linking Programs that Call Non-Ada Routines

language code manually with the linkage editor. The second involves placing
the code in a partitioned data set (POS) such that the object goes into the object
library created by the Bind option. The following two examples show how to use

these methods.

Using the Linkage Editor
First compile the main program, using the NOGenerate option.
EX 'ADA.CLIST(ADA)' 'TEST.ADA (MAIN NOGENERATE'

This member contains one or more unresoived references to non-Ada code. The
following cail to the linkage editor resoives the unresoived external references
associated with those calls.

LINK ('USER1.NONADA.0BJ','USER1.0BJ(TEST)")
The TEST load library member is now fully linked and ready to execute.
Using a Partitioned Data Set
If you choose to use a partitioned data set. use the following steps:
1. Place the foreign language routine’s object code into a partitioned data set.

2. issue the TSO ALLOC command for a 0D name of SYSLIB and then associate
this with the PDS containing the non-Ada object code.

ALLOC 0O(SYSLIB) OA('USER1.NONADA.0BJ') SHR

3. Bind the main program (or compile and bind) without using the N0Generate
option. The LINK within ADA will refer to the SYSLIB allocation as it attempts

to resoive references to the non-Ada routines.

The TEST load library member is now fully linked to be executed.

For more information on LINK, see the LINK command in the iBM publication,
MVS/Extended Architecture TSO Extensions TSO Command Language Reference.

Chapter 3. Binding and Linking an Ada Program 3-7

Linking Programs that Call Non-Ada Routines

;!-8 18M Ada/370

APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwvise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147_483 648 .. 2_147_483_647;
.type SHORT_INTEGER is range -32_768 .. 32_767;

type FLOAT is digits 6 range -7.23701E+75 .. 7.23701E+75;
type LONG_FLOAT is digits 15 range -7.23700557733225E+75

«s 7.23700557733225E+75;
type DURATION is delta 2#1.0%#E-14 range -86400.0 .. 86400.0;

end STANDARD;

to specify the relative urgency of each MVS task created.

**PRAGMA ALLOCATION_DATA

(<access_type>,
<residence_mode>,
<allocation_duration>,
<subpool _number>,
<discrete user data>);

to associate MVS virtual storage attributes with an Ada access type.
*Note that PRAGMA INLINE is effective only when the optimizing option is selected at
compile time. If optimizing is not selected the pragma is ignored and a warning is issued.

**Note that PRAGMA OS_TASK and PRAGMA ALLOCATION _DATA are effective only
when compiling for an MVS target. Both pragmas require that an MVS runtime be present.

2. Implementation-Defined Attributes

2.1. Integer Type Attributes
Extended Image (Item, <Width>, <Base>, <Based>, <Space_IF _Positive>);
to return the image associated with Item as defined in Text_lO.Integer 10. The Text_IO

definition states that the value of Item is an integer literal with no underlines, no exponent,
no leading zeroes (but a single zero for the zero value), and a minus sign if negative.

Extended Value (Item);
to return the value associated with Item as defined in Text_lO.Integer 10. The Text 10
definition states that given a string, it reads an integer value from the beginning of “the
string. The value returned corresponds to the sequence input.

Extended_Width (<Base>, <Based>, <Space_IF Positive>);
to return the width-for a subtype specified.

2.2. Enumeration Type Attributes

Extended Image (Item, <Width>, <Uppercase>);
to return the image associated with Item as defined in Text 10.Enumeration 10. The
Text_IO definition states that given an enumeration literal, it will output the value of the
enumeration literal (either an identifier or a character literal). The character case

parameter is ignored for character literals.

Extended_Value (ltem);
to return the image associated with Item as defined in Text_lO.Enumeration 10. The
Text_1O definition states that it reads an enumeration value from the beginning of the given
st.nng and returns the value of the enumeration literal that corresponds to the sequence
input.

Extended Width;
to return the width for a specified subtype.

2.3. Floating Point Attributes
Extended_Image (Item, <Fore>, <Aft>, <Exp>, <Base>, <Based>);

to return the image associated with Item as defined in Text_IO.Float_IO. The Text IO
definition states that it outputs the value of the parameter ltem as a decimal literal with
the format defined by the other parameters. If the value is negative, a minus sign is
included in the integer part of the value of Item. If Exp is O, the integer part of the output
has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.
Extended_Value (Item);
to return the value associated with Item as defined in Text_lO.Float 10. The Text_IO

definition states that it skips any leading zeroes, then reads a plus or minus sign if present.
then reads the string according to the syntax of a real literal. The return value is that

which corresponds to the sequence input.

Extended Digits (<Base>);
to return the number of digits using base in the mantissa of model numbers of the specified
subtype.

2.4. Fixed Point Attributes
Extended_Image (Item, <Fore>, <Aft>, <Exp>, <Base>, <Based>);

to return the image associated with Item as defined in Text_lO.Fixed 10. The Text _I0
definition states that it outputs the value of the parameter Item as a decimal literal with
the format defined by the other parameters. If the value is negative, a minus sign is
included in the integer part of the value of Item. If Exp is O, the integer part of the output
has as many digits as are needed to represent the integer part of the value of Item or is zero
if the value of Item has no integer part.
Extended Value (Image);
to return the value associated with ltem as defined in Text_lO.Fixed 10. The Text 10

definition states that it skips any leading zeroes, reads a plus or minus sign if present, then
reads the string according to the syntax of a real literal. The return value is that which

corresponds to the sequence input.

Extended_Fore (<Base>, <Based>);
to return the minimum number of characters required for the integer part of the based
representation specified.

Extended Aft (<Base>, <Based>);
to return the minimum number of characters required for the fractional part of the based
representation specified.

3. Package SYSTEM
The current specification of package SYSTEM is provided below.

With Unchecked _Conversion;

PACKAGE System IS

- CUSTOMIZABLE VALUES

TYPE Name IS (MC68000, ANUYK44, IBM370);
System Name : CONSTANT name := IBM370;

Memory _Size : CONSTANT := (2 ** 24)-1;
Tick : CONSTANT := 1.0 / (10 ** 6);

— NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

Storage_Unit : CONSTANT := 8;

Min_Int : CONSTANT :=-(2 ** 31);

Max_Int : CONSTANT := (2 **31) - 1;

Max_Digits : CONSTANT := 15;

Max_Mantissa : CONSTANT := 31;

Fine_Delta : CONSTANT := 1.0 / (2 ** Max_Mantissa);

Subtype Priority IS Integer RANGE 0 .. 255;

— ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

Null_Address :-Constant Address := null;
type Address_Value is RANGE -(2**31) .. (2**31)-1;
Hex 80000000 : constant Address_Value := - 16#80000000%;

Hex 90000000 : constant Address_Value := - 16#70000000%;
Hex AO0000000 : constant Address Value := - 16600000004 ;

Hex:BOOOOOOO : constant Address:Value ;= - 16%50000000#;
Hex_C0000000 : constant Address_Value := - 16440000000%;
Hex DO000000O : constant Address_Value := - 16#30000000#;
Hex E0000000 : constant Address Value := - 16#20000000#;

Hex:FOOOOOOO : constant Address:Value := - 16#10000000#;

function Location is new Unchecked Conversion (Address_Value, Address);

function Label (Name: String) return Address;
pragma Interface (META, Label);

- CALL SUPPORT

type Subprogram_Value IS

record
Proc_addr : Address;
Parent_frame : Address;
end record;

Max_Object_Size : CONSTANT := Max_iInt;
Max Record _Count : CONSTANT := Max_Int;
Max Text Io _Count : CONSTANT := Max_Int-1;
Max Text Io Fleld CONSTANT := 1000;

private
type Memory is
record
null;
end record;

end SYSTEM;

4. Representation Clauses

This implementation supports address, length, enumeration, and record representation
clauses with the following exceptions:

Address clauses are not supported for package, for entry, for tasktype, for
subprograms.
Enumeration clauses are not supported for boolean representation clauses.

The size in bits of representation specified records is rounded up to the next highest multiple
of 8, meaning that the object of a representation specified record with 25 bits will actually occupy
32 bits.

Non-supported clauses are rejected at compile time.

. Implementation-Generated Names
There are no implementation-generated names denoting implementation-dependent
components. Names generated by the compiler shall not interfere with programmer-defined

6. Address Clause Expression Interpretation
Expressions that appear in Address clauses are interpreted as virtual memory addresses.

7. Unchecked Conversion Restrictions

Unchecked_Conversion is allowed except when the target data subtype is an unconstrained
array or record type If the size of the source and target are static and equal, the compiler will
perform a bitwise copy of data from the source object to the target object.

Where the sizes of source and target differ, the following rules will apply:

If the size of the source is greater than the size of the target, the high address bits will
be truncated in the conversion.

If the size of the source is less than the size of the target, the source will be moved into
the low address bits of the target.

The compiler will issue a warning when Unchecked_Conversion is instantiated with unequal
sizes for source and target subtype. Unchecked Conversion between objects of different or non-
static sizes will usually produce less efficient code and should be avoided, if possible.

8. Implementation-Dependent Characteristics of the I/O Packages

Sequential_lO, Direct_lO, and Text_IO are supported.

Low_Level 1O is not supported.

Unconstrained array types and unconstrained types with discriminants may not be
instantiated for 1/0. _

File names follow the conventions and restrictions of the target operating system.

In Text_IO, the type Field is defined as follows: subtype Field is integer range
0..1000;

In Text_IO, the type Count is defined as follows: type Count is range
0..2_147_483 646;

