- NAVAL POSTGRADUATE SCHOOL @
Monterey, California

AD-A246
IIIH’III!H’I’ llmll 'I"fiﬂll’l’lz Il :

THESIS =~ |

DESIGN OF AN INTELLIGENT
TUTORING SYSTEM SHELL
by
Robert E. Scurlock Jr.
September, 1991

Thesis Advisor: Yuh-jeng Lee

Approved for public release; distribution is unlimited.

92-05056

92 2 26 063 VT

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Approved for public release;
distribution is unlimited

) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

RITY 3. DISTRIBUTION/AVAILABILITY OF REFORT J

6. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (i applicable) Naval Postgraduate School

Naval Postgraduate School Cs

6c. ADDRESS (City, State, and ZIP Code) 70. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

ORGANIZATION " (if applicable)
8c. ADDRESS (City, State, and ZIP Code) 10, SOUNCE OF FUNDING NUMBERS _
PROGRAM |
ELEMENT NO. [NO. NO. ACCESSION NO.

1. TITLE (Include Security Classification)
DESIGN OF AN INTELLIGENT TUTORING SYSTEM SHELL(U)

Curioc O . JI.

J [T35. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) |
s Thesis ProM 08/89 70 00/91 | Scptember 1901 o O

¢ views expressed in this thesis are those of the author and do not reflect the official |
pohcy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Gmmmmmdnm:ymd:danﬁybyﬂockwmur)
FIELD GROUP SUB.GROUP Intelligent Tutoring System, Intelligent Training System, Intelligent

Computer Aided Instruction, Intelligent Tutoring System Shell

19. ABSTRACT (Cmmmmﬁnmwumulybybbdtmbor
Computer technology has brought about numerous changes in the availability of educational media, especially the

Intelligent Tutoring System (ITS). Since the development of an ITS is such an interdisciplinary task, the instructor
needs assistance in developing these educational aides. An ITS shell, or authoring system, is the tool that will enable
ITSs to make the transition from research arena and into the educational environment.

The conceptual model of the ITS shell proposed in this thesis uses a layered approach to accessing the different
modules of the ITS. The components, or subcomponents, of each module consist of either existing programs, or are
selectable options developed by area experts. These options should allow the instructor to develop an ITS concen-
trating on the material being presented and on the method of interaction the student has with that material. The em-
phasis on the construction of these components is portability, modularity, and flexibility.

The C Language Integrated Production System (CLIPS) is used as the inferencing and control mechanism. The
design methodology proposed is the Object Oriented Programming approach. The emphasis of this thesis is on inter-
face tools and presentation systems that allow for linking and integration into the ITS shell proposed.

; CT :
[} UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS| UNCLASSIFIED
AC 22b PHONE [include Area Code) |
uh-jeng (405%4?35'5 1
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE _

i

Approved for public release; distribution is unlimited.
Design of An Intelligent
Tutoring System Shell
by
Robert E. Scurlock Jr
Captain, United States Army

B.S., United States Military Academy, 1982

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: ?c/l«jé <’W1

Robert Edward Scurlock Jr.

Approved by: _/%/%V é"z”—

Yuh-jeng Lee, Thesis Advisor

David Pratt, Second Reader

Rt WIK..

Robert B. McGhee, Chairman
Department of Computer Science

ii

ABSTRACT

Computer technology has brought about numerous changes in the availability of
educational media, especially the Intelligent Tutoring System (ITS). Since the development
of an ITS is such an interdisciplinary task, the instructor needs assistance in developing
these educational aides. An ITS shell, or authoring system, is the tool that will enable ITSs
to make the transition from the research arena and into the educational environment.

The conceptual model of the ITS shell proposed in this thesis uses a layered
approach to accessing the different modules of the ITS. The components, or
subcomponents, of each module consist of either existing programs, or are selectable options
developed by area experts. These options should allow the instructor to develop an ITS
concentrating on the material being presented and on the method of interaction the student
has with that material. The emphasis on the construction of these components is portability,
modularity, and flexibility.

The C Language Integrated Production System (CLIPS) is used as the inferencing
and control mechanism. The design methodology proposed is the Object Oriented
Programming approach. The emphasis of this thesis is on interface tools and presentation

systems that allow for linking and integration into the ITS shell proposed.

NIIS GRAst

L_‘Oﬁis lon For

Tl

DTIC 7ry O
Unsnne: wang
Just: ';c_',ioL__J
————
—
Pvo_.___ !
—
LICSE ST S o
'R e)
[AT T "3
. B , .. . * P—
o1 wilep
»iat | Rl

TABLE OF CONTENTS

L INTRODUCTION ooee e et 1
A. BACKGROUNDiiee e e 1
B. THEPROBLEMouoninenaneaa e, 2
C. OBIECTIVESttt 4
D. ORGANIZATIONooneneiaeaaaeen.. 5
I. OVERVIEW OF INTELLIGENT TUTORING SYSTEMS 8
A. INTRODUCTION\eutnieenen e, 8
B. INTELLIGENT TUTORING SYSTEMSuvveenenennnn.. 9
C. THEEXPERTMODULEcuouninenenananannnnnnn, 11
D. THE STUDENT DIAGNOSTIC MODULE 14
E. THE INSTRUCTIONAL MODULEoeueenneannnnn.. 15
F. THE INTELLIGENT INTERFACEoouuinenennnn .. 17
II. AN EXAMINATION OF TUTORING SYSTEMSc....... 18
A. INTRODUCTIONt 18

B. A MODEL-BASED GENERIC TRAINING SYSTEM

v

PAYLOAD-ASSIST MODULE DEPLOYS/INTELLIGENT

COMPUTER-AIDED TRAINING SYSTEM 20

D. CLIPSITS ... ittt e i 21

E. A MACINTOSHITS THATUSESCLIPS 23

F. ANEXAMPLEOFAHARD-CODEDITS 24

IV. DEVELOPING ASHELL ittt 26
A. INTRODUCTIONttt 26

B. THE OBJECT ORIENTED PROGRAMMING PARADIGM 27

C. PROGRAMS THAT CALL OTHER PROGRAMS 28

D. BLACKBOARD SYSTEMSttt 30

E. CLIPSASTHE CONTROLELEMENT 31

V. THE CONCEPTUAL MODEL OF THE SYSTEM ARCHITECTURE - 33
A. INTRODUCTIONiiiiiiiiiiittittneennnanannnens 33

B. SELECTINGANINTERFACEc.ciiiiiiinnnnn. 36

1. Windowing Tools iiiimiiiiiinnnns 37

2. Toolbook, by Asymetrixciiiinnnn. 38

3. ObjectVisionasanInterface 47

C. THE EXPERT MODULE AND DOMAIN KNOWLEDGE 47

1. PresentationTools 51

D. THE STUDENT DIAGNOSTICMODULE 52

E. THE INSTRUCTIONALMODULEccoiiuvnunnn. 61
F. SUMMARY ... ittt it et iiee e 62
VL CONCLUSIONS ittt it in e eiianeanann 63
A. LESSONSLEARNEDciiiiiiueennennnennennnns 63
B. ACCOMPLISHMENTSc.iititiniiiiiiiinnnanannnn 64
C. FUTURE WORKS AND MODIFICATIONS 65
LISTOFREFERENCES0iitiintiiitiintinnteannnnnennnns 67
BIBLIOGRAPHY ittt ittt tiaianeeeiaranennnnn, 70
INITIAL DISTRIBUTION LISTttt iiiiiiiiieiienennnnn. 72

I. INTRODUCTION

A. BACKGROUND

Many organizations are struggling to keep up with current technology and high
personnel turnover rates. This is especially true for the military where continuity of skills
and purpose are paramount. Additionally, the high cost, the destructive nature and
potential safety risks presented by equipment with which military personnel are required
to maintain proficiency, as well as administrative and routine tasks, highlights the need
for alternate training methods. The military has become increasingly more dependent on
simulations and simulators, but there is an additional resource that has yet to be fully
exploited. That resource is the Intelligent Tutoring/Training System (ITS).

ITSs provide an innovative method to train and educate personnel by capitalizing
on computer technology. For many years, Computer Aided Instruction (CAI) was nothing
more than an electronic "page turner” that followed the same sequence of instruction no
matter what the student/user’s level of expertise. With the many advances in the field of
Artificial Intelligence (AI), the "intelligent” component was added to form what has
become known as Intelligent Computer Aided Instruction (ICAI), Intelligent Training
Systems, or more commonly Intelligent Tutoring Systems. Moreover, ITSs have been
defined as "...that field concerned with the application of artificial intelligence principles
to the development of instructional programs.” (Al Exchange, 1989, p. 6) In section IL.B,

we will review the design of ITSs and determine what makes them intelligent.

B. THE PROBLEM

ITSs have been developed using a variety of techniques. There is a great deal of
research going on in this area to provide reliable, workable products that can be
implemented in a wide range of different environments. Some major obstacles that delay
practical applications of the technology have been identified. First, the majority of
existing ITSs require large software development teams and special hardware to
implement it. After this large investment of manpower and resources produced a finished
product, it was limited to the single domain it was developed for and restricted to the
complex platform it was implemented on. These research platforms are usually cost-
prohibitive for most educational communities.

Second, most teachers have little or no experience with computers at all, much less
the programming ability to develop a complex ITS program. An interesting fact was
shown by Cable News Network (CNN) on a 7 June 1991 quiz. The results of a
nationwide survey showed that fifty percent of all teachers had never used a computer.
This survey showed that a large number of our educators have little or no computer
experience. Those instructors who want to incorporate computer technology into their
educational scheme most likely do not have the programming knowledge or the extensive
amount of time to develop an ITS on their own. They need assistance in developing the
advanced form of tutoring provided by an ITS. Therefore, by providing an ITS software

development tool or an ITS shell, the instructor who wishes to incorporate computer

technology as an educational aide is much more likely to be able to incorporate these
valuable tools in their teaching strategy.

Additionally, the design and development of an ITS incorporates the expertise of
many research areas. To build an effective ITS requires input from computer scientists,
psychologists, domain experts, educators, instructional designers, knowledge acquisition
personnel, human factors engineers and cognitive scientists. Beverly Woolf argues,
however, that building an ITS is not an application area where off-the-shelf material
produced by other researchers can be used to build an ITS. (Woolf, 1988, p. 39) Perhaps
not all ITSs are best produced in this manner, but an argument of this thesis is that it is
possible to use properly tailored, generic components to construct an ITS. The time
needed to produce an ITS could be greatly reduced if the different components of the ITS
could be developed and coded by the area expert for that component. By providing an
ITS shell and authoring tools, the instructor could take maximum advantage of existing
technology and existing programs written to perform the required functions of the ITS
components. This will allow the teacher to concentrate on the subject material without
worrying about the programming aspect of the task.

Not all subject domains can be optimally implemented with a generic tool.
However, the initial development of a working product can be optimized through a
coordinated effort between the instructor and the programmer if the situation warrants.
The more complex the domain and the stricter the hardware constraints, the more the
programmer must be involved. The important point is to provide the instructor with the

proper tools to produce his product.

One of the most difficult bottlenecks to overcome in the implementation of a new
technology is the transfer of the engineering and production process out of the research
arena and into the mainstream of industry (Pirolli, 1991, p. 107). In order for ITSs to
make this transition from a research tool into the instructional environment, teachers will
need the tools to create their own ITS. An ITS shell is the best way to help make this

transition.

C. OBJECTIVES

In order to help make ITSs more accessible to and modifiable by instructors, the
use of existing interface tools, presentation tools, and expert system shells can be
incorporated into an ITS shell. The intent of this thesis is to provide a conceptual model
of an ITS shell, and to demonstrate, through examples, how existing applications can be
used to construct the various components of this shell. These components should stress
modularity and portability. The use of the C Language Integrated Production System
(CLIPS) is used as the central control element between components.

The main emphases of integration with existing systems are on the interaction
between the student and the system and on the presentation of the subject material. The
components should be developed by area experts. Once developed, a programmer will
code the components for selection by the instructor. Most of these components will be
briefly described and are left for examination in future works. The emphasis of these
modular components should stress domain independence and should be configured to

allow for instantiation in a domain and in a situationally dependent manner. This thesis

. will take an in-depth look at the overall organization of the conceptual model,

concentrating on the integration of the interface, the presentation tools, and the expert

system control mechanism.

D. ORGANIZATION

Before going into detail on existing ITS work or into a conceptual model of an ITS
shell, it is important to explain what is meant by an "intelligent" system and to explore
the major components of an ITS. Although some in the field may use different
terminology for these components, there appears to be general acceptance of what each
module should contribute to the ITS. Figure 1 (Burns and Capps, 1988, p. 3) shows a
fundamental ITS model that demonstrates how the student, the expert knowledge, and the
interaction between the two, comprise the ITS. The four basic components of an ITS are
an expert module, a student diagnostic module, an instructional module, and an intelligent
interface. Also, since the development of ITS is such an interdisciplinary undertaking,
the dimensions of communication, instruction, and expertise must be considered. (Burns
and Parlett, 1991, pp. 2-3)

Chapter II gives a brief explanation of what constitutes an intelligent system and
a brief overview of these basic modules of an ITS are given. Related works of other
researchers that contribmed to the formulation of the proposals and examinations of this
thesis are presented in Chapter ITI. Chapter IV looks at the considerations of developing
a shell. Chapter V details the conceptual model of the ITS shell and provides examples

of the integration of system components. The conclusions are presented in Chapter VI

EXPERT

STUDENT

=
N\

b
r

N

Figure 1 Fundamental ITS Model

. detailing lessons learned and the future directions the development of this ITS shell could

take.

IL. OVERVIEW OF INTELLIGENT TUTORING SYSTEMS

A. INTRODUCTION

An intelligent system is one that is more flexible and adaptive than the traditional
sequential computer program in that it is able to draw on knowledge and the power of
association and inference to steer the running program toward useful results. To better
understand this definition, it is necessary to define what data, information, and knowledge
are. Data can be thought of as any value or entity that is available to the system for
processing. Information is data that has been selected and organized for processing.
Knowledge is information that is structured in such a way to bring out and exploit the
relationships among the pieces of data. (Bielawski, 1991, p. 4) It is this knowledge that
we wish to organize and present to the student in the most effective way in order to
achieve our educational objectives.

First, an intelligent system should have the ability to use knowledge to complete a
given task or to solve a problem. Second, the system should be able to exploit the
powers of association and inference when trying to solve complex problems that resemble
the real world. (Bielawski, 1991, p. 5) With respect to an ITS, the system should know
where the individual student is in his current understanding of the instruction and how to
progress.

There are certain characteristics we would expect an intelligent system to adhere to,

including behaving logically, being responsive and adaptive, providing a nonlinear method

to navigate through the program and the knowledge domain, being able to use incomplete
information by using existing information effectively, and most importantly, being user-

friendly and be highly interactive (Bielawski, 1991, p. 6).

B. INTELLIGENT TUTORING SYSTEMS

ITSs have developed over the years, from the early 1970’s to the present. Figure
2 (Redfield and Steuck, 1991, p. 280) shows what roles the different components played
in the composition of four evolving ITS implementation theories. The control element
was absorbed into the other components after the initial theory of 1973. The architectures
remained basically the same with the shift being to the breaking up of the modules into
subcomponents. (Redfield and Steuck, 1991, p. 280) These major components provide
the basis for examining the functions required of the module and finding the best tool to
achieve that function.

ITSs should be viewed as an additioﬁal media that the instructor can use to further
a student’s understanding of a particular domain. They should provide students with
instruction that is tailored to the individual. This instruction should be conducted
interactively with the student so that the student feels that the computer, or the ITS, is
there to help her learn the material, and not just another presentation tool to flood her
with more information. Some of the possible communication styles being examined to
achieve this computer-student partnership in the leaming process include didactic
explanation, guided discovery learning, coaching or coaxing, and critiquing (Woolf and

others, 1991, p. 74). If the system cannot help the student understand the material, they

sejn.

eouspind TOHINOD
yedxe vedxe eBpeymouy
upwop ufewop uppwop NIVWNOQ
Aioispy
yuepn)s
lepow - lepow enfofejeo Kosyy
Juepnis juepnis Bnq juepnis IN3ANLS
lolaiIs|ujpe
Buiyoee)
uedxe JoysieueB eBpejmouy| suopeledo
[BUOjONJISU| Bujyoee} Bupoim Bujyose} H3IHOV3L
eoBlel] eoBleu|
webieiu Jesn 3JOV4H3LNI
6861 861 c861| €61 S310H

Figure 2 Evolution of ITS Components and Their Roles

10

. could just as easily read a book or watch a movie about the topic. An ITS should
"...provide a high-bandwidth method of user/system communication, infer student needs
to redirect tutoring effort (based on a comparison of student performance with an internal
model of domain expertise), and maintain separate knowledge bases for domain (subject
matter) knowledge and pedagogical knowledge." (Al Exchange, 1989, p. 6)

This complex teaching strategy is incorporated into an ITS through the interaction
of four main modules. Figure 3 (Burns and Parlett, 1991, p. 2) gives a simple anatomy
of an ITS that was used to help classify the different areas for research. It is important
to take a brief look at what each module is supposed to contribute to the instructional
process, without going into great depth of how the module should be implemented. There
are many articles and publications dedicated to just that purpose, and it is beyond the
scope of this thesis to attempt to explore all the differing views. The next few sections
will provide the foundational understanding of what an ITS should contain, although the
complexity and the depth of incorporation will vary depending on system constraints and

system goals.

C. THE EXPERT MODULE

The expert module contains the domain knowledge for the system (Burns and
Capps, 1988, p. 2). It is the most difficult to develop of all the components. It is also
the most critical, since a system is only as good and credible as the knowledge used by
the system. The major bottleneck of most expert systems is knowledge acquisition and

knowledge representation (Anderson, 1988, p. 22). The same is true for ITSs. There are

11

JOV4H41NI
ANIOITISLNI

| 13A0NW
IN3ANLS

1H3dX3
TVNOILONHLSNI

D—=2DJd<< —02

Figure 3 Basic ITS Interaction

12

. many commercial tools on the market that have greatly assisted in the reduction of this
stumbling block.

Although it is possible for a knowledge engineer to laboriously proceed through the
knowledge acquisition process and spend numerous man-years producing a knowledge
base for a single domain, it would be much more productive to provide the instructor with
the tools to encode the knowledge himself. An even better solution would be to provide
the instructor with encoded knowledge and allow him to augment that knowledge base
with presentation material, such as hypermedia products. One such attempt at encoding
a large knowledge base is the Cyc project. The Cyc project is an attempt to construct a
knowledge base, consisting of approximately 200 million rules, that would cover the
spectrum of human consensus knowledge (Lenat, 1990, p. 30). The reuse of existing
knowledge bases is an area in Al that has been hotly debated and researched over the past
decade or so.

Knowledge representation is a key issue in producing this module. It is this
representation that determines the methods of presentation and the instructional stratégies
available for use in the ITS. Procedural knowledge is usually coded as rules and it
explains how to perform a given task. Declarative knowledge is usually coded as facts
and it states a fact about an object or topic. (Burns and Capps, 1988, p. 5) A third type
of representation, and probably the most difficult, is qualitative knowledge. "...qualitative
knowledge is the causal understanding that allows a human to reason about behavior using
mental models of systems.” (Burns and Capps, 1988, p. 5) The concentration in this

thesis will be on procedural and declarative knowledge representation schemes.

13

The instructor need not be concerned with understanding the different types of
knowledge representations available to him. The presentation tools provided in the shell
should account for the selection of the appropriate representation method. As new object
oriented presentation tools have become available, the differentiation between
representations appears to have blurred. Hypertext and hypermedia tools now use pointers
to presentation objects. These objects can be text, graphics, video, audio, or interactive

voice depending on the node pointed to. (Bielawski, 1991, pp. 40-51)

D. THE STUDENT DIAGNOSTIC MODULE

The student diagnostic module represents the student’s current state of
understanding about the domain and uses the individualized model to tailor the instruction
to the student’s needs. The student model is a data structure describing the student’s
knowledge, and the diagnosis is a process that manipulates that data. (VanLehn, 1988, p.
55) There are many ways to determine the student’s entry level knowledge and to update
that model as the student progresses through the instruction.

The most common uses of the student model are to provide for advancement, to
determine when to offer unsolicited advice, for problem selection and presentation, and
for adapting explanations (VanLehn, 1988, pp. 56-57). This model can be in the form
of a data base which stores pertinent facts about the individual student. As the fact base
is updated by the student’s progression, evaluations, or other criteria outlined by the
instructor or the programmer, the instructional material and teaching strategies can be

adjusted by rule firings controlled by the inference engine.

14

E. THE INSTRUCTIONAL MODULE

The instructional module is responsible for presenting the material to be taught in
a logical manner in keeping with the student’s level of progression. It also determines
which teaching strategy to employ for each individual student at the various levels of
progression through the curriculum. In other words, the primary function of this module
is to provide the proper level of instruction, using the teaching strategy that is deemed
correct for each student, at the proper point in the program of instruction. (O’Neil and
others, 1991, pp. 69-83)

Cognitive scientists and behavioral psychologists have worked for many years to
determine the optimal way to assist students through the learning process. In (Bower and
Hilgard, 1981, p. 566) B. F. Skinner, a famous behavioral psychologist, proposed that a
good tutor:

1. begins where the student is, and does not insist on moving beyond what the
student can comprehend.

2. moves at a rate that is consistent with the ability of a student to learn.

3. does not permit false answers to remain uncorrected

4. does not lecture; instead, by his hints and questioning he helps the student to

find and state answers for himself.

An interesting example of an instructional design methodology using a frame
hierarchy is shown in Figure 4 (Woolf, 1991, p. 133). This designed network uses

knowledge unit frames to build the relationships between topics, but does not restrict the

way a student could traverse this network. The elements of this network describe an

15

| 3ZIVWANS
3SONOVIQ 1SWVHINQOD

31VAILON

31VIA3IN3Y HowaL
STdNYXT
S3SNOdS3H nun spoyiew jiun
SHIMSNVY eBpeimouy-siw eBpemou
SHOHSND uojideosuoosiw
e)sinbese.d SONG
$3SNOASTH
SNV SHUIMSNY
S3ISNOJS3H SNOLLS3ND

16

SHIMSNY
SNOLLS3ND

STdNVX3
$3SNOJdS3H

SNOLLS3ND

Figure 4 Frame Representation of Instruction

. attempt at representing and reasoning about tutoring primitives. (Woolf, 1991, pp. 128-
136) This hierarchy lends itself well to an object oriented approach and demonstrates one

of many methods of controlling a tutoring session.

F. THE INTELLIGENT INTERFACE

The interface is the key element in forming a interactive, flexible learning tool. The
interface is the tool that allows the student to interact with and explore the expert
knowledge in the ITS. It must be kept simple and it’s use must be intuitive to the
student. A good evaluation is that an ideal interface for an ITS should present "...a
conceptual vocabulary, tied to standard notational conventions, with metaphors, pictures,
and labels that tie the vocabulary elements to applicable situations in the world.” (Bonar,
1991, p. 46) The closer the simulation or instruction is controlled in the ITS, to the way
it would be controlled in the real world, the more effective the system will be. The
interface should also be designed to minimize the student’s interaction with the computer
itself, and allow the student to concentrate on the instructional material.

There are tradeoffs in the interface design, too. The closer the interface is linked
to knowledge base the more system dependent the ITS becomes. Also, the more elaborate
the interface, the greater the memory requirements and the more demanding the system

will be on the hardware to produce a real-time simulation.

17

III. AN EXAMINATION OF TUTORING SYSTEMS

A. INTRODUCTION

A great deal of research effort is being conducted trying to realize the full potential
and optimism that has surrounded ITSs. Many of these projects are restricted to a limited
domain‘ and specialized machines. Much can be learned from the contributions of these
projects, but the main focus of this thesis is to produce an ITS shell design that is not
proprictary and that is highly portable, flexible and easily upgraded. The expert system
shell that provides this flexibility is CLIPS.

Many research efforts have advanced the current state of design and development
of ITSs. It is important to look at a very small sample of these works to show what
influenced the design ideas discussed in the next chapter. Importance was placed on
models that provide the most flexibility, portability, and the best integration with other
languages and existing applications. Having stated above the selection of CLIPS as the
expert system shell, much of the research effort went into gaining a better understanding

of the capabilities of CLIPS and examining its use in a variety of applications.

B. A MODEL-BASED GENERIC TRAINING SYSTEM
The first example is a model-based ITS for a Generic Training System (GTS) for
industrial use. Figure 5 (Inui and others, 1989, p. 60) shows the architecture of this

system. This system uses the tools in expert systems that handles knowledge as data so

18

Course Development Layer

M [[o

ITS LAYER

Figure 5 General Training System Architecture

19

. it can be completely separated from the reasoning system, making it easy to replace
knowledge. The knowledge of the specific domain is separated from the training methods
by using rule bases, frames and object oriented programming language construction. (Inui
and others, 1989, p. 66)

The GTS uses FRANZ LISP, OPSS5, Package for Efficient Access to
Representations in LISP (PEARL) and Flavors programming languages and tools to
implement the various layers. Although these are very powerful tools and the structure
appears very sound, this architecture is limited to high-end workstations for
implementation. Many of the basic ideas of this model were used to form the basis of
the generic shell describe in later chapters. The tools examined for the implementation

of this shell are quite different, however.

C. PAYLOAD-ASSIST MODULE DEPLOYS/INTELLIGENT COMPUTER-
AIDED TRAINING SYSTEM

The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT)
system is an ITS that was developed on a LISP machine and transferred to a UNIX
workstation. The initial intent was to translate the LISP code and Automated Reasoning
Tool (ART) rule base into C and CLIPS for better portability and availability of hardware
and software platforms that the system could run on. The secondary goal was to develop
a generic architecture and general purpose development environment that could be used

to produce other ICATs more rapidly. (Hua, 1990, p. 69)

20

The first objective was achieved as the PD/ICAT was re-coded to operate on a
UNIX workstation with an X Window interface. The general architecture developed is
as shown in Figure 6 (Hua, 1990, p. 70). The goal of producing a general purpose ICAT
development environment was not achieved. The major stumbling block, as is the case
in most expert systems or ITSs, was in knowledge acquisition and knowledge
represcqtation. (Hua, 1990. p. 74)

This system proposed a different architecture but the modules performed the same
basic functions as the architecture described in Chapter II. The idea of using a
blackboard to interface between modules and the user provided the greatest contribution

to the model explained in Chapter IV.

D. CLIPSITS

The CLIPS ITS is an ITS that was developed solely using CLIPS 4.3. It is strictly
text based and was developed to assist users in learning the basics of the CLIPS expert
system authoring tool. CLIPS ITS demonstrates a simple approach to developing an ITS
over a limited domain and the use of modular design of material being presented to
optimize the use of limited memory space. The system is currently configured for use
on a PC only. In order to work on other platforms, minor changes in the system calls and
the interface used would have to be made. It incorporates a very limited student model
and teaching strategy.

The major contribution of this system is to demonstrate the feasibility of coding any

portion of an ITS in CLIPS and the use of modular presentation material. It also provides

21

DOMAIN
EXPERT

USER

TRAINING
SCENARIO

GENERATOR

INTERFACE
TRAINING
BLACKBOARD | SESSION
MANAGER
TRAINEE
MODEL

General ICAT Architecture

Figure 6 General ICAT Architecture

22

. a good example of a basic student model using a CLIPS fact base. The use of CLIPS as
the controlling agent for all components of the system is expanded as the controller for

the system proposed in Chapter IV.

E. A MACINTOSH ITS THAT USES CLIPS

An ITS using CLIPS that was developed for the Macintosh using HyperCLIPS
demonstrates the versatility of CLIPS on different platforms. The system effectively
demonstrated how to pass control back and forth between the HyperCard interface and
CLIPS. HyperCLIPS combines HyperCard, from Apple Computer, with CLIPS.
HyperCard is a popular hypertext system which is used to build user interfaces to
databases and other applications. The Map Symbol Recognition Tutor (MSRT), is a
system used to instruct students on the skills of map reading. It was developed more to
show the feasibility of building a flexible, easily adaptable ITS incorporating CLIPS with
the graphical interface building capability of HyperCard. (Hill and Pickering, 1990, pp.
62-68)

A useful experiment to demonstrate the true flexibility of MSRT would be to
transfer the CLIPS components to a PC or a UNIX system and create another interface
for the given system, to determine the reusability of the domain knowledge being taught.
For example, transporting the ITS to a PC and using Asymetrix ToolBook as the
interface. This system demonstrates the ease of integration of a system with CLIPS and

the system dependency created by the user interface.

23

. F. AN EXAMPLE OF A HARD-CODED ITS

An Aircraft Recognition Tutor (ART) was developed using the Object Oriented
Programming (OOP) paradigm. Figure 7 (Campbell, 1990, p. 34) shows the hierarchical
structure of ART. ART shows how effective the OOP paradigm can be in implementing
a system on a baseline PC-AT compatible 80286 machine with limited hardware and
software requirements. The language used in the development was Turbo Pascal 5.5
which restricts portability of this system. The object oriented design, howevér provided
great flexibility in modifying the system to be used to train students over other similar
domains. (Campbell, 1990)

ART lacked the incorporation of an inference engine and had limited application
of a student model. By using a procedural language alone, the system was unable to
incorporate some of the more advanced approaches to implementing the different
components of the ITS architecture. It also limited the incorporation of advanced tools
that have been developed since ART was produced. ART is a good example, though, of
a working product in the field using very limited hardware and software support. |

In the experimentation phase of this thesis, a number of the instructional sets
presented in ART were created using an existing presentation tool. The topics were
presented after a rule in CLIPS was fired. The intent was to show the feasibility of
creating modular components of the topics to be presented and controlling them with

CLIPS.

24

nun nun nn
dieH sBojgig yeJoly
uwn Hun nn uwn wn
N ® ewen snuep SUBeS juepnis 01Nt
we.iboid weiboid weiboid
jeisuiun Join| lfeisuj

AHOHVH3IH NYHOOUHd

Figure 7 Aircraft Recognition Tutor Hierarchy

25

IV. DEVELOPING A SHELL

A. INTRODUCTION

The main objective in the development of a generic ITS shell is to remove the
burden of integration and development of the system from the educator. The goal is to
allow the educator to concentrate on the subject material to present and the methods of
interaction that he wishes to choose. To achieve this goal, the area experts would develop
the code for specific components of each module and the programmer would either
provide the resources to cbnduct the linking of these components or he would handle this
linking process himself.

The shell should provide the instructor with the necessary tools, for his individual
computing environment, to select and modify components for the necessary modules of
the ITS. To achieve this goal the shell must have a modular design and provide for
incremental development of the system. This design should also be geared toward a high
level of portability to allow for reuse of individual components on other platforms or in
other systems.

Many tools that would provide for this type of modularity and integration are either
new or are still in the research stages. Some of the considerations of methodologies to
be explored and systems that could possibly be used will be discussed in later sections.
The use of an object oriented programming approach, the connection of existing

applications, and the use of blackboard systems are considerations to achieve these goals.

26

. Also, the expert system shell that provides the goals of portability and easy of integration
is CLIPS.

B. THE OBJECT ORIENTED PROGRAMMING PARADIGM

Object oriented programming (OOP) is a relatively new approach that is geared at
more closely modeling the real world at a high level of abstraction. It allows the
programmer to describe objects and their real world behaviors rather than defining data
formats and procedures and subroutines to manipulate that data. (Elliot, 1990, p. 20) A
very general definition of object orientation is “...the software modeling and development
(engineering) disciplines that make it easy to construct complex systems from individual
components.” (Khoshafian and Abnous, 1991, p. 6) Since there have been many books
and articles written attempting to explain what OOP is and how it works, the
concentration in this section is how it is suited for constructing a shell.

There are five features that are generally accepted features of OOP languages. The
first feature is inheritance. A class is a "..template which describes the common
characteristics or attributes of objects.” (Giarrantano, 1991, p. 4) Classes are arranged in
a hierarchy which allows classes below, the more specific classes, to inherit attributes and
message handlers from the classes above, the more general classes. This allows the
programmer to construct reusable code through the use of inheritance. (Giarrantano, 1991,
Pp- 3-5)

Another benefit is encapsulation of data within an object. Encapsulation is the

protection of the attributes and message handlers that define the given object. The

27

. attributes cannot normally be changed or affected unless a message is specifically sent to
that given object. This helps eliminate side-effects. (Giarrantano, 1991, pp. 3-5)

The other three features are abstraction, polymorphism, and dynamic binding.
Abstraction is the use of an object to "...describe a real-world object or system...." that
is being modeled (Giarrantano, 1991, pp. 4-5). Polymorphism is “...the ability of different
types of objects to respond differently to the same message type...." (Giarrantano, 1991,
pp- 86-87) Dynamic binding is the ability to assign the object reference, or name to
different objects at run-time. This allows flexibility in programming since the exact target
object may not be known in advance. (Giarrantano, 1991, pp. 86-92)

These definitions and features are only iﬂtended to demonstrate the power of OOP.
OOP is being called the programming methodology of the 1990s because it provides a
| better way for:

1. Modeling the real world as close to a user’s perspective as possible.
g. Interacting easily with a computational environment, using familiar metaphors.

. Constructing reusable software components and easily extensible libraries of
software modaules. :

4. Easily modifying and extending implementations of components without havin
to recode everything from scratch. (Khoshafian and Abnous, 1991, p. 1)
These benefits of OOP are key elements needed to provide the modular, portable

components of the ITS shell described in Chapter V.

C. PROGRAMS THAT CALL OTHER PROGRAMS
Different programs perform specialized functions that can uniquely perform the
required function of a component, or subcomponent, of a module in the ITS shell. In

order to integrate these different programs into the shell, they must be able to interact

28

. with one another. This means a program must be able to pass information to another
program, temporarily relinquishing control to it while it performs the required task. Once
completed, control must revert to the next required program to continue the instructional
process.

CLIPS allows for external calls to other programs. This ability was successfully
tested as part of this thesis to call presentation programs. The linking of programs can
be done either by these external calls, or CLIPS allows for embedding a program within
another. These considerations are system dependent, as resource requirements will
determine the feasibility of the method. Memory constraints and processing time required
to transfer control are prﬁne considerations. Tools are available to allow for connecting
programs in a multitasking environment, too.

One such tool was developed by the Microsoft Corporation. Dynamic data
exchange (DDE) is a Microsoft Windows protocol that allows applications to continually
share information between other running applications (Borland, 1991, pp. 192-193). The
concept can be effectively compared to passing information between components bf a
shell by placing information to be processed by one component onto a clipboard, and
calling the other component to process that data. Once the required action is complete,
control is returned to the controlling element, which invokes the next required application
or component.

DDE is a new protocol for linking applications on a PC under Microsoft Windows,
so many new applications are in development. One example of applications linking using

DDE, discussed in Section V.C.1, is between Asymetrix’s Toolbook and Microsoft’s beta

29

. version of Multimedia Development Kit. As more systems are produced this method of

linking will provide a better evaluation for incorporation into an ITS.

D. BLACKBOARD SYSTEMS

Blackboard systems are another method available to solve problems using multiple
resources. A blackboard is divided into the knowledge sources and the blackboard data
structure. The knowledge is broken up into modules, each with it’s own inference engine.
These modules work together by placing information into working memory, in a format
the intended module can read. There is essentially no control element in the system, as
the knowledge sources in the system dictates the system’s actions. (Engelmore and
Morgan, 1988, pp. 1-10)

As the modules contribute to the solution of the problem, the partial, or working
solution is stored in a solution space data structure. The problem spaces are arranged in
a hierarchy to provide the proper sequence to complete the solution. Each solution space
is updated based on it’s current state and the knowledge provided to it from the different
knowledge bases. (Engelmore and Morgan, 1988, pp. 4-14)

Blackboard architectures are a relatively new approach to problem-solving. Since
a blackboard system was not available for the PC, the baseline system used for this thesis,
the implementation of an ITS shell using this architecture is left for later research. The
theoretical design and operation of such a system seems well suited for this type of

application, however.

30

. E. CLIPS AS THE CONTROL ELEMENT

CLIPS was developed by NASA to overcome operational computing constraints,
which was traced to their use of LISP-based tools, particularly because of the low
availability of LISP on a wide variety of conventional computers, the high cost of state-
of-the-art LISP tools and hardware, and the poor integration of LISP with other languages.
CLIPS is written in C to support the goals of high portability, low cost, and ease of
integration with external systems. There is also a version wzitten in ADA which is only
available on UNIX based systems. CLIPS 5.0 also comes with the CLIPS Object
Oriented Language (COOL) which was developed by combining features and functionality
of Common Lisp Object System (CLOS) and Smalltalk. Therefore, CLIPS provides for

both procedural programming and object oriented programming approaches. (CLIPS
| Reference Manual, 1991, p. xiii)

CLIPS is a powerful expert system shell that is provided to government agencies
and government contractor for the exchange of the required media, and can be purchased
for commercial use at low cost (CLIPS Reference Manual, 1991, p. 217). CLIPS cémcs
with all the source code for all modules so it can be tailored for specialized applications.
Additionally, CLIPS has been tested and used on the IBM Personal Computer (PC),
Macintosh, and the CRAY and numerous machines in between. (CLIPS Reference
Manual, 1991, p. ix) It is a very versatile tool and can effectively provide the inferencing
capability and the rule-based control to construct intelligent systems.

The knowledge representation in CLIPS is provided in the form of rules, facts, and

objects.

31

Rules are referred to as procedural knowledge (they tell us how to proceed to
change states) and facts are declarative knowledge (they describe the state of the
system at any point in time). Together, the procedural and declarative knowledge are
referred to as a knowledge base. (Baudendistel, 1990, p. 3)

With the new feature of COOL, objects and message handlers are also a means of
developing elements for the knowledge base. The use of message handlers to cause
certain actions to occur can greatly enhance portability. For example, a message sent to
an object telling it to show a presentation is converted to the action of showing the
presentation for that object. The same show message can work for many objects and can

be adjusted easily by the programmer to adapt to the hardware configuration and

presentation tool available to the given system.

32

V. THE CONCEPTUAL MODEL OF THE SYSTEM ARCHITECTURE

A. INTRODUCTION

There is no doubt a need for authoring tools and shells to assist in the development
of ITSs. A major point to keep in mind when developing a system is that without
credible knowledge in the knowledge base and without a sound instructional design, there
is no tool that can produce an effective learning system. Therefore, any tool incorporated
into a component of the shell must enforce good, logical design criteria and assist the
instructor in preparing an effective instructional design. The expert system shell should
also incorporate truth maintenance capabilities to assist in avoiding knowledge conflicts.
CLIPS 5.0 allows for truth maintenance incorporation, which reinforces it’s selection for
this shell.

The ITS shell should not just allow an instructor to construct a system, it should
also provide guidance and reasonable default settings that are properly suited for the
needs of that system configuration. For example, the teaching strategy should be geared
toward the type of knowledge being presented and the student’s level of understanding.
Therefore, the shell should adjust the default settings and provide recommendations to the
instructor about the available choices. So, the shell should not only make the various
tools available to the instructor, but also provide help and guidance about which option

to use based on previous choices and system constraints.

33

The basic architecture of the model proposed in this thesis, shown in Figure 8, takes
a layered approach. The user should be able to interactively control his exploration of
the knowledge domain within the constraints established by the instructor. The instructor
should be able to choose and modify the selectable components without corrupting the
baseline code or application. He should also be able to test and evaluate his system
throughout the incremental development as if he were the student. In other words, the
user at a given level has control over the functions at his level and all those lc;/els above
him, but he cannot change anything below his level.

In order to be a workable tool, the shell must be clearly understandable so the user
can spend his time and energy using the system. The time and energy expended trying
to master a complex tool must be minimized. This puts the burden on the programmer
to set up the system options and interface such that the instructor can readily identify how
to control and manipulate the system. He should also provide solid examples and detailed
help functions should the instructor need them.

As products are integrated into the shell, there must be a clear understandingl that
there is many trade-offs between ease of use, generality, and resource requirements. The
more elaborate the tool, the more expensive the cost of resource usage. For example,
extensive graphics integration in an interface or presentation is much more memory and
computationally intensive and takes considerable more display time than a text-based
system. Therefore, the instructor may not always be able to incorporate the more
elaborate components, such as natural language interfaces, or video disk presentations if

the system hardware will not support it.

34

STUDENT LEVEL
/ o= (T =T /
INSTRUCTOR LEVEL

/T T

PROGRAMMER LEVEL

/AF“V (& f) [

CONTROL MODULE

Figure 8 Conceptual Model of an ITS Shell

35

These resource problems are being resolved as technology continues to improve and
new solutions to memory restrictions are developed. For example, the new CLIPS version
3.1, which according to Brian Donnell of NASA’s CLIPS Development Team, will be
available in a Microsoft’s Windows configuration. This new version is due out in
November 1991. (Donnell, 1991) This would allow the incorporation of multitasking and

.DDF. links discussed earlier in section IV.C.

The use of OOP and modular design for the shell is intended to enable easy
incorporation of new technology. As new hardware increases system capabilities, or new
software developments improve applications, the shell components should be easily
upgraded. This allows the system to keep pace with available technology, without having
to completely redo the entire system. Only the components that need to be changed will

be redone. This will save many man-hours by reusing the existing comiponents.

B. SELECTING AN INTERFACE

The interface is the component that will determine how well the student will be able
to navigate the intended instructional material. This is where ease of use is paramount.
The user must clearly understand the operation and manipulation of the system so he can
concentrate on what the system is trying to teach him, and not spend unneeded effort and
frustration with the system itself. The interface should be the starting point in order to
achieve the goal of building a flexible tutoring environment. The system is then built

behind the interface. This supports the current research theories that ITS design "...is

36

. moving toward student-centered, reactive learning environments.” (Burns and Parlet,
1991, p. 3)

There are many existing interface tools that have been developed, covering a wide
range of complexity and cost. From simple text-based windowing tools to natural
language processing systems, these tools provide the user with the means to interact with
the system. The design of the interface is more geared to how to do something than it
is to what things to do (Burns and Parlett, 1991, p. 2). The determination of' what to do
will be handled by the other components. Some of the interface tools examined in this

thesis are described in the following sections.

1. Windowing Tools

Windowing tools are best suited for lower end systems where memory is
constrained and the interface must be tightly integrated with the system. The windowing
tools examined in connection with this thesis were mainly PC versions that allowed pop-
up, pull-down, mouse-driven menu systems. They were written mostly in C, as C is not
only very popular for this purpose, but also integrates very well with CLIPS. These
systems were mostly shareware products, so the cost is very low.

This type of interface requires more programmer involvement to implement
as the manipulation of the code to modify for system-specific use is at a lower level of
abstraction than the more object oriented interfaces. Though these tools are easily
modifiable by a programmer, the instructor would need to have an understanding of the
programming language, which is not desirable for this shell. The programmer may be

able to modify these tools, given the source code is available with each product.

37

The main benefit of these tools is that once integrated, the system is more
tightly integrated and specialized for faster, more efficient operation. The closer the link
between the components, the less time required to pass information between them for
execution. This is an important consideration when trying to minimize the student-
machine interaction time. Graphics and data passing can require a great deal of time to
complete while the student waits. Again, this is dependent on the implementation

platform.

2. Toolbook, by Asymetrix

Toolbook is a software construction tool that allows the user to use a graphical
user interface and object oriented programming features to develop applications tailored
_ for their specific purpose. Toolbook is a hypertext system that only runs under
Microsoft’s Windows, on the PC. It allows the user to create screens, called pages, that
are linked and designed to carryout actions through scripts (small programs attached to
objects that cause an action to occur). (Asymetrix, 1989, pp. 2-16)

Figures 9a through 9h give an example of the capabilities of Toolbook. They
are taken from the systems "Quick Tour" book which was developed using Toolbook and
comes with the system. These "pages" provide highlights of some of the capabilities of
Toolbook. These figures provide good examples of the application’s ability to perform
at the student, or reader, level and at the instructor, or author, level.

Toolbook is currently being used at the Defense Language Institute (DLI), at
the Presidio in Monterey, California, as the interface to the Microsoft Windows

compatible version of Computer Assisted Language Instruction System (WinCALIS), a

38

sweiboid

19\ndwod Jayio ypmoeia|
SUoNB|NJJBI WIoHad
uonewioju abouspy

punos

USAS pug ‘UoRRWIUB ‘I0j03
‘so1ydeib xa) suigwo)

, uosmv_oonmﬁma
......... G ued NoA H00gI00 | YIAA
O ‘uoneuIbew! IN0A se jnuamod

S8)SOW| S1%00@|00 |

........................

Figure 9a Toolbook Quick Tour

39

18A)d 0PRI0|0D

'S S Ul surejunom }saB 1e|
ay Jo Auew seY) uoResuss pue ‘punos
315 remoepads jo pue e 1 0pe10j0)

:01) 0} $898|d

uaddey

sbuiy aYow o} yw joeIsjul
ued Japwral ay sjuawa|3

8} adA} uea
13p0al 8y} BIaym seary
sabow| ,

Xal «

:sauiquod ey abed B ajpan

0} JOYING UB Moje sPalqo

Figure 9b ToolBook Quick Tour

"810W pUR ‘suope|NIed
wiopad ‘s00q youms ‘sabed
dnys ued sjduos ‘uonippe uj

saiydueib epwiuvy
uoRBuLIOjUl [eBARY
sabed win)

:ugd §)duds Moy uaas ANOA

9¢ ToolBook Quick Tour

Figure

1

4

p1033) 0} pasedwod pjalg
preog/ey SINNI0YS

au b bumpa | epopupa Ly Bupyiom

Piey ualBulp3 | yn 1oqka pue Bupodu

ey bumng Bupguig

way Bukdo . I

a) buueal)

uoroa|as xa) 8 buljasue) ald

§21do| [9A97] Jopes

spJomiof] yosea§ abed aj

djay qoogjeo|

N0 YIING %00g[00 |

Bujysreag|
v Buiydopn -
syooq Bujsn g
spuewwod pue snuapy E

‘sdiuabuly inoA je yoog|oo |
JNOGe UOKBULIOJUI 8IUBIB)8)
-$inb sind djay moy

130 835 || NOA, "JayouR
s d|ay sull-uo %00g|00 |
8Y] ™00g|o0] hm
paeas yooq e jo ajdwexa
8U0 S11n0 | MNP Siy |

Figure 9d ToolBook Quick Tour

42

‘sjexid

jo dnoib v Jo dousiq e pajea
os[e s1 abvwied e ;30N

‘preoqdij) sy} uo

abowi wred ay woypslqo
wred B sajeas0 Ajjeanewoine
%00g|00] 00g|00] Ojul
abewi ay aysed noA uay |
‘preoqdi) ay 0} uogeoidde
18yjouv woy sbowl

jured @ Adod no “yoogjoo |
uipaigouede aean 0

Figure 9¢ ToolBook Quick Tour

43

.......................... mhmxhogloo hq.—o}

Gl usyQ asn |I,nO0A swio
v wm:.:-—u OD 03 %ﬁg m_._u—..
2-Kydosojiyg Auedwo) inp

I
suewco - (]

mouy| o0} sbujyl

abeg ol Ip3 9|3

yooqpueH Auedwo) —

" IN0 L YoINY 4004100

'|oAB] IOy O} YIJMS O} MUY
1SNW Japeal ey piomssed
@ SBY Y00q siy ‘ajdwexa Jo4

‘spiomssed buiubisse Aq pue
ubisap 00q InoA ybnoiy

Op UR2 J3pRaIJ B JOUM |0RU0D
noA "00q e ash uaAa

10 aburyo 0} A)jIqe sapeal
Q Ui} UG NOA “JOYNY U Sy

Figure 9f ToolBook Quick Tour

.......................... Whmx.—goo .—_aO}

.............. uayo asn ||,N0A swio4

............. mwmc_:l_l OD mg }.0; mr_n_l
........... h:ﬂowo__f %C.@QEOO :-O

UL eg)

mouj o} sbujyy

mopuipy mesd walqo abed kI 1p3 o_m
V_oo%:mzégsco

N0 | YOINY %00§]00 |

‘uaddey sbuiy
O 0} LM 0Riajul
uQJ Japeal 8y sjuawa|3
w8} adA ueo
19pRal 8y} alaym sealy
sabow)

Xel «

:uguod
uea abed y sabad ay

uo spalgqo svjd pue sebed
8)eald noA Hooq e piinq o

Figure 9g ToolBook Quick Tour

45

aweu abed 09 o0b

31T O} aweNIas s 39S
,(OWRU INOA s, jeyp, ASe
URNIDS[]” S UI}SAS

dfuojinq a7puey o3

|

pug up3 w03 fs
2 abed jo ¢ q| uoynq 10 1dus .

EEST 1001 $oINS 400100 |

‘0P SPIOMOY pue
suojng ‘Ajuowwod jsow jnq
1duos v aAvY ued 1alqo Auy

'SUONIY

ayads 0} puodsal pjnoys
18(qo ue Moy 300g|00 L ||}
1oy} suswale)s axjiysibul
JO sauas © s11duds v >o00q
© ul usdduy sbuny exew o)
selqo 10} s)duds 8yeeld noA

Figure 9h ToolBook Quick Tour

. CAI 100l developed by Duke University. This combination, coupled with video disk
technology, allows instructors to create multimedia presentations of situations in various
cultures to instruct students in situational conversations in the language being taught.
This system could be enhanced by using CLIPS to incorporate student modeling and
instructional strategy adaptation provided by an ITS. The medium is in place to allow
the instructor to integrate the interface with the presentation of instructional material, but

there is no intelligent component incorporated into the system.

3. ObjectVision as an Interface

ObjectVision for Windows was created by Borland International as an
interactive tool to allow nonprogrammers the ability to create custom-made applications
for Microsoft’s Windows. ObjectVision is a visual programming tool that allows for a
layered construction which can incorporate the use of different applications through
dynamic links and working with objects and forms. It uses decision trees to control the
logic of the application and the assignment of values to field objects. This tool was
designed for the incremental development of applications and is intended to be easily
modified by the developer. Figures 10a and 10b show the interactive methods the

instructor would use to establish links and create his interface. (Borland, 1991, pp. 7-19)

C. THE EXPERT MODULE AND DOMAIN KNOWLEDGE
The ITS will only be as useful and reliable as the knowledge it is trying to impart
to the student. The methods of presentation are an integral part of determining how the

knowledge is stored. There are many tools available commercially, for many different

47

S Raur)

3ad O
anaulg O
asedp O
xopeJted O

eonseesesinmasesrstesstetsnetosnsenty

PY djoway aioubl

veoreeneasentemntorssnrsnernonsives:

CUB1ea sy

Sj00OT MIJA Sapdadosgd s)109iq0 up3 Uliog

48

Figure 10a ObjectVision

100UU0OS K] 100UU0Y

fSOUL)

<
<
<
<
<
<
<
<
<
<

SUr pesy sweN

399" |-91doy SdITD 1-91do)

uswWN2oq uopesddy aweN YulT

sjoo] M3|A sopedoid S109lq0 upT Wlio4

Figure 10b ObjectVision

. computer platforms, that can assist the educator in getting the material across to the

student. Although other platforms will be discussed, the experimentation was conducted
on the PC.

Knowledge bases constructed to form the expert module can be difficult and time
consuming to develop. By using the OOP approach, the instantiations of domain
independent objects could be created for domain specific knowledge. Through data
encapsulation and the inheritance of methods, or message handlers, and characteristics,
the knowledge bases could be fit to developed ITSs built using similar structures. For
example, a domain independent method sent to an object instructing the object to show
a presentation, could be made domain dependent by the presentation of a specific type
developed specifically for that object.

To demonstrate this situation more clearly, a test was conducted using different
presentation tools and calling the presentation from a CLIPS rule. Once the student’s
cognitive state has been determined, the student model has been examined, and the
student has requested information on a certain topic, a CLIPS rule would fire. -The
resulting action would be the presentation of the appropriate material for that student at
the time determined by the system. The example rule would look similar to the following
example:

(defrule SHOW-TOPIC
(need-info-about ?topic)
=>

(bind ?presentation (str-cat rundemo ?topic))
(system ?presentation))

50

. This rule firing would cause a presentation of the topic designated and developed by the
instructor to be shown to the student. The system could then proceed to the next
determined stage of test, evaluation, a more detailed presentation, or whatever was

appropriate for the individual student.

1. Presentation Tools

Many commercially available presentation tools can be used to assist the
instructor in presenting the required knowledge. Some of these tools are more interactive
than others. They also have different requirements for creating stand-alone, modular
presentations. For example, CLIPS was used with Genus Microprogramming’s Proteus
to create individual lessons for the two types of aircraft from ART (Campbell, 1990).
This experiment was conducted from the DOS environment, using Microsoft’s DOS 5.0,
and from within Microsoft’s Windows 3.0. 'WordPerfect Corporation’s DrawPerfect
presentation feature was also called from CLIPS in these two different environments to
show the feasibility of using different presentation tools with CLIPS.

A beta release of Microsoft’s new Multimedia Development Kit (MDK) was
also examined at DLI for this thesis as a more complex tool available for the presentation
of material. As this tool is still in the development stage, there are still programming
flaws being corrected. As these "bugs” are fixed, a future goal is to experiment with
integrating CLIPS with presentation sequences to add intelligence to this powerful new
presentation tool. As the system is currently configured, there is virtually little

“intelligence” incorporated into the system.

51

The MDK is linked with Toolbook and WinCALIS to form the Linguist
Workstation. Figures 11a to 11h give examples of the capabilities the MDK. Figure 11a
shows the different languages available to teach with this system. The example language
chosen in Figures 11b through 11d is German. Figures 11b and 11c show the student
level of interaction available. Figure 11d shows the instructor, or authoring, level of
interaction for the same "page" of this lesson. The instructor can switch between levels.
The student, however, is restricted to only the student level. |

The Linguist Workstation demonstrates the layered approach proposed for the
ITS shell in this thesis. This system is currently capable of running only on a PC, and
requires addition hardware, such as a video disk and a sound board. Therefore, this

system has very limited component portability.

D. THE STUDENT DIAGNOSTIC MODULE

The student diagnostic module should give the current state of the student in his
understanding of the knowledge domain being taught. As stated earlier, this can be done
by recording facts about the student’s cognitive process. As the facts in the system
change, the system should adjust the instructional material being presented, the teaching
strategy being used, or the evaluation and critiquing process as needed to best fit the
needs for the individual interacting with the system.

Determining the student’s initial state can be done in a number of different ways.
The system can make an assumption and start all students at the same point and adjust

the student model as the student demonstrates his level of expertise. This seems to be

52

NVISSNH
NV3IHOM
HiZ213H
MIHE3H
NVAH3IO
TVHANIYD
HSI9N3
olavdy

MIN

1aBeueyy uopeuuoju) jeuosiagd

:abenbuej e joajag

sjeuyoin] $33uAY Su0ssIT suoped|ddy

Figure 11a Multimedia Development Kit Linguist Workstation Editor

53

jdilssuel

S feviesane:

R

ASIAOIAIA NYWH YD

54

Figure 11b Linguist Workstation German Video Disk

I

10805

oo

 snomoid
L

yoeg on

SN0JA3I]

BT/ BN, gg/qnﬁw.k -

w

puj YT
WS PN

ASIG0I0IA NYWHID

Figure 11¢ Linguist Workstation German Video Disk in English

55

ysybu3

Wd 02:90-¥

16l22i8
:abueyd ise

_ gpiomssed

punoibjyoeq |

_ 321 abed

safed g

Suejuo)

a8 l’&hom

1eq apy uj uopdeds moys 1]

N GEGITN IR EER]| :uopde)

ALNHIOMAS 200q jo awenN
saipadoid ooy

disH mopuiiy mead wa[qy abed xal wpd 3|

J

Figure 11d Linguist Workstation German Video Disk Authoring Mode

56

‘siaquinu awel) ayy abueya oy y 3136y
J0 'auads sy Aed o0y 128lqo ayy Haio-ye]

-abueya jou saop §

dnoib ay) jo soueseadde ay) ‘padeld aq
jouued sauanbas JsIpoapia ay) j| 10)UOW
ajesedas e uo Jndyno dsipoapia ay} Buiyaem
are nod jey) pawnsse si)l ‘UMOYS Jaaau

si ajbuejdal ay; pue a|qisia surewals aydelb
3y} 'pJeoq oapia [e)bip e asey juop NoA |

‘08pin

0} ,Juaredsuely, Si)i 'Spiom Jayjo Ul 'o|od
A8y ewoiyd ynejap ay; osje s1 ajbueyaal
aoualajal ayy jo Jojoa ay| Guikeid you

s1)1 uaym dnosb ey Jo yuawa|a a|qisia Ajuo
ayy s1 yaiym aiydesb e pue 'preoq Aepano
oapia & woly abew jndino ayy uoiysod

0} @JU3J3jal © Se pasn s Yiym 'ajbue)dal
e Jo apew dnoib e s1)] -asuanbas
asipoapia e fAejd o} moy smouy Jey} ,198lqo
03pIA, xo_nEoo e sl mmmn S1y} U0 338(qo ay | §

"SSAOW MOpUIM 300800] |

Y UAYMm oo_us os jo uoiisod 8y isnipe pue Jas 0} pamnbal
SDE EE_.LE. AY) Ul SISpURY WI0S SR o_o; 1

$)99lqQ =¢ a._ou

-00lqp .Eou

...._o_wom 8:230:

AL 1TIDAIMANN -

JaAeid souanbas ospIA
(uaisuepxa doogiooj) OIPIA 1eybiq |

.__u..u afied
v_oom__oc._]

COET T

Figure 11e Multimedia Video Disk Player

57

N0 3WN 3JIAIP ISIPO3PIA 3Y) O) §|jeD 3 fhun
Jem 0] 3ARY [Iim hod ‘pajdauuod 1adejd ou Lym
suonauny asipoapia ayj Suidy uo jsisui nod Jj
‘PaYoauUI0D st 1adeld osipoapia @ ssajun afied
SIY) UD SJONUOD AY) SSN JOU Op “ISAIP OSIPOIPIA
IJW ayi jo UoisiaA ejaq 8y ui bnq e 01 anQ
NOLLOV]D

'S1Y} 0p 0} Youms Janlig sy}

as() ‘M paau Jabuo| ou nod uaym it 8soj3
pue 's|os)uoa asay) Buisn al0jaq aamap
as1poapia ay) uado 1snw NoA jey) ajoN

- Jayjaboy

deus, Ajdwis suoyng ay) :Ajisea asay) ay|
s|aued jonuo3 pjinqg o} anfea pub yoogjoo |
)ynejap ay} asn pue ‘uoneddde 1nod
Buipjing uaym awes ay) op ued noA ‘uo pub
0} deus, yyum paje|ndivew Ajjnjasrea sfempe
pue pajeald alam SuojNg ay} asnesaqg

‘Ajuo $aSIp A7) 10 $1 1ajpuey

8y} JO UOISIBA n_; 1 031100 aepdn 0) way) uem nod §
sjuawald asayy ased nod a1sym punoibjoeq 10 abed ay) o
19jpuey au Adod 1snw no A abed siy) Jo 1duds au i TIJPURY
E ue A4q payepdn ale siaquinu awely pue Jaydeyd ay |

s1alqQ v 4do] || ~109lqQ Ado)

W ajujup]rpie

30/M0

| [JdueDrw]

s|oued |oJiuo)
OSIPOOPIA

“spemoog | yoiveg | sousisjey

.__oﬂ omnm xal up3 g
xmh.hmwo_gzz-xoom_ooh

e 11f Multimedia Video disk Control Panel

Fi

58

109755

LN

ZH1 5¢0°L1l @

ZHA §0°22 O

ZHA L'VF O
| Adsuanbaiy

SHE91L O
S8 @
azig ajdwesg _

[1e0ue) 03195 O
_Ilm.oll ;

Jeullo) daj Mo Appo Wp3 3

Figure 11g Multimedia Wave Editor

59

RISeN WIS WLOIA JIN A0 XNV HIXIN HINAS
o

ryry

+]
»

tI[e] [*f*] [*]¢*] [*T+

[+]

_M_M_

JIXIWN _IPAWI NN E::uuamo_uzq 01d

—0) ojpnyoid

3

Figure 11h Muitimedia Audio Mixer

the easiest way for the programmer, but does not give the student the proper starting point
for his level of knowledge of the subject.

The system could also begin by conducting a survey by requirinag the student to
answer some initial questions to determine his background before beginning the
instruction. This can be frustrating for the student who is more concerned with getting
into the material than answering a survey. One technique that is widely used in the
military is conducting a pretest to determine the student’s initial understanding of the
topic, train the student based on the pretest, conduct an evaluation after the instruction,
and then re-train based on the evaluation. These are just a few techniques. The possible
options and applicable methods should be developed by the cognitive scientists and
behavioral specialists. The options should be selectable by the instructor and he should

be prompted ior the required information to instantiate that option.

E. THE INSTRUCTIONAL MODULE

The instructional module is an integral part of this system, also. The same time of
options should be provided as in the student diagnostic module. There are multiple
strategies that can be invoked at different times as the student progresses through the
desired lessons. A major consideration in using these strategies is to allow the student
to remain in control of the interaction with the system. These strategies are there to
provide the student with the most efficient means to learn the required material.

This module needs considerable more effort and examination than was provided in

this thesis. The tools examined were geared toward a high level of student control and

61

interaction. The proper mix of integration of this module with the remainder of the
system must still be examined. The tools are there, however, the ability to codify these
strategies must come from the cognitive scientists or behavioral psychologists. Once
programmed, these components should be place into a selectable option in a form that the

instructor can instantiate for his system.

F. SUMMARY

There are many powerful applications available to perform the required functions
of the modules in an ITS. The ITS shell proposed in this thesis stresses the layered
approach to implementing this system. Allow the user to achieve his goals in using this
system without influencing the levels below him. The goal is to provide the instructor
with a workable product to produce an ITS in the most efficient and reliable means
possible. The system must stress modularity, portability, and abstraction. The area
experts should produce the components, or subcomponents required for each module. The
system should also provide for incremental development.

Numerous systems and tools were examined to show the feasibility of linking these
programs into the ITS structure outlined in this thesis. Although many of the more
complex systems are new and have gone through limited testing and evaluation in ITS
applications, the experimental results are encouraging. The tools are available to help
ITSs make the transition from the research arena into the instructional world. It is time
to put forth a joint effort, by all research area specialist involved in the development an

ITS, and begin producing such products for the educator.

62

VI. CONCLUSIONS

A. LESSONS LEARNED

ITSs can cover a wide spectrum of applications, knowledge domains and levels of
complexity. The expectation of being able to use a generic shell to develop an ITS that
covers this broad spectrum is unrealistic. It is possible, however to develop domain
independent components and use domain or system dependent instantiations of these
components to build more simplistic ITSs.

The goal is to provide instructors with a tool that would assist them in tailoring the
components of an ITS to fit their instructional needs. By allowing the instructor to select
those components that he can use and get a working system is a significant achievement.
If the emphasis of modular design and portability are adhered to, the system can
continually be improved without discarding all previous work. Reuse of code and various
components can possibly allow more systems to become available for use and evaluaﬁon.
As the different research areas begin to work closer together and products produced by
area experts are better integrated, systems will increase in complexity and reliability.

Building an ITS with current technology, on lower end platforms, highlights the
tradeoffs needed to balance components to fit within system constraints. Current tools
that incorporate extensive graphics, such as Toolbook are extremely slow in execution.
Other programs that allow passage of data and command to other applications also

required a great deal of processing time. The memory constraints that these tools must

63

operate in are also a problem with current technology. For example, CLIPS must be
stripped down to just essential components to allow integration with more complex
applications that required large amounts of memory.

With the pace of technological advances in memory utilization and system speeds,
it is evident that these constraints will not be long lasting. The fact that it is possible to
link the various applications is proof enough that modular design and integration of the
components proposed is possible. A major concern with the use of any system is the
amount of time and effort that must be expending learning the new system. A training
program with hands-on examples must be an integral part of using a system as described
in Chapter V. The goal is to minimize the amount of extra training, but to give the
instructor and the student confidence in using this shell, training should be a major area

of emphasis.

B. ACCOMPLISHMENTS

CLIPS was thoroughly examined and modified to provide an effective vehicle to
control the components of an ITS. By recompiling the CLIPS source code, CLIPS was
sested to function as both a developmental tool and in an implementation configuration
to maximize the amount of memory for external calls to other programs from inside
CLIPS. After developing modular presentations of different topics, CLIPS was able to
invoke the presentations. This test was conducted in the MS-DOS environment and

running under Microsoft Windows. This functionality demonstrates the ability of CLIPS

to control the presentation of material by requiring a certain state, facts in the fact base,
to cause a rule to fire and to present the needed material as it’s action.

Also, by experimenting with various interface tools and presentation tools, it was
shown that the incorporation these existing tools as components of the modules required
for ITS development is possible. Since many of these tools are very new, it was not
possible to conduct extensive evaluation to the possible problems that may arise, but
successful integration was achieved. The ease of use that the developers of these tools
propose appears to be overstated, however. After examination for ease of integration, the
claims that nonprogrammers could easily create there own custom-made applications

seems quite optimistic.

C. FUTURE WORKS AND MODIFICATIONS

To fully test the structure of the ITS shell, different components for the shell need
to be developed. These different components should incorporate the current theories of
instructional techniques. They should also be written in CLIPS for maximum portability.
Once programmed, they should be configured to enable an instructor to select the
appropriate component, or subcomponent, to suit his given application.

Once a full complement of components are available, a completed system could be
produced, tested, and evaluated. The components should be tested for ease of integration
with existing interface and presentation tools. This would allow the instructor to develop
an ITS by concentrating more on the interaction with the student and the material to be

presented.

65

As systems are implemented, the ease of transporting the components to other
platforms could be examined. The transporting of these components should as transparent
to the user and instructor, as possible, to reduce the impact of a new learning curve on

the new system.

LIST OF REFERENCES

Anderson, John R. "The Expert Module." In Foundations of Intelligent Tutoring
Systems. Ed Martha C. Polson and J. Jeffrey Richardson. New York: Lawrence
Erlbaum Associates, 1988, pp 21-53.

Asymetrix Corporation. Using Toolbook: A Guide to Building and Working with Books.
Asymetrix Corporation, 1989.

Baudendistel, Stephen. "Consider CLIPS...." In Al Exchange. Spring, 1990, pp. 3-14.
Bielawski, Larry and Lewand, Robert. Intelligent Systems Design: Integrating Expert

Systems, Hypermedia, and Database Technologies. New York: John Wiley & Sons,
1991.

Bonar, Jeffrey G. "Interface Architecture for Intelligent Tutoring Systems.” In Intelligent
Tutoring Systems: Evolutions in Design. Ed. Hugh Burns, James W. Parlett, and Carol
Luckhardt Redfield. New Jersey: Lawrence Erlbaum Associates, 1991, pp 35-67.

Bower, M. and Hilgard, J. Theories of Learning. New York: Addison-Wesley
Publishing Company, 1981.

Burns, Hugh L. and Capps Charles G. "Foundations of Intelligent Tutoring Systems: An
Introduction.” In Foundations of Intelligent Tutoring Systems. Ed Martha C. Polson and
J. Jeffrey Richardson. New York: Lawrence Erlbaum Associates, 1988, pp 1-19.

Burmns, Hugh and Parlett, James W. "The Evolution of Intelligent Tutoring Systems:
Dimensions of Design." In Intelligent Tutoring Systems: Evolutions in Design. Ed.
Hugh Burns, James W. Parlett, and Carol Luckhardt Redfield. New Jersey: Lawrence
Erlbaum Associates, 1991, pp 1-11.

Campbell, Larry W. "An Intelligent Tutor System for Visual Aircraft Recognition."
Master’s Thesis, Naval Postgraduate School, Monterey, California, June 1990.

Citrenbaum, Ronald, Geissman, James R., and Schultz, Roger. "Selecting A Shell." Al
Expert, September 1987, pp 30-39.

CLIPS Reference Manual, Volume I, Basic Programming Guide. Software Technology
Branch, NASA-Lyndon B. Johnson Space Center, 1991.

67

. Donnell, Brian. Electronic Mail responses concerning CLIPS, NASA’s CLIPS
Development Team, 19 August 1991.

Elliot, David B. "An Introduction to Object-Oriented Programming.” In Al Exchange.
Spring, 1990, pp. 20-22.

Engelmore, Robert, Morgan, Tony, and Nii, H. P. "Introduction," In Blackboard Systems.
Ed. Robert Engelmore and Tony Morgan. New York: Addison-Wesley Publishing
Company, 1981, pp. 1-22.

Giarratano, Joseph C. CLIPS User's Guide: Volume I, Rules, CLIPS Version 5.0,
NASA, Johnson B. Space Center, Artificial Intelligence Section, January 1991.

Giarratano, Joseph C. CLIPS User’s Guide: Volume II, Objects, CLIPS Version 5.0,
NASA, Johnson B. Space Center, Artificial Intelligence Section, May 1991.

Hill, Randall W. Jr. and Pickering, Brad. "Intelligent Tutoring Using HyperCLIPS." First
CLIPS Conference Proceedings. NASA-Johnson Space Center, August 1990, pp 62-68.

Hua, Grace. "Developing an Intelligent Computer-Aided Trainer." First CLIPS
Conference Proceedings. NASA-Johnson Space Center, August 1990, pp 69-74.

Inui, Masahiro, Miyasaha, Nobuji, Kawamura, Kozuhika, and Bourne, John R.
"Development of a Model-Based Intelligent Training System." North-Holland, Future
Generation Computer Systems 5, 1989, pp 59-69. :

Khoshafian, Setrag and Abnous, Razmik. Qbject Orientation: Concepts, Langgages,
Databases, User Interfaces. New York: John Wiley & Sons, 1990.

Lenat, Douglas B. and others. "Cyc: Toward Programs with Common Sense.”
Communications of the ACM. v. 33, August 1990, pp. 30-49.

Murray, Tom and Woolf, Beverly. "A Knowledge Acquisition Tool for Intelligent
Computer Tutors." In Sigart Bulletin, April 1991, pp 9-21.

Office of Artificial Intelligence Analysis and Evaluation. "Intelligent Computer-Aided
Instructional Systems.” In AI Exchange. January-March, 1989, pp. 6-7.

O’Neil, Harold F. Jr., Slawson, Dean A., and Baker, Eva L. "Design of a Domain-
Independent Problem-Solving Instructional Strategy for Intelligent Computer-Assisted
Instruction." In Intelligent Tutoring Systems: Evolutions in Design. Ed. Hugh Bums,
James W. Parlett, and Carol Luckhardt Redficld. New Jersey: Lawrence Erlbaum
Associates, 1991, pp 69-103.

68

Pirolli, Peter. "Computer-Aided Instructional Design Systems.” In Intelligent Tutoring
Systems: Evolutions in Design. Ed. Hugh Burns, James W. Parlett, and Carol Luckhardt
Redfield. New Jersey: Lawrence Erlbaum Associates, 1991, pp 105-125.

Redfield, Carol Luckhardt and Steuck, Kurt. "The Future of Intelligent Tutoring
Systems.” In Intelligent Tutoring Systems: Evolutions in Design. Ed. Hugh Bums,
James W. Parlett, and Carol Luckhardt Redfield. New Jersey: Lawrence Erlbaum
Associates, 1991, pp 265-284.

VanLehn, Kurt. "Student Model:ng." In Foundations of Intelligent Tutoring
Systems. Ed Martha C. Polson and J. Jeffrey Richardson. New York: Lawrence
Erlbaum Associates, 1988, pp 55-78.

Woolf, Beverly. "Intelligent Tutoring Systems, A Survey." Morgan Kaufmann Publishers,
1988, pp 1-44.

Woolf, Beverly. "Representing, Acquiring, and Reasoning About Tutoring Knowledge."

In Intelligent Tutoring Systems: Evolutions in Design. Ed. Hugh Bums, James W.
Parlett, and Carol Luckhardt Redfield. New Jersey: Lawrence Erlbaum Associates, 1991,

Pp 127-149.

" Woolf, Beverly Park, et al. "Knowledge-based Environments for Teaching and Learning.”
Al Magazine, Special Issue, 1991, pp 74-77.

69

BIBLIOGRAPHY

Booch, Grady. Object Oriented Design with Applications. = Redwood City:
Benjamin/Cummings Publishing Company, 1991.

Boy, Guy A. Intelligent Assistant Systems. San Diego: Academic Press, 1991.

Burton, Richard R. "The Environment Module of Intelligent Tutoring Systems.” In
Foundations of Intelligent Tutoring Systems. Ed Martha C. Polson and J. Jeffrey
Richardson. New York: Lawrence Erlbaum Associates, 1988, pp 109-142.

Fink, Pamela K. "The Role of Domain Knowledge in the Design of an Intelligent
Tutoring System." In Intelligent Tutoring Systems: Evolutions in Design. Ed. Hugh
Bumns, James W. Parlett, and Carol Luckhardt Redfield. New Jersey: Lawrence Erlbaum
Associates, 1991, pp 195-224.

Giarratano, Joseph and Riley, Gary. Expert Systems; Principles and Programming,
Boston: PWS-Kent Publishing, 1989.

Halff, Henry M. "Curriculum and Instruction in Automated Tutors." In Foundations of
Intelligent Tutoring Systems. Ed Martha C. Polson and J. Jeffrey Richardson. New
York: Lawrence Erlbaum Associates, 1988, pp 79-108.

Merrill, David M. "An Expert System for Instructional Design.” IEEE Expert, Summer
19871 pp 25'37.

Mettrey, William. "A Comparative Evaluation of Expert System Tools." In Computer,
February 1991, pp 19-31.

Miller, James R. "The Role of Human-Computer Interaction in Intelligent Tutoring
Systems.” In Foundations of Intelligent Tutoring Systems. Ed Martha C. Polson and J.
Jeffrey Richardson. New York: Lawrence Erlbaum Associates, 1988, pp 143-189.

Mueller, Stephen J. "Incorporating CLIPS into a Personal-Computer-Based Intelligent

Tutoring System.” First CLIPS Conference Proceedings. NASA-Johnson Space Center,
August 1990, pp 75-79.

70

-

-

. Nicol, Anne. "Interfaces for Learning: What Do Good Teachers Know That We Don’t?"
In The Art Of Human-Computer Interface Design. Ed. Brenda Laurel. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1991.

Ragsdale, Daniel J. and Tidd, John P. "Designing Intelligent Computer Aided Instruction
Systems with Integrated Knowledge Representation Schemes.” Master’s Thesis, Naval
Postgraduate School, Monterey, California, June 1990.

Richer, Mark H. "An Evaluation of Expert System Development Tools." In Al Tools
and Techniques. Ed. Mark H. Richer. New Jersey: Ablex Publishing, 1989, pp 67-105.

Swigger, Kathleen M. "Managing Communication Knowledge." In Intelligent Tutoring
Systems: Evolutions in Design. Ed. Hugh Burns, James W. Parlett, and Carol Luckhardt
Redfield. New Jersey: Lawrence Erlbaum Associates, 1991, pp 13-34.

Tailor, Anita. "MXA -- A Blackboard Expert System Shell." In Blackboard Systems.
Ed Robert Engelmore and Tony Morgan. New York: Addison-Wesley Publishing
Company 1988, pp 315-333.

Zanconato, Roberto. "BLOBS -- An Object-Oriented Blackboard System Framework for

Reasoning in Time." In Blackboard Systems. Ed Robert Engelmore and Tony Morgan.
New York: Addison-Wesley Publishing Company 1988, pp 335-345.

71

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Dr. Robert B. McGhee CS/Mz
Naval Postgraduate School
Monterey, California 93943-5000

Dr. Yuh-jeng Lee CS/Le
Naval Postgraduate School
Monterey, California 93943-5000

David Pratt

Naval Postgraduate School

Code CS, Department of Computer Science
Monterey, California 93943-5000

CPT Robert E. Scurlock Jr.

1001 Bradford Lane
Fairfield Glade, Tennessee 38555

72

