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Data Selection for Fast Projection Techniques Applied to Adaptive Nulling:
A Comparative Study of Performance

by
Myléne Toulgoat and Ross M. Turner

ABSTRACT

This report describes simulation studies of fast projection techniques for
adaptive nulling of jammer signals.  These techniques are based on a data
selection criterion applied directly to the data vectors obtained at the output of
an antenna array. The selected data vectors are used in fast projection algorithms
to estimate the antenna weighting vector that is orthogonal to the jamming
vectors. Four such algorithms are described ranging from the fastest but least
effective to the most computationally demanding but most effective. In effect,
these algorithms provide a better trade—off of performance versus computational
load than has heretofore been available. Relative performance is compared with
that of the standard Sample Matrix Inversion (SMI) technique for test cases which
evaluate the effects of the number of jammers, the jammer strengths relative to
the receiver noise and the jammer angular positions.

Résumé

Ce document est une étude, basée sur des simulations, de la performance relative
des techniques de projection rapides pour la formation auto—adaptive des faisceaux.
Ces algorithmes utilisent un critére pour la sélection de bons vecteurs de données
a la sortie d’une antenne réseau. On utilise les vecteurs selectionnés dans les
algorithmes de projection rapides afin d’estimer le vecteur de pondération qui est
orthogonal aux brouilleurs. On décrit quatre algorithmes, le premier étant le plus
performant du point de vue du nombre de calculs mais le moins performant du
point de vue d’annulation des brouilleurs, le dernier étant moins rapide mais
donnant une meilleure annulation. En effet, ces algorithmes donnent un meilleur
compromis entre le rendement et la charge de calculs que les algorithmes connus
jusqu’d présent. On a comparé le rendement des quatres techniques avec celui de
la technique "sample matrix inversion ou SMI" pour trois scémarios différents; ces
trois derniers démontrent les effets du nombre de brouilleurs, de leur position, et
de leur puissance par rapport au bruit du fond.
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EXECUTIVE SUMMARY

Jamming of radar systems via the antenna sidelobes or the antenna
mainbeam can seriously degrade radar performance. Thus jamming can provide a
crucial advantage to enemy forces if radar electronic—counter—counter—measures
(ECCM) are not effective.

Adaptive antenna nulling provides an effective  ECCM but at the cost of
increased equipment complexity and capability. A major cost factor is the need
for a very high speed, real-time, computational capability. = The computational
capability required is so high it limits the application of this effective ECCM.

This report describes and evaluates computationally efficient algorithms for
adaptive nulling; these reduce the requirements for high speed computation and
hence the cost of implementation.

The algorithms to be described and evaluated are based on projection
techniques; the jammer vector space is estimated from the data vectors obtained
from the antenna array elements. An antenna weight vector is constructed by
projecting the steering weight vector into a space that is orthogonal to the
estimated jamming vector space. When the adapted weight vector is applied to
superimposed signal and jamming, the jamming signals are greatly reduced while
the loss of signal is small. This occurs because the adapted weight vector is
approximately orthogonal to the jamming signals.

Four versions of the algorithm are described and evaluated, all based on
data selection criteria followed by Gram—Schmidt orthogonalization. The algorithms
are named as follows: (1) DVO for data vector orthogonalization, (22 DVSO for
data vector selection and orthogonalization, (3) DVSO-WAVER for repeated
applications of DVSO followed by averaging of the weight vectors found in each
application of DVSO, (4) DVSO-COVAR for repeated applications of DVSO
followed by a combining of the selected data vectors into a covariance matrix
which in turn is is followed by a final application of DVSO to the columns of
the covariance matrix.

The above four algorithms are evaluated by means of simulations and
compared with the Sampled Matrix Inversion (SMI) technique. The latter, the
standard method for finding the adapted weight vector, is very computationally
demanding. In terms of performance versus computational load, all four techniques
compare favorably with the SMI technique. The four techniques trade off
performance against computational load, DVO being the fastest in terms of
computations but providing the least jammer cancellation while DVSO-COVAR
provides the best cancellation performance but at the cost of a considerable
computational load.
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Data Selection for Fast Projection Techniques Applied to Adaptive Nulling:
A Comparative Study of Performance

1.0 INTRODUCTION

Modern signal-processing algorithms achieve effective adaptive beam forming —
but at a cost o% a very high computational load. This computational load can be
prohibitive when the data rate is high ie, when the weight vector must be
changed frequently in a rather short period of time as in many radar applications.
The well known Sample Matrix Inversion (SMI) method [1] provides an estimate
of the weight vector that maximizes the signal to interference ratio. Since the
receiver noise is averaged when many samples are used in the formation of the
covariance matrix, the error decreases with the number of samples used.
Unfortunately, the calculation and inversion of the sample covariance matrix are
very computationally intensive, particularly for large antenna arrays.

Projection methods based on eigenvector analysis, such as the MUSIC
technique [2], are effective for both interference suppression and spectral estimation.
These techniques yield estimates of the noise and signal subspace with an error
that decreases with the number of sample vectors used in the covariance matrix.
These methods exploit averaging by incorporating many data vectors into an
estimated covariance matrix which approaches the true covariance matrix
asymptotically as the observation period increase. Such an eigenanalysis is
computationally demanding. Projection methods, however, need not be based on
eigenanalysis; large decreases in the computational load can be achieved by faster
projection methods at the expense of some performance.

A fast projection method based on Gram-—Schmidt orthogonalization [3,4,5]
provides significant computational savings compared with the SMI, Capon or
MUSIC techniques. This method employs direct orthogonalization of the complex
data vectors obtained from a sampled—aperture array to form a set of basis
vectors describing the interference vector space. This basis is used to construct an
adapted weight which is, ideally, orthogonal to the interference subspace and hence
ortho‘fonal to all jammer signals. It is essential that the signal be absent when
the data vectors are sampled in order to avoid cancellation of the desired signal.
This is a standard radar problem; one solution is to sample at certain time
intervals corresponding to ranges where it is known that there are no targets or
clutter returns.

In practice, the interference subspace is estimated with a small number of
data vectors corrupted with receiver noise, the estimate is not perfect and the
resulting Signal—to—Noise—plus—Jammer Ratio (SNJR) is reduced accordingly. The
estimation of the jammer subspace and the adapted weight vector require the
order of N3K complex multiplications as opposed to K3 in the SMI case. Here K
is the number of array elements and N is the number of data vectors used for
the orthogonalization. @When N << K, N?K << K3 and the technique is
considerably more computationally efficient than the SMI method. We use the
name Data Vector Orthogonalization (DVO) to describe this process and to
differentiate it from numerous other implementations of the Gram—Schmidt process.

A modified version of the DVO algorithm uses a data selection method

prior to Gram—Schmidt (GS) orthogonalization in order to choose the "best" M
data vectors out of a larger set, N, to provide an enhanced SNJR. The new
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approach, called Data Vector Selection and Orthogonalization (DVSO) gives
performance superior to DVO in terms of achievable SNJR for a given number of
complex multiplications [6).

Neither DVO nor DVSO benefit from averaging in the same way as do the
MUSIC and SMI methods. In the MUSIC and SMI methods, averaging is a
major contribution to the computational load — the other major contribution
coming from the determination of the weight vector which requires inverting the
covariance matrix for the SMI method or the calculation of the eigenvectors for
the MUSIC method.

We have developed two new algorithms [7] that incorporate averaging
techniques into the DVSO method to provide an enhanced SNJR. The first,
called DVSO-WAVER, averages repeated computations of the adapted weight
vectors. The second, called DVSO-COVAR, uses a data selection process for the
choice of the data vectors used in the formation of the covariance matrix.
Gram—Schmidt orthogonalization is then applied to the columns of the covariance
matrix. These two methods provide essentially the same SNJR as the SMI
method but require far fewer computations.

This report is an exhaustive simulation study of the relative performance of
fast projection techniques for adaptive nulling: DVO, DVSO, DVSO-WAVER and
DVSO—COVAR. In order to simplify the comparison, we have defined three test
cases designed to examine the effects of various jammer characteristics on the
relative performance of the techniques. Following the introduction, we describe the
signal and jammer characteristics, the simulation, the test cases and the basis of
comparison. We then describe each techmique in turn and its performance with
respect to the test cases. Finally, we carry out a comparison of the techniques.

2.0 SIGNAL AND JAMMER CHARACTERISTICS
2.1 SIGNAL CHARACTERISTICS

Radars commonly produce pulsed signals which have narrow bandwidths with
respect to the carrier frequency. Targets of interest are in the far field so that
the received signals arrive as plane waves. All evaluations are carried out for an
array steered in the broadside direction; the desired signal is therefore defined as a
plane wave arriving from the broadside direction. The results are applicable to
other steering directions provided account is taken of the reduced antenna gain
when the array is steered away from broadside.

2.2 JAMMER CHARACTERISTICS

Radar systems are usually narrow band; this means that the received
jammer wave front has nearly perfect spatial correlation over the face of the array
provided the time taken to cross it is small compared with the reciprocal of the
system bandwidth. Provided no radar reflections are received at the time of
sampling, the nth data vector at time t, is expressed as

L
Xp = z ji(tn) &g + Rp
=}




where L is the number of jammers, n, is a receiver—noise vector with mutually
independent components and power, E|my|2 = K ¢3, with K the number of array
elements. The quantity ji(t,S is a complex gaussian random variable representing
the ith jammer amplitude at time t,, and a; is a deterministic vector representing
the direction of arrival of the ith jammer defined as

aiT = [1, exp(j2ndsind;/})),..., exp(j2xd(K—1)sind;/))]

Here d is the inter—element spacing, and 6; is the direction of arrival of the ith
jammer. The sample vectors or "snapshots" are taken at such intervals that ji(tn)
and jij(tn.1) are completely independent.

3.0 SIMULATIONS AND PERFORMANCE MEASURES
3.1 MONTE CARLO SIMULATIONS

Monte Carlo simulations are used to evaluate the performance of the various
techniques. One hundred independent trials are carried out for each parameter
setting under test with performance measures averaged over these trials. Jammers
are simulated as a zero—mean complex gaussian process having perfect spatial
correlation over the array and zero temporal correlation from one data vector to
the next. This gives rise to a jammer amplitude that is Rayleigh distributed.
Receiver noise is also simulated as a zero—mean complex gaussian random process
but having zero spatial correlation over the array and zero temporal correlation
from one data vector to the next. The receiver noise power at the element level
is set at ¢2 = 104 The signal is simulated as a plane wave arriving from the
broadside direction with an amplitude such that the signal-to—noise-ratio, (SNR),
is zero dB at the element output. This allows convenient scaling of the results
for different SNRs: simply add the actual SNR in dB to the final
Signal-to—Noise—plus—Jammer—Ratio (SNJR) determined from the simulation. '

Almost all of the results are presented for a ten—element array of
omnidirectional elements with an element spacing of one half wavelength. In the
last section, however, we present results for a forty—element array in order to
demonstrate the effects of using a larger array. The smaller ten—element array
was used for the majority of the results to keep the computational load to a
reasonable level.

3.2 PERFORMANCE MEASURES

The ultimate measure of performance of an adaptive array is the
Signal-to—Noise—plus-Jammer Ratio (SNJR). We attempt to maximize this
quantity by wusing an adapted weight vector, w,, that discriminates against
jamming while causing a minimal loss of useful signal. A standard of comparison
is the optimal SNJR obtained when the adapted weight vector is computed using
perfect knowledge of the interference and noise covariance matrices. While the
true covariance matrix can be calculated in a simulation, it can only be estimated
in an operational situation. = Another important measure of performance is the
Improvement Factor which is the SNJR (dB) achieved with adaptive weighting
minus the SNJR (ng achieved with uniform antenna weighting. A final measure
of performance is the difference in dB between the optimal SNJR and the
achieved SNJR.  These performance measures will be averaged over the 100
Monte—Carlo trials at each parameter setting and plotted versus the number of
complex multiplications or against other quantities or parameters that will be
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defined for the individual techniques when these are described.
3.3 TEST CASES

We have specified three test cases, T;, T; and T3 which are designed to
test the effects of the number of jammers, the Jammer—to—Noise Ratio, JNR, and
the jammer positions.

3.3.1 TEST CASE T,

Here we have specified the Jammer—to—Noise Ratio, JNR, at the receiving
element output to be 40 dB. The number of jammers is designated as L. For
L=1, the jammer is at an angle of 6, = —17°. For L=3, we have three jammers
at 8, = -17°, 0, = 30° and ;= 65°. For L=5, the jammers are at §; = -30°,
02 = -17°, 03 = 30°, 04 = 50° and 05 = 65°.

3.3.2 TEST CASE T,

Here we have defined three equi—powered jammers at # = —17°, 6, = 30°
and 63 = 65°. We consider four values for JNR of 10, 20, 30 and 40 dB as
measured at the element level.

3.3.3 TEST CASE T,

In this case, there are three jammers. We have defined four scemarios: D,,
Dz, D; and D4.

6 62 s
Dy -20° 10° 35°
D2 20° 40° 60"
Ds -3° =30° —45°
D4 -17* 30° 65°

All jammers have JNR=40dB. Since a 10—element array with halfwave
length spacing has a beamwidth of about 13° and the array is steered to
broadside, D3 is a mainbeam jamming situation because of the jammer at -3°.
Since the achieved SNJR is much less for mainbeam jamming than for sidelobe
jamming, the SNJR results for D; are plotted separately from the results for the
other scenarios.

4.0 DATA VECTOR ORTHOGONALIZATION

A phased array is steered by means of a weight vector, ws, that provides
the phase weighting required to focus the array in the desired direction of search.
Projection t iques achieve am.mer cancellation by projecting ws; into a space
orthogonal to the jamming subspace; the resulting projection, the adapted weight
vector, w,, i8 orthogonal to the jamming by construction. Provided the jamming
gignals are well removed from the mainbeam direction, i.e. in the antenna
sidelobes, the mainbeam gain is only slightly reduced when w, is used instead of
\




Data Vector Orthogonalization (DVO) is an efficient method for estimating
the jammer subspace and computing the adapted weight vector. The set of M
orthonormal vectors, {vs}, spanning the interference subspace is generated directly
from N sample vectors, {xn}, using the Gram—Schmidt process. The statistical
independence of the coefficients, ji(tn), ensures that the interference subspace will
be spanned with approximately M=L sample vectors. We include within the
algorithm a test to determine whether or not jamming is present; if the power in
the first data vector falls below a preset threshold corresponding to_less than 3
dB above receiver noise, wa is set to ws and the procedure terminates. The
algorithm has seven steps:

Step 1 Initialize index, set m = 0
Step 2m=m + 1, Ux = Xu
Step 3IF m =1, ug’ = Un
ELSE

m-1
U = Ua - 2 (nM ) v
k=1
Step 4 Calculate va as
= A = 2Kos?

0 lug’ {2 ¢ A
IF v, = 0, DECIDE NO JAMMING, SET wa = w;, GO TO END

' [ |ua| lua’|2 > A
Ya' {

ELSE
Step 5 Calculate the statistic T as

det(VH V)] &

i 2
i,1|V1|

where V comprises the k < m non zero basis vectors as follows:
V = [v, V3.,V

Step 6 If T > Ar GO TO Step 2

ELSE




a) Calculate w,’ as

M
Wa' = Ws — 2 (Vallws) Vo

=1
b) Normalize as "

wa = W' [ | Wi
END

The algorithm has two thresholds, an internal threshold, A, which rejects bad data
vectors and an external threshold, At, which forces the continued collection of
data vectors and provides a termination criterion for the algorithm.

The use of the statistic, T, and its comparison to an external threshold,
At, as shown in step 5 of the algorithm, was proposed by Nickel [§l]. By adding
this procedure Nickel has convertecgl the DVO method of Hung and Turner [3] into
a data selection technique, albeit using a selection process which is less cient
than that of the DVSO method described in this report.

It is observed that T is a decreasing function of k where k is the number
of non zero basis vectors selected in the algorithm at the mth pass (k<m). As k
increases, T decreases towards the threshold Ar; when k is large enough, say
k=M, T falls below the threshold and the algorithm terminates. In general, the
lower the value of A, the larger the value of M and the larger the number of
data vectors that are considered. Thus, lowering At increases the SNJR up to a
limiting value beyond which no improvement is observed. As well the
computational load increases as At decreases.

4.1 COMPUTATIONAL COUNT

We first assume that N data vectors are used to compute M orthonormal
vectors spanning the jammer subspace.  An upper bound to the number of
computations required by the DVO technique is then (N2 +2.5M+.5)K + 0.5(N-1
complex multiplications, (N2 +1.5M — 0.5)K — 0.5(N—1) complex additions, (M+N
divisions and (M+1) square roots. Step 3 requires a variable number of
computations lying between 0.5M(M+1) and 0.5 N(N-1) complex multiplications;
therefore, the number of computations is a random variable for which the
expectation can only be estimated by means of Monte Carlo simulations. A large
external threshold, Ar, causes the process to terminate quickly with a moderately
high jamming residue.  Conversely, a small At causes the process to continue
longer, to consider more data vectors and to improve the estimate of the jammer
space; this results in lower jamming residues, a higher SNJR and a higher
computational load.

The complex multiplications are the dominant computational operations. As
a comparison, the SMI method requires S(K+1)K/2 + K3/2 + 2K? complex
multiplications where S is the number of samples used to form the covariance
matrix. For example, let S=2K, M=§, N=7 and K=50. The upper bound for
the GS orthogonalization is only 2855 complex multiplications as opposed to
195,000 for the SMI method. This decrease in computational load results in a
lower SNJR than is achieved with the SMI technique. The trade—off in
performance versus computational load will be examined in the following section.
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4.2 COMPUTER SIMULATIONS

Computer simulations have been performed to analyze the effect of different
parameters such as the number of jammers, the jammer strength, and the jammer
direction on the performance of the DVO method.

We first analyze the effect of the number of jammers using test case T,
Figure 1 shows the average SNJR as a function of At for L=1, 3 and 5. As
the pumber of jammers, L, increases, the average SNJR decreases. Moreover, as
the threshold, Ar, decreases, the SNJR increases. We also note that there is a
very small variation in SNJR (less than 1 dB) over the entire range of variation
of the threshold, A, in Fig. 1. We note that, in general, the optimum SNJR is
a decreasing function of L; Figure 2 plots the difference between the optimum and
average SNJRs to show the influence of an increasing number of jammers. Foi
small values of L the SNJR is only few dBs (2—3 dB) below the SNJR optimum.
As L increases, the SNJR deviates further from the SNJR optimum.

The external threshold, Ar, is directly related to the number of complex
multiplications. = Therefore, by varying this threshold, we can generate curves of
SNJR as a function of the number of complex multiplications. Figure 3 shows
the upper limit and the exact number of complex multiplications versus the
threshold for L=3. As Ar increases, the difference between the curves decreases.
Setting At at a high value limits the search to a small number of data vectors.
Figure 4 shows the average SNJR versus the number of complex multiplications
required for test case T, while figure 5 shows the improvement factor versus the
same quantity. As the number of jammers, L, increases, the achieved SNJR
decreases and the number of complex multiplications increases. Since the SNJR is
a weak function of Ar, it is advantageous to choose a rather high Ar to achieve
a good trade off between SNJR and the number of complex multiplications. From
Figure 5 we see that the improvement factor increases slightly as L decreases.

Computer simulations have been performed to analyze the effect of the
jammer strength using test case T;.  Figure 6 shows the average SNJR as a
function of Ar for three equi—powered jammers with JNR’s of 10, 20, 30 and 40
dB. As the JNR increases, the SNJR decreases. In contrast, however, the
improvement factor (IF) increases with JNR; this is shown in figure 7 where IF is
plotted versus the number of complex multiplications for different values of JNR.
This follows because: (1) the jammer space can be more accurately estimated when
JNR is high; and (2) the scope for improvement is much greater when JNR is
high. The decrease in the absolute value of SNJR as JNR increases, reflects the
fact that larger jammers lead to larger jamming residues.  While the jammer
space is more accurately estimated with larger values of JNR, this estimate is not
sufficiently improved to offset the effect of larger residues. The decrease in SNJR
as JNR increases is specific to the DVO technique; it is not observed for the
other techniques to be described.

Finally, computer simulations have been performed for various jammer
directions using test case T3 comprising three sidelobe jam 'n§ and one mainbeam
jamming  scenario. Figure 8 shows the average SNJR versus complex
multiplications for the sidelobe jamming scenarios D;,, D; apd Dy, The DVO
method provides essentially the same SNJR for the different jammer scenarios.
Figure 9 gives the results for the mainbeam jamming scenario, Dj; here, a.lthouih
the SNJR at the output is less than 0 dB, we get an improvement over the
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unadapted situation.  Figure 10 plots the improvement - factor versus complex
multiplications for the four jammer scenarios. @ We see that the improvement
factor for the sidelobe jamming situations has a spread of about 4 dB. Although
the average SNJR for the mainbeam jamming situation is less then 0 dB, a
improvement factor of about 38 dB is achieved; this is better than that achieved
for the sidelobe jamming scenario.

The DVO method is a very fast method to obtain the adapted weight
vector. The price paid for the small computational load is a lower SNJR than is
achievable with the SMI technique. A modification to the DVO technique is
proposed; by applying a data selection process prior to GS orthogonalization, we
trade off some computational efficiency to obtain an improved SNJR. This new
method is called Data Vector Selection and Orthogonalization.

50 DATA VECTOR SELECTION AND ORTHOGONALIZATION

The basis of the DVSO technique is the selection of the best M vectors
from a larger group of N vectors which are sampled when the signal is absent
and stored before the process begins. The selected M vectors are best in the
sense that they yield the highest SNJR as compared with any other set of M
vectors selected from the larger set of N. The selection process, the GS
orthogonalization and the computation of the adapted weight, w,, are combined in
a single procedure.

In the algorithm for determining ws, we use the following notation: {x}
comprises the set of N sample vectors, {uy} denotes the M best sample vectors
chosen from the {x,}, and {va} denotes the orthonormal basis formed from the
{ux} by the Gram—Schmidt process. The algorithm consists of nine steps:

Step 1 N snapshots {x,}, n=1...N, are taken when the signal is absent. Each
snapshot comprises a sum of the jammers and receiver noise. Calculate
Int = |xp|2 for n = 1..N. Set w3 = x, for n which gives a maximum It

Step 2 Calculate v, as )

w/ | uy lag]2 > A
v, = { A=2Kg?

0 fu f2< A
IF v, = 0, DECIDE NO JAMMING, SET w, = ws, GO TO END
The objective of this thresholding operation is to reject sample vectors which are
within 3 dB of the receiver noise. If v = 0, this means that the power in
every data vector is within 3 dB of the receiver noise power; therefore it is
decided that no significant jamming is present and the algorithm terminates.
Step 3 Calculate wy! as

wal = wy — (vifiwg)v;

where ws is the weight vector specifying the steering direction for the array.
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Step 4 m=2
Step 5 Determination of uy,.

Calculate I,®» = [(wa@ ) x4|2 for n=1..N.
gives a maximum [,m

Step 6 Calculate uy’ as

m-1
Ug — Z (vit ug) w

Step 7 Calculate |um’|?
Step 8 Calculate v, as

Set wp = x, for n which

U’ /|0’ | [wa’|? > A
Ym =

0 lua’ 2 ¢ A

Step 9 If vp # 0
a) Calculate wad = wa?! — (voll wam-t) v,
b) m+1
¢) Return to step 5
else
d)Calculate w, as
Wa = WaU /[ |wam|

e) End
The purpose of the threshold, A, is twofold: to ensure that vectors

associated with receiver noise are discarded and to provide a means of terminating

the algorithm.

The SNJR at the output of the array depends on
becomes large, the SNJR approaches an asymptote; this

the choice of N. As N
asymptote is lower than

the optimum SNJR which is approached asymptotically by the SMI method as the

number of sample vectors becomes large.
5.1 COMPUTATIONAL COUNT

For an iterative process terminating with M
algorithm requires

basis wvectors, the DVSO

C(M, K, N) = [K(1.5+N/2+4M+MN+M2)+MN/2]
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complex multiplications. In addition, we require [K(-0.5+N/2+3M+MN+M2)]
complex additions, M+2 divisions and M+2 square roots. If M << K, significant
computational savings over SMI method can be made. In the example given
previously for the DVO technique (M=5, K=10), if N=2M, the DVSO method
requires 5,100 complex multiplications which is less than twice the number of
complex multiplications required by the DVO method and far less than the
195,000 complex multiplications required by the SMI method. Compared with the
basic DVO algorithm, the DVSO version is more computationally demanding; it
must be realized, however, that the SNJR achieved is better than that of the
basic DVO algorithm.

5.2 COMPUTER SIMULATIONS

We first analyze the effect of the number of jammers on the performance of
the DVSO method using test case T, Figure 11 plots the average SNJR versus
N. As N increases, the average SNJR increases to a limiting value for a fixed L.
The SNJR is fairly sensitive to N which must be chosen large emough to provide
an acceptable SNJR. We also note that the performance is quite sensitive to the
number of jammers. As the number of jammers, L, increases, the SNJR
decreases. For one jammer (L=1), an SNJR value very close to optimum is
achieved with a small calculation load as shown in figure 12. Figure 13 shows
the improvement factor as a function of the number of complex multiplications.
As the number of complex multiplications becomes large, all of the curves for the
improvement factor approach an asymptote as shown in Figure 13.

Figure 14 illustrates the behavior of the algorithm for various JNR with
three equi—powered jammers using test case T,;. In contrast to the DVO method,
as JNR increases, it is possible to obtain an increased SNJR but at the expense
of a higher computational load as shown in Figure 14. We note that for very
high values of JNR, i.e. JNR=30 dB and JNR=40 dB, the SNJR curves exactly
coincide. Figure 15 gives the corresponding improvement factors as a function of
NNwith JNR as a parameter. As expected, the improvement factor increases with
JNR.

Figure 16 gives the curves for SNJR versus complex multiplications for
different jammer directions for the sidelobe jamming scenario. We see that the
performance of the algorithm doesn’t vary with the jammer direction provided the
jammers are in the array side lobe region.

Results for the mainbeam jamming scenario, D3, are shown in figure 17.
The parameter N must be chosen high enough to allow the method to null the
jammers. In the scenario shown, the SNJR is positive for N>12. The SNJR
achieved is small for the mainbeam jamming scenario (approximately .2 dB to .3
dB); 1t must be remembered, however, that this SNJR is calculated assuming 0
dB SNR at the element output. Therefore, any increase of the SNR at the
element level, adds, dB—wise, to the SNJR at the array output. Such an increase
can be achieved by coherent or non—coherent integration, and/or by designing a
system with a larger power aperture product so that a SNR > 0 dB is achieved
at the element level. The important point is that the SNJR is vastly better than
if no adaptive nulling was used (SNJR=-39.05 dB in this case). For a
10—element array, the maximum achievable SNJR under this assumption is 10 dB.
Adaptive nulling gives approximately 50 dB of jammer suppression in the
mainbeam at the expense of a 10 dB signal loss for an overall improvement factor
of 40 dB ~ a very useful performance in most circumstances.
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6.0 COMPARISON OF DVO AND DVSO

Both the DVSO and DVO methods combine GS orthogonalization and
computation of the adapted weight vector with a data selection process. In the
DVO method, the data selection process consists of eliminating those data vectors
associated with receiver noise while continuing to take new sample vectors until a
second, external threshold criterion is satisfied. The selection is carried out after
the GS orthogonalization. In the DVSO technique, the data selection process
consists of choosing the data vector that correlates the most strongly with the
current adapted weight vector; this occurs prior to GS orthogonalization. The
data selection process of the DVO method is not as efficient as that of the DVSO
method. In the DVO method, we eliminate data vectors that are not good
enough while in DVSO we select the best data vectors. Therefore the DVSO
method gives better results than DVO method in terms of SNIJR; the data
selection criterion, however, requires more computations.

Figures 18 to 20 plot average SNJR versus complex multiplications for an
array of 10 elements with L jammers for L=1, 3, 5 respectively. The DVSO
method provides a higher SNJR than DVO but at the expense of a higher
computational load. Note also that as L increases, the difference between DVO
and DVSO increases: for L=1, the difference is .8 dB while for L=5 the
difference is = 1.7 dB.

The DVSO and DVO methods require far fewer computations than does the
SMI method but at the expense of a smaller SNJR. The SMI method benefits
from averaging the data in the formation of the covariance matrix which reduces
the effect of receiver noise and jammer variability. In the following we present
two new methods for incorporating averaging techniques into DVSO and improving
the SNJR: the DVSO-WAVER and the DVSO-COVAR techniques.

7.0 INCORPORATING AVERAGING TECHNIQUES
7.1 DVSO WITH WEIGHT-VECTOR AVERAGING

In this technique we average repeated computations of the adapted weight
vector each obtained by using the DVSO method. We introduce a new
parameter, Q, the number of adapted weight vectors averaged. The new adapted
weight vector, w,, is given by

Q
Wa='—é—zwai

izl

where the w,; are the adapted weight vectors obtained with the DVSO technique.
Since this method involves weight—vector averaging, 1t is called the
DVSO-WAVER technique.

The computational load of the DVSO-WAVER technique is the sum of the
computational load of the DVSO technique for each adapted weight vector. We
define Mj as the number of basis vectors used in computin&‘ wai. Mj; is now a
random variable with a unknown probability function. he total number of
complex multiplications is obtained by summing those for the computation of each
Wai a8
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i C(M;, K, N)

iz1

where C(Mj, K, N), as defined for the DVSO technique in the previous section, is
the number of complex multiplications required to compute the ith adapted weight
vector for an array of K elements with M; data vectors from a set of N data
vectors. Since M; is a random variable, the average computational load is
estimated by means of Monte—Carlo simulations, using repeated trials with different
samples of the noise and jamming.

7.1.1 COMPUTER SIMULATIONS

Computer simulations have been performed to demonstrate the effect of the
number of jammers, L, on the performance of the DVSO—-WAVER method using
test case T, Figure 21 plots the average SNJR versus Q for an array of 10
elements with N=9 for L=1, 3 and 5. For each scenario, the curve for SNJR
approaches an asymptote which is below the optimal SNJR. In figure 22, we plot
the difference between the optimal and actual SNJR values versus Q for the
different values of L; the difference decreases as the number of jammers decreases.
The best performance is achieved when the number of jammers is small.

Figure 23 gives the curves of SNJR versus complex multiplications for the
three jammer scenarios. As L increases, the SNJR decreases and the number of
complex multiplications increases. Figure 24 shows the improvement factor versus
complex multiplications. = Provided that Q and hence the number of complex
multiplications are sufficiently large, the improvement factor increases as the
number of jammers, L, increases.

We next analyze the effect of varying the strength of jammers using test
case T,. Figure 25 shows the improvement factor versus complex multiplications
while Figure 26 gives the SNJR versus complex multiplications. As expected, both
the improvement factor and the SNJR increase with increasing JNR.

Finally, computer simulations have been performed for various jammer
directions using test case Tj;. Figure 27 plots the average SNJR versus Q for the
sidelobe jamming scenarios Dy, D2 and D4 obtained with N=9. We see a slight
variation in behavior for different jammer directions. Since the optimum SNJR
varies according to the jammer direction, we have plotted in Figure 28 the
difference between the optimum SNJR and the average SNJR versus Q for the
four different scenarios. The curves for D;, D; and D4 lie nearly on the top of
each other.  Figure 29 gives similar curves for SNJR versus the number of
complex multiplications for the sidelobe jamming scenarios, D;, D;, and D4. As in
Fig. 27, results for the sidelobe jamming scenarios are very similar. In contrast,
Figure 30, which gives the improvement factors versus complex multiplications,
shows significant ditferences for both the sidelobe and mainlobe jamming scenarios.
Again the largest improvement factor of about 41 dB is observed for the mainlobe
jamming scenario, D;. Improvement factors of 32—-38 dB were observed for the
sidelobe jamming scenarios.
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7.2 DVSO FOR ESTIMATING THE COVARIANCE MATRIX

This technique employs the DVSO method in calculating the covariance
matrix and processing its columns to obtain an adapted weight vector. The major
feature of this algorithm is its selection process: the best data vectors {us} are
chosen to form the covariance matrix. @~ We are thus able to obtain a good
estimate of the covariance matrix using fewer but higher quality data vectors than
in the conventional approach. The DVSO method is applied in order to find the
M best data vectors out of a set of N vectors {x,}. This process is repeated Q
times to give

Mt = ZMi

i=1

data vectors which are used to calculate the covariance matrix R:

My

i=1

The final step applies the DVSO method to the columns of the covariance matrix
to find an adapted weight vector.  This method is called DVSO—COVAR.

The number of computations required by the DVSO—COVAR technique is a
random variable; the mean number of calculations is estimated by Monte—Carlo
simulations. For a single trial evaluation of the adapted .eight, the number of
multiplications is

Q
ZC(Mi, N, K) — KQ + Mr K (K + 1)/2 + C(H, K, K)
i=1

where H is the number of columns used as data vectors to calculate the adapted
weight vector. The first three terms give the computations required for the data
selection while the fourth term is associated with the calculation of the adapted
weight vector. Note that since the covariance matrix has K columns, the
parameter N is set to K in the final term. Increased efficiency may be achieved
by using less than K columns. We have obtained some results showing that the
algorithm achieves the same SNJR when we use only L columns where L is the
number of jammers. This implies that L columns of the covariance matrix are
sufficient to describe the jammer subspace. The value of L is generally unknown;
however, we could choose N based on a rough estimate of the number of jammers
and achieve some additional reduction of the computational load. This saving will
be significant when N << K as is often the case. This factor was not considered
in the results presented in this report where the value of N was set to K.

The DVSO-COVAR  method requires more  computations than
DVSO-WAVER for a given Q but gives a higher SNJR as will be shown.
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7.21 COMPUTER SIMULATIONS

We first analyze the effects of having one, three and five jammers active
using test case T,. Figure 31 shows the variation of SNJR versus Q for L=1, 3
and 5 jammers with N=9. In all cases, the SNJR approaches an asymptote as Q
increases; however, the limiting asymptote decreases (i.e. performance drops off) as
the number of jammers increases. Figure 32 shows the difference (in dB) between
the achieved SNJR and the optimal SNJR as a function of Q. In all cases, the
difference appears to be approaching zero asymptotically but at a slower rate as
the number of jammers increases.

We now look at the computational load required to achieve a specific
SNJR. Figure 33 shows curves of SNJR versus the number of complex
multiplications for test case T; while Figure 34 shows the improvement factor. As
L increases, a higher computational load is required to achieve a given SNJR level
and the limiting SNJR decreases.

Using test case T, we now examine the effect of the jammer—to—noise
ratios, JNR, on performance for JNR values of 10, 20, 30 and 40 dB with N=9.
Figure 35 shows the variation of SNJR with complex multiplications while Figure
36 shows the improvement factor for JNR's of 20, 30, 40 dB. The SNJR curves
lie virtually on top of each other while Figure 36 indicates larger improvement
factors are obtained as JNR increases. We note however that the technique did
not work for JNR =10 dB i.e. an SNJR of about 1 dB was obtained. This
was remedied by lowering the threshold of the DVSO technique when applied to
the columns of the covariance matrix while keeping the same value for threshold
for the selection of the data vectors. We designate the threshold for column
selection as A; and choose A, = 0.2 Ke? ie. A; = A/10. Figure 37 shows
the curve for the average SNJR versus complex multiplications for JNR=10 dB
and compares this curve to the results previously obtained in Figure 35. We see
that with this variation the algorithm works also for weak jammers.

Test case T3 is used to examine performance as a function of jammer
directions. We have three sidelobe jamming and one main lobe jamming scenarios.
Figure 38 plots SNJR versus Q for the three sidelobe jamming scenarios while
Figure 39 gives the curves for the difference between the optimal and the average
SNJR (dB) versus Q for all four jammjn% scenarios with N=9. Figure 40 shows
the number of computations versus SNJR for the sidelobe jamming scenarios.

7.3 DVSO-WAVER COMPARED WITH DVSO-COVAR

Figures 41 to 43 show the SNJR for DVSO-WAVER and DVSO-COVAR
methods as a function of Q. We see that DVSO—COVAR always performs better
for a fixed value of Q. Moreover, as L increases the difference in SNJR between
the two algorithms increases — from about .1 dB for L=1 to 1 dB for L=S5.
Note that, for a given Q, the computational load of DVSO-COVAR is greater
than that of DVSO—-WAVER.

Finally, figure 44 gives simulation results for a mainbeam jamming situation

for the DVSO-WAVER and DVSO—-COVAR methods. The results of figure 44
are very similar to that observed for the sidelobe jamming situation.
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7.4 COMPARISON WITH THE SMI METHOD

Figures 45 to 47 give SNJR versus complex multiplications for
DVSO-COVAR, DVSO-WAVER, DVSO and SMI methods for L=1, 3, 5
respectively (test case T,). In Figure 45, when L<<K (in this case L K=.13, the
DVSO-WAVER method performs best for a SNJR below 9.3 dB and the
DVSO—COVAR method performs best for a SNJR above 9.3 dB. For this
example, the SMI method doesn’t perform as well as the two others. The
difference in performance between the DVSO-COVAR and the DVSO-WAVER
method is not very big for small L/K ratios. In Figure 46, for L=3 (L/K=.3),
we see that the three algorithms perform similarly even though DVSO-WAVE
performs slightly better for SNJR below 8.1 dB and DVSO-COVAR performs
slightly better for SNJR above 8.1 dB. Finally, in Figure 47, the four methods
are compared for L=5 (L/K=.5). In this case, the SMI method performs best.
We also note that the difference between DVSO-WAVER and DVSO-COVAR
increases with L. For L>K/2 the DVSO-COVAR method still provides a high
SNJR (at the expense of a high computation load); this is not the case for the
basic DVO and DVSO.

We now consider the effect of using a larger array with K=40 elements.
Figure 48 shows the SNJR versus complex multiplications for an array of K=40
elements with L=3 (using test case T,). The DVSO method provides a SNJR
about 3 dB below the ENJR optimum. We also see that the DVSO—-COVAR
method provides the same SNJR as SMI method but with 10 times fewer
computations. This final example illustrates the principal area of advantage of the
new techniques. They work best when the array is fairly large with a small
number of jammers in comparison to the size of the array.

8.0 CONCLUSIONS AND SUMMARY

We have compared the performance of four fast projection methods, DVO,
DVSO, DVSO-WAVER, DVSO-COVAR, with the performance of the
sampled—matrix inversion (SMI) method.

We first showed that both the DVO and the DVSO methods use a data
selection process but DVSO provides a better SNJR than DVO at the expense of
a higher computational load. We also showed that since DVO and DVSO do not
benefit from averaging techniques, they do not achieve as high a SNJR as does
the SMI method.

We then presented two new algorithms which use a combination of data
vector selection, Gram—Schmidt orthogonalization = and averaging techniques to
provide a high SNJR with a small computational load. It was shown that, when
the number of jammers, L, is small with respect to the number of array elements,
K, these two new algorithms are more efficient than SMI method i.e achieve the
same SNJR but require far fewer computations. Moreover, it was shown that the
DVSO-WAVER technique performs best for small SNJR but that DVSO-COVAR
performs best for higher SNJR. Finally we showed that for both techniques, the
SNJR approach a limiting asymptote as the number of multiplications increases —
DVSO—(E VAR approaches the optimum value while DVSO-WAVER has a
slightly lower asymptote.

While this study did not consider non—stationary jamming, it is believed
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that DVSO—-WAVER is likely to be more susceptible to blinking jamming than is
DVSO-~COVAR or DVSO itself.

Future work will consider the application of those techniques to
angle—of-arrival estimation.
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