
SRL-0058-TM
AR006W40

AD-A246 435

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

SURVEILLANCE RESEARCH LABORATORY
SALISBURY, SOUTH AUSTRALIA

TECHNICAL MEMORANDUM

SRL-0058-TM

DTIC BUFFERED SERIAL DATA CARD

ELECTE
FEB 2 619921

S 0 DG. FIELKE

Distribution: Approved for Public Release

0 COMMONWEALTH OF AUSTRALIA

-COPY No. ~2MAY199"I

92 2 20 045 9-40

AR-006440

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

SURVEILLANCE RESEARCH LABORATORY

SALISBURY, SOUTH AUSTRALIA
Accesion For

NTIS CRA&I
DTIC TAB
U.:*a nouried -

TECHNICAL MEMORANDUM Justification

SRL-0058-TM ByOv~t. ib~ubo- I

BUFFERED SERIAL DATA CARD DiJt

G. FIELKE

SUMMARY

NAVSTAR Global Positioning System (GPS) User Equipments (UEs) send out
navigation information in the form of blocks of serial data. The format and transmitting
rate of the data varies between UEs.

Several agencies within the Department of Defence require the collection of GPS UE
data.

As a personal computer general purpose data logging card was not available
commercially, it was decided to design and develop such a card to enable collection of
data from any GPS UE.

The card may be used to collect data from any source which transmits data at either
RS232 or RS422 levels.

This manual describes the operation of the Buffered Serial Data Card and the process of
writing user software.

DST0O

0 COMMONWEALTH OF AUSTRALIA

POSTAL ADDRESS: Director, Surveillance Research Laboratory,
PO Box 1650, Salisbury, South Australia 5108

SRL-0058-TM

TABLE OF CONTENTS

Page No

1. INTRODUCTION .

2. ADDRESSING0 THE BUFFERED SERIAL DATA CARD............. I

3. FUNCTIONAL DESCRIPTION..........................2

4. OPERATING SOFTNARE...........................4
4.1 Initializing the Card.......................4

4.1.1 Using Turbo Pascal......................5
4.1.2 Using a language other than Turbo Pascal..........7

4.2 writing a Main Program......................10
4.3 league Main Program........................12

5. CONCLUSION................................14

ACXOWLEDGMT 14

REFERENCES...............................15

LIST OF APPENDICES

I. SAMPLE MAIN PROGRAM LISTING........................16

LIST OF TABLES

1. ADDRESSING OFFSETS AND THE FUNCTIONS PERFORMED.............23

LIST OF FIGURES

1. Circuit Schematic............................24

2. Functional Unite Block Diagram.....................25

3. Flowchart of Initialisation Procedure..................26

4. Flowchart of an Operating Method....................27

SRL-0058-TM

1. 1XMWDUOCTO3

NAVSTAR Global Positioning System (GPS) User Equipments (UEs) send out navigation
information in the form of blocks of serial data. The format of the data, the
transmitting baud rate, the block size and the transmitting rate of the blocks
all vary between UEs.

Several agencies within the Department of Defence require the collection of GPS
UE data.

A personal computer (PC) can perform this function as well as displaying and
processing the data as it is being collected. Manufacturers of CPS equipment
provide software to enable the collection of data generated by their particular
equipment. A special card is generally required with the software which is
suitable for an IBM PC/AT or compatible.

A general purpose card was not commercially available.

It was decided to design and develop a card to enable the collection of data from
any GPS UE which provided either an RS232 or RS422 data port. The card is
designed to transmit and receive serial data at various rates up to 76.8 kilo
baud.

To facilitate the various serial data formats among GPS UEs, the card can be
programmed to receive or transmit any desired format. This can be done, using the
software provided, via a series of set up options which are menu driven. A 4k
byte data buffer is used to temporarily collect the incoming data prior to being
retrieved and stored by the PC.

The card and its associated software, although designed for use with GPS UEs, can
be used in any situation where serial data must be collected and stored.
It is a full length, switch addressable, 8 bit and IBM PC/XT/AT compatible card.

2. ADDf89ZXNG TE 3 RD NX TL D&TA CARD

The card is switch addressable within the 10 bit PC I/O addressing range, in 16
byte increments.

The base address is set by the DIP switch on the card and may be set to any 16
bit boundary. In order not to clash with any resident board in a PC, it is
recommended that the prototype address area (Hex 300-31F) be used. Therefore,
card addresses of Hex 300 and Hex 310 may be used. The card occupies 16
consecutive address locations beginning at the base address.

The card is initially set at the base address Hex 310. If the address space Hex
310-31F is not free, the base address must be changed by altering the DIP switch
setting.

DIP switch number 1 must be open while switch number 8 is not used (see circuit
diagram shown in Figure 1).

2

SRL-0058-TM

Switch number 1 enables or disables the card. Therefore, if this switch is
closed, the card is disengaged and cannot be addressed.

The following table indicates the switch positions which allow the card to be
addressed at Hex 300 and Hex 310 where

0 (Open) = 1
C (Closed) = 0

Address A9 AS A7 A6 A5 A4

Switch No. 1 2 3 4 5 6 7 8

Hex
300 0 0 0 C C C C X
310 0 0 0 C C C 0 X

Note that the 4 least significant address bits (A3 - AO) of the base address are
not set by the DIP switch. These bits are used by the operating software to
select and enable the card to perform specific functions. These bit values, and
the corresponding function that is executed, are outlined and explained in the
following section.

3. FUNCTIONAL D3SCmZI!IOn

The circuit diagram for the Buffered Serial Data Card is shown in Figure 1. The
operation of the card can be clarified by reducing the circuitry to the main
functional units as shown in the block diagram of Figure 2.
These units are listed and briefly described below

a) Baud Rate Generator
b) I/O Level Converter
c) DART : Dual Asynchronous Receiver/Transmitter
d) Dual Retriggerable Monostable Module
e) Read/Write - Data, Addressing Module
f) FIFO : First In/First Out Buffer

3.1 Baud Rate Generator

A crystal oscillator circuit and a latch are used to generate the receive
and transmit clock frequencies for the DART. The oscillator frequency is
divided by 5 and sent to a 7 stage binary counter to produce 7 discrete
clock frequencies which are in turn connected to the input pins of two 8
line to single line multiplexers. The multiplexers are separately
addressed; one to select the receiving data baud rate, and the other to
select the transmitting data baud rate.

The transmitting and receiving baud rates are selected through software,
as explained in Operating Software.

3.2 X/O Level Converter

This unit consists of RS232 and RS422 receivers and drivers, and a latch
which is used to select the desired interface. The desired interface is
software selectable by the user.

3 .

SRL-0058-TM

3.3 DART , Dual Asynchronous Receiver/Transiitter

The DART is used as a serial-to-parallel converter to receive data, and a
parallel-to-serial converter to transmit data. The DART programmable
options include 1, 1.5, 2 stop bits, even, odd or no parity, and 5, 6, 7
or 8 bit receive (Rx) or transmit (Tx) word lengths. It is used in the 16
times clock mode ie. the transmitter and receiver can handle data at a rate
of 1/16 of the clock rate supplied to the Tx and Rx clock inputs.

The clock on the PC bus - pin B20 of the expansion slot - is divided by 2,
buffered and used as the system clock for the DART. The PC bus clock should
be no more than 12MHz - twice the specified 6MHz system clock frequency of
the DART.

The DART has three 8 bit receive buffer registers and outputs a pulse on

the Wait/Ready line to indicate that data has been received.

3.4 Dual Retriggerable onosteble Module

When triggered, this module provides two pulses. One to read a data byte
from the DART, and another to write the byte to the FIFO buffer. This
process, once enabled by software, is hardware automated so that when data
enters the card, a pulse from the DART triggers this module to send the 2
pulses which transfer the data directly to the First In/First Out (FIFO)
buffer. The pulse widths are set by resistor/capacitor combinations.

The process can be enabled and disabled through the user software via a

start latch.

3.5 Read/Write - Data, Addressing Module

This module contains the interface logic between the card and the PC. The
data bus interface is bi-directional so that data on the PC data bus can
be written to the data bus of the card and vice versa.

Addressing the card in software serves to select the card (by using the
base address - see Addressing the Buffered Serial Data Card), and to enable
the card to perform a function by using the base address plus a 4 bit
offset.
The address lines A9-A4 of the PC are equated with the DIP switch setting
to enable the card. The least 3 significant bits of the offset, address
lines A2-AO, are connected to the select pins of a 3-to-8 line decoder. The
output lines of the decoder, along with the input/ouput read and write
lines from the PC, are connected to specific parts of the card circuitry,
such as latches and IC reset pins. When a decoder output line is set active
a particular function will be executed.
Bit 4 of the address, A3, is sent to the DART to select the type of
information (control or data) being transferred on the data bus.

The offset and the corresponding function the card performs, is shown in
Table 1.

4

SRL-0058-TM

3.6 IFO s Firat In/lFist Out Buffer

This circuit loads and releases data on a first in, first out basis. Hence,
no addressing is required. The FIFO buffer has a capacity of 4k bytes. Data
is toggled in and out by the use of its WRITE and READ pins.

The status of the buffer can be determined by inspecting, through software,
two flags which indicate

a) if data is present in the buffer (empty flag), and
b) if the buffer is full and an overflow has occurred (full flag).

The full flag is externally latched.

4. OPZRATIQ SOvTiN&Z

If Turbo Pascal is unavailable, the software to operate the card may be written
by the user in another language. A sample main program has been written, using
Turbo Pascal Version 4. to successfully initialise and run the card. The program
listing is provided in Appendix I, and may be used as a guide for the user in
writing a customised program.

The object code of this program can be supplied upon request.

The sample main program uses two Turbo Pascal Units (TPUs).
These units are :

a) 'menuinit.TPU' - used to initialise the card by leading the user through
a series of menus. The flowchart shown in Figure 3
illustrates the initialisation procedure.

b) 'std_cons.TPU' - contains a list of the names of the standard constants
used by both 'menuinit.TPU' and the sample main program.
The names and their values contained in this unit are
shown in the listing of the sample main program. These
names are used within the main program to improve its
readability.

The object code of these TPU files is available to assist in the initialisation
procedure.

The following describes how these units may be used in conjunction with a Turbo
Pascal main program, and how to initialise and run the card using another
language.

4.1 Initiallzng the Card

To initialise the card, control bytes which indicate the format of the
serial data to be transmitted or received must be written to the DART
circuit on the card. The interface type and the serial data baud rates must
also be selected.

5

SRL-0058-TM

4.1.1 Using Turbo Pascal

The TPU files are provided to initialise the card from a main program
if a Turbo Pascal compiler is available.

This is accomplished by using, in the main program, the following
procedure and parameters

list-set(www, aaa)

where

list-set is a procedure in 'menuinit.TPU' which
displays the first menu and then passes
control to other procedures within
'menuinit.TPU' to determine values for the
control variables which are used to set up
the DART chip.

www is a byte which is returned to the main
program by 'list-set' and corresponds to the
word length of the serial data to be

received. This byte is used to mask the
data bytes from the FIFO buffer.

aaa is the base address word of the card as set
by the DIP switch (eg. $310). This word is
sent to 'list-set' and used within
'menuinit.TPU to send the control bytes to

the DART.

List-set is declared in 'menuinit.TPU' as

PROCEDURE list-set(VAR www BYTE;

aaa WORD);

It was anticipated that the main use of this card would be in the
logging of data from Global Positioning System (GPS) user equipments
and hence the first menu in 'listset' lists the possible GPS
receivers that may be used :

Which GPS receiver is being used?

Magnavox MX4400 1
Raytheon Raystar 920 2
Rockwell Collins 3A 3
Texas Instruments T14100 4
Trimble Trimpack 5

None of the above 0

Other GPS receivers may be added later as the output data format is
known.

6

SRL-0058-TM

If the GPS receiver being used is not included in this menu, or a
data source other than a GPS receiver is being used, the user must
know the format of the serial data to be logged. In this situation,
the user chooses 'None of the above' and is led through the
initialisation by a series of menus.

The appropriate serial data parameters are selected from the
following list of format options

Interface RS232
RS422

Data Source Transmitting Baud Rate 76.8k 38.4k
19.2k , 9.6k
4.8k , 2.4k
1.2k , 600

Data Source Receiving Baud Rate 76.8k , 38.4k
19.2k , 9.6k
4.8k , 2.4k
1.2k , 600

Word Length : 5, 6, 7, 8 bits/chr

Parity : None
Odd
Even

Stop Bits : 1, 1.5, 2

After each selection is made, a control byte is assigned to a
variable. After the last menu selection, the bytes are sent to the
DART circuit to be initialised.

If a GPS receiver is selected from the first menu, a list of standard
preset parameters for that particular receiver is displayed. The user
is then prompted to verify these parameters. A typical example is
shown below.

Rockwell Collins 3A

Interface RS422
Transmit Baud Rate 76.8k
Receive Baud Rate 19.2k
Word Length 8 bits/chr
Parity Odd

Stop Bits I

Are these correct? (y/n) =>

If these are accepted, the card is initialised.

7

SRL-0058-TM

If not, the user is led through each parameter menu, as before, to
select the appropriate data format before the card is initialised.

When this has been completed, a byte is passed back to the main
program. This byte corresponds to the word length of the serial data
(as selected from the menus).

ie. Word Length Passed Byte
(bits/chr)

8 $FF 1111 1111
7 $7F 0111 i111

6 $3F 0011 1111
5 SlF 0001 1111

This byte is needed for word lengths of 5,6 or 7 bits to mask the
data byte from the FIFO to obtain the original data. The data bus
from the DART to the FIFO is tied high. This forces the unused bits
of a data byte (ie. D6,D7 for 6 bits/chr) to be set to '1'.
These unused bits must be reset to '0' before storing the data byte
on disk. This is accomplished by ANDing the data byte with the
corresponding word length byte shown above.

4.1.2 Using a language other than Turbo Pascal

The following explains how to initialise the card if a Turbo Pascal
compiler is unavailable or another language is preferred.

a) Setting the Transmit and Receive Baud Rates

To select a particular baud rate, a data byte is addressed to the
location [base address + 1]. The four MSBs of the data byte, D4 - D7,
select the card transmitting (Tx) data baud rate, while the four
LSBs, DO - D3, select the card receiving (Rx) data baud rate, as
shown in the table below.

D7 D6 D5 D4 Tx Baud Rate
D3 D2 Dl DO Rx Baud Rate

X 0 0 0 76.8k 76.8k
X 0 0 1 38.4k 38.4k
X 0 1 0 19.2k 19.2k
X 0 1 1 9.6k 9.6k
X 1 0 0 4.8k 4.8k
X 1 0 1 2.4k 2.4k
X 1 1 0 1.2k 1.2k
X 1 1 1 600 600

The address, and hence the desired Rx and Tx baud rates, is latched
until programmed differently.

SRL-0058-TM

b) Setting the Interface RS232/RS422

This selection is made by placing a '0' or 'I' on the data bus while
addressing the location [base address + 2].

DO = 0 selects RS232
DO = 1 selects RS422

This selection is latched until programmed differently.

c) Setting the Serial Data Format (see Reference 1)

The Z-80 DART circuit contains six write registers (WRO - WR5) and
three read registers (RRO - RR2) . The write registers are programmed
seperately by the user to configure the DART to receive or transmit
a particular serial data format.

Programming the write registers requires writing a byte to WRO to
select the required register. Hence, with the exception of WRO,
programming the write registers requires two bytes. The first byte
selects the appropriate register; the second byte is the actual
control word that is sent to the register. These control bytes are
addressed to location [base address + 8].

The control bytes for the first two registers are

WRITE REGISTER CONTROL BYTE

WRO $s18
WRI SEO

WR2 is not relevant to the operation of the card and is not used.

The control bytes sent to registers WR3 - WR5, depend on the serial
data format. The bytes can be determined from the following bit
assignments

WRITE REGISTER 3

D7 D6 0 0 0 0 0 1

where Q7 D6

0 0 :RX 5 bits/char
0 1 Rx 7 bits/char
1 0 Rx 6 bits/char
1 1 Rx 8 bits/char

9

SRL-0058-TM

WRITE REGISTER 4

0 1 0 0 D3 D2 Dl DO

where Dl DO

X 0 : No parity
0 1 Odd parity
1 1 Even parity

D3 D2
O 0 Not used

0 1 1 stop bit
1 0 1.5 stop bits
1 1 2 stop bits

WRITE REGISTER 5

0 D6 D5 0 1 0 0 0

where D6 D5
O 0 : Tx 5 bits/char
0 1 Tx 7 bits/char

1 0 Tx 6 bits/char
1 1 Tx 8 bits/char

See Reference 1 for more detail.

Example Configure the card to receive RS232 data, of the
following format, at 9600 baud and transmit at 38.4k
baud :-

Data format - 8 bits/chr

Odd parity
1 stop bit

The base address of the card is set by the DIP switch to Hex 310.

The following bytes would be sent to the address locations shown.

Address Byte

Hex 316 0 to reset the DART before

initialising. The byte has no
relevance during reset.

Hex 312 0 to select RS232.

Hex 311 Hex 13 to select Rx baud rate of 9600

and a Tx baud rate of 38.4k.

10

SRL-0058-TM

Hex 318 Hex 18 control byte for WRO to reset
the channel (Note : no pointer

required).

Hex 318 1 stored in WRO to select WRi.

Hex 318 Hex EO control byte for WRi.

Hex 318 3 select WR3.

Hex 318 Hex Cl control byte for WR3.

Hex 318 4 select WR4.

Hex 318 Hex 45 control byte for WR4.

Hex 318 5 select WR5.

Hex 318 Hex 68 control byte for WR5.

4.2 Writing a Main Program

Once the card has been initialised, the user may select software functions
to operate the card. The functions available and their description (see
also Table 1), are outlined as follows ;

a) enabling/disabling the process of writing incoming data directly to
the FIFO buffer.

This involves enabling/disabling the Dual Retriggerable Monostable
module via a start latch.

Writing a '1' to address location [base address + 41 will set the
latch to enable this process to occur.

This process may be halted, if desired, by writing a '0' to address

location [base address + 4].

b) inspecting the status of the FIFO buffer.

The full and empty flags of the FIFO buffer may be checked by reading
a byte on the data bus at address location [base address + 3].

This byte will contain information in the second (Dl) and third (D2)
bits which reveal whether data exists in the FIFO, and whether the

FIFO buffer has overflowed.

When Dl is high, the buffer contains data.

When D2 is high, the buffer has overflowed and data has been lost.

When these bits are low, the converse is the case.

11

SRL-0058-TM

The full flag is externally latched such that if the buffer
overflowed momentarily, the D2 bit of the status byte would remain
high, indicating that data had been lost. The latch remains set until
reset by software.

c) reading the data from the FIFO buffer.

When the buffer contains data, the first data byte is toggled out and
onto the data bus, and is read by addressing the location (base
address + 5].

d) clearing the full flag latch.

This latch is cleared by writing a byte to address location [base
address + 7]. The byte value is irrelevant.

e) transmitting data from the card.

To transmit data from the card, the DART is first initialised as
previously described. The data byte to be transmitted, bypasses the
FIFO and enters the DART in parallel form. It is converted to a
serial format and supplied with a start bit, parity and the selected
number of stop bits before being transmitted from the card at the
selected level - RS232/RS422.

The start latch must be disabled before transmitting data by writing
a '0' to address location [base address + 4].

The status of the transmit buffer of the DART must be continually
monitored to ensure error free transmission. This can be performed
by reading the contents of the DART read register RRO (see Reference
1). The third bit in this register (D2) indicates the required
status. Writing a '0' to the pointer register WRO (ie. to address

location (base address + 8]) will enable a read of RRO by assigning
the control byte of address location (base address + 81 to a byte
variable.

When the third bit of this byte is high ('1'), the transmitting
buffer is empty and a byte can be transmitted through the DART.

The data is sent through the card when addressed to location [base
address], ie. offset = 0.

f) operation using interrupts.

The Buffered Serial Data Card is equipped with the facility to be
interrupt driven for faster operation.

The empty flag of the FIFO is connected to a PC interrupt line via
a jumper on the card. This jumper is used to select the desired
Interrupt Request (IRQ) Level. Selection is made by placing the
jumper across the appropriately labelled pair of pins.

12

SRL-0058-TM

When the FIFO contains data, the empty flag and hence the selected
interrupt line go high.

The IRQ Level jumper is initially set to FLOAT to disable the
interrupt facility.

4.3 Sample Main Progrm

The basic flowchart for the sample main program is shown in Figure 4. It
illustrates the approach that may be taken to successfully operate the
card.

This program uses a polled technique rather than interrupts and hence the
IRQ Level jumper should be set to FLOAT.

The card is first initialised by entering the procedure 'list-set', as
previously explained.

The program then prompts the user for a disk drive letter to store the
data. The data files are assigned the names - RUN1.DAT, RUN2.DAT, RUN3.DAT
etc. The data file name is prefixed by the disk drive letter.

eg. A:RUNI.DAT

The process of incoming data being read from the DART and written to the
FIFO buffer is enabled.
However, the three 8 bit receive buffers of the DART will be occupied by
unwanted information from earlier GPS data blocks. These three bytes will
then be the first bytes to be transferred to the FIFO and stored to file.
Therefore, this program reads the first three bytes from the FIFO but does
not write them to the data file.

The message displayed on the screen during normal operation indicates
1) that the card is running,
2) the three options that may be chosen, and
3) the name of the data file.

The message is written to the screen once but never cleared during logging.
Hence it is continually displayed. The number of data bytes collected is
also displayed and updated.

The status of the FIFO buffer is continually monitored by polling.

When the FIFO empty flag indicates that the buffer contains data, a check
is made on the status of the latched full flag of the buffer. If the flag
has been set, data has been lost and a visual and temporary audible
indication is given. Data logging continues but the visual indicator
remains for the duration of logging to this particular data file, unless
the user intervenes.

If the full flag has not been set, a data byte is read from the buffer,
ANDed with the word length byte and stored in the data file. A count
variable is incremented to indicate the number of bytes collected.

13

SRL-0058-TM

If no data exists in the FIFO, as may occur during the interval between
successive incoming blocks of data, the number of bytes collected is
indicated on the screen.

After each data byte is read and stored in the file, a check is made on the
number of bytes stored to see if it has exceeded the preassigned limit of
340k. This limit is chosen to safely enable one data file per 360k capacity
floppy disk.

The keyboard action to execute the three options available to the user
during collection of data are :

1) 'q' to close the current file and quit
2) 'n' to close the current file and continue storing

incoming data to the next file
(with no loss of data)

3) 'r' to close the current file and ignore incoming data
until ready
(this is a temporary suspension of logging which
foregoes the need to reinitialise the card to continue)

If 340k has not been exceeded, a KEYPRESSED check is made (see Reference
2). If no key has been pressed, the program returns to reading the status
byte. This sequence of events continues until a key is pressed or the data
byte count reaches 340k.

When 340k bytes of data has been collected, program control is passed to
the procedure 'logged340'. This procedure gives an audible and visual
indication and prompts the user to either renew the floppy disk and
continue logging to a new file or to quit data logging.

When a key is pressed, the character is read and inspected. If the
character is 'q', 'n' or 'r' (or the uppercase equivalent) then the
corresponding function is executed.

On termination of logging, a final message is displayed indicating the
number of data bytes collected in the latest data file.

The FIFO buffer can store 4k bytes of data before overflowing and losing
the proceeding data.

When the logging is suspended, either by entering 'n' during the normal
process of logging data, or when 340k bytes of data has been stored, the
next 4k bytes of incoming data will be collected in the FIFO ready to be
read out and written to the next file.

If logging is resumed before the FIFO is full, no data will be lost.

As a guide, if data blocks of size X bytes are entering the card every
second, data loss will be prevented if logging is continued within about
4000/X seconds after its suspension.

t ..

14

SRL-0058-TM

5. CONCLUzON

The Buffered Serial Data Card is able to collect data from any RS232 or RS422
data source. The card plugs in to any IBM or compatible machine and is simple to
program in a suitable language.

The Buffered Serial Data Card has been used to collect data from a variety of GPS
receivers.
The card has been used with a Rockwell Collins UH receiver to record data at
76.8k baud and issue commands to the receiver at 19.2k baud. The card has also

recorded data from the following GPS receivers : Magnavox 4400, Raytheon Raystar
920, Magellan and Trimble Trimpack.

AC OWL3DG3U

Acknowledgment is made to Mr. Mark Knight, of SRL DSTO, who undertook the
hardware design phase of the Buffered Serial Data Card.

15

SRL-0058-TM

RBFB3RMcZB

No.

1 Zilog Components Data Book.
(z8470 DART)

2 Turbo Pascal 4 Users Manual
BORLAND International

16

SRL-0058-TM

APPENDIX I

SAMPLE MAIN PROGRAM LISTING

PROGRAM SAMPLE;

{ Ver 3.8)

This program is used in conjunction with the plug-in buffered serial data
card to log blocks of serial data onto floppy disk.

The buffer card must first be initialised to enable it to accept the
appropriate serial data configuration. Procedures which exist in the unit
'menuinit.TPU' are used to prompt the user to input the data configuration
ie. data source transmitting and receiving baud rates, word length, parity,
stop bits and whether RS232 or RS422 is being used. The buffer card is then
initialised to receive data in the particular configuration chosen.

After initialisation, the user is then prompted to input the disk drive
that the data is written to.
The program assigns a limit of 340k on the size of a data file created.
The data files are given the names RUN1.DAT,RUN2.DAT etc (prefixed by the

disk drive letter).

The program then enables the FIFO buffer to accept data. The number of
bytes written to the data file is updated on the screen when there is no
data in the FIFO.

The logging can be continued to another file on the same drive without
losing data or to another drive when ready (when logging is suspended,
incoming data is ignored).

When 340k bytes of data have been written, the logging is suspended and
a change of floppy disks can be accomplished. The data file name is then

incremented.

The FIFO buffer has a capacity of 4k bytes, therefore when it is desirable
to change file names, or when 340k bytes has been written, the next 4k
bytes of data is saved. If the logging of data is not resumed before the
buffer is full, the buffer will overflow and data will be lost. This is
indicated by a message on the screen when the data logging is continued
after its suspension. Hence, it is possible, if desired, to change disks
and continue logging without losing data. If blocks of data of size X bytes
are logged every second, the FIFO buffer will overflow 4000/X seconds
from the time the logging was suspended.

17

SRL-0058-TM

USES CRT,
stdcons, f unit containing constants used
menuinit; I unit containing initialising procedures

(The unit 'std~cons.TPU' consists of the following constants names
and their corresponding value

Setbaud = 1

Inselect = 2

Fifostat = 3

Fifostart = 4
Readfifo = 5
Rset = 6

Cirfulif = 7
Control = 8

CONST
cardbadd $310; (base address of the card as set up on

the DIP switch on the card

VAR
filename STRING[161;
fl FILE OF BYTE;

datacount LONGINT;
databyte BYTE;
status BYTE;
wdbyte BYTE;

x,y BOOLEAN;
filenum INTEGER;
drive CHAR;
action CHAR;
runx STRING[3];

IOCode INTEGER;
keycom CHAR;

(--- Procedure to write a message and to prompt for an appropriate ---- I
(--- action to be taken when 340k of data has been collected -----
--

PROCEDURE logged340(VAR keyin :CHAR I

BEGIN
SOUND(4000); (audible indicator
DELAY(100);

NOSOUND;

WINDOW(1, 1. 80, 25);
TEXTBACXGROUND(0);
TEXTCOLOR(15);
CLRSCR;
GOTOXY(,5I;
WRITELN)' You have collected 340k bytes of data - ,ilename,

is closed.');

18

SRL-0058-TM

GOTOXY(5, 11);
WRITELN(' If floppy drive is used, insert another disk and continue logging.

WINDOW(16, 7,64,9);
TEXTBACKGROUND (1);

TEXTCOLOR (7);

CLRSCR;
GOTOXY (1,2);
WRITELN(' Incoming data continues to enter FIFO buffer.')
WINDOW) 17, 13, 62, 20);

REPEAT
CLRSCR;
GOTOXY (1,2);
WRITELN(' Press 'If-' to immediately begin new file';

WRITELN(' on the samie disk drive,

WRITELN(' ''q'' to quit
WR ITELN;

WRITE(' =')

READLN(keyin);
keyin := PCASE(keyin);
IF NOT (keyin IN ['F', 'Q'1) THEN

BEG IN
CLRSCR;

GOTOXY(30,2);
WRITELN('Please enter again.');

DELAY (1000)

END;

UNTIL (keyin IN ['F', 'Q']);
WINDOW)1,1,80,25);
TEXTBACKGROUND(0);
CLRSCR

END; f of logged340

(-- Procedure to prompt for a disk drive to write the collected data to -

PROCEDURE prompt-drive) VAR disk..drv :CHAR

VAR keycom CHAR;

BEG IN
WINDOW(20,8, 61,10);

TEXTBACKGROUND)1);
TEXTCOLORM7;
REPEAT

CLRSCR;

GOTOXY (1, 2);
WRITE)' Enter TARGET drive ID)a,b,c,d,e) =>
READLN~disk-drv);
disk.drv :- UPCASE(diskdrv);

IF NOT (diak-.drv IN ['A', '', 'C', 'D', 'E']) THEN
BEGIN

CLRSCR;

19

SRL-0058-TM

GOTOXY(11,2);
WRITELN('Please enter again.');

DELAY(1000)
END;

UNTIL (diskdrv IN ['A','B','C','D','E']);

action := 'a';
WINDOW(20,13,59,15);

CLRSCR;
GOTOXY(3,2);

WRITELN(' Press a key when ready to begin.');
REPEAT UNTIL KEYPRESSED; (wait until keypressed
keycom := READKEY;
WINDOW(1,1,80,25);

TEXTBACKGROUND(0);
TEXTCOLOR(15);

CLRSCR
END; { of promptdrive I

******** **************** MAIN PROGRAM *********************

BEGIN
CLRSCR;
listset(wdbyte,cardbadd); (lists menus for serial data configuration

and initialises the dart chip on the serial
data card I

{ wdbyte is the mask for the FIFO data bytes

and depends on the data word length
TEXTCOLOR(7); { white
filenum := 1;

prompt-drive(drive);

the following REPEAT-UNTIL loop facilitates the logging of more
than one data file (of 340k) and enables consecutive data files
to have consecutive names

REPEAT

action := 'a';
x TRUE; (x = first time for buffer overflow
y TRUE; (y = logging data to a new file)

(x,y enable messages to be written to screen only
once but continuously displayed until cleared)

datacount :. 0;

REPEAT
STR(filenum,runx);
filename :- CONCAT(drive,':RUN',runx,'.DAT'); { assigns a name to the

data file
ASSIGN(fl,filename);
{$I-)
REWRITE(fl);
{SI)

20

SRL-0058-TM

IOCode IGResult;

IF IOCode <> 0 THEN
BEG IN

WINDOW(14 ,3,66, S)
TEXTBACKGROUND (1);
TEXTCOLOR (7);
CLRSCR;
GOTOXY (1, 2);
WRITELN(' Drive does not exist or is not ready Try again.';
TEXTCOLOR(15);

prompt..drive (drive);
END;

UNTIL IOCode = 0;
CLRSCR;

PORT[cardbadd + fifostart] :=1; (start the pulses to enable writing
the input data to the FIFO

the first three bytes in the FIFO is unwanted data which had resided in the
receive buffers of the DART - therefore read and discard

DELAY(l0);
databyte PORT[cardbadd + readfifo];
databyte PORT~cardbadd + readfifol;
databyte PORT[cardbadd + readfifo];

the following REPEAT-UNTIL loop writes data from the FIFO to
the data file until 340k has been collected or a key pressed

RE PEAT
IF y THEN Cdisplay message if logging data to a new

file or if resumed logging to a fileI
BEGIN
y :=FALSE;
WINDOW(13, 2, 65, 10);
TEXTCOLOR(7); {white (/high)

TEXTBACKGROUND(l); (blue C/dim)
CLRSCR;
GOTOXY (1,2);
WRITELN(' The buffercard is now running ... press =>)

WRITELN;
WRITELN(' -'q- to close current tile and quit ');

WRITELN(' 'In'' to close current tile and continue')
WRITELN(' storing incoming data to next file)

WRITELN(' ''r'' to close current file and ignore ')

WRITELNC incoming data until ready
WINDOWC1, l,80,25);
TEXTBACI(GROUND(O);
GOTOXY(lO,12);
WRITELN('Logging is suspended when 340k of data has been collected.'I);
GOTOXY(lO,14);
WRITELNC'Input data is loaded into file => ',filename)

END;

21

SRL-0058-TM

status PORT(cardbadd + fifostat]; (reads status of the FIFO

IF (status AND 2) = 2 THEN I if Dl is high je. if FIFO
contains data

BEGIN
IF ((status AND 4) = 4) AND x THEN f if D2 high ie. FIFO

has overflowed
BEGIN
SOUND(5000); {audible alarm

DELAY (100);
NOSOUND;
x :=FALSE;
WINDOW(20. 20, 59, 22);
TEXTBACKGROUND(l);
CL.RSCR;
GOTOXY (1,2);
WRITELN(' Buffer overflow - data has been lost');
WRITELN(l, 1,80,25);

TEXTBACKGROUND (0)
END;

databyte PORT[cardbadd + readfifol; { read byte from FIFO
databyte databyte AND wdbyte; { mask for word length
WRITE(fl,databyte); (write to file)
datacount :=datacount + 1 {increment count

END

ELSE

BEGIN
GOTOXY(30, 17);
WRITELN(datacount,' bytes') {display no. of bytes collected)

END;

IF datacount >= 340000 THEN
BEGIN

CLOSE(fl);

logged34o (action);
filenum : filenum + 1

END;

IF KEYPRESSED THEN
BEGIN

keycom READKEY; (read the pressed key
keycom UPCASE(keycom(;
IF keycom IN ('Q,,R', 'Nij THEN

BEG IN
WINDOW(l, 1,80,25);
TEXTBACKGROUND (0);
CLRSCR

END;
CASE keycom OF

BEGIN

CL.OSE(fl);
action

END;

22

SRL-O0058-TM

'N' BEGIN

PORT[cardbadd + clrfullf] C0; {clear overflow

flag)
filenum :=filenwn + 1; 1 increment file number

for next file
CLOSE(f 1);

WINDOW(9, 2, 71, 4);
TEXTBACKGROUNl(l);

CLRSCR;
GOTOXY (1,2);
WRITE)' The next 4k bytes of incoming data');
WRITELN(' is stored in FIFO buffer');
prompt-drive (drive);
action '= N'

END;
'' BEGIN

CLOSE(f 1);
PORT[cardbadd + clrfullfj 0; (clear overflow

flag)
filenum :=filenum + 1; (increment file number for

next file
PORT~cardbadd + fifostart) 0; (inhibit writing

incoming data to the FIFO
WINDOW(16,2, 64,4);
TEXTBACKGROUND(1);

CLRSCR;
GOTOXY(2,2);
WRITELN(' Incoming data ignored until logging

restarted');
promlt-drive (drive);

action : R
END;

END;
END;

UNTIL)action IN ['F', 'N', 'R', '0'));

UNTIL (action =IQ)
WINDOW(15, 6,65,10);
TEXTCOLOR(7);
TEXTBACKGROUND(l);
CLRSCR;
GOTOXY (2, 2);
WRITELN(' Logging complete. ');
WRITELN;
WRITELN(' ',datacount,' bytes collected in file => ',filename);
WINDOW(1,1,80,25);

TEXTCOLOR(15);
TEXTBACKGROUND (0);

END.

2:

SPL-, st-TM

TABLZ 1

ADDRZSSING O 'SXT8 AND T1E UNCTZONS PER'ORNED

The following functions are executed on the card by addressing, in software, the
location [base address + offset].

The base address is set by the DIP switch on the card, and the offset is shown
below.

A3 A2 Al AO OFFSET FUNCTION

0 0 0 0 0 Transfers a data byte from the PC to the
DART (which is then transmitted from the
card in a serial form).

o 0 0 1 1 Enables a coded data byte to select the
transmit and receive baud rates.

o 0 1 1 2 Enables selection of the RS232 or RS422
interface.

o 0 1 1 Reads the status of the FIFO (ie. reads the

full and empty flags).

o 1 0 0 4 Enables/disables the transfer of incoming
data to the FIFO by enabling/disabling the
Dual Retriggerable Monostable module vza the

start latch.

o 1 0 1 5 Enables the FIFO to output the following

data byte onto the bus to be read.

o 1 1 0 6 Resets the FIFO, FIFO overflow latch, DART,
and start latch.

0 1 1 1 7 Resets the FIFO overflow latch (only).

1 0 0 0 8 Transfers the control bytes to the DART
write registers for initialisation. Also
allows the reading of the DART read
registers (used in the process of writing

bytes out of the card).

i412 ZA47C

AR P-Y IL mm e

2. XI M A2 WR(CUIO KU 1111 or n I

X4 IS A 2S W C*6MI 10 (OffACM S . IMX3 IS AS 9 AY CMOI CONECCA
Aw

*

WT SE I OV I Iv 14

AOrS;A DA7 A05 AB A4 5 m OF 1s
DIP~~~~~~W SW12-r66 tmc

300 0 0 0 c I- c c X 21.
M0 00 0 C c. rC 0 x 15

w sUIYCO I CL.m T, -cc CARDUC K4I -

L.~j X4 0l a '

*0Sv0

CM741.203
C26j 21C2 mr7"M___ _ __ _ __ _

HIM30 7_ 5

-12v

Al -- 4

-Tm 7 L L.

10074

1 11100

L~i ____ ________ _,~~)As
Af

7'O j

F+3ur 1.0.1

24

SRL-O 058-I'M

1112 Z&47(

+5
1A 1 11---

MCv Ibi 14
74.3,4

3336 021 .~ 011 I.C 14 n RT CIOVIMLTW 1D 21
IN2 "04M 112 STAGE RIPPLE CAM aMI

3.0 2 Wi 1M GATE

I iL
4
_ -

w~z~ '00 i40Do100* PS ON -01 WS00 DOW RE04. TOS.N

______ __;_DI
To PEV A J1Ha OMDE YA To STAMC APtW LY OW I-

L~~~~~~~~T ___________AM0 0 ~ 0 PIN(S) 3ORE APPL4.1N SOLDER.

I ___7__

N10.2 A2 522 a
74M a SPARE.WTE

11 - W- C..1

ON 1

------ I~ -1 . i Mvi-i± ! A ,7L

-. , I I' -..
1

I3

er=3/Or01 u L 74144

74,0 Do 7ASINSR

iiur 41. Cici0c7ai ufee ea aacr

25

SRL-0058-TM
DOt&:

Selec IntefaceRS232

/ RS422

Selec Inteface /0 Level Conversion

IntrlceReceives Transmit

serial seial
fl atsaat

ResetR.. T. clocks

Sup-DART Ra us

D07 000

Dual Retriggerable
Bus Monostable Latch

TransceiverRet

L -0 ull lagIDa I Stan
I

Asseese
I I ~I I R.I"

Innterrupt'f FO Buffe

2Dan Laate

Islae/raserEmp ttus Reset

DII

Readt I Wr

L------------------__ Data, Addressing

RedWie Power

111 rit Rails

Dats
Bus Bus PC

Note: Dotted lines Indicate actual connections but used only during initialisation

Figure 2. Functional units - block diagram

26

SRL-0058-TM

[Receive Base Address

from Main Program
I

CotrlBye

SIcific UE SSectec List GPS UEs No UE StVectdPrompt for Selection 1-

Format for Chosen UE Tx Band Rate

Select Data Source
Sto Bi R t

A eRS232/RS422 A dAssign
to

Yes

I
Control BytesSSelect Wrd Length o Variables

Assign Control Bytes ets/Chr at Eachto Variables Selection

SSelect Number of

Stop Bits

Addrs Asige Vaibe

SDtrine and return the

igre Length Mask to
teMain Program

Figure 3. Flowchart of initialisation procedure -used in 'menu init. tpu'

27

SRL,-0058-TM

Initialise DART

Figue 4.fochar ofAsseigng miethd-ue nsmpemirga

SRL-0058-TM

DISTRXZIMXOlN

Copy No.

DEPARTMENT OF DEFENCE

Defence Science and Technology Organisation

Chief Defence Scientist

DSTO Central Office Executive

Counsellor, Defence Science, London Cnt Sht Only

Counsellor, Defence Science, Washington Cnt Sht Only

Navy Scientific Adviser (NSA)

Scientific Adviser - Army (SA-A) 3

Air Force Scientific Adviser (AFSA) 4

Scientific Adviser - Defence Central (SA-DC) 5

Aeronautical Research Laboratory

Dr. Robbin Miller 6

Library, ARL 7

Electronics Research Laboratory

Director, Electronics Research Laboratory

Surveillance Research Laboratory

Director, Surveillance Research Laboratory 9

Chief, Microwave Radar Division 10

Head, Microwave Radar Engineering 11

Mr. J Silby, Microwave Radar Engineering 12

Mr, A Padgham, Microwave Radar Engineering 13

Mr. D Ireland, Microwave Radar Engineering 14

Weapons Systems Research Laboratory

Dr. Dan Keenan 15

Joint Intelligence Organisation (DSTI) 16

Director of Departmental Publications 17

SRL-0058-TM

RANTAU 18

SA-DIO 19

Libraries and Information Services

Librarian, Technical Reports Centre, Defence Central
Library, Campbell Park 20

Manager Document Exchange Centre 21

US National Technical Information Service 22,23

UK Defence Research Information Centre 24,25

Director Scientific Information Services (Canada) 26

NZ Ministry of Defence 27

National Library of Australia 28

Main Library, Defence Science and Technology

Organisation Salisbury 29,30

Library, MRL 31

Librarian, DSD, Melbourne 32

Australian Defence Force Academy Library 33

British Library Document Supply Centre 34

Director Publications for AGPS 35

Author 36

Spares 37,38

DOCUMNT CONTROL DATA SHEET

Security classification of this Mae: UNCLASSIFEED

1 DOCUMENT NUMBERS 2 SECdU-RY CLASSIFICATION

a. Complete
AR Diocumnent: Unclassified
Number: AR-006-440 b. Titl, in

Isolation: Unclassified

Series c. Summary in
Number: SRL-0058-TM Isolation: Unclassified

Oter3 DO6WNGRADING IDELRM14G INSTRUCTIONS

Numbers:

4 TITLE

BUFFERED SERIAL DATA CARD

5 1PERSONAL AUTHOR (S) 6DOCUMENT DATE 7

May 1991

G.Fieke 77. 1TOTAL NUMBER

OF PAGES 27

7.2 NUMBER OF
REFERENCES 2

a 8.1 CORPORATE AUTHOR (S) 9 RFRNC UBR

a. Task: Air 89/215
Survefllance Research Laboratory

b. Sponsoring Agency:

8.2 DOCUMENT SERIES 1 OTCD
and NUMBER

Technical Memorandum
0058

IMPRINT (Publishing organisation) 12 COMPUTER PROGRAM (S)
Mote ($) and language ()

Defence Science and Technology
Organisation

13 FRELEASE LIMITATIONS (of the document)

Distibution: Approved for public release

Security classification of this pae: UINCLASSIFIED-'1

Security classification of this page: UNCLASSIFIED

14 ANNOUNCEMENT LIMITATIONS (of the information on these pages)

No limitations

15 DESCRIPTORS 16 COSATI CODES

a. EJC Thesaurus Global positioning system 170705
Terms 1205

b. Non - Thesaurus
Terms Buffered serial data card

17 SUMMARY OR ABSTRACT
(it this is security classified, the announcement of this report will be similarly classified)

NAVSTAR Global Positioning System (GPS) User Equipments (UEs) send out navigation information in

the form of blocks of serial data. The format and transmitting rate of the data varies between UEs.

Several agencies within the Department of Defence require the collection of GPS UE data.

As a personal computer general purpose data logging card was not available commercially, it was decided
to design and develop such a card to enable collection of data from any GPS LIE.

The card may be used to collect data from any source which transmits data at either RS232 or RS422 levels.

This manual describes the operation of the Buffered Serial Data Card and the process of writing user
software.

Security classification of this page: UNCLASSIFIED I

