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ABSTRACT

Chaos describes a class of motions of a deterministic system whose time
history is sensitive to initial conditions. Because of the sensitivity of initial
conditions, the response of a dynamical system may result in instabilities.
Hence, a study of nonlinear response of structures under the expected
frequencies of excitation becomes important. Chaotic behavior, for example,
may be found in the vibration response of large flexible space structures
including trusses, booms, and radio antennas. Methods of quantifying chaos
have been applied to flexible beams both analytically and experimentally. This
research effort investigates the effects of sensors, strain gages and
accelerometers, in studying chaotic motions. A long flexible beam is used to
model the chaotic behavior, which is also mathematically modeled as Duffing's
Equation. Time histories are recorded and analyzed using pseudo-phase space,
Fourier spectrums, Poincare sections, Lyapunov exponents and fractal

correlation dimensions. Comparison of the two sensors is also performed.
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I. INTRODUCTION

A. REASON FOR ANALYSIS

Many of the satellites currently being launched have highly flexible
components such as trusses and booms. Long, highly flexible booms and
trusses are used for gravity gradient stabilization, supporting large solar arrays
and radio antennas, and ensuring that humans and equipment are adequately
shielded from radioactive power generators in some proposed interplanetary
spacecraft. Deploying these trusses and booms and maneuvering the satellite
for attitude control and station keeping result in large displacements and
rotations of the tips. This leads to the presence of geometric nonlinearities in
the structure. Material nonlinearities are not usually present since the booms
and trusses are not deflected past their yield point and thus the linear stress-
strain law applies. Because of the geometric nonlinearities, it is appropriate to
model flexible space structures by nonlinear equations of motions instead of
linear ones. Duffing's Equation is one equation used to adequately describe the
nonlinear behavior due to the elastic effects of these large structures.

The presence of nonlinearities may result in motions which are impossible
to predict after long periods of time, yet completely deterministic since the
equations of motions are known. Slight changes in initial conditions produce
radically different outputs. These types of responses have been characterized
as "chaotic." Chaotic vibrations of spacecraft structures could result in control

problems.




B. SCOPE OF THESIS

The purpose of this theses is to demonstrate that chaotic vibrations can
occur in highly flexible space structures using theoretical and experimental
analyses. For the theoretical analysis, a flexible sheet of aluminum 7 ft. long, 3
in. wide, and 0.080 in. thick, was modelled by Duffing's Equations. This process
is described in Chapter IIl. For the experimental analysis, the same beam was
instrumented with strain gauges and accelerometers. The beam was then
shaken by an MB Dynamics Model PM500A Vibration Exciter and the time
histories of the strains and accelerations were recorded. This process is
discussed in Chapter IV. Data from both analyses were then analyzed using
the computer program, "Chaos,” developed by CDR Martinus Sarigul-Klijn,
USN, [Ref. 1].

In addition, the purpose of this thesis is to investigate the sensitivity of
sensors in detecting chaotic vibrations. The two most commonly used types of
sensors are accelerometers and strain gauges. Measuring accelerations may
be a more accurate method of recording the time histories of chaotic systems
since this includes inertia, damping, and stiffness terms of the mathematical
equations used to model the system. Strain gauges permit measurement of only
the stiffness terms of the mathematical equations used to model the system.
After a discussion of the Science of Chaos (Chapter II) the results of the

theoretical and experimental analyses will be discussed.




II. THE SCIENCE OF CHAOS

A. BACKGROUND AND PREVIOUS STUDIES

A deterministic system whose time history has a sensitive dependence on
initial conditions is one definition of a chaotic system [Ref. 2: p. 4]. Even though
the equations of motions which adequately describe a system are well known,
small changes in the initial conditions produce markedly different outputs. For
example, although there are many computer programs which can accurately
predict the weather tomorrow, there are no programs which can accurately
predict the weather for a day next year. Recognizing that chaos occurs in the
nonlinear deterministic models raises the hope of understanding the source of
this random-like behavior and possibly doing something to change it.

Although Henri Poincare observed chaotic behavior in the trajectories of
some celestial bodies at the beginning of the twentieth century, the science of
chaos is a relatively new field. It is one which essentially became possible after
the birth of the computer which not only allowed numerical integration of
systems of mathematical equations, but also shorter and shorter time intervals
at which experimental data could be obtained. In the 1960's Edward Lorenz of
MIT used a computer to numerically integrate twelve differential equations
which described a crude model of the weather. In his simulations he found
dramatic differences in output for subtle changes in input. [Ref. 3: p. 51] Since
then, many other researchers have used computers to investigate chaotic
behavior in virtually every field including mathematics, biology, chemistry,

ecology, economics, physics, medicine, meteorology, and engineering. James




Gleick presents an interesting and easy-to-read development of the science of
chaos in Chaos: Making a New Science [Ref. 4].

The chaotic behavior of flexible space structures has been studied by
Moon and Li. In their analysis of a 3.5 meter long 3-D truss, they found that the
free-play in the joints of the structure resulted in chaotic motion and modal
frequencies considerably lower than those determined by linear methods.
Chaotic dynamics in this structure and other space structures might make it
difficult to design active controls to damp out transient dynamics. [Ref. 5] In
addition, chaotic dynamics leads to inaccuracies in linear finite element models
which are currently used to obtain modal analysis during the design of
spacecraft. The results of the Low Power Atmospheric Compensation
Experiment (LACE) may lead to improvements of these finite element models.
[Ref. 6]

In another study by Moon and Shaw, chaotic vibration were observed in
an elastic beam with non-linear boundary conditions. For certain values of
forcing frequency and amplitude, the periodic motion became unstable and
nonperiodic. The results were typical of a class of mechanical oscillators with

play or amplitude constraining stops. [Ref. 7]

B. GEOMETRIC AND TOPOLOGICAL METHODS OF CHAOS
The purpose of this section is to describe several methods which have been
developed for detecting chaotic behavior in dynamical systems. The methods
which are discussed are time series, phase plane, frequency domain, Poincare
section, Lyapunov exponent, and fractal correlation dimension. The first four
methods are more qualitative in nature. and answer the question: Is chaos

present? The last two methods, Lyapunov exponent and fractal correlation




dimension, are more quantitative in nature. Generally, when determining if
chaos is present in a system, several of the above methods are used since
applying one method by itself is not always indicative of chaotic motion.
1. Time Domain Analysis

The traditional way of observing signals is to view them in the time
domain. This is simply a record of what is happening to a parameter of the
system versus time. Sometimes the first indication of chaotic motion is that the
parameter observed exhibits no pattern or periodicity. This test is not always
conclusive, since the motion observed could have a long period behavior that is
not readily observable. In addition, some nonlinear systems may appear non
periodic, but can be broken down into several periodic signals. [Ref. 2: p. 42]

Figure 2.1 illustrates both the nonperiodic nature of chaotic signals and
also the sensitive dependence o:i initial conditions. Thompson and Stewart

numerically integrated the Duffing's equation

% + 0.05% + x> = 7.5 cos t (2.1)

to produce the time history in the figure. The ragged appearance persists for as
long a time as the integrations are carried out. There is never an exact
repetition of any part of the signal--it is truly nonperiodic. The figure also
illustrates that for slight changes in initial conditions, the trajectories quickly

diverge. [Ref. 8: p. 4]




2. Frequency Domain Analysis

Because of the problems encountered when trying to detect chaos from
the time domain, the frequency domain, or Fourier Spectrum, is primarily used.
Observing the signal in the frequency domain will instantly reveal if the signal is
made up of a sum of periodic signals. Chaotic vibrations will exhibit a broad
spectrum of frequencies in the output when the input is a single frequency
harmonic motion. Subharmonics and Superharmonics of this frequency will
appear not as sharp spikes like the excitation frequency but as rounded hills.
Once again, this test is not always conclusive since multiharmonic outputs may
result from hidden degrees of freedom of which the observer is unaware. In
order to detect chaotic vibrations in large degree-of-freedom systems, it is
necessary to observe changes in the spectrum while one parameter such as
driving amplitude or frequency is varied [Ref. 2: p. 47].

Figures 2.2 and 2.3 show the Fourier spectrum for a periodic signal

generated by the equation

% =3 cos (4 1) (2.2)

and the chaotic signal of Equation (2.1) respectively. Notice that Figure 2.2 has
a sharp spike only at the excitation frequency while Figure 2.3 has multiple,
broadband spikes at frequencies other than the excitation frequency of 0.16 Hz.
3. Phase Plane
A dynamical system consists of two parts: the state (essential
information about a system) and the dynamic (rule that describes how the state

evolves with time). The motion of the system can be visualized in a state space




or phase plane. The phase plane is a construct whose coordinates are
components of the state. The coordinates, therefore, depend on the type of
system being studied. A mechanical system will usually use position versus
velocity. A simple example to describe this is the motion of a pendulum. All
that is needed to determine its motion are position and velocity. The state is
thus a point on the phase plane. Newton's Laws provide the dynamic,
expressed mathematically as a differential equation, that describes how the
state evolves. Without the presence of friction, the pendulum traces out a circle
or orbit in the phase plane. When friction is present, the orbit spirals in to a
single point or attractor. [Ref. 3: p. 49] This describes the motion of a simple
non chaotic system. The orbits of chaotic systems never close or retrace
themselves. Thus, the trajectory of the orbits will tend to fill up a section of the
phase plane. Once again, this is not always a conclusive test for chaos.

The pseudo-phase plane is another technique which has been used
when only one variable is able to be measured. This technique was discovered
by scientists at the University of Santa Cruz while analyzing a dripping faucet.
They constructed a pseudo-phase plane using a measured variable and a time-
shifted version of the same measured variable. Takens later proved that a
pseudo-phase plane exhibited the same characteristics as a phase plane. [Ref.
4: p. 266] The choice of the time shift or embedding time will shrink or
expand the orbit about the line y = x. Dvorak and Klaschka have proven that
an embedding time between five and eleven time intervals produces a pseudo-
phase plane with the least amount of bias [Ref. 9]. Chaotic motions exhibits the

same characteristics in the pseudo-phase plane as they do in the phase plane.




The pseudo-phase plane for the periodic signal appears as a circle as
expected (Figure 2.4). This signal constantly retraces itself. As seen in Figure
2.5, the pseudo-phase plane for the chaotic signal of Equation (2.1) never
retraces itself and fills up a section of the plane.

4. Poincare Section

The Poincare section is constructed by passing a two-dimensional
surface through a three-dimensional phase space and observing where the
points of the trajectory intersect the plane. This slice can be made through an
infinite number of locations to reveal the internal structure of the trajectory.
Periodic signals, such as an undamped pendulum, have one point on the
Poincare section while signals with multiple harmonics produce a finite number
of points on the Poincare section. If the Poincare section does not consist of a
finite set of points or a closed orbit, the motion may be chaotic. In undamped or
slightly damped chaotic systems, the Poincare section appears as a cloud of
unorganized points. In damped chaotic systems, the Poincare section appears
as an infinite set of highly organized points which look like parallel lines. If after
several enlargements the structure continues to exist, the system is described
as having a strange attractor. This embedding of structure within structure is
referred to as a Cantor set after the mathematician George Cantor (1845 -
1918). [Ref. 2: p. 52)

Figure 2.6 is the Poincare section of the periodic signal. Notice that
there is only one point in the top right hand corner. The damped, chaotic signal,
however, appears as a set of points forming parrallel lines as shown in Figure
2.7. If this figure were enlarged, the same pattern would emerge after each

enlargement. This is referred to as the self-similar property.




S. Lyapunov Exponent

The Lyapunov exponent is a measure of the average rate of
divergence of trajectories initially separated by an infinitesimal amount. A
system is chaotic if it has one or more positive Lyapunov exponents, which
means nearby trajectories are diverging [Ref. 10: p. 323]). Lyapunov exponents
have proven to be a useful dynamical test for chaotic systems. Since nearby
trajectories correspond to nearly identical states, exponential divergence
between the trajectories means that predictability of the system is rapidly lost.
Systems with subtle, unresolvable initial differences quickly behave differently.

[Ref. 11: p. 285] The Lyapunov exponent, A, is defined as

d@y=d 2 (23)
or
d(v)
A= 17 log, (=) (2.4)
where : d is the initial distance between the two trajectories

d(t) is the distance at a later time, t

As indicated in Equation (2.4) a positive exponent means that 'd(t)' is greater
than 'd’ and the trajectories are diverging. A zero exponent indicates 'd(t)' and
'd' are the same and the trajectories coincide. A negative exponent indicates
'd(t)' is less than 'd' and the trajectories are converging.

A system with n degrees of freedom has a set of n exponents, called
the Lyapunov spectrum. This spectrum characterizes the divergence of the
trajectory in n directions. In order to understand the meaning of the Lyapunov

spectrum, imagine a sphere of neighboring points in the phase space about a




central point on the trajectory. As the points evolve with time, this sphere will
deform. If one axis is diverging exponentially the sphere stretches along that
direction. If another axis is converging, the sphere shrinks along that direction.
Algorithms are available to calculate the exponents of the spectrum from the
measurement of a single observed state by constructing the pseudo-phase
space. [Ref 12: p. 89] The program "Chaos" uses a method developed by
Wolf et al [Ref. 11].
6. Fractal Correlation Dimension

The fractal correlation dimension is defined as
C@) =r¢ 2.5)

where: C(r) is the probability that a point on the attractor is within a
circle, sphere, or hypersphere of radius 't
r is the radius of the circle, sphere, or hypersphere
d is the fractal correlation dimension.
Solving for 'd’ in Equation (2.5) yields

a=tim (L0 2.6)

C(r) may be calculated by constructing a sphere at each point on the

trajectory and counting the number of points in each sphere, such that

N N
Cw =tim L3 3 H(r-x;- x)) 2.7
N i j

10




where: H(s) is the Heaviside function and is equal to one if 's' is greater

than zero and equal to zero if 's' is less than zero
I xj - xj |is the Euclidean distance between points
N is the total number of points [Ref. 2: p.217]

The procedure used in the "Chaos" program by Sarigul-Klijn to

compute the fractal correlation dimension is described below.

1.

Start with a point on the attractor and calculate the number of points
inside a circle of radius, r.

Calculate the probability C(r) by dividing this number of points by the
total number of points in the attractor.

Repeat this for several points along the attractor.
Compute C(r) for several values of r.

The slope of log[C(r)] versus log(r) yields d, the fractal correlation
Eili{mfenlsion,8 8f;)r e chosen number of pseudo-phase space dimensions.
ef. 1: p. 88].

Repeat steps 1 through 5 for higher pseudo-phase space dimensions to
obtain an asymptotic estimate of the fractal correlation dimension for the
dynamical system.

Nonchaotic systems have integer fractal correlation dimensions such as

an equilibrium point (zero), limit cycle (one), or toroidal attractor (two). The

fractal correlation dimension of a chaotic system is non-integer and is

independent of the dimension of the phase space used for the calculation. [Ref.

13: p. 101]
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III. THEORETICAL ANALYSIS

A. DUFFING'S EQUATION
The mathematical equation which describes the motion of a nonlinear

elastic beam is represented by the well-known Duffing's equation.

mv +cv + kv + kav3 = Acos ot (3.1

where: m = mass of the beam
¢ = damping coefficient
k1 = linear stiffness coefficient
k3 = nonlinear stiffness coefficient
A = amplitude of the excitation
o = frequency of the excitation

v = transverse displacement of the beam

Once the coefficients of the Duffing's equation are known it can be integrated
numerically to solve for the displacement, velocity and acceleration of the tip of
a cantilever beam. A fourth order Runge-Kutta scheme (see Appendix A) was
developed to perform the integration. The following methods are used to
determine the coefficients using the properties of a beam made of 7075-76

sheet aluminum listed in Table 3.1.

19




B. ASSUMED MODES METHOD

In order to determine the coefficients to be used in Duffings equation, the
assumed modes method is used. This method is an extension of the principle
of virtual displacements and is used to produce a generalized parameter model
that approximates the flexible behavior of the beam. A virtual displacement is
an infinitesimal, imaginary change in the displacement of a system as shown in
Figure 3.1.

The dotted curve in the figure shows the virtual displacement, dv(x,t), of the
beam. It must satisfy the same boundary conditions as the actual displacement,
v(x,t)--the solid curve in Figure 3.1. The virtual displacement is not a function
of time in the same sense as the actual displacement but is rather a small
change of configuration relative to the configuration of the beam at the time "t"
[Ref. 14: p. 33].

To create the single degree of freedom model, the deflection of the beam

may be approximated by

v(x,1) = y(x) B(t) (3.2)

Similarly, the virtual displacement is given by
dv(x,t) = y(x) d(t) (3.3)
The shape function, y(x), may be any admissible function which adequately

describes the behavior of the system and possesses derivatives of an order at

least equal to those specified by the boundary conditions. The generalized

20




displacement, U(t), is the solution to Duffing's equation. [Ref. 14: p. 34] The
shape function which is chosen is the characteristic function for a clamped-free

beam.

vE©) =VZsin GE-Ty+exp (7 &) +exp (-5 (1-8) (3.4)

where & is the beam coordinate, nondimensionalized with respect to the length,
L, and varying between O and 1. [Ref 15: p. 439]
The boundary conditions for a cantilever beam are
BC1: v(0,t)=0
BC2: von=0

BC3: v'@L,t)=0
BC4: v"L,)=0 (3.5)

where (') indicates the derivative with respect to the spatial coordinate x.

The first boundary condition states that there is no displacement at the fixed
end while the second states that its slope must also vanish here. The third and
fourth boundary conditions state that there must be no moment and no shear
forces at the free end. Applying the boundary conditions of Equation (3.5) to
the shape function of Equation (3.4) gives only a 0.7% error in amplitude at the
midpoint. [Ref 16: p. 1014]

The first and second derivatives of the shape function will be necessary in

determining the coefficients for Duffing's equation. Subsequently,

v'(©) =V712:COS(’§§-§)-12L:XP(-§§) +12Le:p(-12L(l -£) (3.6)
V'@®) = - V2 L= sin Gs-5 +1§—CXP(-12L§)+15—CXP(-12L(1 -8) a7

21




The principle of virtual displacements states that the combined virtual work

of all forces must be zero. More explicitly this is stated as

where Wy, is the virtual work of nonconservative forces, dV is the change in
strain energy of the system, &Wdamp is the virtual work of damping forces,
and dWinert is the virtual work of inertia forces [Ref. 14: p. 34].
1. Mass Coefficient Determination
Solving for the virtual work of inertia forces will yield the mass term, m,
of Duffing's Equation (3.1). Since the inertia force per unit length is distributed

along the beam, the virtual work of inertia forces is

L
OW . en =j -pA ¥V dv dx
0

= -pAL f w2 dE © &0 (3.9)

Using the values for density, area, and length of the beam contained in Table
3.1 and numerically integrating using MATHCAD (see Appendix B), the work

done by inertia forces is

SWinen = 1.0360 x 10! 9 89 (3.10)

Therefore, the mass coefficient, m, of Duffing's equation is 0.10360 slugs.
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2. Stiffness Coefficients Determination
If a beam is modeled as shown in Figure 3.2 with coordinate axes x, y,
and z and corresponding displacements u, v, and w, it can be shown [Ref. 17: p.

22] that the strain in the x direction is given by the following equation:
_ou, 1{0u? 9v2 w2
Exx —a—x+{(§;) +&5 + &Y ] @3.11)

Assuming that all higher order terms are negligible except for (dv/dx)2 (small

strain, large rotation assumption), the above equation becomes:

_Ou  1,0v.?
&x =57t (3.12)

Applying the classical Euler-Bernoulli assumption that cross sections are
assumed to remain planar and normal to the centroidal axis after deformation

[Ref. 18: p. 152], it can be seen from Figure 3.3 that

u=-ytan6, (3.13)
tan 6, = Q¥ (3.14)
Subsequently
u=-yde (3.15)
Ju 2
it b (3.16)

23




Substituting Equation (3.16) into Equation (3.12) yields

_ 4y , 1d%vy?
Exx = Yb +-2—(dx;) 3.17)

The expression for the strain energy of a beam undergoing transverse

deflection is given by [Ref. 19: p. 169]

L
V=%f Gy £ dx dA (3.18)

Because the beam under study is not deflected so the material passes its yield

point, it behaves as a Hookean material such that
Oxx = E Exx (319)

Therefore the strain energy becomes

L
E f €3, dx dA (3.20)

Squaring Equation (3.17) and substituting it into Equation (3.20) yields:

L
_ 2,2 24 . 1 4] (3.21)
v-gl [y%g;) 'y%)ﬁx—z*z%) dx dA
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If the intersection of the y and z axes lies at the centroid then

f y2dA = I, (3.22)

f ydA=0 (3.23)

Therefore, Equation (3.21) becomes:
L 5 L
=El| @ EA | dv) (3.24)
Vv Zjo(dxz)dx+ 3 fo(dx)dx

Applying variational calculus, Equation (3.24) becomes

§V=EI d_d_ﬁ_dx Ea (d_)3®_dx (3.25)
| dx? dx? A
which can be written
OV=E If v" (SV)" dx + . j v' )3(8V) dx (326)

Substituting the derivatives of Equation (3.2) and (3.3) and substituting
Equations (3.6) and (3.7) into Equation (3.26) yields

oV =EII (w")?- 9 89 dx +%_I (\I")4 93 59 dx (3.27)

0
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Substituting in the values from Table 3.1 and numerically integrating using

MATHCAD (See Appendix B), Equation (3.27) becomes

SV = 1.5433 x 1029 89 + 4.5943 x 10! 93 59 (3.28)

From Equation (3.28), the linear and nonlinear stiffness coefficients, kjand k3,
are seen to be 0.015433 Ibs/in and 45.943 1bs/in3 respectively.
3. Damping Coefficient Determination
If the beam is assumed to be modelled by a linear single degree of

freedom system the damping coefficient is given by

ca=2Vkym { (3.29)
where: € = viscous damping factor

The values for k1 and m were determined previously. In order to
determine the viscous damping factor, the logarithmic decrement method was

used [Ref. 14: p. 62]. The logarithmic decrement, , is defined by

a:nu%:““i (3.30)
Q 1-¢

where: Up = amplitude of motion at beginning of cycle
UQ = amplitude of motion after N cycles

N = number of cycles
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The above equation is used to solve for the viscous damping factor by
displacing the tip of the beam and then measuring the two amplitudes, Up and
UQ, and counting the number of cycles between the two measurements. These
measurements were performed on an air table in the Flexible Spacecraft
Simulator Laboratory of NPS as shown in Figures 3.4 and 3.5. The beam was
horizontally mounted on the table and an air pad was attached to the tip of the
beam. The tip was then deflected and the resulting motion achieved essentially
without friction. The values for Up, UQ, and N appear in Table 3.2. Using
Equation (3.30), the average viscous damping factor, {, was determined to be
6.67x10-3 or approximately 0.7%.

The virtual work of the damping forces is given by

L
8Wdamp = -f Cd\'/ dv
0

=-c4 f Y2 dE & 89 3.31)

Substituting in the value for cq obtained from Equation (3.29) and numerically

integrating once again yields

8W damp = 2.5654 x 103 § 89 (3.32)

Therefore, the damping coefficient, ¢, of Equation (3.1) is 0.0025654 slugs/s.
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C. THEORETICAL RESULTS

Appendix A contains the FORTRAN computer code used to numerically
integrate the Duffing's equation which mathematically describes the motion of
the flexible beam being studied. Table 3.3 summarizes the results of the
previous section in which the coefficients of Equation (3.1) were determined.
Equation (3.1) was then integrated using an amplitude of 3 lbs. (the force
applied by the shaker) and a frequency of 5.6 Hz. The initial displacement and
velocity chosen were 1 inch and O in/s, respectively. The results were then
formatted to be read by the computer program "Chaos" developed by M.
Sarigul Klijn [Ref. 1].

Qualitative tests for chaos are satisfied by the time series, Fourier spectrum,
pseudo-phase plane and Poincare section. Figure 3.6 shows the time history of
the acceleration of Equation (3.1). It shows no noticeable periodic behavior and
this is confirmed in the Fourier spectrum of Figure 3.7. The power spectrum is
made up of many frequencies with broad band characteristics. The pseudo-
phase plane of Figure 3.8 was obtained using an embedding time of 10. This
embedding time, consistent with the findings of Dvorak and Klaschka [Ref 9],
yielded the least amount of bias. Notice that the trajectory frequently crosses
itself and fills up a section of the phase space. The Poincare section, as shown
in Figure 3.9, is also characteristic of damped chaotic systems with its cloud of
unorganized points filling a section of the space. It was obtained by passing a
plane through the three-dimensional pseudo-phase space at z = 0.

The quantitative tests for chaos were also performed. Figure 3.10 is a plot
of the average Lyapunov exponent. This figure is obtained by time averaging

the many computations of Equation (2.4) and then plotting them versus the
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number of samples, 4096. The average Lyapunov exponent for this system is
0.949. This exponent is indicative of chaotic systems.

Figure 3.11 shows the plot from which the fractal correlation dimension is
determined. As mentioned previously, the fractal correlation dimension is the
asymptotic value obtained by plotting the slope of log[C(r)] versus log(r) for
successively higher pseudo-phase space dimensions. It was determined to be
approximately 2.4. Moon reports a value of 2.5 for his buckled beam
experiment. [Ref. 2, p. 232]. The non-integer fractal correlation dimension is

yet another indication of chaos in dynamic systems.
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TABLE 3.1 Beam Properties
Density, p 0.101 Ibm/in3 Modulus, E 10.4 x 106 psi
Length, L 90.0 in Area, A 0.24 in?
Thickness, t 0.080 in Mom Inert, I 0.000128 in4
Width, w 30in
TABLE 3.2 Logarithmic Decrement Values
N Up (in) U (in) g
20 2.5625 1.0000 0.00749
20 2.3125 0.9375 0.00718
2