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ABSTRACT

Chaos describes a class of motions of a deterministic system whose time

history is sensitive to initial conditions. Because of the sensitivity of initial

conditions, the response of a dynamical system may result in instabilities.

Hence, a study of nonlinear response of structures under the expected

frequencies of excitation becomes important. Chaotic behavior, for example,

may be found in the vibration response of large flexible space structures

including trusses, booms, and radio antennas. Methods of quantifying chaos

have been applied to flexible beams both analytically and experimentally. This

research effort investigates the effects of sensors, strain gages and

accelerometers, in studying chaotic motions. A long flexible beam is used to

model the chaotic behavior, which is also mathematically modeled as Duffing's

Equation. Time histories are recorded and analyzed using pseudo-phase space,

Fourier spectrums, Poincare sections, Lyapunov exponents and fractal

correlation dimensions. Comparison of the two sensors is also performed.
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I. INTRODUCTION

A. REASON FOR ANALYSIS

Many of the satellites currently being launched have highly flexible

components such as trusses and booms. Long, highly flexible booms and

trusses are used for gravity gradient stabilization, supporting large solar arrays

and radio antennas, and ensuring that humans and equipment are adequately

shielded from radioactive power generators in some proposed interplanetary

spacecraft. Deploying these trusses and booms and maneuvering the satellite

for attitude control and station keeping result in large displacements and

rotations of the tips. This leads to the presence of geometric nonlinearities in

the structure. Material nonlinearities are not usually present since the booms

and trusses are not deflected past their yield point and thus the linear stress-

strain law applies. Because of the geometric nonlinearities, it is appropriate to

model flexible space structures by nonlinear equations of motions instead of

linear ones. Duffing's Equation is one equation used to adequately describe the

nonlinear behavior due to the elastic effects of these large structures.

The presence of nonlinearities may result in motions which are impossible

to predict after long periods of time, yet completely deterministic since the

equations of motions are known. Slight changes in initial conditions produce

radically different outputs. These types of responses have been characterized

as "chaotic." Chaotic vibrations of spacecraft structures could result in control

problems.



B. SCOPE OF THESIS

The purpose of this theses is to demonstrate that chaotic vibrations can

occur in highly flexible space structures using theoretical and experimental

analyses. For the theoretical analysis, a flexible sheet of aluminum 7 ft. long, 3

in. wide, and 0.080 in. thick, was modelled by Duffing's Equations. This process

is described in Chapter III. For the experimental analysis, the same beam was

instrumented with strain gauges and accelerometers. The beam was then

shaken by an MB Dynamics Model PM500A Vibration Exciter and the time

histories of the strains and accelerations were recorded. This process is

discussed in Chapter IV. Data from both analyses were then analyzed using

the computer program, "Chaos," developed by CDR Martinus Sarigul-Klijn,

USN, [Ref. 1].

In addition, the purpose of this thesis is to investigate the sensitivity of

sensors in detecting chaotic vibrations. The two most commonly used types of

sensors are accelerometers and strain gauges. Measuring accelerations may

be a more accurate method of recording the time histories of chaotic systems

since this includes inertia, damping, and stiffness terms of the mathematical

equations used to model the system. Strain gauges permit measurement of only

the stiffness terms of the mathematical equations used to model the system.

After a discussion of the Science of Chaos (Chapter II) the results of the

theoretical and experimental analyses will be discussed.
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II. THE SCIENCE OF CHAOS

A. BACKGROUND AND PREVIOUS STUDIES

A deterministic system whose time history has a sensitive dependence on

initial conditions is one definition of a chaotic system [Ref. 2: p. 4]. Even though

the equations of motions which adequately describe a system are well known,

small changes in the initial conditions produce markedly different outputs. For

example, although there are many computer programs which can accurately

predict the weather tomorrow, there are no programs which can accurately

predict the weather for a day next year. Recognizing that chaos occurs in the

nonlinear deterministic models raises the hope of understanding the source of

this random-like behavior and possibly doing something to change it.

Although Henri Poincare observed chaotic behavior in the trajectories of

some celestial bodies at the beginning of the twentieth century, the science of

chaos is a relatively new field. It is one which essentially became possible after

the birth of the computer which not only allowed numerical integration of

systems of mathematical equations, but also shorter and shorter time intervals

at which experimental data could be obtained. In the 1960's Edward Lorenz of

MIT used a computer to numerically integrate twelve differential equations

which described a crude model of the weather. In his simulations he found

dramatic differences in output for subtle changes in input. [Ref. 3: p. 51] Since

then, many other researchers have used computers to investigate chaotic

behavior in virtually every field including mathematics, biology, chemistry,

ecology, economics, physics, medicine, meteorology, and engineering. James
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Gleick presents an interesting and easy-to-read development of the science of

chaos in Chaos: Making a New Science [Ref. 4].

The chaotic behavior of flexible space structures has been studied by

Moon and Li. In their analysis of a 3.5 meter long 3-D truss, they found that the

free-play in the joints of the structure resulted in chaotic motion and modal

frequencies considerably lower than those determined by linear methods.

Chaotic dynamics in this structure and other space structures might make it

difficult to design active controls to damp out transient dynamics. [Ref. 5] In

addition, chaotic dynamics leads to inaccuracies in linear finite element models

which are currently used to obtain modal analysis during the design of

spacecraft. The results of the Low Power Atmospheric Compensation

Experiment (LACE) may lead to improvements of these finite element models.

[Ref. 61

In another study by Moon and Shaw, chaotic vibration were observed in

an elastic beam with non-linear boundary conditions. For certain values of

forcing frequency and amplitude, the periodic motion became unstable and

nonperiodic. The results were typical of a class of mechanical oscillators with

play or amplitude constraining stops. [Ref. 7]

B. GEOMETRIC AND TOPOLOGICAL METHODS OF CHAOS

The purpose of this section is to describe several methods which have been

developed for detecting chaotic behavior in dynamical systems. The methods

which are discussed are time series, phase plane, frequency domain, Poincare

section, Lyapunov exponent, and fractal correlation dimension. The first four

methods are more qualitative in nature, and answer the question: Is chaos

present? The last two methods, Lyapunov exponent and fractal correlation

4



dimension, are more quantitative in nature. Generally, when determining if

chaos is present in a system, several of the above methods are used since

applying one method by itself is not always indicative of chaotic motion.

1. Time Domain Analysis

The traditional way of observing signals is to view them in the time

domain. This is simply a record of what is happening to a parameter of the

system versus time. Sometimes the first indication of chaotic motion is that the

parameter observed exhibits no pattern or periodicity. This test is not always

conclusive, since the motion observed could have a long period behavior that is

not readily observable. In addition, some nonlinear systems may appear non

periodic, but can be broken down into several periodic signals. [Ref. 2: p. 42]

Figure 2.1 illustrates both the nonperiodic nature of chaotic signals and

also the sensitive dependence oa initial conditions. Thompson and Stewart

numerically integrated the Duffing's equation

R + 0.05i + x3 = 7.5 cos t (2.1)

to produce the time history in the figure. The ragged appearance persists for as

long a time as the integrations are carried out. There is never an exact

repetition of any part of the signal--it is truly i.onperiodic. The figure also

illustrates that for slight changes in initial conditions, the trajectories quickly

diverge. [Ref. 8: p. 41

5



2. Frequency Domain Analysis

Because of the problems encountered when trying to detect chaos from

the time domain, the frequency domain, or Fourier Spectrum, is primarily used.

Observing the signal in the frequency domain will instantly reveal if the signal is

made up of a sum of periodic signals. Chaotic vibrations will exhibit a broad

spectrum of frequencies in the output when the input is a single frequency

harmonic motion. Subharmonics and Superharmonics of this frequency will

appear not as sharp spikes like the excitation frequency but as rounded hills.

Once again, this test is not always conclusive since multiharmonic outputs may

result from hidden degrees of freedom of which the observer is unaware. In

order to detect chaotic vibrations in large degree-of-freedom systems, it is

necessary to observe changes in the spectrum while one parameter such as

driving amplitude or frequency is varied [Ref. 2: p. 47].

Figures 2.2 and 2.3 show the Fourier spectrum for a periodic signal

generated by the equation

x= 3 cos (4n t) (2.2)

and the chaotic signal of Equation (2.1) respectively. Notice that Figure 2.2 has

a sharp spike only at the excitation frequency while Figure 2.3 has multiple,

broadband spikes at frequencies other than the excitation frequency of 0.16 Hz.

3. Phase Plane

A dynamical system consists of two parts: the state (essential

information about a system) and the dynamic (rule that describes how the state

evolves with time). The motion of the system can be visualized in a state space

6



or phase plane. The phase plane is a construct whose coordinates are

components of the state. The coordinates, therefore, depend on the type of

system being studied. A mechanical system will usually use position versus

velocity. A simple example to describe this is the motion of a pendulum. All

that is needed to determine its motion are position and velocity. The state is

thus a point on the phase plane. Newton's Laws provide the dynamic,

expressed mathematically as a differential equation, that describes how the

state evolves. Without the presence of friction, the pendulum traces out a circle

or orbit in the phase plane. When friction is present, the orbit spirals in to a

single point or attractor. [Ref. 3: p. 49] This describes the motion of a simple

non chaotic system. The orbits of chaotic systems never close or retrace

themselves. Thus, the trajectory of the orbits will tend to fill up a section of the

phase plane. Once again, this is not always a conclusive test for chaos.

The pseudo-phase plane is another technique which has been used

when only one variable is able to be measured. This technique was discovered

by scientists at the University of Santa Cruz while analyzing a dripping faucet.

They constructed a pseudo-phase plane using a measured variable and a time-

shifted version of the same measured variable. Takens later proved that a

pseudo-phase plane exhibited the same characteristics as a phase plane. [Ref.

4: p. 266] The choice of the time shift or embedding time will shrink or

expand the orbit about the line y = x. Dvorak and Klaschka have proven that

an embedding time between five and eleven time intervals produces a pseudo-

phase plane with the least amount of bias [Ref. 9]. Chaotic motions exhibits the

same characteristics in the pseudo-phase plane as they do in the phase plane.

7



The pseudo-phase plane for the periodic signal appears as a circle as

expected (Figure 2.4). This signal constantly retraces itself. As seen in Figure

2.5, the pseudo-phase plane for the chaotic signal of Equation (2.1) never

retraces itself and fills up a section of the plane.

4. Poincare Section

The Poincare section is constructed by passing a two-dimensional

surface through a three-dimensional phase space and observing where the

points of the trajectory intersect the plane. This slice can be made through an

infinite number of locations to reveal the internal structure of the trajectory.

Periodic signals, such as an undamped pendulum, have one point on the

Poincare section while signals with multiple harmonics produce a finite number

of points on the Poincare section. If the Poincare section does not consist of a

finite set of points or a closed orbit, the motion may be chaotic. In undamped or

slightly damped chaotic systems, the Poincare section appears as a cloud of

unorganized points. In damped chaotic systems, the Poincare section appears

as an infinite set of highly organized points which look like parallel lines. If after

several enlargements the structure continues to exist, the system is described

as having a strange attractor. This embedding of structure within structure is

referred to as a Cantor set after the mathematician George Cantor (1845 -

1918). [Ref. 2: p. 52]

Figure 2.6 is the Poincare section of the periodic signal. Notice that

there is only one point in the top right hand comer. The damped, chaotic signal,

however, appears as a set of points forming parrallel lines as shown in Figure

2.7. If this figure were enlarged, the same pattern would emerge after each

enlargement. This is referred to as the self-similar property.

8



5. Lyapunov Exponent

The Lyapunov exponent is a measure of the average rate of

divergence of trajectories initially separated by an infinitesimal amount. A

system is chaotic if it has one or more positive Lyapunov exponents, which

means nearby trajectories are diverging [Ref. 10: p. 323]. Lyapunov exponents

have proven to be a useful dynamical test for chaotic systems. Since nearby

trajectories correspond to nearly identical states, exponential divergence

between the trajectories means that predictability of the system is rapidly lost.

Systems with subtle, unresolvable initial differences quickly behave differently.

[Ref. 11: p. 285] The Lyapunov exponent, X, is defined as

d(t) = d 2Xt (2.3)

or

t ( _ t) (2.4)

where d is the initial distance between the two trajectories

d(t) is the distance at a later time, t

As indicated in Equation (2.4) a positive exponent means that 'd(t)' is greater

than 'd' and the trajectories are diverging. A zero exponent indicates 'd(t)' and

V are the same and the trajectories coincide. A negative exponent indicates

'd(t)' is less than 'd' and the trajectories are converging.

A system with n degrees of freedom has a set of n exponents, called

the Lyapunov spectrum. This spectrum characterizes the divergence of the

trajectory in n directions. In order to understand the meaning of the Lyapunov

spectrum, imagine a sphere of neighboring points in the phase space about a

9



central point on the trajectory. As the points evolve with time, this sphere will

deform. If one axis is diverging exponentially the sphere stretches along that

direction. If another axis is converging, the sphere shrinks along that direction.

Algorithms are available to calculate the exponents of the spectrum from the

measurement of a single observed state by constructing the pseudo-phase

space. [Ref 12: p. 891 The program "Chaos" uses a method developed by

Wolf et al [Ref. 11 ].

6. Fractal Correlation Dimension

The fractal correlation dimension is defined as

C(r) -- rd  (2.5)

where: C(r) is the probability that a point on the attractor is within a

circle, sphere, or hypersphere of radius 'r'

r is the radius of the circle, sphere, or hypersphere

d is the fractal correlation dimension.

Solving for 'd' in Equation (2.5) yields

(ln[C(r)]d =lim. ln } (2.6)

C(r) may be calculated by constructing a sphere at each point on the

trajectory and counting the number of points in each sphere, such that

(r) = Y, H (r - xi - xJ) (2.7)
N 2 ij

10



where: H(s) is the Heaviside function and is equal to one if 's' is greater

than zero and equal to zero if 's' is less than zero

I xi - xj I is the Euclidean distance between points

N is the total number of points [Ref. 2: p. 2 171

The procedure used in the "Chaos" program by Sarigul-Klijn to

compute the fractal correlation dimension is described below.

1. Start with a point on the attractor and calculate the number of points
inside a circle of radius, r.

2. Calculate the probability C(r) by dividing this number of points by the
total number of points in the attractor.

3. Repeat this for several points along the attractor.

4. Compute C(r) for several values of r.
5. The slope of log[C(r)] versus log(r) yields d, the fractal correlation

dimension, for the chosen number of pseudo-phase space dimensions.
[Ref. 1: p. 88].

6. Repeat steps 1 through 5 for higher pseudo-phase space dimensions to
obtain an asymptotic estimate of the fractal correlation dimension for the
dynamical system.

Nonchaotic systems have integer fractal correlation dimensions such as

an equilibrium point (zero), limit cycle (one), or toroidal attractor (two). The

fractal correlation dimension of a chaotic system is non-integer and is

independent of the dimension of the phase space used for the calculation. [Ref.

13: p. 101]

11
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III. THEORETICAL ANALYSIS

A. DUFFING'S EQUATION

The mathematical equation which describes the motion of a nonlinear

elastic beam is represented by the well-known Duffing's equation.

mV + 6 + k1v + k3v3 = Acos (ot (3.1)

where: m = mass of the beam

c = damping coefficient

kl = linear stiffness coefficient

k3 = nonlinear stiffness coefficient

A = amplitude of the excitation

= frequency of the excitation

v = transverse displacement of the beam

Once the coefficients of the Duffing's equation are known it can be integrated

numerically to solve for the displacement, velocity and acceleration of the tip of

a cantilever beam. A fourth order Runge-Kutta scheme (see Appendix A) was

developed to perform the integration. The following methods are used to

determine the coefficients using the properties of a beam made of 7075-76

sheet aluminum listed in Table 3.1.

19



B. ASSUMED MODES METHOD

In order to determine the coefficients to be used in Duffings equation, the

assumed modes method is used. This method is an extension of the principle

of virtual displacements and is used to produce a generalized parameter model

that approximates the flexible behavior of the beam. A virtual displacement is

an infinitesimal, imaginary change in the displacement of a system as shown in

Figure 3.1.

The dotted curve in the figure shows the virtual displacement, bv(x,t), of the

beam. It must satisfy the same boundary conditions as the actual displacement,

v(x,t)--the solid curve in Figure 3.1. The virtual displacement is not a function

of time in the same sense as the actual displacement but is rather a small

change of configuration relative to the configuration of the beam at the time "t"

[Ref. 14: p. 33].

To create the single degree of freedom model, the deflection of the beam

may be approximated by

v(x,t) = N(x) *(t) (3.2)

Similarly, the virtual displacement is given by

8v(x,t) = NI(x) WiO(t) (3.3)

The shape function, N(x), may be any admissible function which adequately

describes the behavior of the system and possesses derivatives of an order at

least equal to those specified by the boundary conditions. The generalized

20



displacement, *(t), is the solution to Duffing's equation. [Ref. 14: p. 34] The

shape function which is chosen is the characteristic function for a clamped-free

beam.

V()=ff sin (/- )+ exp + )+exp ( (1-))(3.4)
2 4 2 2

where is the beam coordinate, nondimensionalized with respect to the length,

L, and varying between 0 and 1. [Ref 15: p. 439]

The boundary conditions for a cantilever beam are

BC1: v(Ot) = 0
BC2: v'(O,t) = 0
BC3: v"(L,t) = 0
BC4: v.'(L,t) = 0 (3.5)

where (') indicates the derivative with respect to the spatial coordinate x.

The first boundary condition states that there is no displacement at the fixed

end while the second states that its slope must also vanish here. The third and

fourth boundary conditions state that there must be no moment and no shear

forces at the free end. Applying the boundary conditions of Equation (3.5) to

the shape function of Equation (3.4) gives only a 0.7% error in amplitude at the

midpoint. [Ref 16: p. 1014]

The first and second derivatives of the shape function will be necessary in

determining the coefficients for Duffing's equation. Subsequently,

9'(Cos IL-r os IL) -IL exp ( - f ) + Aexp (- M (1- 4)) (3.6)

sin + 2" exp ( + exp()) (3.7)

21



The principle of virtual displacements states that the combined virtual work

of all forces must be zero. More explicitly this is stated as

8Wfc - 8 V +SWdm p + BWi =0 (3.8)

where 8Wnc is the virtual work of nonconservative forces, 8V is the change in

strain energy of the system, SWdamp is the virtual work of damping forces,

and 8Winert is the virtual work of inertia forces [Ref. 14: p. 34].

1. Mass Coefficient Determination

Solving for the virtual work of inertia forces will yield the mass term, m,

of Duffing's Equation (3.1). Since the inertia force per unit length is distributed

along the beam, the virtual work of inertia forces is

L

8Wirert = -pA;; 8v dx

=-pAL jv 2 d 1 ad (3.9)

Using the values for density, area, and length of the beam contained in Table

3.1 and numerically integrating using MATHCAD (see Appendix B), the work

done by inertia forces is

8Wmnert = 1.0360 x 10-1 i 8O (3.10)

Therefore, the mass coefficient, m, of Duffing's equation is 0.10360 slugs.

22



2. Stiffness Coefficients Determination

If a beam is modeled as shown in Figure 3.2 with coordinate axes x, y,

and z and corresponding displacements u, v, and w, it can be shown [Ref. 17: p.

22] that the strain in the x direction is given by the following equation:

au + 41(,-) + aw (3.11)
2[Xax ax axJ

Assuming that all higher order terms are negligible except for (av/ax)2 (small

strain, large rotation assumption), the above equation becomes:

EXX = x+ 2"x (3.12)

Applying the classical Euler-Bernoulli assumption that cross sections are

assumed to remain planar and normal to the centroidal axis after deformation

[Ref. 18: p. 152], it can be seen from Figure 3.3 that

u = -y tan 0, (3.13)

tan 0, = v(3.14)
Ax

Subsequently

u "Y - (3.15)
au Iu dv_
ax " dx2 (3.16)
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Substituting Equation (3.16) into Equation (3.12) yields

4LV + 2v 2
Ex=ydV -y Id2,) (3.17)

dx2  2%dX2

The expression for the strain energy of a beam undergoing transverse

deflection is given by [Ref. 19: p. 1691

_ 1 (3.18)
V -=- cxx F-xx dx dA (.8

Because the beam under study is not deflected so the material passes its yield

point, it behaves as a Hookean material such that

Oxx = E exx (3.19)

Therefore the strain energy becomes

V- E C2 (3.20)

Squaring Equation (3.17) and substituting it into Equation (3.20) yields:

= L [y2(4)2 - yt(-)4dx* + $ dxdA (3.21)

2o t 2 dx 2  4dx 
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If the intersection of the y and z axes lies at the centroid then

I y2 dA = Izz (3.22)

I y dA = 0 (3.23)

Therefore, Equation (3.21) becomes:

I LV-=-- (d!_)2 dX+E 8F 4 dx(3.24)
2fdx28 d

Applying variational calculus, Equation (3.24) becomes

8V =E IJf d2Vd28V dx +LAj(L )3 d X (3.25)
dx2 dx 2  2 0

which can be written

L (L
8V = E I v" (Sv)" dx + EA (v') 3(8v)' dx (3.26)

21

Substituting the derivatives of Equation (3.2) and (3.3) and substituting

Equations (3.6) and (3.7) into Equation (3.26) yields

8V = El (11,,)2 6 86 dx + EA (') 4 -3 80 dx (3.27)

o25
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Substituting in the values from Table 3.1 and numerically integrating using

MATHCAD (See Appendix B), Equation (3.27) becomes

8V = 1.5433 x 10.2 81 + 4.5943 x 101 53 85 (3.28)

From Equation (3.28), the linear and nonlinear stiffness coefficients, kland k3,

are seen to be 0.015433 lbs/in and 45.943 lbs/in3 respectively.

3. Damping Coefficient Determination

If the beam is assumed to be modelled by a linear single degree of

freedom system the damping coefficient is given by

Cd = 2 fm (3.29)

where: = viscous damping factor

The values for kl and m were determined previously. In order to

determine the viscous damping factor, the logarithmic decrement method was

used [Ref. 14: p. 62]. The logarithmic decrement, 8, is defined by

8 = In (UPj) 2 (3.30)

where: Up = amplitude of motion at beginning of cycle

UQ = amplitude of motion after N cycles

N = number of cycles
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The above equation is used to solve for the viscous damping factor by

displacing the tip of the beam and then measuring the two amplitudes, Up and

UQ, and counting the number of cycles between the two measurements. These

measurements were performed on an air table in the Flexible Spacecraft

Simulator Laboratory of NPS as shown in Figures 3.4 and 3.5. The beam was

horizontally mounted on the table and an air pad was attached to the tip of the

beam. The tip was then deflected and the resulting motion achieved essentially

without friction. The values for Up, UQ, and N appear in Table 3.2. Using

Equation (3.30), the average viscous damping factor, , was determined to be

6.67xl 0-3 or approximately 0.7%.

The virtual work of the damping forces is given by

8 Wdmp = - Cd 9' 8v

= -cd W2 d4 8* (3.31)

Substituting in the value for cd obtained from Equation (3.29) and numerically

integrating once again yields

SWamp = 2.5654 X 10-3  81 (3.32)

Therefore, the damping coefficient, c, of Equation (3.1) is 0.0025654 slugs/s.

27



C. THEORETICAL RESULTS

Appendix A contains the FORTRAN computer code used to numerically

integrate the Duffing's equation which mathematically describes the motion of

the flexible beam being studied. Table 3.3 summarizes the results of the

previous section in which the coefficients of Equation (3.1) were determined.

Equation (3.1) was then integrated using an amplitude of 3 lbs. (the force

applied by the shaker) and a frequency of 5.6 Hz. The initial displacement and

velocity chosen were 1 inch and 0 in/s, respectively. The results were then

formatted to be read by the computer program "Chaos" developed by M.

Sarigul Klijn [Ref. 1].

Qualitative tests for chaos are satisfied by the time series, Fourier spectrum,

pseudo-phase plane and Poincare section. Figure 3.6 shows the time history of

the acceleration of Equation (3.1). It shows no noticeable periodic behavior and

this is confirmed in the Fourier spectrum of Figure 3.7. The power spectrum is

made up of many frequencies with broad band characteristics. The pseudo-

phase plane of Figure 3.8 was obtained using an embedding time of 10. This

embedding time, consistent with the findings of Dvorak and Klaschka [Ref 9],

yielded the least amount of bias. Notice that the trajectory frequently crosses

itself and fills up a section of the phase space. The Poincare section, as shown

in Figure 3.9, is also characteristic of damped chaotic systems with its cloud of

unorganized points filling a section of the space. It was obtained by passing a

plane through the three-dimensional pseudo-phase space at z = 0.

The quantitative tests for chaos were also performed. Figure 3.10 is a plot

of the average Lyapunov exponent. This figure is obtained by time averaging

the many computations of Equation (2.4) and then plotting them versus the
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number of samples, 4096. The average Lyapunov exponent for this system is

0.949. This exponent is indicative of chaotic systems.

Figure 3.11 shows the plot from which the fractal correlation dimension is

determined. As mentioned previously, the fractal correlation dimension is the

asymptotic value obtained by plotting the slope of log[C(r)] versus log(r) for

successively higher pseudo-phase space dimensions. It was determined to be

approximately 2.4. Moon reports a value of 2.5 for his buckled beam

experiment. [Ref. 2, p. 232]. The non-integer fractal correlation dimension is

yet another indication of chaos in dynamic systems.
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___________TABLE 3.1 Beam Properties

Density, p 0.101 Ibm/in 3  Modulus, E 10.4 x 106 psi

Length, L 90.0 in Area, A 0.24 in2

Thickness, t 0.080 in Mom Inert, 1 0.000128 in4

Width, w 3.0Oin I_____ I____I

TABLE 3.2 Logarithmic Decrement Values

N Up (in) Up (in) _______

20 2.5625 1.0000 0.00749

20 2.3125 0.9375 0.00718

20 2.2500 0.9375 0.00697

20 2.6250 1.0625 0.00720

20 2.7500 1.1250 0.00711

25 2.2500 0.8125 0.00648

25 2.6250 0.8750 0.00699

25 2.5000 0.8750 0.00668

25 2.2500 0.8125 0.00648

25 2.2500 0.8125 0.00648

30 1.8125 0.6250 0.00565

30 2.6250 0.7500 0.00665

30 2.1875 0.6875 0.00614

30 1.9375 0.5625 0.00656

30 1.9375 0.6250 0.00600
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TABLE 3.3 Coefficients of Duffing's Equation

m =1.0360 x 10-1

c =2.5654 x 1i- 3

k1 1.5433 x 10-2

03= 4.5943 x 101

Figure 3.1 Illustration of virtual displacements

z, w

Figure 3.2 Coordinates of a simple beam

31



After
bweidng

Figure 3.3 Kinematics of a simple beam
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Figure 3.4 View I of beam on air table
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Figure 3.5 View 2 of beam on air table
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IV. EXPERIMENTAL ANALYSIS

A. EXPERIMENTAL SET-UP

The aluminum beam with properties listed in Table 3.1 is instrumented with

strain gauges and an accelerometer as shown in Figure 4.1. The type of strain

gauges used are one-quarter inch, 350 ohm, straight geometry gauges from the

Micro Measurements Group. The accelerometer is a Sensotec model JTF flat

pack. This accelerometer has a weight of one ounce, a peak range of ±5 g's, a

sensitivity of 10 mV/g, and a usable frequency range of DC to 150 Hz.

The beam is mounted vertically to an MB Dynamics Model PM500A

Vibration Exciter. The outputs from the strain gauges and accelerometer are

then fed into a bridge balancing box and amplifier. The bridge box is capable of

handling four inputs, one from the accelerometer and three from the strain

gauges. From the bridge box, the signal goes to an analog-to-digital converter.

From there the acceleration and strain data is stored on a Zenith computer.

Mechanical stops placed 58 inches up from the base prevent the beam from

buckling past one and three-fourths inches on either side. (Figure 4.2)

B. EXPERIMENTAL PROCEDURE

The accelerometer is placed at location Al in Figure 4.1. The

accelerometer and the three strain gauges are then connected to the data

acquisition system. The beam is held in the upright vertical position in order to

zero out all the readings from the gauges and the accelerometer using the

bridge balancing circuit. The beam is then released while simultaneously

starting the exciter. The exciter provides an excitation frequency of 5.6 Hz and
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a displacement amplitude of one-quarter inch peak-to-peak. This procedure is

then repeated twice, placing the accelerometer at locations A2 and A3. Strain

gauge measurements at location S1, S2, and S3 are obtained for each run.

C. EXPERIMENTAL RESULTS

The data from each of the runs is transferred into a format readable by the

"Chaos" program. It is then analyzed using the techniques discussed in

Chapter II. These results appear at the end of this chapter. As shown in

Figures 4.3 through 4.10, the four qualitative tests for chaos seem to be met:

1. Erratic and unpredictable time histories from both accelerometers and
strain gauges.

2. Multiple broadbanded power spectrum spikes.
3. Crossing trajectories and filled up pseudo-phase space.
4. A cloud of unorganized points in the Poincare section characteristic of

lightly damped systems.

These results appear similar to the chaotic results obtained by Sarigul-Klijn

[Ref. 1] in his analysis of helicopter flight test data using higher harmonic

control.

The quantitative tests show that the location of the type of sensor chosen

impacts whether or not chaotic motion is found. Strain gauges only indicate

chaos if placed near the root, while accelerometers only indicate chaos if

placed near the tip. Figures 4.11 through 4.14 are plots of the average

Lyapunov exponents and fractal correlation dimensions. A summary of the

Lyapunov exponents and fractal correlation dimensions for each sensor appear

in Tables 4.1 and 4.2. The Lyapunov exponents are all positive for the strain

gauges. For the accelerometers, the Lyapunov exponent diminishes as the

accelerometer is placed closer to the root. This indicates that measuring
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accelerations near the root reduces the chances of obtaining chaotic results.

This is anticipated since the beam does not experience large deflections in this

area and can be characterized by linear equations. Likewise, the fractal

correlation dimensions of the sensors indicate that accelerometers should be

placed closer to the tip and strain gauges closer to the root. The accelerometer

nearest the root has an integer fractal correlation dimension, like that of a non-

chaotic system. The two nearer to the tip have non-integer fractal dimensions,

characteristic of chaotic systems. Conversely, the two strain gauges near the

root have non-integer fractal dimensions, while the one closer to the tip has an

integer fractal dimension.
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TABLE 4.1 Lyapunov exponents

Si 0.272 Al. 0.364

S2 0.237 A2 0.0397

S3 0.390 A3 -0.0282

TABLE 4.2 Fractal Correlation Dimensions

Si ___ . Al 4.4

S2 4.4 A2 4.4

S3 4.0 A3 4.0
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V. CONCLUSIONS AND SCOPE FOR FUTURE

RESEARCH

For the first time geometric and topological methods of chaos were applied

to data obtained simultaneously by accelerometers and strain gauges. It was

determined that data from both accelerometers and strain gauges provided

similar indications to the presence of chaos when analyzed using time series,

Fourier spectrums, pseudo-phase planes, and Poincare sections. Using these

techniques, both types of sensors indicated chaos without regard to the location

of the sensor. However, the Lyapunov exponents and fractal correlation

dimensions indicated that chaotic motion is only detected by accelerometers if

they are placed near the tip and that chaotic motion is only detected by strain

gauges if the are placed near the root.

The presence of chaos in highly flexible spacecraft structures was also

investigated. It was determined that the geometric nonlinearities of these

structures may result in chaotic vibrations and dynamic instabilities. These

instabilities may then affect control mechanisms of the spacecraft. Further

analysis could be performed in using the geometric and topological methods of

chaos to analyze the effectiveness of these mechanisms to adequately control

the spacecraft and provide improvements into the way the control is performed.

Chaotic methods may also have an application in updating the linear finite

elements models of flexible space structures with more accurate nonlinear

models.
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APPENDIX A
*SittI*h ******l * ,,eeeeeaeeeee,***e,,ee,,eeeeeeo,, ,ggoeeeeeeee eeIi• ,**.t* ,a

* ZLI s DUIZTI
* lUtE. 07 DEC 1091
S WINTOUS RoSE a. ThUSEAN

S DUTIS VAK
* OOMpILE: MAUP* D351IPZ~m
* 1his program solve& Duffings ovation
C

td'2/dt*2(z) I c*/dt(z) # kl*a + k3'3 A &cou(v*t)

* by transforniag It Late two ordinary dLIfeemntial equations

* 4/dt(a) - y

* ~d/t(y). a AcO0(V't) - Coy - 12 - $3*S

• and using a fourth order tunge-Eutte lah.. to Lmbeirat. to
* f rand the displacement. z. and the velocity, 1.

* The amplitude end freuen of the loreing fuotion, the steals for LtI graton, the aumber of integration steps, and to
• initial values for displacement and velocity era entered In
* that order Ln a data file titled 000•P1IT., the data Eill* titled ODUu',Ou,' eontains the integrated values for displacement
* and velocity in a format compatible with the program *CMs"O
* by U. Satigul-lija.

* T alter this program to solve an equation other than Duff Lg's
* above, the prameter, n3, must be changed to correspond to the* number of O0e ad the subroutine "DIFP"VO must be changed
* to include the proper equations.

O 1To subroutines are employed.
* DKVIIO calculates the values for the OD'Is
* 134 L the Runge-Kutte routine
* As vritten the program does not use an adaptive step-sise

* The variablee &e defined as follove0
O 33 - the number of ODS's in the System
* s - the number of steps (iterations) to be performed

a - the desired stepiLse
A - asplitude of te forcing funotion

C •- frequency of the forcing function
* 1133. T- tim
* , INDIE - integer counters
C Z - an srray corresponding to the independent variables,
• L.e* 3(1)-x# a(&).Tt etc.

3sW - a aCray Gerreerpdlag to the OV2'.

PROGRM DUFFING

PARAYS (Nm-2)
INPLICIT DUDILN VR3CI5IOMI(-sIN.O,-I)
CIARACTEE*7 DPXOE
DINuSSEont 1(3) ,XD0T(NI)



OFEN(7,FrIZEDUFFINIT' ,STATUB-'OLD')
oPhN(6,rzLEpFOUT DUTATUW'OLO')

TINEmO.0OD
DUMMY-' A1234A'

RUA(7,-) Ae,,,MU
Do & 1-1,513

READ(7.*) 1(1)
5 CONTINUE

WaITE(8,6) A,?
Wfl!13(2,7) U,31
IIRITK(B.S) x(I).x(2)

6 FORMAT (IX,'FORCING FUNCT AMPLITUDE - ',F4.1,5X,' FREB - ',F6.3)
7 FORMAT (1X,5VT8F DI53 -,r6.4,5X,uuiwzZa Or Bnun - 1,15)
8 FORMAT (1X,INXY VI$P-,4*1 5,!! VZL - 1,F4.1)

CALL DIFFEO(X,XDOTA,P,TIRE)
WRITZ(8,100) DURRY,YIXE,X(l),X(2) ,XDOT(2)

DO 15 1-1,HB

DO 10 ZNDEX-l.4

CALL DIFVEQ(X,XDOT,A,F,TIXE)
CALL 534(TIMrEX#JDOT,N,ZND!X)

10 CONTINUE

WRZTE(8,100) DUXMY,TZNE,X(1),X(2),ZDOT(2)

15 CONTINUE

100 FORMAT(A7, F6.3, 111.4, 2W2.4)

STOP

Brig

SUBROUTINE RK4(T,X,XDOT,U1,!NDEX)

* This subroutine perform* suavricel, integration uasing 4th ord~r
* ungo-Rutta methods. It was developed by I.N. Ross-

PARARETER(NE-2)
IMPLICIT DOUBLE flECISION(A-H.R,M,O-Z)
DIMNSION X(HB),XDOT(N3),5AVD(NZ),SAVE(IE)

GO TO C1.2,3.4),INDEX

1 DO 10 I-1,NE
SAVEX(ZfrE(l)
SAVED( I)-XDOT( I)

10 X(1).3AvZXLI)4.0.5D0*I*XDOT(1)
T-T+ . 5D0'H
RETURN

56



3 DO 20 I-1,NE
4AVxD( I)-sAVzD( I)42. 0D0*ZDOT( I)

20 X(I)-9AVXX(1l40.5DO*R'*XDOI(I)
RETURN

3 DO 30 I-1,311
8&VZD(XI)-8AVUD( I)*2 .0D0'DOT( I)

20 Z(I)-GAVRX(1)+K*XDOY(I)
T-T+O 5D0*B
RETURN

4 DO 40 1-1,M5
40 X(I)-5AV3X(1)4UX/6.0D0*(5AWZD(I)+XDO!(I))

RETURN

END

SUBROUTINE DIFVEQ(XUIDOT.AF,T)

* This subroutine obtains values for the ODE's for Duff ing's
* equatlon and must be changed for a new system of equations.

PARANETER(NZ1-2)
IMPLICIT DOUBLE PRECIUION(A-N,K,N,O-Z)
DIMENSION 1(3K) ,XDOT(NE)

PX-4.0D0*DATm,{1.0D0)

Be3 Careful of unitsl Ki1 Lif/in. K3 -LBf/in^3
*K -slugs C -slugs/s
M-i .03600-01
C-2.*5654D-03

K3-4.5943D,01

* Divide X by 12 in/ft so that XDOT(2) has units in/s^2
K-K/12. ODO

XDOT(l)-X(2)
XDOT(2)uh(A*COS(r*2.ODO*PI*T)-C/12.ODO*XC2)-Kl*X(1)-I3*X(1)**3)/M

RETURN
END
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APPENDIX B

2
x -- ]lx

Xx

22
2 - J84,n - ] + . + -. d

a - 1.388248302957508

4

k f------K -- (l t

1, :-L 2 " °  2 2 2

kt3 -26.837283422538524

w22

11 -687842 2538524-Z

kl := -r - - - + -. dx

kl - 8.451750332S36703
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