LABORATORY STUDIES OF ATOMIC COLLISION PROCESSES

AUTHOR(S)
Rainer Johnsen

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Pittsburgh
Pittsburgh, PA 15260

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

ABSTRACT (Maximum 200 words)
This research program has dealt with atomic collision processes of interest for models of natural or man-made plasmas, such as electrical discharge devices, gas lasers, and atmospheric plasmas. Specific topics have included: (A) Electron-ion recombination of NO⁺, O₄⁺, and N₄⁺ ions, preparation of data compilations on electron-ion recombination, (B) Experimental measurements of rates of neutral-stabilized electron-ion recombination; (C) Experimental measurements of recombination of positive with negative ions; (D) Experimental and theoretical work on ion-atom and ion-molecule elastic and reactive collisions, and laser-induced charge-transfer reactions.
LABORATORY STUDIES OF ATOMIC COLLISION PROCESSES

Final Technical Report

by

Rainer Johnsen

Aug. 15, 91

U.S. ARMY RESEARCH OFFICE

Research Agreement No. DAAL03-87-K-0048

University of Pittsburgh, Department of Physics and Astronomy,
Pittsburgh, PA 15260

Approved for Public Release: Distribution Unlimited

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
I. Scope of the Research Program

The research program carried out under Research Agreement No. DAAL03-87-K-0048 has dealt with atomic collision processes of interest for models of natural or man-made plasmas, such as electrical discharge devices, gas lasers, and atmospheric plasmas. Specific topics have included plasma deionization processes, in particular electron-ion and ion-ion recombination processes and ion-atom interactions.

Several distinct experimental techniques were used in this work, in particular afterglows of microwave-generated or photoionized plasmas, and ion drift tube methods.

Technical details and results of this work have been published in scientific journals or conference proceedings. References to published work are given in the sections on specific research topics.

II. Specific Research Topics

A. Dissociative recombination of electrons with molecular ions.

1. Our earlier work on recombination of NO+ ions as a function of electron temperature was published during this report period. (Ref.1)

2. Our earlier work on recombination of O2+ ions as a function of electron temperature was published during this report period. (Ref.2)

3. A data compilation and critical review of electron-ion recombination data obtained by the microwave afterglow method was published. (Ref.3)

4. Experimental work was carried out on molecular band emissions resulting from products of N4+ recombination. The results have just been submitted for publication. (Ref.4)

B. Neutral stabilized electron-ion recombination

1. Experimental work was carried out on high-pressure recombination in helium gas to test theories of neutral-stabilized electron-ion recombination. This work has been published. (Ref.5)

2. A search for effects of electron localization on electron-ion recombination in cryogenic helium plasmas at a temperature of 4K has been carried out. This work is still in progress.

C. Recombination of positive with negative ions.

1. Subsequent to the development of suitable experimental methods, ion-ion recombination of molecular ions was studied in helium and argon gas in order to test theories on such processes. The results have been published. (Ref.6)

2. The recombination of Xe+ with F− ions and excimer emissions from the XeF* product were investigated. The results have been published. (Ref.7)
D. Ion-atom and ion-molecule reactions

1. As a test of ion transport theory, the mobility of He\(^+\) ions in helium was measured and the results were compared to theoretical calculations by L.A. Viehland using interaction potentials obtained from spectroscopic data. This work was published jointly with L.A. Viehland. (Ref.8)

2. A semi-empirical theory on ion-atom association reactions was developed and compared to experimental data on such reactions. The goal of this work was to provide a simple estimating formula that could be used to obtain rate coefficients for plasma models. Published (Ref.9)

3. Ion-molecule association reactions in HCN were studied experimentally. Published (Ref.10)

4. Very extensive work was performed to find evidence for laser-induced charge transfer of Ne\(^+\) ions with He. It appears that cross sections for laser induced charge transfer are far smaller that had been expected from previous work. This work is still in progress.

Participating personnel:

R. Johnsen
B.K. Chatterjee (PhD 1988)
H.S. Lee (PhD 1990)
R. Tosh
Y.S. Cao
Publications during period from 04/01/87 to 6/30/91
(Reprints or preprints are available on request)

Journal articles:

Book chapters:
