
NAVAL POSTGRADUATE SCHOOLMonterey, California

AD-A246 184

THESIST-E

AloilOYOMV.. 'i, :..)ERWATER VEHICLE
D v .M..IC SJiL'LATOR

by

" "r~~~~~horr." A. ,, ".•'¢

Thes is Advisor. Michael J. Zyda

Approved for pu• cemease: di-tribution is unlimitred.

Reproduced From 0•.OO0O g3c'' 2'g
Best Available Copy

9292-04339.I~i1 ii

''T')RAE VEIL~~~~~~D 9I S • u• NXTAT1OR11 ll! =1

',, • ' • ,, . • . • . • . 'm ""= ;' m by

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGSUNCLASSIFIED

2a SECURITY CLASSIFICATiON AUTHORITY 3. DISTRIBUTIONMAVAILABILITY OF REPORT

*2b. DECLASSIFICATION/DOWNGRA'ING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATiON REPORT NUMBER(S) 5."MONITORING ORGANIZATION REPORT NUMBER(S)

Ga. NAME OF PERFORMING ORGANIZATION 1b. OFFICE 3YMBOL 7a. NAME OF MONITU0ING ORGANIZATION
(if apfikcr We)

Naval Postgraduate School CS/ZK Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (04. State. and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

a. NAME OF FUNDING/SPONSORING O Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER" ORGANIZATION j (dapp:icatl.)

'8. ADDRESS (Ca,. State, and ZIP Code) 10. sOURCE OF FUNDING NUMBERS
PRZ9RAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (kdae S ewify Cla•sfc,.on)

AREAL TIME AUTONOMOU3 UNDERATER VEHICLE DYNAMIC SIMULATOR (unclassified)
IZ PERSONAL AUTMSm(S) .

Jurewicz. Thomas A.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATF.OFREPORT(Year, Aont, Day) 115. PAGE COUNT

Master's Thesis FROM 9 TO !&2/0 December 1990 9118. SUPPLEMENTARY NWtA11UN' "

The views expressed in this thesis are those of the authors and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 1S. SUBJECT TERMS (Continue on rev.m* #neoewy and idettyby boc numbo

FIELD OROUP SUBGROUP Graphics, Dynamics, Real Time, Simulation, Path Planning,
DoD Software Development

19 ABSTRACT (Contire on r;, e # nesy end ..W.y by bk. na.nb.
The NPS Autonomous Underwater Vehicle Simulator is a joint project between the Naval Postgraduate School's

Mechanical Engineering and Computer Science Departments. In order to test mission planning and execution soft-
ware, an accurate vehicle dynamic model is required. Using dynamics based upon the Navy's Swimmer Delivery

* Vehicle (SDV), there is a need to continually update the hydrodynamic coefficients based upon actual vehicle- in -
water testing. The NPS AUV Dynamic Simulator contains a full set of submarine equations of motion and hydrody-

Snamic coefficients. The coefficients are modifiable on-line, and a replay capability exists for funher performance.
"review. Using Montery Bay as an underwtter testing environment, there is the need to be able to display expansive
ter-,ain data while maintaining the real time simulation. The Variable Terrain Resolution Algorithm incorportated into
the NPS AUV Dynamic Simulator enables the entire Monterey Bay data base to be displayed in real time. Resolution
adjustments are mode automatically based upon the vehicle's depth level and system performance.

20. DISTRiBUTKIflAVAXLABrLrrYo v- AusTRAcT .. .2t,,1 . ABSTRACT W'CURI rLS IIATION .. '. .. .
(3I UNCLASSIFIEOt*NLM,'ED [] SAMEAS APT. , 1"To'C USERS UNCLASSIFIED ,

' 2.'.NAE F ESPONSIBLE INDVOA ... W~. TELE.PHONE *xW* Ar" Godi" 122c. OFFICE SYMBOL ...
Mich~ael 1. Zyda [(408) 646-9305 5 52Zk "

DO FOAt/1472,0' WA £3 APR .Son may be used ill tuhau&d
AN othe edton. we, me,- e

£

Approved for public release; distribution is unlihnited

A REAL TIME
AUTONOMOUS UNDERWATER VEHICLE

DYNAMIC SUMULATOR

by
Thomas A. Jurewicz

Commander, United States Navy
B.S., Ocean Engineering

United States Navel Academy, 1975

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

frim the

NAVAL POSTGRADUATE SCHOOL
December 1990

Author.
ThomasA•. Jujrewi!ý,ý

Approved By:

Nfihc h Ydvisor

c ee nd Reader

Robert B. McGhee, Chairman,
Depamnent of Computer Science

ii

ABSTRACT

The NPS Autonomous Underwater Vehicle Simulator is a joint project between the

Naval Postgraduate School's Mechanical Engineering and Computer Science

Departments. In order to test mission planning and execution software, an accuraze vehicle

dynamic model is required. Using dynamics based upon the Navy's Swimmer Delivery

Vchicle (SDV), there is a need to continually update the hydrodynamic coefficients based

upon actual vehicle in-water testing. The NPS AUV Dynamic Simulator contains a full set

of submarine equations of motion and hydrodynamic coefficients. The co,:fficients are

modifiable on-line, and a replay capability exists for further performance review.

Using Monterey Bay as an underwater testing environment, there is zhe need to be ab~e

to display expansive terrain data while maintaining the real time simulation. ''he Variable

Terrain Resolution Algorithm incorporated into the NPS AUV Dynamic Simulator enables

the entire Monterey Bay data base to be displayed in real time. Resolutirn adjustments are

automatically based upon the vehicle's depth level and system perfortrance..

Aooen.1on For

-------- :-'-- It

, .' J

ii

TABLE OF CONTENTS

I. IINTRODUCTION ... 1

A. BACKGROUND 1............

B. FOCUS - NPS AUV DYNAMIC SIMULATOR 1.

C. THESIS ORGANIZATION ... 2

II. SURVEY OF PREVIOUS WORK .. 4

A. NPS SIMULATOR REVIEW .. I 4

1. Fiber Optically Guided Missile (FOGM) Simulator 4

2. Vehicle (VEH) Simulator ... 4

3. Moving Platform Simulator (MPS) ... 5

4. Forward Observer Simulation Trainer (FOST) 5

5. Command and Control Workstation of the Future (CCWF) 6

6. CCWF, Subsurface and Periscope Views 6

7. NPSNET .. 7

B. AUV SIMULATOR DEVELOPMENT 8

1. Use of SDV Hydrocoefficients .. 8

2. Origins of NPS Auv Simulator ... I 8

3. NPS AUV-SIM I .. 8

4. NPS AUV-SIM .. 9

C. NPS AUV-IU1 .. 9.... 9

mII. GRAPHICS PIPELINE LOAD REDUCTION TECHNIQUES .. 11
A. MESH DRAWING ROUTINES .. 11

B. VARIABLE TERRAIN RESOLUTION .. 13
C. POLYGON CULLING 13

IV. VARIABLE TERRAIN RESOLUTION ALGORITHM 18

A. BACKGROUND 18

iv

B. ADVANTAGES OF USING VTRA .. 19

1. Compatible with DMA Terrain Database 19

2. Less Storage Requirements ... 21

3. VTRA improves DMA terrain rendering efficiency 21

4. VTRA resolution can be adjusted automatically 24

5. VTRA Adjusts to Workstation Upgrades 25

C. ADDITIONAL VTRA DRAWING C.NSTn1RATlONS 25

1. Seam Filling ... 25

2. Geographic Referencing .. 26

3. Inner Horizon Blocking Of Draw Routine 26

4. Viewer Perspective 26

5. Terrain Features .. 27

D. VTRA BENCHMARKING .. 27

V. AUV DATA STRUCTURE .. 32

A. INTRODUCTION ... 32

B. AUVPOLYGONS STRUCTURE 33

C. DYNAMICS STRUCTURE ... 34

1. Deltatime 34

2. Forces- .35

3. Inverse Mass Matrix .. 35

4. H -m atrix 37

5. T-matrix 38

D. VEHICLE GEOMETRY STRUCTURE 39

1. Mass Matrix 39

2. Other AUV Geometry Considerations 40

E. COEFFICIENTS STRUCTURE 40
F. SURFACES STRUCTURE42

VI. AUV DYNAMICS..4.5

A. INTRODUCTION 45

1. Dynamics, Animation, and Simulation 45

V

a. Restrict motions to those which' are realistic 45

b. Portrays complex motion with minimal user input 45

c. Dynamic constraints can be automatically :tnr•ned 45

d. Move complex bodies in a natural way 45

2. How to Employ Dynamics 45

a. Build dynamic equations of motion 46

b. Solve equations for forces and acceleratdons 46

c. Determine velocities and positions through integration 46

d. Update the object's state ... 46

B. AUV EQUATIONS OF MOTION .. 46

1. Viscous Crossflow Forces ... 46

2. Equations Format .. 48

C. SOLVING FOR FORCES, TORQUES, & ACCELERATIONS 55

D. SOLVING FOR VELOCITIES & POSITION CHANGES 56

E. UPDATING THE AUV'S STATE ... 58

1. Create the incrementalH_matrix ... 58

a. Rotation Order Matters .. 58

b. Vehicle Coordinate System Alignment 59

2. Revising the Homogeneous Transform Matrix 60

3. Extracting Pitch, Roll, and Heading information 61

F. DYNAMICS AND REAL TIME APPLICATIONS 63

1. Dynamics is not the L imitingFactor 63,

a. Dynamic and Non-dynamic Modes 63

b. Dyn aic Mode Benchmarks .. 63

2. Parallel Processing 641

3. Addition of Dynamic Constraints 65

VII. N'PS AUV SIM•ULATOR .. ,......................... , 66

A. USER INTERFACE ... 66

B. MASTER SE •C ON PANEL 67

C. MOUSE PANEL 68

vi

D. PERFORMANCE PANEL 69

E. FRAMES PANEL .. 70

F. RECORDER PANEL .. 71

G. VELOCITIES PANEL .. 72

H. BOTTOM CONTOUR PANEL .. 73

I. TERRAIN PANEL 74

VIII. FUTURE DIRECTIONS....... 76
A. DYNAMIC CONSTRAINTS AND PARALLEL PROCESSING 76

B. INCORPORATION OF PERIPHERAL PACKAGES 76

1. Controller 76

2. Navigator ... 77

3. Mission Planner/Replanner 77

C. TERRAIN ... 77

D. AUV MODEL DRAWING 78

E. CONCLUSIONS .. 78

vii

ACKNOWLEDGEMENTS

The NPS AUV Dynamic Simulator would have not been possible without the close

cooperation exhibited between the Computer Science and Mechanical Engineering

Departments. Dave Marco provided education -n submarine equations of motion, and

their adaptation to the AUV. Fotis Pappoulias patiently reworked the equations and the

hydrocoefficients for adaptation from the SDV to the AUV.

Dave Pratt provided insight into terrain rendering algorithms and their applicability in

real time graphics programming. His knowledge of "C" programming language and the

UNIX operating system helpcd bring the project to fruition.

Lieutenant Commander Rich Prevatt and Lieutenant Dave King provided invaluable

assistance in helping incorporate their Panel Designer and Toolbox while still under

development. Many program enhancements were made possible by the rapid prototyping

capability of their project.

Dr. Robert McGhee, who sparked my enthusiasm in the AUV project, provided a solid

foundation in rigid body dynamics and kinematics. His patience, vision, and expertise were

invaluable during the past year.

Dr. Michael Zyda, my principal advisor, provided the insight into the value of real time

graphics applications. His guidance provide direction throughout the project development.

Most importantly, my special thanks to my wife Lana, withoit whose sacrifices, love,

and support, this would not have been possible.

Viii

I. INTRODUCTION

A. BACKGROUND

There is a growing effort within the Department of Defense to devclop autonomous

underwater vehicles. Without the need to incorporate life support systems, there is promise

that an AULT" can do a variety of missions at less expense, and without danger to human life.

During software and hardware development, there is a risk of loss of an autonomous

underwater vehicle if actually deployed, +herefore, software must be thoroughly tested,

preferably in its expected environment. With the advent of high speed, low cost graphics

workstations, it is now possible simulate submarine dynamics in real time. Controller and

mission planning software can be tested and real time feedback obtained. Using underwater

grid terrain data, such as that available from the Defense Mapping Agency, missions can

potentially be simulated anywhere in the world, at any depth. Various mission actors such

as changing currents, unplanned obstacles, and vehicle control surface failure can be

observed prior to executing various missions. By incorporating the AUV into simulators

such as the NPSNET (Zyda, Pratt 1990), vehicle missions can be executed in, conjunction

with a coordinated operations scenario. In order to run these missions in real time,

algorithms need to be developed to make optimum usage of the workstation's graphics

capabilities.

B. FOCUS - NPS AUV DYNAMIC SIMULATOR

This thesis concentrates on two main aspects. The first is to develop the ability to

generate accurate hydrodynamic coefficients and submarine equations of motions. The

second is to portray the vehicle in its anticipated environment in real time.

, ,) , ,

By accurately predicting vehicle performance, system software can be developed and

tested prior to incorporation into the actual vehicle. The NPS AUV Dynamic Simulator

enables dhe user to record vehicle performance with any set of hydrocQefficients. System

response on the simiulator can be compared to in-water vehicle testing, coefficients adjusted

on-line, and simulator performance observed until it emulates the actual vehicle. through

this bootstrapping effect, an accurate graphics model can be developed without the need to

perform expensive test-tank operations.

The Monterey Bay database was used to develop the terrain rendering algorithm

utilized in the NPS AUV Simulator. The proximity of the bay to the Naval Postgraduate

School (NPS) combined with the interesting subterrain features of the Monterey Bay

Canyon, make the bay a logical choice, for future test runs of the actual vehicle. Mission

planning systems can be used to generate proposed paths through the canyon. Bay currents

can be incorporated into the model. While most of the actual vehicle testing is done in the

constraints of the NPS swimming pool, `ull dynamic and artificial intelligetace software

testing require a more expansive area. The Variable Terrain Resolution Algorithm

developed herein can be ported to other simulators using DMA Digital Terrain Data such

as NPS Command and Control Workstation of 'he Future (Weeks, Phillips 1989).

C. THESIS ORGANIZATION

Chapter Il provides a I.ackground on other vehicle simulators developed at NPS. The

development and refinement of terrain rendering algorithms is traced through the various

simulators at NPS. The use of dynamics to graphically model the NPS AUV is traced from

the simulator's origin to the current model NPS AUV Ill.

Chapter III describes thc techniques utilized in the NPS AUV Simulator to portray the

environment in real time. These techniques include high speed terrain drawing routines,

variable terrain resolution display, and field of view culling.

2

Chapter IV provides details and performance measurements of the Variable Terrain

Resolution Algorithm (VTRA) used to display Monterey Bay. VTRA is a recursive, binary

reduction technique for displaying grid terrain about an observer to the horizon.

Chapter V describes the AUV data structure. By taking an object oriented approach;

the submarine can inherit rigid body properties while maintain those unique to a submarine

environment.

Chapter VI discussed the dynamics model used for AUV III. The AUX' equations of

motion and hydrodynamic coefficients are described. The procedure for converting

thrusters rpm and fin deflections to vehicle motion is discussed.

Chapter VII details how to operate the ALUV Simulator. The User Interface is described

along with the system capabilities.

Chapter Viii provides the limitations and future direction of the project.

3

IL SURVEY OF PREVIOUS WORK

A. NPS SIMULATOR REVIEW

1. Fiber Optically Guided Missile (FOGM) Simulator

The FOGM simulator, implemented on the SGI IRIS 3120 workstation, featured

a 10 kilometer by 10 kilometer grid terrain data base of Fort Hunter Liggett, California

(Smith 1987). The data was presented as 3-sided polygons using a Painter's algorithm

where each polygon is scan converted drawing the closest polygons last while "painting

over" further polygons. All terrain was drawn at a constant resolution, including terrain

hidden from the observer. FOGM maintained a frame rate of three to four frames per

second ;y displaying every 6th data point. Ele, ation data was exaggcrated in order to

provide a more hilly appearance, with terrain coloring made a function of elevation. Flat

shading was implemented instead of Gouraud shading in order to provide a "checkerboard

effect" aiding motion detection. FOGM implemented triial culling by establishing a

rectangular bounding volume based upon the '-hicle's heading. Polygons outside this

volume were culled.

2. Vehicle (VEH) Simulator

VEH. an eytension of the FOGM simulator, was also implemented on an IRIS

3120 and completed in December 1997. The' FOGM -terrain rendering algorithm was

modified to include a more refined Field of View (FOV) culling algorithm. Ful! 3D culling

ofter. uses clipping planes to form a four sided "pyramid of vision" with the axis of the

pyramid along the vehicle's path. VEH utilized the left, right, and far clipping planes. VEH

subjected FOGM's bounding volume to further culling based upon a narrow or wide field

of view. Only those polygons within the bounding vcoume, and within the FOV were sent

through the graphics pipeline. Vehicle roll (viewer "twist") was not incorporated in Oither

4

FOGM or VEH thus eliminating the need for more than three clipping planes. FOGM's

FOV culling was strictly a function of rotation about the screen's "y" axis (vehicle

heading). A further contribution of VEH was the incorporation of SINE, COSINE, and

TANGENT lookup tables instead of function calls. Speed improvements of over 1000%

were noticed in some cases when using the tables instead of the math library (Oliver 1988).

3. Moving Platform Simulator (NIPS)

The MPS series evolveO from the VEH and FOGM simulators. Significant

improveme..ts were made to the gridded terrain algori.hms previously used. Implemented

on an IRIS 4Di7OGT workstation with hardware supporting the z-buffer algorithm, the

need for the Painter's algorithm for hidden surface elimination was removed.

MPS incorporated three resolution levels, and variable field of views. The,

highest resolution level extends out to a distance which is a function of the field of view.

The resolution is then halved and extended out 2000 meters, halved again out to the

horizon. Gaps occur at the seams between resolution levels as extra vertices exist on the

high resolution side of the seam. To eliminate this problem, extra polygons were drawn to

fill the holes. These polygons, termed "skins", were vertical planes which were often

perpendicular to the actual terrain. A drawback to this method was that as the seams

changed location with vehicle movement, a slight flickering would occar due to the

insertion and deletion of these vertical surfaces.

Whereas previous simulators were limited to the 10 by 10 kilometer area of Fort

Hunter Ligget, MPS had the ability to display gridded terrain databases containing any grid

point spacing.

4. Forward Observer Simulation Trainer (FOST)

FOST(Drummond 1989) utilized DMA Level I Digital Terrain Elevation Data to

generate coordinates in the Military Grid Reference System (MGRS). Although FOST

5

adapted the MPS terrain rendering algorithm, minor modifications included switching from

polygon primitives to mesh primitives to increase performance. This decision was based

upon performance measurements in MPSII (Winn June 89), the second simulator in the

MPS series. Paragraph 6 describes mesh drawing in more detail.

5. Command and Control Workstation of the Future (CCWF)

The CCWF (Harris 1988) was initiated at the Naval Postgraduate School as part

of an effort to provide a 3D real time interface for the Battle Group Commander. In order

to enhance real time capabilities, CCWF also incorporated variable terrain resolution

strategy. While MPS adapted binary reduction between resolution levels, CCWF decreased

resolution levels from 100 yard spacing to 1200 yard spacing and finally 12000 yard

separation at the lowest resolution level. Such a.strategy provided a greater reduction of

,poly gons at lower resolutions but provided a more dynamic terrain change at the seams. In

order to maintain three separate resolution levels of data, separate terrain databases were

created for the various resolutions. While increasing data storage requirements, -the

reduction of run time calculations resulted in. an increased frame rate.

To solve the boundary problem, CCWF utilized the "skin" method developed in

the MPS series to draw seams between resolution levels. All three resolution levels are

drawn from the vehicle, resulting in the high resolution carpet being drawn over lower

resolution carpets. The net effect was that lower resolution terrain would "cut through"

valleys of the higher resolution terrain.

The CCWF was the first NPS Simulator to draw data using DMA's Digital Terrain

Elevation Data. The area of operations centered around the Sea of Japan.

6. CCWF, Subsurface and Periscope Views

In follow-up work to the CCWF (Weeks 1989), a triangular mesh drawing routine

was incorporated in addition to the polygon drawing routine. By reducing the number of

6

vertices required to be sent through the graphics pipeline (4 instead of 6 per triangle pair),

a 50% speed increase in graphics frame rate was obtained. When using mesh drawing

routines, vertex normals instead of polygon normals were generated resulting in a

smoother, more realistic appearance. The "skirt" method of filling resolution seams did not

work as well when using the "imesh" mode. Since the skirt lighting normals were

horizontal, skirt flickering discovered in MPS became very pronounced as surrounding

lighting normals were essentially vertical. The polygon (checkerboard) method was left

available as an option. Without terrain features, motion on level surfaces is often difficult

to detect without the checkerboard effect.

A primary concern is the storage requirement for CCWF lighting. To adequately

light the terrain, vertex normals are computed at start-up. Thus terrain database

requirements grew from 2.88 megabytes to well over 21 megabytes. An attempt was made

to compute normals dynamically, however, a 50% performance reduction degraded the

system real time performance capabilities.

A reconmendation for future research was to incorporate control surfaces into the

ships, such as rudders. Initial work on the AUV NPS Simulator was undertaken with

CCWF requirements well understood; specifically applicable to CCWF are (1) use of

control surfaces to drive vehicle; (2) elimination of requirement to use skirts at resolution

boundaries; (3) incorporation of sonar, (4) development of vehicle control panel.

7. NsSNET

NPSNET (Zyda, Pratt 1990) is the Naval Postgraduate School's low-cost version

of the DARPA SIMNET System. While refining many' of the NPS terrain rendering

algorithms. NPSNETs enhancements include ince'poration of cultural terrain features

such as ground cover, man-made structures, and terrain texturing. Research continues on

7.

optimal display of such features on sloped and variable resolution terrain while maintaining

real-time updates.

B. AUV SIMULATOR DEVELOPMENT

1. Use of SDV Hydrocoefficients

The original NPS non-graphical simulation of an underwater vehicle can be found

in (Boncal, 1987).. Utilizing basic submarine equations of motion (Gertler 1967), with

modifications to reflect the geometry of the U.S. Navy's Swimmer's Delivery Vehicle

(Smith 1978), BoncAl designed a controller to control rudders, bow planes, and stern planes

based upon the vehicle's predicted dynamics.

2. Origins of NPS Auv Simulator

The initial 3D graphics submarine simulator (MacPherson 1988) consisted of a

submersible which utilized a rudder, stern planes, and a single screw. Movement of these

control surfaces imparted pitch, yaw, and speed to the vehicle. Simple dynamics were

employed to derive appropriate vehicle responses. Actual submarine dynamics were not

modeled as the simulator was utilized to test mission path planning algorithm's only.,

3. NPS AUV-SIMI

The current AUV graphics simulator is an c xtension of a, graduate graphics project

by D. Marco, R. Rogers, and M. Schwartz (Zyda, McGhee, Kwak 1990). AUV-SIM1 was

the first graphics simulator to utilize the Swimmer's Delivery Vehicle equations of motion

as modified by R. Boncal (Boncal 1987). Intended to model the NPS Autonomous

Underwater Vehicle, the simulator demonstrated realistic submarine dynamic behavior.

The simulator incorporated a mouse panel to make adjustments to rpm, rudder, and bow

planes. The environment was a 120 ft x 6Oft x 8ft swimmning pool, the vehicle drawn as a

six foot' submersible with twin screws, stem rudders, bow and stem planes.

'.' 8

Communications code was added to receive autopilot command controls ftorr a Symbolics

LISP machine (Nordman 1989).

4. NPS AUV-SIM2

The appearance of the graphics AUV was modified to reflect the actual AUV

being built by the Naval Postgraduate School. Essentially symmetric in. shape, AUV-SIM2

has eight control surfaces consisting of bow planes, stem planes, bow rudders, and stem

rudders. The swimming pool was redesigned to reflect the appearance of the NPS

swimming pool where initial testing of the actual vehicle would take place. The basic "C"

code was further modulized. The Mission Planning Expert System was developed on the

Symbolics Lisp Machine using the KEE Expert Shell resulting in some modifications to the

"C", communications code (Ong 1989). Although the vehicle's appearance reflected the

actual AUV, the dynamics and geometry reflected the asymmetrical, much larger SDV.

C. NPS AUV-Il

NPS AUV-EII is a result of this thesis. While making minor upgrades to the vehicle's

appearance, the primary contributions were a reengineering of the software to encapsulate

the AUV as a rigid body using object oriented programming techniques prototyped in LISP.

The equations of motions and hydrodynamic coefficients were modified to reflect the

geometry of the NPS AUV rather than the SDV. Furthermoe, the drag coefficients and

added-mass coefficients are no longer "hard coded" into the program, but are parsed from

an external file at the program's initiation. These coefficients are modifiable on-line so

.. adjustments can easily be made and tested. The revised coefficients can then be saved to an

external file for further refinement. The Monterey Bay environment was incorporated to

allow more expansive testing of the search algorithms and testing of system dynamics that

can not be tested within the constraints ot the NPS Pool.

9

A record capability exists to develop a script that can be used by the actual vehicle

during testing. A replay capability exists to reexamine missions, or to test externally

generated scripts. A sliding scale enables the speed of replay to be adjusted. On line

stripcharts display changes in velocities and accelerations to be displayed along all axes.

"The user interface was designed to allow to display the vehicle's orientation (pitch,,

heading, and roll).

10

II. GRAPHICS PIPELINE LOAD REDUCTION TECHNIQUES

The Silicon Graphics 4D/24OGTX contains four MIPS R3000 CPU's and R3010 RISC

components. The CPUs run at 25mhz and together execute approximately 80 million

instructions per second (MIPS) achieving four double precision Mflops (Ackley

1989). The graphics architecture is divided into four subsystems: the transformation

subsystem, scan-comnersion subsystemraster subsystem, arid display subsystem. Of

interest here is the transformation subsystem, for this is where the-limit is set on the number

of vertices which can be generated per second.

The transformation subsystem, called the Geometry Enginc, is capable of processing

400,000 vertices per second. A single vertex transformation requires approximately 100

FLOPS. To achieve a frame rate of 10HZ, for example, we must attempt to pass less than

40,000 vertices per frame. 30 % of the Geometry Engine's work is in performing vertex

transformations, with the rema"ning work performing operations such as lighting

calculations and normal transformations. Since the programmer can directly influence the

total number of vertices sent to the Geometry Engine, it is often desirable to employ vertex

reduction techniques when the goal is real time graphics display. Some of the techniques

used in the NPS AUV simulator are described below.

A. MESH DRAWING ROUTINES

In order to draw the entire Monterey Bay database as polygons (triangles),- each

internal vertex needs to be-sent six times, once for each polygon that shares the vertex. As

demonstrated in CCWF, the graphics library function bgnameshO can greatly improve

graphics pipeline efficiency. By drawing the area as a series of mesh strips, each internal

vertex needs to be sent only twice to represent the six adjacent polygons, as illustrated in

Figure 3.1. The vertex information is maintained in two "vertex registers" within the IRIS-

"•11

- _

4D. As a result, the total number of vertices required drops from over 300,000 to slightly

over 100,000. Since the Geometry Engine is capable of 400k vertices per second, it can

pass 135k triangles per second when using mesh drawing routines.

The IRIS-4D VGX models contain three vertex registers, enabling the vertices to be

represented as part of a quadrilateral using bgnqstrrtp). T7 - function bgnqstripO increases

the efficiency of the Geometry Engine even further, as 100k quadrilaterals (200k triangles)

can be drawn per second. In addition, "Q-mesh" provides superior shading and lighting

over "T-mesh"(Graphics Library 1990).

Start Mesh Row 2
•kI Im n 0

a

a b " d

Start Mesh Row 1 although vertex "g" is only drawn twice,

it is part of six separate polygons

Figure 3.1 Mesh Drawing Afivantage

12

B. VARIABLE TERRAIN RESOLUTION

Both CCWF and MPS demonstrated the importance of variable terrain resolution.

Since the number of data points available for display increase by with the square of the

distance from the observer, it is essential that such a reduction be incorporated. By limiting

the degree of the resolution changes and increasing the number of resolution changes, the

NPS AUV Dynamic Simulator is able to reduce the rate of vertex increase from 0 (N2) to

nearly 0 (N), with the la:er being approached as the number of resolution levels is

increased. A major concern with multiple resolutions is "seam handling", or the smooth

transition from one resolution to another. The chapter on the VTRA (Variable. Terrain

Resolution Algorithm) addresses this issue. Figure 3.2 depicts the effect of decreasing the

resolution in a binary fashion, while increasing the number of resolution levels between the

observer and the horizon.

C. POLYGON CULLING

The VTRA can be applied in conjunction with culling. The merits of culling have been

demonstrated in numerous NpS simulators. As an example of the power of

culling, consider a 60 degree Field of View. If polygons outside the FOV can be culled,

then a lessened load is placed on the graphics pipeline. Very efficient mesh drawing

routines now exist, so one must weigh the CPU overhead required of culling, against the

efficiency of the Geometry Engine. Often, a "rough clip" is superior to fine culling since

." the later must often be done in the mesh drawing loop, with culling conditions checked

against every vertex. Fine culling was experimented with in the NPS AUV Simulator, and

performance was actually lower than that with the "quadmesh" drawing without culling.

13

II

A 2

Resolution
Levels

Number
of

Vertices

4

HORIZON

As the horizon increases, the number of vertices

increases at a rate approaching Order (N)

Figure 3.2 Variable Resolution Effects on Vertex Count

14

Figure 3.3 is an aerial viewer of the Monterey Bay. The Submarine heading is 045 degrees

with a field of view of +/-45 degrees. Data outside the FOV is culled

Figure 3.3 Monterey Bay Culled

The culling in the NPS Simulator is similar to the CCWPF (iling algorithm. The terrain

is divided into four sectors, North, South, East, and West. The oigin is at the viewer's

location (in NPS AUV Simulator, the observer need not be at the vehicle). The view

direction is the vehicle's heading, or the observer's viewing azirmuth. Sine and Cosine

lookup tables are created the first time the culling routine is activated. VTRA-has the notion

15

of minimum and maximum rows and columns, usually t~he limit of the database. The NPS

AUV Simulator simply uses the viewing azimuth to further constrain these limits. For

example, if the. observer is viewing towards the East sector, then the minimum column can

immediately be increased to the observer's column. The maximum column is already set

by the horizon limitations. Therefore, the only requirement is to adjust the maximum and

minimum rows using the view direction, right and left clipping angles, horizon, and

trigometric lookup tables. Figure 3.4 contains the pseudocode for culling techniques

utilized in the NPS AUV Simulator.

Since the NPS AUV Simulator is essentially a flight simulator and'capable of angular

accelerations along all three axes, further culling was attempted based upon sine of the

pitch in conjunction with the altitude and the sine of the roll in conjunction with the vertical

field of view. Althoug'- this was relatively easy to accomplish, the savings in vertex'

generation could not match the additional mathematics involved and system performance

declined. Therefore, culling is based upon rotation around the system's "y" axis only

(heading). With culling activated, the NPS AUV Simulator's frame rate increased by 2 to

4 frames per second depending on number of resolution levels and horizon.

16

if (NORTHSECTOR)

minrow =viewer-row;

max~row =maximum-row;

mincol =viewer-col - horizon *tan(1eft clipping-azixnuth);

maxcol =viewer-col + horizon *tan(right-clipping_,azimnuth);

ff(SOUTHSECTOR) I
minrow =minimum row;

maxrow =viewer~row;

mincol =viewer-col - horizon *tan(rightsclipping~azimnuth);

maxcol =viewer-col - horizon *tan(leftsclipping-azimuth);

if(EASTLSECTOR)

minrow =viewer-row + horizon /tan(right clipping-azifiiith);

max~row =viewer~row + horizon /tan(1eft..clipping..azilnuth);

mi~ncol viewerý_col;

maxcol =maximum col;

ff(WESIý_SECMOR)

niinrow =viewer-row - horizon /tan(left~clipping...azimuth);

maxrow = iewerjow - horizon /,.an (right~clipping~azinmuth);

mincol =minimurincol;,

niaxcol. viewer _col;

Figure 3.4C~lippifig Pseudocode

The row end column constra-ints are -reset by thw ciipping
routine, and are utilized by VTRA for generming terrain.

17

IV. VARIABLE TERRAIN RESOLUTION ALGORITHM

A. BACKGROUND

As shown in the previous chapter, there is a need to display grid terrain at various

resolutions if real time simulation is the goal. The variable terrain resolution algorithm

(VTRA) was initially conceived while conducting research on aerial view techniques for

the Command and Control Workstation of the Future, and is fully incorporated into the

NPS AUV Simulator. The algorithm assumes that highest visibility terrain should be drawn

around the observer, and that the observer's position be selectable, whether inside or

outside a vehicle..The formula requires four inputs: th.- observer's horizon, the number of

resolution levels required, the maximum resolution level required, and system performance

as measured by "delta time" (ffe inverse of the system frame rate).

Based upon the input parameters, VTRA determines a grid density for the lowest

resolution terrain, and draws this terrain from the horizon to 1/2 horizon. The horizon i s

then reset to the 1/2 horizon, and, the grid density doubled. The function is called

recursively with the new parameters until maximum density is achieved. This density is

then drawn to the observer and the algorithm stopping condition achieved. Figure 4.1

contains the pseudocode for the algorithm as used in the NPS AUV Simulator.

:18

/* vehicle is a su-ucture containing the vehicle's state, i.e., orientation, position ~

show_terrin(vehicle)

Vefr..po vehicle;

int start4O] = vehicle's X position on grid;

int start[IJ = vehicle' s Y position on grid;

int horizon = 128;

int vert-.spacing = 16;

int max_res_level= 1;

show2_terrain(vehicle, start, horizon, resjevel);

show2_terrmin(Vehr..jr vehicle, in: star!(21, int horizon~int ven...spacing)

if(vert~spacing ==maxjresjevel)

drawjterrain~from~horizon~to~vehicle..a:...curren-res-evel();

else(

drawjterrain from horizon to.. l/2_horizon..az..curentjcsjeve 10;

Figure 4.1 VillA Pseudocode

19

B. ADVANTAGES OF USING VTRA

1. Compatible with DMA Terrain Database

VTRA will work with any size two dimensional array of grid data. The value of

using authentic DMA terrain data has been demonstrated in numerous NPG simulators.

The algorithm was developed using Monterey Bay terrain data received courtesy of the

Monterey isay Research Institute (MBARJ). Figure 4.2 depicts the data structure which was

originally in values of positive meters and converted to negative feetz When the NPS AUV

Simulator is activated, the function scan zbay)O reads the data into a 222 x 245 x 3 array.

The X and Y data is generated based on vertex spacing. Since above ground terrain is

represented with zero elevation data, a random number generator assigns positive values to

pr esent a discernible coastline. Currently, work is underway to merge Monterey Bay

subterrain data with DMA terrain data for use with VTRA and subsequent aerial and

subsurface views of the Monterey Bay Coast.

222 rows

26nm
245 cols •

Figure 4.2VTRA Pseudocodes

20

2. Less Storege Requirements

VTRA uses an array of vertex normals generated during program initialization to

perform lighting calculations. After the terrain data array is parsed, the NPS AUV

Simulator uses the function computebaynormalsO togenerate vertex normals. Using the

four adjacent vertices, normals for the four adjoining polygons are computed From these

four normals, a final unit vertex normal is generated. Unlike previous simulators using

variable resolution strategies, there is no need to precompute and prestore various

resolution data, only one data set need to be stored.

3. VTRA improves DMA terrain rendering efficiency

CCWF research (Weeks 1989) identified the amount of data required to display

terrain out to the horizon, typically 26 nautical miles, as a major concern. Using DMA

1201 x 1201 terrain with 100 yard spacing as an example, we apply the VTRA to display

the data base out to 26 nautical miles without using 100% of the database.

Placing !he observer in the center of the grid, assume a horizon of 512 data points

(51,200 yards or 25.5 arm), we apply the algorithm before field of view culling. Displaying

all the data at highest resolution requires (1024 x 1024) or 1.2m vertices. Displaying all the

data at 1/4 resolution requires (256 x 256) or 64k vertices. With the VTRA formula, and

using 5 resolution levels, only 16k verric'es are required while providing maximum

resolution out to 3200 yards. This represents less than 2.0% of the total available vertices.

By applying 4 resolution levels, the area of highest resolution is extended out to 6400 yards

with a vertex count of 26k, less than 3% of the total available vertices.

When using DMA terrain data, one concern is when should another geographic

cell be read from disk into memory. By extending the horizon, at low resolutions, a distance

that is a function of the vehicle speed and the amount of time to recover data from storage,

the horizon boundary can act as a "trigger" to initiate reading of a particular cell.

21

The flexibility of VTRA enables the programmer to emphasize either resolution

or horizon. A geologist scanning a desert from the air would expect to see geological

structures in greater detail as he approached the desert floor. As he descends, his horizon

would decrease with the square root of the altitude.

There are A'ree factors affecting the total vertex count using VTRA: horizon,

total number of resolution levels, and maximum resolution level. Each of these factors is a

VTRA input parameter.

The horizon is the number of data points extending from the observer that will be

displayed on the screen. Data within the horizon is depicted after applying proper spacing.

The horizon must always be a power of 2, i.e., 64, 128, 256, etc.. The data spacing factor

must also be passed as a parameter so the algorithm can convert the horizon to geographical

coordinates. Decreasing the horizon increases system performance.

The total number of resolution levels is only limited by available horizon. The

lowest resolution extends from 1/2 horizon to horizon, the next lowest from 1/4 horizon to

1/2 horizon. The binary reduction continues recursively until the maximum resolution level

is reached. Data from the observer to the innermost horizon is depicted at maximum

resolution leveL Increasing the total number of resolution levels increases workstation

performance, and decreases the total area of maximum resolution.

The maximum resolution level determines the density that terrain will be rendered

closest to the observer. For example, at resolution level one, every data point is represented;

at resolution level two, every other data point; and at resolution level four, every fourth

point. Notice that there is no resolution level three, as VTRA relies upon a binary reduction

of terrain resolutions. Each outer resolution area is 1/2 the density of the inner resolution

area, with the innermost resolution area representing the starting density. Therefore,

22

lowering the maximum resolution level from one, to two or four, will greatly reduce total

vertex requirements.

The defaul' parameters of the NPS AU-V Simulator are a horizon of 256 data

points, total number of resolution levels of four, and a maximum resolution level of one.

Figure 4.3 depicts a view of Monterey Bay from an altitude of 80 nautical miles. Figure

4.4 shows the bay drawn as a wiremesh with four VTRA resolutions.

. Figure. 4.3 Filled View of Monterey Bay

23

-. I _____

Figure 4.4 Four Resolutions of Monterey

4. VTRA resolution can be adjusted automatically

Since the three controlling factors are input parameters, the programmer can elect

to create a fu• ton to automatically control these values. NPS AUV Simulator has such a

function, auto resolutionO, which is activated from the terrain conurolpanel.

The auv horizon is a function of its "absolute altitude", i.e,, height above the

terrain. As thd vehicle climbs, the horizon doubles at programmed intervals. As the vehicle

approaches ountainous terrain", such as the Monterey Bay Canyon wall, the horizon will

decrease by h f to provide better resolution of the terrain.

The a of maximum resolution beneath the vehicle is inversely proportional to

the vehicle hmzon, i.e., as extra vertices are portrayed by extending the horizon, a

24

reduction of vertices directly below the vehicle takesplace. The trade-off is nearly equal so

system performance remains almost the same.

The third factor, number of resolution levels, is adjusted as a function of system

performance. The instant a decrease of performance is detected, whether the cause is

internal or external to the program, the number of resolution levels is increased easing the

graphics pipeline load. Conversely, if the system is running efficiently, the number of

resolutions is decreased, thus extending the range of higher density terrain rendering. The

number of resolution levels becomes a function of workstation performance.

5. VTRA Adjusts to Workstation Upgrades

By adjusting the input parameters as a function of system performance as was

done in the NPS AUV Simulator, discussed above, higher performance architectures using

VTRA will matintain the real time depiction, and terrain renderirg will automatically

improve. There is no need to rewrite the program since VTRA can automatically provide

more realistic terrain rendering.

C. ADDITIONAL VTRA DRAWING CONSIDERATIONS

1. Seam Filling

As seen throughout the development of vehicle simulators incorporating a

variable resolutionscheme, making a smooth transition fromn one resolution to another has

been a problem with various solutions. Additional polygon generation and normal

ca.culations required to "fill the seams", can degrade system performance. VTRA solved

"this problem by staying within the binary reduction recursive routine. NPS AUV Simulator

seam "stitching" functions will work at any horizon. Rather than filling holes after the

terrain has been generated, the seams are part of the terrain rendering process. Mesh

drawing routines always require an even number-of vertices from within the mesh function.

25

VTRA's stitching requires two vertices per seam for each vertex row scanned, ensuring this

requirement is met. Every stitched vertex uses its precomputed normal for generating

proper lighting effects. As a result, seams can not be detected as seen in the various terrain

pictures throughout this paper.

2. Geographic Referencing

When drawing terrain at various resolutions, the choice of which points to

represent should be a function both relative to the observer ann relative to actual geographic

position. In the original NPS AUV design, the points displayed were relative only. to the

observer. As a result, resolution level 4, for example, would "shift" the vertices displayed

resulting in a rippling movement as the vehicle progressed. Steady terrain was generated

by depicting only those vertices whose row % four and col % four equaled z-ro.

Geographic referencing is also required in the seam drawing algorithm to ensure smooth

blending from one resolution to another.

3. Inner Horizon Blocking Of, Draw Routine

Previous simulators discovered problems when trying to place a small "high

resolution carpet" over a lower resolution such as valleys being "sliced" by the underlying

lower resolution plane. To ensure this doesn't happen, and to greatly reduce vertex

generation, drawing of all data from horizon/2' to the observer is blocked, for each horizon

in the recursive call except for the highest resolution which continues all the way to the

observer.

4. Viewer Perspective

Resolution should be based on the observer position, not a vehicle's position.

Therefore, the program should track the observers coordinates, as these are the coordinates

.26,

V .•..

the VTRA will base the recursive stopping condition, i.e., the center of high resolution

display.

5. TERRAIN FEATURES

Drawing with mesh routines and lighting has generated realistic looking terrain in

recent sir.iulators. However, without the checkerboard effect, motion is difficult to sense.

Terrain structures or vegetation can help provide this effect. This is evident in NPSNET

which lises ground cover and structures to aid with the sense of motion.

While displaying features on highest resolution terrain does not cause a problem,

at lower resolution the item may rest on a vertex not displayed, causing polygons to-slice

through the structure. A possible solution in VTRA is to modify the algorithm to display

highest resolution terrain "patch" where any structure exists. The row scanning process can

make this an easily incorporated feature.

D. VTRA BENCHMARKING

These figures were taken from the NPS AUV Simulator with the Simulator's "culling"

feature disabled. The vehicle was operated from a "Cockpit View" so that the vehicle's

polygons were not drawn. The Simulator was run on a Silicon Graphics, Inca, IRIS 4D/

.240VGX Workstation rated 80 MIPS and 16 M FLOPS using all four processors. The

benchmarks were taken using single processor mode.

Figure 4$.5 shows the effect of decreasing the maximum resolution levels has on frame

rate. These curves were obtained using a horizon of 128 data points (approximately .14 nm).

Since 128 may only be reduced six times while maintaining sufficient vertices to generate

a mesh at the highest resolution level, frame rate begins to decline after six reductions.

Each reduction of maximum resolution requirement gains an extra 3 to 4 frames per second.

The effect of Culling shows an extra 2 to 3 frames per second when using five resolutions

with a maximum resolution of four.

27

Figure 4.6 contains a table of measurements of frame rates for various horizon and

r,,mber of resolution combinations., This table proved useful in developing the AUV

aato_resolution algorithm. Measurements were taken using a maximum resolution of one

(every data point displayed in innermost horizon). These figures were utilized when

developing the autoresolutionO function for the NPS AUV Simulator. Figure 4.7 provides

a view of the filled terrain from an observer perspective.

28

,'L' . " ., " ,28.

I 33
I 4 levels with clipping•

i ~~~30 "" ,

24
27

15

124

3

62 3 4 6 7 8

Number Resolution Levels'

Figure 4.S5 Varying the Max Resolution

29

Res rI-
Horizon 1 2 3 4 5 6 7 8

16 19.1 19.6 23.5

32 11. 15.2 19.6 23.5

64 3.8 6.7 11.5 17.0 19.6

128 1.6 2.8 5.6 11.1 17.1 21.0

256 1.0 1.2 2.3 5.5 IOC 15.1 17.0

512 0.6 0.8 1.1 2.5 5.2 9.1 14.2 16.1

1024 0.2 0.3 0.6 1.1 2.3 4.9 8.9 10.1,

By using the formula

Horizon = 2 Number-Resolution-Levels-I

a frame rate of approximately 10 may be achieved for most horizons.

Figure 4.6VTRA Performance Figures

.30

I.M

311

V. AUV DATA STRUCTURE

ft. IN ARODUCTION

When deve!oping the NPS AUV Simulator, the goal was to incorporate object oriented

features into the data structure. The auv data structure inherits its characteristics through

the use of "C' language pointers.

The auv structure contains five pointers to substructures. The AUVPolygons structure

"poly" contains pointers :o the vehicle's polygons encapsulated in the NPGS "OFF'

format (Munson 1989). The Dynamic_Structure "dyn" contains slots required to compute

polygon (vertex) transformations from accelerations. The VehicleGeometry structure

"geo" contains information relative to a specific vehicle such as the mass matrix.

Information in the mass matrix is used to comp,'te the vehicle accelerations from the

vehicle forces. Tne Surfaces structure "surf" contains slots depicting the state of the

vehicle's external control surfaces; rudders, fins, and thrusters. The Coefficients structure

contains items specific to the submarine such as hydrodynamic coefficients which

determine, among other things, how much force a given fin deflection will generate, or how

much added mass needs to be applied to the vehicle during accelerations. Figure 5.1 depicts

the essentials of the 'auv structure.

32

typedef struct {

AUV_POLYGONS poly; / * auv objects (polygons) */

DYNAMIC-STRUCTURE dyn; /* forces, torques, accelerations */

VEHICLE_GEOMETRY geo; /* vehicle geometry struct */

COEFFICIENTS coeff, /* hydro coefficients struct*/

SURFACES surf; /* fin and prop deflections /

I Submarine *Subpitr,

Figure 5.1 AUV Data Structure

B. AUVPOLYGONS STRUCTURE

The current NPS Object File Format does not support articulated bodies.

Transformation may only be applied to the entire object, although work is currently

underway to add this capability. The AUV has fifteen separate moving objects; six

propellers, eight fins, and the hull. The submarine can be built from the seven OBJECTS

contained in the AUV-Polygons structure depicted in Figure 5.2. These OBJECTS are

parsed into the structure from an external file at program initialization.

typedef struct

OBJECT *hullobj; /* ptr to hull polygons ./
OBJECT *stern.plancobj; /f ptr to stern polygons *I

OBJECT *bow-planeobj; / ptr to bow polygons/

OBJECT *rudobj; /* ptr to rudder polygons 1

OBJECT *left-propobj; /* ptr to l[prop polygons I

"OBJECT *rt-propobj; /1 ptr to r.prop polygons I

OBJECT *thrusterobj; /0 prt to thruster polygons 'I
AUVPOLYGONS;

Figure 5.2 AUV Polygons Structure

33

"I DYNAMICS STRUCTURE

The dynamics structure contains all the essential items for computing the vehicle's

dynamics and kinematics, which is more thoroughly covered in the next chapter. However,

a brief explanation of some of the slots in Figure 5.3 will be covered here.

typedef struct

float deltatine; /* time between updates *

float forces[6]; /* forces & moments /

float mminv[6][6]; /* inverse mass matrix /

float accelerations[6]; /* udot, vdot, wdot /

ffloat velocity[6]; /* u,v,w,p,qar */

float positi6nschange[6];

float incremental_H_matrix; /* for body axis rotation /

float H_.manix[6][61; /* rotations and translations */

float T.-matrix[6][6; /* for Cockpit View '/

float pitch, heading, roll; /* phi. theta, psi *

} DYNAMICSTRUCTURE;

Figure 5.3 Dynamic Structure

1. Delta time

In AUVI and AUV2, delta-time was set at 0.5, regardless of the system frame

rate. To portray accurate real time dynamics, the system clock must be used AUV I1

records the delta time just before each swapbuffer and may be less than .05 (over 20 frames,

per second). The value is utilized when integrating the accelerationt and velocities. The

function new delta dmeO returns the time (float seconds) since the function was

previously called.

34

#include "sys/times.h"
#include "sys/param.h"

float newdeltatimeO
{

struct tins spottime; /* structure from times.h "1
static float oldtime;
float newtime;
static int timestarted = False;
float timedifference;

/* convert clock ticks to seconds using HZ */
newtime = (float)times(&spot-time)/(float)HZ7

if (!timestarted) { 1 first reading will be set to zero 1
oldtimne = newtime;
timestarted = True;

)

timendifference = newtime-oldtime;

oldtime = newtime;

return (time.difference);

Figure 5.4 Delta Time Routine

2. Forces

This slot contains an array of the forces and moments produced from the equations

of motions, which are more thoroughly discussed in the next chapter. The force vector is

multiplied by the inverse mass matrix to obtain the accelerations.

3. Inverse Mass Matrix

The inverse mass matrix is determined at program initialization after the mass

matrix has been created. The mass matrix is inverted through Gaussian elimination

techniques in AUV III. In the previous AUV Simulators, the inverse mass matrix for the

SDV was formulated using a Fortran program and then hard coded into the simulator code.

The Gaussian elimination routine is shown in Figure 5.5.

35

#defin scan(var, lower, upp-r) for(var=lower, var<upper, var+4)
matrix~invexse2(IN.MATRIX, INVERTED -MATRIX, SIZE)

float *flNJ-l4ATRIX;(
float INVERTEDMATR1X[lOO0J;
mnt SIZE;

int index=-O, row=O, col=0, currnt row--&
float *01EMP, factor, row jactor,

TEMP = (float**)maI~oc(SIZE sizeof(float**)); /' allocate memory *1
scanwroOASIE) 1 /' create temporary augmented matrix/

TEMP~row] = (float *) malloc(2 * SIZE * sizeofifloat));
scao~col.0, SIZE) I

TEMiAP~row][col] = IN-MATRDCqrow *SIEM + coil];
TEMPtrowllcol + SIZE] = 0.0.

T EMP~row][row + SIZE] = .0

3can(index,0, SIZE 1 /' set bocor to diagonal component .
factor - TEMP~ciurntmjow][cwrrewrow];
if (fWor O) 1 /*to avoid division by'afactor of "0"0/

scaw(row, 0. SIEM) P / find row that doesn't have zero ~
if (Tm4Prow][canent-rowl 1- 0)(

scan(colO0, (2*SIE)) I
TEMP~curnent-row](coll 4- TEMP[row j[colJ;

factor -,TEMP~cumrent-ow][cumsent-owJ;

I

scmrowO,- SIEM) I /1 subtract (factor 0current row) from each row 0/
if row I- cumsemrow)

row-Wcor - TEM~rrowJ~curmvjowlw;
¶ a~can(col. 0, (2 * SIZE))

TEMPrrow][coII raw-factor * TEMPraarrewn'jowlcolj;

cunemrow441

9anu(row.0.SJZ) /0 crem matrix/
scan(col.0, SIZE) I

INVERT'ED..$ATMI~row*SIE +coil n TEMPrrO'wJfcol.SI2ZJ-;

Figure SX, Matrix Inverse Routine

36

"4. H-matrix

The homogeneous transform matrix (H-matrix) contains the information required

to perform polygon transformations. One format for the H-matrix is shown in figure 5.6

which results from a yaw followed by pitch, then a roll. The transpose of this particular

matrix for robotic applications is found in (Fu 87)

Coco soce -so 0
cosesxv-soC SSOSXV+C0Ciy COS W 0

COSOCW+SOSXI SoSeCXV-COSWI COCX 0
dx dy dx 1

0 -ý roll dx -o Xposition

0 --4 pitch dy -- Yposition

4 + yaw dz - Zposition

Figure 5.6 Homogeneous Transferm Matrix

By loading the vehicle's H-matrix onto the transformation stack prior to drawing

the vehicle, proper vehicle orientation results. In Chapter 6, we see several uses of the H-

matrix in graphics applications. An incremental H-matrix is obtained from incremental

rotations and translations using the Graphics Library functions calls rotate() and

translateo. The IRIS 4D uses a right hand coordinate system with X axis left to right, Y

axis bottom to top, and negative Z axis into the screen. The vehicle coordinate system is

shown in Figure 5.7. To utilize OFF objects on the IRIS with minimum confusion, the

vehicle coordinate system should be initially aligned with the IRIS world coordinate

system.

37

.......~iii~~iii~• .::•: .• .• o. . . .• •

Figure S.7 Vehicle Coordinate System

S. T-matrix

Is is often useful to switch to a "Cockpit" or "Camera" view while operatinga

vehicle. The function transpose..marrir(O creates a "T-rnatrix" from the H-matrix bY

transposing the upper left 3 x 3 rotation sub-matrix, and by reversing the sipns of t-

translations. An examination of the H-matrix reveals that such a transposition produces.

rotations opposite that of vehicle rotations. When flying straight and level, a bank to h

right has the effect of tilting the horizon to the left-

, , 3 8

D. VEHICLE GEOMETRY STRUCTURE

The Vehicle Geometry structure contains information that is peculiar to that type of

vehicle. For example, center of buoyancy information is used for ships whereas wingspan

area may be used for aircraft. Slots within this structure (Figure 5.8) are amplified in the

following paragraphs.

typedef struct

float mass; /* weight / gravity */

float weight; /* to compute mass */

float buoyancy; /* will equal gravity */

float length; /* dimensions in feet */

float slice[3][9]; /* length, width, height xsection */

float AO; /* prop area */

float xg, yg, zg; /* distance cg from rotation axis */

float xb, yb, zb; /* distance cb from rotation axis */

float ix, iy, iz; /* symmetric moments of inertia */

float ixy, ixz, iyz; /* asymmetric moments of inertia */

float mm[6][6]; /* mass matrix /

} VEHICLEGEOMETRY;

Figure 5.8 Geometry Structure

1. Mass Matrix

The mass matrix is a function of mass, added mass coefficients, center of gravity (xg,

yg, zg), moments of inertia (ix, iy, iz), products of inertia (ixy, ixz, iyz), water density(rho),

and vehicle length. At program initiation, the added mass coefficients are read into the

added mass coefficient array (see Coefficient Structure below). Using these coefficients

ami im other aforementioned parameters, the mass matrix is created by the function

compute mass matrixO using the mass matrix equations outlined in (Boncal 1987). The

mass matrix was "hard coded" into AUV2 using the SDV parameters. In AUV IIL the

39'

parameters are read in at program initialization so the simulator can be run with any

geometry. In addition, the AUV III parameters have been modified to reflect the

submarines symmetry and size.

2. Other AUV Geometry Considerations

The propeller cross-sectional area, AO, is used in the AUV's equations of motion.

Since the AUV is considered a rigid body, the various forces can be represented as three

discreet forces along the vehicle axes, and the moments as three discreet moments around

these axes. These equations are discussed in Chapter 6.

In AUV III, the buoyancy and weight are of equal magnitude. The greater the distance

between the center of gravity and center of buoyancy, more stable but less maneuverable,

is the submarine Using dynamic constraints as discussed in (Barzel, Barr 1988), one may

implement constraints by introducing forces into the model to simulate actual vehicle

behavior. In AUV IIM, by artificially increasing the weight as the vehicle broaches the

surface, the equations of motion generate a pitch down motion followed by a vehicle

levelling out, preventing a "flying" AUV.

The "slice" matrix is used in the dynamrxics package to help compute cross flow drag.

Nine cross sectional measurements were taken of the AUV for the matrix. Cross flow drag

-is integrated over the length of the vehicle using the trapezoidal rule~with respect to height

. or width.

EL COEFFICIENTS STRUCTURE

The Coefficients structure is shown in Figure 5.9.

40

typedef struct { /* contains hydro coefficients */

float surge[6][6]; /* vehicle x axis movement */

float sway[6][6]; /* vehicle y axis movement */

float heave[6][6]; /* vehicle z axis movement */

float roll[6][6]; /* angular abou, z axis /

float pitch[6][6]; /* angular about x axis */

float yaw(6][6]; /* angular about y axis */

float addedmass[61[6]; /* added mass effects during acceleration */

float, finsuirge'6][4]; /* fin movement & vehicle movement */

float fin[6][4]; /* fin only */

char *surge...variables[6][6]; /* required for file regenerations */

char *sway_.variables[6] [6];

char *heavevariables[6][6];

char *roll_variabIes[6][6];

char *pitch-variables [6] [6];

char *yaw-variables[6][6];

char *addedmass..variables[6][6];

char *finsurgevariables[6][4];

char *fin_variables[6][4];

COEFFICIENTS, *COTR;

Figure 5.9 Coefficient Structure

While accurate hydrocoefficients are often obtained after exhaustive' tow tank

experiments, the SDV coefficients were obtained through geometrical analysis (Smith

1978). In AUTV I, the coefficients were modified to exclude the effects of the third

propeller and large skeg on the SDV. Again, in AUV2, the coefficients were "hard coded"

and included only those coefficients thought to be affecting the AUV. In AUV I/I, a full set

41

I. I __

of coefficients are included enabling configuration changes (size, control surfaces,

propellers, etc.) to be immediately run on the simulator.

Coefficient files can be loaded into the simulator, modified on-line, tested, and saved

for reuse. While the added mass coefficients were utilized in the development of the mass

matrix, the remaining coefficients are utilized in the equations of motion. Since the AUV

is somewhat symmetrical, most of the off-diagonal terms should be approximately zero.

Figure 5.10 shows the on-line panel for modifying pitch coefficients. The coefficient can

be decoded using the following:

X = Surge

Y = Sway

Z =Heave

K Roll

M =Pitch

N = Yaw

For example, MUV is the coefficient that determines how much pitch force is induced

when the vehicle undergoes a surge with a sway. The coefficients should be modified after

each in-water testing of the vehicle.

The coefficient files are similar to ordinary "C" language header, files and, in fact, may

be hard coded at any time. The data structure'records the name of the coefficient so that the

file may. be properly restructured in this "C" format when saving any changes.

F. SURFACES STRUCTURE

The Surfaces structure contains the'status of all conrols surfaces of the vehicle. The

fin deflections and thruster rpms are inputs to the equations of motion. While the AUV has

slots for eight fin deflections, enabling independent fin surface control, the -current

equations do not support this mode. The bow and stem control surfaces are coupled as are

42

.....

43

the left and right main thruster. The hovering thrusters are not yet modeled in the equations.

Figure 5.11 depicts the Surfaces structure.

typedef struct {

float deflect[8]; /* eight control surfaces */

float rpm[6]; /* two mains and six thrusters */

float propdisp[6]; /* rotations in one frame */

SURFACES;

Figure 5.11 Control Surfaces Structure

.44'

VI. AUV DYNAMICS

A. INTRODUCTION

1. Dynamics, Animation, and Simulation

With the advent of low ost, powerful graphic workstations, animating rigid body

motion through dynamic equations of motion is becoming an attractive alternative :o

traditional graphics animation techniques such as inverse kinematics, keyframing, and goal

directed subsystems (Sturman 1987). While the teim "simulation" instead of "animation"

suggests a shift of control from the animator to the underlying physics, tb- need not be the

case. The DYN',AMO system at Cornell University allows the animator to maintain control

of linked figures in the dynamic simulator through use of kinematic constraints and

predefined behavior functions (Isaacs 1987). For the animator or "simulator", Sturman

suggests that dynamics may be the best way to achieve realistic motion. Jane Wilhelms

(Wilhelms 1987) also cites a number of reasons to use dynamics.

a. Restrict motions to those which are realistic.

b. Portrays complex motion with minimal user input.

c. Dynamic corstraints can be automatically imposed.

d. Move complex bodies in a natural way.

2. How to Employ Dynamics

Wilhelms itemizes the st,--s required to derive object motion from dynamics.

Though general in nature, they reflect the procedure used in Cornell's DYNAMO system

as well as the NPS AUV Simulator. They are:

45

a. Build dynamic equations of motion

b. Solve equations for forces and-accelerations.

c. Determire velocities and positions through integration.

d. Update the object's state.

Dynamic constraint checks should be accomplished after step "c". For instance,

one constraint may be that the AUV never "fly" out of the water. Rather than using

kinematic constraints, i.e., no translations above zero altitude, we would shift the center of

buoyancy towards the aft of the vehicle, and then resolve for the equations of motion. The

equations would recognize the lower buoyancy moment, and the resultant greater weight

moment would cause the vehicle to pitch down into a dive. If the bow and stern planes were

not readjusted, there would be a porpoising effect, and the vehicle would remain

constrained in its environment.

B. AUV EQUATIONS OF MOTION

The original sets of equations of motion for the AUV were adapted from the submarine

equations of motion for the Swimmer's Delivery Vehicle (Boncal 1987). Modifications to

the equations included (1) integral formulation of viscous crossflow forces and moments;

(2) decoupling of the bow and stern planes (3) decoupling of the left and right bow planes.

In AUV III, the viscous cross flow formula was remodified and the third (off axis) propeller

was removed.

1. Viscous Crossflow Forces

In order to compute the viscous flow components, nine cross-slice measurements

were taken of the AUV. Crossflow components were then calculated by integrating the

calculations over the length of the vehicle as shown in Figure 6.1.

46

..

* ~#define x9 auv->geo.slicef 01 /* nine auv height, width measurements ~
#define br auv->geo. slice.[I]
#define hh auv->geo.slice[21
#define num-pts 9

0 #define swayterm (VV + x9[k] * RR)
#define heaveterm (WW - x9[k] * QQ)

compute-drag-force(auv)
Sub~ptr auv;

int k;,
f loat cyflow ,czflow, uctlnum-ptsl, vech 1 [num-pts], vech2fnum...pts]

trapezoidal(),vecvl [num-pts],vecv2[num...ptsj;
for (k=O;, k<num..pts; k4'+)(

ucflkj = fsqrt((swayterm * swayterm) + (heavererm *heavetenn));
if(ucflk] >= iLe-tO)
cyflow = fsdy* hh[kI' swayterm * swayterrn;
czflow = ILcdz -bri k heaveterm * heaveterm
vech 1 [k] = (czflow + cyflow) * swayterm / ucftkl;
vecv I [k] = (czflow + cyflow) * heavetenn ucflkl:.
vech.2[k] = vech I[k] * x9[kJ;
vecv2fk] = vecvl[kJ * x9(k];

)else (
Lbeave = f..pitch = fLsway, = Lyaw 0=
return;

f-heav = (trapezoidal(num-.ptsvecvl, x9)f..rho/2.)*(-I);
f-pitch - (trapezoidal(num-pts, vecv2, x9)fjrho/2.);
f-sway - (trapezoidal(num...pts, vechi1, x9)fLrho/2.)* (-I1);
f...yaw =(omzpewidaI(num~pts, vech2, x9)fjrhot2.) (-1);

/* end compute drag force1

float trapezoidal(points, vel-array. distance)
int points; float vel-arrayn , distance[];

float answez in: ij ,k;
j -points; answer 0.0O;

'for (i.&, i'cj-1; i++)
answer +- (0 ' ((vel.~arrayfiJ+vel~array[i+ I])

(distancefi+lJ - distancefiJ)));

return (answer);

Figure 6.1 VWwous Drag Force and Moments

47

2. Equations Format

The Submarine equations have a standard format as shown in (Boncal 1987).

Figure 6.2 is the header file used to maintain the format while using the AUV data structure.

Figures 6.3 through 6.9 are the current AUV equations.

#define fL auv->geo.length
#define UU auv->dyn.vel[O]
#define VV auv->dyn.vel[1]
#define WW auv->dyn.vel[2]
#define PP auv->dyn.vel[3]
#define QQ auv->dyn.vel[41
#define RR auv->dyn.vel[5]
#define phi auv->roll/57.3
#define theta auv->pitch/57.3
#define psi auv->heading/57.3
#define Lrho 1.94 /auv-> rho density of water */

/i non-dimensionalized coefficients for use with equations of motion I
#define ndc-5(floatXLrho2 * LL * fL L LL * f_L * fL)
#define ndc4(floatXfrho2 * f..L * fL * LL * fL)
#define ndc3(float)Xfrhol/2 * fLL 0 LL * LL)
#define ndc2(floatXfrj2 * LL * fL)

#define Lcdy (Boat)1.0 /0 drag factors 4 !
#define Lcdz (float)1.0
#define .nu (floa).00847 /*auv-> nu* /
#define f.e (floa)(UU fLL / fL.nu)
#define L.eta(.008 * fUpm I UU)/0 vice .012 0/
#define f.ct1.M08 L .L * fL / aO
#define LctO08 * fUL 0 .L U Leta * fabs(feta) I aO
Odefine Lcd(foatX.O085 + (I.296e-17) 0 (fL. - 1.27) * (fLm - 1.2e7))
#define fx...prp(fcdO • (Leta • fabs(Leta) - 1.0))
Odefine fnh.p'op 0
#define &_prop 0

typedef siun / 0 sznictur used to decompose equations 0/
float Newton.Eule46)J;
float hyd_.angularangular[6];
float hydzojinearangular[6l.
float hydroi.'arjineart 61.
float dragl61;
float hydroistaticI61J
ToalyFomces. "TFofe

Figure 6.2 Equations of Motion Header,

48

conipute~s5 "e_for-s("Lwf
SL,.)_F auv;

I 7 nrce f;*
il. f.cwrl, ac:cer.. lcclerationfactor,

ac•,s:.f•,_•..,,:-- _.prop * UU * UU * fL _L. *fro/2

f->N Lc .,nEuler[X=
f. ••'."(,V * RI? W''V: QQ/* incr:A 4ffeC: 4

-f.xg (Q* QQ'. M., F' R) /*center c mnass rzts *

- ,.g ?P QQ
- z*PP* RR);

l.,hydroangular anig.')ar[X] -/ l . &. e d' c) '
; dc4*(xpp*PP*PP+/roU*/
xqq QQ * QQ +f* P */
)rp; PP * RR + f yaw & ri.i */
x" RR * RR); P yaw *1

f->hydro linear_a,.gia:, X I 1,/ surge force due to /
ndc3 * (xwq * WWV 4.1) + •' I? .ve & pitch "1
xvp VV PP+ .@ -'.y & -L "/
x'/r *VV RR);, ay & yaw/

f->h.-!rjmi-.eirlirxv[X] =/ surge force due to *I
ndc2,* (xvv VV * VV + /0 sway I
xww * WW * WV + / heave *I
xvdr U.L * VV * f_dr + * rudder & sway & :ulrge *'
xwds * UU WW * fs +/ stem plane & surge & heave/
xwdb * UU WW * fdb +/* b plane &surge & heavee/
xqds,* UU QQ * Lds +/* stem lane & surge & pitch*/
xqdb UU * QQ * fdb + / bow)lane & surge & heave 0/
xdsds UU Ulf Uds fUds + d* stem piane &surge'/
xdbdb UU L U fb * fdb + bow plark & surge'/
xdrdr * UULT UU fdr * f..dr + /1 rudder &.surge 4*/
acceleration-factor); /' rpm & surge *

f->drag[X= O.0; ' cn flow dr•g I

f.>hydroa.satic[X] = /0 buoyancy, weight. pitch angle /
(-f_weight + boy) SINTHETA;

Figure 6.3 S rge Equation, of Motion

compute sway-force(auvf)
Subptr auv;
TForce f;
(
f->Newton_Euler[Y] /* sway force due to */
fmass * (WW * PP - UU * RR/* inertial effects*/

- f xg * PP * QQ /* center of mass effects */
+ fyg * (RR#RR + PP * PP)

- f.zg * QQ * RR);'

f->hydro-angular angularY] = /* sway force due to *
ndc4 * (ypq * PP * QQ +/* roll & pitch */
yqr * QQ * RR); /* pitch & yaw /

f->hydro linear angularY] = /* sway force due to */
ndc3 * (fyp * UU * PP + /* surge & roll /
fyr* UU RR +/* surge & yaw/
yvq • VV • QQ + / sway & pitch *
ywp WW PP +/* heave & rol/ ,
ywr * WW * RR); /* heave & yaw '/

f->hydro-linearlinearfY] = /* sway force due to *
ndc2 * (f..yv * UU * VV + /* surge & sway *
yvw VV * WW +/* sway & heave 1
ydr * UU UrU * f-dr);/* rudder & surge/

f->drag[Y]=
f sway /* viscous left & right cross flow drag */

f->hydro-staic(Y] /* wieght, buoyancy, pitch angle, roll angle 1
(fLweight-boy) COSTHETA SIN.pHI;

Figure 6.4 Sway Equation of Motion

50

- . .• I

compute-heave-force(auv,f)
Sub.ptr auv;
TForce f;

f->NewtonEuler[Z] =/* heave force due to */
"f-mass * (UU * QQ - W * PP /* inertial effects */
-f_xg * PP * RR/* center of mass effects*/
-f yg*QQ*RR
+ f-zg * (PP * PP + QQ * QQ));

f->hydro angularangular[Z] -/* heave force due to*/
ndc4 * (zpp * PP * PP +/* roll l/
zpr PP * RR +/* roll & yaw */
zrr * RR * RR); /* yaw */

f->hydro linearangularfZ] = /* heave force due to *
ndc3 * (f-zq * UU * QQ + /* surge & pitch *
zvp * VV PP +/* sway & roll */
zvr *V * /* sway & yaw */

f->hydro linearlinear[Z] = /* heave force due to */=
ndc2 * (f-zw * UU * WW + /* surge & heave /
zvv W * W +/* sway *1/

zds UU UU fds +/* stem plane & surge*I
zdb * UU * UU * f.db); /* bow plane & surge */

f->drag[Z] =
Cf.heave; /* viscous up/down cross flow drag */

f->hydro-static[ZJ =//* buoyancy, weight, pitch, roli angle*/
(f.weight-boy) * COS_THETA*COSH1;
/IP end heave /

Figure 6.5 Heave Equation of Motion

51

compute-roll-moment(auv,f)
Sub.ptr auv;
TForce f,
{

f->NewtonEuler[K] =
(fiy - fLiz) * QQ * RR - /* moment of inertia effects *I
fixy * PP * RR +/* product of inertia effects */
f-ixz * PP * QQ +

fiyz* (QQ* QQ- RR* RR)

+ f..mass * (f.yg (UU * QQ - W * PP) - /* center of mass effects */
f..zg * WW * PP + UU * RR);

f->hydmangularangulartK] = /* roll moment due to *I
ndc5 *, (kpq * PP * QQ + /* roil & pitch */
kqr * QQ * RR);/* pitch & yaw*/

f->hydrojlinear_angular[K] = /* roll moment due to */
ndc4 (fkp * UU * PP +P/* surge & rol*/

fkr UU * RR + surge & yaw */
kvq * VV * QQ + /* sway & pitch */
kwp *WW *PP +/* heave & roll*I
kwr *WW *R);/* heave & yaw "

f->hydxo-finar.linearf K] = roll moment due to *I
ndc3 *(f..kv * UU * VV +/* surge &'sway*/
kvw V W * WW +/* sway & heave*/
fk.op *UU *UU);/* surge & prop factor!*/

f->drag[K] = 0.0; /* roll drag effects /

f->hydro_stadic[K] =/* pitch, roll, buoyancy,:weight */
(fyg * fwei'ght - fyb * boy) * COSTHETA * COSPHI +

(f zb * boy - f.zg * fweight) * SIIJ..HI;.

}I end rol 0/

Figure 6.6 Roll Equation of Motion

52

compute-pitch-moment(auvf)

Sub-ptr auv;
TForce f,

f->NewtonEuler[M] =-/* pitch moment due to */

(fiz - fix) * PP * RR + /* moment of inertia */

fixy * QQ * RR - /* product of inertia */

f_iyz * PP * QQ +
fixz * (RR * RR + PP * PP)

+ fmass * (fxg (VV * PP + UU * QQ) + /* center of mass effects */

fLzg * (VV * RR - WW * QQ));

f->hydroangular-angularM] = /* pitch moment due to *

ndc5 * (mpp * PP * PP +,/* roll */

mpr * PP * RR +/* roll & yaw */
mrr RR R RR); /* yaw /

f->hydroinear..angular[M] = /* pitch moment due to */
ndc4 * (fmq'* UU * QQ + /* surge & pitch */

mvp * VV * PP + /* sway & roll */
mvr4* VV RR); /* sway & yaw *

f->hydro.linear_linear[M] =/* pitch moment due to *

ndc3 * (fLmw * UU * WW + /* surge & heave */

mvv VV * VV +/* sway/
mds * UU* UU * fUs +/* stem plane & surge

mdb * UU * UU * f..db);/* bow plane & surge *I

f->drag[M] =
f..pitch; /* up/down viscous drag moment */

f->hydrostatic[M] =/* buoyancy, weight, pitch, roll*/

(f.xb * boy - f.xg * f-weight) * COS-THETA * COS.PHI

+ ((fLzg - fLzb) * (fweight-boy)) * SINTHETA;

}/* end pitch 4/

Figure 6.7 Pitch Equation of Motion

53

- - -

I -

compute-yaw-moment(auv,f)
Sub.ptr auv;
TForce f;
{
f->NewtonEuler[N] =/* yaw moment due to */
(fix - fiy) * PP * QQ /* moment of inertia */
+ fxy * (PP * PP - QQ* QQ)/* products of inertia*/
- fixz *QQ * RR
+ fiyz *PP * RR

+ fLmass * (Lxg * (UU * RR + WW PP) /* cenert of mass effects */
- f yg * (WW * QQ -VV *RR));

f->hydrowangular angular[N] = /* yaw moment due to */
ndc5 * (npq * PP * QQ +/* roll & pitch */
nqr * QQ * RR); /* pitch & yaw /

f->hydro-Iinear-angular[N] =/* yaw moment due to*/
ndc4 * (f..np * UU * PP + /* surge & roll */
Lnr* UU *RR +/* surge &,yaw*/
nvq* VV QQ +/* sway & pitch */
nwp * WW PP + /* heave & roll */
nwr WW RR); / heave & yaw */

f->hydrojlinearjinearf N] =/* yaw moment due to *
ndc3 * (f_.nv * UU * VV +/* surge & sway */
nvw * VV * WW +/P sway & heave /
ndr * UU * UU,* fdr+/*.surge,& rudder*/
fniprp UU * UU);/* surge & prop */

f->drag[N] =
.f-yaw; /* left/right drag moment /

f->hydro._sdic[N] /* buoyancy, weight, pitch, roll *1
(flxg * f.weight - fxb,* boy) * COS THETA * SINPHI
+ (f.yg * fLweight - f yb * boy) * SIN_THETA;
}/* end yaw *

Figure 6.8 Yaw Equation of Motion

54

C. SOLVING FOR FORCES, TORQUES, & ACCELERATIONS

The six equations (Figures 6.3 - 6.8) are subdivided into six sub-equations. The first,

"Newton-Euler", are inertial forces or moments resulting from velocities, moments and

products of inertia, as well as force created since the center of mass is not at the cente: of

the AUV's coordinate system (center of buoyancy).

The second set "angular-angular" are forces generated due to rotational velocities

around the other two axes. The third set "angular-linear" are forces generated due to a

combination of an angular velocity and a linear velocity. The fourth sub-equation solves for

the force created when two linear velocities are combined.

The fifth sub-equation shows the force generated due to cross-flow drag as discussed

earlier in the chapter. The sixth set are forces due to hydrostatic effects caused by the offset

of the center of buoyancy from the center of gravity.

One force or torque is generated for each degree of freedom and placed into a six

element force vector. The vector is post-multiplied by the inverse mass matrix to produce

a six element acceleration vector (Figure 6.9).

/* multiply force vector b,'- inverse mass matrix to get acceleration vectcr */
computeaccelerationsbn, av)
Subptr auv;

int jk;
for (j=O; j<6; j++)

for (k=O; k<6; k++)[
auv->dyn.accol += auv->dyn.mminvU][k] auv->dyn.forcesfk];

}

'II

Figure 6.9 Solving for Accelerations

55

/ / ,

D. SOLVING FOR VELOCITIES & POSITION CHANGES

The are many integration methods available for deriving positional information from

the acceleration vector. One of the most accurate but more complex and slower is the

Runge-Kutta Method (Wilhelms 1987). On 'the other end of the spectrum is the Euler

Method which is fast, but inaccurate, especially for higher delta times. This is illustrated in

Figure 6.10.

Actual Position

Position

S 8position

, "time

Time
Figure 6.10 Velocity Curve

The Euler method samples the velocity at a given point, assumes a constant

velocity, and calculates a future position according to the equation below. The calculation

p! = pO + vo. St

works well for very small delta times, but can be erroneous at higher intervals. During non-

56

graphical, AUV dynamic calculations, where real time is not an issue, the delta times can

be very small indeed. Preliminary AUV dynamic tests used delta times of 1 msec. AUV

SIM2 needed to approximate the graphical frame rate to get realistic motions and used a

delta time of 0.5 seconds in conjunction with the Euler Method. AUV SIM fll uses the

system time to get an accurate delta time, usually between 0.1 and 0.15 seconds. It was

felt that even this interval was too great 'for the Euler Method, so the Modified Euler Method

(Spiegal 1988) was adopted. In the modified method, a predicted average velocity, rather

than an initial velocity is used. The average velocity is calculated based on the acceleration

at sample time, and the equation now becomes:

p1 = pO+VO. -t+ (aO. (8t)2)/2

* The routine for calculating the new velocities and position changes is depicted in

4 JFigure 6.11.

computevelocitiesandcpositions(auv)
Sub-ptr auv;(

int i;
static int dtr = 573; /* degree to radian conversion (SGI uses 10ths).*/

for (i=O; i<6; i++) (
auv->dyn.vel[i] += auv->dyn.deltat * auv->dyn.acc[i];

auv->dyn.pos change[i]
((auv->dyn.delta_t * auv->dyn.vel[i]) +
(auv->dyn.delta_t * auv->dyn.deltat *

auv->dyn.acc[i] / 2.0));
if (i>2) auv->dyn.pos.change[i] * dtri,

Figure 6.11 Velocity and Position Change Routine

57

E. UPDATING THE AUV'S STATE

1. Create the incremental H matrix

The incremental positional changes are relative to the vehicle coordinate system,

and must be converted to the world coordinate system. By loading the incremental changes

into an incremental homogeneous transform matrix, we can take advantage of the IRIS 4D

transformation stack and the graphics library multmatrixO function to make the necessary

transformations. The routine in Figure 6.12 creates the incremental H-matrix, again taking

advantage of the transformation stack and the graphics library functions rotate() and

getmatrixO.

void getincremental_..H. 'atrixfrompositionschanges(auv)

Sub.ptr auv;
(

pushmatrixo;

loadunitO;

rotate(-(Angle)auv->dyn.poschange[5], 'y'); /* yaw 1

rotate((Angle)auv->dyn.pos-change[4], 'x'); /* pitch */

rotate(-(Angle)auv->dyn.pos..change[3], 'z'); /* roll */

getmatrix(auv->dyn.incremental_H_matrix);

popmatrixO;
)

Figure 6.12 Transforming to World Coordinates

a. Rotation Order Matters

In Figure 6.12, notice that the yaw is applied first, and the roll is applied last.

Euler Angle Rotations are not commutative, therefore a starting axis must be chosen. The

order applied here is the standard crder for aeronautical applications, and most readily,

1987), and most readily adapts to aircraft motions. This may be because rolls usually have

the highest Euler Angle rates, and yaws usually have the lowest rates. We do not wish to

have the rolls altered by follow on rotations. Shoemake makes an argument for the use of

quaterr:ons instead of Euler Angles for modeling transformations. With quaternions,

rotation order is not a factor. Although it is possible to convert between quaterrions and

matrices, Shoemake describes such a process as "ill-defined". The quatemion

representation for rotations is

Rot (n,0)

where tile final orientation is a rotation of angle theta around a single axis n. (Fu 87). The

use of quaternions for the AUV flight simulation is a moot point in that the IRIS 4D

software and hardware is based on 4 x 4 transformation matrices.

b. Vehicle Coordinate System Alignment

Further examination of Figure 6.12 reveals that an AUV yaw occurs around

the vehicles "z" axis or the "y" axis on the world coordinate system. The difference in the

coordinate systems was described earlier in the chapter, but is amplified here. The AUV

object was developed external to the NPS Simulator, when called in:o the program, the

vehicle's positive "x" axis is aligned with the world coordinate system's "-z" axis. The

vehicles "y" axis is aligned with the world's "x" axis. Although not necessary, it would be

less confusing to someone reviewing the code if the vehicle was r,,designed to be "initially

aligned with the IRIS 4D world coordinate system.

59

2. Revising the Homogeneous Transform Matrix

Th7. incremental transformation is converted to world coordinates in the routine

shown in Figure 6.13, where the vehicle's homogenous transformation matrix is updated.

void update H_matrix..from incremental_changes(auv)

Sub-ptr auv;
{

pushmatrixo;

loadunito;

multmatrix(auv->dyn.Hmatrix); /* old rotations & translations */

multmatrix(auv->dyn.incremental H matrix)

translate(auv->dyn.pos-change[1],

-auv->dyn.pos...changej2],

-auv->dyn.pos_change[O]);

getmatrix(auv->Hmatrix); /* new rotations & translations /

popmatrixO;
}

Figure 6.13 Updating the Vehicle's State

Mulonarrixo premultiplies the top of the stack by its argument, with the new

value being place on the stack(Graphics Library 1988). By premultiplying the H-matrix by

the incre ,ental H-matrix, we have the net effect of a vehicle ,,otating around its own axis.

If we wer-. to reveise the order, the rotations would occur around the world coordinate

system, often used when directly positioning objects'on the screen using a virtual reality

input device such as a spaceball.

60

3. Extracting Pitch, Roll, and Heading information

Unlike other graphic simulators at NPS, we have incorporated vehicle translations

around all three axes, and have done so without ever tracking pitch, roll, or heading

information. The vehicle state was maintained using the viewing matrix, which was coined

the "H-matrix" and made part of the AUV structure. Why is it then necessary to extract

pitch, roll, and heading information? The primary answer is to supply feedback via the user

interface in a format more readily assimilated by the user. A vehicle heading of 045 degrees

means more to a user than "H-matrix[0] [3] = .707" (which incidently means that the vehicle

is either heading 045 degrees or 315 degrees).

Having pitch, heading, and roll information readily available is helpful in other

ways also. When using dyr~amic constraints, we may wish to superimpose a roll limitation

on our vehicle. Pitch and heading information may be helpful when utilizing the bow

mounted sonar, and simulating contact within the sonar acquisition cone.

Pitch is limited to +/- 90 degrees %hereas roll is limited to +/- 180 degrees and

heading ranges from 0 to 360 degrees. Pitch can be calculated directly from one of two sine

values in the matrix. However, roll and heading, as previously pointed out, may be

ambiguous. By utilizing the cosine information in the H-matrix diagonals, this ambiguity

can be resolved. The routine in Figure 6.14 shows the extracting process.

61

void extraci heading~pitcW..and-ýmll_ftrom_H.matrix(auv)

Sub-ptr auv;1

auv->dyn.heading =-asin(auv->dyn.W-matrix[211101)*57. 3;

if (auv->dyn.H...matrix[21[2] < 0.0)
auv->dyn. heading = 180 - auv->dyn.heading;
)/li heading into "z"

if (auv.>dyn.heading < 0)(
auv->dyn.heading += 360,

) 1 limit heading to 360 degrees '
auv->dyn.pitch =-asin(auv->dyn.H...matrix[2][1])*57.3

auv->'dyn.rofll asin(auv->dyn.H..marrix[O][11)4*57.3;

if (auv->dyn.Hjnatrix[I1111>0.0) (
auv->dyn.roll = 180 - auv->'dyn-.roll; 1* upside down/

auv->dyn.roll += 180; 1* starting along -z axis/

if (auv->dyn.ro~ll>80)
auv->dyn.roll = auv->dyn.roll - 360;

)* limit roll to 360 degrees 4

if (auv->dyn.roU<Z(-l80))
auv-odyn.rolI = 360 + auv->dyn.rolI;

/0 limit roll to +/-. 180 degrees1

) I end extract heading ... 0

Figure 6.14 Pitch, Roll, & Yaw

62

F. DYNAMICS AND REAL TIME APPLICATIONS

1. Dynamics not the Limiting Factor

With the computational power of today's high performance graphic workstations,

dynamics as a means of simulating motion is much more achievable. While streamlining

the equations is important, e.g. lookup tables instead of trigometric function calls,

multiplication instead of exponential functions, the extra overhead was remarkably low.

Two modes are available with the NPS AUV III Simulator, non-dynamic and dynamic.

a. Dynamic and Non-dynamic Modes

In the non-dynamic mode, all the vehicle transformations occur as a result of

direct spaceball or mouse panel inputs to the Homogeneous Transform Matrix. In the

dynamic mode, the inputs are sent to the function dynamicsO. This' function computcs the

cross flow viscosity, solves equations of motion for six axes, performs a matrix

multiplication to produce an acceleration vector, performs an Euler integration on the

accelerations and a modified Euler integration on the velocities, applies the incremental

position changes to the incrementalH-matrix which premultiplies the vehicle H_matrix to

obtain the revised vehicle state.

b. Dynamic Mode Benchmarks

Benchmarks were obtained to compare the-load that the dynamics package

had on the system frame rate. In the swimming pool with Cockpit view, the frame rate was

16.2, with and without the dynamics package activated. With the AUV displayed along

"with the poo!,. the frame rate was 7.7, again, with or without, the dynamics package

activated. Whereas color presentation, terrain resolution, and even panel interface display

had a negative effect on frame rate; the use of the dynamics package had none. My

conclusion is that, for this dynamics model, as long as the mathematics is kept outside the

63

mesh drawing loop, dynamics is an effective way to model the AtTV's behavior in real

time.

2. Parallel Processing

In anticipation of a heavy system drain due to dynamic equation calculations, the

dynamics package was designed to mice advantage of the multiple processors of the IRIS

workstation. Using barriers, the six general equations can be solved simultaneously, halt

at the barrier until all equations are solved, the force & torque vector generated and

accelerations computed. The design is reflected in Figure 6.15.'

velocities

OBTAIN VEHICLE A. fin deflections

STATE . rpms

4V ..._.H-m atrix

Compute Viscous

Crossflow Drag

Surge Sway Heave Roll Pitch Yaw

Q "1olve for velocities and positions

U PDATE VEHICLE •H-mani
STATE.

Velocifie

Figure 6.15 Parallel Processing Diagram

64

In addition to solving the equations in parallel, on a higher level, the dynamics and

the graphics could be done in parallel using a producer-consumer model. With the addition

of a duplicate H-matrix, the graphics package could lag one frame behind the dynamics

package. Although the speed of the dynamics package currently does not warrant the

overhead of parallel processing, incorporation of dynamic constraints and collision

detection could degrade performance to such a level that co-processing can become an

attractive alternative.

3. Addition of Dynamic Constraints

Dynamic constraint checking can be built on to the tail end of the dynamics

package. If the vehicle's state fails to abide by the constraints, the variables within the

equpations of motion could be temporarily changed, and the vehicle's 'state sent back

through the dynamics package. W'hen the constraints are satisfied, control returns to the

graphics package.

65

VII. NPS AUV SIMULATOR

A. USER INTERFACE

The User Interface was generated utilizing the NPS Panel Designer (NPSPD)

(King, Prevatt 1990). NPSPD generates "C" code including a primary graphics control loop

where the user can place his/her routines. Since the NPS AUV III Simulator was alre'.dy a

working program, the incorporation of a NPSPD Interface had to be reversed engineered.

The NPS AUV Simulator, along with the NPS Material Editor, were the first programs to

incorporate NPSPD. In the (King, Prevatt) thesis, there is a chapter which describes how

the AUV simulator incorporated NPSPD. The main points are covered here for

completeness.

The array of panels are contained in the program viewer.c, as are some of the panel

actuators. As the list of panels grew, it was easier to track and modify if each group of panel

actuators were stored in separate files. The files are tied into viewer.c using "include"

preprocessor statements. For instance, all the actuators on the tape recorder panel are stored

in acuator.dir/recorder.act, although the recorder panel itself is stored in viewer.c.

When a new panel of actuators is generated, the global "MAX_PANELS" in

viewer.h must be incremented by one. The array number assigned to the panel and actuator

array mist be one higher than the most recent panel addition.'The coefficient panels have

the most actuators with 33. If any new panel exceeds that amount, the MAX-ACTUATOR

globals in viewer.h must be adjusted. The path to the panel library is in the Makefile.

Whenever new panels are generated, the program must be relinked to the library.

60

B. MASTER SELECTION PANEL

The Master Selection Panel, shown in Figure 7.1, is composed of two subsections. The

push-button panel selections, and the viewing perspective panel.

~T.rra .n.P.ne

S..

nlai~nat ion , :•'' , >! D•'ict ~ '*

Figure 7.1 Master Selection Panel

The viewing panel controls the "latitude,", "longitude", and head "twist" from which

the vehicle is viewed. There are two distance bars. The one on the left is for small

adjustments using the left mouse. Superfine adjustments are made using two mouse

buttons, the left and the center. The right bar is for making coarser adjustment such as

getting a "satellite view" of the California Coastline.

The panel select panel primarily activates sub-panels, as well as selects the

environment, bay or pool. "Cockpit View" enables the user to view the environment from

a nose mounted camera. AU'V Ceinter, the default selection, keeps the vehicle in the center

of the display; the observer "moves with the vehicle". When deselected, the viewer looks

at where the vehicle was when the deselection was made.The vehicle can then actually be

flown out of the field of view.

67

C. MOUSE PANEL

Although manual control is primarily with the spaceball, adjustment to control

surfaces or RPM can be made via the mouse panel. This is useful not only when there is no

spaceball with the workstation, but also when it is critical to activate one set of con'-

only, a very difficult accomplishment using the six degree of freedom spaceball. rý .,Aouse

panel is shown in Figure 7.2

ga'smi smwmi a I

Figure 7.2 Mouse Panel

Currently the Stern Planes can not be activated by the mouse as they are coupled to

the bow planes. Rudder Limits are +/-40 degrees, and RPM limit is 700.

68

"" .

D. PERFORMANCE PANEL

Figure 7.3 Performance Panel

The Performance Panel displays a pay tial vehicle state. The Speed is calibrated to be

in knots. The gauge limit on the RPM is 1000. The Depth meter indicates vehicle depth

while the Floor meter shows bottom clearance informations. Future expansion should

include a fin deflection meter for all 8 control surfaces, and an RPM dial for each of the six

thrusters.

69

E. FRAMES PANEL

Figure 7.4 Frame Panel

The Frames panel gives the workstation's performance in two ways. Delta Time is the

total time between swapbuffers, and frame rate is the inverse, i.e., total frames per second.

The meters are single pen stipcharts and are located on the lower left portion of the screen.

I

70

• . 0

F. RECORDER PANEL

"The recorder panel provides the capability to record and replay scenarios.

Figure 7.5 Recorder Panel

The recording is made in the ASCII file "recording" which contains the initiaI, vehicle

state followed by times, rpms and fin deflection whenever a change of rpm on defelection

occurred. When "Record" isselected, it erases the previous tape. Playbacks can occur as

many times as desired without erasing the tape. External scripts may be played if they are
loaded to the "recording" file. The Tape wpeed selection adjusts the speed of playback. The

Aux buttons are selectable, and available for programming in the aurojpaneLinterface.c

package.

71

G. VELOCITIES PANEL

The velocities panel shows accelerations and velocities for each of the six degrees of

freedom.

i"Mi

. ; 9 8
.............

Figure 7.6 Velocities Panel

This panel is utilized to monitor the, stame of the vehicle while running dynamic tests.

Comparisons with data obtained from in-pool testing should reveal whether' or not the

vehicle is responding appropriately. The acceleration values are in feet/sec/sec, and the

velocity values are in feet/sec. To activate the panel, the Stripcharts button mu.st be

activated followed by the Velocities button.

72.

H. BOTTOM CONTOUR PANEL

Figure 7.7 Bottom Contour

The bottom contour chart shows a dual pen strip•hart that plots both the submarine's

depth and the depth of the sea flour. The above chart shows the vehicle in essentially a

terrain following mode. The meters on the right repeat the values that are on the stripchart.

By default, the upper pen is red, and the lower pen is black. The actuator is located on the

upper right portion of the screen.

73

I. TERRAIN PANEL

Grid •

Figure 7.8 Terrain Panel

The terrain panel allows variable terrain resolution selection. variable number of

resolution level selection, and density of the best resolution selection. The Grid button

deselects filled mnode. Clipping activates the culling algorithm to eliminate vertices outside

th ield of view. Color selects elevation'color coded data for display. The scaebaisn-

thecf e aebrio

functional but available for programming.

74

I iIt

75

VIII. FUTURE DIRECTIONS

A. DYNAMIC CONSTRAINTS AND PARALLEL PROCESSING

Since the incorporation of dynamic constraint checking could require significant

overhead, parallel processing of the NPS AUV Simulator can be advantageous. Constraint

checking could cause the input parameters to the equatiois of motion to be continually

adjusted, and the equations resolved in a loop until the constraints arc satisfied. Co-

processing of the six equations can have a favorable effect. In addition, placing the graphics

routine and dynamics/constraints package in parallel can be beneficial as well.

The vehicle broaching the surface can be emulated by adjusting the center of buoyancy

and/or the buoyancy vector. Normally the center of buoyancy is assumed to be at the'center

of rotation, and the buoyancy is equal to the weight.

The proper response of a vehicle collision with the pool wall or floor is dependent on*

what part of the vehicle makes contact, and the state of the vehicle at time of collision. A

single point force on the vehicle will netd to be factored into the equations until the

constraint is satisfied.

The effect of the vehicle running aground is similar to the pool scenario described

above, however, type of bottom, e.g., sand, rock, or silt, would need to be considered.

Since the equations produce approximations of the vehicle behavior, certain input

parameter values can potentially display unrealistic or undesired behavior. For example, it

may I'e necessary to set a maximum positive and negative rpm on the main thrusters.

B. INCORPORATION OF PEP" HERAL PACKAGES

1. Controller

The control'cr (autopilot) package needs to be incorporated. The controller should

provide rpm and fin deflection information to the AUV based upon desired heading, pitch,

76

and speed. Using sliding mode control, the bow planes will act independently of the stem

planes. Future controller improvements include separate control mode for all eight

surfaces, and a hovering mode using the vertical and horizontal thruster.

2. Navigator

The navigator will compute desired heading, pitch, and speed based upon

waypoint data (31) position and time on top). If drift is detected based upon doppler sonar

information, this should be included in the computation. If predicted current information is

available, that should be included in the "dead reckoning (DR)" process. The DR position

can be "fixed" using bottom contour information available in the environmental data base.

3. Mission Planner/Replanner

The mission planner would generate desired waypoints based upon the specific

mission of the submarine, e.g. bottom mapping, main countermeasures, special forces

support, etc.. The replanner would regenerate waypoints based upon newly available

information, e.g. unplanned obstacles, vehicle emergency, enemy detection, revised

mission, etc..

C. TERRAIN

The VTRA needs to be expanded to include multiple data cells. Since VTRA supports

a grid database, such as that, available from DMA, submarine missions can be simulated

nearly anywhere worldwide. Based on vehicle's speed, direction, and horizon, adjacent

grid cells will need to be transferred from peripheral storage to primary storage

automatically. VTRA will need to be enhanced to manage the data transfer, and terrain cell

management.

Elevation coded terrain coloring should be incorporated. The elevation data needs to

be checked and, if required, a new lighting model generated, for each vertex in the graphics

77

pipeline. Texturing is a another alternative to displaying realistic terrain as demonstrated

on NPSNET, and should be incorporated.

D. AUV MODEL DRAWING

The AUV is currently drawn using polygons and surfaces. By drawing the hull and fins

as meshes, vehicle appearance can be maintained while reducing the graphics pipeline load

as described earlier. With mesh drawing, an algorithm similar to VTRA could be developed

to display the AUV at various resolution levels.The NPS Object File Format (OFF) is

currently being revised to incorporate articulated objects. Future redrawing of the vehicle

should be based upon the future OFF design. Colors should be carefully chosen so as to be

compatible with NTSC displays. RGB warm colors (red, orange, etc.) often get distorted

when converted to NTSC, an should be viewed prior to selection using the NPS Material

Editor (NPSME) (Anderson 1990).

E. CONCLUSIONS

The Variable Terrain Resolution Algorithm enables terrain grid databases, such as

DMA DTED, to be displayed with further horizons and minimal loss ,of graphic display

speed, while maintaining high resolution terrain near the observer. The dynamics of the

AUV can be modeled in real time. Hydrodynamic coefficients can be adjusted on line for

a quick refinement of the vehicle'sperformance characteristics. The'NPS AUV Simulator

can enhance vehicle software development without actual in water trials. Dynamics can be

adapted to other NPS Simulators by incorporating the rigid body dynamic model used in

the AUV Simulator.

78

LIST OF REFERENCES

Smith, Douglas B., and Streyle, Dale G., An Inexpensive Real-Time Interactive Three-
Dimensional Flight Simulation System, M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1987.

b Oliver, Michael R., and Stahl, David J., Interactive, Networked, Moving Platform
* Simulators, M.S. Thesis, Naval Postgraduate School, Monterey, California, December

1987.

Winn, Michael and Strong, Randolph, Moving Platform Simulator 11: A Networked'Real-
Tume Simulator With Intervisibility Displays, M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1989.

Fichten Mark A. and Jennings, David H., Meaningful Real_Time Graphics Workstation
Performance Measurements, M.S. Thesis, Naval Postgraduate School, Monterey
California, 1988.

Schachter, Bruce J., Computer Image Generation, John Wiley & Sons, Inc., 1983, pp.
138-140.

Harris, F., Yurchak J., Zyda. M., Preliminary Work on the Command and Control
Workstation' of the Future, Report NPS52-88-027, Naval Postgraduate School, Monterey,
California, 1988.

Breden, W., and Zanoli, J., Visualization of High-Resolution Digital Terrain, M.S. Thesis,
Naval Postgraduate School, Monterey, California, June 1989.

Weeks G. and Phillips E., The Command and Control Workstation of the Future,
Subsurface and Periscope Views, M.S. Thesis, Naval Postgraduate School, Monterey,
California, June 1989.

Defense Mapping Agency, "Digitizing the Future", DMA Combat Support Center,
Washington, D.C., 1988.

S

Boncal RJ., A Study of Model Based Maneuvering Controls for Autonomous Underwater
Vehicles; M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1987.

Zyda M., McGhee R., Kwak S., Nordman D., Rogers R, Marco., "Three-Dimension
Visualization of Mission Planning and Control for the NPS Autonomous Underwater
Vehicle", IEEE Journal of Oceanic Engineering, Vol. 15, No. 3, July 1990, pp 217-221.

Zyda M., Pratt D., "Inexpensive 3D Visual Simulation as Workstation Exhaustion",
Ausgraph 90 Proceedings, September 1990, pp. 311-325.

79

Smith, N.S., Crane, T. W., and Summey, D.C., "SDV Simulator Hydrodynamic
Coefficients," NCSC Technical Memorandum 231-78, June 1978.

Gertler, M., and Hagen, G. R., "Standard Equations of Motion for Submarine Simulation,"
June 1967.

MacPherson, D. L, A computer simulation study of mission planning aid control for the
NPS autonomous underwater vehicle, M.S. Thesis, Naval Postgraduate School, Monterey,
California, June 1988.

Nordman D. B., A computer simulation study of mission planning and control for the NPS
autonomous underwater vehicle, M. S. Thesis, Naval Postgraduate School, Monterey,
California, June 1989.

Ong W., A mission-planning expert system of the NPS autonomous underwater vehicle,
M.S. Thesis, Naval Postgraduate School, Monterey, California, June 1990.

Ackley, Kurt., "Superworkstation, The Silicon Graphics 4D/24OGTX Superworkstation",
IEEE Computer Graphics and Applications, Vol. 9, No. 4, July 1989, pp. 71-83.

Wilhelms, Jane. "Dynamics for Everyone", IEEE Computer Graphics and Applications,
Vol 7, No. 6, June 1987, pp 1-26.

Spiegel, M. R., Applied Differential Equations, third edition, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 1988, pp. 415-421.

Munson, S. A., Integrated Support for Manipulation and Display of 3D Objects for the
Command and Control Workstation of the Future, M. S. Thesis, Naval Postgraduate
School, Monterey, California, June 1989.

King, D., Prevatt R., Rapid Prototyping of a Graphical User Interface, M. S. Thesis,
Naval Postgraduate School, Monterey, California, December 1990.

Barzel R., Barr, A., "Controlling Rigid Bodies with Dynamic Constraints", ACM
SIGGRAPH 88 Course Notes, pp. El- E26.

Silicon Graphics, Inc., "Graphics Library User's Guide, Version 2.0", Mountain View,
California, 1988.

Sturman, D., "A Discussion of the Development of Motion Control Systems", ACM
SIGGRAPH 1987 Course Notes, July 1987, pp.3-16.

Shoemake, K., "Animating Rotation with Quaternion Curves", IEEE Computer Graphics
and Applications", Vol 19, No. 3, 1985, pp. 245-253.

Isaacs P., and Cohen M., "Controlling Dynamic Simulation with Kinematic Constraints,
Behavior Functions, and Inverse Dynamics", Computer Graphics, Vol. 21, No. 4, July
1987, pp. 215-224.

)

80

Anderson, W., "NPSME - An Interactive Tool for Material Characteristics Specification",
M. S. Thesis, Naval Postgraduate School, Monterey, California, December 1990.

Fu, K., Gonzalez, R., Lee C., Robotics: Control, Sensing, Vision, and Intelligence,
McGraw-Hill, Inc., 1987.

8

p

81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 7
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5-100

4. Dr. A. Healy
Naval Postgraduate School
Code ME, Department of Mechanical Engineering
Monterey, CA 93943-5100

5. Commander Tom Jurewicz
341 Barbara Drive
Point Pleasant, New Jersey 08742

6. Dr. Robert McGhee
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, CA 93943-5100

7. David Pratt 1
Naval Postgraduate School'
Code CS, Department of Computer Science
Monterey, CA 93943-5100

a

*q

82

Si *•I -

DATC:

