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ABSTRACT -

The NPS Autonomous Underwater Vehicle Simulator is a joint project between the
Naval Postgraduate School’s ' Mechanical Engincering and Computer Science
Departraents. In order to test mission planning and execution me, é.{l accurate vehicle
dynamic model is required. Using dynamics based upon the Navy’s Swimmer Delivcry

Vchicle (SDV), there is a need to continually update the hydrodyndmic coefficients based .

upoh actual vehicle in-water testing. The NPS AUV Dynamic Simulator contains a full set
of submarine equations of motion and hydrodynamic: coefficients. The coefficients are

modifiable on-line, and a replay capability exists for further performance review.

. Using Monterey Bay as an underwater testing cnvironmpnt; there is the need to be able

to display expansive terrain data while maintaining the real time simulation. ‘’he Variable
Terrain Resolution Algorithm incorporated into the NPS AUV Dynamic Simulator enables
the entire Monterey Bay data base to be displayed in real time. Resolution adjustments are
automatically based upon the vehicle’s depth level and syStc_m perfomfanéc. :

Acemscaion Por

e -

NTIS kI
DTIZ Tia a
Usirugnwond 0 7

- By e

JUGLL S O
e e

_‘_g_ts;!;-\:‘.-’.'.i oo
Avnfiviility (ntng
: vl L oran er o

Diat | C.eltal

Tt
[

o et

e




TABLE OF CONTENTS

INTRODUCTION oo e 1

A. BACKGROUND .. eeeeerearen - 1
B. FOCUS — NPS AUV DYNAMIC SIMULATOR oo 1
C. THESIS ORGANIZATION - )
. SURVEY OF PREVIOUS WORK ....cuurerreennresnesennesssssnenssscannes 4
A. NPS SIMULATOR REVIEW ' el
" 1. - Fiber Optically Guided Missile (FOGM) Simulator .................... el
2. Vehicle (VEH) Simulator ' 4
3. Moving Platform Simulator (MPS) ..... 5
4. Forward Observer Simulation Trainer (FOST) ... 5
5. Command and Control Workstation of the Future (CCWF) .......cc.... 6
6. - CCWF, 3ubsurface and Periscope Views 6
7. NPSNET ..ouerceericernrannsscssssssssssnssssssssasssssassssssesssssssses 7
B. AUV SIMULATOR DEVELOPMENT ...........cocmreensssssssssnnee 8
1. Use of SDV Hydrocoefficiens ..... ) 8
2. Origins of NPS Auv Simulator ' reesesisesssssseann 8
3. NPSAUV-SIMI ' ' 8

4. NPS AUV-SIM2 :
C. NPSAUV-II - 9

. GRAPHICS PIPELINE LOAD REDUCTION TECHNIQUES .11

A. MESHDRAWING ROUTINES S 11
B. 'VARIABLE TERRAIN RESOLUTION ... ( eeeressresnens 13
c POLYGON CULLING reseessens S k)
VARIABLE TERRAIN RESOLUTION ALGORITHM IR -3

A. BACKGROUND . , —-

‘iv




\'2
o . VL

B. ADVANTAGES OF USING VTRA ......oereerecenrranreseenns .19

1. Compatible with DMA Terrain Database ........ccoeereeeeseereresccersacerens 19

2. Less Storage ReqUIrEMENLS .....cccovuririierscerercesemseressssenseasassensenseasssence 21

3. VTRA improves DMA terrain rendering efficiency ........ccoceceeuenen. 21

| 4. VTRA resolution can be adjusted automatically .......cccovueeucerrevucennne. 24

5. VTRA Adjusts 1o Workstation Upgrades ... .ooovervoerreer 25

C. IADDmONAL VTRA DRAWING CNS™MTZRATIONS eeeeeeeeeeneemr e 25
1. Seam Filling w25

2. Geographic Referencing ...........coeevveesone. 26

3. Inner Horizon Blocking Of Draw Routine .26

4. Viewer Persbcctivc ...................... reveessasssessesesan s sassensaereees .26

5. Terrain Features .......ccceceeeernene .27

D. VTRA BENCHMARKING .......ccceeererecrerssramercasssssoscarasessssasssssocass reosserans 27

AUV DATA STRUCTURE ........eeerrnnenenncnsvencsnsessenencannns 32

A. INTRODUCTION 32

B. AUV_POLYGONS STRUCTURE 33

C. DYNAMICS STRUCTURE .. .34

1. Delta_time ' 34

2. FOTCES ouieiiniicccninsnsnesnisnscsasnnssssnsssnssnnisssassossssssnsassssssssiassrasressssens 35

3. Inverse Mass Matrix ........ 35

R 37

5. T-matrix 38

D. VEHICLE GEOMETRY STRUCTURE .39

© 1. Mass Matrix | 39

2. Other AUV Geometry CONSiderations ..........musseclsssesssscesssesssssssnsasens

E. COEFFICIENTS STRUCTURE 40

F. SURFACES STRUCTURE ..oc.ooeessiesressemesremesaesresesmesmess 42

. AUV DYNAMICS ..oovvvvremerrssssssssssssssssssssssssssssspossssssssssssssseses 25

" A. INTRODUCTION ..o 45

1. Dynamics, Animation, and Simulation .45

v




VIL

a. Restrict motions to those which are realistic. .......c..coerseruerrursren 45
b. Portrays complex motion with minimal user input. ceseseesesssesen 45
¢. Dynamic constraints can be automatically inrused. ................. 45
d. Move complex bodies in a natural Way. ......cecvceenniscncnecnenens 45
2. How to Employ Dynamics .........cccoveeeiminmnsiniccssecssncmnnenessisansenss 45
a. Build dynamic equations of motion . ... ............... 46
b. Solve equations for forces and accelerations. .........cccceeeeercenens 46
c. Determine velocities and positions through integration. ............46
.. d.  Update the object’s state. 46
. AUV EQUATIONS OF MOTION .46
" 1. Viscous Crossflow Forces ........... .46
2. Equations Format . 48
SOLVING FOR FORCES, TORQUES, & ACCELERATIONS ............ 55
. SOLVING FOR VELOCITIES & POSITION CHANGES .......ccoo.conrr. 56
UPDATING THE AUV'S STATE ...... ' 58
1. Create the incremental_H_matrix .. .58
2. ROMALON OTAEr MAMETS ecoreoeereeeres s eeeesssseesssesssessseseeress o 58
b. Vehicle Coordinate System Aligament 59
2. Revising the Homogeneous Transform Matrix .60
3. Extracting Pitch, Roll, and Heading information ..........c.ceesessecens 61
DYNAMICS|AND REAL TIME APPLICATIONS 63
1. Dynamict:: not ,;hc Limiting FaCIOr .uu.vuierresersemmsenssneeninsiesnasesnsens 63
a. Dynamic and Non-dynamic Modcs ........ 63
.b. Dynamic Mode Benchmarks ' w03
Parallel Processing _ 64
3. Addition|of Dynamic Constraints 65

" NPS AUV SIMULATOR oocoooooeoeooeoooseooseeoses s isosnesennn 66

A. USER INTERFACE , - .66
B. MASTER SELECTION PANEL . ' S 67
.68

C. MOUSE PANEL ... ' S

vi




vii

D. PERFORMANCE PANEL ...o.ccoccomeuremmsrremmsmmsesssiassesesssesessse 69
E. FRAMES PANEL ..o eeseeseseessesesesessssssesssesssessessonessees 70
F. RECORDER PANEL ...ooccriimermsismssmsssmsssssmssssssssssssssssssssss s 71
G. VELOCITIES PANEL ..o, 72
H. BOTTOM CONTOUR PANEL . 73
L TERRAIN PANEL ....ooooocceseeesesesseesssssssssssssssssmssssssesomssnsssmsssssasssssssss 74

. FUTURE DIRECTIONS .....coouvvvverecmerenne . JS—y [
A. DYNAMIC CONSTRAINTS AND PARALLEL PROCESSING .......... 76
B. INCORPORATION OF PERIPHERAL PACKAGES .coooorerreersree 76

1. Controller .....ccmeimnennuniesisencssencrnsaces rsesnsesasensassnsmmeersessosns 76
2. NAVIZALOT .eeecieneriestcsiseessetiens setssssssssssssssesssessssassssssessssanssassesssssns 77
3. Mission Planner/Replanner ........... w77
(ol y23:3: 7N 1 SO 77
D. AUV MODEL DRAWING ...oooooruueeeesssssessssessssssosssssossecssssssesmmmssssssssosees 78
E. CONCLUSIONS .. eeeerenesensn .78




ACKNOWLEDGEMENTS

The NPS AUV Dynamic Simulator would have not been possible without the close:
cooperation exhibited between the Computer Science and Mechanical Engineering

Departments. Dave Marco provided education ~n submarine equations of motion, and

their adaptation to the AUV.lFotis Pappoulias patiently reworked the equations and the

' hydrocoefficients for adaptation from the SDV to the AUV.

Dave Fratt provided insight invo terrain rendering algorithms and their applicability in
real time graphics programming. His knowledge of “C” programming language and the
UNIX operating system helpcd bring the project to fruition. o ’

' Lieutenant Commander Rich Prevatt and Lieutenant Dave King provided invaluable
assistance in helping incorporate their Panel Designer and Toolbox while still under
development. Many program enhancements were made possible by the rapid prototyping
capability of their project. '

" Dr. Robert McGhee, who sparked my enthusiasm in the AUY project, provided a solid
foundation in rigid body dynamics and kinematics. His patience, vision, and expertiss were
invaluable during the past year. | ,

Dr. Michael Zyda, my principal advisor, provided the insight into the value of real time
graphics applicatibn's. His guidance provide direction throughout the 'projectv development.

Most importantly, my special thanks to my wife,Lan'a, withcat whose sacrifices, love,
and support, this would not have been possible. |




L INTRODUCTION

A. BACKGROUND

There is a growing effort within the Department of Defense to develop autonomous
underwater vehicles. Without the need to incorporate life support systems, there is promise
that an AUV cando a w'/aricty of missions 2t less e;pen.éc, and without danger to human life.
During software and hardware development, there is a risk of lolss of an autonomous
underwater vehicle if acltuaﬂyldgployed, therefore, software must be thoroughly tested,
preferably in its expected environment. With the advent of high speed, low cost graphics
~ workstations, it is now possible simulate submarine dwa@m in real time. Controller and
| mission planning software éan be tested and Ireal time feedback obtained. Using underwater |

grid terrain data, such as that available from the Defense Mapping Agency, missions can
potentially be simulated anywhere in the world, at any depth. Various mission facters such
as changing currents, unplanned obslic'lcs, and vehic,lé control surface failufe can be
observed prior to executing various missions. By incorporating the AUV into simulators
sﬁch as the NPSNET (Zyda, Pratt 1990), vehicle missions'c'an be executed in. conjunction
with a coordinated 6pérations ' s;:enario'. In order to run these missions in real nmc,
algorithms need to be developed to make optimum usage of the workstation’s graphics
.capabilities. -
B. FOCUS - NPS AUV DYNAMIC SIMULATOR

This thesis concentrates on two inain aspects. The first is to develop the ability to
generate accurate hydrodynamic coefficients and submarine equations of motions. The

second is to portray the vehicle in its anticipated environment in real time.




By accurately predicting vehicle performance, system software can be developed and

tested prior to incorporation into the actual vehicle. The NPS AUV Dynamic Simulator
enables the user to record vehicle performar.ce with any set of hydrocoefficients. System
resnonse on the simlllémr can be compared to in-water vehicle testing, coefficients adjusted
on-line, and simulator performance obseived until it emulates the actual vehicle. Through
this bootstrapping effect, an accurate graphics model can be developed without the need to
perform expensive test-tank operations. ‘ |

The Monterey Bay database was used to develop the terrain rendering algorithm
" utilized in the NPS AUV Simulator. The proximity of the bay to the Naval Postgraduate
School (NPS) combihed with the interesting subterrain features of the Monterey Bay
Canyon, make the‘bay a logical choice. for futﬁre test runs of the actual vehicle. Mission
planning systems can be used tc generate proposed paths through the canyon. Bay currents
can be incorporated into the rhodcl. While most of the actual vehicle testing is done ip the
constraints of the NPS swimming pool, {ull Aynamjc and ‘artiﬁcial intelligeace software
. testing fequirc a more expansive area. The Variable Terrain Resolution Algorithm
developed herein can be ported to other simulators using DMA Digital Terrain Data such .
as NPS Command'and Control Workstation of *he Future (Weeks, Phillips 1989).

'C. THESIS ORGANIZATION

Chapter I provides a ,a.kground on other vchtclc simulaiors developed at NPS The

. dcvelopmcnt and reﬁncmcnt of terrain rendering algorithms is traced through the vanous‘

simulators at NPS. ‘I’hc use of dynamxcs to graphxcally model the NPS AUV is traced from

the simalator’s origin to the current model NPS AUV III. |
Chapter III descnbes the techniques utilized in the NPS ALV Sxmulator to portray the

environment in real time. These techniques include high speed terrain drawing routines,

varicble terrain resclution dxsplay. and field of view culling.




Chapter IV provides details and performance measurements of the Variable Terrain

Resolution Algorithm (VTRA) used to display Monterey Bay. VIRA is a recursive, binary
reduction technique for displaying grid terrain about an observer to the horizon.

Chapter V describes the AUV data struciure. By taking an objeét oriented approach,
the submarine can inherit rigid body properties Qhﬂe. maintain those unique to a subxlnarine
environment. | .

Chapter VI discussed the dynamics model used for AUV IIL The AUV equations of
motion and hydrodynamic coefficients are described. The procedure for converting
thrusters rpm and fin deflections to vehicle motion is disc;zssed.

Chapter VII deta:ls how to operate the AUV Simulator. The User Interface is described
- along with the system capabilitlies. ‘ ' .

Chapter VIII provides th= limitations and future direction of the project.




II. SURVEY OF PREVIOUS WGRK

A. NPS SIMULATOR REVIEW

1. Fiber Optically Guided Missile (FOGM) Simulator

| Thc FOGM simulator, implemeated on the SGI IRIS 3120 workstation, featured
a 10 kilometer by 10 kilometer grid terrain data base of Fort Hunter Liggetr, California
- (Smith 1987). The data was presented as 3-sided polygons using a Painter’s algorithm
“where each poiygon is scan converted drawing the closest polygohs last while “painting
over” further polygons. All 'tcrrain was drawn at a constant resolution, including terrain
hidden from the observer. FOGM maintained a frame rate of three to four frames per
second vy displaying 'evcry 6th data point. Ele ation ciam was exaggcrated in order to
providc a inorc hilly appearance, with terrain colorin'g made a function of elevation. Flat
shading was implcm:ntéd instead of Gouraud shading in order to provide a “checkerboard |
cffect” ‘aiding motion detection. FOGM implemented trivial culling by estat;lishing a
" rectangular bounding volume based upon the ---hicle’s heading. Polygons outside this

volume were culled.

2. Vehicle (VEH) Simulator

VEH, an extension of the FO_GM simulator, was also implemented on an IRIS
3120 and cmnplét;d in December 1987. The FOGM ‘terrain rendering algorithm was
mo&iﬁed to inéludg amore r;ﬁﬁéd Field of View (FOV) culling algorithm. Ful! 3D culling‘
of:cr. uses clipping planes to form a four sided “pyﬁmid of visioﬁ" wi& the axis of the
pyramid along the vehicle's path. VEH utilized the left, right, and far clipping planes. VEH
subjected FOGM'’s bounding volume to further culling based upon a narrow or wide field

of view. Only those polygons within the bounding vclumé. and within the FOV were sent

through the graphics pipeline. Vehicle roll (viewer “twist”) was not incorporated in cither




- FOGM cor VEH thus eliminating the need for more than three clipping p}aﬁcs. FOGM’s
FOV culling was smcdx a function of rotation about the s;crccn’s “y" axis (vchiclc’
~ heading). A further contribution of VEH was the inéorporation of SINE, COSINE, and
TANGENT lookup tables instead of {unction calls. Speed improvements of over 1000%

were noticed in some cases when using the tables instead of the math library (Oliver 1988).

3; Moving Piatform Simulator (MPS)

The MPS series evolves from the VEH and FOGM simulators. Significant
improveme..ts were made to the gridded terrain algor: hms previously used. Impl'crlrlacntcd
on an IRIS 4D/70GT workstation with harcngarc supporting the z-buffer algorilhm,‘thc
need for the Painter's ngn’thm for hidden surface elimination was removed.

MPS inéorporated three resolution levels, 'and variable field of views. The.
highest resolution level extends out to a distance which is 2 function of the field of view.
The resolution.is then halved and extended out 2000 meters, halved again out to tﬁc
horizon. Gaps occur at the seams between resolution levels as extra vertices exist on the
high resolution sidé of the seam. To eliminate this pmblc;n, extra polygons were drawn to
fill the holes. These polygons, termed “skirts”, were vertical planes which were often
© perpendicular to the actual terrain. A drawback to this method was that as the seams -
" changed location wuh vehicle movement, a slight flickering would occur due to the
insertion and dcleﬁon of these vertical surfaces.

‘ Whereas brevious‘l simulators were limited to the 10 by 10 kilometer area of Fort
| Hunter Ligget, MPS had the ability to display gridded terrain databases containing any grid

point spacing.

4. Forward Observer Simulation Trainer (FOST)

FOST (Drummond 1989) utilized DMA Level | Digitnl Terrain Elevation Data to
generate coordinates in the Military Grid Reference System (MGR‘S). Although FOST .




adapted the MPS terrain rendering algorithm, minor modifications included switching from
polygon primitives to inesh primitives to increase performance. This decision was based
upon performance measurements in MPSII (Winn June 89), the second simulator in the

MPS series. Paragraph 6 describes mesh drawing in more detail.

5. Command and Control Workstation of the Future (CCWF)

The CCWF (Harris 1988) was initiated at the Naval Postgraduate School as part
of an effort to ;':rovide a 3D real time intcrfacc for the Battle Group Commander. In order
' to enhance real time capabilities, CCWF also incorporated variable terrain resolution
stratcgj. While MPS adapted binary reduction between resolution levels, CCWF decreased
resolution levels from 100 yard spacing to 1200 yard spacing and finally 12000 yard
separation at tﬁc lowest resolution level. Such a.str:itcgy provided a greater reduction _of
.poly gons at lower resolutions but providéd a more dynamic terrain change at the seams. In
order to maintain three separate re..solution Icvéls of data, separate terrain databases were
created for the various resolutions. While increasing data storage requirements, -the
reducuon of run time calculations resulted in an xncreased t'rame rate.

To solve the boundary problem, CCWF utilized the “skm" method dcvcloped in
the MPS series to draw seams between resolution levels. All three resolution levels are
drawn from the vehicle, resulting in the high resolution éarpet being drawn over lower
resolution carpets. The net effect was that lower resolution terrain wduld “cut through™-
valleys of the higher resolution terrain. | |

- The CCWF was (he first NPS Snmulator to draw data usmg DMA s D:gnal Tcmnn ‘

Elcvauon Data. The area of operanons centered around the Sea of Japan

6. CCWF, Subsurface and Periscope Views

In follow-up work to the CCWF (Weeks 1989), a triangular mesh drawiﬁg routine
was incorporated in addition to the polygon &rawing routine. By reducing the number of




vertices required to be sent through the graphics pipeline (4 instead of 6 per triangle pair),
a 50% speed increase in graphics frame rate was obtained. When using mcs.h drawing
routincs; vertex normals instead of polygon normals were generated resulting in a
thoothcr, more realistic appearance. The “skirt” method of filling resolution seams did not
work as well when using the *“mesh” mode. Since the skirt lighting normals were
" horizontal, skirt flickering discovered in MPS became very pronounced as surrounding
| lighting normals were essentially vertical. The pollygonv (checkerboard) tﬁcthod was lcft'
- available as an option. Without terrain features, motion on level surfaces is often difficult

to detect without the checkerboard effect.

A primary cornicemn is the storage requirement for CCWF liéhting. To adequately

light the temain, vertex normals are computed at start-up. Thus terrain database
| requirements grew from 2.88 mcgabyltcs to well over 21 megabytes. An attempt was made
io compute normals dynamicaily, however, a 50% performance reduction degraded the
_ system mal time performance capabilities.

A recommendation for future research was to incorporate control surfaces into the -
ships, such as rudders. Initial work on xﬁc AUV NPS Simulator was undertaken with
CCWF requirements wgll understood; specifically applicable to CCWF are (1) use of
-control surfaces to drive vehicle; (2) elimination of requircmcni to use skirts at resolution
boundaries; (3) incmpomﬁm of sonar; (4) development 61' vehicle control panel.

7. NPSNET | |

NPSNET (iyda, Pratt 1990) is the Naval Postgraduate Sc,hqol's"low-cost version .
of thc DARPA SIMNET System. While rcfining many of the NPS temain rendering
algorithms, NPSNET's cnhanccmen(S iricludc incc-poration of 'culturz;l'tcnain features

such as ground cover, man-made structures, and terrain texturing. Research continues on




optimal display of such features on sloped and variable resolution terrain while maintaining

real-time updates.
B. AUV SIMULATOR DEVELOPMENT

1. Use of SDV Hydrocoefficients

The original NPS non-graphical simulation of an underwater vehicle can be found
in (Boncal, 1987).. Utilizing basic §ubmax'inc equaﬁons of motion (Gertler 1967), with
modifications to reflect the geometry of the U.S. Navy’'s Swimmer’s Delivery Vehicle
(Snlith 1978), Boncal designed a controller to control rudders, bow planes, and stern planes
based upon the vehi;:lc’s predicted dynamics. ’ | |

2. Origins of NPS Auv Simulator

‘The initial 3D graphics submarine simulator (MacPherson 1988) consisted of a
submersible which utilized a rudder, stern planes, and a single screw. Movement of these
control surfaces imparted pitch, yaw, and speed to the veﬁicle. Simple dynamics were
employed to derive appropriate vehicle responses. Actual submarine dynamics were not
modeled as the simulator was utilized to test mission path planning algorithm’s only.

3. NPS AUV-SIM1

The current AUV graphics simulator is an cxtension of a graduate graphics project -
by D. Marco, R. Rogers, and M. Schwirtz (Zyda, McGhee, Kwak 1990).' AUV-SIM1 was
the first graphics simulator'to ixtilizg the Swimmer’s Delivery Vehicle equations of motion
as modified by R. Boncal '(Boncal 1987). Intended to xmdci the NPS At;tonomous
Underwater Vehicle, the simulator demonstrated realistic submarine dynamic behavior.
The simulator inco:l'pomed‘a mouse paneél to make adjustments to rpm, rudder, and bow
pianes. The enviré)nment was a 120 ft x 60ft x 8ft swimining pool, the vehicle drawn as a

six foot submersible with twin screws,.stem rudders, bow and stem planes.




Communications code was added to receive autopilot command controls fror 1 Symbolics

LISP machine (Nordman 1989).

4. NPS AUV-SIM2

‘The appearance of the graphics AUV was modified to reflect the actual AUV |
beiné built by the Nav‘al Postgraduate School. Essentially symmeiric in shape, AUV-SIM2
has eight control sulrfaclcs consisting of bow planes, stern planes, bew rudders, and stemn
rudders. The swimming pool was redesigned to reflect .thc‘ appearance of the‘ NPS

’ swimming pool where initial tcsu’né of the actual vehicle would take place; The basié “«C” |
code was further modulized. The Mission Planning Expert System was developed nn the
Symbolics Lisp Machine using the KEE Expert Shell rcsulu'hg in some modifications to the
“C”. communications code (Ong 1989). Although the vehicle’s appearance reflected ihc
actﬁal AUY, the dynamics and geometry reflected the asymmetrical, much larger SDV.

C. NPS AUV-II

NPS AUV-ﬁI is a result of this thesis. While making minor upgrades to the vehicle’s
appearance, the primary contributions were a rccngineeﬁng of the software to encapsulate
theAUVasa ’rigid body using object oriented programming techniques prototyped in LISP.
The equations .of motions and hydrodynamic coefficients were modified to reflect the
' geqmcq'y of the NPS AUV rather than the SDV. Funhembre, the drag coef"ﬁcicnts and
added-mass coefﬁcigms are no longer “hard coded” into the program, but are parsed from

an external file at'the' program's in'itiation These cocfﬁéicms are modifiable on-line so
| ‘ad_]ustments can easily be made and tested. The revised cocfﬁcwnts can then be saved toan
extcmal file for further reﬁncment The Monterey Bay environment was mcorporated to
allow more expansive testing of the search algorithms and testing of systcm dynamics that

can not be tested within the constraints ot the NPS Pool.




A record capability exists to develop a script that can be used by the actual vehicle

during testing. A replay capability exists to reexamine missions, or to test externally’

generated scripts. A sliding scale enables the speed of replay to be adjusted. On line

stripcharts display changes in velocities and accelerations to be displayed along all axes.

The user interface was designed to allow to display the vehicle’s orientation (pitch,.

heading, and roll).
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ITII. GRAPHICS PIPELINE LOAD REDUCTION TECHNIQUES

The Silicon Graphics 4D/240GTX coﬁtains fquf MIPS R3000 CPU’s and R3010 RISC
compon‘cnts. The CPUs run at 25mhz and together executé approximately 80 mjllion
instructions per second (MIPS) achieving four double precision Mflops (Ackley
1989). The graphics architecture is divided inié four subsystems: the transformation
subsystem, scan-con\crsipn subsystem,raster éubsystcm, and diSplay subsystem.' Oof
‘intcrest here is the transformation subsystem, for this is where the limit is set on the number

of vertices which can be generated per second.

The transformation subsystem, called the Geometry Enginc, is capable of processing
400,000 vertices per second. A single vertex transformation requires approximately 100
FLOPS. To achieve a frame rate of 10HZ, for example, we must attempt to pass less than

40,000 vertices per frame. 30 % of the Geometry Engine’s work is in performing vertex

~ transformations, with the remaining work pcrfonning operations such as lighting

calculations and normal transformations. Since the programmer can directly influence the -

total number of vertices sent to the Geometry Engine, it is often desirable to employ vertex
reduction techniques when the goal is real time graphics display. Some of the techniques

used in the NPS AUYV simulator are dcscﬁbcd below.

A. MESH DRAWING ROUTINES

In order to draw the entire Mcntercy Bay database as polygons (triangles), each

internal vertex needs to be'sent six times, once for each polygon that shares the vertex. As

'd,cmonstratcd in CCWF, the gxaphics library function bgntmesh() can greatly improve

graphics pipeline efficiency. By dra‘wing the arcé as a series of mesh sirips, each internal
vertex needs to be sént only twice to represent the six adjacént polygons, as illustrated in

Fi 3.1. The vertex information is maintained in two “vertex registers” within the IRIS-
g1




4D. As a result, the total number of vertices required drops from over 300,000 to slightly
over 100,000. Since the Geometry Engine is capable of 400k vertices per secdnd, it can
pass 135k triangles per second when using mesh drawing routines.

The IRIS-4D VGX models contain three vertex registers, enabling the vertices to be
represented as part of a quadrilateral using bgngstrip(). T! = function bgnéstrip( ) increases
the efficiency of the Geometry Engine even further, as 100k quadrilaterals (200k triangles)

can be drawn per second. In addition, “Q-mesh” provides superior shading and iighting

- over “T-mesh”(Graphics Library 1990).

Start Mesh Row 2
kN B |

_A

Start Mesh R_ow 1

~N C d '
although vertex “g" is only' drawn twice,
it is part of six separate polygons

'Fign_rel 3.1 Mesh Drawing Advantage
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B. VARIABLE TERRAIN RESOLUTION

Both CCWF and MPS demonstrated the imiportance of variable terrain resolution.
Since the number of data points available for display increase by with the square of the -
distance from the observcr it is essential that such a reduction be incorporated. By limiting
the degree of the resolution changes and increasing the number of resolution changes, the
NPS AUV Dynamic Simulator is able to reduce the rate of vertex increase from O(N 2) 1o,
nearly O (N), with the laier being approached as the number of resolution levels is
increased. A major conclem with multiple resolutions is “seam handling”, or the smooth
transition from one resolution to Ianother. The chapter on the VIRA (Variable: Terrain
Resolution Algorithm) addresses this issuc. Figure 3.2 depicts the effect of dccfeasing the
resolution in a binary fashion, while increasing the number of resolution levels between the

observer and the horizon.

C. POLYGON CULLING"

The VTRA can be applied ir conjunction with culling. The merits of culling have been
demonstrated in numerous NPS simulators. As an example of the power of
culling, consider a 60 degree Field of View. If polygons outside the FOV can be culled,
then a lessened load is placed on the graphics pipeline Vcry efficient mesh Idrawing
routines now exist, so one must weigh the CPU overhead requu'ed of cullmg, against the
cfﬁcxcncy of the Geometry Engine. Often, a “rough clip” is supenor to fine cullmg since
~ the later must often be done in the mesh drawing loop, with culling conditions checkcd
agaihst’cvcry vertex. Fine culling was experimented with in the NPS AUV Simulator, and .

" performance was actuaily lower than that with the “quadmesh” drawing without culling.
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| Resolution
Levels

Number
of
Vertices

HORIZON - —
As the horizon inércascs. the number of vertices
increases at a rate approaching Order (N)

Figure 3.2 Variable Resolution Effects on Vertex Count
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Figure 3.3 is an aerial viewer of the Monterey Bay. The Submarine heading is 045 degrees '

with a field of view of +/- 45 degrees. Data outside the FOV is culled

" The culling in the NPS Simulator is similar to the CCWF culling algorithm. The terrain

is divided into four sectors, North, South, East, and West. The origin is at the viewer's
location (in NPS AUV Simulator, the observer need not be at the vehicle). The view
direction is the vehicle’s heading..or the obseryer’s vi'e(ving azimuth. Sine and Cosine

lookup tables are created the first time the cﬁlling routine is activated. VTRA has the notion




R il N

of minimum and maximum rows and columns, usually the limit of the database. The NPS

AUV Sxmulator simply uses thc viewing azimuth to further constrain these limits. For

example, if th= observer is viewing towards the East sector, then the minimum column can
immediately be increased to the observer’s column. The maxitnum column is already set
by the horizon limitations. Therefore, the only requirement is to adjust the maximum and

minimum rows using the view direction, right and left clipping angles, horizon, and

'tngomctnc lookup tables. Figure 3.4 contains the pseudocode for cullmg techniques

utilized in thc NPS AUV Simulator.
Since the NPS AUV Simulétor is essentially a flight simulator and ‘capable of angular
accelerations along all three axes, further culling was attempted based upon sine of the

pitch in conjunction with the altitude and the sine of the roll in conjunction with the vertical

field of view. Althoug* this- was relatively easy to accomplish, the savings in vertex’

generation could not match the additional mathemnatics involved and system pcrfonnance
declined. Therefore, culling is based upon rotation around the system’s “y” axis only
(heading). With cullmg activated, the NPS AUV Simulator’s frame rate increased by 210

4 frames per second depending on number of resolution levels and horizon.
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if

)

(NORTH_SECTOR) |{

minrow = viewer_row;

maxrow = maximum_row;

mincol = viewer_col - horizon *tan‘left_clipping_azimuth);

maxcol = viewer_col + horizon * tan(right_clipping_azimuth);

if(SOUTH_SECTOR) {

}

minrow = minimum_row;
maxrow = viewer_row;
mincol = viewer_col - horizon * tan(right_clipping_azimuth);

maxcol = viewer_col - horizon * 1an(left_clipping_azimuth);

[M(EAST_SECTOR) {

)

minrow = vicwer_row + horizon / tan(right_clipping_azimuth);
maxrow = viewer_row + horizon / tan(left_clipping_azimuth);
mincol = viewer_col;

maxcol = maximum_col;

if(WEST_SECTOR) (

minrow = viewer_row - horizon / tan(left_clipping_azimuth);
maxrow = viewer_row - horizon / ian (right_clipping_azimuth);
mincol = minimum_col; ‘ '

maxcol = viewer_col;

Figure 3.4 Clipping Pseudocode

The row cnd column constraints are teset by the ciipping
‘routine, and are utilized by VTRA for generaiing terrain.
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IV. VARIABLE TERRAIN RESOLUTION ALGORITHM

A. BACKGROUND

As shown in the previous chapter, there is a need to display grid terrain at various
resolutions if real time simulation is the goal. The variable terrain resolution algorithm
(V'I'RA) v&as initally concéiv_cd while conducting research on acrilal view techniqués for
the Command and Control Workstation of the Future, and is fully incorporated into the

" NPS AUV Simulator. The algorithm assumes that highest visibility terrain should be drawn

around the‘ observer, .an‘d that the observer’s position'be selectable, whether inside or

' outside a vehicle. The formufa requires four inputs: the lcbscrvcr’s horizon, the numbér of

| resolution levels ‘required. the maximum resolution level i'cquired. and system performance
as measured by “delta time” (the inverse of the system frame rate).

Based upon the input parameters, VTRA determines a grid density for tﬁe lowest
resolution terrain, and draws this terrain from the horizon to 172 horizon. The horizon is
then reset to the 1/2 horizon, and the grid density doubled. The function is called

o recursively with the new parameters until maximum density is achieved. This density is

then drawn to the observer and the algorithm stopping condition achieved. Figure 4.1

contains the pseudocode for the algorithm as used in the NPS AUV Simulator.




/* vehicle is a structure containing the vehicle’s state, i.e., orientation, position */

show_terrain(vehicle)
Veh_ptr vehicle;
{ .
int start[0] = vehicle’s X position on grid;
int start{1] = vehicle’s Y position on grid;
int horizon = 128;
int vert_spacing = 16;
int max_i'cs_lcvcl'= 1;
show?2_terrain(vehicle, sfan, horiion, res_level);
}
show2_terrain(Veh_ptr vehicle, int start{2], int horizon,int vert_spacing)
{
if(vert_spacing == mait_rcs_lcvcl) {
draw_tcm\in_from_hoﬁzon_to_vchiclc__at_cﬁmm_rcs_lcvcl()l;.
else {
draw_tcm'in_ﬁ'oml_hoﬁzon_to_lﬂ_hoﬁmn_at_cumm_ms_lcvcl();

)

Figure 4.1 VTRA Pseudocode




B. ADVANTAGES OF USING VTRA

1. Compatible with DMA Terrain Database

VTRA will work with any size two dimcﬁsiorial armay of grid data. The value of
using authentic DMA terrain data has been demonstrated in numerous NPG simulators.
The algorithm was developed using Monterey Bay tchain data received courtesy of the
Monterey iay Research Institute (MBARI). Figure 4.2 depicts the data structure which was -
originally in values of positive meters and converted to negative feet, When the NPS AUV
Simulator is activated, the function scan_z_bay() reads the daﬁ into a 222 x 245 x 3 array.
The X and Y data is generated based on vertex s;Sacipg. Since above ground terrain is
represented with zero elevation data, a random number gcncratdr assigns positive values to
préscnt a discemibie coastline. Currently, work is underway to merge Monterey Ba'y
subterrain data with DMA terrain data for use with VTRA and subsequent aerial and
subsurface views of the Monterey Bay Coast. |

- 222 rows
2nm

< 245 cols >

Figure 4.2VTRA Pseudocodea




2. Less Storage Requirements

VTRA uses an array of vcrtci normals geﬁeratcd during. program initializaticn to
‘perform lighting calculations. After the terrain déta émy is parsed, the NPS AUV
Simylator uses the function compute_bay_normals() to.gcn&ratc vertex normais. Using the
four adjacent vertices, normals for the four adjoining polygons are wmputcd From these
four normals, a final unit vertex normal i;v» géncratcd. Unlike previous simulatérs using
variable resolution strategies, there is no need to prééomputc and prestore various

-, resolution data, only one data set need to be storcd.

3. VTRA improves DMA terrain rendering efficiency

CCWEF rescarch (Weeks 1989) identified the amount of data required to display
terrain out to the horizen, typically 26 nauﬁcal miles, as a major concern. Using DMA
1201 x 1201 terrain ;wiu‘l 160 yard spacing as an cx:lamplc. we apply the VTRA to display -
+ the dau; base out to 26 nautical miles without using 100% of the database.

Placing he observer in the center of the grid, assume a horizon of' 512 data points

(51,200 yards or 25.5 nm), we apply the algorithm before field of view culling. Displaying

a;l the data at highest resolution requires (1024 x 1024) or 1.2m vertices. Displaying all xiu:

data at 1/4 resolution requires (256 x 256) or 64k vertices. With the VTRA formula; gnd

using 5 resolution levels, only 16k verriéés : arc required while providing maximum

resolution out to 3200 yards. This mprcscms less than 2.0% of the total available vcruccs .

By applying 4 ncsoluuon levels, the area of hi ighest resolunon is cxtcnded out to 6400 yards
with a vertex count. of 26k less than 3% of the total avaxlable vertices. '

| thn using DMA terrain data, one ccncern is when should another geographxc

| cell be read from disk i into memory. By extcndmg the horizon, at low resolutions, a distance

that is a function of the vehicle speed and the amount of time to recover data from storage,

* the horizon boundary can act as a “u'iggér" to initiate rcading of a particular cell.
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- The flexibility of VTRA énéblcs the programmer to émphasize either resolution
| or honzon A geologisi scanning a desert from the air would expect to see geological

- structures in gréatcr detail as he approached the desert floor. As he descends, his horizon
would dccréasc wuh the square root»of the altitude.

Thcn: are iiree factors affcctmg the total vertex count using VTRA: horizon,
total numbcr of rcsoluuon levels, and maximum resolution level. Each of these factors is a
~ VTRA input paramctcr
'I'hc honzon is the numbcr of data points extending from the observer that will be
- di§piayed on the screen. Data within the hoqmn is depicted after applying proper spacing.
The horizon must always be a power of 2, i.c., 64, 128, 256, etc.. Thc data spacing factor
must aiso be passed as a parameter so the algorithm can convert the horizon to geographical
coordinates. Decreasing the horizon increases system performance.

The total number of resolution levels is only limited by available horizon. The
lowest resolution extends from 1/2 horizon to horizon, the next lowest from 1/4 horizon to
1/2 Lorizon. The binary reduction continues recursively until the maximum resolution level
is reached. bata from the observer to the innermost horizon is depicted at maximum
xpsolution level. Increasing the total number of resolution levels increases workstation
performance, and decreases the total area of maximum resolution.

The maximum r\;.solution level determines the density that terrain will be rendered
clbﬁést to the obsqvcr. For example, atlresoltntibn. level one, every data pointis réprcscnted;
at resolution lcvei two. every other data point; and at 'm'solution level fouf, every fourth
pomt. Notice that there is no resolution level threc as V'I'RA rclxcs upon a binary reduction
of terrain nesolunons Each outer resoluuon area is 1/2 the dcnsxty of the inner resolution

| area, with the innermosr resolution area representing the starting density. Therefore,

S S




lowering the maximum resolution level from one, to two or four, will greatly reduce total
vertex requirements.
The defaul yparameters of the NPS AUV Simulator are a horizon.of 256 data

. points, total number of resolution levels of four, and a maximum resolution level of one.

Figure 4.3 depicts a view of Monterey Bay from an altitude of 80 nautical milés. Figure .

4.4 shows the bay drawn as a wircmésh with four VTRA resolutions .




Figure 4.4 Four Resolutions of Monterey

4. VTRA resolution can be adjusted automatically

Since the three controlling factors are input parameters, the programmer can elect - -

to create a fﬁnctiori to automatically control these values. NPS AUY Simulator has such a
functio_n, auwto_resolusion(), whicﬁ is activated from the terrain control panél.

The auv horizon is a function of its “absolute altitude”, i.c., height above the

terrain. As the vehicle climbs, the horizon doubles at progmriqu'intervals. Asthe vehicle

approaches “mountainous terrain”, such as the Mdnterey Bay Canydn wall, the horizon will

- . decrease by half to prbvide better resolution of the terrain.

The area of maximum resolution beneath the vehicle is inversely proportional to

the vehicle horizon, i.e., as extra vertices are portrayed by extending the horizon, a




reduction of vertices directly below the vehicle takes place. The trade-off is nearly equal so

system performance remains almost the same.

~ The third factor, number of resolution levels, is adjusted as a function-of system

performance. The insiant a decrease of performance is detected, whether the cause is
internal or external to the program, the number of resolution levels is increased easing the
graplucs pipeline load Converscly, if the system is runmng efficiently, the number of
‘ tesolunons is decreased, thus extending the range of hxghcr density terrain rendering. The

number of resolution levels becomes a function of workstation performance.

5. VTRA Adjusts to Workstation Upgrades

By adiusting the input parameters as a function of system performance as was
done in the NPS AUV Simulator, discussed above, higher Mo@ce architectures using
VTRA will maintain the real time depiction, and terrain rendering will automaticaily
improve. There is no need fo rewrite the program since VTRA can automatically provide

more realistic terrain rendering.
C. ADDITIONAL VTRA DRAWING CONSIDERATIONS

1. Seam Filling

As seen throughout the development of vehicle simulators incorporating a

variable resolution scheme, making a smooth transition froin one resolution to another has .

- been a3 problem with various solutions. Additional polygon gcncra:ion and normal

ca.culations required to “fill the seams”. can degrade system performance. VTRA solved
this problem by staying w:thm the binary reduction recursive routine. NPS AUV Simulator

‘'seam “stitching” functions will work at any horizon. Rather than filling holes after the

terrain has been generated, the scams are part of the terrain rendering process. Mesh |

drawing routines always require an even number of vertices from within the mesh function.
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VTRA'’s stitching requires two vertices per seam for each vertex row scanned, ensuring this
requirement is met. Every stitched vertex uses its precomputed normal for generating .
proper lighting effects. As a result, seams.can not be detected as seen in the various terrain

- pictures throughout this paper. o .

2. Geographic Referencing

When drawing terrain at various resolutions, the ckoice of which pdints to
represent should be a function botﬁ relative to the observer aﬁn relative to acfual ‘geographic
position. In the original NPS AUV dcsigﬁ, the points di;plé){ed were fclaﬁvc only to the
- observer. As a result, resolution level 4, for example, would “shift” the ve_nices displaycd
resulting in a rippling movement as the vehicle progressed. Steady terrain was generated ,
by depicting only those v;rtices whose row % four and col % fouf equaled zzro.
Geographic referencing is also required in the seam drawing algorithm to ensure smooth .

blending from one resolution to another.

3. Inner Horizon Blocking Of Draw Routine
Previous simulators discovered problems when trying to place a small “high

;csolution carpet” over a lowc'r resolution such as valley§ being “sliced” by the underlying
lower resolution plarie. To ensure this do'esn’t happen,l and to greatly reduce vertex.
generation, drawing of all data from horizénfl‘ to the observeris blocked, for each horizon
in the recursive call except for éhd highest resolution which oontihucs all the way to the |
observer. | |

4. Viewer Perspective

| Resolution should be based on the obscx"\rcr position, not a vchiclé’s’ positibﬁ.

Thcrcforc, the program should track the observers coordinates, as these are the coordinates -




p

the VTRA will base the recursive stopping condition, i.e., the center of high resolution

| display.
§. TERRAIN FEATURES

~ Drawing with mesh routines and lighting has generated realistic looking terrain in
' recent siraulators. However, withont the checkerboard effect, motion is difficult to sense.
“Terrain structures or vegetation can help provide this effect. This is evident in NPSNET

which nses ground cover and structures to aid with the sense of motion.

While displaying features on highest resolution terrain does not cause a problem,
at lower resolution the item may rest on a vertex not displayed, causing poiygons to slice
through the structure. A possible solution in VTRA is to modify the algorithm to display
highest resolution terrain “patch” where any structure exists. The row scanning process can

make this an easily incorporated feature.
D. VIRA BENCHMARKING

These figures were tgkcn from the NPS AUV Simulator with the Simulator’s “culling”
feature disabled. The vehicle was opcratca from a “Cockpit Vic'w” so that the vehicle’s
polygons were not drawn. "I’hc Simulator was run on a Silicon Graphics, Inc., IRIS 4D/

_240VGX Worksfauon ratcd 80 MIPS and 16 M FLOPS using all four processors. The
benchmarks were takén usmg smgle proccssor mode.

| Figure 4.5 shows the effect of decreasing the maximum rcsoluuon levels has on frame
rate. These curves were obtained using a horizon of 128 data points (appmxxmatcly 14 nm).
Since 128 may only be reduced six times while'maintaining sufficient vertices ;o generate
a mesh at the l;ighcst resolution level, frame rate begins to decline after six reductions.

Each reduction of maximum resolution requirement gains an extra 3 to 4 frames per second.

|

The effect of Cullmg shows an extra 2 to 3 frames per second when using five resolutions

with a maxlmum resoluuon of four,




" Figure 4.6 contains a table of measurements of frame rates for various horizon and

rumber of resolution combinations. This table proved useful in developing the AUV
-auto_resolution algorithm. Measurements were taken using a2 maximum resolution of one
(every data point displayed in innermost horizon). Thesé figures were utilized when
developing the auto_resolution() function for the NPS AUV Simulator. Flgure 4.7 provides

a view of thc filled terrain fmm an observer perspective.
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16 | 191 19.6 235

32' | 11.1.| 152 | 196 2255

64. ' 28 | 67 11.5]17.0 19.6

128 16 | 28| 56| 111] 171f 210

256 1.0 12 | 23|55 | 161 151 170

512 06 | 08 | 11 |25]52 | 91[142]161

1024 02 | 03| 06|11 ] 23] 49 | 89/ 101
By using the formula

Horizon = 2N umber_Resolution_Levels-1

a frame rate of approximately 10 may be achieved for most horizons.

_Figure 4.6VTRA Performance Figures







V. AUV DATA STRUCTURE

A. INTRODUCTION

When developing the NPS AUV Simulator, the goal was to incorporate object oriented
features into the data structure. The auv data structure inhcﬁts its characteristics througn
the use of “C” language pointers. |

The auv structure contéiﬁs five pointers to substructures. The AUV_Pongons structure
“poly” contains pointers :0 the vehicle’s polygons encapsulated in th'c NPGS “OFF”
format (Munson 1989). The Dynamic_Structure “dyn” contains slots required to comi)utc
i)olygon (vertex) transformations from accelerations. The Vehicle_Geo}netry structure
“geo” contains information relative to a specific vehicle such as th§ mass matrix. ’
Information in the rhass matrix is used to compnte the vehicle accelerations from the
vehicle forces. The Surfaces structure “surf” cortains §lots depicting the state of the
vclhicle’s cxt.crnal ;:omrol surfaces; rudders, fins, and thrusters. The Coefficients structure
contains items specific to the submaﬁne sﬁch as hydrodynamic coefficients which
determine, among other things, how much force a gi'ven fin deflection will generate, or how

much added mass needs to be applied to the vehicle during accelerations. Figure 5.1 depicts

the essentials of the auv structure.




typedef struct (
AUV_POLYGONS poly; / * auv objects (polygons) */
DYNAMIC_STRUCTURE dyn; /* forces, torques, accelerations */
VEHICLE_GEOMETRY geo; /* vehicle geometry struct */
COEFFICIENTS coeff; /* hydro coefficients struct*/
SURFACES suff; | /* fin and prop deflections */

} Submarine *Sub_ptr; ' '

Figure 5.1 AUV Data Structure

B. AUV_POLYGONS STRUCTURE

. The current NPS Object File Format does not support articulated bodies.
Transformation may ohly be applied to the entire object, although work is currently
underway to add this capability. The AUV has fifteen separate moving objects; six
propellers, eight fins, and the hull. The submarine can be built from the seven OBJECTS
contained in the AUV_Polygons structure depicted in Figure 5.2. These OBJECTS are

parsed into the structure from an external file at program initialization.

typedef struct {
OBJECT *hullobj; /* ptr to hull polygons ¢/
OBJECT *stern_plancobj; /* ptr to stern polygons */
OBJECT *bow_plancobj; /* ptr to bow polygons */
OBIJECT *rudobyj; /* ptr to rudder polygons ¢/

o OBJECT *left_propobj; /* ptr to |_prop polygons */

'OBJECT *rt_propobj; /* ptr to r_prop polygons */
OBJECT *thrusterobj; /* ptr to thruster polygons */

) AUV_POLYGONS;

Figure 5.2 AUV Polygons Structure




~=. DYNAMICS STRUCTURE

The dynamics structure contains all the essential items for computing the vehicle’s
dynamics and kinematics, which is more thoroughly covered in the next chapter. However,

a brief explanation of some of the slots in Figure 5.3 will be covered here.

typedef struct {
float delta_time; /* time between updates */
float forces[6]; | - /* forces & moments */
float mminv{6][6]; | /* inverse mass matrix */
float accelerations[6]; | /* udot, vdot, wdot */
float velocity([6]; /* uv,w,p.q.r “[
float position_change(6}; : .
float incremental_H_matrix; /* for body axis rotation */ -
float H_matrix[6]{6]; . /* rotations and translations *
float T_matrix[6][6]; /* for Cockpit View */
float pitch, heading, roll; /* phi. theta, psi */

} DYNAMIC_STRUCTURE;

Figure 5.3 Dynamic Structure

1. Delta_time

In AUVI and AUV2, delta_time was set at 0.5, regardless of the system frame

rate. To portray accurate real time dynamics. the sysltcm clock must be used AUV I
records the delta time just before each swapbuffer and may be less than .05 (over 20 frames .

per second). The value is utilized when im;gfating the accelerations and velocities. The

function new_delta_time() retums the time (float seconds) since the function waS

previously called.




#include “sys/times.h”
#include “sys/param.h”

float new_delta_time()
{ .
struct tms spot_time; /* structure from rimes.h */
static float oldtime;
float newtime;
static int timestarted = False;
_ float ime_difference; _
/* convert clock ticks to seconds using HZ */
newtime = (float)times(&spot_time)/(float)HZ;

if (!timestarted) { /* first reading will be set to zero */
oldtime = newtime; :
timestarted = True;
}
time_difference = newtime-oldtime;
oldtime = newtime;
return (time_difference);

-}

, Figure 5.4 Delta Time Routine
2. Forces '

This slot contains an array of the forces and moments produced from the equations
of motions, which are more thoroughly discussed in the next.chapter. The force vector is

* multiplied by the inverse mass matrix to obtain the 5ccclctations.,
3. Inverse Mass Matrix

- The inverse mass matrix is determined at program initialization after the mass
matrix has becn created. The mass matrix is mverted thmugh Gaussxan ehmmauon
techniques in AUV III. In the pncvxous AUV Sxmulators the inverse mass matrix for the

SDV was formulated usmg a Fortran program and then hard coded into the snmulator code.

The Gaussian elimination routine is shown in Figure 5.5.
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#define scan(var, lower, upp>r) for(var=lower; var<upper; var++)
matrix_inverse2(IN_MATRIX, INVERTED_MATRIX, SIZE)
float *IN_MATRIX;
float INVERTED_MATRIX[10000];
~ int SIZE;
{
int index=0, row=0, col=0, current row-O-/
ﬂoat **TEMP, factor, row_factor;

TEMP = (float**nalloc(SIZE * sizeof(float**)); /* allocate memory */
scan(row,0,SIZE) | [* create temporary augmented matrix %/
TEMP[row] = (Hoat *) malloc(2 * SIZE * sizeof(float));
.scan{col.0, SIZE) {
. TEMP{row]{col] = IN_MATRIX[row * SIZE + col};
TEMP{row]{col + SIZE} = 0.0;
)
TEMP{row][{row + SIZE] = 1.0);
)

scan(index,0, SIZE) { /‘selfaaoﬂodngonal componem -
factor = TEMP{current_row]}{current_row); -
. if (factor == Q) { : /* to avoid division by a factor of “0" */
scan(row, 0, SIZE) { /‘ﬁndmwthaldomthavezero‘/

if (TEMP{row][current_row] != 0) {
scan(col,0, (2*SIZE)) (
TEMP{current_row][col} += TEMP{row]{col];
) .
factor = TEMP{current_row]{current_row];
break;
}
)
} . .
scan(col,0, (2 * SIZE)) { /* divide current row by factor to get a 1" */
TEMP{current_row][col] = TEMP{current_row](col] / factor; '
) ,
scan(row.,0; SIZE) | /* subtract (factor ® current row) from each row */ .
if (row != current_row) |
row_factor = TmP[mw][wMJW]
scan(col, 0, (2 * SIZE)) ( -
TEMP{row][col] -= row_{factor ¢ TEMP[cunm'_mw](col]
)
) .
} ,
current_row++; -
) . ! , .
scan(row,0.SIZE) { " . ' -/* create matrix ¢/
scan(col,0, SIZE) {
INVERTBD_MATRD{[NW‘SIZE +eol] TEMP[mw][cthlRl
) ‘

Figure 5.5 Matrix Inverse Routine =
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4. H-matrix

The homogeneous msfom matrix (H-matrix) contains the information required
to perform polygon transformations. One format for the H-matrix is shown in figure 5.6
which results from a yaw followed by pitch, then a roll. The transpose. of this pai‘ticular

matrix for robotic applications is found in (Fu 87)

CoCo S6CO - -56 0
CoSOSY-SOCy  SoS8Sy+CoéCy  COSy 0
CoSOCY+S0Sy  S0SOCy-CoSy  COCy O

@ dy dc 1
¢ rf)ll dx = Xposition
8- pitch dy — Yposition
Y = yaw

dz — Zposition

. Figure 5.6 Homogeneous Transferm Matrix

By,loéding the vehicle’s H-matrix. onto the uahsfonnation stack prior to drawing
the vehicle, proper vehicle orientation results. ln,Chaptcf 6, we sée several uses of the H-
matrix in grap};icé applications. An incremental H-matrix is obtained from incremental ‘I
rotations and translations using the Graphics Library functions éalls rotate() and
}ranslate(). The IRIS 4D uses a right hand coardinate system ivith X axi§ left to right, Y .
axis_bottom to tép. and ncgativ‘/e Z axis into the scfccn.The vehicle coordjnaté systcrﬁ is
shown in Figure 5.7. To utilizc. OFF objects on the RIS with minimum confusion, the
 vehicle Icoordinatc system should be initially 'alig»ncd with the IRIS world coordinat'c

system.
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| 5. T-matrix SRR | ‘

Is is often useful to éwi;ch‘ to a “Cockpit” or “Camera” view while operating

vehicle. The function transpose_matrix() creates a “T-matrix” from the H—métrix b
transposing the upper left 3 x'.3‘ rotation sub-matrix, and by reversing the signs of th

‘ translations. An eiémination of the H-matrix reveals that such a msposition produ

rotations opposite that of vehicle rotations. When flying straight and level, a bank to the

i'ight has the effect of tilting the horizon to the left.




D. VEHICLE GEOMETRY STRUCTURE

The Vehicle Geometry structure contains information that is peculiar to that type of
vehicle. For example, center of buoyancy information is used for ships whercas wingspan

area may be used for aircraft. Slots within this structure (Figure 5.8). are amplified in the

following paragraphs.
typedef struct { »
float mass; /* weight / gravity */
float weight; /* to compute mass */

float buoyancy;  /* will equal gravity */

float length; /* dimensions in feet */
float slice[3][9]; /* length, width, height xsection */
float AQ; /* prop area */

float xg, yg, zg; /* distance cg from rotation axis 5/

float xb, yb, zb;  /* distance cb from rotation axis */

float ix, iy, iz; /* symmetric moments of inertia */

float ixy, ixz, iyz; /* asymmetric moments of incrtia */ o /

float mm{[6]{6]; /* mass matrix */
) VEHICLE_GEOMETRY; |

Figure 5.8 Geometry Structure

L .Mass Matrix

_The mass matrix is a Ifunction of mass, added mass coefficients, cémgr of gravity (xg,
¥8, zg), moments of inertia (ix, iy, iz), products of inertia (ixy, ixz, iyz), water density(rho),. Co
and vehicle length. At progrz;rﬁ initiatibn, the added mass‘cogt.’ﬁciems are read into the - . |
added mass coefficient array (see Coefﬁcient Stmcmre belb&). Using these coefﬁcicﬁts
an ihe other aforementioned parameters, the mass matrix is created by the function
compute_mss_'r'nam;t( ) using the mass matrix equations outlined in (Boncal 1987). The

mass matrix was “hard coded” into AUV2 usiny the SDV paraineters. In AUV 11, the
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parameters are read in at program initialization so the simulator can be run with any

geometry. In addition, the AUV II parameters have been modified to reflect the

submarines symmetry and size.

2. Other AUV Geometry Considerations

The propeller cross-sectional area, A0, is used in the AUV’s equations of motion.

Since the AUV is considered a ﬁgid body, the various forces can be represented as three -

discreet forces along the vehicle akcs,_ and the moments as three discreet moments around
these axcs These equations are discussed in Chapter 6.

In AUV 111, the buoyancy and weight are of equal magnitude. The greater the distance
between the center of gravity and center of buoyancy, more stable but less maneuverable,
is the submarine Using‘ dynamic constraints as discussed in (Bar'zcl, Barr 1988), one may
implement constraints by introducing forces intol the model to simulate actual vehicle

behavior. In AUV III, by artificially increasing the weight as the vehicle broaches the

surface, the equations of motion generate a pitch dowd motion followed by a vehicle .

levelling out, preventing a “flying” AUV.
-The “slice” matrix is used in the dynamics package to help compute cross flow drag.

Nine cross sectional measurements were taken of the AUV for the matrix. Cross flow drag

is integrated over the length of the vehicle using the trapezoidal rule. with respect to height )

~orwidth.

E. COEFFICIENTS STRUCTURE

The Coefficients suucture is shown i Figure 5.9;
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typedef struct { /* contains hydro coefficients */

float surge[6][6]; /* vehiclg X axis movement */
float sway[6][6]; : /* vehicle y axis movement */
float heave[6][6]; | /* vehicle z axis movement */
float roll[6][6]; ' /* angular abou' z axis */
 Roat pitch(6](6]; /* angular about x axis */
float yaw[6]{6]; ' /* angular about y axis */
float added_mass[6][6]; /* added mass effects during acceleration */
float fin_surge 6][4]; /* fin movement & vehicle movement */
float fin[6][4]; /* fin only %/
char *surge_variables[6][6]; /* required for file regenerations */

char *sway_variables{6][6];

char *heave_variables[6][6];

char *roll_variabies[6][6];

char *pitch_variables[6}{6];

char *yaw_variables{6][6];

char *added_mass_variables[6][6];
char *fin_surge_variables(6][4];

- char *fin_variables[6][4];

. ) COEFFICIENTS, *CO_PTR;

- Figure 5.9 Coefﬁcilent Structure

While accurate hydrocoefficients are often obtained after exhaustive tow tank .

experiments, the SDV coefficients were obtained through geometrical analysis (Smith
1978). In AUV I, the coefficients were mbdificd to exclude the effects of the third
. propeller and large skeg on the SDV. Again, in AUV2, the coefficients were “hard coded;'
and included only ghosc coefficients thought to be affecting the AUV. Irll.AU'V 111, a full set
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of coefficients are included enabling configuration changes (size, control surfaces,

' propellers, etc.) to be irhmediately run on the simulator.

Coefficient files can be loaded into the simulator, modified on-line, tésted, and saved
for reuse. While the added mass coefficients were utilized in the development of the rhass
matrix, the remaining coefficients are utilized in the equations of motion. Since the AUV
is somewhat symmetrical, most of the éff-diagonal terms should be approximately zero.
Figure 5.10 shows the on-line panel for modifying pitch coefficients. The coefficient can

be decoded using the following: ' '
f X =Surge '
Y =Sway
Z = Heave
K =Roll
M = Pitch
N = Yaw

For example, MUV is the coefficient that determines how much pitch force is induced
when the vehicle undergoes a surge with a sway. The coefficients should be modified after
cach in-water testing of the vehicle. _ _

Tﬁe coefficient filcslare similar to ordinary “C” language header. file.s and, in fa’ct, may
be hard coded at any time. The data structure records the name of the coefficient so that the

file may. be properly restiuctured in this “C” format when saving any changes.

F. SURFACES STRUCTURE

The Surfaces structure contains the status of all corols surfaces of the vehicle. The
 fin deflections and thruster rpms are inputs to the equations of motion. While the AUV has
slots ‘fo'r eight fin }dcﬂections, enabling independent fin surface control, the 'current

' equétions do not support this mode. The bow and stem control surfaces are coupled as are

@




Figure 5.10 Pitch Coefficients Panel




the left and right main thruster. The hovering thrusters are not yet modeled in the equations.

Figure 5.11 depicts the Surfaces structure. : -
typedef struct { .
float deflect{8]; /* eight control surfaces */ - '
float rpm[6]; ' - /* two mains and six thrusters */
float pfop__disp[G]; ‘ /* rotations in one frame */
} SURFACES; '

Figure 5.11 Control Surfaces Structure




VI. AUV DYNAMICS

A. INTRODUCTION

1. Dynamics, Animation, and Simulation

With the advént of low ost, powerful graphic workstations, animating rigid body
motion through dynamic equations of motion is becoming an attractive alternative 10
traditional graphics animation techniques such as inverse kinematics, keyframing, and goal
directed subsystems (Sturman 1987). While the term “simulation” instead of “mimaﬁon” _
suggésts a shift of control from the animator to the underlying physics, thi~ need not be the
case. The DY!IAMO system at Cornell University allows the animator to maintain control
of linked figures in the dynamic simulator through use of kinematic constraints and
predefined behavior functions (Isaacs 1987). For the animator or “simﬁlator”_, Sturman -
suggests that dynémics may be the best way to achieve realistic motion .' Jane Wilhelms

(Wilhelms 1987) also cites a pumber of reasons to use dynamics.
a. Restrict motions to those which are realistic.
b. Portrays complex motion with minimal user input.
c. Dynamic cors@nts can be autoin_aticall; impo@
tl'l. Move complex bodies in a natural way.
2. Howto Emlploy Dmahiw

Wilhelms itemizes the stéps required to derive object motion from dynamxcs.
" Though general in nature, they reflect the procedure used in Comell’'s DYNAMO system

as well as the NPS AUV Simulator. They are:
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a. Build dynamic equations of motion
b. Solve cquau’on; for forces and'acr."clcrations.
¢. Determire velocities ahd positions throﬁgh integration.
*d. Update thc object’s state. |
Dynamic constraint ch&h.should be accomplishéd after step “c"‘. For instance,

one constraint may be that the AUV never “fly” out of the water. Rather than using

kinematic constrairts, i.¢., no translations above zero altitude, we would shift the center of

| buoyancy towards the aft of the vehicle, and then resolve for the equations of motion. ’1'th

equations would recognize the lower buoyancy moment, and ‘the resultant greater weight
moment would cause the vehicle to pi(ch down into a dive. If the bow and -sxcrn planes were
not readjusted, there would be a porpo:smg effect, and the vchlclc would remain

constrained in its environment.

B. AUV EQUATIONS OF MOTION

The original sets of equatins of motion for the AUV were adapted from the submarine
equations of motion for the Swimmer's Dchvcry. Vehicle (Boncal 1987). Modifications to

" the equations included (1) integral formulation of viscous crossflow forces and moments;

(#3) decoupling of the bow and stern plancs 3) dcéoupling of the left and right bow planes.
In AUY I, the viscnus cross flow formula was remodified and the third (off axis) propeller

was rcmoved.

1. Viscous Crossflow Forc-s

In order to compute the viscous flow componcnts. nine cross- shce measurcmms

were taken of the AUV. Crossflow cmnponcms were then calculated by mtcgranng the

calculano_ns over the length of the vehicle as shown in Figure 6.1.




#define x9 auv->geo.slice[0] /* nine auv height, width measurements */
#define br auv->geo.slice[1]

#define hh auv->geo.slice{2]

#define num_pts 9

#define swayterm (VV + x9[k] * RR)

#define heaveterm (WW - x9(k] * QQ)

compute dxag_forcc(auv)
Sub_ptr auv;
{
int k; ‘
f loat cyflow czflow, ucﬂnum_pts] vechl{num_pts], vech2{num_pts]
trapezoidal(),vecv1[num_pts},vecv2[num_pts}];
for (k=0 k<num_pits; k++) {
ucflk] = fsqrt((swayterm * swayterm) + (heaveterm * heaveterm));
if(ucflk] >= l.e-10) {
cyflow = f_cdy * hh[k] * swayterm * swayterm;
+ cdlow =f_cdz * br{k] * heaveterm * heaveterm;
vech1[{k] = (czflow + cyflow) * swayterm / ucfk};
vecvl[k] = (czflow + cyflow) * hcavctcrm / ucflk]:
vech2(k] = vechl[k] * x9(k]; '
vecv2[k] = vecvi[k] * x9(k);
) else { '
f_heave = f_pitch = f_sway. = f_yaw =(;
return; '

}
)

f_heave = (trapezoidal(num_pts, vecvl, x9)*f_rho/2.)* (-1);
f_pitch = (trapezoidal(num_pts, vecv2, x9)*f_rho/2.); .
f_sway = (trapezoidal(num_pts, vechl, x9)*f_rho/2.)* (-1);
f_yaw = (trapezoidal(num_pts, vech2, x9)‘f tho/2.)* (-1); -
} /* end compute drag force */

float tnpcmldal(pomts. vel_array, distancc)
: i{m points; float vel_array(] , distance{};
float answer; int i,j k;
j = points; answer = 0.0;
for (i=0; i<j-1; i++) |
answer += (.5 * ((vel_array[i]+vel_array(i+1]) *
) (distance[i+1] - distance(i])));

retumn (answér);
)

Figure 6.1 Viscous Drag Force and Moments
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| 2. Equations Format

The Submarine equations have a standard format as shown in (Boncal 1987).

Figure 6.2 is the header ﬁle used to ma.mtam the format while using the AUV data structure.

Figures 6.3 through 6. 9 are the current AUV equations.

#define f_ L auv->geo.length

- | #define UU  auv->dyn.vel(0]

#define VV  auv->dyn.vel(1]

#define WW  auv->dyn.vel[2)

#define PP auv->dyn.vel[3]

#define QQ  auv->dyn.vel(4]

#define RR  auv->dyn.vel(5]

#definephi  auv->roll/57.3

#define theta  auv->pitch/57.3

| #definepsi  auv->heading/57.3 ,
#define (_rho 1.94 /*auv->rtho  density of water */

/* non-dimensionalized coefficients for use with equations of motion */
#define ndcS(floatXf_rho2 *f L*f L*f L*f L*fL)

#define ndcd(float)(f_rho2 *f L*f L*f L*f L)

#define ndc3(floaXf_rho2 *f L*f L*f L)

#define ndc2(floatXf_rho2 *f L *f L)

#define f_cdy (float)1.0 /* drag factors */

#define f_cdz (float)1.0

#define f_nu (foat).00847 /*auv-> nu* /

#define f_re (loat(UU * f_L /f. nu)

#define f_cta(.008 * f_rpm / UU) /* vice 012‘/
#define f_ct1.008*f L*f 1./a0

#define f_ctO08 *f L *f L *f_eta* fabs(f_ eta)lao
#define f ch(ﬂoat)((XX)SS«r(l.Z%c 17y *(f_re-1.2eN*(f_re-1.2e7)
#define fx_prop(f_cd0 ® (f_cta * fabs(f_ eu) 1.0))
#define fn_prop 0 -

#define {k_prop 0

typedefsuucz( l‘stmcnme uxdtodwomposeequmom‘/
float Newton_ Eula(6].
float hydro_angular_angular{6]);
float hydro_linear_angular{6];
.float hydro_linear_lincar{6);
float drag{6}; ‘
float hydro_static(6];
) Total_Forces, *TForce;

Figure 6.2 Equations of Motion Header .




-

compute_su ge_force(aav 1
Sub_ptr auv;
TEoree f,

[

i it factorl, €379 acceleration_factor,

acceleadon_sacur = X_prop* UU* UU*f L+ v *f rho/2.0;

£->Me wion_Eule{ X =

f.mase s (VYRR W * QQ /*iner . silect ¥

+1_xg * (Q*QQ~ K.\ * RR) /* center ¢{ mass ¢ facts */
-Tyg*PP*QQ
-5_28 * PP* RR);

| {->hydro_angular_ang'ar{X] = /¥ < .ige serenr dr 2 %/

idc4d * (xpp* PP * PP+ /* roll ¥/
xqq* QQ* QQ* M f 't ¥/
>p:*PP*RR +/* yaw & oy ¥/
xmr * RR * RR); /* yaw */

f->hydro_linear_axguia:: X | = /* surge force due to */
ndca * xwq * WV’ * (.3 + / b ve & pitch */
xvD* VV* PP+ /vy &l '/
xwr*VV*RR); /- vay & yaw */

f->h+ir,_tivear_lirear{X) = /* surge force due to */ -
ndc2 * (xvv * VV * VV + [* sway */

Xww * WW * WY + /* heave */

xvdr * UL * VV * f_dr + /* rudder & sway & surge */
xwds * UU * WW * f_ds + /* stem plane & surge & heave */
xwdb * UU * WW * f_db + /* bow plane & surge & heave */

- xqds * UU * QQ * f_ds + /* stem plane & surge & pitch */

xqdb * UU * QQ * f_db + /* bow plane & surye & heave */
xdsds * UU * UU * f_ds * f_ds + [* stem plane & surge */
xdbdb * UU * LU *_db * f_db + /* bow planc & surge */
xdrdr * UU * UU * f_dr * f_dr + /F rudder & surge */
acceleration_factor); /* rpm & surge */

{->drag{X] = 0.0; /* cross flow drag */
f.>hydro_static{X] = /* buoyancy, |weight, pitch angle */

(-f_weight + boy) * SIN_THETA;
: )

| Figure 6.3 Syrge Equation of Motion




compute_sway_force(auv,f)

Sub_ptr auv;

TForce f;

{ o | -
f->Newton_Euler{ Y] = /* sway force due to */
f_mass * (WW * PP - UU * RR /* inertial effects */
- f_xg * PP * QQ /* center of mass effects */

+f_ yg*(RR*RR+PP*PP)

-f_zg* QQ *RR);

f->hydm_in gular_angular{Y] = /* sway force due to */
ndc4 * (ypq * PP * QQ + /* roll & pitch */
yqr * QQ * RR); /* pitch & yaw */

f->hydro_linear_angular{Y] = /* sway force due to */
ndc3 * (f_yp * UU * PP + /* surge & roll */
f_yr*UU * RR +/* surge & yaw */

yvq * VV * QQ + /* sway & pitch */

ywp * WW * PP + /* heave & roll */

ywr * WW * RR); /* heave & yaw */

f->hydro_linear_linear{ Y] = /* sway force due to */
ndc2 * (f_yv * UU * VV +/* surge & sway */

yvw * VV * WW + /* sway & heave */

ydr * UU * UU * f_dr); /* rudder & surge */

f->drag[Y] =
f_sway; /* viscous left & right cross flow drag */

] f->hydro_static[Y] = /* wieght, buoyancy, pitch angle, roll angle */ -

(f_weight-boy) * COS_THETA * SIN_PHI;
} .. . ' .

_Figure 6.4 Sway Equation of Motion
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compute_heave_force(auv,f)
Sub_ptrauv;

TForce f;

{ o ’
f->Newton_Euler{Z] = /* heave force due 10 */
f_mass * (UU * QQ - VV * PP /* inertial effects */
- f_xg * PP * RR /* center of mass effects */
-fyg*QQ*RR

+f_zg* (PP * PP+ QQ* QQ);

f->hydro_angular_ angular[Z] /* heave force due to */
ndc4 * (zpp * PP * PP + /* roll ¥/

zpr * PP * RR + /* roll & yaw */

zir * RR * RR); /* yaw */

f->hydro_linear_angular{Z] = /* heave force due to */
ndc3 * (f_zq * UU * QQ + /* surge & pitch */

zvp * VV * PP + /* sway & roll */

zZvr * VV * RR); /* sway & yaw */

f->hydro_linear_linear{Z] = /* heave force due to */=
ndc2* (f_zw * UU * WW + /* surgc&hcavc"’/

zZvv * VV * VV + /* sway ¥/

zds * UU * UU * f_ds +/* stem plane & surge */

zdb * UU * UU * f_db); /* bowplanc&surgc‘/

f->drag[Z] =

. f_heave; /‘ wscous up/down cross flow dmg */

f->hydro_static[Z] = /* buoyancy, weight, pitch, roll anglc*/
(f_weight-boy) * COS THETA‘COS _PHI;.
} /‘ end heave */

Figure 6.5 Heave Equation of Motion
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compute_roll_moment(auv,f)

Sub_ptr auv;

TForce f;

{

f->Newton_Euler{K] =

(f_iy - f_iz) * QQ * RR - /* moment of ineria effects */
f_ixy * PP * RR + /* product of inertia effects */

f ixz*PP*QQ+

fliyz* (QQ* QQ-RR *RR)

+f mass* (fyg* (UU*QQ-VV* PP) - /* center of mass effects */
f_zg* WW * PP+ UU * RR); '

f->hydm angular_angular{K] = /* roll moment due to "'/
ndcS * (kpq * PP * QQ + /* roll & pitch ¥/
. kqr * QQ * RR); /* pitch & yaw */

f->hydro_linear_angular{K] = /* roll moment due to */
ndc4 * (f_kp * UU * PP + /* surge & roll */

f kr* UU * RR + /* surge & yaw */

kvq * VV * QQ + /* sway & pitch */

kwp * WW * PP + /* heave & roll */

kwr* WW *RR ), /* heave & yaw ¢/

f->hydro_linear_lincar{K] = /* roll moment duc to */
‘ndc3 * (f_kv *UU * VV + /* surge & sway */

kvw * VV ¢ WW + /* sway & hecave */

fk_prop * UU * UU); /* surge & prop factor */

f->drag[K] = 0.0; /* roll drag effects */

f->hydro_static{K] = /* pitch, roll, buoyancy, weight */

(£_yg * {_weight - f_yb * boy) * COS_THETA * COS_PHI +
(f_zb * boy - f_zg * f_weight) * SIV_PHI;.

" }/* end roll #/

Figure 6.6 Roll Equation of Motion
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compute_pitch_moment(auv,f)

Sub_ptr auv;

TForce f;

{

f->Newtor_Euler{M] = /* pitch moment due to */
(f_iz - f_ix) * PP * RR + /* moment of inertia */
f_ixy * QQ * RR - /* product of inertia */
fiyz*PP*QQ+

f_ixz * (RR *RR + PP * PP)

+ f_mass * (f_xg * (VV * PP + UU * QQ) + /* center of mass effects */
f_2g* (VV*RR - WW *QQ)); '

f->hydro_angular_angular{M] = /* pitch moment due to */
ndcS * (mpp * PP * PP +./* roll */

mpr * PP * RR + /* roll & yaw */

mtr * RR * RR); /* yaw */

~ f->hydro_linear_angular{M] = /* pitch moment due to */
ndc4 * (f_mq™* UU * QQ + /* surge & pitch */

mvp * VV * PP + /* sway & roll */ '

mvr* VV *RR ); /* sway & yaw */

f->hydro_linear_linear{M] = /* pitch moment due to */
ndc3 * (f_mw * UU * WW + /* surge & heave */
mw‘W"W+/‘sWay‘/
| mds* UU'* UU *f_ds + /* stem plane & surge */

- mdb * UU * UU * f_db); /* bow plane & surge */

f->drag(M] = ,
f_gitch; /* up/down viscous drag moment */

f->hydro_static{M] = /* buoyancy, weight, pitch, roll*/
(f_xb * boy - f_xg * f_weight) * COS_THETA * COS_PHI
+ ((f_zg - f_zb) * (f_weight-boy)) * SIN_THETA;

} /* end pitch %/

Figure 6.7 Pitch Equation of Motion |

53




compute_yaw_moment(auv,f)
Sub_ptr auv; ‘
- TForce f;

{ .
f->Newton_Euler{N] = /* yaw moment due to */
(f_ix - f_iy) * PP * QQ /* moment of inertia */

+ f_ixy * (PP * PP - QQ * QQ) /* products of inertia "/
-f_ixz * QQ *RR
+f iyz*PP*RR

+f_mass * (f_xg * (UU * RR + WW * PP) /* cenert of mass effects */
-f_yg* (WW*QQ-VV*RR)):

f->hydm_angular_ang1darfN] = [* yaw moment due to */
ndc5 * (npq * PP * QQ + /* roll & pitch */
ngr * QQ * RR); /* pitch & yaw */

f->hydro_linear_angular{N] = /* yaw moment due to */
ndc4 * (f_np * UU * PP + /* surge & roll */

i_nr* UU * RR + /* surge & yaw */

nvq * VV * QQ + /* sway & pitch ¥/

nwp * WW * PP + /* heave & roll */

nwr * WW * RR); /* heave & yaw */

f->hydro_linear_linear{N] = /* yaw moment due to */
ndc3 * (f_nv * UU * VV + /* surge & sway */

nvw * VV * WW + /* sway & heave */
ndr"UU"UU‘f _dr+ /* surge & rudder */

fn_pmp * UU * UU); /* surge & prop */ : T .

f->drag[N] = ,
f_yaw; /* left/right drag moment */

f->hydro_static[N] = /* buoyancy, weight, pitch, roll */
(f_xg * {_weight - f_xb.* boy) * COS_THETA * SIN_PHI
+(f_yg * _weight - £_yb * boy) * SIN_THETA;

} /* end yaw */

Figure 6.8 Yaw Equation of Motion
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C. SOLVING FOR FORCES, TORQUES, & ACCELERATIONS

The six equations (Figures 6.3 - 6.8) are subdivided into six sub-equations. The first,
“Newton-Euler”, are inertial forces or moments resulting from velocities, moments and
vroducts of ine ia, as well as force created since the center of mass is not at the cente: o

oducts of inerti 1I as fi ted th ter of t at th te: of

the AUV’s coordinate system (center of buoyancy).

The second set “angular-angular” are forces generated due to rotational velocities
around the other two axes. The third set “angular-linear” are forces generated due to a
combination of an angular velocity and a linear velocity. The fourth sub-equation solves for

the force created when two linear velocities are combined.

The fifth sub-equation shows the force generated due to cross-flow drag as discusscd
carlier in the chapter. The sixth set are forces due to hydrostatic effects caused by the offset

of the center of buoyancy from the center of gravity.
One force or torque is generated for each degree of freedom and placed into a six

element force vector. The vector is post-multiplied by the inverse mass matrix to produce

a six element acceleration vector (Figure 6.9).

/* multiply force vector b inverse mass matrix to get accclcranon vector ¥/
compute_accelerations!%uv)
Sub_ptr auv;
{
int j.k; '
for (j=0; j<6; j++) {
for (k=0; k<6; k++){ .
auv->dyn accfj] += auv->dyn.mminv(j](k] * auv->dyn forces[k]
) .

-}
}

Figure 6.9 Solving for Accelerations
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D. SOLVING FOR VELOCITIES & POSITION CHANGES

“The are many integration methods available for deriving positional information from

the acceleration vector. One of the most accurate but more complex and slower is the

Runge-Kutta Method (Wilhelms 1987). On 'the other end of the spectrum is the Euler.

Method which is fast, but inaccurate, especially for higher delta times. This is illustrated in

Figure 6.10.

Actual Position

Position

i dposition

l Stime |

. . Time :
Figure 6.10 Velocity Curve

- The Euler method samples the velocity at a given point, assumes a constant

velocity, and calculates a future position according to the equation below. The calculation:

pl = p0+{:0-6t_

works well for very small dclta_ times, but can be erroneous at higher intervals. During non-
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graphical' AUV dynamic calculations, where real time is not an issue, the delta times can

be very small indeed. Preliminary AUV dynamic tests used delta times of 1 msec. AUV
SIM2 needed to anproximate the graphical frame rate to get realistic motions and used a
delta time of 0.5 seconds in coﬁjuncdon with the Euler Method. AUV SIM I uses the
.systcm time to get an accurate delta time, usually between 0.1 and 0.15 seconds. It was
felt that even this 1nterval was too great for the Euler Method, so the Modified Euler Method
(Spiegal 1988) was adopted. In the modlficd method, a predicted avcrage velocity, rather
than an initial velocity is uscd. The average velocity is caiculated based on the acceleration

at sample ume, and the equation now becomes:

pl = p0+v0- 8t+ (a0- (5:) )/2

The routine for calculating the new velocities and posmon changes is depicted in

Flgure6ll

computc“_velocities_ahd_positions,(auv)
Sub_ptr auv; '
{
int i;
static int dtr = 573; /* degree to radian conversion (SGI uses 10ths) */
for (i=0; i<6; i++) {
auv->dyn.vel[i] += auv->dyn.delta_t * auv'->dyn.acc[i];

auv->dyn.pos_change[i] =
((auv->dyn.delta_t * auv->dyn. vcl[x]) +
(auv->dyn.delta_t * auv->dyn.delta_t * .
“auv->dyn.acc{i} /2.0)) ; ~
if (i>2) auv->dyn.pos_change(i] *= dtr;.
} ‘ ‘
)

Figure 6.11 Velocity and Position Change Routine
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E. UPDATING THE AUV’S STATE

1. Create the incremental_H_matrix

The incremental positional changes are relative to the vehicle coordinate system,
and mhst be converted to the world coordinate system. By loading the incremental changes
into an incremental homogem;,ous transform matrix, we can take advantage of the IRIS 4D
transformation stack and the graphics library multmatrix() function to make the necesséry
transformations. The routine in Figure 6.12 creates the incremental H-matrix, again taking

advantage of the transformation stack and the graphics library functions rotate() and

getmarrix().
void gct__incremental__H__rr;au'i:;_fmm_posiﬁ(;n_changcs(auv)
Sub_ptrauv; ' . |
{
pushmatrix();
loadunit(); o ,
rotate(-(Angle)auv->dyn.pos_change(5], ‘y’); /* yaw */
rotate( (Angle)auv->dyn.pos_change[4], ‘x’); /* pitch */°
rotatc(-(Angle)auv->dyn.po‘s_change[3], ‘2"); /* roll */
getmatrix(auv->dyn.incremental_H_matrix);
popmatrix(); .
} o

Figurek.lz Transforming to World Coordinates

a. Rotation Order Matters

In Figure 6.12, notice that the yaw is applied first, and the roll is applied last.
Euler Angle Rotations are not cothmativc, therefore a starting axis must be chosen. The

order applied here is the standard crder for acronauiical applications, and most readily
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1987), and mos;t readily adapts to aircraft motions. This may be because rolls usually have

the highest Euler Angle rates, and yaws usually have the lowést rates. We do not wish to
have the rolls altered by‘ follow on rotations. Shoemake makes an argument for the use of
quaterr‘ons instead of Euler Angles for modeling transformations. With quaternions,
rotation order is not a factor. Although it is possible to convert between quatemidns and
matrices, Shoemake describes such a .proccss as “ill-defined”. The quatemion
representation for rotations is |
Rot (n,0)

where ti:e final orientation is a rotation of angle theta around a single axis n. (Fu 87). Thel
use of quaternions for the AUV flight simulation is a moot point in that the IRIS 4D

software and hardware is based on 4 x 4 transformation matrices.

b. Vehicle Coordinate System Alignment

Further examination of Figure 6.12 reveals that an AUV yaw occurs around

the vehicles “z” axis or the “y” axis on the world coordinate system. The difference in the

coordinate systems was described eaﬂier in the chapter, but is amplified here. The AUV
cbject was Idevcloped external to the NPS Simulator, when called in:o the program, the

vehicle’s positive “x” axis is aligned with the world coordinate system’s “-z” axis. The

. vehicles “y” axis is aligned with the world’s “x” axis. Although not necessary, it would be

less confusing to someone reviewing the code if the vehicle was rudesigned to be initially

aligned with the IRIS 4D world coordinate systern.
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2. Revising the Homogeneous Transform Matrix

The incremental transformation is converted to world coordinates in the routine

shown in Figure 6.13, where the vehicle's homogenous transformation matrix is updated.

void update_H_matrix_from_incremental_changes(auv)
Sub_ptr auv;
-
;Sushmanix();
loadunit();
muluna&ix(auv->dyn.H_mtrix); /* old rotations & translations */
mulunauix(auv->dyn.incmmenml_H_mauix)
translate(auv->dyn.pos_change[1],
-auv->dyn.pos_change{2],
-auv->dyn.pos_change{0]);
getmatrix(auv->H_matrix); /* new rotations & translations */
popmatrix();
}

Figure 6.13 Updating the Vehicle’s State

‘ Multmarrix() premultiplies the top of the stack by its argumém. with the new
value being place on the stack(Graphics Library 1988). By premultiplying the H-matrix by
the incre ental H-mﬁtrix, we have thé net effect of a vehicle rotating around its.own axis.
If we wers to reverse the order, the rotations would occur afoun,d the world éoordin:i:c .

system, often used when dimqily positioning objects on the screen using a virtual reality

. input device such as a spaceball.




3. Extracting Pitch, Roll, and Heading information

Unlike other grarhic simulators at NPS, we have incorporated vchicle translations
around all three axes, and have done so without ever tracking pitch, roll, or heading
information. The vehicle state was maintained using the viewing matrix, which was coired
the “H-matrix” and made part of the AUV structure. Why is it then néccssary to extract
pitch, roll, and heading infcrmation? The primary answer is to supply feedback via the user
interface in a format more readily assimilated by the user. A vehicle heading of 045 degrees
means more to a user than “H-matrix[0}[3] = .70'\ " (which incidently means that the vehicle
is either heading 045 degrees or 315 degrees). |

mving pitch, heading, and roll information readily available is helpful in other |
ways also. When using dyramic constraints, we may wish to superimpose a roll limitation

‘on our vehicle. Pitch and heading infoﬁmdon may be -hclpful when utilizing the bow
mounted sonar, and simulating contact within the sonar acquisition cone.

Pitch is limited to +/- 90 degrees whereas roll is limited to +/- 180 degrees and

| heading ranges from 0 to 360 degrees. Pitch can be calculated directly from one of two sine
values in the matrix. However, mll and heading, as previously po,in;cd out, may be

ambiguous. By utilizing the cosine information in the H-matrix diagonals, this ambiguity

can be resolved. The routine in Figure 6.14 shows the extracting process.




void extract hcadmg_pxtch and_roll_from_H_matrix(auv)

Sub __ptr auv;

{
auv->dyn.heading = -asin(auv->dyn.H_ matnx[2][0])"‘57 3
if (auv->dyn.H_matrix[2][2] < 0.0){
auv->dyn.heading = 189 - auv->dyn.heading;
} /* heading into “2” */
if (auv->dyn.heading < 0){
auv->dyn.heading += 360;
} /* limit heading to 360 degrees */ _
auv->dyn.pitch = -asin(auv->dyn.H_matrix[2](1])*57.3 '
auv->dyn.roll = asin(auv->dyn.H matrix[O][l])*S?.B;
if (auv->dyn.H_matrix{1}{1]>0.0){
auv->dyn.roll = 180 - auv->dyn.roll; /* upside down ‘l
) _
auv->dyn.roll += 180; /* starting aiong zaxis*/
if (auy->dyn.rbll>180) {
auv->dyn.roll = auv->dyn.roll - 360;
} /* limit roll to 360 degrees */
if (auv->dyn.rolli<(-180)) {
auv->dyn.roll = 360 + auv->dyn.roll;
} /* limit roll to +/- 180 degrees */

} /* end extract heading ... */

Figure 6.14 Pitch, Roll, & Yaw
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F. DYNAMICS AND REAL TIME APPLICATIONS
1. Dynamics is not the Limiting Factor
With the computational power of today’s high performance graphic workstations,
dynamics as a means of simulating motion is much more achievable. While streamlining
the equations is important, e.g. lookup tables instead of trigometric function calls,

multiplication instead of exponential functions, the extra overhead was remarkably low.

- Two modes are available with the NPS AUV 111 Simulator, non-dynamic and dynamic.

a. Dynamic and Non-dynamic Modes |

In the non-dynamic mode, all the vehicle transformations occur as a result of

' direct spaceball or mouse panel inputs to the Homogeneous Transform Matrix. In the’
dynamic mbdc. the inputs are Scnt to the function dynamics(). This function computcs the
cross flow viscosity, solves equations of motion for six axes, performs a matrix
multiplication to produce an acceleration vector, performs an Euler integration on the
accelerations and a modified Euler integration on 'thc velocities, applies the inémmcnial
position changes to the incremental_H_matrix which premultiplies the vehicle H_maq'ix to

obtain the revised vehicle state.

b. Dynamic Mode Benchmarks

Benchmarks were bbtaincd to compare thc'loéd that the dynamics package
had bn the system frame ratc.' In the swimming pool with Cockpit view, the frame rate was
16.2, with and without the dynimics package activated. With the AUV d‘is‘play‘ed along
| wuh the poo' the frame _raté was 7.7, ‘again. with or without, the dynamics package
activat'ed. thrca; color presentation, terrain resolutibn, and even panel interface display
had a negative effect on frame rate; the use of the dynamics package had none. My

conclusion is that, for this dynamics model, as long as the mathematics is kept outside the
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mesh drawing loop, dynamics is an effective way to model the AUV’s behavior in real

time.
‘2. Parallel Processing

In anticipation of a heavy system drain due to dynamic equation calculations, the
dynamics package was designed to take advan'tagc of the multiple processors of the IRIS
workstation. Using barriers, the six general equations can be solved simultaneously, halt
at the barrier until all equations are solved, the force & torque vector generated and

accelerations computed. The design is reflected in Figure 6.15."

velocities
OBTAIN VEHICLE - fin deflections
STATE - PMS
‘ . -matrix
Compute Viscous
/ Crossflow Drag \
Surge | Sway Heave Roll - Pitch Yaw

oy oy oy oy y

Solve for equations and forces /

Solve for velocities and positions
.y -
UPDATE VEHICLE ~ [=® 0
STATE

- Velocities '

Figure 6.15 Parallel Processing Diagram
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In addition to solving the equasions in parallel, on a higher level, the dynamics and
the grephics could be done in paralle! using a producer-consumer model. With the addition
of a duplicate H-matrix, the graphics package could lag one frame behind the dynamics
package. Although the speed of the dynamics package currently does not warrant the
overhead of parallel processing, incorporation of dynamic constraints and collision
detection could degrade performance to such a level that co-processing can become an

attractive alternative.

3. Addition of Dynamic Constraints

Dy‘namic constraint checking can be built on to the tail end of the dynamics
package. If the vehicle’s state fails to abide by the constraints, the variables within the
eqrations of motion could be temporarily changed, and the vehicle’s ‘state sent back
through the dynamics package. When the constraints are satisfied, controf retums to the

graphics package.
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VILI. NPS AUV SIMULATOR

A. USER INTERFACE

The User Interface was generated utilizing the’ NPS Panel Désigner (NPSPD)
(King, Prevatt 1990). NPSPD generates “C” code including a primary graphics control loop

‘where the user can place his/her routines. Since the NPS AUV III Simulator was alre~dy a

| working program, the incorporation of a NPSPD Interface had to be reversed engineered.

The NPS AUV Simulator, along with the NPS Material Editor, were th;: first programs to
incorporate NPSPD. In the (King, Prevatt) thesis, there is a chapter which describes how
the AUV simulator incorporatcﬂ NPSPD. The main points are covered here for
completeness. |

| The array of panels are contained in the pl;ogram viewer.c, as are some of the panel 4
actuators. As the list of panels grew, it was caSicm to track and modify if each group of panel
actuators were stored in separate files. The files are tied into viewer.c using “include”

preprocessor statements. For instance, all the actuators on the tape recorder panel are stored '

“in acuatqr.dir/recoi'dcr.act, although the recorder panel itself is stored in viewer.c. -

Whenv a ncw panel of actuators is generated, the global “MAX_PANELS" in
viewer.h must be incrcrﬁcnted by one. The array number assigned to the panel and actuator
arﬁy must be one higher than the most relccm panel addition. The coefficient panels have
the most actuators with 33, If any new pancl exceeds that amount, the MAX_ACTUATOR
globals in viewer.k must be adjusted. The jaath to the pa'nci library is in the Makeﬁ?e.

‘Whenever new panels are generated, the program must be relinked to the library.-




B. MASTER SELECTION PANEL

The Master Selection Panel, shown in Figuré 7.1, is composed of two subsections. The

push-button panel selections, and the viewing perspective panel.

:
usePnn :
| Dynanies

Inclination % 2 R ¥ < : V DR 3 !

Figure 7.1 Master Selection Panel

The viewing panel controls the “lat_itude”, “longitude”, and hcéd “twist” from which
the vehicle is viewed. There are two distance bars. The one on the left is for small
adjustments using the left mouse. Superfine adjustments are made using two mouse
buttons, the left and the center. The right bar is for making coarser adjustment such as

. getting a “satellite view” of the California Coastline.

The panei select panel primarily activates sﬁb-panels. as well as selects the
environment, bay or pool. “Cockpit View” enables the user to s"iew the cnvironm’cnt from -
anosc mounted camera. AUV Center the default sclcctlon, keeps the vehxcle in thc center
of the dxsplay, the observer “moves with the vehicle”. When deselected, the viewer looks
at where the vehicle was when the deselection was made.The vehicle can then actually be

flown out of the field of view.
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C. MOUSE PANEL '

Althoﬁgh manual control is primarily with the spaceball, adjustment to control . .
surfaces or RPM can be made via the mouse panel. This is useful not only when there is no :
§paceball with the workstation, but also when it is critical to activate one set of cont .:°
only, a very difficult accomplishment using the six degree of freedom spaceball. T:.= ..iouse

. panel is shown in Figure 7.2

Figure 7.2 Mouse Panel o :

Currently the Stern Planes can not be activated by the mouse as they are coupled to

.+ the bow planes. Rudder Limits are +/- 40 degrees, and RPM limit is 700. | -




D. PERFORMANCE PANEL

Figure 7.3 Performancé Panel '

The Performance Panel d.isplayls a partial vehicle state. The Speed is calibrated to be
in knots. The gauge limit on the RPM is 1000. The Depth meter indicates vehicle depth
while the Floor meter shows bottom clearance informations. Future cxpansioﬁ should
include a fin deflection meter for all 8 control surfaces, and an RPM dial for each of the six

thrusters.
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E. FRAMES PANEL

T TR

. Figure 7.4 Frame Panel

The Frames panel gives the workstation's_pc:fofmance in two ways. Delta Time is the

total time between swapburfers, and frame rate is the inverse, i.e., total frames per second.

The meters are single pen stnpchans and are located on the lower left portion of the screen.

f
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F. RECORDER PANEL

v The recorder panel provides the capability to record and replay scenarios.

- . Figure 7.5 Recorder Panel

The recording is made in the ASCII file “recording” which contains the initial vehicle
state followed by times, rpms and fin Aeﬂccﬁon whenever a changé of rpm on defclccti;m
occurred. When “Record” is-sglected, it erases the previous tape. Playbacks can occur as
‘many times as desired without erasing the tapé. External scripts may be played if they are

: loaded to the “rc'cbrd‘ing” file. The Tape Speed selection adjusts the speed of playback. Thc
Aux buttons are selectable, and available for programming in the auv_to_panel_interface.c

‘ package.




G. VELOCITIES PANEL » ‘ | :

The velocities panel shows accelerations and velocities for each of the six degrees of

freedom.

o Figure 7.6 Velocities Panel

This panel is utilized to monitor the.state: of the vehicle while running dynamic tests.
Comparisons with data obtained from in-pool testing should reveal whether or not the
vehicle is responding appropriately. 'The acceleration values are in feet/sec/sec, and the
velocity values are in feet/sec. To activate the panel, the Stn'pcharts button must be

activated followed by the Velocities button.




H. BOTTOM CONTOUR PANEL

\\\\\\\\\\\\\
i \*\

m-&in

N

N

L :
e

R

N S
RN
AR
N

e
\Q&\\R\\( W \\3\
.

Figure 7.7 Bottom Contour

The bottom contour chart shows a dual pen stripchart that plots both the submarine’s
"depth and the depth of the sea flour. The above éhan shows the vehicle in essentially a
terrain following‘modc. The meters on the ﬁght repeat the values tfxat are on the stripchart.

By default, the upper pen is red, and the lower pen is black. The actuator is located on the

upper right portion of the screen.
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Figure 7.8 Terrain Panel

The terrain panel allows variable terrain resolution selection, variable number of

resolution level selection, and density of the best resolution selection. The Grid button

“desclects filled mode. Clipping activates the culling algorithm to eliminate vertices outside

the ﬁ'e'ldlof view. Color selects elevation color coded data for display. The scale bar is non-

- fu’rictioﬁal but available for programmmg
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Figure 7.9 Normal Presentation




VIII. FUTURE DIRECTIONS

A. DYNAMIC CONSTRAINTS AND PARALLEL PROCESSING

Since the incorporation of dynamic constraint cheéking could require significant
overhead, parallel processing of the NPS AUV Sirﬂulator can be advantageous. Constraint
checking could cause the input parameters to the equatioi.s of motion to be continually
adjusted, and the equations resolved in a loop until the constraints are satisfied. Co-
proccssiné of the six equations can have a favorable effect. In addition, placing the graphics
routine and dynamics/constraints package in parallel can be beneficial #s well.

The vehicle broaching the surface can be emulared by adjusting the center of buoyancy
and/or the buoyancy vector. Normally the center of buoyancy is assumed to be at the center
of rotation, and the buoyancy is equal to the weight. | |

The proper rcspbnsc of a vehicle collision with the pooi wall or floor is dependent on -
what part of the vefxiclc rhakes contact, and the state of the vehicle at time of collision. A
single point force on mé vehicle will need to be factored into the equations until the
constraint is satisfied. | |

The effect of the vehicle running aground is similar to the pool scenario described
above, however, type of bottom, e.g., sand, rock, or silt, would need to be considered. |

Since the cquations producé approximations of the vehicle bcﬁavior. certain input
parameter values can potentially display unr;alistic or undesired behavior. For cxamp‘lc.' it

may be necessary (o sct a maximum positive and negative rpm on the main thrusters.
B. INCORPORATION OF PER”’HERAL PACKAGES
1. Controller

The contro er (autopilot) package needs to be incorporated. The control:lcr shouid

prbvide rpm and fin deflection information to the AUV based upon desired heading, pitch,
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and speed. Using sliding mode control, the bow planes will act independently of the stern
pianes. Future controller improvements include separate control mode for all eight
surfaces, and a hovering mode using the vertical and horizontal thruster.

2. - Navigator

The navigator will compute desired heading, pitch, and speed based upon

waypoint data (3D position and time on top). If drift is detected based upon doppler sonar

information, this should be included in the computation. If predicted current information is

available, that should be included in the “dead reckoning (DR)” process. The DR pos'ition

can be “fixed” using bottom contour information available in the environmental data base.
3. Mission Planner/Replann‘er

The mission planner would generate desired waypoints based upon the specific

mission of the submarine, e.g. bottom mapping, main countermeasures, special forces

support, etc.. The replanner would regenerate waypoints based upon newly available

. information, e.g. unplanned obstacles, vehicle emergency, enemy detection, revised

mission, etc..

C. TERRAIN

The VTRA needs to be cxpalndcd to include multiple data cells. éinéc VTRA suppon§
a grid database, such as thar available from DMA, subniaﬁne missions’'can be simulated
nearly hnywhcrc worldwide. Based on vchicic's speed, direction, and horizon, adjacent
grid cells wxll need to be u‘ansfcn§d from peripheral stbragc to primary storage
automatically. VTRA will need to be cnhanéqd to manage the data txm":sfcr,‘ énd terrain cell
management. | |

Elevation coded terrain coioring should be incorporated. The elevation dafé needs to

be checked and, if required, a new lighting modcl generated, for each vertex in the graphics
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pipeline. Texturing is a another alternative to displaying realistic terrain as demonstrated

on NPSNET, and should be incorporated. . »

D. AUV MODEL DRAWING

The AUVis curre.mly drawn using polygons and surfaces. By drawing the hull and fins
as meshes, vehicle appearance can be maintained while reducing the graphics pipeline load
as described earlier. With mesh drawing, an algorithm sir'nilar to VTIRA could be developed
to display the AUV at various resolution levels.The NPS Object File Format (OFF) is
currently being revised to incorporate articulated .objects.v Future redrawing of the vehicle
should be based upon the futurc. OFi: design. Colors should be carefully chosen so as to be
éofrxpatible with NTSC displays. RGB warm cblors (red, oraﬂgc, etc.) often get distorted
when converted to NT SC, an should be viewed prior to selcctio'n using the NPS Material

Editor (NPSME) (Anderson 1990).

E. CONCLUSIONS

The Variable Terrain Resolution Algorithm enables terrain grid databases, such as
DMA DTED, to be displayed with further horizons' and minimal loss of graphic display
speéd, while maintaining high resolution terrain near the observer. The dynamics of the
AUV can be modeled in real time. Hydrodynarﬁic coefficients can be adjusted on line fdr

a quick refinement of the vehiclc's,qufomxance characteristics. The' NPS AUV Simulator

- can enhance vehicle software developmént without actual in water trials. Dynamics can be

adapted to other NPS Simulators by incorporatinﬁ the rigid body dynamic model used in

the AUYV Simulator.
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