TNt

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

A PROTOTYPE SEMANTIC INTEGRITY FRONT END
EXPERT SYSTEM FOR A RELATIONAL DATABASE
by
George Joseph Salitsky

September, 1991
Thesis Advisor: Magdi N. Kamel

Approved for public release; distribution is unlimited

92-03927
TN

O

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION tb. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/OOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (it applicable) Naval Postgraduate School
37
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and 2IP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8¢c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program tlement NO Project No Task No Work unit Accession
Number
11. TITLE (Include Security Classification)
A PROTOTYPE SEMANTIC INTEGRITY FRONT END EXPERT SYSTEM FOR A RELATIONAL DATABASE
12 PERSONAL AUTHOR(S) Salitsky,George J.
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGE COUNT

Master’s Thesis From To 1991, September, 26 141
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or pasition of the Department of Defense or the U.S.
Government.

17. COSATICODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Database integrity, Front end expert system, Prototype expert system, Semantic integrity.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Information is a critical resource in today’s enterprises. Whether they ure industrial, comnmercial, educational, or military, these organizations
maintain an ever increasing amount of information in databases. Ensuring the accuracy of information in a database is paramount to the
organization that maintain these databuases. Many decisions are made from the information extract :d from the database, and incorrect data will
lead o incorrect decision making. This thesis examines the feasibility of using expe-t systems for enforcing semantic integrity constraints to
relational databases. To uccomplish this goal, the Lhesis develops a classification fur semantic integrity constraints, applies it to develop rules for
the Navy's Naval Aircraft Flight Record application, und builds a front end expert system to enforce these rules dynamically. The expert system
enforces integrity rules for all maintenance operationstUPDATE, INSERT, and DELETE.)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED UNLIMITED D SAME AS REPOR] m)lnc USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22¢ OFFICE SYMBOL
Magdi N. Kamel 14081646-2494 AS/KA
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsulete Unclassified

o

Approved for public release; distribution is unlimited.

A Prototype Semantic Integrity
Front End Expert System
for a Relational Database

by

George J. Salitsky
Lieutenant, United States Navy
B.S., University of Scranton

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

Author: %ﬂp /)U%

"~ @eorde J. Salitsky/

Approved by:
Magdi N. el, Thesis Advisor

H.L.W

Hemant Bhargava, Second Reader

ol

David R. Whipple, Chairman
Department of Administrative Scienc

i

ABSTRACT

Information is a critical resource in today’s enterprises.
Whether they are industrial, commerrial, educational, or
military, these organizations maintain an ever increasing
amount of information in databases. Ensuring the accuracy of
information in a database is paramount to the organizations
that maintain these databases. Many decisions are made from
the information extracted from the database, and incorrect
data will lead to incorrect decision making.

This thesis examines the feasibility of using expert
systems for enforcing semantic integrity constraints to
relational databases. To accomplish this goal, the thesis
develops a classification for semantic integrity constraints,
applies it to develop rules for the Navy’s Naval Aircraft
Flight Record application, and builds a front end expert
system to enforce these rules dynamically. The expert system

enforces integrity rules for all maintenance operations

(UPDATE, INSERT, and DELETE.)

Accesion For l

NTIS CRA&I o

DTIC TAB r

L U announced I
£ Justfication
1\55 : ———
. \,’7 BY]

o Di-t ibution

e e

Availablity Codes

e o

b e - o

mey antjor
Dist Spezial
[

A—li |

DU AP VPRSPPI Y

iii

I.

II.

TABLE OF CONTENTS

INTRODUCTION . . . & ¢ & ¢ o o« « o o o o o o o
A, BACKGROUND ¢ v +« ¢« o ¢ o o o o« o @
B. OBJECTIVES ¢ « ¢« o ¢« « « o o o o &
C. RESEARCH QUESTIONS . . .« .« . ¢« ¢« « « o &« + o
D. SCOPE « « v v ¢« &« o o « « o &

E. ORGANIZATION OF THE STUDY

CLASSIFICATION OF INTEGRITY CONSTRAINTS

A.

m o O W

III.

Domain Integrity Constraints
Column Integrity Constraints
Entity Integrity Constraints
Referential Integrity Constraints
User Defined Integrity Constraints
NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE
DESIGN e e e e e e e e e e e e e e e e e
BACKGROUND ¢ & ¢ &« ¢ « &+ o o« o o .
AIRCRAFT FLIGHT RECORD OBJECTS
1. ORGANIZATION Object =« « + & v = « v « « .
2. AIRCRAFT Object« « & « « o « « o« &
3. FLIGHT Object . . . « « « « « « « . .
4., AIRCREW Object
5. AIRCREW FLIGHT Object

6. LOGISTICS Object

iv

10
11
12

16
16
20
21
21
21
22
22
23

7. DEPARTURE Object .

8. ARRIVAL Object

. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA .

1. ORGANIZATION Relation

FLIGHT Relation

S WwN

o O

7. DEPARTURE Relation
8. ARRIVAL Relation

. INTEGRITY CONSTRAINTS
1. Domain Integrity Constraints
2. Column Integrity Constraints
3. Entity Integrity Constraints
4. Referential Integrity Constraints
5. User Defined Integrity Constraints

a. Intra-Attribute Constraints

b. Intra-Relation Constraints

. AIRCRAFT Relation

. AIRCREW Relation
AIRCREW FLIGHT Relation

LOGISTICS Relation

.

.

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END

A,

B.

SYSTEM e e e e
INFERENCE ENGINE

APPLICATION DESIGN

1. Append
2. Update
3. Delete

EXPERT

23
23
24
24
24
25
26
26
27
28
28

29

29
29
30
30
30
30
31

33
33
35
36
37
38

V. CONCLUSIONS AND RECOMMENDATIONS 40
A. CONCLUSIONS+ & v ¢« v v & o o« o o o o o W 40
B. RECOMMENDATIONS C e e e e e e e e e e e e e 41
APPENDIX A: NAVAL AIRCRAFT FLIGHT RECORD OBJECT
DIAGRAMS ¢« ¢ ¢ ¢« v v & &« &« « « « « 43
APPENDIX B: NAVAL AIRCRAFT FLIGHT RECORD OBJECT
SPECIFICATIONS« . +« ¢« « &« « + « . 46
APPENDIX C: NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL
DIAGRAMS « ¢« « & « « « « « o« « . 48

APPENDIX D: SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD

EXPERT SYSTEM « « « « . « . . b1
APPENDIX E: NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE . . 69
LIST OF REFERENCES . . . 132
BIBLIOGRAPHY « ¢ v ¢ o o« « 133
INITIAL DISTRIFUTION LIST « ¢« « « « « « « » . 134

vi

I. INTRODUCTION

A. BACKGROUND

Semantic integrity is concerned with ensuring that the
database is always in a correct state even though some users
or application programs may attempt to change it to an
incorrect state. Enforcing semantic integrity means shielding
the database against invalid UPDATES, INSERTS, and DELETIONS.
Traditionally, most integrity <checks are performed by
application programs or by periodic auditing of the database.
Problems of relying on application programs for integrity
checks include:

* Application programs that modify the datakase could
corrupt the whole database. That is, integrity checking is
likely to be incomplete because the application programmer
may not be aware of the semantics of the complete

database.

* The criteria for integrity are buried in procedures and
are therefore hard to understand and control.

* Code to enforce the same integrity constraints occurs in
any number of applications; therefore. inconsistencies
could be introduced easily.

Problems of these types could be detected through the use
of periodic auditing. Periodic auditing, on the other hand,
causes problems because of the time lag in detecting errors.

These problems include:

* There is considerable difficulty in tracing the source of
an error and correcting it.

* The incorrect data may have been used to propagate other
errors within the database and ultimately lead to
incorrect decisions based on incorrect data.

Thus the prevention of inaccurate data into the database
rather than the repair of the database once the damage has
occurred is the preferred method. The enforcement of these
integrity rules should be the responsibility of the DBMS, but
DBMS vendors have failed to provide adequate integrity
features to ensure accurate data within the database. [Ref. 1:

p.109]

B. OBJECTIVES

This thesis suggests the use of a front—end expert system
to enforce semantic integrity features. This expert system
would oversee the update, insertion, and deletion operations,
monitoring for violations of integrity rules. Once a violation
had been identified, the system would take an appropriate
action. This appropriate action would mean rejecting the
operation and reporting the violation.

To understand how this will be accomplished, consider
Figure 1. The expert system has a set of integrity rules that
define what errors will be checked. These rules are stored in
a knowledge base, which the inference engine of the expert
system uses to enforce database integrity. The major advantage
of this approach is that the validation of all data is handled

by the expert system, instead of being left to the user or the

application program. Another important advantage is that all
the integrity rules are 1located in the expert system’s
knowledge base. With the knowledge base acting as a central
library, each integrity rule is easily queried and can be

changed as needed.

Figure 1.1 Front End Expert System

C. RESEARCH QUESTIONS

The Navy, through the use of the Naval Aircraft Flight
Record, collects data for the Individual Flight Activity
Reporting System(IFARS). The IFARS 1is a data bank for
information that the Navy uses for safety analysis, budget
justification of hours flown, and pilot compliance of
established minimum standards. The accurate collection of

data enables Naval Aviation to justify its existence while

providing the means to make it inherently less dangerous. The
following research questions will be addressed:
* What are the integrity constraints to be enforced by a
front end expert system based on the Navy’s Naval Aircraft
Flight Record, OPNAV 3710/4 and how will these constraints
be classified?
* What is the feasibility of using an expert system as a
front end in developing and enforcing these integrity
constraints in a relational database application such as
the Navy’s Naval Aircraft Flight Record?
D. SCOPE

This thesis develops a semantic integrity front end expert
system that monitors maintenance operations to a relational
database developed for the Navy’s Naval Aircraft Flight
Record. It will address the issue of classification of
integrity constraints to provide a structure for the knowledge
base. It will also design a relational database representative
of the way the user perceives the data on the Naval Aircraft
Flight Record. Lastly it will design and implement a prototype
front end expert system to enforce the integrity constraints
developed, and maintain semantic integrity on the database.
This prototype will be limited in its’ ability to capture all
data required by the Naval Aircraft Flight Record. It was not
feasible to include all data or integrity constraints related

to the data in the Naval Aircraft Flight Record due to the

time constraint on this thesis.

E. ORGANIZATION OF THE STUDY

The thesis is organized as follows. Chapter II provides a
classification of the integrity constraints that need to be
incorporated into the expert system. Chapter III addresses the
design of the relational database for the Naval Aircraft
Flight Record application and describes the integrity rules
that need to be enforced for this application. Chapter 1V
describes the design and construction of the front end expert
system. Chapter V presents the conclusions of the research, as
well as the benefits, limitations, and weaknesses of using a

front end expert system.

II. CLASSIFICATION OF INTEGRITY CONSTRAINTS

An important goal of any database system is to model the
real world :ccurately, and in a manner consistent with the
user’s perception of the data. The relational database model
is based on the abstraction that data is stored in two-
dimensional tables called relations. Each row in the table
represents a tuple and each column represents an attribute.
The entire table is equivalent to a file with all the
properties of that relation. One of the fundamental principles
of the relational database model is that relationships among
distinct relations are captured through common values. Certain
restrictions must be imposed on these relations to insure the
integrity of the data within the database and allow for
meaningful comparisons. The following is a list of integrity
constraints that must be incorporated into the relational
database model to guarantee these meaningful comparisons [Ref.
2].

Domain Integrity Constraints
Column Integrity Constraints
Entity Integrity Constraints

Referential Integrity Constraints
User-Defined Integrity Constraints

Each type of constraint is detailed in the following sections.

A. Domain Integrity Constraints
The domain is the fundamental concept of the relational
database model. The domain is the set of all possible values
an attribute can have. It includes a physical description of:
* the data type

* range of values permitted for all columns within that
domain

* allowable comparison operators (e.g., greater than (>)
and less than (<))
and a semantic description (the function or purpose of the
variable) . A pair of values can be meaningfully compared, if
and only if these values are drawn from a common domain.

Consider the Naval Aircraft Flight Record in Figure 2.1.

DOC# Document Number

SIDE# Aircraft Side Number

EXCD Exception Code

BUNO# Aircraft Serial Number

ORG Organization Code

MSN1 Mission Code

HRS1 Mission Hours

TOTFLT Total Flights

ENG1 Engine 1 Hours

ENG2 Engine 2 Hours

ENG3 Engine 3 Hours

ENG4 Engine 4 Hours
DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENGl1 ENG2 ENG3 ENG4
001 C 052 152942 VvP5 1A2 10.2 01 6.4 10.2 10.2 8.4

Figure 2.1 Domain Integrity Constraint

If both SIDE# and TOTFLT were declared to be numeric data
type, a query to list all aircraft by SIDE#, where TOTFLT is
greater than SIDE# would be a valid query. A query of this

type would produce as much meaningful information as comparing

apples to oranges. Enforcing domain constraints ensures that

two fields being compared not only have the same data types
but also are semantically comparable. This feature safeguards
users from meaningless information which could result from
comparisons of values from different domains. Although special
cases do arise that require the comparison of different
domains, these should be exceptions and handled as such.

The use of domain constraints results in an integrated
relational database[Ref. 2:p.45]. An advantage of this
integration is logical value-comparisons. As can be imagined,
the domain concept is fundamental to the support of each of
the other integrity constraints that are mentioned. Domain
constraints are what hold the relational database together and
allow it to model the real world accurately and in conjunction
with the user’s way of thinking.

Today’s DBMSs unfortunately do not support the domain
concept. What they do support is basic data types(e.g.,
character, integer, float, calendar date, and clock times) and

the ability to define certain ranges on these data types.

B. Column Integrity Constraints

Column integrity constraints are a natural extension of
the domain concept. If the relational database supports the
domain concept, then it should be capable of declaring in
which domain the column belongs(inheriting the physical and

semantic constraints associated with that domain), and any

additional constraints that are to apply to the columns. Each
column name then becomes a combination of a role name and a
domain name, where the role name designates the purpose of the
column’s use in a specified domain. The advantages are as
follows:

* The description of every column that belongs to a given
domain need only be declared once in the domain
declaration.

* Because a given domain need only be declared once, the
valid state of the database is ensured in future updates
to integrity constraints.

* Support for ensuring database values are semantically
comparable by checking to see if the columns belong to a
common domain.

* Column integrity constraints are facilitated.

The 1last advantage is very important. If the relational
database supports the domain concept, it has the ability to
detect column integrity violations. Therefore, users can
depend on the relational database to determine whether values
in two different columns are semantically comparable.

Column integrity constraints may include the following:

* An added range constraint that provides a more confined
range than in the domain declaration

* If missing values are allowed within a column
e Whether values must be distinct from each other within the
column (primary keys)
Consider once again the Naval Aircraft Flight Record in Figure
2.1. HRS1, ENG1l, ENG2, ENG3, and ENG4 belong to the same

domain called Hours. The domain data type is a float type with

one decimal place. The range of values allowed is only
positive. Negative values are not feasible. The column
constraints for both HRS1 and ENG# are more restricted in that
the range of values allowed is only between 00.1 to 72.0.
Missing values are not allowed within the columns as long as
the Exception Code is not X. ENG# value must be equal to or
less than HRS1l. This condition is specified to allow for
engines that are shut down during a flight. Although some of
these constraints within the example deal with other classes
of integrity constraints, the basic idea of column integrity

can be seen.

C. Entity Integrity Constraints

In order to understand Entity Integrity and Referential
Integrity, it is important to discuss primary and foreign
keys. Each row of a particular table in a relational database
contains a column which contains primary-key values that
uniquely identify and distinguish that row from every other
row in that table. The primary-key can be composite and formed
from more than one column. Everywhere else in the database
that there is a need to refer to that unique row, the same
value from the same domain is used but is referred to as a
foreign-key value. The column that the foreign-key value is
taken from is called the foreign key.

Entity Integrity implies that no component of a primary

key is allowed to have a missing value. The primary-key in the

10

relational database model is a compulsory feature. An example
of this is shown in Figure 2.2. The primary-key Document
Number is missing from both records which is a violation of
the Entity Integrity rule since it creates unidentified
objects within the database. From Figure 2.3 we can see that
duplicate primary-key values are prohibited, because of
basically the same consequences (loss of identity).

Also, no component of a foreign key is allowed to be
missing and inapplicable as opposed to missing and applicable.
This case requires additional attention in that Side Number

must adhere to referential integrity.

DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
C 052 152942 vP5 1A2 10.2 01 6.4 10.2 10.2 10.2
C 052 152942 VPS5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.2 Entity Integrity Constraint (Missing)

DOC EXCD SIDE BUNO ORG MSN1l HRS1 TOTFLT ENGl ENG2 ENG3 ENG4
00r C 052 152942 vp5 1A2 10.2 01 6.4 10.2 10.2 10.2
001 C 052 152942 VP5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.3 Entity Integrity Constraint (Duplicate)

D. Referential Integrity Constraints

For each distinct foreign-key value in a relational
database, there must exist in the database an equal value of
a primary key from the same domain. If the foreign key is
composite, those components that are themselves foreign keys

must exist in the database as components of at least one

11

primary-key value drawn from the same domain. Consider the
relational diagram in Figure 2.4. Aircraft Side Number is the
primary-key value of the AIRCRAFT relation. Aircraft Side
Number is also a foreign-key in the FLIGHT relation. From the
relational diagram, FLIGHT must have one and only one Aircraft
Side Number per document number while the relation AIRCRAFT

can have one or more FLIGHTs associated with an Aircraft Side

Number.

AIRCRAFT

AIRCRAFT SIDE NUMBER | ORGANIZATION CODE¥*

®

FLIGHT \\

DOCUMENT NUMBER AIRCRAFT SIDE NUMBER*|

Figure 2.4 Relational Diagram

The entry of Document Number O0003AAA into the Flight
relation in Figure 2.5 violates referential integrity because
the Side Number 045 is not a primary-key in the Aircraft
relation. Referential integrity can be thought of as inclusion
dependency in that the foreign key must be a subset of a
database in which it is the primary key.

E. User Defined Integrity Constraints
Domain, column, entity, and referential integrity are the

building blocks of the relational database. User defined

12

integrity constraints are constraints that are peculiar to the
end-user or company. These constraints allow organization
practices and policy, or governmental legislation to be
reflected in the database delineated by the user. Consider the

Naval Aircraft Flight Record in Figure 2.6. The exception code

AIRCRAFT RELATION

SIDE# Aircraft Side Number
ORG Organization Code
SIDE# ORG
051 VP5
052 VP5
053 VP5
FLIGHT RELATION
DOCNUM Document Number
SIDE# Ajircraft Side Number
DOCNUM SIDE#
0001aAA 052
0002aAA 051
0003AAA 045

Figure 2.5 Referential Integrity Constraint

DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENG1l ENG2 ENG3 ENG4
001 X 052 152942 vP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2.6 User Defined Integrity Constraint 1

X is used to document a canceled flight. A canceled flight is
one for which no flight time is obtained. Document 001 has
violated a user defined integrity rule because it has allowed
flight time to be documented for a canceled flight.

User defined constraints such as this, require that UPDATE

operations have an ordered sequence of events in order to

13

comply with all the integrity constraints defined for the
database. Examine the Naval Aircraft Flight Record in Figure
2.7. In an UPDATE operation on Document 001 the Exception Code
was changed to X. This resulted in the record change in the
database demonstrated in Figure 2.8. Not only did all flight
time nead to be removed, the Mission Code needed to be changed
to reflect the user defined constraint that the 2nd position
of the Mission Code be N or the character O if the Exception

Code is an X.

DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENGl1 ENG2 ENG3 ENG4
001 X 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2.7 User Defined Integ:iity Constraint 2

DOC EXCD SIDE BUNO ORG MSN1 HRS1 TOTFLT ENG1l ENG2 ENG3 ENG4
001 X 052 152942 VP5 1N2

Figure 2.8 User Defined Integrity Constraint 3

The intent of this chapter has been to develop the
framework for the expert system. Classifying the integrity
constraints allows for the building of rules according to
these constraints. In order for the expert system to function
properly, the integrity constraints must be transparent to the
user so that there is no reliance on voluntary action by the
user to maintain integrity within the database. In regard to
transparency, attempted wviolations of the integrity

constraints must be denied with an appropriate reason for

14

denial conveyed to the user. Also, any operations on the
database must be atomic in the sense that each operation must
be completed satisfactorily (satisfying all integrity

constraints) or denied and rolled back to its original state.

15

III. NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE DESIGN

As discussed in Chapter I, the thrust of this thesis is
the feasibility of using a front end expert system to enforce
semantic integrity constraints. This chapter discusses the
development of a relational database model and its associated
semantic integrity rules that will serve as the case study for

the front end expert system.

A. BACKGROUND

The relational database model developed in this chapter is
based on the Naval Aircraft Flight Record (OPNAV 3710/4), shown
in Figure 3.1. This record serves as the sole source of all
naval aircraft flight data and is applicable in specific areas
to aircraft simulators. The OPNAV 3710/4 record is prepared
for each attempt at flight of naval aircraft or training
evolution for simulators. The types of data collected are:

* A statistical description of the flight pertaining to the
aircraft and crew members

A record of all logistic actions performed during the
flight

A record of weapons proficiency

A record of training areas utilized and other
miscellaneous data

The Operations Department within the aircraft squadron is

responsible for verifying the accuracy and completeness of

16

S1E~(72-6861 04D "S°Ne

GL0L-L00~4TL010 W8

(re-2 "20y) /0128 AYNSO

LERIR LIRS S 1 1 1 | 1
| o w = » = ol wf wl] =
P " D r] » . 3 0 v
SAVNO/BUNLVIDIS WOID HOR ¥0 IV » 1PBA WIO VREVES YN}]
o || 1 | LR BRL 1 1 LI LILI | 1 LI B TTTT T LB . LB R IREREREE g
oal T 1 1 TT] 1 T T T LS ri ~=~ LR -4IJ LR hd TTTTUU] * TVYTHITT [
o8 ”» o L ” " " » » [1] - (o3 ” o '] olinjwu] e
“ TVIv0 ﬂ;jﬂﬂmﬂjﬂlrﬂﬂ Snhu] € 180 0 T) lﬂo‘lﬁ'ﬂhﬁ; v) Toon T Vi Gowis - .!h.. | Vaurv Seat sl
fanl £ VAVE D8 L VivE D ¢ VAYO AWM T VAV ANRANDO VAVO AWANMRE V90 VIUY DML N
104 JdAL ONOIBN) ¥WLVO ADNDBIDISONE SNOLVIM
a4 e s, T EYTIN o1 e 1 vl T 1 T 11 LRI
T ~|_\ T _ \. \.. LUy ¥ F 17 T '
* - .
ﬂ 1—H _4 _ — - _ - — — __\4 4%— WN — - h_\— 4 ” ¢ “ __ - : —1“ LI “J_ 1
Ly s ' . . 4 Ly S E
TTTT mms _J.: _‘ gt w4N\ T _ EEeEmEEEREN '
0 O By ,.: 7
_m:j 4 AARE AN RAAAN AN RANRLS LN LN SN SN 65001 RN RARN AR
44 g Py ARSI 0
T T T T T T .-\\Tﬂ_ﬁfﬂk_{._ = _ ausmassmennesl
» . B
. [T ITT q _ _ \H [11 Do mars|
rn] B’ \<\ 7’ W\\ \1‘1* 11\1 -.. R s | TTT — TV ¥ T 1 1 T
: " [.
T1 7 S 1 T]
Tﬂ~1-—.#——b~.4--—_ ﬂ~q—ﬂ-——1-j4~lﬂ_ o |] . 1 1 i1)
m ¢ 1 LR _14 ﬂ LI | L] T
. }, "/ = - o] aw m N
!____ T 4_4_ LI __q_11 q___-A_._ “1 TTT1FP VT
i Ninin " [-» " 4t \-I-.Jﬂh o] ..-w Z (130)
:.ihu P] e | m s] N S| e 3] e T wod | me [e hifien
- s e v € e & e = st R a <\\ IAGEREAEATAS
Viva OWNO3 V1Y uN1w0490 GVOAVY SIRmMNOD Avis0 \\ " - Sl
(44 DaALOUODBY — BAINNY ‘B4 BaAL OWODIV— LNVERO) VLIVO §DILSID0T
a4 | | Ty 11 1 i 1 1 ! LI 71 LR 30 B LR B 1 e 1 TTHP 1T UTET 1] g
T» L LI LI 1 1 1 1 i]! | LI ML e 1 LR o1 o 1 bl Tirrrtvrnrtd T 0
pa] T 1 17 LIl 1 1 1 IR IR T 7 T bl | e 1 L T 1 LR T 11T 1T 7117101 L8 0
Paf [1 i LI T ! ¥ 14 H 1T Y| T1 e 1 e 1 L | 0 Ll | M B Y1 U 1 T 1011 ¥ 0
2 T 1 TT 111 1 T T LI T LR LD | *T 1 °1 T b O TT T 1117171 T g
ZRRBRAREREREEREEEL Ty vy rrrsi-r{-r[(°r{- v TT T 111t T g
| L 1 T LI ° e 1 T o1 i =T TTTYTT T Lf O
) o 9] [3 " [- 48] [0 K.
¥y fnVa] on ' [AV) 162 100 > ‘ ' :
L) 1 -“ [DUy 4O —u Is - - M-w -Lf :
(0L = BOAL CUODIN WO V'O = BOOD JAB # 134 BeAL ONOII) VAVO MBIUDUIY
o S— - m——) (— T T [e e Tl B B [
L | L | L | * &« T 1T TTTTTT I L . 1 T 1 s T 1 LR BRI Frrty LI
. [ol wl o o " 3 -) [3 n Ny
— — J0V¢ (82 Baas OWOIWNI VAVQ LIVEIUIY

QHOO3Y 1HOINY L4VHOUIY TYAYN

SNJSCTT ©ON

FIGURE 3.1 Naval Aircraft Flight Record (OPNAV3710/4)

17

naval aircraft flight records submitted for data processing as
well as verifying the daily audit reports, and coordinating
the correction of errors with the maintenance analyst. The
Maintenance Analyst 1is the NAVFLIRS coordinator who is
responsible for accomplishing the daily submission of
completed naval aircraft flight records for processing,
distributing daily audit and monthly reports to the operations
and maintenance departments, and coordinating error
corrections with operation and maintenance control. Completed
naval aircraft flight records are then forwarded to the Naval
Safety Center (NAVSAFCEN) for processing. A Monthly Individual
Flight Activity Report (MIFAR), shown in Figure 3.2, is
produced by the NAVFLIRS system and forwarded to the aviator
by NAVSAFCEN. The MIFAR contains all individual activity for
that month, excluding those records appearing on the error
reports processed by NAVSAFCEN. This includes a summarization
by aircraft bureau number and by the flight times (First Pilot
Time (FPT), Co-Pilot Time(CPT), and Special Crew Time (SCT)),
including instrument (Actual Instrument Time (ACT) and
Simulated Instrument Time(SIM)), and night times for that
month. The MIFAR also contains a weapons proficiency summary,
a miscellaneous data section, and a fiscal year to date
summary indicating what is on record in the NAVFLIRS system.
In addition to producing the MIFAR, the NAVSAFCEN is the
collection and maintenance activity for the IFARS data bank.

The IFARS is the primary source of individual flight data,

18

(77] o% €8s wvioL

901 got CGBBA
co g rae 306V 04 STOOO0D NOBW LHDIN ons s CERIALINI WIV-OLARY
IHDIN i8N M 031 e VAVO SNCINY TEO lssss WOOS SN AHBATE0 3WAL
oA VIWINE UVAA WO Ssevevm emmVAVE ADNSIOLIOY SNOSYIN s
€6 ec 93 6°C o°22 IL LRIV WL0L
[2 4 L 4 .
(2] e 02 -2 JINM 8011 JINN 0068 (L9 GESA [29v55
[€2 9¢€ o’y 276 L]
t 9 s$°1 272 '3 B At] I SICT JINW OCL0 429 IMSv 211191
] T 4 ey o't o2 'y 62 JINN So10 ININ Cvi2 TS29 Sy 211191
1 112 2 vy 2t t-2 3NIN 0821 JINN €90 ($29 My 21119
£°C £t e°L [2 B e 9] .
t92 ¢ [S | ot JINM CLIT JINY 0068 9329 3MSu 11119)
11 2 4 0°y e v'e 6° L3 4 JINN @892 JINN 0002 T329 NSy tl1i9t
t £ t 4 &% 2t et §°2 DINW #LZT JINW ETE1 €5TY 3SY 1111
2 9 € ot [4 JINX O£ JINN S0t 1529 Sy 111191
1t 2%t s 11 2t JINM S1TT JINN SORE €939 MSy 1IN
QuE GN2 1ST N0 A FI N LI N L NLINJL NINLILNLN 1 3 HisS 1o 128 162 4dd QD AWMY ANWY ¢30 930 3190 D3 onNrgl
3000 9N¥L oS M Hiv QUE GN2 AST Mav GQNE ONZ2 4ST 31N 18N1 SIMIL L9 X3 Oudl ii OUdl 3wl
] 200SIHIOUGATUSE 00 aSONIONY Ieeos
1 1JAS $-0 'I30UWD 6£920C1L0 INSS [:iNI ANt IMUN
v 19u0

99 035

Figure 3.2 Monthly Individual Flight Activity Report

19

including those flights flown in authorized simulators. The
reporting vehicle for IFARS data is the Naval Aircraft Flight
Record OPNAV 3710/4. The IFARS data bank provides valuable
exposure data for flight safety analysis and also provides
data for other uses such as budget Jjustification, past and
future program evaluation, and pilot <compliance with
established minimum standards. Commander of Naval Military
Personnel Command (COMNAVMILPERSCOM) annually convenes a flight
board to review pilot flight activity by looking at the IFARS
data bank against the annual flying requirements as set forth
in OPNAVINST 3710. Each year, the Naval Safety Center mails to
reporting individuals their flight data report for the
previous fiscal year. IFARS data is applicable to naval
aviators, student naval aviators, naval flight officers,
aviation pilots flying naval aircraft, naval flight surgeons,
and aerospace physiologists/psychologists in a DIFOPS (duty in
a flying status for an officer involving operational or
training flights) or DIFDEN(duty in a flying status for an
officer not involving flying) status on active duty or
participating in the Navy or Marine reserve program. [Ref.

3:pp.10(1-4)]

B. AIRCRAFT FLIGHT RECORD OBJECTS
In order to develop a relational schema for the Naval
Flight Data application, a series of objects were developed to

capture the data requirements for the Naval Aircraft Flight

20

Record, OPNAV 3710/4. An object is a named collection of
properties that sufficiently describes an entity in the user’s
work environment [Ref. 4:p.90]. The objects developed for this
application include: ORGANIZATION, AIRCRAFT, AIRCREW, FLIGHT,
AIRCREW-FLIGHT, LOGISTICS, ARRIVAL, DEPARTURE. In the
following sections, each object is described in more detail.
The complete Object Diagrams are shown in Appendix A.
1. ORGANIZATION Object
This object represents a generic naval aircraft
squadron. It is identified by an Organization Code and
includes properties such as Data Processing Code, Organization
Short Name, Support Code, Departure Time Zone, Departure IACO,
Cats/Jato, Airlift Mission, Payload Configuration Data, and
Training Codes. Typically an organization will have several
aircraft.
2. AIRCRAFT Object
This compound object represents a generic naval
aircraft. It can be identified by the Aircraft Side Number or
Buno/Serial Number and includes properties such as Type
Equipment Code, and Number of Engines. Typically an aircraft
is assigned to exactly one organization and is used for many
flights.
3. FLIGHT Object
This compound object represents a generic naval

aircraft flight. It is identified by the Document Number and

21

includes properties such as Exception Code, Total Flights,
Ship/Field Operations Code, Catapult/Jato Launches, Airlift
Mission Number, Number of Hoists, and Remarks. Mission Code,
Mission Hours, Engine Number and Engine Hours are multi-valued
properties and can contain more than single values. A flight
can only involve one aircraft but may typically involve many
aircrew members while carrying out many logistic missions.
4. AIRCREW Object

This object represents a generic naval aircrew member.
It is identified by the Social Security Number and includes
properties such as Last Name, First Initial, Service, Grade,
Organization, Natops Qualification Expiration Date, Medical
Expiration Date, Instrument Qualification Expiration Date,
Water Qualification Expiration Date, Physiology Qualification
Expiration Date, Assigned Syllabus, Syllabus Status Code,
Aircrew Status Code, and Exception Code. Typically an aircrew
member will be involved in many aircrew flights.

5. AIRCREW FLIGHT Object

This association object represents a generic naval
aircrew flight. It is identified by the combination of
properties, Document Number and Social Security Number. The
justification for making AIRCREW FLIGHT an association object
instead of a compound object stems from the fact that AIRCREW
FLIGHT is perceived as an independent object. Independent,

because it contains non-key data and documents a relation

22

between FLIGHT and AIRCREW. Its properties include First Pilot
Time, Co-Pilot Time, Special Crew Time, Actual Instrument
Time, Simulated Instrument Time, and Night Time. Multi-valued
properties include Type Landings, Number Landings, Type
Approach, Number Approaches, Training Code, Training Area,
Training Hours, Ordnance Code, Delivery Code, Runs, Score,
Miscellaneous Data Code and Miscellaneous Data.
6. LOGISTICS Object

This object represents a generic naval logistic flight
leg. It is a composite object that is identified by the
composite key of Document Number and Leg Number and contains
the property Time Zone. Each logistic leg will be associated
with a flight and have one arrival and departure.

7. DEPARTURE Object

This composite object represents a generic naval
flight departure leg. It is identified by Document Number, Leg
Number, and Departure Time. Its properties include Departure
Date, Departure ICAQO, Confirmed Payload Cargo, Opportune
Payload Cargo, Maximum Passenger, and Maximum Cargo. Delay
Departure Code, Delay Departure Hours, Passenger Priority, and
Opportune Payload Code are multi-valued properties. Each

departure will be associated with one logistic leg.

8. ARRIVAL Object
This composite object represents a generic naval

flight arrival leg. It is identified by Document Number, Leg

23

Number, and Arrival Time. Its properties include Arrival Date,
Arrival ICAQ, System Status, and Distance. Delay Arrival Code
and Delay Arrival Hours are multi-valued properties. Each

arrival will be associated with one logistic leg.

C. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA

In this section we perform a logical database design by
transforming the objects developed in the previous section
into a relational schema. The output from this phase is a set
of relations, relation definitions, relationships between
relations, and constraints on these relationships. In the
following sections, we discuss the main relations and
relationships of the schema. Refer to the Object Diagrams in
Appendix A and the Relational Diagrams in Appendix C for the
following discussion.

1. ORGANIZATION Relation

This relation 1is transformed from the object

ORGANIZATION. It is identified by the attribute organization
code. This relation is associated in a one to many optional
relationship with the AIRCRAFT relation. In other words, a
record of this relation may be associated with one or more
records of the AIRCRAFT relation.

2. AIRCRAFT Relation

This relation is transformed from the compound object

AIRCRAFT. It is identified by the attribute aircraft side

number. It centains the foreign attribute of organization code

24

from the ORGANIZATION relation. Whereas the ORGANIZATION did
not need any instances of aircraft, the AIRCRAFT has a
mandatory relationship with the ORGANIZATION. This represents
a many to one mandatory relationship. On the other hand, the
AIRCRAFT relation is associated in a one to many optional
relation with the FLIGHT relation. As with the ORGANIZATION
relation, a record in this relation may be associated with one
or more records of the FLIGHT relation.
3. FLIGHT Relation

This relation is transformed from the compound object
FLIGHT. It is identified by the attribute document side
number. It contains the foreign attribute aircraft side number
from the AIRCRAFT relation. FLIGHT is represented by a many to
one mandatory relationship with AIRCRAFT, indicating that any
records from this relation must be associated with one record
of the parent AIRCRAFT. The object FLIGHT is also a composite
object meaning that it contains repeating groups of non object
properties. Each ot these groups is represented by a relation
in the database. The first relation, MISSION, is identified by
the composite key document number and mission code. It is
represented as a many to one mandatory relationship indicating
the possibility of many mission records, each associated with
a FLIGHT record. The second relation, ENGINE, is identified by
document number and engine number. It is also represented as

a many to one mandatory relationship, indicating as many

25

records as the aircraft has engines.

The relation FLIGHT also serves as the parent to both
the relations AIRCREW FLIGHT and LOGISTICS. In both instances,
the relation is associated in a one to many optional
relationship. Each record of FLIGHT may be associated with one
or more records of both the AIRCREW FLIGHT and LOGISTICS
relations.

4. AIRCREW Relation

This relation is transformed from the object AIRCREW.
It is identified by the attribute ssn (Social Security
Number) . This relation is associated in a one to many optional
relationship with the AIRCREW FLIGHT relation. In other words,
a record of this relation may be associated with one or more
records of the AIRCREW FLIGHT relation.

5. AIRCREW FLIGHT Relation

This relation is transformed from the association
object AIRCREW FLIGHT representing the relationship between
FLIGHT and AIRCREW. The relation is identified by the
composite properties of document number and ssn, each of which
are the keys of the parent relations. Although this object
does not contain a key of its own, it does contain non-key
data that indicate details of a specific flight and represents
a real object in the user’s environment. The non-key data are
represented by multiple repeating groups. Each of these

repeating groups is represented by a relation with a one to

26

many optional relationship with AIRCREW FLIGHT. The first
relation, LANDING, is identified by document number, ssn, and
type landing. The second relation, APPROACH, is identified by
document number, ssn, and type approach. The third relation,
TRAINING, is identified by document number, ssn, and training
code. The fourth relation, TRAINING AREA, is identified by
document number, ssn, and training area. The fifth relation,
WEAPONS, is identified by document number, ssn, and delivery
number. The final relation within the association object is
MISCELLANEQUS, identified by document number, ssn, and
miscellaneous data code.
6. LOGISTICS Relation

This relation is transformed from the composite object
LOGISTICS. It 1is identified by the composite properties
document number and leg number. It is associated with FLIGHT
in a many to one mandatory relationship indicating that any
records in this relation must be associated with a record in
the FLIGHT relation. The relation is also associated with the
relations DEPARTURE and ARRIVAL as a one to one mandatory
relation. Both relations DEPARTURE and ARRIVAL contain records
that describe different aspects of the same relation LOGISTIC.
Although these relations may be combined into one, a better
user understanding of the relational database design and

better database performance can be achieved by the separating

the two.

27

7. DEPARTURE Relation

This relation is transformed from the composite object
DEPARTURE. It is identified by the composite properties
document number, leg number, and departure time. As was
mentioned previously, it is represented as a one to one
mandatory relationship with the LOGISTIC relation. It also
contains multiple repeating groups represented by the
following relations which maintain a one to many optional
relationships with DEPARTURE. The first relation, PASSENGER,
is identified by document number, leg number, and passenger
priority. The second relation, PAYLOAD, is identified by
document number, leg number, and opportune payload code. The
last relation, DEPARTURE DELAY, is identified by document
number, leg number, and delay departure code.

8. ARRIVAL Relation

This relation is transformed from the composite object
ARRIVAL. It is identified by the composite properties document
number, leg number, and arrival time. Once again, it is
represented as a one to one mandatory relationship with the
LOGISTIC relation. It is also represented by a relation,
ARRIVAL DELAY, representing a one to many optional
relationship. The relation is identified by document number,

leg number, and delay arrival code.

28

D. INTEGRITY CONSTRAINTS
In this section, we present the semantic integrity rules
that need to be maintained for the relational schema developed
in the previous section [Ref. 5]. Due to the sheer size of the
database design, it was decided to narrow the focus of the
front end expert system by limiting the integrity constraints
to the FLIGHT relation. The narrowed focus still allowed the
system to address all the classes of integrity constraints
developed in Chapter II.
l. Domain Integrity Constraints
The domain constraints enforced in this application
are presented in Appendix B.
2. Column Integrity Constraints
The column constraints as discussed previously in
Chapter II can be thought of as a subset of the domain
integrity constraints. The following <c¢olumn integrity
constraints are enforced in the front end expert system:
* Exception Code must be C, D, X, or BLANK

* Mission Code (n) where n = 1 must be in the range of 1-6
or BLANK

* Mission Code (n) where n > 1 must be in the range of 1-5
or BLANK

* Mission Hours (n) where n = 1 must be in the range of 0.1
to 72.0 or BLANK

* Mission Hours (n) where n > 1 must be in the range of 0.1
to (72.0 - Sum of Mission Hours) or BLANK

* Total Flight must be in the range of 1-99 or BLANK

29

* Ship/Field Operations must be A, B, 1, 2, or BLANK

e Catapult/Jato Launches must be in the range of 1-99 or
BLANK

* Engine Hours (n, n+l, n+2,...) must be in the range of 0.1
to 72.0 or BLANK

* Number of Hoists must be in the range of 1-99 or BLANK
3. Entity Integrity Constraints
The following entity integrity constraints are
enforced by the front end expert system:
* Document Number cannot be missing or duplicated
* Aircraft Side Number cannot be missing
* Mission Code (n) where n = 1 cannot be missing
4. Referential Integrity Constraints
The following referential integrity constraints are
enforced by the front end expert system:
* Aircraft Side Number must be validated against the
AIRCRAFT object for the purpose of recording a valid
Buno/Serial number and ensuring the correct number of

engines are recorded for flight time

* Document Number for the composite objects is the same as
the FLIGHT document number

5. User Defined Integrity Constraints
The following user defined integrity constraints are
enforced by the front end expert system.
a. Intra-Attribute Constraints
These user defined integrity constraints apply to
the relationships within an attribute:

* Mission Code (n), Position 2, when n=1 or >1, must be R or
in the range of A-I or N-P if Position 1 is a 1

30

the

Mission Code (n), Position 2, when n=1 or >1,must be in
the range of J-R if Position 1 is a 2

Mission Code (n), Position 2, when n=1 must be O or in the
range of S-Z if Position 1 is 3-6 or Position Code is 3-5
when n>1

Mission Code (n), Position 2, when n=1 must be O or N if
Exception Code is X

Mission Code (n), Position 1,2, and 3 when n>1 must be
BLANK when Exception Code is X

Mission Code (n), Position 1,2, and 3 when n>2 must be
BLANK when Mission Code (n-1) is BLANK

b. Intra—-Relation Constraints
These user defined integrity constraints apply to
relationships within a relation:

Mission Hours (n), when n=1 or >1, must be Blank if
Exception Code is X

The sum of Mission Hours (n+(n+l)+(n+2)+...) must not
exceed 72.0 hours

Mission Hours (n), when n>1, must be BLANK if Mission Code
(n) is BLANK

Total Flight must be BLANK if Exception Code is X

Total Flight must meet its column integrity constraints if
the Exception Code is not X

Ship/Field Operations Code must be BLANK if Exception Code
is X

Ship/Field Operations Code must meet its column integrity
constraints if the Exception Code is not X

Catapult/Jato Launches must be BLANK if Exception Code is
X

Catapult/Jato Launches must meet its column integrity
constraints if the Exception Code is not X

Airlift Mission Number must be BLANK if Exception Code is
X

31

e Airlift Mission Number must meet its column integrity
constraints if the Exception Code is not X

e Engine Hours (n,n+l,n+2,...) must be BLANK if Exception
Code is X

* Engine Hours (n,n+l1,n+2,...) must be in the range of 0.1
to Mission Hours (n,n+l,n+2,...) if the Exception Code is
not X

e Number of Hoists must be BLANK if Exception Code is X
* Number of Hoists must meet its column integrity
constraints if the Exception Code is not X
In the next chapter, the design and implementation of
a front end expert system that enforces the above integrity

rules is described.

32

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END EXPERT
SYSTEM
Expert systems are programs that respond to information
very much like a human expert in a well-defined area(the
program’s domain). They capture and distribute knowledge to
the non-experts and general practitioners in specific
application areas where:

* Difference in performance is largely based on expert
knowledge.

* This knowledge is experienced-based.
* The knowledge can be stated as "If...then" rules
(Ref. 6:p.17]
An important aspect of some expert systems is the ability to
capture knowledge and then record it as a set of rules in a
knowledge base. Expert system shells such as VP-Expert use an
inference engine that interacts with the user and navigates

through the knowledge base to deliver this knowledge.

A. INFERENCE ENGINE

The search strategy or problem solving method used in this
thesis application and supported by VP-Expert is called
"backward-chaining." The inference engine starts by
identifying a target variable and then moves through a
saquence of rules until it finds a value that can be assigned

to that target variable. Consider the following example in

33

Figure 4.1.
In this example, any of the three rules can assign a value
to TOTFLT_VALID. If the value for EXCD is not known then the

inference engine looks for the rule assigning a value to EXCD

FIND TOTFLT_VALID; -The target variable is
identified as
TOTAL_FLIGHT VALID

RULE USER_DEFINED CONSTRAINT TOTFLT 1

IF
EXCD = X -If Exception Code is
equal to the value "X"
THEN
TOTFLT = (BLANK) -Then assign a null
TOTFLT_VALID = TRUE; value to TOTFLT and

assign TRUE to
TOTAL_VALID

RULE USER_DEFINED_CONSTRAINT TOTFLT 2

IF
EXCD <> X AND ~-If Exception Code is
TOTFLT >= 1 AND not equal "X" and the
TOTFLT <= 99 value assigned to
TOTFLT is greater than
0 and less than 100
THEN

TOTFLT_VALID = TRUE; ~Then assign TRUE to
TOTFLT_VALID

RULE USER_DEFINED_CONSTRAINT TOTFLT 3

IF
EXCD <> X AND -If Exception Code is
TOTFLT < 1 OR not equal "X" and the
TOTFLT > 99 value assigned to
TOTFLT is less than
1 or greater than 99
THEN

TOTFLT_VALID = FALSE; ~Then assign FALSE to
TOTFLT_VALID

Figure 4.1 "Backward" Chaining

in its conclusion. If the value assigned to EXCD is

X,USER_DEFINED CONSTRAINT_TOTFLT_1 is fired and the value for

34

TOTFLT becomes null. On the other hand if the value of EXCD is
not equal to X, then the first rule is passed and the second
rule is applied. Once again, if the value for TOTFLT is not
known, then the inference engine must look for a rule that
assigns a value to TOTFLT. This pattern continues if other
variables within the rule were not known. Once all the values
are known, the inference engine retraces its steps and tests
the original rule. In the example above if TOTFLT is 2, then
rule USER_DEFINED_CONSTRAINT_TOTFLT_2 is fired and

TOTFLT_VALID is assigned TRUE.

B. APPLICATION DESIGN

The front end expert system is the user’s interface with
the database. It is designed to perform maintenance on the
database to include append, update, and delete operations.
While the rules have been defined in the last chapter, this
section deals with the logic needed in the application. Which
questions are asked initially? Which answers lead to other
questions? In the following sections we discuss each of the
maintenance operations.
NOTE: While all the maintenance operations require access to
all objects of the database design, no maintenance operations
are allowed on the following objects; ORGANIZATION, AIRCRAFT,
and AIRCREW. The security of these objects require that they
be protected from either malicious or accidental destruction

or corruption.

35

1. Append

After the user selects APPEND RECORD from the main
menu, the expert system uses a system—generated dialogue with
the user to generate a record for the FLIGHT object. Each
attribute is checked against the integrity constraints for
that specific attribute by the inference engine. Each
attribute that meets the constraints imposed by the expert
system is stored until the end of the transaction. If the
attribute cannot meet the integrity constraints of the
knowledge base, the system continues to ask the user for the
attribute and offers assistance as to a valid attribute the
system will accept. This feature disallows an invalid
attribute and prevents the invalid record from being added to
the database, since the user cannot continue until a valid
attribute is entered.

The logical ordering of questions follow from the
Naval Aircraft Flight Record(OPNAV 3710/4)as shown in Figure
3.1. Some of the answers that lead to other questions include
the following:

* Exception Code = X
* Mission Code 1/Position 1 = 6

e Mission Code 2 = Unknown

These answers affect the logical ordering of questions to be
asked. The rules from Figure 4.7 used earlier in finding

TOTFLT_VALID show this ordering. If the Exception Code is

36

equal to X then TOTFLT is set to null. This made the attribute
TOTFLT appear to be overlooked, when in fact the rule
USER_DEFINED_CONSTRAINT TOTFLT_ 1 fired and assigned (BLANK) to
the attribute TOTFLT.

At the end of the append operation, all values
assigned to the attributes are committed to the database. If
at any time during the transaction the user quits, or the
append operation is terminated, the attribute values are
effectively rolled back to their previous values.

2. Update

This maintenance operation is probably the most
critical of all the operations. Questions, that are asked in
a logical order in the append operation, may not have been
asked when updating the value of one attribute. The ability to
change attribute values of a record requires a clear
understanding of the semantics of the whole database.

The selection of the UPDATE RECORD from the main menu
provides the user with another menu showing all possible Naval
Aircraft Flight Records within the database to update. After
selection of a record, the user is then presented with a sub-
menu of all possible attributes to update. The changing of one
attribute may not only fire the rule for that attribute but
may also fire multiple other rules for attributes that are
logically affected by the update of that attribute. For

example, a Naval Aircraft Flight Record with the attribute

37

Exception Code equal to X designates a canceled flight and,
therefore, cannot contain flight data. In the event that the
canceled flight was later flown, an update to the record
should ensure that all the attributes of a flight are updated.
Because of this, each unique update operation fires a separate
rule. This presents a logical ordering of questions, which
preserves the semantic integrity of the record in conjunction
with the attribute updated. Figure 4.2 is an example of one of
many update rules searched to update Mission Code 1. The
inference engine searches the knowledge base after a valid
Mission Code 1 has been entered to provide the logic that is
needed to preserve the integrity of the record. This rule
could only fire after Mission Code 1 met the Integrity
Constraints defined in Chapter III. No attributes are
committed to the database until all attributes meet all
integrity constraints as determined by the inference engine.
3. Delete

The final maintenance operation deals with purging the
database of unwanted records. This requires a cascaded delete
operation. This operation deletes the designated FLIGHT record
and all optional records related to the deleted FLIGHT record.
These relations are shown in the relational schema of Appendix
C. This function is based on referential integrity and the
associated concept of inclusion dependency as discussed in

Chapter II. Because this operation is potentially destructive,

38

a confirmation message that explains the consequences of the
process is displayed, and the user is given the opportunity to

cancel the delete operation. This operation doesn’t mark the

RULE MISSION CODE_1 RULE 2
IF
FIELD TO_UPDATE = MISSION _CODE_1 AND -Field to Update =
MSN1 1 = 6 AND Mission Code 1 and
EXCD <> X -Mission Code 1
Position 1 = 6 and
-Exception Code = "X"
THEN
MISSION_CODE1l_RULE = USED -Assigns USED to
TOTAL = 0 target variable
FIND HRS1 VALID —-Assigns 0 to TOTAL
MSN2_ 1 = (BLANK) for Total Hours flown
MSN2 2 = (BLANK) ~Looks for HRS1_VALID
MSN2_ 3 = (BLANK) -Assigns null to
HRS2 = (BLANK) MSN2 1
MSN3_1 = (BLANK) -Assigns null to
MSN3 2 = (BLANK) MSN2_2
MSN3 3 = (BLANK) -Assigns null to
HRS3 = (BLANK) MSN2 3
FIND MISSION1_ENGHRS_VALID -Assigns null to
PUT FLIGHT HRS2
CLOSE FLIGHT; -Assigns null to
MSN3 1
-Assigns null to
MSN3_2
—-Assigns null to
MSN3_3
-Assigns null to
HRS3
-Looks for
MISSION1_ENGHRS_VALID
-Commits attributes to
database
—Closes database

Figure 4.2 Update Operation Mission Code 1

record for deletion, instead it assigns an unknown value
(BLANK) to each attribute of the record and then commits these

values to the associated relations.

39

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has addressed the issue of dynamic enforcement
of integrity constraints in a relational database through the
use of a front end expert system. It has also addressed the
classification of integrity constraints as a framework for
designing and building the front end expert system. The
development of a front end expert system for the Navy’s Naval
Aircraft Flight Record served as the vehicle for demonstrating
the feasibility of this concept in a well-defined, structured
area.

Although 1limited in functionality, the Naval Aircraft
Flight Record front end expert system was successful in
maintaining semantic integrity for any given maintenance
operation(insertion, deletion, and update.) Because of the
atomic nature of all maintenance operations, the integrity of
the database is guaranteed at all times. A separate validation
program is, therefore, not required to audit the database
periodically.

The use of an expert shell with an If...Then construct
proved to be a viable method to test and implement the
integrity constraints developed. The ability to store these

rules in one central repository (knowledge base) was the most

40

significant benefit of using an expert shell. Any maintenance
to the program itself was made easier by the ability of the
user to ask why a particular response was obtained. This
allowed for query of the appropriate rule and examination of
the constraints imposed, therefore simplifying program
maintenance.

The expert shell (VP-Expert), while user friendly, proved
to be inefficient in building and supporting the atomic nature
of the maintenance operations and the integrity constraints.
VP-Expert was not designed to access a database efficiently.
The limitation of single record access commands, such as GET
and PUT, severely inhibits the performance of the shell in any
query operations on medium to large databases.

The validity of using an expert system as a front end to
check potential violations of one or more integrity
constraints was proved. Naturally, the correctness of all
values in the database could not be guaranteed. Any semantic
integrity system could only ensure that the data in the

database meet the integrity constraints defined in the system.

B. RECOMMENDATIONS

Initially, this researcher attempted to use an expert
shell other than VP-Expert to develop the front end system. A
Structured Query Language Interface (VP-Expert/SQL) was the
first choice. It was hoped that wusing this system would

provide a powerful tool for the enforcement of integrity

41

constraints within a relational database. However, this
software proved to be unstable and was recently withdrawn,
along with all technical support. This was unfortunate, but
SQL should still be considered a feasible tool for follow-up
research in this area. SQL would enable subqueries and join
operations and eliminate many of the inefficiencies inherent
to the system (i.e., loops, nested loops. see Appendix E)

The prototype front end expert system developed in this
thesis resulted in a knowledge base of approximately 150
rules. If the number of rules increase, the opportunity for
redundant and possibly conflicting rules would multiply. This
would inhibit the process of revalidating the system after
making changes to the knowledge base. The importance of
checking the knowledge base becomes even greater as this
happens.

Other follow-up research may include the feasibility of
using an object oriented database in providing semantic
integrity. Object oriented languages provide for the notion of
objects, classes, and inheritance. As opposed to tuples in the
relational model, objects have an identity which 1is
independent of their value. This characteristic is central to
the domain concept and should enhance this approach to enforce

integrity.

42

APPENDIX A

NAVAL AIRCRAFT FLIGHT RECORD OBJECT DIAGRAMS

1HOIMN

14VHOHIV

SOUSIDON

LHOM4 M3UDHIV

14vdoulv

syewel
§isioy Jo Jequinu
* sinoy euybue
AW

Jequinu euiue

Joquinu uofssiw yiure
oe{pindateo

epoo suofesedo

by [e10)

A KINOY UOoISSiL

©p00 UOISSIW
opoo uopdeoxe
Jequinu epis ysipe
JequINU JLSWNOOP

NOILLVZINYOHO

1HOMd

NOLLVZINYDHO

seujbue Jo Jequnu
epoo ewdinbe edAy

Jequinu jeues\ounq
dequinu epis yexue

14vHOHIV

epoo Bujuen

vep Gyuoo peojied
Joquinu uoissiw U@
oyef/sieo

008) esnyedep

euoz ewp esnyedep
epoo uoddns

eweu Uoys uopezjetio
epoo Busseooud ejep
€poo uofeziuetio

43

SOLLSIOOT

1HOIMd M3HOHIV

1HOMd

IVAIHHY

3dNLYVd3a

6UCZ UM
Jequnu Bey

M3HOHIV

1HONd

M3HOHIY

AW BJ8p oS
epoo Suo osjw

suni
epoo AieAjjep
P00 80UBUPIO
ﬁ sinoy Bujures

AW
wvese Bujupey
AW * epoo Buuren
seyovasdde saquinu
yoeosdde edA
sBugpuey Jequinu

. ﬁ

9__93_ o&.

A

ewp juewnasy| uo«o_:E_u
el Juswnnsy ene
ewy mas [epeds

ewp jojid-00

owR Joud 181y

1HOMI M3YOHIV

©pod uopdeoxe

©pod STElS Masue
©poo snyels sngejAs
snqeyjAs peubisse

ejep dxe fenb ABojoisAsd
ejep dxe renb Jaem
eep dxe jenb Juewnysuy
eyep uofie.jdxe feojpeis
ewp dxe penb sdojeu
uogeziuetio

opui

jAIes

reRuj 182y

ewBU s8]

uss

44

TVAIHHY

3d4N1dvd3d

SOLLSIDO1

sunoy feapse Asjep
6poo JeAe Aejep
aouasip

SNJE)S WOJSAS
08| [BAlIR

eep [eAwe

owp PALR

SOLLSIDON

ofired wnwpew

sseBuessed wnwpew

aw { epoo peojhed eunuoddo
ofred peojled eunpoddo
seBuessed peojled eunuioddo
ofi;ed peoifed peuuyuod

au{ fuopd seBuessed

Al m sinoy esmuedep Aejep
epoo eumredep Aejep

owd) aunedep

ejep esnyredep

ewy eunpedep

45

APPENDIX B

NAVAL AIRCRAFT FLIGHT RECORD OBJECT SPECIFICATIONS

Object Definitions

FLIGHT OBJECT

document number; docnum

aircraft side number; sidenum

exception code; excd

mission code; msn MV

mission hours; hours MV

total flights; totflt

operations code; ops

catapult/jato; cj

airlift mission number; misnum

engine number; engnum MV

engine hours; hours MV

number of hoists; numhoists

remarks; remarks

AIRCRAFT; AIRCRAFT object; SUBSET [aircraft side number]
AIRCREW FLIGHT; AIRCREW FLIGHT object, MV
LOGISTICS; LOGISTICS object; MV

Domain Definitions

docnum;
Text 7
Unique number for organization’s Naval Flight Record
sidenum;
Numeric 5
Unique number of an organizations aircraft
excd;
Text 1
Code to record other than routine flight
msn;
Text 3, mask FGS,
where F is the Flight Purpose Code - numeric
G is the General Purpose Code - alpha
S is the Specific Purpose Code - numeric
Unique mission code for a specific flight
hours;
Numeric 3, mask 99.9
Hours dedicated to performance of mission
totflt;
Numeric 2
Total number of flights
opS;
Text 1
Code for ship/shore operational scenario

46

cii
Numeric 1
Total number of catapult/jet assisted takeoff launches
misnum;
Text 9, mask ORGDATENN,
Where ORG is the organization code - Text
DATE is the julian date - numeric
NN is 01-99 sequentially assigned

engnum;
Numeric 1

Unique engine number
numhoists;

Numeric 2

Total number of hoists on a flight
remarks;

Text 15

Used as needed

47

APPENDIX C

NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DIAGRAMS

*t Tls Jequinu Juewindop

Jequinu Bej

SOLLSIDOT

* * * |+ USS |%Jequinu Juewnoop

\\®_\ LHOM-MIUOLIV

M3HOHIV

sunoy eujbue | Jequinu JuewWnoop | ~iequinu eujbue

3NION3

O

sinoy uojssiw T..BE:: Wewnoop | epod uojssiw

NOISSIN

D

* ¢ e Jequinu epis yexupm J8QUINU juswnoop

R e

* ° ° |y ©poo uopezjuetio

Jequinu epis yexie

/u 14VHOHIV

epoo uopezjuebio

NOLLVZINVOHO

48

¥ JOqWINU JueWwnoop

9p00 Blep SNOGUBJEOS|W

SNO3ANVTIIOSIN
Tt | % uss | ¥ Jequnu juewndop Jequunu AieAlep
x SNOdVIM
q
* ' 3 USS % JOquINUu JUSWINOOOP eese Bujupen
\ V34V DNINIVHL
@ % UsSS [y JOQWINU JUBSINOOP epoo Bujuren
\ ONINIVHL
q © ot ot | auss | Jequinu juewinoop yowvoudde edAy
x HOVOUddV
d * T TR USS [¥ Jequnu Juewnoop Bujpue) edA
ONIONVT

¢

e s e *:»“

» JOQUINU JUSWROOP

LHONI-MIHOHIV

49

©poo eunymdep Aviep

< -+ g1equnu uewinoop

¥ Jequinu Bej

8pod oAl Avjep

AV130 VAUV /

AVIEQ 3UNLEYd3A

» Jequnu Bey

6poo peojied eunpoddo

» JOQUINU WBWINSOP

Joquinu Be)

© * | Tewpwmmdop

»#~ OqUNU Juewnoop

»equnu Bey

=

© 0 | JOqUING JUOWINoop

Jequiniu Def

N

SOLLSIDOT

* Ot |« Jequiniepgs KU

IOGUIN JUGUNTIOP

1HONd

FHNLIHYd3a

50

APPENDIX D
SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD EXPERT SYSTEM

3TN09 3Iseds moTsy ¢AyMg ¢moHZ dT®HT
3TNd8 ITPAL 3989 aTNYS oTqeTIeAy FIIEYME o9z dreH1

*°°NIDE™H OL XJIX ANV SsHid

*$/0TLE AUNJO ‘q¥003¥ IHOITA LIVUDYIV
SXAYN FHIL ¥0d NOIILVWMOJANI 40 NOILDITIOD FLWINOOV HHL
STEYNT Ol WIALSXS LHIAXT ALIYOIILNI AN INOWA ¥ SI SIHL

51

31nb o3 B/ umoudun IOF I9juld ¥ ¢ 30998 03 Iajug

Biso
*LAVYOYUIV FHI JO ¥AGWAN AAIS FHL AILVOIANI IASVATId
*Gp0 YMIGWAN FAIS FHIL HLIM NOIIUZINVONMO HHI NI SLSIXH LAVNOHIV ON

Sv0
*LIVMDOYIV dHL J0 ¥YIdHWNN JAIS HHL JdLVOIANI JSVATId
*YIGWAN FQIS LIVEDYIV ¥ YAINd NOX SSHINA AIIAD0Nd OL dI19V 39 LON TIIM ONOX

[
*LIVIDOYIV dHL 40 ¥YIAEGWAN JAIS FTHL FLVOIANI ASVA'IdA

T100000V¥
“YIGHAN INIWNOO0A MIN dHILI ¥YILNA
*HIGWNN INIWNDOd ¥ YIALNA NOX SSATNN dIIO0Nd OL dATHVY dAd LON TIIM NOX

LA
“HIGHAN LNIWNOO0d MIN JHL YALNA

LIXd qyoody AVIdSIa
ooy ALITAA qyoodd JLVAdN » QYOOIY aNIddVY
*ISVEYLVA JFHL NO WIOJ¥Ad OL JSVL, ¥ dSOOHOD

52

31nb o3 B/ umouyun I0F I8juld ¥ ¢ 109198 03 I93jug

Bz
NOILISOd ANOD3ES ¥AINT T
XMINT NOILISOd HOVA YALAVY YAINT LIH ‘dA0D T NOISSIW ¥ HAINdA

T
*XYINZ NOILISOd HOVA YIIAY ¥AINT IIH ‘FA0D T NOISSIW V¥ VALNA
*9 OL T WOMS YIAWNAN V¥V YILNI LSOW NOA

L
*XYINZ NOILISOd HOVA YIALAV YAINT LIH ‘3A0D 1T NOISSIW ¥ YALNA

a
*dNON ¥0d <dADVdS> ¥0 dd0D NOILAIOXH NV HILNA

<dIY4S> ¥0 ‘X ‘d ‘D e ¥YIAINI
*IANIINOD OL FA0D NOILAIDXH dITVA ¥ ¥IINI OL AaFAN NOX

d
*d@NON ¥0d <dOVdS> ¥0O dd0D NOILAADXd NV YIALNI

53

*ENNIINOD OL ¥ALNT SSTYd °d-N ¥0 ‘I-V ‘¥ dd LSAW ¢ NOILISOd

54

3tnb o3 9/ umouyun IO3J IXajud % ¢ 309188 03 Iajud

[}

XMINT NOILISOd HOVA ¥ALAV YALNA LIH ‘dA0D T NOISSIW V ¥IINA

0°0T1
*T NOISSIW NO NMOTd S¥NOH FHL HHLNJI
0°2L OL T°00 WOYd YIHWAN V UILNA LSNW NOX

00T
‘T NOISSIW NO NMOT4 SY¥NOH HHL YALNA
dNONILNOD O&L X3X ANV SSd¥d -4

1
NOILISOd QUIHL ¥ILNA -48
XYINZ NOILISOd HOVA ¥ALAVY YAINT LIH ‘dA0D T NOISSIW V YALNI

-

NOILISOd ANODdS HILNA I
XYINT NOILISOd HOVI YALIY ¥AINT LIH ‘dA0D T NOISSIW V ¥ALNA

55

3T0nb 03 B/ umoudun I0J I93ud ¥ ¢ 309198 03 19juld

L\
NOILISOd ANODdS HALNA 4
XYINT NOILISOd HOVE HYALJIV YALNI LIH ‘FA0D ¢ NOISSIW V YALNI

[4
X4INT NOILISOd HOVA ¥ALIY ¥ALNA LIH ‘3A0D Z NOISSIW V HIALNI
G OL T WOUd YIIWNN ¥ YILNI LSONH NOX

9
XMINZ NOILISOd HOVH ¥ALIV YAINT LIH ‘FA0D 7 NOISSIW ¥ ¥ALNI

0°01
*T NOISSIW NO NMOTJd SYUNOH dHL YALNI
0°CL OL T°00 WOYd YIHWNN ¥ YILNI LSOAW NOX

00t
T NOISSIW NO NMOTJd SUNOH FHL YALNI
dONILNOD OL AdM ANV SSddd 13-4

[
NOILISOd QUIHL ¥ILNI - 48

56

*AANILNOD OL YALNA SSHId

*¥-L 40 FONVY JHL NI d4 LSNAW ¢ NOILISOd

57

31nb o3 @/ umouyun IOF ISUF ¥ ¢ 309198 03 JI93juld

Jo-L
*Z NOISSIN NO NMOTd SHNOH IHI HALNI
Z9 OL 1°00 WOMd WIAAWAN V¥V YIINI LSOAW NOX

oL
°C NOISSIW NO NMOId SHNOH HHL YALINA
dNNILNOD O&L X3 ANV SsSaTud re

[A

NOILISOd QYIHL ¥IALNI re
XUINZ NOILISOd HOVE ¥ALIV VALNE LIH ‘IA0D ¢ NOISSIW VY HALNA
‘6 OL 0 WOMd ¥YIEWNN V¥V YdLNI LSNW NOX

M
NOILISOd QUIHL YILNI re
XAYINT NOILISOd HOVE ¥ALJAV WHALNA LIH ‘FQ0D ¢ NOISSIW V ¥ALNA

r
NOILISOd ANODJIS ¥ALNA 4
AMINd NOILISOd HOVI YALAV YALNA LIH ‘FA0D T NOISSIW ¥ ¥AILNA

58

31nb o3 3/ umouup I0¥ I¥julg % ¢ 109198 03 Iajud

B

*SLSIOH LAWYDYIV 40 YIdWNN JHL YIALNA

1
*Jd0D SNOILVYIAJO ATITA/dIHS THL YIAINI
*Z ¥0 ‘T ‘d ‘Y NVY ¥IINI OL dIAN NOX

M
°dd00 SNOILVYIdO QTIIA/dIHS dHL ¥ALNI

[A
*SLHOITI 40 ¥YIHWNAN TVLOL dHL ¥YIALNA
66 OL T WOYd ¥IHWNN V¥V YIALNI LSONW NOX

[
*SLHOITd 4O ¥IHWAN TVLOL JHL ¥IALNI

[
XYINZ NOILISOd HOVE ¥ALJIVY ¥AINT LIH ‘dAOD € NOISSIW V ¥ALNA

59

[|

31T0b 03 O/ umMouyun I0F I93ud ¥ ¢ jo9T@s8 03 Iajudg

o Lt
*y ANIONE ¥0d SHUNOH YIAILNA

0°LT

€ INIONE ¥O0d SUNOH YALNI

0°LT

*C INIDNA ¥O0d SUNOH HALNA

0°S1T

*T ANIONA ¥0d SUNOH HALNA

*0°LT ANV 1°00 NJIIAMLAL SUNOH ANIONA YALNI LSNW NOA

0SsI
°T ANIONA ¥Od SUNOH YALNA

60

¢00000V » 100000V dNON

*MIIA OL INVYM NOX Od QY003 IHOITA LIVHONIV TVAVN HOIHM

LIXd » QYOOAY AVIdSIA

qyooday dLdTaa qy0Dad dLNaAdN qiod3dd AN3ddv

*dSVAVYLYA JFHL NO WJOJA¥Ad OL MSVL ¥ ASOOHD

61

**°HANILNOD OL AdM ANV SSHId

0°LT SYNOH INIONI YON INIONA
0°LT SYNOH INIONF €ON ANIODHNI
0°LT SYNOH INIONI ZON FANIONH
0°GST SYNOH INIONJ TON IANIONA

SLSIOH
*ON *ON NOISSIW LJAITMIV
a
S o
oWt d &T1d HJJod VYI¥ad 038 NOISSIW TVIOL X °*ON
/I¥D O LOL &LdNS €SYH ENSHW CSUH ZNSH TSYH TINSW 930 O3l ¥YIS/ONNg d daIs
T c v 0°L ¢re 0°0T TYIT GdaA d€dv Z6LvST 4 1S

YIVAd LAVYOYIV
T00000¥ °ON

q40D3d LHOITI LANUDYIV TVAUN

62

¢00000V¥ » T00000Y dINON
*dILV¥AdN OL INYM NOX 0d Q¥ODEY LHOITI LAVHONIV TVAVN HOIHM

LIXd qd0dOay AVId4dSIa

@4Oo0ay dLdTAd » QUODAY dL¥ddN qyoody daNAddVY

*dSVEVYIVd FHL NO WJYOJdHdd OL ASWL ¥ ASOOHD

63

3tnb 03 9/ umouyun IOF Iajulg § ¢ 309798 03 Iajud

XMINT NOILISOd HOVE WALIV YIINA LIH ‘FA0D T NOISSIW V HALNI

*XYINT NOILISOd HOVE YIALJIVY ¥FINT LIH ‘30D T NOISSIW V ¥dLNA

SYNOH ANIONI

HONOY'I OLVL LINdYLYO
SYNOH € NOISSIH

¢ d3a00 NOISSIH

» 0D NOILJADXA

[

NOILISOd ANODdIS d¥I.LNI T
T
X

*dNON ¥0d <dIVdS> ¥0 ddOD NOILJAEDXI NV ¥ILNA

d XTINININD SI ddO0D NOIL4IOXHA JHL

dNOa

SLSIOH 40 YdHWNN HWAN NOISSIW LJITHIV
NOILWNAdO dT13Id dIHS SLHOI'Td 'TYLOL
€ dd00 NOISSIW SYNOH ¢ NOISSIH

SYNOH T NOISSIH T dd0D0 NOISSIKW
YIGHNN JdIS JIHHAN LNIWNO0A

*dIv¥addn oL LNVYM NOA dIdId HOIHM LOdTdS
*3ALYAdn OL 100000¥ °"ON QYOOIY AdLOITIS JIAVH NOX

64

*IANIINOD OL ¥AINT SSAUd O ¥O ‘N 3 ISNW ¢ NOILISOd

65

JdANILNOD OL AdM ANV SSdud INT

T
NOILISOd QYIHL YILNI NT
XYINT NOILISOd HOVI ¥ILJAV ¥AINA LIH ‘HA0D T NOISSIW V YALNZ

N

NOILISOd ANODIS ¥H.LNA T
XYINT NOILISOd HOVE ¥ALJIVY YAINT LIH ‘FA0D T NOISSIW ¥V HIAINA

66

****dANIINOD O&L AJM ANV SSHId

SYNOH ANIONA ON INIDNI

SLSIOH
*ON *ON NOISSIW LJAITIIV
a
S D
olNe 4 414 d3doo VYIVa O3¥ NOISSIKW 'IVLIOL X °ON
JIND O IOL XdNS €SUH ENSW ZSYH ZNSH [SYH INSW 530 DJdL dAS/ONNE d AAIS
A INT GdA Qddv¥ ¢6LYST X IS

YIVd LANYOUIV
T00000¥ °ON

Q4003¥ IHOITd LAVYOUIV TVAUN

67

umouyuny I0J ¢ 3Tnd o3 o/ a3917dwoo 03 gNd 3109198 03 I3juy « 1}

100000V dNON

‘MAIA OL INVM NOX Od QYODEY LHOITA IIVUDYIV TYAYN HOIHM

LIXA » QYOOdY AVIdSIA

@IO0DIY JLITIA YOOIy dALVdAdn QJ00dy aNdddv

*dSVHVLVA dHL NO WMOJ¥Id OL MSVL ¥ ASOOHD

ON » SdX
ZAONTLNOD OL INVM NOX Od iqHOddYy LHOITA ATOHM FAHL ALIATAA TIIM NOILOV SIHI

» 200000V 100000V dANON
*dLdT3d OL LNVM NOX OQ QHODIY LHOITA IIAVHOUIV TYAUYN HOIHM

LIXA quoodd AVIdSIda

» QYOOI JALATIAA qyooay IALVYAdn quoodyd aNdddv

*dSVEVLVA FHL NO WJOJ¥Ydd OL MSVL ¥ ASOOHD

68

APPENDIX E

NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE

Naval Aircraft Flight Record Expert System

By George J. Salitsky

Naval Postgraduate School

This program is a prototype Front End Expert System
designed to maintain semantic integrity within the
database according to the integrity constraints specified
in the knowledge base.

AUTOQUERY;
RUNTIME;
ENDOFF;

ACTIONS
FORMAT TOTAL, 4.1
DISPLAY "THIS IS A FRONT END INTEGRITY EXPERT SYSTEM TO
ENABLE THE ACCURATE COLLECTION OF INFORMATION FOR THE
NAVYS AIRCRAFT FLIGHT RECORD, OPNAV 3710/4.

PRESS ANY KEY TO BEGIN...~"

! loop to ask user which maintenance operation to perform on
! the database. whichtask is the main menu, options include:
' . APPEND

. UPDATE

. DELETE

. DISPLAY

. BXIT

NawN P

CLS
RESET WHICHTASK
WHILETRUE WHICHTASK <> EXIT THEN
RESET ALL
! set up variable BLANK
CHR 32, BLANK
FIND WHICHTASK
FIND TASKCOMPLETED
END;

| RRARRARRRARARARAR AR APPEND OPERATION *AARkkkkkhkkkkkkkkhhk

RULE APPEND_RECORD
IF

69

WHICHTASK = APPEND_ RECORD
THEN
FIELD_TO_UPDATE = NONE
TASKCOMPLETED = YES
RESET DOCNUM_NEW
! ask user for document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_MISSING
! cannot allow a null value for document number
FIND DOCNUM NOT MISSING
RESET DOCNUM DUPLICATE
! cannot allow duplicate document numbers
FIND DOCNUM_DUPLICATE
DOCNUM = (DOCNUM_NEW)
CLOSE FLIGHT
RESET SIDENUM NEW
! ask user for aircraft side number
FIND SIDENUM_NEW
RESET SIDENUM NOT_MISSING
! cannot allow a null value for side number
FIND SIDENUM NOT_ MISSING
RESET SIDENUM EXISTS
! side number must match an aircraft in organization
FIND SIDENUM EXISTS
CLOSE AIRCRAFT
RESET EXCD
! ask user for exception code
FIND EXCD
RESET EXCD_VALID
! only certain exception codes allowed
FIND EXCD_VALID
! find mission code 1 position 1
CLS
RESET MSN1 1
FIND MSN1 1
RESET MSN1l1l VALID
FIND MSN1l1l VALID
! find mission code 1 position 2
CLS
RESET MSN1_2
FIND MSN1 2
RESET MSN12 VALID
FIND MSN12 VALID
! find mission code 1 position 3
CLS
RESET MSN1 3
FIND MSN1 3
RESET MSN13 VALID
FIND MSN13 VALID
CLS
! find mission 1 hours

70

RESET CHECK

FIND CHECK

TEMPHRS1 = 0
TEMPHRS2 = 0
TEMPHRS3 = 0

TOTHRS = 72.0
SUBTOTAL = 0
RESET HRS1_VALID
FIND HRS1_VALID
find mission code 2 position 1
CLS
RESET MSN21_VALID
FIND MSN21_ VALID
find mission code 2 position 2
CLS
RESET MSN22_VALID
FIND MSN22 VALID
find mission code 2 position 3
CLS
RESET MSN23_VALID
FIND MSN23_VALID
CLS
find mission 2 hours
RESET HRS2_VALID
FIND HRS2_VALID
find mission code 3 position 1
CLS
RESET MSN31 VALID
FIND MSN31_VALID
find mission code 3 position 2
CLS
RESET MSN32_VALID
FIND MSN32_VALID
find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33_VALID
CLS
find mission 3 hours
RESET HRS3_VALID
FIND HRS3_VALID
CLS
find total flights
RESET TOTFLT_VALID
FIND TOTFLT_VALID
CLS
find ship/field operations code
RESET OPS_VALID
FIND OPS_VALID
CLS
find catapult/jato launches as necessary

71

GET ALL, ORGAN, CATSJATO
RESET CJ_VALID
FIND CJ_VALID
CLOSE ORGAN
CLS
! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT VALID
FIND AIRLIFT VALID
CLOSE ORGAN
CLS
! find number of hoists
RESET NUMHOIST_VALID
FIND NUMHOIST_VALID
CLS
! append new record to flight database
APPEND FLIGHT
! loop to get engine hours for aircraft on flight
! determined by aircraft record
GET SIDENUM = (SIDENUM NEW), AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET ENGHRS_VALID
FIND ENGHRS_VALID
CLS;

| RRRRARRARARRARRRA kA% UPDATE OPERATION AAARRARRARAAAARKRAK

RULE UPDATE_DOCUMENT
IF

WHICHTASK = UPDATE_RECORD
THEN

TASKCOMPLETED = YES

RESET DOCNUM_UPDATE

MENU DOCNUM_UPDATE, ALL, FLIGHT, DOCNUM
! ask user for document number from menu of all document
! numbers

FIND DOCNUM_UPDATE

MRESET DOCNUM_UPDATE

RESET UPDATE

FIND UPDATE;

! determine if there are any Flight Records to update
RULE UPDATE
IF
DOCNUM_UPDATE = NONE AND
UPDATE = UNKNOWN
THEN
! no flight records to update
UPDATE = NO
DISPLAY " THERE IS NO FLIGHT RECORD TO UPDATE.

72

PRESS ANY KEY TO CONTINUE
~ N
CLS
ELSE
! flight records available to update
UPDATE = YES
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT

CLs
DISPLAY " YOU HAVE SELECTED RECORD NO. {DOCNUM UPDATE}
TO UPDATE." RESET FIELD TQ_UPDATE

! ask user for attribute to update by menu field to_update
WHILETRUE FIELD TO UPDATE <> DONE THEN
RESET FIELD_TO_UPDATE
RESET UPDATE COMPLETED
FIND FIELD_TO_UPDATE
FIND UPDATE_COMPLETED
END;

| RRRARRARRARXARNX%X UPDATE DOCUMENT NUMBER *ARAARAAARRARRK AKX R

RULE UPDATE_DOCUMENT_ NUMBER
IF
FIELD_TO_UPDATE = DOCUMENT_NUMBER
THEN
UPDATE_COMPLETED = YES
! display current document number
DISPLAY "{DOCNUM_UPDATE} IS CURRENTLY THE DOCUMENT
NUMBER.
"
CLOSE FLIGHT
RESET DOCNUM_NEW
! ask user for document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_MISSING
! cannot allow a null value for document number
FIND DOCNUM_NOT MISSING
RESET DOCNUM DUPLICATE
! cannot allow duplicate document numbers
FIND DOCNUM _DUPLICATE
RESET DOCNUM_NOT_MISSING
RESET DOCNUM_DUPLICATE
CLOSE FLIGHT
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, DOCNUM
DOCNUM = (DOCNUM_NEW)
PUT FLIGHT
CLOSE FLIGHT
! change document number on ENGINE records
GET DOCNUM_UPDATE = DOCNUM, FLTENG, DOCNUM
WHILETRUE DOCNUM <> UNKNOWN THEN
DOCNUM = (DOCNUM_NEW)

73

PUT FLTENG

GET DOCNUM_UPDATE = DOCNUM, FLTENG, DOCNUM
END
CLOSE FLTENG
FIELD TO_UPDATE = DONE;

| *hkkrkrkkhrAkdkx UPDATE AIRCRAFT SIDE NUMBER ®*hkkkkkkkkkhkkk

RULE UPDATE_SIDE_NUMBER
IF
FIELD TO_UPDATE = SIDE_NUMBER
THEN
UPDATE_COMPLETED = YES
GET DOCNUM _UPDATE = DOCNUM, FLIGHT, SIDENUM
! display current side number
DISPLAY "THE AIRCRAFT SIDE NUMBER IS CURRENTLY
{SIDENUM} .
"

CLOSE FLIGHT
RESET SIDENUM UPDATE
! ask user for new aircraft side number
FIND SIDENUM UPDATE
RESET SIDENUM UPDATE NOT_MISSING
! cannot allow a null value for side number
FIND SIDENUM UPDATE_NOT_MISSING
RESET SIDENUM UPDATE EXISTS
! side number must match an aircraft in organization
FIND SIDENUM_UPDATE_ EXISTS
RESET SIDENUM UPDATE _EXISTS
RESET SIDENUM | UPDATE_ " NOT _MISSING
CLOSE FLIGHT
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, SIDENUM
SIDENUM = (SIDE)
PUT FLIGHT
CLOSE FLIGHT
FIELD_TO_UPDATE = DONE;

| RRARRRAARAAARRX UPDATE EXCEPTION CODE AARXkAkkkkkkkkk

RULE UPDATE_EXCEPTION_CODE
IF
FIELD_TO_UPDATE = EXCEPTION CODE
THEN -
UPDATE_COMPLETED = YES
! display current exception code
DISPLAY "THE EXCEPTION CODE IS CURRENTLY {EXCD}

un
RESET EXCD_NEW
FIND EXCD_NEW

! find if new exception code meets constraints
RESET UPDATE_EXCD_ VALID

74

FIND UPDATE_ EXCD_VALID

! from new exception code determine logic to keep database

! in

a valid state
RESET EXCD_RULE
FIND EXCD_RULE;

| RRARRXRXARRARARY EXCEPTION CODE LOGIC *AARRAkRARARAkk
| RRRRRRRRRARRRRRRANRARRY ROLE 1 AXRARARRARARARARRRRAR

RULE
IF

THEN

change exception code to X (canceled flight)
EXCEPTION_RULE_1

FIELD_TO UPDATE <> MISSION_1 CODE AND
FIELD _TO UPDATE = EXCEPTION CODE AND
EXCD_NEW = X AND

EXCD_RULE = UNKNOWN

EXCD_RULE = TRUE

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD

EXCD = (EXCD_NEW)

! need to get valid mission code 1

RESET MSN1 1

FIND MSN1_1

RESET MSN11_VALID
FIND MSN11l VALID
CLS

RESET MSN1_ 2

FIND MSN1_2

RESET MS5N12_VALID
FIND MSN12 VALID
CLS

RESET MSN1_3

FIND MSN1 3

RESET MSN13_VALID
FIND MSN13_VALID
CLS

RESET MSN11_VALID
RESET MSN12 VALID
RESET MSN13 VALID

! set all other flight attributes are null

HRS1 = (BLANK)

MSN2_1 = (BLANK)
MSN2_2 = (BLANK)
MSN2_3 = (BLANK)
HRS2 = (BLANK)

MSN3_1 = (BLANK)
MSN3_2 = (BLANK)
MSN3_3 = (BLANK)

HRS3 = (BLANK)
TOTFLT = (BLANK)

75

OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
! loop to remove related ENGINE records
GET DOCNUM_UPDATE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN
DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG
GET DOCNUM_UPDATE = DOCNUM, FLTENG, ALL
END
CLOSE FLTENG
FIELD_TO_UPDATE = DONE;

! kkkkkkkkkkkkkik EXCEPTION CODE LOGIC *%kkkkkkkhkkkk
! 12222222323 223 223223222 %] RULE 2 *%kkdkkkhkkhkhkhhkkhkhkkhkk
! change exception code from X (canceled flight)

RULE EXCEPTION RULE 2

IF
FIELD_TO_UPDATE = EXCEPTION_CODE AND
EXCD_RULE = UNKNOWN AND
EXCD_NEW <> X AND
EXCD = X
THEN

EXCD_RULE = TRUE
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, EXCD
DOCNUM = (DOCNUM_UPDATE)
RESET EXCD
EXCD = (EXCD_NEW)
RESET MSN1 1
FIND MSN1l 1
RESET MSN11l VALID
FIND MSN11l VALID
! find mission code 1 position 2
CLS
RESET MSN1 2
FIND MSN1 2
RESET MSN12_ VALID
FIND MSN12 VALID
! find mission code 1 position 3
CLS
RESET MSN1_3
EiND MSN1 3
RESET MSN13_ VALID
FIND MSN13_VALID

76

CLS
find mission 1 hours
RESET CHECK
FIND CHECK
TEMPHRS1
TEMPHRS2
TEMPHRS3
TOTHRS = 72.0
SUBTOTAL = 0
RESET HRS1_VALID
FIND HRS1_VALID
find mission code 2 position 1
CLS
RESET MSN21_VALID
FIND MSN21 VALID
find mission code 2 position 2
CLS
RESET MSN22_VALID
FIND MSN22_VALID
find mission code 2 position 3
CLS
RESET MSN23_VALID
FIND MSN23_VALID
CLS
find mission 2 hours
RESET HRS2_VALID
FIND HRSZ_VALID
find mission code 3 position 1
CLS
RESET MSN31_VALID
FIND MSN31 VALID
find mission code 3 position 2
CLS
RESET MSN32_VALID
FIND MSN32_VALID
find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33_VALID
CLS
find mission 3 hours
RESET HRS3_VALID
FIND HRS3_VALID
CLS
find total flights
RESET TOTFLT_VALID
FIND TOTFLT VALID
CLS
find ship/field operations code
RESET OPS_VALID
FIND OPS_VALID

o
OO O

77

CLS
! find catapult/jato launches as necessary
GET ALL, ORGAN, CATSJATO
RESET CJ_VALID
FIND CJ_VALID
CLOSE ORGAN
CLS
! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT VALID
FIND AIRLIFT VALID
CLOSE ORGAN
CLS
! find number of hoists
RESET NUMHOIST_VALID
FIND NUMHOIST VALID
! append new record to flight database
PUT FLIGHT
CLOSE FLIGHT
! find engine hours for aircraft on flight
GET SIDE = (SIDENUM), AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET UPDATE_ ENGHRS_VALID
FIND UPDATE_ ENGHRS_VALID
CLS
FIELD_TO_UPDATE = DONE;

RkXRKKXRXRXK AR EXCEPTION CODE LOGIC ***kkkkkhkAhkk
ARRRKRRKARRRARRRRRRAKRX RULE 2 *AXkkkkkkhkhkh kA kkhk

change exception code from a value not X to a value
not X

RULE EXCEPTION_RULE_3

IF
FIELD_TO UPDATE = EXCEPTION_CODE AND
EXCD_RULE = UNKNOWN AND
EXCD_NEW <> X AND
EXCD <> X
THEN

EXCD RULE = TRUE

CLS

GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
EXCD = (EXCD_NEW)

PUT FLIGHT

CLOSE FLIGHT

CLS

FIELD_TO UPDATE = DONE;

| RRRRRRRRRRRAXRXL UPDATE MISSION CODE 1 *ARkakkkhkkhhhkkhhk

RULE UPDATE_MISSION CODE_1

78

IF
FIELD_TO UPDATE = MISSION_CODE_1
THEN
UPDATE_COMPLETED = YES
! display current mission code 1
DISPLAY "THE MISSION NUMBER 1 CODE IS CURRENTLY
{MSN1_1}{MSN1 2} {MSN1_ 3}

PRESS ANY KEY TO CONTINUE~"

! £find mission code 1 position 1
CLS
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD_VALUE
FIND EXCD_VALUE
! find mission code 1 position 1
RESET MSN1 1
FIND MSN1 1
RESET MSN11 VALID
FIND MSN11_VALID
! £find mission code 1 position 2
CLS
RESET MSN1_2
FIND MSN1 2
RESET MSN12_ VALID
FIND MSN12 VALID
! find mission code 1 position 3
CLS
RESET MSN1 3
FIND MSN1 3
RESET MSN13_VALID
FIND MSN13 VALID
CLS
! from new mission code 1 determine logic to keep database
t in a valid state
RESET MISSION_CODE1l_RULE
FIND MISSION_CODEl_RULE;

| ARRRARRARRANRRRY MISSTION CODE 1 LOGIC AXARAARAARAAAK
| RARRRRRARARARRARARRARARY ROLE 1 RARAARARAARRAARARRAR

! exception code is X

RULE MISSION CODE_1 RULE_1
IF

FIELD_TO_UPDATE = MISSION CODE_1 AND
EXCD = X

79

THEN
MISSION CODE1l_RULE = USED
PUT FLIGHT
CLOSE FLIGHT
FIELD_TO UPDATE = DONE;

ARRRARRRRRARAXX MISSION CODE 1 LOGIC **AkRkkkkAkhkk
RRRRARRRARKRRRRRRRRAKAR RULE 2 AAXRRARRARRRRARRARRK

!

!

! mission code 1 position 1 is 6 and exception code
! is not X

RULE MISSION CODE_1 RULE_ 2

IF
FIELD_TO_UPDATE = MISSION_CODE_l AND
MSN1_1 = 6 AND
EXCD <> X

THEN

MISSION_CODEl_RULE = USED
CLS
! find mission 1 hours
RESET CHECK
FIND CHECK
TOTAL = 0
RESET HRS1_VALID
FIND HRS1_VALID
RESET MSN2 1
! no other mission codes allowed
MSN2_1 = (BLANK)
RESET MSN2 2
MSN2_2 = (BLANK)
RESET MSN2 3
MSN2_3 = (BLANK)
RESET HRS2
HRSZ2 = (BLANK)
RESET MSN3 1
MSN3_1 = (BLANK)
RESET MSN3 2
MSN3_2 = (BLANK)
RESET MSN3 3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
! update engine hours for aircraft
RESET MISSION1_ ENGHRS VALID
FIND MISSION1_ENGHRS_ VALID
FIELD_TO_UPDATE = DONE;

! loop to update engine hours resulting from updating
! mission code 1 when mission code 1 position 1 is 6

80

! and exception code is not equai to X

RULE UPDATE_MISSION_1_ENGINE_HOURS

IF

MSN1 1 = 6 AND

EXCD <> X AND

MISSION1 ENGHRS_VALID = UNKNOWN AND

FIELD TO UPDATE = MISSION CODE 1
THEN

MISSION1_ENGHRS_VALID = TRUE

Y =1

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS

FIND ENGHRS

RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP

Y = (Y +1)
PUT FLTENG
CLS

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL
END

CLOSE FLTENG;

| AAkAARRARRAAXAR* MISSION CODE 1 LOGIC RAkAkkkkkkhkkx
| RRARARRARARRRARRARRAR AR, RULE 3 ARRARRRKRRRRAARRRARR

! mission code 1 position 1 is not 6 and exception code
! is not X

RULE MISSION CODE 1 RULE 3

IF
FIELD_TO_UPDATE = MISSION CODE_1 AND
MSN1_1 <> 6 AND
EXCD <> X

THEN

MISSION_CODE1l_RULE = USED
PUT FLIGHT

CLOSE FLIGHT
FIELD_TO_UPDATE = DONE;

| RAkRAARRAXAAAkAkA*% UPDATE MISSION HOURS 1 RA*RAkkkkkkhkAkkk

RULE UPDATE_HRS1
IF
FIELD _TO UPDATE = MISSION 1 HOURS
THEN -
UFDATE_COMPLETED = YES
TOTAL = 0
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL

81

RESET EXCD VALUE
FIND EXCD_VALUE
! find if mission hours 1 is valid
RESET UPDATE_HRS1 VALID
FIND UPDATE_HRS1 VALID
PUT FLIGHT
CLOSE FLIGHT
! loop to update ENGINE records after change to mission
hours 1
GET SIDENUM = SIDE, AIRCRAFT, ENGINES
CLOSE AIRCRAFT
Y =1
WHILETRUE UPDATE HRS1 VALID <> FALSE AND Y <= (ENGINES)
THEN
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL
RESET ENGHRS
FIND ENGHRS
! find if engine hours is valid
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP

Y = (Y +1)
PUT FLTENG
CLS

END
CLOSE FLTENG
FIELD TO UPDATE = DONE;

| RAkAXRRAARRRXRX% UPDATE MISSION CODE 2 *AkAkkkkAkkkkkk

RULE UPDATE_MISSION_CODE_2
1F
FIELD TO_UPDATE = MISSION_CODE_2
THEN
UPDATE_COMPLETED = YES
! display current mission code 2
DISPLAY "THE MISSION NUMBER 2 CODE IS CURRENTLY
{1MSN2_1}{1MSN2_2}{1MSN2 3}

PRESS ANY KEY TO CONTINUE~"

! find mission code 2 position 1
CLS
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT

82

TOTAL = (HRS1)
! determine if you are allowed to update mission code 2
RESET MISSION CODEZ2_RULE
FIND MISSION_CODEZ_ RULE
! from new mission code 2 determine logic to keep database
! in a valid state
RESET MISSION_2 VALUE
FIND MISSION_Z2 VALUE
FIELD TO_UPDATE = DONE;

| Akkkkkkhkkhkkkixtx MISSION CODE 2 ALLOWED X*kXxkkkkkkkk
! mission code 2 not allowed if exception code is X
! or mission code 1 position 1 is equal to 6

RULE MISSION_CODE_2_ RULE

IF
FIELD TO UPDATE = MISSION_CODE_2 AND
EXCD = X OR
MSN1_1 = 6

THEN

! mission code 2 not allowed
! display message
MISSION_CODEZ2_RULE = NOT_USED
DISPLAY " YQOU ARE NOT ALLOWED TO ENTER A MISSION CODE
FOR ONE OF THE FOLLOWING REASONS:
1. FVYCEPTION CODE = X
2. . !SSION CODE 1 BEGINS WITH A 6

PRESS ANY KEY TO CONTINUE

~h

CLS
CLOSE FLIGHT
ELSE
! mission code 2 allowed
MISSION_CODEZ2_RULE = USED
GET DOCNUM _UPDATE = DOCNUM, FLIGHT, ALL
! find mission code 2 position 1
RESET MSN2_1
RESET MSN2_2
RESET MSN2 3
RESET MSN21_VALID
FIND MSN21 VALID
! find mission code 2 position 2
CLS
RESET MSN22_ VALID
FIND MSN22 VALID
! find mission code 2 position 3
CLS
RESET MSN23 VALID

83

FIND MSNZ23_ VALID
PUT FLIGHT
CLOSE FLIGHT;

| RRAXARRARRAXRXANX MISSION CODE 2 LOGIC **kkkkhkkhkkkkkkk
| RRRRRRRRRKRRRRRRRRNRARRR RULE] XARARRkAARRRRARRR Ak *

! new misgsion code 2 is null

RULE MISSION_CODEZ_ VALUE RULEl

IF
FIELD TO UPDATE = MISSION CODE_2 AND
MISSION CODE2_RULE = USED AND
SKIP = YES

THEN

MISSION_2_ VALUE = MISSING
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
! remove mission code 2, 3 along with mission hours 2, 3
RESET MSN2 2
MSN2 2 = (BLANK)
RESET MSN2_3
MSN2_3 = (BLANK)
RESET HRS2
HRS2 = (BLANK)
RESET MSN3_1
MSN3_1 = (BLANK)
RESET MSN3_2
MSN3 2 = (BLANK)
RESET MSN3 3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
Y =1
! loop to update ENGINE records
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS LOOP

Y = (Y +1)
PUT FLTENG
CLS

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL
END
CLOSE FLTENG;

84

RU
IF

TH

RU
IF

TH

ARARRRRRRARNARRARX MISSION CODE 2 LOGIC RAkkkkkkkhkkkk
RRRRRRRRRRKRRNRRARRRRRAK RULE 2 RARRANRARKRRRARRRAKR

replace current mission code 2

LE MISSION_CODE2_ VALUE RULE2
FIELD TO UPDATE = MISSION CODE 2 AND
MISSION_CODE2 RULE = USED AND
TOTAL <> (HRSI + HRS2 + HRS3) and
SKIP = NO

EN

MISSION 2 VALUE = NOT_ MISSING

GET DOCNUM _UPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT

CLOSE FLIGHT;

RRKRRRRARRARRRkRX MISSION CODE 2 LOGIC AAAAAkkAARkhkk
ARRRRRKRARRRRRRARRRRRRAR RULE 3 AARRRRRRARRARKNRRARR

mission code 2 was previously null
LE MISSION_CODE2_VALUE_RULE3

FIELD TO_UPDATE = MISSION“CODE_Z AND
MISSION_CODEZ2_RULE = USED AND
TOTAL = (HRS1l) AND
SKIP = NO
EN
MISSION_Z_VALUE = NOT_MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLS
RESET CHECK
FIND CHECK
TEMPHRS1
TEMPHRS?2
TEMPHRS3
TOTHRS = 72.0
SUBTOTAL = 0
find mission 2 hours
RESET HRS2
FIND HRS2
RESET TEST_HRS2
WHILETRUE TEST_HRSZ = UNKNOWN OR TEST_HRS2 = NOT_TRUE
THEN
find if mission hours 2 is valid
RESET TEST_HRS2
FIND TEST_HRSZ

nnu
OO O

END
CLS
PUT FLIGHT
CLOSE FLIGHT
loop to update ENGINE records

85

Y =1

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,

ALL

WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS

! find if engine hours is valid

RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS LOOP

Y = (Y +1)
PUT FLTENG
CLS

GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END

CLOSE FLTENG;

1 RRARKRRARRRARARRR MYISSION CODE 2 LOGIC **kkkkkkhkhkkkkk
! REERRRARARKRARAA AR AR ARk AR RULE 4 1332823333232 32 3022
1 mission code 2 is not allowed

RULE MISSION_CODE2_VALUE_ RULE4

1F
FIELD_TO_UPDATE = MISSION_CODE 2 AND
MISSION CODE2 RULE = NOT USED

THEN - - -
MISSION_2 VALUE = NOT_ REQUIRED
CLS;

| *RkRXARARkk*AAk* UPDATE MISSION HOURS 2 *kkkkkkhkkkkkkkk

RULE UPDATE_HRS2
IF
FIELD_TO_UPDATE = MISSION_Z HOURS
THEN
UPDATE_COMPLETED = YES
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
TOTAL = (HRS1)
CHECKSUM = (HRS1 +HRS2)
RESET EXCD_VALUE
FIND EXCD_VALUE
! find if mission hours 2 is valid
RESET UPDATE_HRS2 VALID
FIND UPDATE_HRS2 VALID
PUT FLIGHT
CLOSE FLIGHT
! loop to update ENGINE records
Y =1
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL

86

WHILETRUE ENGNUM <> UNKNOWN AND UPDATE_HRS2_VALID <>
FALSE
THEN

RESET ENGHRS

FIND ENGHRS

RESET ENGHRS_VALID

RESET ENGHRS_LOOP

FIND ENGHRS_LOOP

Y = (Y +1)
PUT FLTENG
CLS

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END

CLOSE FLTENG

FIELD_TO_UPDATE = DONE;

| RRkRXAXKRARARXAAX UPDATE MISSION CODE 2 *kXkRkkkhkAkA A%k

RULE UPDATE MISSION_CODE_3
IF
FIELD TO_UPDATE = MISSION_CODE_3
THEN
UPDATE_COMPLETED = YES
! display current mission code 3
DISPLAY "THE MISSION NUMBER 3 CODE IS CURRENTLY
{1MSN3_1}{1MSN3_ 2} {1MSN3_3}

PRESS ANY KEY TO CONTINUE~"

! find mission code 3 position 1
CLS
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT
TOTAL1 (HRS1)
TOTALZ2 (HRS1 + HRS2)
TOTAL = (TOTALZ2)
! determine if you are allowed to update mission code 3
RESET MISSION_CODE3_ RULE
FIND MISSION_CODE3 RULE
! from new mission code 3 determine logic to keep database
! in a valid state
RESET MISSION_3 VALUE
FIND MISSION 3 VALUE
FIELD_TO_UPDATE = DONE;

87

! RRkRkAARRRARkRAXRX MISSION CODE 3 ALLOWED *Xkkkhkxkkkkk
! mission code 3 not allowed if exception code is X

! or mission code 1 position 1 is equal to 6 or

! mission code 2 is null

RULE MISSION_CODE_3_RULE

IF
FIELD TO_UPDATE = MISSION CODE_3 AND
EXCD = X OR
MSN1 1 = 6 OR
TOTAL2 = (TOTAL1)
THEN

! mission code 3 is not allowed
! display message
MISSION_CODE3 RULE = NOT USED
DISPLAY " YOU ARE NOT ALLOWED TO ENTER A MISSION CODE
FOR ONE OF THE FOLLOWING REASONS: 1.
EXCEPTION CODE = X
2. MISSION CODE 1 BEGINS WITH A 6
3. THERE IS NO MISSION 2 CODE

PRESS ANY KEY TO CONTINUE

~ 0

CLS
CLOSE FLIGHT
ELSE
! mission code 3 is allowed
MISSION_CODE3 RULE = USED
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
! find mission code 3 position 1
RESET MSN3_1
RESET MSN3_2
RESET MSN3 3
RESET MSN31 VALID
FIND MSN31 VALID
! find mission code 3 position 2
CLS
RESET MSN32_ VALID
FIND MSN32_ VALID
! find mission code 3 position 3
CLS
RESET MSN33_VALID
FIND MSN33 VALID
PUT FLIGHT
CLOSE FLIGHT;

| RARRARRRAAXXAXR MISSION CODE 3 LOGIC *hAkAkkkkhAkkkk

| RRRRRARRRRRANRRRRRANARR RULE 1 RARKAKRRRAARRR AR RAK
! mission code 3 is null

88

RULE MISSION_CODE3 VALUE_ RULE1

IF
FIELD_TO UPDATE = MISSION_CODE_ 3 AND
MISSION_CODE3 RULE = USED AND
SKIP AGAIN = YES

THEN

MISSION_3 VALUE = MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
RESET MSN3 2
! all related flight attributes are null
MSN3_2 = (BLANK)
RESET MSN3_3
MSN3_3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
RESET MSN3_1
PUT FLIGHT
CLOSE FLIGHT
! loop to update ENGINE records
Yy =1
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS LOOP
FIND ENGHRS_LOOP

Y = (Y +1)
PUT FLTENG
CLS

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END

CLOSE FLTENG;

| Rkkkkhkhkkkakk® MISSION CODE 3 LOGIC XXkkkkkAkrkkhk
| ARARRRRRRRRRRRRRRRARRARY RULE 2 RARRANRARRAKRRARA KRR AL

! replace current mission code 3

RULE MISSION_CODE3 VALUE RULE2

IF
FIELD_TO_UPDATE = MISSION CODE_3 AND
MISSION_CODE3 RULE = USED AND
TOTAL2 <> (HRS1 + HRS2 + HRS3) and
SKIP_AGAIN = NO

THEN

MISSION_3 VALUE = NOT_MISSING

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT

CLOSE FLIGHT;

89

| RRRRRRXARRX*R*X MISSION CODE 3 LOGIC **kkkikkkikhxkx
| RARRARKNAKRARKARAARA**R RULE 2 AXAKARKRRAAAARAAARAL

! mission code 3 was previously null

RULE MISSION CODE3_VALUE_RULE3
IF
FIELD TO UPDATE = MISSION_CODE_3 AND
MISSION CODE3_RULE = USED AND
TOTAL2 = (HRS1 + HRS2 +HRS3) AND
SKIP = NO
THEN
MISSION_B_VALUE = NOT_MISSING
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
CLS
{ £ind mission 3 hours
RESET CHECK
FIND CHECK
TEMPHRS1
TEMPHRS?2
TEMPHRS3
TOTHRS =
SUBTOTAL
! find mission 3 hours
RESET HRS3
FIND HRS3
RESET TEST_HRS3
WHILETRUE TEST_HRS3 = UNKNOWN OR TEST HRS3 = NOT_TRUE
THEN
RESET TEST_HRS3
FIND TEST_HRS3
END
CLS
PUT FLIGHT
CLOSE FLIGHT
! loop to update ENGINE records
Y =1
GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

2

0
0
0
.0
0

IS I I T |

END
CLOSE FLTENG;

90

| ARARARRARARARARX MISSTION CODE 3 LOGIC *AkhkkkhkAkAhk
| RARRRRRRRRRKRKRKRRAKARRRY RULE 2 AARRAAARRARR KRN A hkX

i mission code 3 not allowed

RULE MISSION_ CODE3_VALUE_RULE4
IF
FIELD_TO_UPDATE = MISSION_CODE_3 AND
MISSION_CODE3_RULE = NOT_USED
THEN
MISSION_ 3 VALUE = NOT_REQUIRED
CLS;

| RARRARRRRRARAXRX UPDATE MISSION HOURS 3 AXARRAXAARXAANA

RULE UPDATE_HRS3
IF
FIELD TO_UPDATE = MISSION_3 HOURS
THEN B
UPDATE_COMPLETED = YES
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL
! display current mission hours 3
DISPLAY "{HRS3} IS CURRENTLY THE MISSION 3 HOURS.
"
TOTAL1 = (HRS1 + HRS2 + HRS3)
TOTAL = (HRS1 + HRS2)
CHECKSUM = (HRS1)
RESET EXCD_VALUE
FIND EXCD_VALUE
! find if mission hours 3 is valid
RESET UPDATE_HRS3_VALID
FIND UPDATE HRS3_VALID
PUT FLIGHT
CLOSE FLIGHT
! loop to update ENGINE records
Y =1

GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,

ALL

WHILETRUE ENGNUM <> UNKNOWN AND UPDATE HRS3 VALID <>

FALSE THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_VALID
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM_UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL
END
CLOSE FLTENG

91

FIELD _TO UPDATE = DONE;

| XAARRRRXARRRAXRkX% UPDATE TOTAL FLIGHTS RAXKAKAAARAAAXAR

RULE UPDATE_TOTAL_FLIGHTS
IF
FIELD_TO_UPDATE = TOTAL_FLIGHTS
THEN
UPDATE_COMPLETED = YES
! display current total flight
DISPLAY "{TOTFLT} IS CURRENTLY THE TOTAL FLIGHTS.
n

CLOSE FLIGHT

! find if total flight is valid
RESET UPDATE_TOTFLT_ VALID
FIND UPDATE_TOTFLT_VALID
CLS
FIELD TO UPDATE = DONE;

! kkkkkkkkkk*k%x UPDATE SHIP/FIELD OPERATIONS **kAkkkkkkkkkksk

RULE UPDATE_SHIP FIELD OPERATIONS CODE
IF
FIELD_TO_UPDATE = SHIP_FIELD_ OPERATIONS_ CODE
THEN
UPDATE_COMPLETED = YES
! display current ship/field operations code
DISPLAY "{OPS} IS CURRENTLY THE SHIP/FIELD OPERATIONS
CODE. "
CLOSE FLIGHT
! find if ship/field operations code is valid
RESET UPDATE _OPS_VALID
FIND UPDATE_OPS_VALID
CLS
FIELD_TO_UPDATE = DONE;

| Xkkkkhkkkrd* UPDATE CATAPULT/JATO LAUNCHES *AXxXkkkkkhkikkik

RULE UPDATE_CATAPULT JATO LAUNCHES
IF
FIELD_TO_UPDATE = CATAPULT_JATO_ LAUNCHES
THEN
UPDATE_COMPLETED = YES
! display current catapult/jato launches
DISPLAY "{CJ} IS CURRENTLY THE NUMBER OF CATAPULT/JATO
LAUNCHES.
"

CLOSE FLIGHT

! find catapult/jato launches as necessary
GET ALL, ORGAN, CATSJATO

! find if cj is valid

92

RESET UPDATE_CJ_VALID
FIND UPDATE_ CJ_VALID
CLOSE ORGAN

CLS

FIELD TO UPDATE = DONE;

| RkkkkAkkkkk**x UPDATE AIRLIFT MISSION NUMBER R*k*kkkkkAkkkkkk

RULE UPDATE_AIRLIFT_MISSION_NUMBER
IF
FIELD_TO UPDATE = AIRLIFT_MISSION_ NUMBER
THEN
UPDATE _COMPLETED = YES
! display current airlift mission number
DISPLAY " {MISNUM} IS CURRENTLY THE AIRLIFT MISSION
NUMBER.

CLOSE FLIGHT
! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
! find if airlift mission number is valid
RESET UPDATE_ AIRLIFT VALID
FIND UPDATE AIRLIFT VALID
CLOSE ORGAN
CLS
FIELD_TO_UPDATE = DONE;

| kkkkikkkkkkx UPDATE NUMBER OF HOISTS X*khkkkkkkkhkkk

RULE UPDATE_NUMBER_OF_ HOISTS
IF
FIELD_TO_UPDATE = NUMBER OF HOISTS
THEN
UPDATE COMPLETED = YES
! display current number of hoists
DISPLAY " {NUMHOISTS} IS CURRENTLY THE NUMBER OF HOISTS.
"

CLOSE FLIGHT

! find if number of hoists is wvalid
RESET UPDATE_NUMHOISTS_VALID
FIND UPDATE_NUMHOISTS_VALID
CLS
FIELD_TO_UPDATE = DONE;

| kkkhkkkkhka*x UPDATE ENGINE HOURS *RXAkAkAARkkkk®

RULE UPDATE_ENGINE_ HOURS
IF

FIELD_TO UPDATE = ENGINE HOURS
THEN

UPDATE_COMPLETED = YES

93

! find if engine hours wvalid
RESET UPDATE_ENGINE_ HOURS_VALID
FIND UPDATE_ENGINE_ HOURS_VALID
CLS
FIELD_TO_UPDATE = DONE;

| RARRRRRRRKRRARARARARX UPDATE DONE **hkkAkkkhkhkhkhhkhkhkhhhk

RULE DONE
IF

FIELD_TO UPDATE = DONE
THEN

UPDATE_COMPLETED = YES;

| ARRRRRARRARRRRARANXXNDELETE OPERATIONX* Rk kkkkkkkkkkkkkkkk

RULE DELETE DOCUMENT
IF
WHICHTASK = DELETE_RECORD
THEN
TASKCOMPLETED = YES
MENU DOCNUM_DELETE, ALL, FLIGHT, DOCNUM
! ask user for document number from menu of document numbers
FIND DOCNUM_DELETE
MRESET DOCNUM DELETE
! ask user to confirm delete operation
RESET CONTINUE
FIND CONTINUE
! find if any documents to delete
RESET DELETE
FIND DELETE;

! determine if there are any flight records to delete

RULE DELETE
IF
DOCNUM_DELETE = NONE OR
CONTINUE = NO AND
DELETE = UNKNOWN
THEN
! no records to delete or user has changed mind
! display message
DELETE = NO
DISPLAY " NO FLIGHT RECORD DELETED.

PRESS ANY KEY TO CONTINUE
CLS
ELSE
! records available to delete
! and user has confirmed deletion

94

DELETE = YES

GET DOCNUM _DELETE = DOCNUM, FLIGHT, ALL
! all attributes are set to null

DOCNUM = (BLANK)

EXCD = (BLANK)

MSN1_1 = (BLANK)
MSN1_2 = (BLANK)
MSN1_3 = (BLANK)
HRS1 = (BLANK)

MSN2_1 = (BLANK)
MSN2_2 = (BLANK)
MSN2_3 = (BLANK)
HRS2 = (BLANK)

MSN3_ 1 = (BLANK)
MSN3_2 = (BLANK)
MSN3_3 = (BLANK)

HRS3 = (BLANK)
TOTFLT = (BLANK)
OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
SIDENUM = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
! Cascade delete feature
! all associated records in with FLIGHT set to null
GET DOCNUM_DELETE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG

GET DOCNUM_DELETE = DOCNUM, FLTENG, ALL
END

CLOSE FLTENG;

| ARARRRARRKARRRRARRRRAX VIEW OPERATION RAARAAARAARAARAKARRAK

RULE VIEW_DOCUMENT
iF
WHICHTASK = DISPLAY RECORD
THEN -
RESET ALL
WHICHTASK = DISPLAY RECORD
FORMAT HRS1, 4.1
FORMAT HRS2, 4.1
FORMAT HRS3, 4.1
FORMAT ENGHRS, 4.1
TASKCOMPLETED = YES

95

RESET DOCNUM_VIEW

MENU DOCNUM _VIEW, ALL, FLIGHT, DOCNUM
! ask user for document number

FIND DOCNUM_VIEW

MRESET DOCNUM_VIEW
! find if any flight records to view

RESET VIEW

FIND VIEW;

! determine if there are any documents to view

RULE VIEW

IF
DOCNUM_VIEW = NONE AND
VIEW = UNKNOWN

THEN

! no flight records to view
VIEW = NO

DISPLAY " THERE IS NO FLIGHT RECORD TO VIEW.

PRESS ANY KEY TO CONTINUE

]

CLS

ELSE

! flight record available to view
VIEW = YES

GET DOCNUM _VIEW = DOCNUM, FLIGHT, ALL
SIDENO = (SIDENUM)
CLOSE FLIGHT
GET SIDENO = SIDE, AIRCRAFT, ALL
CLOSE AIRCRAFT
GET ALL, ORGAN, ALL
CLOSE ORGAN
CLS
1 format for display
DISPLAY " NAVAL AIRCRAFT FLIGHT RECORD

NO. {DOCNUM)
AIRCRAFT DATA

{3SIDENUM} {1EXCD} {6BUNO} {4TEC} {3O0RG}

{IMSN1 1)} {1MSN1 2} {1MSN1 3} ({4HRS1}

{1MSN2_ 1} {1MSN2 2} {1MSN2_3} {4HRS2}
{1MSN3_1}{1IMSN3_ 2} {1MSN3_3} {4HRS3} {2SUPTCD} {2TOTFLT)
{10PS}~ {2CJ} SIDE E BUNO/SER TEC ORG MSN1 HRS1 MSN2
HRS2 MSN3 HRS3 SUPT TOT O CAT/ NO. X

TOTAL MISSION REQ DATA CODE FLT P JATO C
S
D
{ 9MISNUM} {2ZNUMHOISTs}
AIRLIFT MISSION NO. NO.
96

HOISTS
1]

GET DOCNUM_VIEW = DOCNUM, FLTENG, ALL
WHILEKNOWN ENGNUM

DISPLAY " ENGINE NO{ENGNUM} ENGINE HOURS

{4ENGHRS}"

GET DOCNUM_VIEW = DOCNUM, FLTENG, ALL
END
DISPLAY "

PRESS ANY KEY TO CONTINUE....~"
CLOSE FLTENG
CLS;

| RARARRRARKARRAARARRAR EXTT OPERATION AAXAARAAAkkkkkhkhkdk

RULE EXIT
IF
WHICHTASK = EXIT
THEN
TASKCOMPLETED

YES;

! rule to determine if exception code within record is
! null and assign value BLANK to it

RULE EXCEPTION_CODE_VALUE
IF
WHICHTASK = UPDATE_RECORD AND
EXCD = UNKNOWN
THEN
EXCD_VALUE = NEEDED
RESET EXCD
EXCD = (BLANK)
ELSE
EXCD_VALUE = NOT_NEEDED;

! rule to check value of exception code is equal to X
! and mission code 1 position 1 is equal to 6

RULE CHECK_VALUE

IF
MSN1 1 = 6 OR
EXCD = X

THEN
CHECK = YES

ELSE

CHECK = NO;

! rules to determine if repeating attributes
! (mission code n, n+l,...) should be skipped

97

RULE TEST UNKNOWN1
IF
MSN2_1
MSN2_1

UNKNOWN OR
(BLANK)

it n

THEN
SKIP = YES
SKIP_AGAIN = YES
ELSE
SKIP = NO;

RULE TEST UNKNOWN2
IF
MSN3_1
MSN3_1

UNKNOWN OR
(BLANK)

THEN

SKIP_AGAIN YES
ELSE

SKIP_AGAIN

NO;

IRRkAXkRkAkRX* KNOWLEDGE BASE LIBRARY *%kkkkikkkkdkkk
I *kkxkkxxx DOMAIN INTEGRITY CONSTRAINTS **k#kkk
! THESE CONSTRAINTS ARE DEFINED IN DATA TYPES
I#%#kkhek* COLUMN INTEGRITY CONSTRAINTS ***k&kik

RULE EXCEPTION CODE_VALID
IF
EXCD_VALID = UNKNOWN
THEN
WHILETRUE EXCD_VALID
RESET TEST_EXCD
FIND TEST_EXCD
END
EXCD_VALID = TRUE;

UNKNOWN THEN

RULE COLUMN_INTEGRITY_ EXCEPTION_CODE

IF
EXCD = C OR
EXCD = D OR
EXCD = X OR
EXCD = UNKNOWN OR
EXCD = (BLANK) AND
EXCD_VALID = UNKNOWN
THEN
TEST_EXCD = YES
EXCD_VALID = TRUE
ELSE

TEST_EXCD = YES
DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO

98

CONTINUE."

RESET EXCD
FIND EXCD;
RULE UPDATE_EXCEPTION_CODE VALID
IF
FIELD_TO UPDATE = EXCEPTION CODE AND
UPDATE_EXCD _VALID = UNKNOWN
THEN

WHILETRUE UPDATE_EXCD VALID = UNKNOWN THEN
RESET TEST_ UPDATE EXCD
FIND TEST UPDATE EXCD

END

UPDATE_EXCD_VALID = TRUE;

RULE COLUMN INTEGRITY UPDATE_ EXCEPTION CODE

IF
EXCD_NEW = C OR
EXCD_NEW = D OR
EXCD_NEW = X OR
EXCD_NEW = (BLANK) AND
FIELD_TO_UPDATE = EXCEPTION CODE
THEN
TEST UPDATE_EXCD = YES
UPDATE_EXCD_VALID = TRUE
ELSE

TEST_UPDATE_EXCD = YES

DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO
CONTINUE. "

RESET EXCD_NEW

FIND EXCD_NEW;

RULE MISSION 1 POSITION 1
IF
MSN11 _VALID = UNKNOWN
THEN
WHILETRUE MSN11l _VALID = UNKNOWN THEN
RESET TEST_ MSN11
FIND TEST_MSN11
END
MSN11_VALID = TRUE;

RULE COLUMN_INTEGRITY MISSION1l_CODE

IF
MSN1_1 >= 1 AND
MSN1 1 <= 6
THEN
TEST_MSN11l = YES
MSN11l VALID = TRUE
ELSE

TEST_MSN11 = YES

99

RULE
IF

THEN

RULE
IF

THEN

ELSE

RULE
IF

THEN

ELSE

RULE
IF

THEN

DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 6."
RESET MSN1_1
FIND MSN1_1;

MISSION_1_ POSITION_3
MSN13 VALID = UNKNOWN

WHILETRUE MSN13 VALID = UNKNOWN THEN
RESET TEST MSN13
FIND TEST MSN13
END
MSN13_VALID = TRUE
DISPLAY "{MSN1_1}{MSN1_2}{MSN1_3}
PRESS ANY KEY TO CONTINUE~";

TEST_MISSION13_ CODE_VALID

MSN1 3 >= 0 AND
MSN1l 3 <= 9

TEST _MSN13 = YES
MSN13 VALID = TRUE

TEST_MSN13 = YES

DISPTAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN1_3

FIND MSN1_3;

HRS_1 VALID
EXCD = X
HRS1_VALID = NOT_NEEDED

RESET HRS1

FIND HRS1

WHILETRUE HRS1 VALID = UNKNOWN THEN
RESET TEST HRS1 .
FIND TEST_HRS1

END

HRS1 VALID = TRUE; ;

UPDATE_HRS_1_ VALID

FIELD_TO_UPDATE = MISSION_1 HOURS AND

EXCD = X

DISPLAY " YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 1
BECAUSE THE EXCEPTION CODE IS CURRENTLY ({EXCD}
"

100

UPDATE_HRS1 VALID = FALSE

ELSE
SUBTOTAL_HOURS = ((HRS2) + (HRS3))
ALLOWED_HOURS = (72 - (SUBTOTAL_HOURS))
RESET HRS1
FIND HRS1

WHILETRUE UPDATE_HRS1 VALID = UNKNOWN THEN
RESET UPDATE _TEST_HRS1
FIND UPDATE TEST HRS1

END

UPDATE_HRS1 VALID = TRUE;

RULE UPDATE_HRS_ 2 VALID

IF
FIELD _TO_UPDATE = MISSION_2 HOURS AND
CHECK = YES CR
TOTAL = (CHECKSUM)
THEN
DISPLAY "YQOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 2
BECAUSE:
1. THE EXCEPTION CODE IS CURRENTLY X
2. THE MISSION 1 CODE BEGINS WITH A 6
3. THE MISSION 2 CODE IS MISSING
"
UPDATE_HRS2_VALID = FALSE
ELSE
SUBTOTAL HOURS = ((HRS1l) + (HRS3))
ALLOWED_HOURS = (72 - (SUBTOTAL_ HOURS))
RESET HRS2
FIND HRS2

WHILETRUE UPDATE HRS2 VALID = UNKNOWN THEN
RESET UPDATE TEST HRS2
FIND UPDATE TEST HRS2

END

UPDATE_HRS2 VALID = TRUE;

RULE UPDATE_HRS_3 VALID

IF
FIELD_TO_UPDATE = MISSION_ 3 HOURS AND
CHECK = YES OR
TOTAL = (CHECKSUM) OR
TOTAL = (TOTAL1)
THEN
DISPLAY "YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 3
BECAUSE :
1. THE EXCEPTION CODE IS CURRENTLY X
2. THE MISSION 1 CODE BEGINS WITH A 6
3. TFE MISSION 2 CODE IS MISSING
4. THE MISSION 3 CODE IS MISSING

UPDATE_HRS3_VALID = FALSE

101

ELSE
SUBTOTAL_HOURS = ((HRS1) + (HRS2))
ALLOWED_ HOURS = (72 - (SUBTOTAL_HOURS))
RESET HRS3
FIND HRS3

WHILETRUE UPDATE HRS3 VALID = UNKNOWN THEN
RESET UPDATE_TEST HRS3
FIND UPDATE TEST_HRS3

END

UPDATE_HRS3_VALID = TRUE;

RULE COLUMN_INTEGRITY UPPATE HRS1

Ir
FIELD_TO_UPDATE = MISSION_1_ HOURS AND
HRS1 > 0.0 AND
HRS1 <= (ALLOWED_ HOURS)
THEN
UPDATE_TEST_HRS1 = YES
UPDATE _HRS1 VALID = TRUE
TOTAL = ((HRS1l) + (SUBTOTAL_HOURS))
ELSE

UPDATE_TEST_HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED_HOURS}"

RESET HRS1
FIND HRS1;
RULE COLUMN_INTEGRITY UPDATE HRS2
IF
FIELD_TO_UPDATE = MISSION 2 HOURS AND
HRS2 > 0.0 AND
HRS2 <= (ALLOWED HOURS)
THEN
UPDATE_TEST_HRS2 = YES
UPDATE_HRS2_VALID = TRUE
TOTAL = ((HRS2) + (SUBTOTAL_HOURS))
ELSE

UPDATE_TEST_HRS2 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED_HOURS}"

RESET HRS2
FIND HRS2;
RULE COLUMN_ INTEGRITY_ UPDATE_HRS3
IF
FIELD_TO_UPDATE = MISSION_3_HOURS AND
HRS3 > 0.0 AND
HRS3 <= (ALLOWED_ HOURS)
THEN

UPDATE_TEST_HRS3 = YES
UPDATE_HRS3_VALID = TRUE

102

TOTAL = ((HRS3) + (SUBTOTAL_HOURS))
ELSE
UPDATE_TEST_HRS3 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED_ HOURS}"

RESET HRS3
FIND HRS3;
RULE COLUMN_INTEGRITY_ HRS1
IF
HRS1 > 0.0 AND
HRS1 <= 72.0
THEN
TEST_HRS1 = YES
HRS1 VALID = TRUE
TOTAL = (HRS1)
ELSE

TEST_HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO 72.0"

RESET HRS1
FIND HRS1;
RULE MISSION 2 POSITION 1
IF
CHECK = YES
THEN
MSN21 VALID = NOT NEEDED
SKIP = YES
SKIP_AGAIN = YES
ELSE

RESET MSN2_1

FIND MSN2_1

RESET SKIP

FIND SKIP

WHILETRUE MSN21_VALID = UNKNOWN THEN
RESET TEST_MSN21
FIND TEST_MSN21

END

MSN21 _VALID = TRUE;

RULE COLUMN_ INTEGRITY MISSION21

IF
MSN2 1 >= 1 OR
MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK) AND
MSN2_1 <= 5 OR
MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK)

THEN

TEST_MSN21 = YES
MSN2T_VALID = TRUE

103

ELSE
TEST_MSN21 = YES
DISPTAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN2_ 1
FIND MSN2 1;

RULE MISSION 2 POSITION 2
IF
CHECK = YES OR
SKIP = YES
THEN
MSN22_VALID = NOT_ NEEDED;

RULE TEST_MISSION23_CODE_VALID

IF

CHECK = YES OR

SKIP = YES
THEN

MSN23_VALID = NOT_NEEDED
ELSE

RESET MSN2_3

FIND MSN2 3

WHILETRUE MSN23 VALID = UNKNOWN THEN
RESET TEST MSN23
FIND TEST MSN23

END

MSN23_VALID = TRUE

DISPLAY "{MSN2_1}{MSN2 2} {MSN2_3}

PRESS ANY KEY TO CONTINUE~";

RULE TEST_MISSION23_CODE VALID
IF
MSN2 3 >= 0 AND
MSN2_3 <= 9
THEN
TEST_MSN23 = YES
MSN23_VALID = TRUE
ELSE
TEST_MSN23 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN2_3
FIND MSN2_3;

RULE HRS_2_VALID

IF

CHECK = YES OR

SKIP = YES
THEN

HRS2 VALID = NOT_NEEDED
ELSE

RESET HRS2

104

FIND HRS2

WHILETRUE HRS2 VALID = UNKNOWN THEN
RESET TEST_HRS2
FIND TEST HRS2

END

HRS2 VALID = TRUE;

RULE COLUMN_ INTEGRITY_ HRS2

IF

HRS2 > 0.0 AND

HRS2 <= 72.0 AND

TOTHRS >= (HRS1 + HRS2 + TEMPHRS3)
THEN

TEST_HRS2 = YES

HRS2 VALID = TRUE

TOTAL = ((TOTAL) + (HRS2))
ELSE

TEST_HRS2 = YES
SUBTOTAL = (TOTHRS - HRS1)
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO

{SUBTOTAL}"
RESET HRS2
FIND HRS2;
RULE MISSION_3 POSITION_ 1
IF
CHECK = YES OR
SKIP = YES
THEN
MSN31 VALID = NOT_NEEDED
ELSE

RESET MSN3_1

FIND MSN3_1

RESET SKIP AGAIN

FIND SKIP_AGAIN

WHILETRUE MSN31 VALID = UNKNOWN THEN
RESET TEST_MSN31
FIND TEST_MSN31

END

MSN31 VALID = TRUE;

RULE COLUMN INTEGRITY_ MISSION31

IF
MSN3 1 >= 1 OR
MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK) AND
MSN3_1 <= 5 OR
MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK)

THEN

TEST_MSN31 = YES

105

ELSE

RULE
IF

THEN

RULE
IF

THEN

ELSE

RULE
IF

THEN

ELSE

RULE
IF

MSN31 VALID = TRUE

TEST MSN31 = YES

DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN3_1

FIND MSN3_1;

MISSION 3 _POSITION_2

CHECK = YES OR
SKIP = YES OR
SKIP_AGAIN = YES

MSN32_VALID = NOT_NEEDED;
TEST_MISSION33_CODE_VALID

CHECK = YES OR
SKIP = YES OR
SKIP_AGAIN = YES

MSN33 VALID = NOT_ NEEDED

RESET MSN3_3

FIND MSN3_3

WHILETRUE MSN33 VALID = UNKNOWN THEN
RESET TEST MSN33
FIND TEST MSN33

END

MSN33 VALID = TRUE

DISPLAY "{MSN3 1}{MSN3_2}{MSN3_3}

PRESS ANY KEY TO CONTINUE~";

TEST_MISSION33_CODE_VALID

MSN3_3 >= 0 AND
MSN3_3 <= 9

TEST_MSN33 = YES
MSN33_VALID = TRUE

TEST_MSN33 = YES

DISPLAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN3_3

FIND MSN3_3;

HRS_3 VALID
CHECK = YES OR

SKIP = YES OR
SKIP_AGAIN = YES

106

THEN
HRS3_VALID = NOT_NEEDED
ELSE
RESET HRS3
FIND HRS3
WHILETRUE HRS3 VALID = UNKNOWN THEN
RESET TEST_HRS3
FIND TEST HRS3
END
HRS3_VALID = TRUE;

RULE COLUMN_INTEGRITY_ HRS3

IF

HRS3 > 0.0 AND

HRS3 <= 72.0 AND

TOTHRS >= (HRS1 + HRS2 + HRS3)
THEN

TEST_HRS3 = YES

HRS3_VALID = TRUE

TOTAL = ((TOTAL) + (HRS3))
ELSE

TEST_HRS3 = YES

SUBTOTAL = (TOTHRS - (HRS1 + HRS2))

DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{SUBTOTAL}"

RESET HRS3

FIND HRS3;

RULE TOTAL_FLIGHTS VALID
IF
EXCD = X
THEN
TOTFLT_VALID = NOT_ NEEDED
ELSE
RESET TOTFLT
FIND TOTFLT
WHILETRUE TOTFLT VALID = UNKNOWN THEN
RESET TEST TOTFLT
FIND TEST_TOTFLT
END
TOTFLT_VALID = TRUE;

RULE UPDATE_TOTAL_ FLIGHTS_ VALID

IF
EXCD = X AND
FIELD_TO_UPDATE = TOTAL FLIGHTS

THEN
UPDATE_TOTFLT VALID = NOT_NEEDED
DISPLAY " YOU ARE NOT ABLE TO ENTER TOTAL FLIGHTS FOR
{DOCNUM_UPDATE} BECAUSE THE EXCEPTION CODE IS CURRENTLY
{EXCD}

107

PRESS ANY KEY TO CONTINUE~"
CLS
ELSE
GET DOCNUM UPDATE = DOCNUM, FLIGHT, TOTFLT
RESET TOTFLT
FIND TOTFLT
WHILETRUE UPDATE_TOTFLT VALID = UNKNOWN THEN
RESET TEST TOTFLT
FIND TEST_TOTFLT
END
PUT FLIGHT
CLOSE FLIGHT
UPDATE_TOTFLT_VALID = TRUE;

RULE COLUMN_INTEGRITY TOTFLT
IF
TOTFLT >= 1 AND
TOTFLT <= 99
THEN
TEST_TOTFLT = YES
TOTFLT_VALID = TRUE
UPDATE_TOTFLT_VALID = TRUE
ELSE
TEST_TOTFLT = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99"
RESET TOTFLT
FIND TOTFLT;

RULE OPS_CODE_VALID

IF

EXCD = X
THEN

OPS_VALID = NOT_NEEDED
ELSE

WHILETRUE OPS_VALID = UNKNOWN THEN

RESET TEST OPS

FIND TEST OPS -
END
OPS_VALID = TRUE;

RULE UPDATE_SHIP_FIELD_OPS_CODE_VALID
IF
EXCD = X AND
FIELD TO_UPDATE = SHIP_FIELD_OPRRATIONS CODE
THEN
UPDATE_OPS_VALID = NOT_NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER SHIP/FIELD
OPERATIONS CODE FOR {DOCNUM_UPDATE}
BECAUSE THE EXCEPTION CODE IS CURRENTLY {EXCD}

108

PRESS ANY KEY TO CONTINUE~"
CLS
ELSE

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, OPS

RESET OPS

FIND OPS

WHILETRUE UPDATE_OPS_VALID = UNKNOWN THEN
RESET TEST_OPS
FIND TEST_OPS

END

PUT FLIGHT

CLOSE FLIGHT

UPDATE_OPS_VALID = TRUE;

RULE COLUMN_ INTEGRITY_ OPS CODE

IF
OPS = A OR
OPS = B OR
OPS = 1 OR
OPS = 2
THEN
TEST_OPS = YES
OPS_VALID = TRUE
UPDATE_OPS_VALID = TRUE
ELSE

TEST OPS = YES
DISPTAY " YOU NEED TO ENTER AN A, B, 1, OR 2."

RESET OPS
FIND OPS;
RULE CATS_JATO_VALID
IF
CATSJATO = N OR
EXCD = X
THEN
CJ_VALID = NOT NEEDED
ELSE
RESET CJ
FIND CJ

WHILETRUE CJ_VALID = UNKNOWN THEN
RESET TEST_CJ
FIND TEST CJ

END

CJ_VALID = TRUE;

RULE UPDATE_CATAPULT_JATO_LAUNCHES_VALID
IF
CATSJATO = N OR
EXCD = X AND
FIELD_TO_UPDATE = CATAPULT_JATO_LAUNCHES

109

THEN

UPDATE_CJ_VALID = NOT_ NEEDED

DISPLAY "YOU ARE NOT ABLE TO ENTER CATAPULT/JATO
LAUNCHES FOR {DOCNUM UPDATE} BECAUSE EITHER

1. YOUR ORGANIZATION DOES NOT DOCUMENT CATAPULT/JATO

LAUNCHES

2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE~"

CLsS

ELSE

RULE
IF

THEN

ELSE

RULE
IF

THEN

ELSE

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, CJ

RESET CJ
FIND CJ

WHILETRUE UPDATE_CJ_VALID = UNKNOWN THEN

RESET TEST_CJ
FIND TEST CJ
END
PUT FLIGHT
CLOSE FLIGHT
UPDATE_CJ VALID = TRUE;

COLUMN_INTEGRITY_ CJ

CJ >= 1 OR

CJ = UNKNOWN OR
CJ = (BLANK) AND
CJ <= 99 OR

CJ = UNKNOWN OR
CJ = (BLANK)

TEST_CJ = YES
CJ_VALID = TRUE
UPDATE_CJ_VALID = TRUE

TEST_CJ = YES

DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99 OR
<SPACE> FOR NONE"

RESET CJ
FIND CJ;

AIRLIFT_MISSION NUMBER VALID

AIRLIFT = N OR
EXCD = X

AIRLIFT_VALID = NOT_NEEDED

RESET MISNUM
FIND MISNUM
AIRLIFT VALID = TRUE;

110

RULE UPDATE AIRLIFT_MISSION NUMBER VALID
IF
AIRLIFT = N OR
EXCD = X AND
FIELD TO UPDATE = AIRLIFT MISSION NUMBER
THEN
UPDATE_AIRLIFT VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER AIRLIFT MISSION
NUMBERS FOR {DOCNUM_UPDATE} BECAUSE EITHER
1. YOUR ORGANIZATION DOES NOT DOCUMENT AIRLIFT
MISSION NUMBERS
2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE~"
CLS
ELSE
GET DOCNUM_UPDATE = DOCNUM, FLIGHT, MISNUM
RESET MISNUM
FIND MISNUM
PUT FLIGHT
CLOSE FLIGHT
UPDATE_AIRLIFT_VALID = TRUE;

RULE NUMHOIST_ VALID

IF
NUMHOIST VALID = UNKNOWN AND
EXCD = X
THEN
NUMHOIST VALID = NOT_NEEDED
ELSE

WHILETRUE NUMHOIST VALID = UNKNOWN THEN
RESET TEST_NUMHOIST
FIND TEST_NUMHOIST

END

NUMHOIST_VALID = TRUE;

RULE UPDATE_NUMHOISTS_VALID

IF
EXCD = X AND
FIELD_TO UPDATE = NUMBER OF HOISTS
THEN
UPDATE_NUMHOISTS_VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER NUMBER OF HOISTS FOR
{DOCNUM_UPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD])
PRESS ANY KEY TO CONTINUE~"
CLS
ELSE

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, NUMHOISTS
RESET NUMHOISTS

111

RULE

IF

THEN

ELSE

RULE
IF

THEN

ELSE

FIND NUMHOISTS

WHILETRUE UPDATE_NUMHOISTS VALID = UNKNOWN THEN
RESET TEST_NUMHOIST
FIND TEST_NUMHOIST

END

PUT FLIGHT

CLOSE FLIGHT

UPDATE_NUMHOISTS VALID = TRUE;

COLUMN_INTEGRITY_ NUMHOIST
NUMHOISTS >= 1 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK) AND
NUMHOISTS <= 99 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK)

TEST_NUMHOIST = YES
NUMHOIST VALID = TRUE
UPDATE _NUMHOISTS VALID = TRUE

TEST_NUMHOIST = YES

DISPLAY " YOU NEED TO ENTER A NUMBER FROM 1 TO 99, OR ?
FOR NONE."

RESET NUMHOISTS

FIND NUMHOISTS;

UPDATE_ENGINE_ HOURS_VALID

EXCD = X AND
FIELD_TO_UPDATE = ENGINE_HOURS

UPDATE_ENGINE_HOURS_VALID = NOT NEEDED

DISPLAY " YOU ARE NOT ABLE TO ENTER ENGINE HOURS FOR
{DOCNUM_UPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD}

PRESS ANY KEY TO CONTINUE~"
CLS

UPDATE_ENGINE_ HOURS_VALID = NEEDED

GET DOCNUM_UPDATE = DOCNUM, FLIGHT, ALL

TOTAL = (HRS1 + HRS2 + HRS3)

CLOSE FLIGHT

RESET ENGINE NUMBER

MENU ENGINE NUMBER, DOCNUM_UPDATE = DOCNUM, FLTENG,
ENGNUM

FIND ENGINE NUMBER

MRESET ENGINE_NUMBER

112

CLOSE FLTENG

GET DOCNUM UPDATE = DOCNUM AND ENGINE NUMBER

FLTENG, ENGHRS

RESET UPDATE_ENGHRS
FIND UPDATE_ENGHRS
ENGHRS = (UPDATE_ENGHRS)
RESET ENGHRS_VALID
RESET ENGHRS_LOOP

FIND ENGHRS_LOOP

PUT FLTENG

CLS

CLOSE FLTENG

FIELD_TO UPDATE = DONE;

RULE COLUMN_INTEGRITY ENGINE_HOURS
IF
ENGHRS > 0 AND
ENGHRS <= (TOTAL)
THEN
TEST_ENGHRS = YES
ENGHRS_VALID = TRUE
ELSE
TEST_ENGHRS = YES

ENGNUM,

DISPLAY " YOU MUST ENTER ENGINE HOURS BETWEEN 00.1 AND

{4TOTAL}."
RESET ENGHRS
FIND ENGHRS;

IRRkARkRkRkRRk ENTITY CONSTRAINT RULES *AAkkkkhkkk

RULE ENTITY_ INTEGRITY DOCNUM MISSING
IF
DOCNUM_NEW
DOCNUM_NEW
THEN
! loop to get user to enter a document number
WHILETRUE DOCNUM_NEW = UNKNOWN OR DOCNUM_NEW
THEN

UNKNOWN OR
(BLANK)

= (BLANK)

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS

YOU ENTER A DOCUMENT NUMBER."
RESET DOCNUM_NEW
FIND DOCNUM NEW
END -
DOCNUM_NOT_MISSING
ELSE
DOCNUM_NOT_MISSING

]

TRUE

TRUE;

RULE ENTITY_ INTEGRITY_ DOCNUM DUPLICATE
IF
DOCNUM_NEW <> UNKNOWN OR
DOCNUM_NEW <> (BLANK)

113

THEN
GET DOCNUM NEW = DOCNUM, FLIGHT, DOCNUM
WHILETRUE DOCNUM = (DOCNUM _NEW) THEN
CLOSE FLIGHT
DISPLAY " THERE IS ALREADY A DOCUMENT NUMBER
{DOCNUM_NEW} THAT EXISTS WITHIN THE DATABASE."
RESET DOCNUM_NEW
! get another document number
FIND DOCNUM_NEW
RESET DOCNUM_NOT_ MISSING
! once again must verify that document number is not a null
! value
FIND DOCNUM_NOT MISSING
GET DOCNUM_NEW = DOCNUM, FLIGHT, DOCNUM
END
DOCNUM_DUPLICATE = FALSE;

RULE ENTITY INTEGRITY UPDATE_ SIDENUM MISSING

IF
FIELD_TO_UPDATE = SIDE NUMBER AND
SIDENUM UPDATE = UNKNOWN OR
SIDENUM _UPDATE = (BLANK)

THEN

! loop to get user to enter a aircraft side number
WHILETRUE SIDENUM UPDATE = UNKNOWN OR SIDENUM UPDATE =
(BLANK) THEN

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."

RESET SIDENUM UPDATE

FIND SIDENUM_UPDATE

END

SIDENUM_UPDATE NOT_MISSING = TRUE
ELSE

SIDENUM UPDATE_ NOT_MISSING = TRUE;

RULE ENTITY CONSTRAINT SIDENUM MISSING
IF WHICHTASK = APPEND_RECORD AND
SIDENUM_NEW = UNKNOWN OR
SIDENUM_NEW = (BLANK)
THEN
! loop to get user to enter a aircraft side number
WHILETRUE SIDENUM_NEW = UNKNOWN OR SIDENUM_NEW =
{BLANK) THEN
DISPLAY ™ YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."
RESET SIDENUM NEW
FIND SIDENUM_ NEW

END

SIDENUM_NOT_MISSING = TRUE
ELSE

SIDENUM_NCT MISSING = TRUE;

114

Ik kkk*kx** REFERENTIAL CONSTRAINT RULES ****kkkkk&

RULE REFERENTIAL INTEGRITY_ SIDENUi EXISTS

IF
WHICHTASK = APPEND_RECORD AND
SIDENUM_NEW <> UNKNOWN OR
SIDENUM NEW <> (BLANK)

THEN

GET SIDENUM _NEW = SIDE, AIRCRAFT, SIDE
! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN
CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER {SIDENUM NEW}."
RESET SIDENUM NEW
! get another side number
FIND SIDENUM_NEW
RESET SIDENUM NOT MISSING
! once again must verify that side number is not a nu.l
! value
FIND SIDENUM NOT MISSING
GET SIDENUM _NEW = SIDE, AIRCRAFT, SIDE
END
SIDENUM_EXISTS = TRUE
SIDENUM = (SIDE);

RULE REFERENTIAL INTEGRITY UPDATE SIDENUM EXISTS
IF
FIELD_TO_UPDATE = SIDE_NUMBER AND
SIDENUM UPDATE <> UNKNOWN OR
SIDENUM_UPDATE <> (BLANK)
THEN
GET SIDENUM_UPDATE = SIDE, AIRCRAFT, SIDE
! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN
CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER {SIDENUM UPDATE}."
RESET SIDENUM_UPDATE
! get another side number
FIND SIDENUM_UPDATE
RESET SIDENUM UPDATE NOT_MISSING
! once again must verify that side number is not a null
! value
FIND SIDENUM UPDATE NOT_MISSING
GET SIDENUM UPDATE = SIDE, AIRCRAFT, SIDE
END
SIDENUM_UPDATE _EXISTS = TRUE
SIDENUM = (SIDE)
CLOSE AIRCRAFT;

RULE ENGINE_HOURS_VALID
IF
EXCD = X AND
ENGHRS_VALID = UNKNOWN AND
FIELD TO UPDATE <> ENGINE_HOURS
THEN
ENGHRS_VALID = NOT_NEEDED
ELSE
Y= 0
ENGINE = (ENGINES - 1)
WHILETRUE Y <= (ENGINE) THEN
RESET ENGHRS_VALID
ENGNUM = (Y +1)
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
APPEND FLTENG
CLS
END
ENGHRS_VALID = TRUE;

RULE ENGINE_HOURS_LOOP
IF
ENGHRS_LOOP = UNKNOWN
THEN
WHILETRUE ENGHRS_VALID = UNKNOWN THEN
RESET TEST_ENGHRS
FIND TEST_ ENGHRS
END
ENGHRS_LOOP = TRUE;

RULE UPDATE_ENGINE_HOURS_VALID_1
IF
EXCD = X AND
UPDATE_ENGHRS_VALID = UNKNOWN AND
WHICHTASK = UPDATE_RECORD AND
FIELD_TO UPDATE <> ENGINE_HOURS
THEN
UPDATE_ENGHRS_VALID = NOT_NEEDED;

RULE UPDATE_ENGINE_HOURS_VALID_2
IF
EXCD <> X AND
UPDATE_ENGHRS_VALID = UNKNOWN AND
WHICHTASK = UPDATE_RECORD AND
FIELD TO_UPDATE <> ENGINE_HOURS
THEN
Y =0
ENGINE = (ENGINES - 1)

116

WHILETRUE Y <= (ENGINE) THEN
RESET ENGHRS_VALID
ENGNUM = (Y + 1)

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS_LOOP
FIND ENGHRS_LOOP
Y = (Y +1)
APPEND FLTENG
CLS
END
UPDATE_ENGHRS_VALID = TRUE;

RULE UPDATE_ENGINE HOURS_LOOP
IF
UPDATE_ENGHRS_LOOP = UNKNOWN
THEN
WHILETRUE UPDATE_ENGHRS VALID = UNKNOWN THEN
RESET TEST_ ENGHRS
FIND TEST_ENGHRS
END
UPDATE_ENGHRS_LOOP = TRUE;

I*kkkkkkkk** USER DEFINED CONSTRAINT RULES **x#k&kkkkkik

RULE MISSION_POSITION_12A

IF
MSN1 1 = 1 AND
EXCD <> X AND
MSN12_ VALID = UNKNOWN
THEN

WHILETRUE MSN12_VALID = UNKNOWN THEN
RESET CK_MSNI2A
FIND CK_MSN12A
RESET REPEAT_ REQUEST2A
FIND REPEAT REQUEST2A
END
MSN12_VALID = TRUE;

RULE USER_DEFINED_ MISSION12A_CODE

IF
MSN1 2 = A OR
MSN1_2 = B OR
MSN1_2 = C OR
MSN1_2 = D OR
MSN1_2 = E OR
MSN1_2 = F OR
MSN1 Z = G OR
MSN1 2 = H OR
MSN1 2 = I OR
MSN1_2 = N OR

117

MSN1_2 = OR
MSN1 2 = P OR
MSN1 2 = R AND
MSN1_1 = 1 AND
EXCD <> X

THEN
CK_MSN12A = YES
MSN12 VALID = TRUE;

RULE USER_DEFINED_MISSION12AA CODE

IF
MSN1 2 <> A OR
MSN1_2 <> B OR .
MSN1_2 <> C OR
MSN1_2 <> D OR
MSN1_2 <> E OR)
MSN1_2 <> F OR
MSN1 2 <> G OR
MSN1l 2 <> H OR
MSN1_2 <> I OR
MSN1_2 <> N OR
MSN1_2 <> O OR
MSN1 2 <> P OR
MSN1_2 <> R AND
MSN1 1 = 1 AND
EXCD <> X
THEN

CK_MSN12A = YES;

RULE REPEAT REQUEST_12A

IF
MSN12 VALID <> UNKNOWN
THEN
REPEAT REQUEST2A = NO
ELSE
CK_MSN12A = YES
REPEAT REQUEST2A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P. .
PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN1 2 '

FIND MSN1_2;

RULE MISSION_POSITION_12B

IF
MSN1 1 = 2 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN
THEN

WHILETRUE MSN12 VALID = UNKNOWN THEN

118

_

RESET CK_MSN12B
FIND CK_MSN12B
RESET REPEAT_REQUESTZ2B
FIND REPEAT_REQUEST2B
END
MSN12_VALID = TRUE;

RULE USER_DEFINED_ MISSION12B_CODE

IF
MSN1_2 = J OR
MSN1_2 = K OR
MSN1_2 = L OR
MSN1 2 = M OR
MSN1_2 = N OR
MSN1_2 = O OR
MSN1"2 = P OR
MSN1 2 = Q OR
MSN1 2 = R AND
MSN1_1 = 2 AND
EXCD <> X

THEN

CK_MSN12B = YES
MSN12 VALID = TRUE;

RULE USER DEFINED MISSION12BB_CODE

IF
MSN1 2 <> J OR
MSN1 2 <> K OR
MSN1_2 <> L OR
MSN1 2 <> M OR
MSN1 2 <> N OR
MSN1_2 <> O OR
MSN1_2 <> P OR
MSN1_2 <> Q OR
MSN1 2 <> R AND
MSN1 1 = 2 AND
EXCD <> X

THEN

CK_MSN12B = YES;

RULE REPEAT REQUEST_12B

IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT REQUEST2B = NO
ELSE

REPEAT_REQUEST2B = YES

CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE. ~"
CLS

119

RESET MSN1 2
FIND MSN1 2;

RULE MISSION_POSITION_12C

IF
MSN1 1 >= 3 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN
THEN

WHILETRUE MSN12 VALID = UNKNOWN THEN
RESET CK_MSNI2C
FIND CK_MSN12C
RESET REPEAT REQUEST2C
FIND REPEAT REQUEST2C
END
MSN12_VALID = TRUE;

RULE USER_DEFINED_MISSION12C_CODE
IF

MSN1_2 = N OR
MSN1_2 = 0 OR
MSN1_2 = S OR
MSN1_2 = T OR
MSN1_2 = U OR
MSN1_2 = V OR
MSN1 2 = W OR
MSN1_2 = X OR
MSN1_2 = Y OR
MSN1 2 = 2z AND
MSN1_1 >= 3 AND
EXCD <> X

THEN
CK_MSN12C = YES
MSN12 VALID = TRUE;

RULE USER_DEFINED_MISSION12CC_CODE

IF
MSN1 2 <> N OR
MSN1 2 <> 0 OR
MSN1 2 <> S OR
MSN1 2 <> T OR
MSN1 2 <> U OR
MSN1 2 <> V OR
MSN1_2 <> W OR
MSN1 2 <> X OR
MSN1 2 <> Y OR
MSN1 2 <> Z AND
MSN1 1 >= 3 AND
EXCD <> X

THEN
CK_MSN12C = YES;

120

RULE REPEAT REQUEST_12C

IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT_REQUEST2C = NO
ELSE

REPEAT_REQUEST2C = YES

CLS

DISPLAY " POSITION 2 MUST BE N, O, OR S-Z.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN1 2

FIND MSN1 2;

RULE MISSION POSITION_ 12D
IF
EXCD = X AND
MSN12_VALID = UNKNOWN
THEN
WHILETRUE MSN12 VALID = UNKNOWN THEN
RESET CK_MSN12D
FIND CK_MSN12D
RESET REPEAT REQUEST2D
FIND REPEAT REQUEST2D
END
MSN12_VALID = TRUE;

RULE USER DEFINED MISSION12D_ CODE

IF
MSN1 2 = N OR
MSN1_2 = O AND
EXCD = X

THEN

CK_MSN12D = YES
MSN12_VALID = TRUE;

RULE TEST_MISSION12DD_CODE_VALID
IF

MSN1 2 <> N AND

EXCD = X
THEN

CK_MSN12D = YES;

RULE TEST MISSION12DDD_CODE VALID
IF

MSN1 2 <> O AND

EXCD = X
THEN

CK_MSN12D = YES;

RULE REPEAT REQUEST 12D

121

IF

MSN12_VALID <> UNKNOWN
THEN

REPEAT REQUEST2D = NO
ELSE

REPEAT REQUEST2D = YES

CLS

DISPLAY " POSITION 2 MUST BE N, OR O.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN1_2

FIND MSN1_Z;

RULE MISSION_POSITION_22A
IF
MSN2 1 = 1 AND
MSN2Z_VALID = UNKNOWN
THEN
WHILETRUE MSN22 VALID = UNKNOWN THEN
RESET CK_MSN22A
FIND CK_MSN22A
RESET REPEAT REQUEST2A
FIND REPEAT REQUEST2A
END
MSN22_VALID = TRUE;

RULE USER DEFINED_MISSION22A CODE
IF

MSN2 2 = A OR
MSN2 2 = B OR
MSNZ 2 = C OR
MSN2 2 = D OR
MSN2_ 2 = E OR
MSN2_2 = F OR
MSN2 2 = G OR
MSN2 2 = H OR
MSN2 2 = I OR
MSN2 2 = N OR
MSN2_2 = O OR
MSN2 2 = P OR
MSN2 2 = R AND
MSN2 1 = 1 AND
EXCD <> X

THEN
CK_MSN22A = YES
MSN22 VALID = TRUE;

RULE USER DEFINED MISSION22AA CODE
IF

MSN2_2 <> A OR
MSN2 2 <> B OR

122

THEN

RULE
IF
THEN

ELSE

RULE
IF

THEN

RULE
IF

MSN2_2 <> C OR
MSN2_2 <> D OR
MSN2_2 <> E OR
MSN2 2 <> F OR
MSN2_2 <> G OR
MSN2 2 <> H OR
MSN2_ 2 <> I OR
MSN2_2 <> N OR
MSN2_2 <> O OR
MSN2 2 <> P OR
MSN2_ 2 <> Q AND
MSN2_1 = 1 AND
EXCD <> X

CK_MSN22A = YES;
REPEAT_REQUEST 2A
MSN22 VALID <> UNKNOWN
REPEAT_REQUEST22A = NO

CK_MSN22A = YES

REPEAT_REQUEST22A = YES

CLS

DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN2_2

FIND MSN2 2;

MISSION_POSITION 22B

MSN2 1 = 2 AND
EXCD <> X AND
MSN22_VALID = UNKNOWN

WHILETRUE MSN22 VALID = UNKNOWN THEN
RESET CK_MSN22B
FIND CK_MSN22B
RESET REPEAT REQUEST22B
FIND REPEAT REQUEST22B
END
MSN22_VALID = TRUE;

USER_DEFINED_MISSION22B_CODE

MSN2_2 = J OR
MSN2_2 = K OR
MSN2"2 = L OR
MSN2_2 = M OR

123

THEN

RULE
IF

THEN

MSN2 2 = N OR
MSN2 2 = O OR
MSN2 2 = P OR
MSN2 2 = Q OR
MSN2 2 = R AND
MSN2 1 = 2 AND
EXCD <> X

CK_MSN22B = YES
MSN22 VALID = TRUE;

USER_DEFINED_MISSION22BB_CODE

MSN2 2
MSN2_ 2
MSN2_2
MSN2 2
MSN2_ 2
MSN2 2
MSN2 2
MSN2_ 2
MSN2 2
MSN2 1
EXCD <

<> J OR
<> K OR
<> L OR
<> M OR
<> N OR
<> 0 OR
<> P OR
<> Q OR
<> R AND
= 2 AND
> X

CK_MSN22B = YES;

RULE REPEAT REQUEST 22B

IF
THEN

ELSE

RULE
IF

THEN

MSN22 VALID <> UNKNOWN

DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE.

REPEAT_REQUEST22B = NO
REPEAT_REQUEST22B = YES
CLS

CLS

RESET MSN2 2

FIND MSN2_2;

MISSION_POSITION 22C

MSN2 1 >= 3 AND

EXCD

<> X AND

MSN22_VALID = UNKNOWN

WHILETRUE MSN22 VALID =

RESET CK_MSN22C
FIND CK MSN22C

UNKNOWN THEN

RESET REPEAT_REQUEST22C

124

~n

FIND REPEAT REQUEST22C
END
MSN22_VALID = TRUE;

RULE USER_DEFINED MISSION22C_CODE

IF
MSN2 2 = N OR
MSN2 2 = O OR
MSN2 2 = S OR
MSN2_ 2 = T OR
MSN2 2 = U OR
MSN2_2 = V OR
MSN2 2 = W OR
MSN2_ 2 = X OR
MSN2_ 2 = Y OR
MSN2 2 = 2z AND
MSN2_1 >= 3 AND
EXCD <> X

THEN

CK_MSN22C = YES
MSN22_VALID = TRUE;

RULE USER;pEFINED_MISSIONZZCQ_CODE

IF
MSN2_2 <> N OR
MSN2_2 <> O OR
MSN2_2 <> S OR
MSN2_2 <> T OR
MSN2_2 <> U OR
MSN2 2 <> V OR
MSN2_2 <> W OR
MSN2_2 <> X OR
MSN2_2 <> Y OR
MSN2_2 <> Z AND
MSN2_1 >= 3 AND
EXCD <> X

THEN

CK_MSN22C = YES;

RULE REPEAT_REQUEST_22C

IF

MSN22_VALID <> UNKNOWN
THEN

REPEAT REQUEST22C = NO
ELSE

REPEAT_REQUEST22C = YES

CLS

DISPLAY " POSITION 2 MUST BE N, O, OR S-2.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN2_2

125

FIND MSN2_2;

RULE MISSION POSITION 32A
IF
MSN3_1 = 1 AND
MSN32_VALID = UNKNOWN
THEN
WHILETRUE MSN32 VALID = UNKNOWN THEN
RESET CK_MSN32A
FIND CK MSN32A
RESET REPEAT REQUEST32A
FIND REPEAT REQUEST322
END
MSN32_VALID = TRUE;

RULE USER_DEFINED_MISSION32A_CODE
IF

MSN3_2 = A OR
MSN3"2 = B OR
MSN3 2 = C OR
MSN3_2 = D OR
MSN3_2 = E OR
MSN3_2 = F OR
MSN3_2 = G OR
MSN3_2 = H OR
MSN3_ 2 = I OR
MSN3_2 = N OR
MSN3_2 = O OR
MSN3 2 = P OR
MSN3_2 = R AND
MSN3_1 = 1 AND
EXCD <> X
THEN

CK_MSN32A = YES
MSN32_VALID = TRUE;

RULE USER_DEFINED MISSION32AA CODE
IF

MSN3 2 <> A OR
MSN3_2 <> B OR
MSN3 2 <> C OR
MSN3 2 <> D OR
MSN3 2 <> E OR
MSN3 2 <> F OR
MSN3_2 <> G OR
MSN3 2 <> H OR
MSN3_2 <> I OR
MSN3_2 <> N OR
MSN3 2 <> O OR
MSN3_2 <> P OR
MSN3_2 <> R AND

126

MSN3 1 = 1 AND
EXCD <> X

THEN
CK_MSN32A = YES;

RULE REPEAT REQUEST_32

IF

MSN32 VALID <> UNKNOWN
THEN

REPEAT_REQUEST32A = NO
ELSE

CK_MSN32A = YES

REPEAT REQUEST32A = YES

CLS

DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN3_2

FIND MSN3_2;

RULE MISSION_ POSITION_3

1F
MSN3 1 = 2 AND
EXCD <> X AND
MSN32_VALID = UNKNOWN
THEN

WHILSTRUE MSN32_VALID = UNKNOWN THEN
RESET CK_MSN32B
FIND CK_MSN32B
RESET REPEAT REQUEST32B
FIND REPEAT_REQUEST32B
END
MSN32_VALID = TRUE;

RULE USER_DEFINED MISSION32B_CODE

IF
MSN3_2 = J OR
MSN3_2 = K OR
MSN3_2 = L OR
MSN3_2 = M OR
MSN3_2 = N OR
MSN3_2 = 0 OR
MSN3_2 = P OR
MSN3_2 = Q OR
MSN3_2 = R AND
MSN3_1 = 2 AND
EXCD <> X

THEN

CK_MSN32B = YES
MSN32_VALID = TRUE;

127

RULE USER_DEFINED_MISSION32BB_CODE

IF
MSN3_2 <> J OR
MSN3_2 <> K OR
MSN3 2 <> L OR
MSN3 2 <> M OR
MSN3_2 <> N OR
MSN3_2 <> O OR
MSN3 2 <> P OR
MSN3 2 <> £ OR
MSN3_ 2 <> R AND
MSN3_1 = 2 AND
EXCD <> X

THEN

CK_MSN32B = YES;

RULE REPEAT_ REQUEST 32B

IF

MSN32_ VALID <> UNKNOWN
THEN

REPEAT REQUEST32B = NO
ELSE

REPEAT_REQUEST32B = YES

CLS

DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.
PRESS ENTER TO CONTINUE. ~"

CLS

RESET MSN3 2

FIND MSN3 2;

RULE MISSION_POSITION_ 32C

IF
MSN3 1 >= 3 AND
EXCD <> X AND
MSN32_VALID = UNKNOWN
THEN

WHILETRUE MSN32 VALID = UNKNOWN THEN
RESET CK_MSN32C
FIND CK MSN32C
RESET REPEAT REQUEST32C
FIND REPEAT REQUEST32C
END
MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32C_CODE

IF
MSN3_ 2 = N OR
MSN3_2 = 0 OR
MSN3_2 = S OR
MSN3"2 = T OR
MSN3_2 = U OR

128

MSN3_2 = V OR
MSN3 2 = W OR
MSN3_2 = X OR
MSN3 2 = Y OR
MSN3 2 = Z AND
MSN3_ 1 >= 3 AND
EXCD <> X
THEN
CK MSN32C = YES

MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32CC_CODE

IF
MSN3_2 <> N OR
MSN3_ 2 <> O OR
MSN3_2 <> S OR
MSN3_2 <> T OR
MSN3_2 <> U OR
MSN3_2 <> V OR
MSN3_2 <> W OR
MSN3 2 <> X OR
MSN3 2 <> Y OR
MSN3 2 <> Z AND
MSN3 1 >= 3 AND
EXCD <> X
THEN
CK_MSN32C = YES;
RULE REPEAT REQUEST_ 32C
IF
MSN32_ VALID <> UNKNOWN
THEN
REPEAT_REQUEST32C = NO
ELSE
REPEAT_REQUEST32C = YES

CLS

DISPLAY " POSITION 2 MUST BE N, O, OR S-Z.

CLS

PRESS ENTER TO CONTINUE. ~"

RESET MSN3 2

FIND MSN3 2;

ASK WHICHTASK:
CHOICES WHICHTASK: APPEND_RECORD, UPDATE_RECORD,
DELETE_RECORD, DISPLAY RECORD, EXIT;

ASK DOCNUM_NEW: " ENTER THE NEW DOCUMENT NUMBER.";

ASK SIDENUM NEW: " PLEASE INDICATE THE SIDE NUMBER OF THE

AIRCRAFT.";

"CHOOSE A TASK TO PERFORM ON THE DATABASE.";

ASK SIDENUM UPDATE: " PLEASE INDICATE THE NEW SIDE NUMBER.";

129

ASK EXCD: " ENTER AN EXCEPTION CODE OR <SPACE> FOR NONE.";
ASK MSN1 1: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH
POSITION ENTRY.";

ASK MSN1l 2: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH

POSITION ENTRY {MSN1 1} ENTER SECOND
POSITION";

ASK MSN1l _3: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN1_1}{MSN1 2} ENTER THIRD
POSITION";

ASK HRS1l: " ENTER THE HOURS FLOWN ON MISSION 1.%;

ASK MSN2 1: " ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH
POSITION ENTRY";

ASK MSN2 2: "™ ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN2_1} ENTER SECOND
POSITION";

ASK MSN2_3: " ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN2_1}{MSN2_2} ENTER THIRD
POSITION";

ASK HRS2: " ENTER THE HOURS FLOWN ON MISSION 2.";
ASK MSN3 1: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH

POSITION ENTRY {MSN3_1}{MSN3_2}{MSN3_3}";

ASK MSN3_2: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN3_1} ENTER SECOND
POSITION";

ASK MSN3_3: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN3_1}{MSN3 2} ENTER THIRD
POSITION";

ASK HRS3: "™ ENTER THE HOURS FLOWN ON MISSION 3.%;

ASK TOTFLT: " ENTER THE TOTAL NUMBER OF FLIGHTS.";

ASK OPS: " ENTER THE SHIP/FIELD OPERATIONS CODE.";

ASK CJ: " ENTER THE NUMBER OF CATAPULT SHOTS OR JATO
LAUNCHES.";

ASK NUMHOISTS: " ENTER THE NUMBER OF AIRCRAFT HOISTS.";
ASK ENGHRS: " ENTER HOURS FOR ENGINE {ENGNUM}.

ASK UPDATE_ENGHRS: " ENTER HOURS FOR ENGINE
{ENGINE_NUMBER}.";

ASK DOCNUM VIEW: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO YOU
WANT TO VIEW.";

ASK DOCNUM DELETE: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO
YOU WANT TO DELETE.";

ASK DOCNUM _UPDATE: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO
YOU WANT TO UPDATE.";

ASK FIELD TO_UPDATE: " SELECT WHICH FIELD YOU WANT TO

UPDATE.";

CHOICES FIELD TO_UPDATE: DOCUMENT_NUMBER, SIDE NUMBER,
EXCEPTION CODE, MISSION CODE_1, MISSION 1 HOURS,
MISSION_CODE_2, MISSION_. 2 HOURS, MISSION CODE_ 3,

MISSION 3 HOURS, TOTAL FLIGHTS, SHIP FIELD OPERATIONS __CODE,
CATAPULT _JATO LAUNCHES, AIRLIFT MISSION NUMBER,

NUMBER OF _HOISTS, ENGINE HOURS, "DONE;

ASK EXCD _NEW: " ENTER AN EXCEPTION CODE OR <SPACE> FOR

130

NONE.";

ASK ENGINE NUMBER: " CHOOSE THE ENGINE NUMBER THAT YOU WANT
TO CHANGE THE HOURS FLOWN.";

ASK CONTINUE: " THIS ACTION WILL DELETE THE WHOLE FLIGHT
RECORD! DO YOU WANT TO CONTINUE?";

CHOICES CONTINUE: YES, NO;

131

LIST OF REFERENCES

1. Fernandez,E.B., Summers, R.C.,and Wood,C., Database
Security and Integrity, Addison-Wesly Publishing
Company Inc., 1981.

2. Codd,E.F., The Relational Model for Database
Management, Version 2, Addison-Wesly Publishing
Company Inc., 1990.

3. Department of the Navy, Office of the Chief of
Naval Operations, OPNAVINST 3710.7N, Natops General
Flight and Operating Instructions, 10 April 1990.

4. Kroenke,D.M., and Dolan,K.A., Database Processing,
3rd ed., Science Research Associates Inc., Chicago,
Illinois, 1988.

5. Shafer,S.L., and Westney,R.E., "Six Steps To
Successful Expert Systems,"Cost Engineering,
v.30, p.17, June 1988.

6. Department of the Navy. Office of the Chief of Naval

Operations, OPNAVINST 4790.2E, The Naval Aviation
Maintenance Program, 1 January 1989.

132

BIBLIOGRAPHY

Guida,G., and Tasso, C., Topics in Expert System Design,
Elsevier Science Publishers B.V., North Holland, 1989.

Kerschberg, L., Expert System Databases, The
Benjamin/Cummings Publishing Company, Menlo Park,
California, 1987.

Rolston, D.W., Principles of Artificial Intelligence and
Expert Systems Development, McGraw-Hill Inc., 1988.

Moose, A., Schussler, T., and Shafer, D., VP-Expert,
Paperback Software International, Berkeley, California,
1989.

Whitten, J.L., Bentley, L.D., and Ho, T.L., Systems Analysis

and Design Methods, Times Mirror/Mosby College
Publishing, St. Louis, Missouri, 1986.

133

INITIAL DISTRIBUTION LIST

NO. COPIES

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

Prof. Magdi N. Kamel, Code AS/KA 2
Department of Administrative Sciences

Naval Postgraduate School

Monterey, California 93943-5000

Prof. Hemant K. Bhargava, Code AS/BH 1
Department of Administrative Sciences

Naval Postgraduate School

Monterey, California 93943-5000

Commanding Officer 1
Naval Sea Logistics Center

Code 612.2

5450 Carlisle Pike

P.0. Box 2060

Mechanicsburg, Pennsylvania 17055-0795

LT. George J. Salitsky, USN 2

117 School St.
Childs, Pennsylvania 18407

134

