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ABSTRACT

The burst error is generated in digital communication networks by various un-

predictable conditions, which occur at high error rates, for short durations, and can

impact services. To completely describe a burst error one has to know the bit pattern.

This is impossible in practice on working systems. Therefore, under the memoryless

binary symmetric channel (MBSC) assumptions, the performance evaluation or esti-

mation schemes for digital signal 1 (DS1) transmission systems carrying live traffic is

an interesting and important problem.

This study will present some analytical methods, leading to efficient detecting

algorithms of burst error using cyclic redundancy check (CRC) code. The definition

of burst error is introduced using three different models. Among the three burst error

models, the mathematical model is used in this study.

The probability density function f(b) of burst error of length b is proposed. The

performance of CRC-n codes is evaluated and analyzed using f(b) through the use of

a computer simulation model within CRC block burst error. The simulation result

shows that the mean block burst error tends to approach the pattern of the burst

error which random bit errors generate.
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I. INTRODUCTION

The integrated services digital network (ISDN) is a planned worldwide public

telecommunication network that will serve a wide variety of user needs. Error-free

transmission is a necessity in any telecommunication network. The analysis and

evaluation of errors that occur during the transmission have therefore received much

attention in the digital communications industry.

Bit errors may be caused by distortion, thermal noise, timing jitter, hardware

malfunction, software bugs, environment and man-made interferences, and other fac-

tors These errors are present in the live traffic data bit stream. When the bit

error rates exceed 106, the bit error perturbations become noticeable in voice grade

services and bccome unacceptable at 10 - [Ref. 1][Ref. 9].

Many digital signal 1 (DS1) systems are characterized as having a combination

of random errors and burst errors. Random error analysis forms the basis of most

digital network maintenance and action limits. However, burst conditions, where high

error rates occur for short durations, can impact services. It is important that such

burst conditions be detected and corrected quickly to provide quality digital networks

as digital services become an integral part of the user's operations.

The burst error is generated in digital networks by various unpredictable con-

ditions. In addition, burst error patterns are always complicated by the pattern of

the bit streams that are being transmitted. Although Dr. J. Eu has investigated the

random error problem in [Ref. 11, the burst error has not been studied yet. Therefore,

under the memoryless binary symmetric channel (MBSC) assumptions, the perfor-

mance evaluation or estimation schemes of burst errors for DS1 transmission systems

carrying live traffic is an interesting and important problem. The symmetric binary

1



channel is memoryless; a sequence of indepedent errors produces the noise digits.

Each bit has the same probability of having an error occur.

To completely describe a burst error, one must know the bit pattern. This is

impossible in practice on working systems, and consequently a burst error is charac-

terized by a chosen set of independent parameters. Two commonly used parameters

are bit error ratio (BER) and the length of the burst.

If one makes a vigorous examination of the number of burst errors and assumes

that all error patterns are considered equally alike, the fraction of undetected burst

errors tends to be upper-bounded by 1/ 2b for a burst error length b [Ref. 1][Ref. 10].

The b is defined as any pattern of errors in a CRC block for which the number of bits

between the first and last errors is inclusive.

In this study, Gilbert's model [Ref. 3] of a burst noise channel, which is a binary

symmetric channel determined by a Markov chain, was used to derive the definition

of burst error under the MBSC assumptions. A Markov chain with two states can

be used to generate the burst errors. The two states will be called G (for Good) and

B (for Bad or Burst). In state G the noise digits are always 0, meaning no noise.

The Markov chain can be thought of as a Bernoulli trial of tossing a coin. In state

B a coin is tossed to decide whether the noise digit will be 0 or 1. If the coin is

fair the bit error ratio is 0.5. The exact probability depends on the bit error ratio.

The coin-tossing feature is included because actual burst errors contain good digits

interspersed with the errors. One may also use the mathematical model to derive the

definition of burst error. An error burst can be defined as a string of bits with at

least the first and the last bits in error for a bit stream of length b.

A detailed explanation of both methods to derive the definition of burst error

will be discussed in Section II. In Section II Elliott's model [Ref. 61 is introduced

for estimating the error rates for each code on burst noise channels. The efficient

2



detecting algorithms of the burst error is discussed for various cyclic redundancy

check (CRC) codes, and show the undetected burst error patterns for each CRC

code.

Analysis and evaluation of the estimation schemes based on the extended su-

perframe (ESF) format using the probability density function (pdf) is discussed in

Section III. The pdf of burst error of length b is proposed for each CRC block. The

statistics of the mode, mean, variance, and standard deviation(SD) of each CRC code

are also discussed in Section III.

In Section IV, the relationship between burst errors and block burst errors, and

plots for each CRC code are discussed. Two different methods of simulating the burst

error statistics, using binomial and exponential distribution, are investigated as well.

Finally, concluding remarks are given in Section V.
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II. DETECTING THE BURST ERROR

This chapter gives the definition of burst error, the algorithm of CRC error

detection, and the pattern generated for the undetected burst errors.

A. DEFINITION OF BURST ERROR

Models have been used in the past to define burst error. The models most com-

monly used for this purpose are Gilbert's [Ref. 31 and Elliott's [Ref. 61. An overview

of both these models is presented, followed by the mathematical representation of a

burst error.

Gilbert's model is based on a Markov chain. Gilbert used the burst noise model

to define the burst error: the symmetric binary channel generates a sequence of binary

noise digits. The burst noise channel consists of a two-state Markov chain which can

be used to generate the burst error. The two states are G (for Good) and B (for Bad

or Burst). In general, the channel state with the lower error probability is the good

state. In order to complete the model one needs to specify the transition probabilities

Q and q. Q is the conditional probability that the channel remains in the good state

G for the next time interval, given that it is in state G at the present time interval.

The q is the conditional probability that the channel remains in the bad state [Ref.

5].

To simulate the burst noise, the transition probabilities P = Prob(G -+ B) and

p = Prob(B -- G) will be small while Q and q are relatively larger. Runs of G will

alternate with runs of B. The run lengths have geometric distributions with mean 1/P

for the G-runs and mean 1ip for the B-runs. The geometric distribution of G-runs

seems reasonable. If the various clicks, pops, and crashes, which might cause errors

4



on a real channel, are not related to one another, the times between such events will

have a geometric distribution. Only mathematical simplicity justifies the geometric

distribution of B-runs. The fraction of time spent in state B is P(B) = P/(p + P).

Since errors occur only in state B, and then just with probability 1 - h, the error

probability is

P(1) = (1 - h)P(B) = (1 - h)p p (2.1)

where h stands for making no error in state B.

As expected, long runs of good digits separate the burst errors. Therefore, we

define a burst error as any contiguous sequence of transmission intervals during which

the channel remains in the burst state. Basically, the burst error is merely a period

of higher than average error probability.

Elliott's model is slightly different from Gilbert's model, in which an error bit

can occur only when the channel is in the bad state. In the Elliott model, however, an

error bit can occur in either the good or the bad state but with different probabilities.

Transition between the good and bad states is the same as in the Gilbert model.

Elliott's model uses the probabilities P(m, n) to provide a means for estimating error

rates for binary block codes in more general circumstances. P(m, n) is the probability

that rn bit errors occur in a transmitted block of n bits. Elliott's model uses four

different parameters (P, p, h, k) for computing the P(m, n) where k is the probability

of correct reception of a bit when the channel is in the good state and other parameters

are the same as in the Gilbert model. Since an error bit can occur either in the good

or the bad states, Elliott uses two different probabilities, G(m, n) and B(m, n), where

G(m, n) = Prob(m errors in a block of length n - the channel is in the good state

at the first bit) and B(m, n) = Prob(m errors in a block of length n - the channel

5



is in the bad state at the first bit). Then

P(mn)G(m,n) + PB(m,n) (2.2)
Pn)-p +~~n±p~Bmn

and G(m, n) and B(m, n) are given in [Ref. 6].

In a mathematical sense, a digital burst error can be defined as a string of bits

with at least the first and the last bits in error over a length b [Ref. 4]. Traditionally

one may express a bit stream by a polynomial [Ref. 71.

In the following discussion, one assumes that the burst error signal is E(x).

Then

E(x) = E(i,b,x) (2.3)

where i determines how far from the right-hand end of the received frame the burst

error is started and b is the burst error length. Such a polynomial is said to be of

degree b- 1. For example. a burst error of 100101 can be represented by a polynomial

E(x) = x.(x 5 + x2 + 1) with b = 6. From expression (2.3), it becomes

E(x) = x'(1 + aix1 + a2x? + ... + ab2x b-2 + xb- 1) (2.4)

where the first bit and the last bit are always 1 and other terms are either 0(Good)

or I(Error). Therefore the burst error signal can be rewritten as

b-2
E(x) = xi(xb- + E aj x + 1) (2.5)

j=1

where a. E [0, 1].

Using Equation 2.5 one can simulate the burst error behavior and evaluate its

performance by examining the probability of burst error detection. For example, if

the degree of E(x) is less than the degree of CRC-n terms, the remainder can never

be zero: hence the burst error is always detected. To be undetected, the burst error

length b must be greater than n [Ref. 1][Ref. 7].
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Among the three burst error models, the mathematical model is used in this

thesis since in the evaluation of Chapter II and IV only the burst error length and

CRC codes are the concerns. In this thesis, BER(c) is used for generating the burst

error and CRC codes for computing the probability of undetected burst error. That

is,
p P

p+ k' + hl (2.6)
P+P p+P

where k' = 1 - k and h' = 1 - h' in Elliott's model. Since only E is used in this study,

the values of P, p, h, and k are irrelevant, and the mathematical model is sufficient

for the study in the rest of the thesis.

B. DETECTING ALGORITHM OF BURST ERROR

The CRC is a method of detecting the existence of errors in the transmission

of digital signals. In communication systems using CRC codes, the digital signal

to be transmitted is partitioned into CRC blocks of equal length. The bits of each

block can be used to represent coefficients of terms in a polynomial, which are then

divided by a standard divisor polynomial. The remainder of the division is then

appended to the data block, and the resultant block is sent to the receiving end. The

receiver performs the identical division on the data block as received and generates

its own remainder. The receiver then compares its locally calculated remainder to the

remainder transmitted with the block. A difference between the remainders indicates

that the received block of the digital signal contained an error. Because each CRC

code has its own generator polynomial, it is natural to think that the burst error

pattern of each CRC code should be different. Before continuing the development of

the detecting algorithm, the DS1 ESF format and CRC codes are discussed.

A DS1 signal has a nominal line rate of 1.544Mbps. A DS1 frame consists a set

of 193 contiguous time slots (bits). The first bit in a DS1 frame is the framing bit. or

7



1 Frame
125 ps, 193 Bits II I

Time,
o- 1 2 . Slot# 24 b

F11 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 it i 1 2 3 4 5 6 7 8

Frame Frame
Bit 0 BIt 192

Note: Frame bit 0 is transmitted first.

Figure 2.1: Channelized DS1 Frame Bit Assignments

"F-bit." The remaining 192 bits of a DS1 frame are labeled "information" bits and

are collectively referred to as the DS1 "payload." These 192 bits may form a single

1536Kbps channel, or they may be divided into a variety of partitions, including the

common 24 8-bit words corresponding to 24 separate voice grade channels. Collec-

tively these are often referred to as "channelized" applications. Figure 2.1 illustrates

this configuration of a DS1 frame [Ref. 2].

One ESF format is composed of 24 consecutive DS1 frames. Each frame is

an ordered sequence of 193 bits. Therefore, the 24 DS1 frames represent 4632 bits,

and the time duration of the ESF is 3ms. The first bit of each frame (framing

bit) is designated for frame synchronization, data communication, and CRC-6 error

detection. The ESF format is shown in TABLE 2.1 [Ref. 21. The sequence of F-bits

in contiguous frames forms an 8-kb/s channel, and the fixed frame pattern sequence

(FPS) is 001011, which appears in the first bits of frames 4, 8, 12, 16, 20, and 24 of

the superframe. Each ESF has the six CRC bit positions which appear in frames 2,

6, 10, 14, 18, and 22.

8



TABLE I: EXTE DED SUPERFRAME kORMAT
Frame No. F Bit

Bit No. FPS CRC DL
1 0 - X
2 193 - Cl -

3 386 - X
4 579 0 -

5 772 - X

6 965 - C2 -

7 1158 - - X
8 1351 0 -

9 1544 - - X
10 1737 - C3 -

11 1930 - - X
12 2123 1 -

13 2316 - - X
14 2509 - C4 -

15 2702 - - X
16 2895 0 - -

17 3088 - - X
18 3281 - C5 -
19 3474 - - X
20 3667 1 -

21 3860 - - X
22 4053 - C6 -

23 4246 - X
24 4439 1 - -

In ESF, the block of data over which a CRC is calculated is one ESF. The

standard divisor used is the sixth order polynomial: x' + x + 1. This divisor results

in a 6-bit remainder sometimes referred to as the "CRC-6 code." It is this remainder

that is carried in the six check bits, Cl through C6, of the CRC channel. The CRC-6

code calculated for a particular ESF is always carried in the CRC channel of the

subsequent ESF [Ref. 2].

The following is a detailed description of the steps required to compute the

9



CRC-6 code [Ref. 2][Ref. 7]:

1. For the purpose of calculating the CRC-6 code of an extended superframe,

the 24 F-bits of that ESF shall temporarily be set to the binary value "1." For

transmission, the true value of the F-bits is restored.

2. The resulting 4632 bits of the ESF are used in order of occurence to construct

a polynomial in x such that bit number 0 is the coefficient of the term x4 1 , and bit

number 4631 is the coefficient of the term x° .

3. This polynomial is multiplied by the factor x6, and the result is divided

by the generator polynomial x6 + x + 1. The binary coefficients of the remainder

polynomial are used in order of occurence as bits C1 through C6 of the CRC channel

in the subsequent ESF. The ordering is such that the coefficient of the term x in the

remainder polynomial is bit C1, and the coefficient of the term x° in the remainder

polynomial is bit C6.

4. The bits C1 through C6 contained in an ESF shall always be those associated

with the content of the ESF immediately preceeding ESF. Bits C1-C6 may be assigned

any value.

The CRC method of DS1 described here is capable of detecting all the ESFs with

six or fewer errors. The probability of all ESFs containing more than six transmission

errors is 63/64(98.4%). The CRC method does not indicate the number of bit errors

in an ESF, but only indicates that there was at least one. The current usage of CRC

codes for error performance monitoring are illustrated in TABLE 2.2 [Ref. 7][Ref.

10]. This table contains the block size in bits and the generator polynomial for each

CRC code. The CRC-12 system is used for transmission of streams of 6-bit characters

and generates a 12-bit frame check sequence (FCS). Both CRC-16 ANSI and CRC-16

CCITT are popular for 8-bit characters, in the United States and Europe respectively,

and both result in a 16-bit FCS [Ref. 8].
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TA RC CODES
CRC codes Block size Generator polynomial

CEPT1 CRC-4 2048 x4 + x + 1
DSl CRC-6 4614 x6 +x-1
DS3 CRC-9 14280 x9 + x 4 + 1

CRC-12 1880 x 12 + x 1 1 + x3 + x 2 + x + 1

CRC-16 ANSI 256, 1024 x16 + x 15 + x 2 + 1

CRC-16 CCITT 256, 1024 x1 6 + x12 + x5 + 1

It is interesting to derive the sequence of the undetected burst error pattern

and why the probability of an undetected burst error is always 1/ 2b-2. Using the

generator polynomial G(x) (see TABLE 2.2) and Equation 2.5, for an undetected

burst error, E(x) = 0 mod G(x), i.e., E(x) will be divisible by G(X). Suppose

E(x)/G(x) = Q(x) for the undetected burst error polynomial E(x). Then, one can

derive E(x) by G(x)Q(x) for various Q(x). If E(x) is of degree j (the burst error

length j + 1) and the G(x) degree is r for a given CRC-r code, then Q(x) should

have a degree of j - r when E(x) is undetected. Thus, for any undetected burst error

length, one can construct E(x) from Q(x)G(x) for given all possible Q(x) with given

burst error lengths.

Example: For Q(x) of degree 3, there are 4 possible patterns, 1001, 1011, 1101, and

1111. All E(x) of degree 9 (burst error length 10) therefore are generated, which

means that there are 4 undetected burst errors with length 10 for the CRC-6 code.

The degree of E(x) is (the degree of Q(x)) + (the degree of G(x)). For the ratio of

the portion of each burst error length n, the undetected burst error is always 1/64.

However, n = 7 is a special case due to CRC-6. In other words, the probability of

detected burst error for any number of burst error lengths and each CRC code is

always 63/64(98.4%).
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The bit patterns of the undetected burst errors for the CRC-6 code are shown

in TABLE 2.3. In TABLE 2.3, the leftmost bit is the most significant bit (MSB) and

the rightmost bit is the least significant bit (LSB). If one examines TABLE 2.3, the

number of undetected burst errors is 4 for the burst error length 10. Since we have

210-2 possible E(x) where the number 2 is the first and last bit position and always 1,

the probability of undetected burst error is 4/28 = 1/64 = 0.015625. The probability

of detected burst error is 1 - 0.015625 = 0.9844(98.44%). Therefore the probability

of detected burst error for any burst error length is always 63/64(98.4%). The bit

pattern of undetected burst errors for other burst error lengths and various CRC

codes are shown in APPENDIX A. It can be proven that the detection probability

for any burst error length and each CRC code is always 1 - 1/2' where n is the CRC

degree.

In TABLE 2.2, the generator polynomials of CRC-12, CRC-16 CCITT, and

CRC-16 ANSI contain (x + 1) as a factor, and this ensures that all odd-weight burst

errors will be detected [Ref. 10][Ref. 11]. By computing the weight of the undetected

burst error patterns which are shown in APPENDIX A, one knows that all the burst

errors which have odd-weight in these three CRC codes are detected.

12



TABLE 2.3: UNDETECTED BURST ERROR PATTERN FOR CRC-6
CODE _ _ _ _ _ _ _ _

Burst Error Undetected Error Pattern
Length ____________

7 1 00001 1
8 1 1000 10 1
9 101001111

111001001
10 110 1010111

10010 11011
1011011101

_______111 1010001
11 10101111111

11101100111
11001101011
10001110011
11011101101
10011110101
10111111001

_______11111100001

13



III. EVALUATING ESTIMATION SCHEMES

Assume the MBSC whose crossover error probability (BER) is C. Then, for each

CRC block of n bits, the probability density function f(b) of burst error length b can

be stated as follows:

(n+1-,b)2(I-()'b if 2 < b < n

f (b) b b- (3.1)1-(1-,)- i

0 otherwise

Notice that (1 - )n is the probability of zero errors. Hence 1 - (1 - f)n is the

probability that an error occurs., or the total error probability.

One now has proof that the pdf of the above equation is correct. Consider a

block of n bits, each of which has an error probability E. The total probability is

derived for each of the two cases: b = 1 and b > 1. Let g(b) be the total probability

that a burst error of length b occurs in the block.

For b = 1, the burst error is a single error by definition and thus the total

probability for this case is given by

g(b) = nf(1 - )"-  (3.2)

For 2 < b < n. let b = k, then the burst error of length b = k is of the form

ex ... xe where c denotes an error and x denotes any single bit whether it is in error

or valid. The number of all distinct bit positions that a burst error of length k may

start within a block of n bits is (n - k + 1). Thus, the total probability for b = k is

given by

14



g(k) = (n + 1 - k)E2 (1 - )nl-k (3.3)

To complete the proof, we need to show that the sum of all the total probabili-

ties is I - (1 - E)n. Noting that

n-1

-i(I - = C-2[1 - n(l - c)-' + (n - 1)(1 - (3.4)
i=i

and rearranging the indices, we now have

n n-1

y:g(k) =2E i(1 -E I = 1 -n(1-)n- +(n- 1)(1- ')n .  (3.5)
k=2 i=1

Since

n

S(k) =I I )(3.6)
k=1

we get

n

yZ f(k) = 1. (3.7)
k=1

This completes the proof.

From Equation 3.1, one can compute the mean, SD, F(6) and two types of

modes for CRC-6 code which are summarized in TABLE 3.1. In TABLE 3.1, the

F(6) depends only on the BER and is given by

6

F(6)= Zf(k), (3.8)
k1
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TABLE 3.1: MEANS, SD, F(6), AND MODE FOR CRC-6 CODE
BER Mean SD F(6) Mode(b > 7) Mode(b > 1)
10- 8 1.036 9.047 1.0000 7 1
10- 7 1.355 28.61 0.9998 7 1
10-6 4.548 90.43 0.9977 7 1
10-' 36.48 284.6 0.9772 7 1
10- 4  354.6 850.3 0.7874 7 1
10- 3  2708 1202 0.0464 3615 3615
10- 2 4416 140.7 0.0000 4515 4515
10-1 4596 13.42 0.0000

where the value 6 is the degree of G(x) in CRC-6, and the mode means that the value

of k is P(b = k) maximized. The distribution of burst error between the burst error

lengths, and f(b) is depicted in Figure 3.1 with b > 1 and in Figure 3.2 with b > 7.

The mean of the burst error length for BER = 10- 8 is much smaller than for BER

= 10- 1 . This means that the detected burst error length depends only on the BER.

When the BER is less than 10-6 for CRC-6 codes, the mean burst error lengths are

4.548, 1.355, and 1.036. They are most likely detected by the generator polynomial

G(x) because their lengths are less than 6. By thc definition of mode, the burst error

lengths I and 7 occur more frequently for a BER less than 10- 4 for b > I and b > 7.

It is very interesting to note that as seen in TABLE 3.1, in the vicinity of BER 10-

the SD of the burst error length seems to achieve the maximum value. One suspects

that the SD will be at maximum in the vicinity of 1/4614 for the CRC-6 code since

1/4614 is close to 10- . Similar observations are obtained for other CRC blocks.

It seems worthwhile to investigate the relationship between the mean burst

error length and CRC block size with BER. The computation result is summarized in

TABLE 3.2, and the corresponding plot is depicted in Figure 3.3. The X-axis stands

16
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T3LE 3.2: MEAN BURST ERROR LENGTH WITH BER
BER CRC Block Size

CRC16 CRC16 CRC16 CRC4 CRC6 CRC9
128 256 512 1024 2048 4614 8192 14280

10-8 1.000 1.000 1.000 1.000 1.007 1.036 1.112 1.340
10- 7 1.000 1.001 1.004 1.017 1.070 1.355 2.118 4.399
10- 6 1.003 1.011 1.044 1.175 1.699 4.548 12.18 34.99

10- 5  1.027 1.109 1.437 2.748 7.990 36.48 112.8 340.8
10- 4  1.273 2.092 5.369 18.47 70.86 354.6 1107 3290

10- 3  3.731 11.92 44.52 172.9 655.9 2708 6199 12282

10-2 27.71 100.3 320.0 826.1 1850 4416 7994 14082

for the CRC block size in bits (128 through 15,000) and the Y-axis stands for the

mean burst error length in bits (0 through 15,000). It is clear that the mean burst

error length is dependent only on the CRC block size, not on the bit position where

the burst error occurs. When BER is less than 10', the mean burst error length is

almost independent of CRC block size as compared with the higher BER (i.e., BER

is greater than 10-"). The detection probability is completely dependent on the CRC

block size, regardless of the CRC generator polynomial.
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IV. ANALYSING ESTIMATION SCHEMES

This chapter gives the simulation results of the burst error for each CRC block

and CRC code using binomial and exponential distribution for generating the random

number.

A. BINOMIAL DISTRIBUTION

Let X be a binomial random variable. Then X is the sum of the Bernoulli

random variable associated with each of the n independent trials, where n is the

length of the burst error. The error occurrences in different bits axe independent of

each other.

Using this fact, one can simulate the burst error for different CRC blocks and

different types of CRC codes. First, the random number is generated, bit by bit, then

the bit is checked to see whether an error has occurred or not. Second, the burst error

length is divided into each CRC block and we generate the block burst error length

using the definition of burst error. The block burst error is a burst error contained

in specified block such as the CRC-6 block (4614 bits). Lastly, the statistical results

are computed for the block burst error length. This process continues for a sufficient

number of randomly generated burst errors.

The results of the block burst error for CRC-6 using the binomial distribution

are shown in TABLE 4.1. The relationship between the total burst error length and

the block burst errors with various BERs for CRC-6 is shown in TABLE 4.1. The SD

of the block burst error length has a maximum value in the vicinity of BER 10- ' for

the different total burst error lengths. This means that the SD will be at a maximum

in the vicinity of 1/4614 for CRC-6. This phenomenon occurs with other CRC codes

20



TABLE 4.1: SIMULATION RESULTS OF CRC-6 USING BINOMIAL
DISTRIBUTION

Total BER
Burst 10- 2 10-3  10-4  10- 5  10- 6 10-7

Length Statistical
Mean 3448 1250 14.12 1.149 1.001 1.000

15000 SD 140.7 859.7 64.45 2.830 0.042 0.000
Mode(b > 0) 3409 1 1 1 1 1
Mode(b > 6) 3409 686 7 7 7 0

Mean 3693 1410 18.16 1.048 1.001 1.000
20000 SD 140.7 914.6 79.37 1.106 0.063 0.030

Mode(b > 0) 3625 1 1 1 1 1
Mode(b > 6) 3625 1027 7 7 7 7

Mean 3863 1534 14.70 1.080 1.004 1.000
25000 SD 140.7 954.7 68.30 1.868 0.249 0.000

Mode(b > 0) 3825 1 1 1 1 1
Mode(b > 6) 3825 947 7 7 7 7

Mean 4250 1779 15.42 1.024 1.000 1.000
300000 SD 140.7 1027 79.71 1.080 0.021 0.000

Mode(b > 0) 4360 1 1 1 1 1
Mode(b > 6) 4360 2298 7 7 7 7

as well. The higher BER has a longer length of mean block burst error than the lower

BER. This indicates that the probability of detected block burst error for a lower

BER is higher than the higher BER which is consistent with intuitive reasoning.

It is also intersesting to note that when the BER gets larger, then the value of

the mode is larger for both cases, i.e., b > 0 and b > 6. This means that one cannot

predict which block burst error lengths are expected for each CRC block. But when

the BER gets lower, the value of the mode is small. Thus one can guess that the block

burst error is a single bit and can expect that the probability of detected block burst

error is 63/64(98.4%). In other words, a mode of large value such as 3409 makes the

prediction of burst error length more difficult since the uncertainity is higher than

the case of a mode value of 1.
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Figure 4.1: Distribution of CRC-6 using Binomial Distribution

The relationship between the burst errors and block burst errors for each CRC

code is depicted in Figure 4.1. The X-axis stands for the total burst error length in

bits and the Y-axis stands for the mean of the block burst errors in bits. The mean

block burst error depends on the BER and has a very small value as the BER gets

lower, as depicted in Figure 4.1. The simulation results for the different CRC codes

that are listed in TABLE 2.2 using binomial distribution are shown in APPENDIX

B.

B. EXPONENTIAL DISTRIBUTION

The relationship between the binomial distribution and exponential distribution

will now be explained for this study. The Poisson random variable arises in situations

where the burst errors occur "completely at random" in one ESF for each type of

CRC block. The pdf for the Poisson random variable is given by
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k

P[N = k] =-C' k = 0,1,2,... (4.1)

where a is the average number of the burst error occurence in an ESF for each type

of CRC block.

One of the applications of the Poisson probabilities in Equation 4.1 is to ap-

proximate the binomial probabilities. If n is large and p is small, then for a = np

k )pk( _ p)nk --. e- - for k = 0,1,2,. (4.2)

where n is the total burst error length and p is the BER. Thus the Poisson pdf is the

limiting form of the binomial pdf when the number of Bernoulli trials n is made very

large and the probability of success is kept small, so that a = np [Ref. 12].

For one ESF (4614 bits) for the CRC-6 code, the interval T bits has been divided

into n bits. Each bit can be viewed as a Bernoulli trial if the following conditions hold:

(1) At most one error can occur in a bit, (2) the outcomes in different subintervals

are independent, and (3) the probability of an error occurrence in a bit is given by

p = a/n, where a is the average number of errors observed in a T bit interval. As

n - , the occurrence of the first error approaches an exponential random variable

with parameter A = a/T.

Therefore, the exponential random variable is obtained as a limiting form of the

geometric random variable. This means that, for a Poisson random variable, the time

between errors is an exponentially distributed random variable with parameter A =

a/T. The exponential random variable satisfies the memoryless property. One can

implement the exponential random variable using the inverse transformation method

for the burst error [Ref. 13]. This method is generally used for distributions whose
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cumulative distribution function (cdf) can be obtained in closed form.

The pdf of the exponential distribution with parameter A is given by

{ Ae- - ifX>O, A>O
0 otherwise (4.3)

and the cdf of f(x) is

F(x) 0 if x < 0(44)
1-e - X ifx> 0

Next, a random number r is generated and F(x) = r is set for solving the x.

This gives

1 - e- AX =r. (4.5)

Rearranging to

e- '\ = 1 - r (4.6)

and taking the natural logarithm of both sides, we have

- Ax = ln(1 - r). (4.7)

Finally, solving for x gives the solution

x = -ln(1 - r). (4.8)

To simplify the computations, we can replace (1 -r) by r in Equation 4.8. Since

r is a random number, (1 - r) will also be a random number. This means that nothing

has changed except the way we are writing the U(0, 1) random number. Thus the

process generator for the exponential distribution will now be

1
x = -1 In r. (4.9)A

From Equation 4.9, A =, and =np, then

T1

x = -- lnr (4.10)
P
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TABLE 4.2: SIMULATION RESULTS OF CRC-6 USING EXPONEN-
TIAL DISTRIBUTION

Total BER
Burst 10- 2 10-3  10-4  10-5  10- 6 10- 7

Length Statistical I
Mean 3446 1198 15.71 1.184 1.000 1.000

15000 SD 140.7 840.0 69.32 3.392 0.000 0.000
Mode(b > 0) 3320 1 1 1 1 1
Mode(b > 6) 3320 494 7 7 0 0

Mean 3705 1334 16.77 1.067 1.000 1.000
20000 SD 140.7 892.1 72.95 1.618 0.000 0.000

Mode(b > 0) 3667 1 1 1 1 1
Mode(b > 6) 3667 1069 7 7 0 0

Mean 3870 1492 18.21 1.083 1.000 1.000
25000 SD 140.7 941.5 80.35 1.782 0.004 0.000

Mode(b > 0) 3949 1 1 1 1 1
Mode(b > 6) 3949 1150 7 7 7 0

Mean 4246 1760 15.38 1.029 1.000 1.000
300000 SD 140.7 1022 79.63 1.235 0.023 0.000

Mode(b > 0) 4334 1 1 1 1 1
Mode(b > 6) 4334 2190 7 7 7 7

where p is the BER.

From Equation 4.10, one can simulate the burst error for the exponential distri-

bution. The method of simulation is much like the binomial case except for the burst

error generation. The results of the block burst error for CRC-6 using exponential

distributions are shown in TABLE 4.2 and are depicted in Figure 4.2. It is very

interesting to note that all the simulation results of the exponential distribution are

similar to those of the binomial distribution. The simulation results for the different

CRC codes that are listed in TABLE 2.2 using exponential distribution are shown in

APPENDIX C.

Recall that TABLE 2.1 shows various CRCs and their block lengths for a fixed

length CRC. The detectability (r) should be the ratio of block length and the length
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Figure 4.2: Distribution of CRC-6 using Exponential Distribution

of checkword. Note that the CRC-9 block length is too large compared with other

CRCs: each bit in CRC-9 checkword must check 1587.67 bits, that is more than ten

times higher than the CRC-12 scheme. This can be seen from the simulation result

that even for a lower bit error rate, the error burst length of CRC-9 is longer than

the CRC-12. For example, the mean burst error length of CRC-9 with BER 10- 5 is

6.488, but the mean burst error length of CRC-12 with BER 10- 4 is 1.706.

It should be noted that the SD of the block burst error length has a maximum

value in the vicinity of BER 10 . 3 for the different burst error lengths and CRC codes

except the CRC-16 (APPENDIX C). This means that the SD will be at a maximum

in the vicinity of 1/(CRC block size) for any CRC codes with the exception of CRC-

16. In fact, this observation can apply to CRC-16, since 1/256 is in the BER 10-2

that is shown in APPENDIX C.

If one examines all the simulation results of both the binomial and exponential
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cases, the mean block burst error depends only on the BER for a given CRC code.

When the BER is less than 10- 3 , the value of the mean burst length is very small

as compared with the higher BER for any CRC codes. For this reason, the mean

block burst error is independent of the CRC generator polynomial. Hence, when the

burst error length gets longer and BER gets lower, the mean block burst error tends

to approach the pattern of the burst error which the random bit errors generate.

Because the burst error occurs randomly or is positionally independent, the detection

probability is completely dependent on the CRC block size, regardless of the CRC

generator polynomial.
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V. CONCLUSIONS

As the undetected burst error bit patterns are generated, it can be proven that

the detection probability for any burst error length and each CRC code is always

1 - 1/2'. The mean, SD, F(6), and two types of modes for CRC-n codes are computed

using the probability density function.

The relationship between the mean burst error length and CRC block size with

BER was investigated, and it was found that the mean burst error length is dependent

only on the CRC block size, not on the bit position where the burst error occurs. The

detection probability is completely dependent on the CRC block size, regardless of

the CRC generator polynomial.

The burst errors for different CRC blocks and different types of CRC codes

are simulated through the use of computer simulation within the CRC block size.

The CRC block burst error for CRC-n using binomial and exponential distribution

was evaluated. The simulation results show that the SD of the block burst error

length has a maximum value in the vicinity of BER 10- for the different total burst

error lengths and CRC codes except CRC-16. This means that the SD will be at a

maximum in the vicinity of 1/(CRC block size) for any CRC codes.

Finally, the mean block burst error is independent of the CRC generator poly-

nomial and depends only on the BER for a given CRC code. Hence, when the bu.st

error length gets longer and the BER gets lower, the mean block burst error tends

to approach the pattern of the burst error which the random bit errors generate.

Because the burst error occurs randomly or is positionlly independent, the detection

probability is completely dependent on the CRC block size, regardless of the CRC

generator polynomial.
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APPENDIX A: UNDETECTED BURST
ERROR BIT PATTERNS

The following lists are patterns of the undetected burst error. The leftmost bit

is the most significant bit (MSB) and the rightmost bit is the least significant, bit

(LSB) for each CRC code. In each case the undetected burst error bit pattern is gen-

erated by computer and the burst error length is greater than the degree of generator

polynomial G(x). When the burst error length is smaller than the degree of G(x).

aii\ burst error can be detected by G(x). The source code for the undetected burst

error bit pattern generator is shown in APPENDIX D. 1.

1. CRC-4(CEPT)

G(x) = x4 + x + 1

burst lenth 5 : 10011

burst lenth 6 : 110101

burst lenth 7 : 10 11111

1111001

burst lenth 8 : 11000 111

10001011

10101101

11100001

burst lenth 9 : 101101111

111110111

110111011
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100100011

110011101

100000101

101001001

111010001

burst lenth 10 : 1 0 0 0 1 1 1 1 1 1

1100001111

1110010111

1010100111

1111011011

1011101011

1001110011

1101000011

1111111101

1011001101

1001010101

1101100101

1000011001

1100101001

1110110001

1010000001

2. CRC-6

G(x) = x 6 + x + 1

burst lenth 7 1 0 0 0 0 1 1
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burst lenth 8 11000101

burst lenth 9 : 101001111

111001001

burst lenth 10 :1 1 0 1 0 1 0 1 1 1

1001011011

1011011101

1111010001

burst lenth0 10 1 1 1 1 1 1

11101100111

11001101011

10001110311

11011101101

10011110101

10111111001

11111100001

burst lenth 12 : 1 1 0 1 0 0 0 1 1 111

100100101111

101100110111

111100000111

101000111011

111000001011

110000010011

100000100011

101010111101

111010001101

110010010101

31



100010 100101

110110011001

100110101001

101110110001

111110000001

3. CRC-9(DS3)

G(x) = x9 + x4 + 1

burst lenth 0 0 000 1 0 0 0 1

burst lenth 11 1 0 0 1 1 0 0 11

burst lenth 12 1 11 0 0 1 1 1 0 111

101001010101

burst lenth 13 1 1 1 1 0 1 1 1 1 1 11

1011010111011

1101011011101

1001010011001

burst lenth 14 1 1 1 1 1 1 1 1 1 1 1 1 1

10111101100111

11011110101011

10011100100011

11101111001101

10101101000101

11001110001001

10001100000001

burst lenth 15 1 0 1 1 1 0 0 1 1 0 1 1 1 11
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100110001010111

110110 10 1000 111

101010010011011

1110 10 11000 10 11

100010000010011

110010100000011

101100011111101

111100111101101

100100001110101

110100101100101

101000010111001

111000110101001

100000000110001

110000100100001

4. CRC-12

G(x) = x12 + x"1 - x3 + x2 + x +- 1

burst lenth 13 1 1100 00 00 01 11 1

burst lenth 14 0 0 0 0 0 0 0 1 0 0 0 1

burst lenth 15 1 1 1 1 0 0 0 0 0 011 0 0 1 1

100 100000 101101

burst lenth 16 1 1 0 1 10 0 0 1 1 1 0 1 1

1011100001001011

1000100001010101
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1110 100001101001

burst lenth 17 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1

10101100010000111

10011100010111011

11111100011000011

11100100011011101

10000100010100101

10110100010011001

11010100011100001

burst lenth 18 0 1 0 1 1 0 0 0 1 0 0 0 1 1 11

110001100111101111

111101100110010111

100101100101100111

100011100101011011

111011100110101011

110111100111010011

101111100100100011

101100100100111101

110100100111001101

111000100110110101

100000100101000101

100110100101111001

111110100110001001

110010100111110001

101010100100000001
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5. CRC-16(CCITT)

G(x) = x'16 + x12 + X5 + 1

burst lenth 17 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

burst lenth 18 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1

burst lenth 19 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1

1010101000010100101

burst lenth 20 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1

1011 10 1 1000 10 1 10 10 1 1

11011101000110101101

10011001000100101001

burst lenth 21 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1

101100111001011110111

110101011001101111011

100100011001001110011

111001101001110111101

101000101001010110101

110001001001100 111001

10000000 1001000110001

burst lenth 22 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

1011011111010111001111

1101000111011011010111

1001010111010011000111

1110001011011101011011

1010011011010101001011

1100000011011001010011
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10000100110 1000 1000011

1111101101011110011101

1011111101010110001101

1101100101011010010101

1001110101010010000101

1110101001011100011001

1010111001010100001001

1100100001011000010001

1000110001010000000001

6. CRC-16(ANSI)

G(x) = x1 6 + x1 5 + x2 + 1

burst lenth 17 1 1 0 00 00 00 00 0 00 1 0 1

burst lenth 18 1 1 0 00 0 0 0 00 00 1 1 1 1

burst lenth 19 : 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

1111000000000010001

burst lenth 20 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

10001000000000110011

11011000000000101101

10111000000000111001

burst lenth 21 1 1 0 1 0 1 0 0 0 0 0 0 0 0 01 0 1 1 11 1

101101000000001110111

111001000000001001011

100001000000001100011

101011000000001111101
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11001100000000 1010101

10011100000000l101001

111111000000001000001

burst lenth 22 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1100101000000010101111

1001101000000011010111

1111101000000010000111

1101001000000010111011

1011001000000011101011

1110001000000010010011

1000001000000011000011

1001011000000011011101

1111011000000010001101

1010011000000011110101

1100011000000010100101

1110111000000010011001

1000111000000011001001

1101111000000010110001

1011111000000011100001
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APPENDIX B: SIMULATION RESULTS
USING BINOMIAL DISTRIBUTION

The following tables and figures are the simulation results for each CRC code

using a binomial distribution random number generator. Each CRC code is listed in

TABLE 2.2. Each table and figure shows the relationship between the burst error and

block burst error for each CRC code. The source code for computing the simulation

results is shown in APPENDIX D. 2.
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TABLE B.1: SIMULATION RESULTS OF CRC-4(2048 BITS) USING
BINOM IAL STRIBUTI N

Total BER
Burst 10- 2 10-3  10-4  10-5  10- 6 10- 7

Length Statistical
Mean 1572 203.9 1.811 1.006 1.000 1.000

15000 SD 140.7 284.3 7.610 0.271 0.003 0.000
Mode(b > 0) 1562 1 1 1 1 1
Mode(b > 4) 1562 5 5 5 5 0

Mean 1697 232.2 2.424 1.003 1.000 1.000
20000 SD 140.7 311.9 11.93 0.127 0.009 0.001

Mode(b > 0) 1734 1 1 1 1 1
Mode(b > 4) 1734 5 5 5 5 0

Mean 1629 213.0 1.741 1.003 1.000 1.000
25000 SD 140.7 295.0 7.713 0.173 0.015 0.000

Mode(b > 0) 1633 1 1 1 1 1
Mode(b > 4) 1633 5 5 5 5 0

Mean 1745 226.7 1.655 1.001 1.000 1.000
300000 SD 140.7 311.6 7.921 0.101 0.003 0.000

Mode(b > 0) 1826 1 1 1 1 1
Mode(b > 4) 1826 19 5 5 5 5
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TABLE B.2: SIMULATION RESULTS OF CRC-9(14280 BITS) USING
BINOMAAL _ ISTRIBUTI N

Total BER
Burst 10-2 10-3  10-4  10- 5  10- 6 10-7

Length Statistical
Mean 7185 4796 306.2 6.488 1.020 1.000

15000 SD 140.7 1360 664.0 42.98 0.594 0.000
Mode(b > 0) 7337 1 1 1 1 1
Mode(b > 9) 7337 4385 10 10 10 0

Mean 9693 7094 431.1 4.627 1.117 1.008
20000 SD 140.7 1403 853.9 28.75 2.530 0.551

Mode(b > 0) 9837 1 1 1 1 1
Mode(b > 9) 9837 6006 10 10 10 10

Mean 12195 9527 660.3 7.822 1.149 1.000
25000 SD 140.7 1412 1185 54.73 4.052 0.000

Mode(b > 0) 12337 1 1 1 1 1
Mode(b > 9) 12337 7909 10 10 10 10

Mean 13339 10691 696.2 2.832 1.008 1.000
300000 SD 140.7 1413 1369 27.58 0.641 0.025

Mode(b > 0) 13428 10975 1 1 1 1
Mode(b > 9) 13428 10975 10 10 10 10
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TABLE B.3: SIMULATION RESULTS OF CRC-12(1880 BITS) USING
BINOMIAL EISTRIBUTIN

Total BER
Burst 10-2 10-3  10-4  10- 5 10-6 10-7

Length Statistical
Mean 1580 191.7 1.706 1.006 1.000 1.000

15000 SD 140.7 273.9 7.012 0.271 0.006 0.000
Mode(b > 0) 1591 1 1 1 1 1

Mode(b > 12) 1591 13 13 13 13 0
Mean 1518 168.3 1.886 1.001 1.000 1.000

20000 SD 140.7 250.8 8.391 0.070 0.007 0.003
Mode(b > 0) 1530 1 1 1 1 1
Mode(b > 12) 1530 13 13 13 13 13

ivlean 1489 166.2 1.516 1.002 1.000 1.000
25000 SD 140.7 249.4 5.850 0.125 0.015 0.000

Mode(b > 0) 1523 1 1 1 1 1
Mode(b > 12) 1523 13 13 13 13 0

Mean 1577 176.1 1.483 1.001 1.000 1.000
300000 SD 140.7 262.6 6.276 0.081 0.002 0.000

Mode(b > 0) 1659 1 1 1 1 1
Mode(b > 12) 1659 13 13 13 13 0
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TABLE B.4: SIMULATION RESULTS OF CRC-16(256 BITS) USING
BIN OMIAL ISTRIBUT N_

Total BER
Burst 10-2 10-3  10- 4  10-5  10- 6 10- 7

Length Statistical
Mean 42.81 1.169 1.004 1.000 1.000 1.000

15000 SD 46.39 1.596 0.025 0.001 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1

Mode(b > 16) 32 17 0 0 0 0
Mean 42.58 1.171 1.000 1.000 1.000 1.000

20000 SD 46.27 1.615 0.027 0.000 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1

Mode(b > 16) 43 17 0 0 0 0
Mean 44.17 1.174 1.000 1.000 1.000 1.000

25000 SD 47.38 1.646 0.021 0.001 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1
Mode(b > 16) 33 17 0 0 0 0

Mean 44.42 1.155 1.000 1.000 1.000 0.000
300000 SD 47.61 1.532 0.021 0.000 0.000 0.000

Mode(b > 0) 1 1 1 1 1 1
Mode(b > 16) 60 17 0 0 0 0
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TABLE B.5: SIMULATION RESULTS OF CRC-16(1024 BITS) USING
BINOMIAL PISTRIBUTI N

Total BER
Burst 10- 2 10- 3  10- 4  10- 5  10- 6 10- 7

Length Statistical
Mean 700.1 27.08 1.058 1.000 1.000 1.000

15000 SD 139.7 66.95 1.072 0.035 0.001 0.000
Mode(b > 0) 721 1 1 1 1 1

Mode(b > 16) 721 17 17 17 17 0
Mean 702.8 25.89 1.092 1.000 1.000 1.000

20000 SD 139.8 64.98 1.530 0.017 0.001 0.000
Mode(b > 0) 741 ! 1 1 1 1

Mode(b > 16) 741 17 17 17 17 17
Mean 706.2 26.22 1.055 1.000 1.000 1.000

25000 SD 139.8 65.76 1.095 0.032 0.002 0.000
Mode(b > 0) 739 1 1 1 1 1

Mode(b > 16) 739 17 17 17 17 0
Mean 727.7 25.73 1.045 1.000 1.000 1.000

300000 SD 139.9 65.78 1.073 0.013 0.000 0.000
Mode(b > 0) 813 1 1 1 1 1

Mode(b > 16) 813 17 17 0 0 0
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APPENDIX C: SIMULATION RESULTS
USING EXPONENTIAL DISTRIBUTION

The following tables and figures are the simulation results for each CRC code

using a exponential distribution random number generator. Each CRC code is listed

in TABLE 2.2. Each table and figure shows the relationship between the burst er-

ror and block burst error for each CRC code. The source code for computing the

simulation results is shown in APPENDIX D. 3.
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TABLE C.1: SIMULATION RESULTS OF CRC-4(2048 BITS) USING
EXPO ENTL kL DISTR T N_

Total BER
Burst 10-2 10-3  10-4  10- 5  10- 6 10-7

Length Statistical
Mean 1578 188.6 1.966 1.011 1.000 1.000

15000 SD 140.7 269.7 8.877 0.421 0.000 0.000
Mode(b > 0) 1533 1 1 1 1 1
Mode(b > 4) 1533 5 5 5 0 0

Mean 1698 214.2 1.917 1.005 1.000 1.000
20000 SD 140.7 296.1 9.235 0.210 0.000 0.001

Mode(b > 0) 1695 1 1 1 1 1
Mode(b > 4) 1695 5 5 5 0 0

Mean 1622 207.8 1.898 1.004 1.000 1.000
25000 SD 140.7 290.1 8.916 0.019 0.001 0.000

Mode(b > 0) 1645 1 1 1 1 1
Mode(b > 4) 1645 5 5 5 5 0

Mean 1743 222.4 1.676 1.001 1.000 1.000
300000 SD 140.7 307.6 8.108 0.111 0.003 0.000

Mode(b > 0) 1822 1 1 1 1 1
Mode(b > 4) 1822 33 5 5 5 5
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TABLE C.2: SIMULATION RESULTS OF CRC-9(14280 BITS) USING
EXPOENTI ALDISTRIB flQN

Total BER
Burst 10-2 10-3  10-4  10- 5 10- 6 10-7

Length Statistical
Mean 7209 4732 286.0 10.10 1.000 1.000

15000 SD 140.7 1354 623.3 66.76 0.000 0.000
Mode(b > 0) 7338 1 1 1 1 1
Mode(b > 9) 7338 2203 10 10 0 0

Mean 9709 6922 416.4 4.425 1.000 1.000
20000 SD 140.7 1400 852.1 30.05 0.000 0.000

Mode(b > 0) 9838 1 1 1 1 1
Mode(b > 9) 9838 5194 10 10 0 0

Mean 12211 9494 616.9 8.400 1.014 1.000
25000 SD 140.7 1412 1129 52.31 0.446 0.000

Mode(b > 0) 12338 1 1 1 1 1
Mode(b > 9) 12338 8151 10 10 10 0

Mean 13334 10644 722.8 3.207 1.007 1.000
300000 SD 140.7 1413 1407 32.15 0.546 0.014

Mode(b > 0) 13443 11045 1 1 1 1
Mode(b > 9) 13443 11045 10 10 10 10
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TABLE C.3: SIMULATION RESULTS OF CRC-12(1880 BITS) USING
EXPOET kL DISTRIBUTO

Total BER
Burst 10- 1 10- 3 10- 4  10- 5  10- 6  10- 7

Length Statistical

Mean 1573 183.6 1.926 1.007 1.000 1.000
15000 SD 140.7 264.5 8.767 0.292 0.000 0.000

Mode(b > 0) 1565 1 1 1 1 1
Mode(b > 12) 1565 13 13 13 0 0

Mean 1518 157.1 1.694 1.004 1.000 1.000
20000 SD 140.7 239.6 7.268 0.188 0.000 0.000

Mode(b > 0) 1538 1 1 1 1 1
Mode(b > 12) 1538 13 13 13 0 0

Mean 1489 163.3 1.671 1.003 1.000 1.000
25000 SD 140.7 246.2 7.068 0.140 0.001 0.000

Mode(b > 0) 1502 1 1 1 1 1
Mode(b > 12) 1502 13 13 13 13 0

Mean 1578 172.6 1.491 1.001 1.000 1.000
300000 SD 140.7 259.0 6.379 0.087 0.002 0.000

Mode(b > 0) 1656 1 1 1 1 1
Mode(b > 12) 1656 13 13 13 13 0
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TABLE C.4: SIMULATION RESULTS OF CRC-16(256 BITS) USING
EXP N1NIJL DISTRIB TON

Total BER
Burst 10-2 10- 3  10- 4  10- 5 10- 6 10- 7

Length Statistical
Mean 43.60 1.164 1.004 1.000 1.000 1.000

15000 SD 46.96 1.554 0.026 0.001 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1

Mode(b > 16) 35 17 0 0 0 0
Mean 42.92 1.155 1.000 1.000 1.000 1.000

20000 SD 46.49 1.500 0.025 0.001 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1

Mode(b > 16) 39 17 0 0 0 0
Meai 43.52 1.155 1.000 1.000 1.000 1.000

25000 SD 46.92 1.508 0.023 0.001 0.000 0.000
Mode(b > 0) 1 1 1 1 1 1
Mode(b > 16) 45 17 0 0 0 0

Mean 43.86 1.155 1.000 1.000 1.000 0.000
300000 SD 47.23 1.530 0.021 0.000 0.000 0.000

Mode(b > 0) 1 1 1 1 1 1
Mode(b > 16) 59 17 0 0 0 0

51



TABLE C.5: SIMULATION RESULTS OF CRC-16(1024 BITS) USING
EXPCNENI AL DISTRIB_

Total BER
Burst 10-2 10-3  10-4  10-5  10-6 10-7

Length Statistical
Mean 701.5 25.32 1.079 1.001 1.000 1.000

15000 SD 139.7 63.42 1.360 0.050 0.001 0.000
Mode(b > 0) 1 1 1 1 1 1

Mode(b > 16) 661 17 17 17 0 0
Mean 701.2 23.45 1.067 1.000 1.000 1.000

20000 SD 139.7 60.28 1.266 0.024 0.000 0.000
Mode(b > 0) 733 1 1 1 1 1

Mode(b > 16) 733 17 17 17 0 0
Mean 699.8 24.22 1.065 1.000 1.000 1.000

25000 SD 139.7 61.79 1.234 0.026 0.001 0.000
Mode(b > 0) 745 1 1 1 1 1
Mode(b > 16) 745 17 17 17 17 0

Mean 725.4 25.18 1.048 1.000 1.000 1.000
300000 SD 140.0 64.73 1.110 0.015 0.000 0.000

Mode(b > 0) 812 1 1 1 1 1
Mode(b > 16) 812 17 17 11 0 0
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APPENDIX D: PROGRAM LISTS

1. Undetected Burst Error Bit Pattern Generator

* Source : pattern.c *

* Author Yoon, Bee Byung *
* Date AUG 19 1990 *

* Update : NOV 24 1990 *

* Description : To find out the undetected burst error bit *
* patterns for each CRC codes. *

#include <stdio.h>

int rn[20);
int keep[20];
int restore[20];
int Gx[7] ={1,0,0,0,0,1,1};

maino)
{
int an,i;
int L;
printf("\nBit Pattern for the undetected burst error (CRC-6)\n");

printf("G(x) = x6 + x + l\n\n");
/* for burst error 7 to 10

for burst len 7: generate length S sequence 00000 to 11111

8 6 000000 to 111111
9 7 0000000 to 1111111
10 8 00000000 to 11111111

etc.

for(L=S; L<= 11; L++) {
printf("\nburst lenth %d \n", L+2);
rn[O= rn[L+1]=1;
generate(L, L);

generate(l, L)
int 1, L;
{

int i;
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for(i0O; i<=L+l; i++) restore~ilrn[i];

divide CL+2);
for~i=O; i<=L+1; i++) rn~ilrestore[i];

rn[1l=O;

for~i=O; i<=L+1; i++) restore[ilrn~i);

divide(L+2);
for(i=O; i<=L+l; i++) rn~ilrestore~ij;

return;

rn[l1:1

generate(1-1, L);

rn[13=O;

generate(1-1. L);

divide(burstlen)
int burstien;
f
int i, j, k, current;

for(i0O; i<=burstlen-1; i++) keep~ikrn~i];

/* divide */

for(i=O; i<=burstlen-7;){
curreft~i

for(jcurrent; j< current+7; j++) mu] ( rn[j] Gx~j-current])? 0: 1;

while (rn~current++]==0);

i = current -1;

if(current > burstien){

for(i0O; i<=burstlen-1; i++) printf("Yd ",keep[i]);

printfQ"\n");

2. Binomial Distribution

Source :bcrc.c



" Auther Yoon, Hee Byung*
" Date OCT 6 1990*
" Update OCT 27 1990*
" Description To find out the result(mean, mode, SD) for the

* binomial distribution randon number with BER.*

#include <stdio.h>
#include <math.h>

#define Ntimes 100
#define MAX..BUF 25000
#define Bur-.Len 2048
#define Blocks 13
#define Deg.Gx 4
#define SEED 12345

double e;
double ber[6] { 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001};
mnt rn[MAX-.BUFJ;

main(argc, argv)
mnt argc;
char **argv;

f
mnt i,j,m,n,k,l;
int cntl,cnt2,cnt3;
mnt bur-len,new-.len;
mnt ie, ntimes,max.buf;
int model,mode3;
double r,x,xl,y,error;
double mean[200J ,meanl,mean2,mean3;
double var [2001 ,sd [200) ,sdl,sd2;
double mode2 ,mode4;

void randnumo;

for(ie=0; ie<=S; ie++) {e = ber~ie];
meani =mean3 =sdl = sd2 = 0.0;

error = e;
max-buf = MAX-.BUF;

ntimes =Ntimes;
model = mode3 = 0;
mode2 = mode4 =0.0;

/* cntl: for detecting 1st bit error position
cnt2: last bit position
cnt3: computing average burst length

for (k=1; k <= Ntimes; k++){
randnumo;

cntl =cnt2 =cnt3 = 0;
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new-len bur..len =0;

mean2 = x= x = y 0.0;

mean~k] = var~k] = sd~k] = 0.0;

for (n1l; n <= Blocks; n++){

cnt2=cnti0O;

if (nu= Blocks){

for (m=(n-l)*BurLen; m <= MAX-.BUF-l; m++){

if Cru~m] 1

cntl;
break;}

else cntl++;

I

f or (m=MAX-.BUF-l; m >= (n-l)*Bur-Len; in--){

if (rn~m] ==1){
cut 2++;
break;}

else cnt2++;

new-.len =MAX..BUF-(n-l)*Bur-.Len - cuti - cnt2 + 2;

else { /* not the last block *
f or Cin0; mn <= n*Bur-.Len-1; mn++){

cntl1cnt2=0;
if (ru~nm] =1{

break;)

else cntl++;

for (mn*Bur-.Len-l; in >= Bur..Len*(n-l); M--){
if (rn[in) ==){
cnt2++;
break;}

else cut2++;

new-.len = Bur-.Len - cuti - cnt2 + 2;

bur-.len =bur-len +new-.len;
cut 3++;

bur-len = bur-len/cnt3;

printfC"\n total bur-len =%d\n",burjlen);

/* Compute mean and standard deviation with burst length *
x = Xl = y = 0.0;
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xl = (bur-len*e*pow(l-e,double)(bur-len-1)))/
(l-pow(l-e, (double)bur-len));

for(i=2; i<=bur-len; i++){
r = 0.0;

r = ((bur..len+l-i)*pow(e, Cdouble)2)*

pow(l-e, (double) (bur-len-i)))/
(l-pow(l-e, (double) bur-len));

x = x(~)

y = y+pov((double)i,Cdouble)2)*r;
if (i > Deg-.Gx){

if (mode4 < r){
mode4 = r;

mode3 = i

if (mode2 < r){
mode2 = r;

model = i

if (mode2 < xl){

mode2 = xl;

model = 1;

mean~k] = x+xl;

meani = meani + mean Ek];
mean2 = pow((double) (mean[k)),(double)2);
var~k] = (xl~y)-meaxi2;

sd~k) = sqrt(var~k));
sdl =sdl +sd[k];,
meanl~k] sd~k] var~k] = 0.0;

mean3 = meanl/Ntimes;
sd2 = sdl/Ntimes;
printf(Q\nTotal CRC Block Size =%d\n,max-.buf);
printf('\nBit Error Ratio =%e\n",ber~ie));

printf("\nNew Mean (%d times simulation) = %e\n",ntimes,mean3);

printf('\nlev SD (%/d times simulation) = %e\n",ntimes,sd2);

printf("\nWhen Ber-.Len >= 1~ Mode = %d\n",model);
printf("\nWhen Ber..Len >= %d ~>Mode = %d\n",Deg-.Gx,mode3);

void randnum()

int j;
float RN,RNl;
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for (j1l; j<=MAX-BUF-2; j-"){
RN =raxido;
RN1 =RN/2147483648.O;

if (RNI <= e)
rn~j] = 1;

.1lse
rn~j] = 0;

rn[OJ 1;

rn[MAX-BUF-1J = 1;
return;

3. Exponential Distribution

Source ecrc.c

Author Yoon, Hee Byuxig

" Date NOV 12 1990*

" Update DEC 7 1990*

" Description To find out the result~mean, mode, SD) for*

* the exponential distribution with BER.

#include <stdio .h>
#include (math.h>

#define Rtimes 100
#define MAXBUF 25000
#define Bur-.Len 1024

#define Blocks 25
#define Deg..Gx 16

#define SEED 12345

double e;
double ber[6] =(0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001};
mnt rn [NAX-.BUF];

main(argc, argv)

int argc;
char **argv;

int i,j,m,n,k,l;
mnt cntl,cnt2,cnt3;
int bur~.len ,new-.len;
int ie, ntimes,max-.buf;
int model,mode3;
double r,x,xI,y,error;

double mean[200) ,meanl,mean2,meai3;
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double var[200] ,sd[200) ,sdl~sd2;
double mode2 ,mode4;

void randnuxno;

for(ie=0; ie<=S; ie++) {e = ber~is];
meanl mean3 =sdl = sd2 = 0.0;

error = e;

max-.but = MAX_.BUF;
ntimes =Itimes;
model = mode3 = 0;
mode2 = mode4 = 0.0;

/* cnti: for detecting 1st bit error position
cnt2: last bit position
cnt3: computing average burst length

for (k1l; k <= Ntimes; k++){
randnumo;
cntl =cnt2 = cnt3 =0;
new-len =bur-len = 0;

mean2 =xl =x =y =0.0;
mean~k] = var~k] =sd~k] =0.0;

for Cn1l; n <= Blocks; n++){
cnt2=cntl=0;

if (n == Blocks) f
for Cm=Cn-l)*Bur-.Len; m <= MAXB.UF-1; m++){

if (rn~m] =1

cntl++;
break;}

else cntl++;

I

for (m=MAX.BUF-1; m >= (n-l)*Bur-.Len; mn--){
if (rn~m] ==I){
cnt2++;
break;}

else cnt2++;

new-.len- MAX-.BUF-(n-)*BurLen - cntl - cnt2 + 2;

else { /* not the last block *
f or (mO; in <= n*Bur-.Len-1; mn++){

cntlcnt2=0;
if (rn~m) )

cntl++;
break;}

else cntl++;
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for (m=n*Bur..Len-l; m >= Buz..Len*Cn-l); mn--){
if Crn[m] ==l){

cnt2++;
break;}

else cnt2++;

new-len =Bur-Len - cntl - cnt2 + 2;

bur-.len = bur..len +new-len;
cnt3++;

I

bur-len =bur-.len/cnt3;
printf('\n total bur-.len = d\n,bur-.len);

/* Compute mean and standard deviation with burst length *
x= X1 = y = 0.0;

xl =(bur-.len*e*pow(l-e,(double)(bur-len-l)))/

Cl-pow(l-e, Cdouble)bur-len));

for(i=2; i<=bur.len; i++){

r =0.0;

r =(Cbur-.len+l-i)*pow(e, (double)2)*

pow(l-e, Cdouble)(bur-len-i)))/
(1-pow(1-e,(double) bur-len));

x = x(~)

y =y+powC(double)i,(double)2)*r;

if Ci > Deg-.Gx){

if (mode4 < r){
mode4 =r;
mode3 = i

if (mode2 < r){
mode2 = r;

model =i

if (mode2 < xl){
mode2 = xl;
model = 1;

I
mean~k] = x+xl;
meani = meani + mean Ek);
mean2 = pow((double) (mean~k ) ,Cdouble)2);
var[k] = (xl+y)-mean2;

sd~k] sqrt~var~k]);
sdl sdl +sd~k);
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inean[k] =sd(kJ = var~k] = 0.0;

mean3 = meanl/Ntimes;
sd2 = sdi/Ntimes;
printf("\nTotal CRC Block Size = %d~n",max.bul);
printfC'\nBit Error Ratio = %e~n",ber~ie));

printfQ"\nNew Mean (%d times simulation) = %e\n",ntimes,mean3);
printfC'\nNew SD (%d times simulation) = %e\n",ntimes,sd2);
printf('\nWhen Ber-Len >= I Mode = %dn",modei);
printf("\nWhen Ber..Len >= %d >Mode = %d\n",Deg-Gx,mode3);

void randnumo(

int i,j,x;
float RN,RN1;

for Ci=O; i<=MAX-BUF-1; i++){

rn[i] = 0;

I
for (j1l; j<=MAX-.BUF-2;){

RN rando;
RNI RN/2147483648.0;

x =ceil(-(I.0/e)*(log(RNI)));

j = + X
if (j <= MAX-BUF-2){

rn~j) 1
x =0;

else{

break;

rn[0J 1
rn[MAX-.BUF-i)11;

return;
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