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ABSTRACT

The purpose of this thesis is to investigate and establish

Sturm-Liouville properties for special eigenfunctions which

are expressed in determinant form. In particular, a special

case i6 presented where the elements of the determinant are

Legendre polynomials. This type of determinant has a

probability background dealing in birth and death processes.

The method of analysis used in this thesis is a new approach

to solving this specific example. This investigation involves

systems of differential equations and Prufer's analysis in the

phase plane. The following are new results obtained in

addition to solving the special case mentioned above.

Special determinants of hypergeometric functions also

possess Sturm-Liouville properties. As a special case, a

different proof of Turan's Inequality is provided. Finally,

several theorems are presented for Sturm-Liouville systems of

differential equations with polynomial coefficients.

Accesion -cor --'1

UArc, es, (Jced -n I

i.-M3

By

Si .'.. ...

"" AI! t

li r-&



TABLE OF CONTENTS

I. INTRODUCTION ....... ................... 1

A. THE PROBLEM ......... .................. 1

B. STRATEGY FOR SOLVING THE PROBLEM ... ....... 2

II. CONSTRUCTION OF A STURM-LIOUVILLE SYSTEM OF
DIFFERENTIAL EQUATIONS ...... .............. 4

A. DEVELOPMENT OF A NONSTANDARD STURM-LIOUVILLE
DIFFERENTIAL EQUATION WITH SPECIAL DETERMINANT
EIGENFUNCTIONS ........ ................ 4

B. REDUCTION TO A SYSTEM OF FIRST ORDER
DIFFERENTIAL EQUATIONS ... ............ 8

C. PROFER ANALYSIS ...... ................ 11

1. Phase Plane ..... ............... 14

2. Sturm Separation Theorem ... ......... 19

3. Sturm Comparison Theorem ... ......... 22

4. Oscillation Theorem ... ........... 26

5. Sequence of Eigenvalues and Interlacing
Zeros ....... .................. 30

D. ORTHOGONALITY AND COMPLETENESS ... ........ 33

1. Orthogonality ..... .............. 33

2. Completeness ..... ............... 39

III. RESULTS AND CONCLUSION ..... .............. 43

A. RESULTS ........ ................... 43

1. Hypergeometric Functions ... ......... 43

2. Turan's Inequality .... ............ 44

3. General Systems of Differential Equations 44

B. CONCLUSION ....... .................. 45

iv



APPENDIX - PROOF FOR GENERAL CASE - fauk(x)........46

LIST OF REFERENCES....................52

DISTRIBUTION LIST....................53



ACKNOWLEDGMENT

I wish to thank my thesis advisor, Professor Gordon E.

Latta, for his expert guidance and support. Over the last two

years, he has been a mentor as well as a friend. Without

reservation, he is one of the best educators that I have ever

encountered. Also, a special thanks goes to Professor Chris

Frenzen for his assistance during the entire thesis process.

vi



I. INTRODUCTION

A. THE PROBLEM

The main purpose of this thesis is to investigate and

establish the essential Sturm-Liouville properties for special

eigenfunctions which are expressed in determinant form. In

particular, a special case is presented where the elements of

the determinant are Legendre polynomials such that

. PR(x) PkI(X) (n>k) k=0,1,2,...
O,.(x)P,(x) Pn (xW (-l<x<l) n=1,2,3,...(z)

This type of determinant has a probability background

dealing in birth and death processes and was studied by Dr. S.

Karlin and Dr. J. L. McGregor. In their researches, Karlin

and McGregor encountered determinants of classical polynomials

as examples. In order to complete their results, they needed

to know such properties as: number of zeros, interlacing

zeros, and completeness. Their obvious starting point was to

construct an ordinary differential equation such that (1.1)

was the solution. However, this differential equation was not

in a form that suggested how to answer any of these questions.

[Ref. 1]

The method of analysis used in this thesis is a new

approach to solving this specific example. The investigation

that follows provides a constructive answer, not only to this
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example, but, to a whole class of such problems. The

following are new results obtained in addition to solving

Karlin's problem.

Special determinants of other hypergeometric functions

also possess the essential Sturm-Liouville properties.

As a special case of (1.1), a different proof of Turan's

Inequality is provided in Chapter III. Turan's Inequality is

of the form

I P,(x) P'. 1 (x) -1<x<1
P..x< o (1.2)

where the elements of the determinant are Legendre

polynomials.

Finally, several theorems are presented for

Sturm-Liouville systems of differential equations with

polynomial coefficients. In general, boundary value problems

of systems are not well-posed. Until now, very little has

been established concerning these systems with polynomial

coefficients.

B. STRATEGY FOR SOLVING THE PROBLDE

The basic strategy developed here is to construct a second

order differential equation such that (1.1) is a solution.

Next, this differential equation is reduced to a special

system of first order differential equations such that t'-e

2



coefficients are polynomials. Then, the solution trajectories

are analyzed in the corresponding phase plane by a method

known as the "PrUfer analysis". From this analysis, several

theorems of Sturm-Liouville type are developed for general

systems of differential equations with polynomial

coefficients. Finally, completeness and orthogonality are

established with respect to a positive definite matrix weight

function.

3



II. CONSTRUCTION OF A STURM-LIOUVILLE SYSTD OF
DIFFERENTIAL EQUATIONS

A. DEVELOPMENT OF A NONSTANDARD STURM-LIOUVILLE DIFFERENTIAL

EQUATION WITH SPECIAL DETERMINANT EIGENFUNCTIONS

The objective of this section is to construct a second

order linear differential equation, with appropriate boundary

conditions, such that its solution is (1.1). For the general

case, with arbitrary n and k, this method is somewhat lengthy

and requires extensive manipulation of equations. However,

considering a special case of k = 1, this method is not as

complicated yet still illustrates all of the important steps.

For completeness, the outline of the solution for the general

case the same procedure and is provided in the Appendix.

In the general case, the eigenfunction tn~k(x) has the

following form

IPx) Pt.1 (x)] (n>k) k=o,1,2,...
.(X) IPn.(x) P,. 1 (x) (-1<x<1) n-1,2,3,...

Setting k = 1 results in

x '(3x 2-)

X, "', (X)

4



The strategy is to use recursion formulas and to develop

three equations for 1nl(x), O'nl(x), and I'n,i(x) as functions

of P,(x) and P',(x). Then, from these equations, a system of

equations in the matrix form AX = 0 is constructed where

X 0 0. Finally, the determinant of A is calculated and set

equal to zero. This results in a differential equation having

(2.1) as a solution.

First, the equations for #,,,(x), 6'a,,(x), and I'a,,(x) are

developed. Substituting the recursion formula

P., (x) =xP. (x) - ((-2) P, (x)

into (2.1) for Pktl(x) and Pni(x) results in

Pk(x) xPW - -. 2 ) P (X)

P. (x) x. (x) - (1-x 2 ) P(x)

Since k 1, Pk(x) and P'k(x) are replaced by x and 1,

respectively. In addition, by computing the determinant and

collecting like terms, we obtain the following equation for

(1k X 2) PX(x) x(1-X) P(x) (2.2)

5



Next, we differentiate both sides of (2.2). Thence,

2 Pa () i1 () n=
(2.3)d [ (1-x 2 ) 1

Then, we substitute the Legendre differential equation

d 1[(I-x2) P.1(x) --n(n+1) P (x)

into (2.3) and collect like terms. Then, (2.3) becomes

*', 1 (x)=(n-1)xP,(x) + (n-l) (1-x2 ) Pi(x) (2.4)2 (n+1)

Repeating the same procedure on (2.4) results in the

following relation for §'ol(x ) .

,! [ n(n-1) ](2.5)
I(x)[- 2 +(n-1) IP(x) + (n-1)X(X) (.

Now, a system of equations in matrix form is constructed

from equations (2.2), (2.4), and (2.5). The system takes the

form AX = 0, i.e.,

6



OM -n(n-1)2 1 Wn2 + (n-1) (n-1)x -

/(n-)x (n-1) (1-x 2 ) P8 (x) =0. (2.6)
X ,, (x)(n+)

*n, (x 1WI-X2 -x(l-x3) 1,.1(x)
2 n+1

Since the trivial solution can not be a solution of (2.6), A

a.s not invertible. Therefore, the determinant of A must equal

zero. Hence, by setting the determinant of A equal to zero we

obtain a second order differential equation where §,11 (x) is a

solution.

iAI - (1-x 2 ) (1 +3x )Z,.(x) - 6x(1-) *o,(x) +
[1 (2.7)

(n-l)[(3 n+6 )x2+n- 2  1 (x) = 2.)0

By setting 3 = n-i, then (2.7) takes the form

(i-x2 ) (+3x 2 ) n, I,(x) - 6x(-x) ,,(x)+ (2.8)
43 (1 +3)x +X. - ,(x) - 0

Note that, for each Legendre polynomial solution P1(x) to

the Legendre differential equation, there is a corresponding

logarithmic solution, Qn(x). This logarithmic solution obeys

the same recursion formulas as P,(x). Hence, by the same

procedure, the second solution to (2.8) is

7



Pk(x) Ps (x)
Q(x) 0"' (X)

Therefore, the general solution is

x 1A(3x 2 -1) x %A(3x2-1)

C, + C2  (2.9)
P. Wx P..' Wx OJ2 (x) 0.1I (x)

Finally, translated boundary conditions on (2.9) are

imposed so the second logarithmic solution is eliminated.

Note that (2.8) is not in the standard Sturm-Liouville

form. However, tD, (x) still possesses all of the essential

properties.

B. REDUCTION TO A SYSTEM OF FIRST ORDER DIFFERENTIAL

EQUATIONS

The objective in this section is to reduce (2.8) to a

system of differential equations of the special form

(1-x 2 ) 01 -* + (1+3xa)fY -1<x<1
(2.10)

(i-x 2 ) Y' " + Yp

where a, B, and y are polynomials in x, § ,I(x), and T is

an arbitrary function in x. There are an infinite number of

ways to transform (2.8) into a system of differential

equations. However, by requiring polynomial coefficients we

8



remove the singularities at ± (-3) "1 . Hence, all solutions are

well behaved on the interval -1<x<l.

The strategy is to convert (2.10) into a second order

differential equation and then equate the polynomial

coefficients of V, ' and 6.

The system (2.10) has the following equivalent form

(1-x3) (3x+1)*/-I (a+y2x) (3x21) +6x(1-x2)] 0 -

9/(x21) &6+B(3x2+1),' _ ya(3x2 +l -0I 1-X2____ 1 ) I

First, note that the coefficients of 0' are the same.

Next, equating the coefficients of ' and simplifying results

in

= -2x-a . (2.l)

Equating the coefficients of § and substituting (2.11) for

y leads to

;L3(A.3)x24,-11 = -W/(3x2+1).a6x-S (3x2+1)'
1-X2  (2.12)

+ a(-2x-&) (3x2+1)
1-X

2

Dividing both sides by 3x'+1 and simplifying yields

9



1[3 (A+3)x+A-1] + 6x

(2.13)
, (3X 2 1) + a (-2x-a)

Next, we consider components of (2.13) that have 3x*+l in

the denominator. The idea is to select a so that

%[3().+3)x2+.%-1]-4 wa 0 mod(3x+l)

This condition on a is essential in removing the singularities

at ±(-3) "I. For now, set a and 8 so that

U=px , B=q

where p and q are constants. Substituting px, p, and q into

(2.12) for a, a' and 8, respectively, and simplifying results

in

(-3A2 -9A) x+ (2; 2 +1) x2 + (. 2 _-)-

(-3p 2-9p-9b) x 4 + (-p 2 +2p-6b)x2 + (-p-b)

Next, we equate the coefficients. Thus, p 21 and q

-1(+l) which implies that a = 2)x and 8 = -1(%+1).

Substituting back into (2.11), it follows that y (1+l)(-2x).

Therefore, the system (2.10) takes the form

10



(1-x 2 ) ' = 2 .xG + (1+3xa ) Y -1<x<l

(1-X'2 )Y V = (L1 + (+)(2)

A simple substitution of (1+1)T = implies the following

equivalent form

(I-X)@ 0- 2Ax* + (+) (1+3x 2 )Y -l<x< . (2.14)

(1-x 2 ) ' - -. * + (3+1) (-2x)T

Hence, (2.14) is a system of first order differential

equations that is equivalent to (2.8).

C. PROPER ANALYSIS

The Prufer analysis is used to study the oscillatory

behavior of trajectory solutions in the corresponding phase

plane [Ref. 2:p. 312]. It is a very powerful method that is

extremely useful. The objective of this section is to use

this method to establish the theorems listed below for general

systems of differential equations, and then apply these

theorems to (2.14). These theorems for systems are adapted

from the analogous theorems for Sturm-Liouville differential

equations [Ref. 2:pp. 312-353].

Theorem 1. (STURM SEPARATION THEOREM)

If (f V), and (# Y)2 are linearly independent solutions of

the system

11



and

4S(-) - T-e]2> o

where a, 8, y, and Q are polynomials in x, then ti must vanish

at one point between any two successive zeros of #2. In other

words, the zeros of I, and 92 interlace.

Theorem 2. (STURM COMPARISON THEOREM)

Let (I Y) and ( ,) be nontrivial solutions of the systems

where a, B, , Q. a, 1, 9, and Q are polynomials in x, and

48(-Q) - [y-4] 2>0

o <3<8 ff - y)-W-] 2>0o

4(A-X) (.- (--) ) - [y-y- (U-76) ] 2>0

Then, I vanishes at least once between any two zeros of f,

unless (4 q) is a constant multiple of (I Y).

Theorem 3. (OSCILLATION THEOREM)

Consider the associated Prefer differential equation

12



(i-x 3 ).a =Acos 2O+ 1 (1+1) Y-19] sincose- (.l) Qsin20

obtained from the system of differential equations

- (~.1)Q1*~(2.15)
-X)I (1+1)0 ) ~ 1<X<1

where a, 8, y, and Q are polynomials in x. If

4S(-Q) - [y-.] 2>0

and 9(-1) = x, such that -x/2 < x < x/2 for each 1, then the

solution 0 is a continuous and strictly decreasing function of

I for fixed x on -1<x<1. Moreover

lim )=-n I_(x) -
A-*WW.S).00

for -1<x<1.

Theorem 4. Consider the system of differential equations

(2.15) which satisfies the Oscillation Theorem. If

(-1) =C, -'X < <-I for all-W<1<60

2 2

2 2

then (2.15) has an infinite sequence of real eigenvalues

13



.. <1.2<X-<.%0<'X<'< .•..

with

lir An-- and lira Ann--
n.40" n--.

The eigenfunction 6n belonging to the eigenvalue A has exactly

n zeros in the interval -1<x<l, and is uniquely determined up

to a constant factor.

1. Phase Plane

The objective of this section is to convert to polar

coordinates the following general system of differential

equations

+ -<x<l (2.16)

( /-x)Y - B + yY

where a, B, y, and Q are polynomials in x. By introducing

polar coordinates

*=r (x) cosO (x), =r (x) sine (x)

where 0 is positive in the counterclockwise direction, the new

dependent variables become r and 0.

Expressing r and 0 explicitly as functions of 0 and Y

leads to

14



Omarctan{X) and (2.17)

r2 =o2 +lY2  (2.18)

Then, by differentiating both sides of (2.17) and

(2.18), an equivalent system of differential equations for

(2.16) is presented as functions of r and 0. Differentiating

both sides of (2.17) yields

sec2 6) *2 (2.19)

Since

sec2 le _ 1+tan2 o I + # 2 +1f 2

then (2.19) becomes

dOr .I- (2.20)

By substituting from the general system (2.16),

equation (2.20) takes the form

(-x 2 )~ -O [E+yYJ*-[g#eQYjY
M 2+Y2

15



Substituting in polar coordinates, the differential

equation for 0 becomes

(1-x-2 ) d=cos2e+ (y-g) sin~cosO-Qsin2  (2.21)

Finally, we differentiate both sides of (2.18) and

follow similar steps. The differential equation for r then

becomes

(1-x 2 ) d=r[scos 2 + (Q+B) sinecosO+ysinB] (2.22)

Therefore, (2.21) and (2.22) represent an equivalent

system to (2.16).

The advantage of this system over (2.16) is that

(2.21) is a first order differential equation of only 0. This

allows the study of the os.illatory behavior of the solution

trajectories independent of r. To find r for any solution 0,

one solves (2.22) directly.

We also note that r is always positive for nontrivial

solutions. This can be seen by examining the solution of

(2.22) [Ref. 2:p. 312].

Next, we recall the following result from elementary

algebra. A function

F(x,y) - a x2 + b xy + c y2

is negative definite if and only if

16



a<0 and 4ac - b2>0

and positive definite if and only if

a>O and 4ac - bV>O

Next, we apply this result to (2.21). If we can show

that

48(-Q) - [y-i.] 2>0

then equation (2.21) is either negative definite or positive

definite, depending on the sign of S. If equation (2.21) is

positive definite, then the change in the angle 0 is always

greater than zero. This means that the angle B is always

increasing. Since our polar coordinate system is set up so

that the positive direction of rotation is counterclockwise,

then the solution trajectory of 0 always rotates

counterclockwise. If equation (2.21) is negative definite,

then the solution trajectory of 0 always rotates clockwise.

In addition, since the change in the angle 0 is either

positive definite or negative definite, then the direction of

the solution trajectory 0 can never change. Therefore, we can

conclude that once a solution trajectory crosses an axis it

can not cross back.

Also, since I = rcosO, then the zeros of 0 occur when

o = x/2+nx where n 0, ±1, ±2 .....

17



Consider the system of differential equations (2.14).

The associated PrUfer equation is negative definite for 1>0,

and positive definite for 1<0. However, for (2.14), it is

easy to determine the direction of rotation across the #-axis

and T-axis without the Prufer equation. First, we examine the

case when 1>0 by directly substituting into (2.14).

By setting # = 0 we can determine the direction of

rotation along the T-axis. Also, by setting Y = 0 we can

determine the direction of rotation along the I-axis. Hence,

if we substitute these values back into (2.14), then the

corresponding phase plane for 1>0 takes the form in Figure 1.

Figure 1. Phase Plane Analysis Along T-axis and #-axis
for 1>0

18



Clearly, the solution trajectories can cross the I-

axis and T-axis only in a clockwise direction. In the case

when I<0, the trajectories rotate in the counterclockwise

direction.

2. Sturm Separation Theorem

Suppose (0 V)1 and (f V)2 are two linearly independent

solutions of the system

and

48(-Q) - [T-9J2 >0

where a, 8, y, and Q are polynomials in x.

There are two cases to consider, one being when 8<0

and the other when 8>0. First, we consider the case when 8<0.

We examine the area "A" of the triangle created by

joining the points (0 Y)I, (# T)2' and the origin in the (#,T)

plane, Figure 2.

By inspection, the area "A" is equal to zero only when

(f V), and (# Y)2 are on the same straight line through the

origin. This can occur with (f T)I and (# T)2 both in the same

quadrant, or in opposite quadrants. However, this can never

occur since (f Y), and (" V)2 are linearly independent, so "A"

has positive area.

19



T

2
A

Figure 2. Area Principle Analysis

Recall that two nontrivial solutions of (2.23) are

linearly dependent if and only if they are located on the same

straight line through the origin in the (I,T) plane. Hence,

the angle, v, between the linearly independent solutions,

(I T), and (0 T)2, is always O<o<x. In other words, (V Y), and

(I Y)2 are always in the same rotating half plane and never

cross each other.

Analytically, we can show that the area "A" is never

zero by the following method. Using the area principle, we

calculate the area "A" using the following formula

20



10A=% 1 i9 2 Y 2  =192 21 = ov-2I (2.24)
1 0 0 2 2

The change in the area is

-d- . .[O'T2 + 0 y' - O'T1 - 02TO

Substituting in I'J, 0'2' T'i, and V'2 from (2.16) and

simplifying gives

-u%(s+y) (01T 2 -02T )

Substituting into this equation from (2.24) results in

d -(a+yIA

Finally, by solving for "A", the following formula is derived

to determine the area "A" at any point -1<x<l;

A-k {xpfxzoyd}

where k = A(-1) is the initial area.

Since a and y are polynomials and -1<x<l, the area is

finite. Moreover, A(-1) can not equal zero since the two

21



solutions are linearly independent. Hence, the area "A" can

never be zero.

Next, we recall that 8<0 and

4A(-Q) -[y-] 2>0

Therefore, dO/dx is negative definite which implies that all

solutions rotate in a clockwise direction. Also, once a

solution crosses the Y-axis, it can never cross back.

Finally, since the area can not equal zero, the angle a

between (I Y), and (I T)2 is always satisfies 0<o<x.

Therefore, as the solutions rotate clockwise in the (0,T)

plane, (I Y), and (6 T)2 always cross the T-axis in the same

order. Therefore, the zeros of 11 and #2 interlace. The

analysis for the case when 8>0 proceeds in exactly the same

way except that the solutions rotate counterclockwise. q.e.d.

3. Sturm Comparison Theorem

Let (I T) and ( w) be nontrivial solutions of the

systems

(2.25)

respectively, where a, 8, y, Q, , N, j, and Q are polynomials

in x, and

22



4S(-Q) - [y-.] 2>0

0<3<8 Z -) -[ - 2> o

4 (8-3) [y (0--)-7y'- (g-E 2 >o

Again, there are two main cases to consider. One case is when

B- > 0 and the other when 1-N < 0. The second case is the

same as the first except that the solutions rotate in the

counterclockwise direction. Hence, it suffices to consider

only the case when 0-N > 0 and that all solutions rotate

clockwise. The objective is to analyze the two solutions in

the (1,T) plane through the use of the Prfifer equation.

The associated Prufer equations for (2.25) are listed

below, respectively.

( -x =rosO1 (y-)sine1 cose - in@

(1 -X2) _!- Qsin (2.26)

(1-x 2 ) I - C oS 2 2+ (f-) sirA 2 cos 2 - Dsin%2  (2.27)
dx

By subtracting (2.27) from (2.26), the resulting

equation indicates the rate of change of the angle formed

between (I V) and (4 q). In addition, by superimposing one

solution on top of the other, with1 = 2 (Figure 3), then the

equation becomes
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(1-x 2 ) -A (0 -0 ) - (8-B) cos%02 + Ey-i- (&-W) ] sinOAcosO,

-(g-V) gltn~e

The resulting equation is a Prilfer equation. This

equation facilitates the analysis of the solution vectors

(0 V) and ( q) by examining the behavior of the two angles,

and 02.

Since B-I > 0, and

4 (3-S) (g- (-) ) - [ -Zy- (g -W) ] 2>0

then, d/dx( 1-02) > 0. This means the rate of change of the

angle between (I Y) and (4 1) is always increasing, and (4 q)

"runs away" from (I Y), Figure 4.

Note that (t Y) and ( i) are solutions of two

different systems of differential equations. The two solution

may be linearly independent or dependent. Hence, one solution

could "lap" the other solution one or more times.
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NN.

Figure 3. Superimposition of Solutions
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Recall that the zeros of I and 4 occur when (I T) and

( q) respectively cross the T-axis. Therefore, as the

solutions continue to rotate, between any two zeros of # there

is at least one zero of . Note that, if (f Y) = c(C q), for

all -1<x<l, then the zeros occur simultaneously. Hence, C

vanishes at least once between any two zeros of 0, unless

(4 q) is a constant multiple of (V Y). q.e.d.

4. Oscillation Theorem

We consider the system of differential equations of

the form

(I -X2)( ) A.1.i1 '<(-xl (2.28)

where a, 8, y, and Q are polynomials in x, and

48(-Q)-[y-l 2>O .

The system (2.28) is basically the same as (2.23)

except now we have introduced an eigenvalue, 2. The objective

now is to vary A thereby to study the zeros of f. The Prufer

equation for (2.28) is

( -x 2 ) -AS coS2e1.+ (.+1) y -aS Sincoseldx(2.29)

-(6+1)Osin 203 .
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As before, the zeros occur only on the T-axis which is

the same as saying the zeros occur at 0 x/2+nx for n = 0,

±1, ±2,.... Next, we impose endpoint conditions on 0 such

that

e (-1) , -c<- for all-w<I<m
2 2 (2.30)

0(1)=v-nx, .1(0<<! n=O,±1.i2,....
2 2

so that the angle T is as close to x/2 as possible. Note that

the endpoint conditions are computed from tanS = T/f.

Now, we consider a second system

where v is an eignevalue. The Prfofer equation for this system

is

(1-X2)  -scosae2+ [ (Ps+1) Y-Psa] stn2O2
&C (2.31)

- (pS+1) OsinO

Suppose that x is fixed and the differential equation (2.31)

satisfies the following endpoint condition

-- <-2 for -w<I*
~''' 2 2
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Following the same basic proof as in the Sturm Comparison

Theorem, we subtract (2.29) from (2.31), and equate 9 to 62

at Oi(-1) = 02(-1) = T. Hence,

(1 -x2)A (02 -01)-
dic (2.32)

(-%)[SCO81el + (y -) ginelCogel -Ogin2ex]

Since

4S(-Q) -[y-a] 2>0

then the discriminant of (2.32) is

(p-A)2[45(-Q) -(y-a) 21 >0

Therefore, d/dx(02-01) is either positive definite or

negative definite. Accordingly, there are several cases to

consider. However, by examining one case carefully, all other

cases follow directly, with only the direction of rotation

varying. Thus, it suffices to show only one case.

Let x be fixed. Suppose that O<p< which implies that

p-I < 0. Now, consider the case when 8<0.

Since 8<0 and U-1<0, then d/dx(O-0 1) > 0. Hence, by

considering the conditions that O<p and 0<1, it is implied

that all solutions rotate in the clockwise direction, and

(# V) "runs away" from ( i) as A goes to positive infinity,

Figure 5.
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020

Figure 5. (f Y) "Runs Away" from (1 ), 3>0

If %<0, then p-I > 0 which implies that

d/dx(02-01 ) < 0. Therefore, when 1<0, all solutions rotate in

the counterclockwise direction and (# T) "runs away" from (

q) as I goes to negative infinity, Figure 6.

In summary, as I goes from -a to a, the angle 1 goes

from a to -a in a strictly decreasing manner. Hence, for

fixed x, 0 is a strictly decreasing function of the variable

1. In addition,

lin 6--a lime-MA and -

q.e.d.
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02

Figure 6. (f T) "Runs Away" from (1 <), <0

5. Sequence of Eigenvalues and Interlacing Zeros

Consider the system of differential equations (2.15)

which satisfies the Oscillation Theorem. Now we continue with

our analysis and maintain the conditions of the previous

proof. Namely, let O<U<A and

~'''2 2

e(1)e-a, -- <o- ,n-0,*1,,2,...
2 2

where x is as close to x/2 as possible.
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Now, we let V be fixed and B<0. Note that a value for

which satisfies both endpoint conditions is an eigenvalue

for the system of differential equations (2.28). Let $(-1)

= I. Then, as I increases, the solution trajectory of

rotates in a clockwise direction. Since di/dx < 0, the

trajectory of 9 eventually crosses O() = o-nx (n = 0).

Hence, the first time that the trajectory of 9 crosses the

line 9(1) = o-nx is when n = 0. We call this eigenvalue ..

Therefore, when I = 10, the solution trajectory of does not

cross the T-axis. Hence, there are no interior zeros for the

corresponding eigenfunction #0 of lo, Figure 7.

Figure 7. Interior Zeros of #0
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Recall that for each k, the corresponding

eigenfunction is determined by the formula

0a-rcose

Now, as I continues to increase, the solution

trajectory of 01 continues to rotate in the clockwise

direction. Eventually, the trajectory of 1 again crosses the

line O(1) = o-nx when n = 1, or 01(1) = a-x. We call this

eigenvalue 11. Therefore, when I = 11, the solution trajectory

of 91 crosses the T-axis one time. Therefore, the

eigenfunction 1, of 1, has one interior zero. This process

continues as I increases to a. Similarly, for 1<0, the

solution trajectory of 9 rotates counterclockwise and this

process continues as I decreases to -e.

In summary, as I goes to ±w, each time that the

solution trajectory of 9 crosses the line O(1) = o+nx, the

corresponding value for I becomes an eigenvalue of the system

(2.28). Hence, there is an infinite sequence of k for n = 0,

±1, ±2,... for which the second endpoint condition is

satisfied. Therefore, there are eigenvalues, X, such that

and the associated eigenfunction belonging

to J6 has exactly n interior zeros in the interval -l<x<l.

Moreover, it follows that

tASft and
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In addition, any two solutions which satisfy the same

initial conditions are linearly dependent. Therefore, each

eigenvalue uniquely determines an eigenfunction up to a

constant factor. This completes the proof of Theorem 5.

For the system of differential equations (2.14), the

discriminant of the associated Prufer equation is positive.

Therefore, all of the previous theorems apply.

D. ORTHOOONALITY AND COKPLETENESS

The objective of this section is to show that in a Hilbert

space the eigenvectors of (2.14) are complete and orthogonal

with respect to a weight function. [Ref. 3:pp. 344-353]

1. Orthogonality.

The system of differential equations (2.14) is

equivalent to the following form

(1-x) #) _1(2 1+-,,0 (* + 0 13x3(2.34)

For convenience, represent (2.34) with the notation

( 1-x2) ZI- ULA Z& (2.35)

where Z| is the eigenvector (f Y) associated with the

eigenvalue 1. A and B are the 2 x 2 matrices given below

33



A 2= 1+3X2 and B.(0 1+3X)-1 -2X0 -2X

In addition, we let L stand for the linear

differential operator, such that, when L operates on Z then LZ

is defined by

LZ= (1-x2) Z'-AAZ-BZ-=o

The general strategy is to find the adjoint operator,

L,, such that WT(LZ) - (L*W?)Z is an exact derivative. Then,

we integrate both sides to establish orthogonality. Finally,

matrix algebra can be used to find the corresponding weight

function.

Let W be a 2 x 1 column vector such that

WT(LZ) = (1-x 2 ) WPA'-IWTAZ-WWZ
(1 [(-X2) wVL] /- 1 (1 -X2 W1-.%wrAZ-W2BZ

Then, by requiring the exact derivative

wr(LZ) - (LW'T) Z-A ((-x 2 ) w'z] (2.36)
dx

it follows that

(r'T) Z--[(1-z) WJ 'Z+,%NrAZ+W"BM
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Hence,

L'1--( [(1-x2) WJ '.AA'N+Br*-o

For general ., the adjoint differential equation is

[ (1-X 2 ) k-9 - -pW'A - W2B oX (2.37)

[ (1-x, ) WJ I - -pATW - BW

Next, we return to (2.36). Substituting WT(LZ) and

(LW)Z into the equation and simplifying yields

Wr(LZ) - (L'W Z--A. [W(1-x 2) Z]
dx

which simplifies to

e (2 -X2) Z. [ WT (1 -X2) I / Z- d [ wT (1 -X2) Z]
dx

Substituting in (2.35) and (2.37) results in

(A-L) W'AZ- [W'(1-x 2 ) Z]

Now, we integrate both sides. This leads to the following

orthogonality relationship

(1-1 WAZ (W7(-j2) Zz)I1, -o (2.38)
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If the integrand is well defined, then the

eigenvectors W are orthogonal to those of Z, with respect to

the matrix weight function A. Next, we determine the nature

of W.

Expanding (2.37) leads to

(1-x 2 ) W,2xV-piA'V-BrV . (2.39)

We write W in the form W = JE where Z is a 2 x 1 column

vector, and J is a 2 x 2 matrix of the form

Then, (2.39) becomes

(U-x2 ) JV-=2xJZ-iAJEZ-B TJZ

Then we, premultiply both sides by J'-. Note that

J-i = -J. Thus,

(1 -x 2 ) Z/-2xZ +pIJArJZ +OBrJZ (2.40)

Since

JArJ_(. 1) (2X 3-) () o 1) A

and
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j3T -( 2X 3x2 +2)

then (2.40) simplifies to

(-x2) '-PAZ + (B+44) - (2.41)

where I is the identity matrix. Next, letting

E-- (1-x 2) -2 Q and
Z-_4X(l-X2) "3Q + (I -X2 ) -2Q

where 9 is a 2 x 1 column vector and substituting into (2.41)

gives

(1-X2) Q'-pA +BQ . (2.42)

So, a = ZI where Z is the eigenvector corresponding to the

eigenvalue p. Back substituting results in

V- jZ - J(1-x2 ) -2Q _ j(1-xa ) -2Z P

If 1 Vp, then the orthogonality relationship (2.38)

becomes

-) (1-X2) 2

Since 1 0 V, then 1-p 0 0 which implies
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zlr 7 rA Z d - 0
f'1-X) 2 ZdCOC

When : p, then

f.t % ;a ZJ C zdx - 0 (2.43)

since the integrand is always positive. In addition, since

the integrand is a polynomial, then it is finite. This

implies Z1 is square-integrable with respect to the matrix

weight function

JrA
(1 -x) 2

Initially, the (1-x*)"2 term may seem to imply that the

integrand is not well defined at ±1. However, (1-x')'2 cancels

in (2.43), and all the remaining entries are polynomials.

Next, we determine the sequence of eigenvectors.

Clearly, I = 1, 2, 3,... all yield solutions. This is based

on the definition of I such that I = n-I where n = 2, 3,

4 ..... Now, we consider A = -1, -2, -3.... Since

P-, PA

for the Legendre polynomials, the following relationships

hold.
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P1.1  P-1(11 411 a P-1-2  (2.44)

PI-2 "P-((.-). l P-1-3 (2.45)

Substituting (2.44) and (2.45) into the original

definition of ,91, yields

,I P P2  t 1 "P P

*a.1B '11 .%-12 P-1-2 Pj 1

for I z 1. Equivalently, for 1 s -1,

I' -2 PA-3

This form provides the solution to the original

differential equation (2.8). Therefore, there exists a

sequence of eigenvectors

M -2 4- .0 02 Ma

where (f T) has polynomial entries of degree s m+3.

2. Completeness

Finally, we determine that the sequence of continuous

eigenvectors (0 V), for m = 0, ±1, ±2, t3,..., which are
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orthogonal and square-integrable with respect to a matrix

weight function, is complete. That is, we show that every

square-integrable function F = (1-x*) (f g)? can be expanded

into an infinite series such that

Recall that there is a factor (1-x') which cancels from both

sides of the equation.

Consider the column vector (p q)T where p and q are

polynomials of degree s m+3. There exist constants c., and c.

such that

(P1 o. + . o.( .

is a column vector with polynomial entries of degree im+2.

This follows by equating the coefficients of e43 and solving

the resulting system of equations for the coefficients c., and

c.. Since (f 1). and (i Y), are linearly independent, then c-,

and c. exist. By mathematical induction, one can find

constants ck for k : -m, ... , -1, 0, 1, ... , m such that
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Finally, we let F = (1-xz) (f g)t where f and g are

any continuous functions on a finite closed interval -Isxsl,

and let e1 , 62 > 0. Then, by the Weierstrass Approximation

Theorem, there exist polynomials such that

I (lX)p < 93 and

for all x on [-1,1]. Hence,

which implies

~(1-X2)(~ g c~ Ck (I) f. max 12()

Therefore, F is approximated uniformly, within an

arbitrarily small distance E > 0, by a linear combination of

the (f T). Hence, the sequence ((IY)l} for m = ... , -1, 0,

1, ... is a uniformly convergent sequence, which implies the

sequence is mean square convergent on -lsxsl with respect to

an integrable positive weight function. Recall that (1-x') "2

cancels in the integrand, leaving a positive definite matrix.

Therefore, the sequence is complete. [Ref. 2:p. 353]
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In addition, the constants ck are determined in the

following way

J'T-YA (ib 3 Pd
Cj:aTik---

4A Z dx
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III. RESULTS AND CONCLUSIONS

A. RESULTS

We have shown in this thesis that there is a special

function which takes the form

IIPk (x) Pk.1 (x) (n>k) k=0,1,2#... (3.1)Ikx P.(x) P.Lx (-I<x<l) n-1,2,3, ... ,

where the elements of the determinant are Legendre

polynomials, and possesses the essential Sturm-Liouville

properties. In addition, several interesting results are

obtained and listed below.

1. Hypergeometric Functions

The Legendre differential equation is a special case

of the hypergeometric differential equation. This suggests

that a determinant of the form (3.1), with other

hypergeometric functions as elements, might possess similar

properties.

Recall that the recursion formula

(x) =xP,(x) - ) P, (x)

and the Legendre differential equation are used extensively in

the initial development of (3.1). In fact, it can be shown

that since the hypergeometric function can be expressed in a
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recursion formula of the form

F(r+1 ; x) = A(r ; x)F(r ; x) + B(r ; x)F"(r ; x)

then the determinant (3.1), with other hypergeometric

functions as elements and appropriate boundary conditions,

possesses the same Sturm-Liouville properties.

2. Turan's Inequality

The proof of Turan's inequality is a straight forward

application of the general case (3.1). Setting n = k+1 and

substituting back into (3.1) results in a determinant that is

of Turan's form. Recall, from the previous analysis of (3.1),

that there exists a I such that (3.1) has no zeros in the

interval -1<x<1. Hence, Turan's inequality is established.

3. General Systems of Differential Equations

In general, boundary value problems of systems of

differential equations are not well-posed. Until now, very

little has been established concerning systems with polynomial

coefficients. In Chapter II, several theorems are developed

and proved for such systems. Hence, if the conditions of the

theorems are satisfied, then the system is said to be of

Sturm-Liouville form.
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B. CONCLUSION

The analysis of this one problem presents several possible

avenues of further research. Only the first step was taken in

a direction which could result in establishing several new and

substantial results. For example, the next step would be to

establish the case when (3.1) has other hypergeometric

functions as elements. Then, one could continue the research

on Sturm-Liouville systems of differential equations by

examining the possibility of expanding the necessary and

sufficient conditions for such problems. Research on this

subject is ongoing.
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APPENDIX

I. PROOF FOR GENERAL CASE - 1 ,k(x)

A. PURPOSE

In this appendix we briefly outline the procedure for

establishing the Sturm-Liouville properties for the general

case, On,k(x). The basic procedure is very similar to that

illustrated in Chapter II. Thus, only the important steps are

highlighted.

B. DEVELOP DIFFERENTIAL EQUATION

By following the procedure in Chapter II, it is easy to

establish the following relations for fnk(x), §',,k(x), and

I ,k(x)

(1 ~ -X2 1 ()lPjPk
n+ k+1]

*,- (n-k) (1-X) pV'c + (n-k) PnPk (2)
(n+l) (k+l)

*=n-)(n-k+l) 2x Pv+(k-n+1) P..jl
.#(n-k)[ (kn+1 P*p+ ..(n+1)(k+1) ;i+( )k+1 (3)

Equations (1), (2), and (3) lead to the differential
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equation

Pk + ( ~ ) 2k1 Jr (kl 1 (4)

(n-k) I(-k+:)P! k+1 (kel) 2 kP)2]u0

where the general solution is

, P + P'I k. I
c1I PJ

Pn P.2. On 06-1

Applying appropriately translated boundary conditions

eliminates all logarithms, QI , in the general solution. Now,

setting A = n-k-1 and letting

0 )1-0 (Pk)It'+k and (5)

k+1 k 1 (6)

then (4) takes the form

2Pk(Pk+APl)
-- -)01/(+1) [k+1 lo" (7)
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C. REDUCTION TO A SYSTEM OF FIRST ORDER DIFFERENTIAL

EQUATIONS

Next, we reduce (7) to a system of first order

differential equations of the form

(1-A ) - s * OT -1<X<1 (8)

(1-x)Y' - so + yY

where a, 8, y, and Q are polynomials in x.

First, note that Q and Q' have no zeros in common. This

implies that all polynomial coefficients of I, ', and 0' are

reduced to lowest terms and only simple zeros occur in the

denominator. The proof is as follows.

If Q'=0 , then either Pk'=0 or

X +(9)

If Pk' =0, then Q=O only when Pk=0. However, it is easy to show

that Pk and Pk' are relatively prime. Hence, when Pk'=0, then

Q 0 0.

If (9) holds, then by solving for Pk and substituting back

into Q it follows that Q=0 only when Pk'=O. But, by the first

case, this can not occur. Therefore, Q and Q' have no zeros

in common.

By transforming (8) into a second order differential

equation and equating coefficients of I' and ' it is easy to

establish that
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-2x-a .(10)

Equating the coefficients of I and substituting (10) for y,

results in the following equation.

at+_OA -_eg (-2x-eg) -

(11
-; (AL+a) - [2Pk(P+A-4J

Now, we isolate and examine the components of the equation

that have Q in the denominator. The idea is to select a such

that

got- ([+) 2P,(P,+I)J •0 mod(O)

Substituting (6) for Q' implies

Ik lkk~p)]ik~ X~~ ' ) 0mod ()

However,

X + P(12)

and Q are relatively prime. This is shown by the following

argument.
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Set (12) equal to zero and then solve for Pk- By

substituting back into Q it follows that (12) and Q have zeros

in common when Pk and Pk# have zeros in common. However, Pk

and Pk' are relatively prime. Hence, (12) and Q are

relatively prime.

Therefore, since (12) and Q are relatively prime, then

there exists a polynomial 4 such that

£ ?-.1P- (I -AA)(~a~ 2 (13)
I k+ (;I. P (k 1) (k)JP

By examining (13) it follows that

(,+1) Pk+MPk n 0 mod(Pl,) .

Moreover, since Pk and Pk' are relatively prime, then there

exists a polynomial N such that

(X+1) + Mk - k . (14)

However, by the Euclidean Algorithm for Polynomials, there

exist unique polynomials M, and N, such that

Pk+ 7 P1

From (14), this implies that

- -(1+1)M, and N- (,+1) .
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Hence, there are unique polynomials M and H that determine

a such that all the zeros of Q divide out.

Finally, choose S to satisfy (11).

D. STURM-LIOUVILLE PROPERTIES

Although it is somewhat tedious, it can be shown that

48 (-Q) - [y -a] 2> 0 .

Therefore, all of the theorems previously established

apply. In addition, the properties of orthogonality and

completeness follow in the same manner.
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