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ABSTRACT

An experiment was conducted in the Florida Keys from 2 - 19 July 1990 to test
the performance of the Naval Oceanic Vertical Aerosol Model (NOVAM) in a weak-
convective regime. Meteorological data collected by aircraft and boat was used to gen-
erate the surface and vertical profile information files required by NOVAM. Using this
information, NOVAM predicts the aerosol extinction (Am-') for a vertical cross-section
of the atmosphere. Aircraft-observed aerosol extinction profiles were also obtained.
Comparisons between observed and NOVAM acresol extinction profiles revealed major
deviations above the cloud top. From the surface to the top of the cloud layver, NOVAM
generally did an excellent job in predicting profile shape, with the magnitude of aeroscl
extinction ticd to the extinction matched at the surface. In a few cases, observed ex-
tinction 1:.reased more rapidly than NOVAM predicted extinction from the surface to
the base cf the cloud layer. This is attributed to rain scavenging associated with
thunderstorm activity in tne area. Comparison between different aerosol extinction
profiles reveuled much spatial and temporal variation that was verified by Lidar profiles
of atmospheric structure. Thunderstorm activity, multiple cloud-layers, and the spatial
variation in the atmospheric structure have led to a hypo .hesis that deep-convection was
responsible for the major differences between vbserved and predicted aerosol extinction
proiiles. If this is the case, a simple modification to the weak-convective model may be
made to apply to a deep-convection model.
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I. INTRODUCTION

Successful employment of modern weapon systems require the continuous ability to
use wavelengths in the clectro-magnetic (EM) spectrum. This is the fundamental con-
cept of electronic warfare and such importance has been placed on this mission area that
the following maxim was developed; ‘The side that controls the electro-magnetic {EM)
spectrum controls the outcome of any conflict in modern war or global politics’. Oper-
ation Desert Storm was successful for many rcasous, one of which was the allied forces
superiority in the maintained use of systems operating at various wavelengths through-
out the EM spectrum. Even with this superiority, there is much room for improvement.
One example is the limitation that cloud cover had on operations. Another is operating
in regions with extensive aerosol content (such as were caused by the intentional burning
of oil rigs).

Many military devices operate in the visible to the far infrared (IR) wavelengths.
Some examples are forward-looking infrared (FLIR), precision guided munitions and
other electro-optical (EO) systems. For this reason, there is a great deal of interest in
reliable estimation of EO instrumentation performance for vertical and slant-path ob-
servations. For systems such as those above, this requires knowledge of the vertical
variation of aerosol scattering and absorption in the wavclengths of operation.

LOWTRAN 7 (Low resolution transmittance model version 7) calculates atmo-
spheric scattering and absorption caused by acrosols and molecules along a non-
hemogencous path. Because there isn’t one aerosol model that predicts scattering and
absorption the best under all conditions, there are different aerosol models a user of
LOWTRAN may choose. For maritime applications, the present model is the Navy
Acrosol Model (NAM). NAM attempts to relate aerosol size distributions to
meteorological parameters such as relative humidity, wind speed, and visibility, and then
calculate the optical properties of the modeled aerosol. Most empirical models, such as
NAM, do not predict the vertical distribution of acrosol required to extend extinction
predictions to higher levels. For the maritime regime, this led to the development of the
Naval Oceanic Vertical .\erosol Model (NOVAM).

The purpose of NOVAM (Gathman, 1989) is to determine the vertical distribution
of the acrosol size spectra in the marine environment, used to obtain the associated op-

tical and infrared propertics along slant paths within the marine boundary laver. The




means used to achieve this goal are to inicgrate vanous marine aerosci studies of a di-
verse nature into a single model. This integration has led to the develop 1ent of sub-
models within NOVAM, one of which is sclected based on the parameters .hat are input.

This thesis wili investigate the performance of NOVAM under conditions of weak
cumulus convection. These condit:ons existed during the KEY99 experiment which toek
place from 2 July 1990 through 16 July 1990, near Marathon, Florids on the Flonda
Keys (Figu.e 1)
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KEY90 experimental area around Marathon (shaded arca)




II. BACKGROUND

A. EXTINCTION PARAMETERS

In this section, fundamental concepts and terms that form the basiz of the
LOWTRAN model, and led to the development of NAM and NOVAM are presented.
Lambert, Beer and Bouguet established a relationship between attenuated radiation and
the incident radiation for a homogeneous extinction as follows:

I=1,exp(—bx) (1

where [ is the attenuated radiation,
I, is the incident radiation,
b is the total extinction coefficient,
X is the path length.

To determine the total extinction coefficient, b, knowledge that extinction is caused by
absorption and scattering by molecules and aerosol (dry or liquid) contributing linearly
is applied as follows:

b= bma + bms + baa + bas (2)

where b,, = extinction due to molecular absorption,
b,, = extinction due to molecular (Rayleigh) scattering,

b,, = extinction due to aerosol absorption,
b,, = extinction due to aerosol (Mie) scattering.

In the visible region of the spectrum, b,, and b,, are the dominant extinction com-
ponents. In the IR regions, b,, and b, are the primary components causing lowered
transmittance (the ratio of I to /,). Figure 2 on page 5 shows the effect molecular ab-
sorption has on transmittance over a horizontal 1.82 km path for wavelengths up to 15
pum. This figure clearly demonstrates that atmospheric total extinction is wavelength
dependant due to at least its b,, component.

Equation I assumes a homogeneous total extinction throughout the atmosphere.
Atmospheric studies have shown this assumption to generally be valid for horizontal
paths (such as Figure 2), however, a model nceded to be develcped to predict the vari-
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Figure 2. Atmospheric Transmittance (0 - 15 microns): Atmospheric

Transmittance measured over a 1.82 km horizontal path at sea level
(IIudson, 1969).

ations of extinction in the vertical required to perform slant-path calculations.
LOWTRAN is the model that resulted from this requirement. LOWTRAN was de-
signed to calculate the total extinction as a [unction of altitude, and produce as output

the radiance and/or the transmittance for a specified path through the atmosphere.

B. THE LOW RESOLUTION TRANSMITTANCE MODEL (LOWTRAN)

LOWTRAN's radiance calculations account for contributions from atmospheric
self-emission, solar and/or lunar radiance single scattered into the path, direct solar
irradiance through a slant path to space and multiple scattered solar and/or sclf-
emmission radiance into a path. LOWTRAN 7 (the latest version) incorporates separate
molecular profiles for all major, as well as 13 minor and trace gases found in the at-
mosphere. In addition, various aerosol, cloud and rain models are included to allow the
user to select the models that most closcly represent the region of interest. The user also
has the option to select from six reference atmospheric profiles, or define a new atmo-
spheric profile. A more extensive description of LOWTRAN may be found in ONTAR
corp. (1990). (Kneizys et al., 1988)

C. THE NAVY AEROSOL MODEL (NAM)
NAM represents one of the several empirically derived models contained in
LOWTRAN and was designed to estimate the contribution of aerosol to the EO prop-




agating characteristics in the marine environment. This model predicts an aerosol size
distribution (dN/dr) within the atmospheric surface-layer, nominally for 10 meters, for
specified wind speed (current and 24-hour averaged), visibility, and relative humidity
(RH) values. Three distinct types (modes) of aerosols are assumed to exist within the
size distribution:

1. A continental component contributed by a nearby land mass,

2. A stationary component affected by the winds (controlled by the 24-hour averaged
wind speed),

3. A fresh component caused by the current wind over the water.

The predicted aerosol size distribution is obtained by summing the contribution of each
component as follows:

3
@y 2 expl(=[1nl) = (= ) ®)
where N represents the number density per unit radius of particles at radius ,r,

A, is the amplitude parameter for mode i,

/, is the aerosol growth parameter for mode i (to be discussed in a later section),

r,, is the mode radius parameter.
When a standard relative humidity of 80% is introduced into the above equation, f is
replaced by the value one, as will be shown in the relative humidity discussion. A plot
of log(dN, dr) at 80% relative humidity versus log(r) is shown in Figure 3. In this figure,
Al, A2, and A3 are the amplitude- parameters as functions of air mass type, 24-hour
averaged wind speed, and current wind speed respectively; and r is the aerosol particle
radius at the ambient relative humidity. The mode radius parameter, r,, is the radius that
the maximum amplitude parameter value for each mode, i, occurs for this 80% relative
humidity. (Gathman, 1983)

NAM’s application is to make horizontal path calculations of aerosol extinction at

the sea surface based on the following relationship between dN/dr and aerosol ex-
tinction (8,,,):

V
Bext = bgg + by = JQex" L{J;— - dr 4
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Figure 3. ldealized three lognormal marine aerosol: (Gathman, 1983).

where Q,,, is the Mie efficiency coellicient for extinction which is a function of wave-
length, causing .., to be wavelength dependent.

To use NAM in slant path calculations, an assumed vertical size distribution must
be developed for each mode based on the size distribution NAM produces at 10 meters.
The present assumed size distribution profile has an exponential decrease with height.
NOVAM is being developed to provide a capability for more accurate slant-path aer-

osol extinction calculations in the maritime regime.

D. THE MARITIME ATMOSPHERIC BOUNDARY LAYER (MABL)

Vertical profiles of aerosol depend on the thermodynamic structure and processes
within the MABL. A schematic representation of the MABL is shown in Figure 4. In
this scheme, the cloud layer varies the most and, at times, may not be present. In cases-
where the large scale flow prevents cloud development, the MABL terminates at the
transition layer. In cases where very deep cloud development has taken place, the top
of the MABL is not well defined. Features such as frontogencsis and horizontal
advection would cause the one-dimensional view of the MABL (as depicted in
Figure 4) to be no longer valid.

For a MABL as shown in Figure 4, the following principles apply: (Augstein, 1976)
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. Radiative cooling is compensated for mainly by the adiabatic warming of large-
scale subsiding air and, to a lesser extent, by the sensible heat input from the occan.

. Buoyancy driven mixing produces a well-mixed region above the shallow surface
layer.

. Kinetic energy which is generated by the concurrent heating and moistening of air
from below is partly converted to potential encrgy through entrainment of poten-
tially warmer air from above through the top of the mixed layer. This assumes that
buoyant parcels overshoot their level of equilibrium, thereby forcing mass of less
density downward.

. The top of the mixed layer is determined by a balance of small-scale mass
entrainment {rom below and the large-scale downward mass flow.

. Clouds begin to develop when convective plumes or bubbles penetrate to their
condensation level.




IIl. THE NAVAL OCEANIC VERTICAL AEROSOL MODEL (NOVAM)

A. BACKGROUND

As described previously, NAM does not predict the correct vertical distributions
which are required to extend extinction predictions to higher levels. NOVAM is designed
to predict non-uniform and non-logarithmic extinction profiles observed in the MABL
for wavelengths between .2 and 40 um. (Gathman, 1989)

NOVAM is a combination of empirical and physical models which describe aerosol
dynamical behavior. The current version of NOVAM incorporates the fr. wing mod-
els:

1. NAM, which defines the surface (10 meter} acrosol characteristics (Gathman,
1983),

2. Micro-meteorological models, which describe the vertical distribution of aero: ol in
the well-mixed MABL (Fairall and Davidson, 1986),

3. A model that describes the vertical distribution of aerosol in the weak cum ilus
convection regime (described below) (Davidson and Fairall, 1986),

4. A model describing the aerosol structure below stratus decks (\Noonkester, 1983),

3. A default boundary layer structure model of meteorological parameters based on
surface observations (Gathman, 1989),

6. .\ model that predicts aerosol growth based on relative humidity and the air mass
type in the well-mixed and cloud layers (Fitzgerald, 1978, Gerber, 1985).
Extinction properties are calculated from the generated aerosol profiles using MIE
scattering for which two basic characteristics exist:

1. The acrosol particle radius and the wavelength of incident energy are of the same
order of magnitude.

2. Scattering is generally concentrated in the forward direction (forward scatter).

The following particle source and particle physics principles have been used in the
development of NOVAM. Large sea-salt aerosol particles are produced from white
water phenomena at the air-sea interface (Monahan et al., 1982)., Smaller aerosol par-
ticles are produced from sources such as gas-to-particle conversion or anthropologically
generated aerosol. The concentration of any particular aerosol is dependant on the
source strength of acrosol production and on the mixing process as it rclates to scalar
contaminants. Regarding hygroscopic sea-salt acrosol, its size {s very dependant on the
relative humidity it is immersed in. Also, as the hygroscopic aerosol picks up water vapor




from the wumosphere and grows in size, it changes its chemical composition and its index
of refra-tion.

B. NOVAM INPUTS

Tabies 1 and 2 show surface and radiosonde observation files (inputs) required by
NOVAM. The surface observed parameters are used to perform the size distribution and
aerosol extinction calculctions at the surface and for sub-model selection, in conjunction
with some information contained in Table 2. The cloud type, present weather, and the
zonal, seasonal category codes may all be found in separate tables as described by
Gathman (1989). If any of these data items are unavailable for input, the model calcu-
lates that parameter using default information which results in a reduced confidence in
aerosol extinction predictions.

Table 1. SURFACE OBSERVATION DATA FILE

Position Meteorological Data
1. Sea surface temperature (°C)
2. Air temperature (°C)
3 Relative humidity (RH) (%5)
4 Optical visibility (km)
5. Current real wind speed (m.s)
6 Averaged wind speed (24 h) (m's)
7. Air mass parameter (see text)
8 Cloud cover (tenths)
9. Cloud type [0...9]
10. Surface IR ext. (1,km) (@ 10.6um)
11 Present weather in standard code [0...99]
12. Height of lowest cloud (m)
13. Zonal'seasonal category [1...6]

Most of the parameters listed in Table 1 are self explanatory, however, a couple
warrant further examination. The air mass parameter is an indicator of the degree of
continental contaminants and may be represented as follows:

am.p. = Rn[4 + |

where Rn represents the atmospheric radon content (picocuries per cubic cm),

10




Table 2. CONTENTS OF THE RADIGZONDE DATA FILE PREAMBLE
Row Column Description

[13' | {13 | Number of actual radiosonde observations

[1]* | [2] { Surface potential temperature from radiosonde

{17 | [3] | Surface mixing ratio from radiosonde

Profile Characteristics
(2] [17 | Height of base of cloud layer (C5)
[2] [2] | Potential temperature just l;elow CB
[2] [3] | Mixing rau:o just below CB
[3] [1] | Units indicator for temperature { = 1 if °C)
(3] [2] | Potential temperature just above CB
[3] [3] | Mixing ratio j'ist above CB
R (1] [ Height of the cloud luyer top (CT)
T—l] [2] | Potential temperature just below CT )
[4] [3] | Mixing ratio just below CT
(3] [1] | Units indicator for mixing ratio (= 1 if g'kg)
5] [2] | Potential Temperature just above CT
[5] [3]1 | Mixing ratio just above CT

! Minimum requirement for radiosonde data file.

or as,
am.p. = (9 x expl ~t/4]) + 1

where t equals the elapsed time {in days) it takes the current air mass to reach the point
of observation from a distant land mass.

An air mass parameter of | indicates a pure air mass (no contaminants). When the air
mass parameter is less than or equal to 3, the aerosol is assumed to be made up of three
lognormal components (A4,, A, , and A;) as contained in the NAM description above.
For air mass parameters greater than 5, indicating the presence of non-soluble acrosol,

an additional lognormal cemponent (A,) is assumed. This class of non-soluble acrosol




is only present close to shore lines and has the same mode radius as r, shown in
Figure 3. Being assumed non-soluble, the mode 0 component of acrosol does not change
size with changes in relative humidity. (Gathman, 1939)

The remaining inputs to NOVAM are contained in a data file describing the vertical
atmosphere, referred to as the radiosonde data file in Gathmimn, 1989. Table 2 shows the
format for the first five rows that are contained in this file, nv..essarv when choosing the
weak convective model. Figure 5 graphically illustrates the position in the file by row
and column designation. The ramainder of the radiosonde file consists of radiosonde
observation height, potential temperature, and mixing ratio entries. If radiosonde data
:$ not available, 2 minimum of | surface entry must be input and a default profile is se-
lected.

After the input paraineters are translated by NOVA'™.{ to predictions of mixing,
source strengths, and size distributions, a prediction is provided of the extinction of EO
energy as a function of altitudc for the wavelength of interest. This output is based on
the Jdry aerosol size distribution at a particular height and adjusted for relative humidity
at that height.

C. SUB-MODELS
This section is intended to give a brief explanation of the different models being de-
veloped within NOVAM. Figure 6 shows the major decision points and the track of

flow of information in the current version. There are currently four sub-inodels in
NOVAM:

1. A mixed boundary laver model (Fairall & Davidson, 1986; Davidson & Fairall,
1986) where the boundary layer depth must be less than 3 km and not stable,

2. A stratus model for winds less than 5 m‘s model (Noonkester, 1985). Here, the size
distribution is not represented by a secries of lognormals (as in Figure 3), *here is
no requirement for calculations to fit NAM predictions at 10 meters, and the
wavelengths available for NOVAM calculation are from 1 to 11 um. The limita-
tion on wavelengths is due to optical calculations using 2 simplification of Mie
scattering parameters.

3. A weak convection model (Davidson & Fairall, 1986) used when scattered cumulus
clouds are present, cloud tops do not exceed 3 km, and a well-mixed layer is present
below the cloud base,

4. A default profile (Gathman, 1989) which is used when there is no vertical potential
temperature and mixing ratio information.

A stratus model for winds greater than 5 m s and a deep convection model for cloud tops
i ]
extending above 3000 m are not vet supported. '

12
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Figure 5.  Stylized profile definitions for use in preamble: (Gathman, 1989).

NOVAM sub-model selection is based on the input parameters describing the ver-
tical stratification (thermal stability, presence of an inversion, and the inversion height),
cloud cover, cloud type, wind speed, and the requested wavelength {or extinction calcu-
lations. '

1. The default profile generator

The default profile generator uses the surface meteorological measurements to
develop profiles of temperature and relative humidity, generating values for every 100
meters of altitude. The default profile differs from a radiosonde derived profile by having
the vertical distribution of the lognormal components described by an exponential
function of scalc height. For each default altitude level, the optical calculations are based
on the combined size distributions of the acrcsol deduced from the model assumptions.
The index of refraction and size are determined by the response (swelling) of hygroscopic

aerosols based on the relative humidity calculated from the relative humidity profile
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Figure 6. NOVAM flow diagram: {Gathman, 1989). *

generator (Gathman, 78). From these paramcters, the aerosol extinction at cach level
can be calculated dircctly.
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1IV. INFLUENCES ON AEROSOL SIZE DISTRIBUTION PROFILES
WITH WEAK CONVECTION

A. CONCENTRATION GRADIENTS IN NOYAM

The basis for modeling the evolution of aerosol concentration is the continuity
equation. In the Boussinesq approximation, which assumes a shallow planetary
boundary layer, an incompressible fluid (‘T‘: = 1)), and negligible horizontal gradients of
density, an aerosol component concentration, X, can be written in its simplest one-

dimensional form as

“s v . 6X v qr cY
+ UVt + W2 =—£—z(u-,x ~ xs-g.\'-z)-‘gz—) (7

~
<~

where U is the mean horizontal wind,
W is the mean vertical wind,
F, is the particle gravitational settling velocity,
D is the particle molecular transpor coeflicient,

I1°X is the mean vertical flux of particles due to turbulent transport.

In this equation, X must be a conservative acrosol variable, e.g. dry size concentration,
that is unaffected by variations in relative humidity. Terms such as 7Y are unlikely to
be known from first principles leading to applying modcls of the boundary laver to sim-
plify the process. (Davidson and Fairall, 1986)

The Albrecht model was developed specifically for a trade-wind region (Albrecht,
1979) and has been incorporated in NOVAM to describe the weak convective regime.
The three-laver structure of this regime, described by Albrecht, is shown in Figure 7.
In Figure 7, C represents the dry aerosol concentration with the subscripts r, b, ¢, and
i representing the surface, cloud base, the in-cloud laver, and the cloud top respectively.
The layers and their characteristics are summarized below, Davidson & Fairall (1986):

1. The subcloud laver (0 < z < ) where z, is the cloud base (LLCL). This laver is
characterized by linear flux profiles and “well-mixed™ mean profiles. The depth of
this laver is changed by subsidence and entrainment.

2. The cumulus cloud laver (z, < z < :z,), characterized by parabolic flux profiles and
lincar mean profiles. The slopes of the mean propertics are determined by empirical
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models of cloud transport and entrainment properties as well as the boundary
conditions at the top and bottom of the cloud laver.

3. The free troposphere (non-turbulent) above the capping “trade” inversion. The
properties of this layer are determined by advection and are usually input variables
to the model.

Note that the mean profiles are not continuous at interfaces z, and z,.
Factors that influence the in-cloud drv aerosol concentration gradient, y (shown in
Figure 7), are given by the following balance equation:

EAX, 4 AX,

™ — 2) o)

Dy = 1
—D—[ = (V.V - —1.—")7 +

(8)
where V.V is divergence,

w’, 1s the entrainment rate of the inversion,

7 15 the cloud relaxation time in davs,

E is the cloud wall entrainment variable given by:

(z;—=zp)y, + 2AT (1 + 1)

E= N 9

where AT, = 5K,
=l.6,
v, = the cntrainment rate of 0, in the laver,
A8, is the jump in 6, at the cloud basc.

Because the laver below the cloud base is considered well-mixed, the dry aerosol con-
centration gradient for this laver is normally considered to be 0, but a non-zero gradient
could be predicted by the model with the specified parameters. (Davidson and Fairall,
1986

Some assumptions were made to simplify calculations when incorporating the
Albrecht model into NOVAM. The Albrecht model is dynamic, predicting the temporal
evolution of the boundary layer. NOVAM secks to characterize tiie average or typical
vertical structure, thercfore all time derivatives arc neglected in the above cquations.

Additionally, the following assumptions are used to simplify calculations: (Davidson &
Fairall, 1986)

1. In the mixed laver, C = C,
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Figure 7. Schematic diagram of aerosol concentration: Dry acrosol concentration
based on maritime and continental sources for a weak cumulus coa-

vection boundary layer structure. (Gathman, 1989)

2. In the cloud layer, C=C; + y(z—z)

3. C, is given by a standard wind speed dependent model

4. At the cloud top, assume:
a. C; =0if C represents a locally gencrated sca-salt mode
b. C; is given by climatology

5. =G =¢C,

These assumptions lead to the following cquation for the vertical gradient from

cloud base to cloud top:

LG -G o)
T (1 +mAz (10)

where n is a dimensionless eatrainment parameter at the cloud top given by:




4w, x (z=V.7)

n= A (1)

In this form, the entrainment rate at the cloud base and the cloud wall entrainment are
not important. These simplifications may reduce the accuracy in the vertical represen-
tation of dry aerosol concentration, but this predicted vertical structure is a large first
step in improving the exponential model currently in use. With mixing and entrainment
controlled by the potential temperature and relative humidity profiles, a more accurate
representation of the transport properties in the sub-cloud and cloud layers is obtained.

B. RELATIVE HUMIDITY EFFECTS IN NOVAM

Since aerosol particles attenuate energy in an amount proportional to their cross
sectional area, any model requiring aerosol extinction calculations must take into ac-
count the effect of relative humidity on aerosol growth. Vertical changes in relative
humidity become important when requiring slant-path aerosol extinction calculations for
the weak convective region where relative humidity is expected to increase with height
up to the cloud layer, then decrease gradually to top of the cloud layer. Figure 8 shows
the effect relative humidity has on particle radius (represented by the ratio of the aerosol
particle radius at the indicated relative humidity (r) versus the radius of the same aerosol
particle at 0% relative humidity (r,)). Fitzgerald fot.nd that pure NaCl particles experi-
enced a sudden increase in size at some critical value of relative humidity (between 70
and 76% relative humidity as represented by the hatched area in Figure 8) whereas na-
turally occurring maritime aerosol particles show continuous smooth growth with
changing relative humidity. This may be explained by the gradual deliquescence of sol-
uble material which is present as a mixture of different salts.

Based on the information shown in Figure 8, Fitzgerald developed the following
relationship:

'(,f) - [1 ey ]% (12)

where y represents the air-mass characteristic and S represents the saturation ratio (for
the purposes of this discussion, S can be assumed to be equal to RH / 100).

The relative humidity dependence in both NAM and NOVAM appears in the form
of f, in the equation for size distribution (Equation 3). As can be scen in Figure 8, when
the relative humidity increases, deviation of the measured ratios from any theoretical
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Figure 8. Growth curves for marine aerosols: Theoretical and calculated growth
curves for NaCl particles and natural marine aerosols (Fitzgerald, 1978).

curve which is based on dry particle size becomes greater, Because relative humidity is
generally above 50% throughout the MABL, a reference relative humidity of 80% was
selected to minimize the crror inherent in the theorctical aerosol growth calculation, and
this reference relative humidity was used as a basis in computing f. An equation for /|

is generated by dividing equation 12 by the ratio of r(.8) to r, yielding (Gerber, 1985):

ﬁ:

r(S) ___[ C1,- S ]L 13

(.8) C8(1 — 3)

where C7, C8 are conditional constants based on the aerosol mode component (recall
Figure 3 on page 7) as displayed in Table 3. To incorporate the fourth mode (mode 0)

into Equation 3, simply change the summation to include modes 0 through 3.
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Table 3. GROWTH FACTOR CONSTANTS AND VALIDITY RANGE

Aerosol Model Mode c7, | G, Range of
Composition Comg;ment Validity
Sea salt 3 1.97 | 5.83 T{H < 99.99% '
Sea salt 2 1.83 | 5.13 | RH < 99.9%
Water Soluble 1 1.17 | 1.87 { RH < 99% .
Dust 0 L=10 all values




V. THE KEY90 EXPERIMENT

A. GOAL

Most observational studies within the development of NOVAM have been accom-
plished off the California coast. Initial experiments involving the testing of NOVAM
were performed in the same environment that the model was developed in. As expected,
the model verifies reasonably well in that environment. Since NOVAM is intended to
be a global maritime model, the model had to be tested in other geographical scenarios.

The KEY90 experiment was the first attempt to test NOVAM’s performance in a
tropic-like environment where shallow or deep convection exists. The shaded region in
Figure 1, known as Marathon, was the region of data collection during KEY90.
Insolation heating of the relatively shallow waters between Florida and Cuba causes
convection to be the major meteorological process taking place near the air-sea interface
in this region. Also, at Marathon data could be obtained by both boat and aircraft while
being away from land influences and major continental effects on the data.

B. MEASUREMENTS

Simultaneous measurements were made of parameters that the model requires as
inputs and of extinction profiles at various wavelengths, The extinction profile meas-
urements are then compared to the results obtained by running NOVAM at wavelengths
corresponding to those measured. The extinction profile measurements provided the
standard to judge NOVAM extinction profile predictions. Although this procedure
seems fairly straight forward, it is noted that it is difficult to provide an accurate estimate
of either the measured extinction profile or of the quality of the meteorological data used
as inputs to NOVAM (e.g. surface IR extinction @ 10.6 um and a.m.p.).

The data measurements collected during KEY90 were made from shore, from a boat,
and from two aircraft. Both the atmospheric surface layer and the MABL structures
were probed in detail. Figure 9 shows the instrumentation involved in the experiment.
For each instrument, an asterisk marks the days of operation. Instruments are grouped
according to the information provided (i.e. air temperature, sea surface temperature,
relative humidity, wind speed, wind direction, atmospheric pressure, visibility, vertical
profiles, Lidar information, and other data). Table 4 gives a summary of the time and

location that boat and aircraft atmospheric vertical profiles were taken. For easy refer-
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Figure 9. Summary of instrumentation used during KEY90:  (Gathman, 1991)

ence, the difference of time (in minutes) and in location (in nautical miles) is provided

in the last two columns.
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Table 4. SOURCES FOR VERTICAL PROFILES

Aircraft Radiosonde
Day Time Location Time Location At | Ax
(UTC) (UTC) (min)| (n.m.
09 Jul 2120 A 2200 24°13' N 80°33' | 40 23
10 Jul 2100 24°39' .V 80°S5' W 2200 24°23°.V 80°33' W| 60 25
12 Jul 0030 B 2330 24°21'N 80°33' W} 60 26
12 Jul 1930 B 1906 24°15°.V 80°21' W 24 39

1945 24°21'N 80°33' W 15 39

13 Jul 1330 B 1319 24°21' ¥ 80°33' | 1 26
14 Jul 1140 B 1105 24°21'.V 80°33' 1| 35 26
16 Jul 2100 A 2027 24°13°.V80°31' | 33 25
2359 B 2324 24°21': N 80°32' 1| 35 27
17 Jul 1605 B 1617 24°36’N 80°53' IV} 12 2
18 Jul 1240 B 1218 24°30°.V 80°53" W 22 5
1545 A 1459 24°30°.V 81°00" 1V 46 9
19 Jul 1020 B 1023 24°30'N 80°53'W| 3 5
11 Jul
A = 24°22'N 80°55' W
B = 24°35'.N 80°55' W

It should be noted that in the process of collecting data, areas of thunderstorm ac-
tivity were avoided. This may have caused parameters such as average wind to be lower
than what may have actually o .curred.

C. ATMOSPHERIC SYNOPTIC SCALE

The major synoptic flow patterns which influenced conditions in the Marathon re-
gion from 9 to 19 July are shown in Figure 10. For the period of 9 - 10 July, surface
winds at Marathon were generally from the east to south-east with speeds of approxi-
mately 5 m/s. This was a result of the influence of high pressure centered off the east
coast of the U.S. (Figure 10a). The high pressure system continued to control the
Marathon region winds on the 11th and 12th of July, however, short wave troughs were
analyzed as passing through Marathon on 11 July.

As the high pressure system moved to the north-east, winds at Marathon shifted
from cast-southeast to a more southerly direction (Figure 10b). Wind speeds were be-
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tween 3 and 5 m/s during this period. By 13 July, a low pressure system which was ap-
proaching the eastern U.S. had an influence on winds at Marathon. Wind flow remained
southerly, but wind speed decreased slightly due to weaker pressure gradients over the
area. On 14 July, the low pressure center had deepened and moved to the east
(Figure 1la). Surface wind flow over Marathon remained southerly with wind speeds
increasing to 6 - 8 m/s. The cold front associated with the low pressure system was
moving very slowly to the east. By late UTC on this day, it was evident that the frontal
system was losing its upper level support, and the high pressure evident at 700 mb near
the Florida Keys in the figure continued to build.

From 15 to 19 July, high pressure once again dominated the flow pattern in the
Marathor region (Figure 11b). As the high pressure center moved to the north-east, the
pressure gradient at all levels weakened. Surface winds were from the east to south-east
throughout this period with wind speed decreasing to approximately 5 m,’s by the 19th.
A scries of short-wave troughs were analyzed as passing th:uugh the Marathon region
on 17 July.

Although all observations during KEY90 fell within the realm of weak convection
defined by NOVAM, there were examples of decep convection in the form of
thunderstorms. Thunderstorm activity was observed in the Marathon region on 14, 16,
17, and 19 July.




VI. NOVAM USAGE, PROCEDURE AND RESULTS

A. PROCEDURE
1. Surface File Generation
Each radiosonde and flight spiral profile requires corresponding surface file.
Figure 9 shows that there were many choices for most surface file parameters. Because
of consistent performance during the entire experiment, WeatherPak measurements were
used for surface layer air temperatures, wind speeds, and relative humiditics. When this
information was not available on 10 and 1 July, sling psychrometer measurements were
used for air temperature and relative humidity while a hand held device was used for
wind speed. Bucket thermometer measurements of sea surface temperature were used.
NRL’s radon counter was used to establish the air mass parameter. The NOSC aircraft
acrosol spectra was used to obtain the 10.6 um aerosol extinction at the surface. The
altitude of this reading was usually 30 meters above the surface. The optical visibility
value was calculated by the model, based on the above parameters.
2. Radiosonde Preamble Generation
The general shapes of the potential temperature and mixing ratio (for flight) or
specific humidity (for radiosonde) profiles were examined together when generating the
radiosonde preamble. The first step was to establish heights of the first and second inv-
ersions (z, and z, in Figure 5). In general, a well-mixed layer was easy to establish below
the first inversion, where potential temperature and mixing ratio remained constant. The
more difficult task was determining' a height for the second inversion. In most cases,
there was no clear boundary (jump) to define the top of the cloud laver, especially in the
potential temperature profiles. As a result, relative humidity profiles and observations
of slope changes in the potential temperature and mixing ratio profiles were considered
subjectively in making the determination.
3. NOVAM Runs
NOVAM runs for both the aircraft and radiosonde vertical profiles used the
same surface file, so only one surface file was created for each row presented in
Table 4. Information in the surface file is displayed above the radiosonde vertical pro-
file panels in Figure 14 through Figure 26.
The jumps occurring between straight line segments of the radiosonde and air-
craft profiles are important run parameters The predicted amount of entrainment oc-
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curring at the cloud top (second inversion) is dependent on the difference (jumps) in the
potential temperatures and mixing ratios at the level. The smaller the difference, the
more entrainment is occurring between the cloud layer and the layer above the second
inversion. The wavelength of interest for each model run was an input parameter since
aerosol extinction varies with wavelength. All the results presented in this thesis are for
a wavelength of 3.5 um, even though aerosol extinction profiles were obtained by NOSC
aircraft at .53 um, 1.06 um, 3.5 um, and 10.6 um.

A NOVAM output file was generated for each vertical profile presented in Table
4. A separate run was also made to generate a limiting profile. For each surface file, the
NOVAM default vertical profile was used with the relative humidity at each level set at
98%. When aerosol extinction measurements in the lower portion of the MABL exceed
this value, precipitation is believed to be a possible cause, and the assumption of
NOVAM that no precipitation exists is violated. The assumption of the default profile
generator that each mode of the size distribution decreases exponentially with height
will cause a difference in NOVAM versus limiting profile size distributions, increasing
as the height of the well-mixed laver increases.

The importance of the relative humidity to aerosol extinction can be shown by
comparing NOVAM profiles to limiting profiles. At a wavelength of 3.5 um, an increase
in relative humidity from the 80% typically observed at the surface to a 98% relative
humidity (as used in the limiting profiles) results in an approximate order of magnitude
increase in aerosol extinction prediction (comparison of aerosol extinction at surface
between NOVAM predictions based on vertical profiles and NOVAM limiting profiles
in Figure 14 through Figure 206). At the times of the vertical profiles, relative humidities
above 90% were rarely seen, therefore a comparison could not be made of how well
NOVAM actually performed at the higher relative humidities.

B. RESULTS _

Simple comparisons between the flight and radiosonde potential temperature, mix-
ing ratio, and aerosol extinction profiles reveal extensive variability in space and time.
Results from 19 July (Figure 26) illustrate this point the best. From Table 4, the ap-
proximate horizontal distance between vertical profiles was five nautical miles, while the
time difference was negligible. Analyses to determine the cloud-layer boundaries (defined
by the first and second inversion) vielded a 150 meter difference in height of the cloud
base and a 700 meter difference in the height that the second inversion occurred. The
fact that there was a substantial spatial variability is further corroborated by the Lidar
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extinction profile for 14 July shown in Figure 27, which clearly shows the spatial vari-
ation in atmospheric structure. As discussed above, slant-path calculations of
transmittance currently assume aerosol extinction to be horizontally uniform. This
condition does not appear to exist in the KEY90 region. A predicted aerosol extinction
profile generated by NOVAM based on one vertical profile will most likely not be rep-
resentative of the average vertical structure over the path of interest. In order for
NOVAM to provide the required predictions, either the mean cloud base and cloud top
levels over the path need to be established, or a technique needs to be developed to
minimize the importance of the analyzed inversion levels.

All NOSC aircraft aerosol extinction observations between 9 - 19 July were piotted
simultaneously (Figure 12) to examine how well NOVAM predictions characterized
aerosol extinction. A subjectively determined mean profile was generated from the plots
in Figure 12, and will be referred to as the flight composite. To be considerec successful,
separate NOVAM predictions should compare favorably to the flight comperite under
most circumstances. Due to space and time differences between the flight prefiles and
the radiosonde profiles, only NOVAM results from flight profiles were used 'n tie comm-
parisons with the observed aerosol extinction profiles. When considering on'y the top
row of Figure 14 through Figure 26, the following features can be seen:

1. NOVAM acrosoi extinction predictions above the second inversion were extremely
poor.

2. Below the second inversion, NOVAM predictions compared favorably with the
flight composite except in the cases where aerosol extinction dropped off noticeably
{(an order of magnitude difference between the surface and cloud base observations)
below the cloud base (see top panel Figure 17¢c, Figure 20c, Figure 2dc, and Fg-
ure 25c¢).

The assumption that aerosol extinction above the second inversion is essentiz' ¥
zero when the air mass parameter is calculated to be approximately equal to one dis's
not appear to be a good one for this region. Aerosol extinction was determined to i.e
significant if it is within one order of magnitude of the acrosol extinction that NOVA 3°
calculates at the surface for the wavelength of interest. Using this as a criteria, the 'z,
13, 14, 17, and I8 July NOVAM flight profiles all showed significant aerosol extinct:¢n
contributions above the second inversion.

One possible explanation for the poor performance of NOVAM above the second
inversion is that the weak or shallow convection assumptions are not effective here .i.e.
this may be a case of deep convection. Thunderstorm activity and rain were frequently

observed in Marathon, and multiple cloud layers were not uncommon. The hypothasis
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is that relatively small regions of deep convective activity result in an increased pro-
duction of acrosol at the surface and transports acrosol to higher levels. As these deep
convective cells dissipate, large amounts of acrosol are still being transported horizon-
tally throughout the region, which would account for the acrosol present above the
sccond inversion in many cases.

Another possible explanation may be that the atmosphere above the second inver-

sion commonly contains a significant number of small radii-acrosol particles. These
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particles may originate cither from continental sources or from the ocean surface in the
form of DMS. These DMS particles would be rarricd to the upper atmosphere by
convective cells and transported by large scale circulation. Particle processes associated
with DMS origins are not well understood. (Durkee et al., 1990)

If the predicted acrosol extinctions above the second inversion are ignored, and a
simultancous plot of NOVAM predictions based on (light vertical profiles is made, a

NOVAM composite can be obtained (Figure 13) in the same manner as the flight




composite described above. The flight and NOVAM composites turned out to be nearly
identical (Figure 14c). There was not much variation in wind speed at Marathon and
no frontal systems passed through during the KEY90 experiment, therefore it is likely
that aerosol generation and transport mechanisms remaiined fairly constant during
KEY90. This would explain why composite mean profiles performed as well as NOVAM
predictions below the second inversion. It is possible that mean profiles, such as the
compcsites generated above, can characterize the typical aerosol extinction (at a 3.5
pm wavelength) for the Marathon region during July. This approach leads to the region
being described empirically, therefore the predictions are specific to one region during
one season. The required data base for describing all ocean regions for each season
would be enormous and the time and expense involved would be substantial.

The fact that a simple exponential curve developed from composite mean profiles
performed much better than NOVAM above the evaluated second inversion indicates a
need for further research on aerosol size distributions in the upper atmosphere. If the
structure observed in KEY90 is in fact due to deep convective processes, a revision
would have to be made to the sub-model selection process in NOVAM. Also, instead
of the weak-convective assumption that the mode 2 and 3 components drop off to 0
above the second inversion, an exponential function could be used to describe the aer-
osol size distributions for these modes. \

It is believed that the observations where aerosol extinction decreaseé "noticeably
below the first inversion are attributed to the combination of increased aerosol pro-
duction at a time prior to the observation, possibly caused by thunderstorm activity, and
scavenging in the lower layer due to rain, creating a deficit of aerosol below the cloud
layer. If future experiments reveal that rain scavenging accounts for reduced aerosol ex-
tinction below the cloud layer, the present weather surface input file parameter is cur-
rently the only means that this information can be relayed to NOVAM. Because the
aerosol extinction predicted at the surface is tied to surface observations of aerosol ex-

tinction, the task of modeling this phenomenon would still remain.

32




MIING RATIO {g/kg)

gV profile = 9 JAY 90, 2120 U

: : ' !
i T g 3
B s § s
i e 0 I
£ £ %g pie
Eg g N 2 gi 3 g
2 4 12
2 s F 4
§ g 7is3 Ei
) HIE ;
; g g ........... - § §
" (w) 3oni l {w) 30n1v
8 » ;
g . g
H 3 3]
g -3
T
5 ‘Ea% 'gg: ;Q;:_'é T B
M w1l
L r ol ;
q §§ iﬁ;g; e
: !igggnéi #
%
.g ‘
g g R 3
Ly < w
22 4 1 2
o £ _
.ag‘ H 2 'gg
© “é § g 1 g
52 3 B :
T 5 § T R
“ 8
(w) 3001V g {w} 3onpv b

Figure 14.

9 July results: The top panels are based on flight vertical profiles
observed 09 July, 2120 UTC. Bottom panels are bascd on radiosonde
profiles for 09 July, 2200 UTC. Panels labeled a) represent temperature
and mixing ratio (flight) or spccific humidity (sonde) versus altitude,
b) plots relative humidity versus altitude, and c) shows acrosol ex-
tinction at 3.5 um versus altitude. Refer to text for a description of the
profiles appearing in panel ¢).
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The top panels are based on flight vertical profiles
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10 July results
observed 10 July, 2100 UTC. Bottom pancls are bascd on radiosonde

profiles for 10 July, 2200 UTC. Panel description is same as in
Figure 14.

Figure 15.
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12 July results for 1930 UTC (b)
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VII. SUMMARY, CONCLUSION AND RECOMMENDATIONS

An experiment was conducted in the Florida Keys from 2 - 19 July 1990 to test the
performance of the Naval Oceanic Vertical Aerosol Model (NOVAM) in a tropical,
weak-convective regime. Meteorological data collected by aircraft and boat was used to
generate the surface and vertical profile information files required by NOVAM. Using
this information, NOVAM predicts the aerosol extinction (km') for a vertical cross-
section of the atmosphere. When NOVAM is incorporated into the LOWTRAN modcl,
which also accounts for molecular extinction, slant-path calculations for transmittance
may be performed.

Aircraft-observed aerosol extinction profiles were obtained in order to verify
NOVAM predictions of aerosol extinction. Comparisons between observed and
NOVAM aerosol extinction profiles revealed major deviations above the cloud top.
From the surface to the top of the cloud layer, NOVAM generally did an excellent job
in predicting profile shape, with the magnitude of aerosol extinction tied to the ex-
tinction matched at the surface. In a few cases, observed extinction increased more rap-
idly than NOVAM predicted extinction from the surface to the base of the cloud layer.
This is attributed to rain scavenging associated with thunderstorm activity in the area.
Comparison between different aerosol extinction profiles over time and space revealed
much variation, which Lidar profiles of atmospheric structure verified. Due to these
variations, many vertical soundings of the atmosphere would have to be obtained in or-
der to characterize a mean atmosphere for the region of interest. Thunderstorm activity,
multiple cloud-layers, and the spatial variation in the atmospheric structure have led to
a hypothesis that deep-convection was responsible for the major differences between
observed and predicted aerosol extinction profiles. If this is the case, a simple modifica-
tion to the weak-convective model may be made to apply to a deep-convection model.

The results described above, clearly show that NOVAM is not yet ready to be used
operationally in regions where convection is the dominant process. The following are
recommendations for consideration in the improvement and development of NOVAM:

1. In order to eliminate the bias in wind speed measurements caused by avoiding areas
of storm activity, wind measurements from buoys placed strategically in the area
of operations would be invaluable in generating the 24 hour average winds.
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. Conduct experiments in the MARATHON area and other areas where weak
convective conditions are expected. The data and results from these experiments
could then be compared with the data and results from the KEY90 experiment.

. Continue to explore the possibility that some cases that are currently classified as
weak convection may in fact be examples of deep convection. If this hypothesis is
correct, he parameters used to differentiate between shallow and deep convection
need to be modified.

. Explore the possibility of using satellite information to improve model predictions.
One example would be to use the techniques established by Durkee, et al. (1986;
1990) to determine variations in optical depth (total extinction) over a horizontal
path which could then be incorporated into NOVAM.,

. A comparison needs to be performed between what the current model is producing
(LOWTRAN,NAM) against what NOVAM, incorporated in LOWTRAN, predicts
(transmittance predictions versus measured would be extremely useful).
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