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Abstract

Texture has long been recognized in computer vision as an important monocular
shape cue, with texture gradients yielding information on surface orientation. A
more recent trend is the analysis of images in terms of local spatial frequencies,
where each pixel has associated with it its own spatial frequency distribution.
This has proven to be a successful method of reasoning about and exploiting
many imaging phenomena. Thinking about both shape-from-texture and local
spatial frequency, it seems that texture gradients would cause systematic changes
in local frequency, and that these changes could be analyzed to extract shape
information. However, there does not yet exist a theory that connects texture,
shape, and the detailed behavior of local spatial frequency. We show in this paper
how local spatial frequency is related to the surface normal of a textured surface.
We find that the Fourier power spectra of any two similarly textured patches on a
plane are approximately related to each other by an affine transformation. The
transformation parameters are a function of the plane's surface normal. We use
this relationship as the basis of a new algorithm for finding surface normals of
textured shapes using the spectrogram, which is one type of local spatial fre-
quency representation. We validate the relationship by testing the algorithm on
real textures. By analyzing shape and texture in terms of the local spatial fre-
quency representation, we can exploit the advantages of the representation for
the shape-from-texture problem. Specifically, our algorithm requires no feature
detection and can give correct results even when the texture is aliased.
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1. Introduction

Texture has long been considered an important shape cue in monocular images, starting with
observations in biological vision by Gibson[ 141 in 1950. The corresponding algorithms
developed in computational vision exploit the systematic changes in a projected texture's
appearance to find the surface normal of the underlying shape. This effect is illustrated in
Figure 1, which shows a Brodatz[7] cotton canvas texture synthetically mapped onto a plate.
The angle and changing depth of the plate combine to make the texture appear "smaller" as
the plate recedes. A more recent trend in image understanding, also with roots in biological
vision, is local spatial frequency analysis. Here, the image is represented in terms of the
local spatial frequencies at every pixel -- the "space/frequency representation". Coherence
and changes in local spatial frequency from point to point can be used to understand a rich
set of image phenomena that cannot be analyzed easily in the space or frequency domain
alone[201. Since texture is fundamentally a frequency phenomenon, and since .-iape is fun-
damentally a spatial phenomenon, it is natural to approach the shape-from-texture problem
in terms of this representation. In Figure 1, for example, we show the local Fourier power
spectrum (spectrogram) in two places on the image. The frequencies on the right are higher
than those on the left, due to perspective and foreshortening. However, there does not exist a
theory that relates texture, shape, and the detailed behavior of local spatial frequency. In this
paper, we develop a theory that predicts the systematic frequency shifts due to shape and use
the theory in a new shape-from-texture algorithm based on the spectrogram. This has proven
to be a simple and intuitive approach to the problem. The method is attractive because it
exploits a representation that is useful for understanding other important image phenomena
as well.

Figure 1: A textured plate with part of its spectrogram superimposed



1.1. The Space/Frequency Representation

The space/frequency representation shows the frequencies of a signal at every point in the
signal. Figure 2 shows an example. The one-dimensional function of x consists of a low-fre-
quency sinusoid with a higher-frequency sinusoid replacing the middle. The space/fre-

.quency representation, shown on the right, is necessarily a two-dimensional function of x
and u, since it must z :w a one-dimensional frequency distribution for every point in the
signal. The frequencies u are shown along the vertical axis. It is like having a little Fourier
transform plotted vertically at every point along the x axis. If the original signal were a two-
dimensional function of x and y (an image), then the space/frequency representation would
be a four-dimensional function of x and y and the two frequencies, u and v.

Figure 2: A signal and its space/frequency representation

The space/frequency representation shown in Figure 2 is ideal, and cannot be computed by
any commonly used techniques. We use the image spectrogram as our instanuation of the
representation. For each point in the image, we extract a square neighborhood of surround-
ing pixels and multiply this block of intensities by a window function that falls off at block's
edges. We compute the two-dimensional Fourier transform of this product and take the
squared magnitude as the local frequency representation, giving the local power spectrum.
This is the image spectrogram S(x. y. u, v), defined as

S(x, V, u, v) = f f w(x', v')f(x' - x, ' - y)ej( + dx dV (I)

~-00-00

where f(x, y) is the image and w (x., y) is the window function. This is what we used to

compute the two light-colored blocks in Figure 1.

There are several other methods of computing the space/frequency representation. The well-

known ones are Gabor functions[12l, the Wigner distributionl9l, and wavelets[21]. We
chose the spectrogram because it gives an intuitive-looking picture, provides a dense sam-
pling in space and frequency, and comes with the well-developed theory of Fourier trans-

forms. The method of computing the representation is really only important at the

algorithmic level of our development. The basic theory of projecting frequencies applies

regardless of the particular representation.



1.2. Shape from Texture

Notable work in shape-from-texture includes that done by Witkin[27], Blostein and
Ahuja[51, Aloimonos[1], Bajcsy and Lieberman[31, Kender[ 19], Stevens[251, Kanatani and
Chou[ 181, and Blake and Marinos[4]. When Gibson first speculated that humans could infer
surface normals based on texture gradients, he assumed that the frontally viewed version of
the texture had constant texture density. Most computational shape-from-texture work fol-
lows the same paradigm: assume that a certain parameter is uniform when the texture is
viewed frontally, model the deformation of this parameter due to the shape of the textured
object and camera projection, and then compute the surface normal of the shape by measur-
ing the change of the parameter in the image. In our development, we assume the frequen-
cies of the frontally viewed texture remain the same from point to point -- i.e. that the
frontally viewed texture is stationary. The changes in local spatial frequencies on the pro-
jected image then give information about the shape of the surface. The resulting algorithm
works directly on the spectrogram of the image, requiring no feature detection. This is an
important advantage over many other shape-from-texture algorithms, as it is very difficult to
reliably find texels in an image. Blake and Marinos said in 1990:

Our greatest practical problems arise from isolating indepen-

dent oriented elements from an [texture] image.J41

And Aloimonos said in 1988:

There is no known algorithm that can successfully detect tex-
els from a natural image.J I

Thus it makes sense to develop an algorithm that requires no feature detection. Furthermore,
our algorithm does not even depend on weak texture features such as edges. Instead we
work with a dense representation of local spatial frequency, allowing us to exploit all the
useful data in an image patch. And by keeping a dense representation of the data, we can
apply basic theory all through the algorithm, allowing us to easily account for complicated
phenomena like aliasing.

Local spatial frequency analysis of texture started with descriptions and segmentation of
frontally viewed textures. Such work includes the use of the Fourier transform by Bajcsy[2j,
Gramenopoulosl15] and Matsuyama et a1.1221, Gabor filters by Tumer[261, Fogel and
Sagi Ill, and Bovik et al.[6] and the Wigner distribution by Reed and Wechsler1241.
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Starting with Bajcsy and Lieberman[31, one branch of shape-from-texture research has
focused on using local spatial frequencies for the problem. They studied qualitative and
quantitative aspects of windowed power spectra of images with receding ground planes.
They tracked the peak frequencies from window to window, showing how the gradient of
these frequencies qualitatively matched the texture gradient. They stopped short of actually
computing surface orientation. Brown and Shvaytser[81 use the autocorrelation of an entire
texture image to determine the slant and tilt of the textured surface. Although this is not
explicitly a spatial frequency technique, it is close, because the autocorrelation is the Fourier
transform of the power spectrum. Jau and Chin[ 171 use the Wigner distribution and report
good results by examining only a scalar measure of the high spatial frequencies. These last
two efforts both report good results. Instead of examining aggregate frequency characteris-
tics, our formulation allows us to exploit the shift of each frequency component from point
to point in the projected texture. This means we can take full advantage of the space/fre-
quency representation and account for other effects like aliasing.

2. Math

This section contains a derivation of the connection between the surface normal of a tex-
tured surface and the local Fourier transform of the projected texture in an image. This is
important because it relates a physical characteristic of a 3D scene to the measurable behav-
ior of the projected frequencies in an image. We show how the local spatial frequencies in
the image are approximately related by an affine transformation to the frontal texture's fre-
quencies. The affine parameters are functions of known camera parameters and the
unknown depth and surface normal of the texture. From this we show that the frequencies of
two image patches are also related by an affine transform. If we assume the two patches
come from the same plane, then the depth variable drops out, leaving the surface normal as
the only unknown. We exploit this fact in our shape-from-texture algorithm in Section 3.

2.1. Coordinate Systems

Figure 3 shows the coordinate systems used in the derivation. The camera's pinhole is at the
origin of the (X, Y, Z) frame. This serves as the world coordinate system, and points

defined in it will be referred to with upper-case (X, Y, Z) . The -Z axis is coincident with
the camera's optical axis and points into the scene being imaged. The image plane is the
(x. v) frame with its origin on the optical axis at a distance d behind the pinhole.

4
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Figure 3: Coordinate systems used in derivation

We imagine that each point on the locally planar textured surface has its own coordinate
frame (s, t, n), with the n axis coincident with the surface normal. The surface normal is

defined with the gradient space variables (p, q), thus the unit vector along the n axis is

h = - (p, q, 1), with r = p+ q + 1, in the world frame. The origin of this surface
r

frame is (AX, AY, AZ) with respect to the world frame.

The 4x4 homogeneous transformation matrix that locates and orients the surface frame with
respect to the world frame is

P 2 +rq2 pq( r) rAX
l1l t12 t13 t14 p2+q2 p2 2 qIt pq22r rp2+q 2

21 t22 t23 t24 = r p r) rpq q rAY (2)
t3 2 3233t34  p +q p +

0 0 0 1j -P -q I rAZ
1 0 0 0 rj

This was derived by making a single rotation of the (s, t, n) frame around the unit vector
p2 + q-'

(-q.p, O) / (4p- 2 q-) by an angle 0 with cosd 2)1-and sino -
r r
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2.2. Projected Texture

This subsection concludes with an expression for a perspectively projected texture. We
begin by assuming the texture on the surface is "painted" on and not a relief pattern. It is
locally characterized in the (s, t, n) surface frame as a pattern of surface markings given by

f(s, t). Points on this locally planar surface are given by coordinates (s, t, 0) . Applying the
transformation matrix, the corresponding world coordinates are

X= ti s + tl2t + AX

Y = t, 1s + t22 t+AY (3)
Z= t3 1s + t32 t + AZ

Under perspective, these points project to the image plane at

X ti s + t12 t + AX
x -d- -d -

31s+t 32 t+AZ(4)
t2 1s + t22 t + AYy = -d- = -d

Z t3 1s + t32 t+ AZ

AX AY
The origin of the (s, t, n) frame thus projects to (x0 , y0 ) = (-d-, -d-) on the image

plane. In order to avoid carrying a coordinate offset through the calculations, we define
another coordinate system, (x', y') , on the image plane that is centered at (x0 , y0 ) with its

axes parallel to those of the image plane. Given an (x, y) on the surface,

tlls + t1 2 t + AXx' = x-xO = d A-x 0
t31 s + t32t + S2AZ 0 5

t 2 1S + t22 t + AY
Y=Y Yo=dt3 s + t 32 t + AZ - YO

Solving these two equations for (s, t) will give equations that give a point in the surface

frame for any corresponding point in the (x', y') frame. Doing so, using
x0AZ _YoAZ 

-i(AX, AY) = (0 d A) and the orthonormality relationships among the vectors in
d 'd

the transformation matrix, we have
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AZ [d (y't 1 2 -x't 22 ) + t 32 (y'x0 -x'Y0) ]s(x', y') = -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

d[t1 3 (x' +x 0 ) +t 32 (y' +yO) -dAZ(
AZ [d (y' tI 1 -x' t21 ) + t31 (y'x 0 - X'Yo) (
dftt 3 (x' +x 0 ) +t 32 (y' +yo) -dAZ

Thus, if the brightness pattern on a locally planar patch on a textured surface is f(s, t), then

the projected pattern on the image plane is a nonlinear warping of the pattern given by

f(s(x, Y), t(x', y')).

2.3. Approximating the Fourier Transform

In order to work with frequencies, we would like to find an expression for the Fourier trans-
form of the projected texture, f(s(x', y'), t(, y')). But the warpings represented by Equation

(6) are too complex to allow us to say anything general. We can make progress by lineariz-
ing s(x', y') and t(x', y') using a truncated Taylor series around (x'. y') = (0,0). The

approximation is justified since we are only examining a relatively small window of intensi-
ties around the point of interest. We have

s(x', ') = SX7' + sv )

t(x, y') = txr' + ty

with

AZ [d (rp2 + q") - qYO (p2 + q)
x x' (x ' Vx,') (0 100) 2d (p2 + q2 ) (PX() + qyO - d)

AZ[dpq(r-1) +qyo(p- +qq-)

Vy =(x y') (0. 0)
d (p- + q") (px0 + qYo - d)

AZ [dpq (r - I ) + pyo (p" + q-) I

ax, ( " Y ( .0)d (p ' + q ) (px0  + qYO - d)

AZ [d (p2 + rq") -v( (po I + q"

t = ( x'. ') ( 0.) =
d(p + q 2) (pxo + qvO- d)

7
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where we have substituted the values of tii from Equation (2).

The projected version of f(s, t) is then approximately f(sxx' + syy', txX' + tyy'), which is just

an affine transformation (without translation) of the coordinates. A similar relationship
holds in the Fourier domain given by the following Fourier transform pairs[ 131:

flx', y') =:> F(u, v)

t t S S(9• - (9)
f(Sxx' + Svy, txx' + tvy) ::* F-1 F(,--Yu x

where D = sty - St X. Here (u, v) are spatial frequency coordinates in cycles/unit dis-

tance, an upper-case function refers to the Fourier transform of the corresponding lower-
case function, and the Fourier transform is defined as

0 C0

F(u, v) = J ff(X'Y ')e - j2 nt ( ux ' + vy')(1 d,.0)
-00-00

The significant conclusion is that the Fourier transform of a perspectively projected texture
patch is approximately an affine transformation of the Fourier transform of the frontally
viewed texture. The affine transformation parameters are given by the camera focal length.
the pixel coordinates of the point of interest, and the depth and orientation of the patch.

2.4. Relation Between Fourier Transforms of Two Patches

Since there is usually no way to determine what the frontally viewed texture looks like, we
resort to comparing patches of the same texture at different locations in the image. We
showed above that the Fourier transform of each patch is related to the Fourier transform of
the frontally viewed texture by an affine transformation. This means that the Fourier trans-
forms of patches themselves are related by affine transformations. We will show that if we
assume two patches come from the same plane, then the affine parameters connecting them
are functions of known parameters and the plane's surface normal.

Suppose the two patches f 1(s, t) and f2 (s, t) are related to the frontally viewed texture by the
affine parameters ( Sy, ) and (x Sy2 tx2, Q ) - In Fourier space, an affine

transformation of the first into the second means that

1, S I3 JJ~ U D 1 D 1 , D' 1  ,2 1 S2 ' -2

F ,(a ) + U + V a -U_ hz( + 2( , U+8



where Fl(u, v) and F2(u, v) are the Fourier transforms of the two patches,

D = SxIty I -SyItx, D, = sx2ty 2 -sy 2tx 2 , and (a1, b1, a2, b2) are the affine transfor-

mation parameters connecting the two Fourier transforms. Note that we have ignored phase
differences here. In reality, the Fourier phases of the two patches will be different. This dif-
ference is masked because each patch is defined with respect to its own local coordinate sys-
tem. In our formulation, phase would only complicate the derivation, since we discard it by
computing the Fourier transform's magnitude in our algorithm.

Equating coefficients on (u, v) in Equation (11) leads to the following linear equation.

ty I -Sy I 0 0 a 2
1-tl Sr1  0 0 bl -

D 1 , 0 0 tv l -s a =2]

0 0 - x Sxlb LSx 2

whose solution is

Ba rSX1tY2 -Sv sti
-iItX xI Y2 - tx2 Yl1 (13)

a,, D X I2slx.- x y 2 tx2

Thus, the affine parameters connecting the two Fourier transforms are functions of the affine
parameters connecting the two patches to the frontally viewed texture. In order to relate this
equation to the physical parameters of the camera and the textured surface, we take the val-
ues of (sxI, Sy 1, tXI, ty' 1 ) and (Sx2' Sy2, tx2, ty2) from Equation (8). Before doing this.

however, we will make the assumption that the two texture patches have the same surface
normal, i.e. (pI, qI) = (P2 " q2 ) = (p, q), and that both patches are on the same plane,

i.e.

AZ 2  d - pxo - qyo
-- I (14)

AZ 1  d-PX0 - qyo(

Substituting values from Equation (8), the affine parameters connecting the Fourier trans-
forms of the two patches are then

9



al = A[(-d 2 ) (p 2 + q2 ) + dr (P3 Xo0 + p2qyo' + pq'x1 , + q3yo) + dpq (qAx0 -pA y o) - pq (p' + q') (Xo) 0 -X0 2y)]

bi = qA[(-drp) (pAxo- qAy o ) -dq(qAx o -pAy o ) +q(p2 + q2 ) (x 0 'Yo0 - Xo0'Y)] (15)

a2 = pA [(drq) (pAx0 + qAyo) - dp (qAx0 - payo) + p (p2 + q2) (x0 1y - x 0 y°)]

b2 = A [(-d2 r) (p2 + q2
) + dr (p 3

x 0 Oqyo2 +pq
2
x0, + q3y 0l) - dpq (qAx 0 -pAy 0 ) + pq (p2 + q2) (x 0 1 Y 02 - x0 Y°) ]

where

PXO + qy- d

dr (p2 + q2) (PXo±2 + qy0 - d)

r2 +T2 (16)

Ax 0 = XO) - X02

Ay 0 =Yo - Y02

These equations are not easy to interpret intuitively. The notable feature is that the only

unknow, , are (p, q). This allows us to use a simple algorithm that determines the correct

surface normal by finding which (p, q) generates the affine parameters that best transform

one patch into another. In our algorithm we actually use the squared magnitude of the Fou-
rier transform, but the same affine parameters apply.

To summarize this section, we first showed how a locally planar surface patch projects by
perspective into the image. Since this projection is complicated, we approximated it with a
truncated Taylor series. This gave an affine relationship between the frontally viewed tex-
ture and the projected texture. A property of the Fourier transform says that an affine trans-
formation in space is an affine transformation in frequency. Since the Fourier transform of
each image patch is related by an affine transformation to the Fourier transform of the fron-
tally viewed texture, the Fourier transforms of the image patches are also related by an affine
transformation. If we assume the two patches are on the same plane, the affine parameters
that connect their Fourier transforms are functions of known camera parameters and the
unknown surface normal.

3. Algorithm

Here we discuss our core shape-from-texture algorithm using the plate in Figure 1 as an
example. The five major steps involved in computing a surface normal from an image of a
texjred surface are

1. Pick two test points on the surface that have the same texture when viewed

10



frontally.

2. Multiply the neighborhood of each point by a window function.

3. Compute the 2D Fourier transform of each windowed patch.

4. Compute the squared magnitude of each Fourier transform, giving the local
power spectrum at each point (part of the spectrogram).

5. Search for the (p,q) that gives the best affine warping from one local power
spectrum to the other.

We will consider each of these general steps in this section, and then show results in the next
section.

Step I requires that we find pairs of test points on the same textured surface. In the future we
hope to integrate our algorithm with a segmentation scheme. For now, however, the choice
of points must be done manually. Even if the test points are known to be on the same tex-
tured surface, their relative location is important. In some situations, the frequency differ-
ences on a slanted plate will be too small to accurately determine the surface orientation. For
instance, consider a plate rotated slightly around a vertical axis. Any two points in the same
column will show hardly any frequency shift, and the algorithm will not give the correct
solution. There remains work to be done on assessing the sensitivity of this method to the
relative location of test points.

In choosing a window for step 2, one must choose a shape and size. There are many differ-
ent shapes of windows, and Numerical Recipes[231 puts the choice into perspective:

There is a lot of perhaps unnecessary lore about the choice of
a window function, and practically every function which rises
from zero to a peak and then falls again has been named after
someone...However, at the level of this book, there is effec-
tively no difference between any of these (or similar) window
functions.

The window function we use happens to be named after two people: the "Blackman-Harris
minimum 4-sample" window[ 161[ 101. In two dimensions, its equation is

2rt 4rt 6rt
w(l) = WO - w I cos (- ) + w2 cos (-1) - w3 cos(-l) (17)

L L
_ _ = 2 y2

where L is the radius of the window, 0 < 1 L, and 1 qx- +y . The coefficients are

(wO, w 1, w2, w3) = (0.35875, 0.48829, 0.14128, 0.01168). This function is plotted in

Figure 4.
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Figure 4: Blackman-Harris minimum 4-sample window function

The choice of the window size is much more important than its exact shape. A smaller win-
dow has a smaller chance of overlapping two different texture regions in the image, which
would violate one of our assumptions. The frequency of the underlying texture would also
change less over the extent of a smaller window. If the frequencies change a lot, the result-
ing Fourier transform tends to be smeared. On the other hand, smaller windows tend to pro-
duce more smearing than larger windows even when the underlying function is stationary or
close to stationary. This makes a larger window attractive. In our experiments, we have set-
tled on a window size of 63x63 pixels in images that are typically 512x512 pixels. In Figure
1, the size of the two light-colored squares is equal to the window size.

One alternative is to use the "variable window spectrogram" which we investigated in[201.
In this scheme, the window size varies with the spatial frequency. One reasonable choice is
to have the window size be some factor (e.g. 5) times the corresponding wavelength of the
frequency, which means that we examine the same number of wavelengths at every fre-
quency. This is closer to the idea of using wavelets and Gabor functions for computing the
space/frequency representation. The Wigner distribution has the same window dilemma as
the spectrogram. In this work, we use a constant sized window to make the Fourier trans-
form computation more efficient. We can justify it physically by noting that the high fre-
quencies we see in textures are usually the higher harmonics of the fundamental texture
frequency, meaning that their extent is the same as that of the lower frequencies.

The application of a window is also affected by the randomness of the texture. Theoretically,
our method should work for both periodic and random textures. However, when we applied
it to a simulated slanted plate with a random fractal texture on it, we found the spectrogram
was too noisy for our algorithm. This could be solved by averaging the power spectra from a
neighborhood before doing any further computation. However, this involves using more
data, which has the same disadvantages as using a large window. We plan to investigate this
further.
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For computing the Fourier transforms in step 3, we use a 2D FFT routine from the IMSL
math library. It can handle arrays whose size is not necessarily an integer power of 2. Before
we window the image intensities, we subtract the mean intensity value in the neighborhood
to eliminate the d.c. peak in the Fourier transform.

We next compute the squared magnitude (power spectrum) of the Fourier transform. This is
shown in the two lighter-colored squares in Figure 1. In using only the squared magnitude,
we are ignoring phase information. Phase could be useful for periodic textures in a light-
stripping-like algorithm. However, the phase information in a random texture would be use-
less. In addition, if part of a texture is occluded as in Figure 5, the phase information would
be misleading, because the number of wavelength traversed by the texture in the occluded
region is unknown.

textured surface

& camera

Figure 5: Phase information would be misleading in this case

Because of varying phase, the Fourier transforms at any two general points even on a fron-
tally viewed texture would be different. For the same reason, strictly speaking, Equation
() would not hold. In order to match the phases of two patches, we would have to use a
six-parameter affine transformation (including translation) rather than the four-parameter
version (no translation) that we use now. By ignoring phase, we can reduce the complexity
of the affine transformation and speed up the program.
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The last step of our core algorithm is an exhaustive search for the (p, q) that best trans-
forms the power spectrum of one patch into another. Our current implementation searches
over a 61x61 grid, with (-2, -2) < (p, q) < (2, 2). This corresponds to a maximum slant

of about 630. Given a (p, q) to try, we compute the corresponding affine parameters from
Equation (15), use these to transform the power spectrum of the first patch using bilinear
interpolation, and compute the sum of squared differences (ssd) between the two power
spectra. We take the (p, q) that generates the minimum ssd as the solution. The ssd surface
from the data in Figure 1 is shown in Figure 6, where we have scaled so the minimum ssd is
one

SSD Surface SSD Countours

1.5

0.5

0

0 -0. 5

-- 11
p 1

n-2 -' -===a

-2-.5-1-0.5 0 0.5 l .

Figure 6: SSD surface and contour plots from comparing patches in Figure I

This algorithm is better than other shape-from-texture algorithms in several ways. It
requires no feature-finding, which is normally an unreliable step. We make no strong
assumptions about the frontally-viewed texture, only that it is stationary. Specifically. we do
not require that the texture be isotropic. Theoretically, the method should work for both peri-
odic and random textures. We will have to find a better spectral power estimator before we
can make it work on random textures, however. Finally, by formulating and solving the
problem with the space/frequency representation, we can easily account for other frequency
phenomena such as focus and aliasing in the same framework. We show how the method
successfully deals with aliasing in the next section.
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We ran our algorithm on each of these pairs of power spectra, and the results are shown in
Table 1. The method works best on textures that are closest to being purely periodic, like the
cosine and canvas textures. It loses some accuracy for textures with slightly more random
spacing like the wire screen and straw cloth. Considering that the algorithm is only examin-
ing data from about 5.5% of the pixels on each textured region, these results are good. Most
algorithms for shape-from-texture examine an entire image of a plane covering the whole
field of view.

texture window size computed (p, q) equivalent (o, t) error

cosines 63x63 (0.533, 0.400) (33.70, 36.90) 4.00

wire screen 63x63 (0.4(X), 0.200) (24. 10, 26.60) 11.60

cotton canvas 63x63 (0.6(X), 0.333) (34.50, 29.1 ° ) 1.40

straw cloth 63x63 (0.400, 0.400) (29.5", 45.0") 9.7"

Table 1: Results of algorithm on textured plates

texture window size computed (p, q) equivalent (ay, t) error

cosines 81x81 (0.600, 0.333) (34.50, 29. 1o) 1.40

wire screen 121x121 (0.577, 0.295) (32.90 , 27.10) 3.30

cotton canvas lOIxl01 (0.600, 0.333) (34.50, 29.10) 1.40

straw cloth 121x121 (0.600, 0.333) (34.50 , 29.10 )  1.4"

Table 2: Results of algorithm on textured plates with best window size
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We investigated the effect of window size by running our program on the same four textures
with different window dimensions. The results are show in Figure 8. The abscissa is the
length of a side of the square window in pixels. The ordinate shows the surface normal error
in degrees. For all four textures, an undersized window causes inaccuracy. This is probably
because the window does not contain enough wavelengths of the texture to allow a Fourier
transform of adequate resolution. For these textures, window sizes between 50 and 100
seem best. Beyond 100, the error for the canvas texture increases sharply. Although we
expect an oversize window to degrade performance because of increasing non-stationarity.
the other textures exhibit this tendency only slightly, if at all. Using the data in these plots, if
we manually tailor the window size to the particular image, we get the smaller errors shown
in Table 1. There remains work to be done on window size considerations. The choice of
window size is fairly arbitrary for almost all shape-from-texture algorithms that require it.

Jegrees Synthetic Cosines Jeqrees Screen

6 0+ 60

40t 40i

/2 C

50 100 150 200 pixels I 50 I0 150 200 pixe

Jegrees Canvas degrees Straw Cloth

8480

6 060

4 0 401

24 20

*n 0 150 200 pixels 50 i % 200 pi::es

Figure 8: Angle error vs window size for four textures in Figure 7
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4.2. Aliasing

Although aliasing can cause real problems in image understanding, it is rarely dealt with
explicitly in machine vision algorithms. Aliasing occurs when the image projected on the
sampling grid has spatial frequencies that are higher than half the spatial sampling rate. If
the aliased pattern is periodic, moire patterns appear. This is shown in Figure 9, which is
geometrically the same plate as before, this time with two different, higher frequency

cosines painted on. The cosines run at ±450 from the horizontal. The left side of the plate is
not aliased, while the right side is, because the projected frequencies have grown beyond
half the sampling rate. The series of local power spectra across the center of the image show
what happens to the frequencies. As the peaks move out from the center, they approach the
edges of the squares. The squares' edges are at half the sampling rate, and thus represent the
highest frequencies that can be successfully sampled. The peaks in the first and third quad-
rants hit the edges in the fourth square from the left. In the next square to the right, they
reappear in the second and fourth quadrants along with the peaks that were already there.
This is the onset of aliasing. In the last square the aliased peaks have moved a little more
back into the square.

If the sampling rates in the x and y directions are u and v respectively, then any (u. v)

±u~ ±V
outside the boundaries ( , will be aliased. It can be shown that the aliased fre-

quency will be given by

(aliased, aliased) = L'saw (it), -saw (v) (18)\s us - V, s

where

2 x +
saw tO:)= r x - T I Q)

with _ xj being the "floor" function, returning the largest integer not exceeding x. The func-

tion sawr.(x) has a period of T. We show a plot of Uatiased as a function of it in Figure 10.

It shows how the unalised frequency rises and then reappears at a different frequency when
aliasing occurs.
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Figure 9: Plate showing aliasing on the right

Figure 10: Uias U -sa w (it)
alasd 2 U,

19



Our algorithm allows us to account for aliasing very easily. When we test a given (p, q),

we warp the frequency coordinates in one power spectrum by an affine transformation. We

simply put all the transformed (u, v) 's through Equation (18) to adjust them for aliasing.

This way, if a given (p, q) causes frequencies to be transformed outside the half-sampling-

frequency limits, they will be aliased back in at the proper coordinates. This is also a conve-
nient way of making sure both frequency patches overlap exactly, instead of having one
skewed off the other with no corresponding frequencies in the other patch after the affine

transformation.

We ran our algorithm on the left and right patches in Figure 9 and got

(p, q) = (0.667, 0.467) with a window size of 63x63. This is an error of about 4.5', so

the method successfully accounts for aliasing. There are two restrictions. First, it is assumed
that the first patch is not aliased. Second, we cannot yet account for the fact that aliased fre-
quencies actually sum with nonaliased frequencies. We hope to remove this second restric-
tion in the future.

We know of no other shape-from-texture algorithm that can account for aliasing even in this
simple case. We attribute the ability to the fact that the space/frequency representation pre-
serves essentially all the data in the original signal and that frequency is the natural domain
for the analysis of aliasing.

5. Conclusion

We have advocated the use of the space/frequency representation, which shows an image's

spatial and local spatial frequency characteristics simultaneously. One natural application
for such a representation is the shape-from-texture problem. If we assume that the frontally
viewed texture is stationary, we can expect to see systematic changes in frequency from
point to point due to shape and perspective projection. We developed a new theory that pre-
dicts the detailed behavior of spatial frequencies in the image of a projected surface.
Because it makes predictions at a low level, this theory can be applied to any space/fre-
quency representation of an image. Using this math, we developed an algorithm based on
the spectrogram that successfully finds surface normals of textured surfaces by searching
through gradient space. The algorithm requires no feature-finding, working instead on a
low-level representation that is still convenient for analysis. Because the representation is
low-level, it should support other kinds of image analysis as well. For instance, the algo-
rithm can easily handle simple cases of aliasing.
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