LIQUID GUN PROPELLANT (LGP)
1846 PILOT PRODUCTION PROGRAM:
FINAL REPORT

R. G. BRASFIELD
R. A. BIDDLE
J. MALLICK
THIOKOL CORPORATION

JANUARY 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.
Abstract

The Liquid Gun Propellant (LGP) 1846 Pilot Production program was begun in May 1987 to support the Army LP gun development effort at General Electric. More than 18,000 kg of LGP were produced at the Elkton Division of Thiokol Corporation and delivered in support of the testing program at Wright-Malta, Ballston Spa, NY.

The LGP was produced at the Elkton plant facilities utilizing one 50-gallon and one 500-gallon glass-lined temperature-controlled reactor. Dilute hydroxyl ammonium nitrate (HAN) was concentrated to 80-85% by weight. Triethanol ammonium nitrate (TEAN) was synthesized from triethanolamine (TEA) and nitric acid. Purity of the product was such that recrystallization was not required.

Packaging and shipment were accomplished using DoT 2S/6D double-pack containers filled to 25 kg (~ 5 gal) and packed within DoT 17H metal drums. Shipping classification of explosive liquid class B was utilized per an interim Hazard Classification furnished by Ballistic Research Laboratory, Aberdeen Proving Ground, MD (BRL/APG).

Subject Terms

- Liquid Propellants; LP; Liquid Gun Propellants; LGP; LP 1846; LP 1845; LGP 1846; LGP 1845; Hydroxylammonium Nitrate; HAN; Triethanolammonium Nitrate; TEAN; Triethanolamine; TEA; Production

Security Classification

- **Security Classification of Report**: UNCLASSIFIED
- **Security Classification of this Page**: UNCLASSIFIED
- **Security Classification of Abstract**: UNCLASSIFIED

Contact Information

The Contracting Officer’s Representative for this report is Charles S. Leveritt, U.S. Army Ballistic Research Laboratory, ATTN: SLCBR-IB-B, Aberdeen Proving Ground, Aberdeen, MD, 21005-5066.

DISTRIBUTION CODE: Approved for public release; distribution is unlimited.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Program Requirements</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Schedule</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Shipping and Delivery</td>
<td>2</td>
</tr>
<tr>
<td>2. PRODUCTION PROCESSES</td>
<td>2</td>
</tr>
<tr>
<td>2.1 B-1 Pilot Production Plant</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Raw Materials and Requirements</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Manufacturing Procedures</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 HAN Concentration</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 TEAN Synthesis</td>
<td>7</td>
</tr>
<tr>
<td>2.3.3 Blending of LGP1846</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Packaging of LGP1846</td>
<td>8</td>
</tr>
<tr>
<td>2.4.1 Packaging Component Preparation</td>
<td>8</td>
</tr>
<tr>
<td>2.4.2 Filling the LGP Interior Package</td>
<td>8</td>
</tr>
<tr>
<td>2.4.3 Packaging for Shipment</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Material Safety Data Sheet (MSDS) and Interim Hazard Shipping Classification (HSC)</td>
<td>10</td>
</tr>
<tr>
<td>3. DELIVERABLES</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Destination</td>
<td>10</td>
</tr>
<tr>
<td>4. QUALITY ANALYSES AND PROCEDURES</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Receiving Acceptance of Raw Materials and Components</td>
<td>10</td>
</tr>
<tr>
<td>4.2 In-Process and Blended LGP Analyses</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Analytical Procedures</td>
<td>12</td>
</tr>
<tr>
<td>5. CONTRACT STATUS AND PERFORMANCE</td>
<td>14</td>
</tr>
<tr>
<td>6. PROGRAM SUPPORT</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX A: STATEMENT OF WORK</td>
<td>17</td>
</tr>
<tr>
<td>APPENDIX B: SHIPPING ARRANGEMENT DRAWING</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX C: MSDS/HSC FORM</td>
<td>27</td>
</tr>
<tr>
<td>Appendix Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>APPENDIX D: REPRESENTATIVE QUALITY LAB DATA</td>
<td>43</td>
</tr>
<tr>
<td>APPENDIX E: ANALYTICAL PROCEDURES ANALYSIS WORKSHEETS</td>
<td></td>
</tr>
<tr>
<td>PRODUCT RELEASE FORMS</td>
<td>53</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Jacket Temperature Controlled by Primary Cascade</td>
<td>4</td>
</tr>
<tr>
<td>2. Reactor Jacket Temperature Controlled by Secondary Cascade</td>
<td>5</td>
</tr>
<tr>
<td>3. General Process Scheme</td>
<td>6</td>
</tr>
<tr>
<td>4. Combined Acid/Oxime Titration Curves</td>
<td>12</td>
</tr>
<tr>
<td>5. Excess Acid Titration in LGP</td>
<td>13</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LGP Correction Analysis</td>
<td>9</td>
</tr>
<tr>
<td>2. Deliverables</td>
<td>11</td>
</tr>
<tr>
<td>3. Lot Data Summary of LGP</td>
<td>13</td>
</tr>
<tr>
<td>4. Line Items</td>
<td>14</td>
</tr>
<tr>
<td>5. Contract Amendments</td>
<td>15</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
1. INTRODUCTION

This report summarizes the work accomplished in support of contract DAAD05-87-C-8030 for the manufacture and delivery of Liquid Gun Propellant (LGP) 1846. The basis for this program originated with our proposal EP572-86, dated September 17, 1986, in response to the Ballistic Research Laboratory, Aberdeen Proving Ground, MD (BRL/APG), solicitation DAADO5-86-R-8334, dated August 15, 1986.

A total of 18,050 kg of LGP was produced and delivered under the contract, from May 1987 to January 1991. The program team at Thiokol/Elkton included Richard Biddle, research chemist; Joseph Lehman, analytical chemist; John Mallick, process engineer; Warren Brownell, quality engineer; Shirley Bonsell, quality control chemist; Herman Mitchell, contract administrator; Dorothy Ryan, publications; and Ray Brasfield, program manager. Technical representation at BRL were Mr. Charles Leveritt and Ms. Josephine Wojciechowski.

1.1 Program Requirements. The program requirements include the technical statement of work, schedule of deliverables, and the packaging and shipping details.

- Statement of Work (SOW). The SOW included the following principal areas. The complete SOW is contained in Appendix A for reference.

The end item furnished under this contract is LGP1846. The formulation for LGP1846 is 60.8% hydroxyl ammonium nitrate (HAN), 19.2% triethanol ammonium nitrate (TEAN), and 20.0% water. A tolerance of ±0.5% for these percentages is allowed.

The HAN must be concentrated from dilute aqueous solutions. This must be done by stripping water off under vacuum at a temperature not to exceed 55° C. The only domestic supplier of aqueous HAN is Southwest Analytical Chemicals (SAC) chem) of Austin, TX. The SAC HAN is 24–26% by weight.

The TEAN must be synthesized from triethanol amine (TEA) and nitric acid. The TEA must be of the highest quality and 97% pure minimum. Thiokol utilizes fresh 99% TEA in its production.
The nitric acid must be reagent grade. Thiokol procures 70% by weight nitric acid for TEAN synthesis. The amine is added to the dilute acid in a reactor controlled to maintain temperature at less than 4°C. Because of the resultant purity and high quality level of the raw materials, Thiokol has not been required to recrystallize the TEAN product to remove contamination.

The product analyses include metal contamination (iron, nickel, copper, lead, and tin), UV analysis for total nitrate (285–315 nm), and titration for HAN, TEAN, and total nitrate content.

1.2 Schedule. The schedule of performance for this program included the period from May 1987 through January 1991. Initial contract release was followed by procurement of raw materials and shipping hardware. The production status and substance schedule were updated with each monthly report. Deliveries of LGP were begun in the fall of 1987 and the final delivery was made in January 1991.

1.3 Shipping and Delivery. The shipping arrangement is defined by Thiokol drawing E40378. This arrangement consists of a DoT 2S polyethylene container of approximately 19L volume with a DoT 6D metal overpack. This nested container arrangement is filled with 25 kg of LGP. The fill port is fitted with a 15 psig pressure relief valve and is covered with a tamperproof witness tape for security purposes. This entire package is placed within a 114L DoT 17H open-head steel drum and packed with vermiculite on all sides. This 17H steel drum functions as the outer shipping container for transportation of the LGP. The shipping arrangement drawing is presented in Appendix B.

2. PRODUCTION PROCESSES

2.1 B-1 Pilot Production Plant. The B-1 pilot production plant consists of a Pfaudler 500-gallon glass-lined, insulated steel reactor. This unit is coupled to a temperature-control system and a steam jet ejector vacuum system. It is fitted with a D baffle and stirrer. This plant also contains a Pfaudler 50-gallon glass-lined, insulated steel reactor. This unit is also coupled to a temperature-control system and is fitted with a similar D baffle and stirrer. Both reactors are controlled by a Leeds and Northrop (L&N) primary and secondary cascade programmable remote control system.
• Description of Control System. The L&N process management equipment is utilized to control the concentration of HAN, the production of TEAN, and the mixing of LGP.

During early work on the concentration of HAN, the temperature of the reactor jacket was controlled by primary cascade; that is, by the equipment that controls the reactor jacket temperature in response to the temperature of the product (HAN). This was found to give frequent oscillations in the reactor jacket temperature. Subsequently, it was found that by utilizing secondary cascade or controlling the reactor jacket temperature directly, the temperature oscillations in the reactor jacket were eliminated and the process was more efficient (Figures 1 and 2). During the HAN concentration, the reactor jacket inlet and outlet temperatures and the product temperature are recorded for subsequent analysis. These temperature data along with other process information such as the reactor vacuum level are recorded in digital form and printed at 5-minute intervals.

During TEAN production, the addition and monitoring of the TEA to the 50-gallon reactor is controlled with the L&N processing management system. The product temperature and the reactor inlet and outlet temperatures are monitored and recorded as outlined for the HAN concentration described above. The chiller for this reactor is set at a desired temperature and is controlled by the chiller control system and not with the L&N system.

Mixing of the LGP is accomplished in the 500-gallon reactor. Temperature control is not needed during this operation.

In summary, all temperature monitoring and recording is completed with the L&N processing management system. All heating control in both the 50- and 500-gallon reactors is accomplished with the L&N system. The cooling control for both reactors is accomplished with the cooling units and is independent of the L&N system except for the temperature monitoring and recording. The starting and stopping of the reactor agitators and the TEA pump is accomplished through the L&N system. The equipment control is not completely automated and is part electronic and part manual.

2.2 Raw Materials and Requirements. The production LGP1846 (or 1845) requires only three basic raw materials, plus water. Hydroxyly ammonium nitrate (HAN) is purchased in a
Figure 1. Reactor Jacket Temperature Controlled by Primary Cascade.
Figure 2: Reactor Jacket Temperature Controlled by Secondary Cascade.
dilute aqueous solution (24–26% by weight) from the only current domestic supplier SAChem of Austin, TX. Triethanol amine (TEA) is purchased at the highest purity (99%) commercially available. Because it is produced for the cosmetics industry in tremendous quantity, availability and delivery are readily assured. The important processing aspect for TEAN synthesis is TEA purity and freshness. We have found that fresh, 99% pure TEA produces the highest quality TEAN. Nitric acid, reagent grade, is purchased at 70% by weight and obtained through normal commercial distributors.

2.3 Manufacturing Procedures.

2.3.1 HAN Concentration. The flow diagram for the manufacturing process is shown in Figure 3. The dilute HAN (24–26% by weight) must be concentrated prior to blending for LGP production. This concentration is accomplished by a simple stripping of water under vacuum with controlled heating of the HAN. As-received HAN is transferred into the 500-gallon Pfaudler reactor, with an initial loading of five 55-gallon barrels. The data collection instruments are turned on, the stirrer operated, and the reactor jacket heating begun. Temperature is controlled to 50 ±5° C. Vacuum is obtained by the steam jet ejector system.
and this is activated last. A target vacuum of less than 23 mm Hg is obtainable with this system. After 24 hours, the vacuum is released and another barrel of dilute HAN is transferred into the reactor, the reactor resealed, and the vacuum reestablished. This process continues until a total of 12-drums have been concentrated. The target concentration is 80–85% and takes 9–11 days for the 12-drum lot. The reactor vacuum and temperature are allowed to return to ambient conditions before samples are thiefted for analysis. The concentrated solution is drained from the reactor and stored in the original HAN solution drums (55-gal) for LGP preparation.

2.3.2 TEAN Synthesis. Triethanol ammonium nitrate (TEAN) must be produced from the reaction of TEA with nitric acid. This reaction produces a large heat of neutralization; therefore, the reactor must be cooled constantly during synthesis. The as-received nitric acid is added to the 50-gallon Pfudler reactor, with an initial loading of 84 ±1 lb. The acid is chilled to -10°C and 29 ±1 lb of demineralized water is added, while continuing to maintain the reactor contents temperature of -10°C. The reactor contents are also constantly stirred during the synthesis. When the reactor temperature has stabilized, the as-received TEA is slowly added into the reactor at a rate not exceeding 5 lb per hour. TEA is added at a controlled rate, in conjunction with reactor temperature control system, so that the heat of reaction does not outpace the system capability to maintain temperature control at -10°C. Synthesis is completed when a dilute sample (× 15) gives a pH of 6.3. This is at approximately 139 lb TEA for the reactor loading of 84 lb nitric acid. Synthesis time for an average lot is about 60 hours and produces 110–120 lb TEAN from a centrifuge in a damp state with less than 5% retained water. This material is immediately redissolved in demineralized water to prepare a nominal 80% by weight TEAN solution and stored for LGP preparation.

2.3.3 Blending of LGP1846. Blending of the LGP takes place in the 500-gallon Pfudler reactor. The total weight of approved HAN and TEAN that is available for blending determines the quantity of LGP that can be prepared. Only materials that have been analyzed and given a written release from the Quality Lab are used in the final LGP blending operation. The calculated weights of HAN, TEAN, and water are added to the reactor and stirred at ambient temperature for 2 hours. Corrections are made to the blend as indicated by
the batch analysis until the correct LGP1846 formulation is achieved. See Table 1 for correction algorithm.

2.4 Packaging of LGP1846.

2.4.1 Packaging Component Preparation. Packaging of the LGP requires a preparation step prior to filling the containers. The 2S polyethylene container as purchased is made from virgin (unrecycled) material. To preclude any opportunity for plasticizers, or other fabrication aids, and particulate matter from contaminating the LGP, the 2S polyethylene containers are rinsed vigorously five times with deionized water. Then the containers are filled again with deionized water and leached at 150°F for 48 hours minimum. After drying, these prepared containers are then bagged with clear polyethylene film and tagged as clean, approved for use in packaging LGP.

2.4.2 Filling the LGP Interior Package. After the Quality Lab has analyzed and released the LGP lot for packaging, the solution can be drained from the reactor. Clean, 5-gallon 2S polyethylene containers, approved for use, are tare weighed and prepared for filling. A small volume, approximately 2–5 gallons, of LGP is drained through the bottom reactor valve to clear it. Each 2S container is then filled by weight to 25 kg. Three packaging samples of LGP (early, middle, and end stages of the filling operation) are taken and sent to the laboratory for metals analysis by atomic absorption (AA), total nitrate UV trace, and free acid analysis. After filling, each 2S container is fitted with a 15-psi valve closure and a tamperproof witness tape.

2.4.3 Packaging for Shipment. The final packaging arrangement is shown in Thiokol drawing E40378. The filled 2S containers are placed within a 6D metal overpack container with a crimp-on lid. This double-pack container is then placed inside a 3-mil (minimum) thickness polyethylene bag, the air expelled, and the bag taped closed.

The outer shipping container is a DoT 17H, 18-gauge steel drum with an open-head-style lid. A 30-gallon size drum is used, with grade 4 vermiculite (exploded mica) as the packaging dunnage. The 17H drum is filled to approximately 6 inches with vermiculite, and the completed double pack is centered inside. Additional vermiculite is added all around until the
Table 1. LGP Correction Analysis

1. Record Weight of LGP in Reactor

2. Record Lab Analysis
 - HAN
 - TEAN
 - H_2O

3. Analysis
 - HAN
 - TEAN
 - H_2O

4. A. Determine which item is high out specification. If only one item, try TEAN first then HAN.

 Take Item Weight from Lab Analysis and Divide

<table>
<thead>
<tr>
<th>Circle</th>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAN</td>
<td>TEAN</td>
<td>HAN</td>
</tr>
<tr>
<td>LGP Weight</td>
<td>Lab Analysis</td>
<td>Revised LGP</td>
</tr>
<tr>
<td>x</td>
<td>+</td>
<td>Weight Total</td>
</tr>
<tr>
<td>Item Spec (Allowable Midpoint)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. B. Circle

6. A. Presumed Water

<table>
<thead>
<tr>
<th>Circle</th>
<th>Item 3</th>
<th>Item 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAN</td>
<td>TEAN</td>
<td>HAN</td>
</tr>
</tbody>
</table>

 | Weight of Item 48 Required | % Concentration of Material + 100 |
 | Solution Weight of Item 4B Required |

 | B. | Weight of Water Required 6A | Weight of H_2O Required |
 | | Solution Weight From Item 5 x $(H_2O \% + 100)$ | Additional Water Required |
17H drum is filled. The lid is then put in place and the attachment ring plus its securing bolt are damped to seal the drum.

Labels and stenciling are per the details on drawing E40378 and the destination address per the contract line item.

2.5 Material Safety Data Sheet (MSDS) and Interim Hazard Shipping Classification (IHSC). The current MSDS for the LGP1846 is shown in Appendix C. The IHSC authorizing shipment of this material was obtained from BRL and a copy is also shown in Appendix C.

3. DELIVERABLES

Contract DAAD05-87-C-8030, as amended, specified the delivery of 18,050 kg of LGP: 16,450 kg of LGP1846 and 1,600 kg of LGP1845, which were delivered to the U.S. Army from October 1987 to January 1991.

3.1 Destination. Shipments were made to the following destinations (Table 2):

a) BRL-Aberdeen Proving Ground, MD
b) General Electric, c/o Wright-Malta, Balston Spa, NY
c) Letterkenny Arsenal, Chambersburg, PA
d) Geo Centers, Inc., Wharton, NJ

4. QUALITY ANALYSES AND PROCEDURES.

The quality procedures for this program varied from that of certification of conformance to published requirements (for some raw materials and components) to detailed chemical analyses of the finished LGP product.

4.1 Receiving Acceptance of Raw Materials and Components. The hydroxyl ammonium nitrate (HAN), triethanol amine (TEA), and nitric acid were the raw materials purchased for this program and each was received under different criteria. The nitric acid, purchased as reagent grade material, was accepted on a certificate of conformance from the supplier. The TEA was
Table 2. Deliverables

<table>
<thead>
<tr>
<th>Lot</th>
<th>Qty, kg</th>
<th>Date</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01</td>
<td>500</td>
<td>Oct 87</td>
<td>GE/BRL/GEO</td>
</tr>
<tr>
<td>-02</td>
<td>1,675</td>
<td>Dec 87</td>
<td>GE</td>
</tr>
<tr>
<td>-02, -03</td>
<td>1,675</td>
<td>Jan 88</td>
<td>GE</td>
</tr>
<tr>
<td>-04</td>
<td>1,650</td>
<td>Mar 88</td>
<td>GE/BRL</td>
</tr>
<tr>
<td>-03, 04, 05</td>
<td>2,050</td>
<td>May 89</td>
<td>GE/BRL</td>
</tr>
<tr>
<td>05, 06</td>
<td>2,050</td>
<td>Jun 89</td>
<td>Letterkenny/BLR</td>
</tr>
<tr>
<td>-06, 07</td>
<td>2,075</td>
<td>Jul 89</td>
<td>Letterkenny/BRL</td>
</tr>
<tr>
<td>-07, 08</td>
<td>2,075</td>
<td>Aug 89</td>
<td>Letterkenny/BRL</td>
</tr>
<tr>
<td>09</td>
<td>1,375*</td>
<td>Jan 90</td>
<td>GE/BRL</td>
</tr>
<tr>
<td>-08, 09, 10, 11</td>
<td>800</td>
<td>Jun 90</td>
<td>GE/BRL</td>
</tr>
<tr>
<td>-11</td>
<td>300</td>
<td>Jan 91</td>
<td>GE</td>
</tr>
</tbody>
</table>

LGP1845

<table>
<thead>
<tr>
<th>Lot</th>
<th>Qty, kg</th>
<th>Date</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01</td>
<td>1,600</td>
<td>May 88</td>
<td>Letterkenny/BRL</td>
</tr>
</tbody>
</table>

*From GFM concentrated HAN

also accepted with a certification of conformance but to a >99% purity requirement and lot date. The HAN was analyzed by the Quality Laboratory initially to establish the acceptability and reproducibility of the commercially produced material. Following evidence of reproducible quality (test data from the first few deliveries), the HAN was accepted to the certification of conformance and lot data supplied by the vendor. Reanalysis was done any time the vendor production cycle was broken and needed to be restarted, essentially a "first-article" checkout of the production. Data obtained for the HAN receiving analysis were percent HAN, trace metal contamination, and free acid analysis.

An amendment to the contract provided Government-furnished concentrated HAN (from NOS/IH) for production of additional LPG1846. The receiving acceptance of this GFM was approved only after a complete nitrate, water, and trace metals analysis. Approximately 2,000 lb of GFM was received.
4.2 In-Process and Blended LGP Analyses. In-process analyses followed the production acceptance of TEAN synthesis and HAN concentration, prior to blending. In-process TEAN analysis included titration for TEAN content, Karl Fischer analysis for water, and UV analysis for total nitrate (optional). In-process HAN analysis included titration for HAN content, Karl Fischer analysis for water, and AA for iron contamination.

Blended LGP analyses included titration with aqueous sodium hydroxide using the double break point technique for HAN and TEAN content (Figure 4), total nitrate by UV, water content by Karl Fischer analysis, trace metal analysis by AA, and free acid content using titration with sodium hydroxide (Figure 5). Table 3 summarizes the LGP data for LGP1846 lots delivered under this program.

4.3 Analytical Procedures. The procedures for HAN, TEAN, LGP, metals, and free acid analyses have been developed over several programs in conjunction with BRL and other researchers. The procedural details and calculation/data sheets utilized for this program are presented in Appendix D for reference.
Figure 5. Excess Acid Titration in LGP.

Table 3. Lot Data Summary of LGP

<table>
<thead>
<tr>
<th>Lot</th>
<th>H₂O, %</th>
<th>HAN, %</th>
<th>TEAN, %</th>
<th>HAN/TEAN</th>
<th>Fe, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01</td>
<td>19.8</td>
<td>60.3</td>
<td>19.9</td>
<td>3.03</td>
<td>3</td>
</tr>
<tr>
<td>-02</td>
<td>20.3</td>
<td>61.1</td>
<td>19.1</td>
<td>3.20</td>
<td>1</td>
</tr>
<tr>
<td>-03</td>
<td>19.7</td>
<td>61.0</td>
<td>19.6</td>
<td>3.11</td>
<td>0.8</td>
</tr>
<tr>
<td>-04</td>
<td>20.2</td>
<td>61.1</td>
<td>19.4</td>
<td>3.16</td>
<td>0.7</td>
</tr>
<tr>
<td>-05</td>
<td>20.5</td>
<td>60.9</td>
<td>19.2</td>
<td>3.17</td>
<td>1.0</td>
</tr>
<tr>
<td>-06</td>
<td>19.6</td>
<td>61.0</td>
<td>19.5</td>
<td>3.13</td>
<td>1.4</td>
</tr>
<tr>
<td>-07</td>
<td>20.0</td>
<td>60.7</td>
<td>19.7</td>
<td>3.08</td>
<td>1.4</td>
</tr>
<tr>
<td>-08</td>
<td>19.6</td>
<td>60.7</td>
<td>19.6</td>
<td>3.11</td>
<td>1.6</td>
</tr>
<tr>
<td>-09</td>
<td>20.4</td>
<td>61.1</td>
<td>19.3</td>
<td>3.17</td>
<td>2.0</td>
</tr>
<tr>
<td>-10</td>
<td>19.7</td>
<td>61.0</td>
<td>19.4</td>
<td>3.14</td>
<td>1.4</td>
</tr>
<tr>
<td>-11</td>
<td>19.9</td>
<td>60.3</td>
<td>19.6</td>
<td>3.08</td>
<td>1.5</td>
</tr>
</tbody>
</table>

LGP1845

<table>
<thead>
<tr>
<th>Lot</th>
<th>H₂O, %</th>
<th>HAN, %</th>
<th>TEAN, %</th>
<th>HAN/TEAN</th>
<th>Fe, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>-01</td>
<td>16.8</td>
<td>63.6</td>
<td>20.0</td>
<td>3.18</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Requirements
LGP1846 19.5 - 20.5 60.3 - 61.3 18.7 - 19.7 3.06 - 3.28 <5
LGP1845 16.3 - 17.3 62.7 - 63.7 19.5 - 20.5 3.06 - 3.28 <5
5. CONTRACT STATUS AND PERFORMANCE

The following tables (Tables 4 and 5) summarize the line items, amendments, and delivery performance for the contract.

Table 4. Line Items

<table>
<thead>
<tr>
<th>CLIN</th>
<th>Description</th>
<th>Qty, kg</th>
<th>Contract Delivery</th>
<th>Actual Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001AB</td>
<td>Lot 2</td>
<td>1,675</td>
<td>Dec 16, 1987</td>
<td>Dec 7, 1987</td>
</tr>
<tr>
<td>0001AC</td>
<td>Lot 3</td>
<td>1,675</td>
<td>Feb 24, 1988</td>
<td>Jan 15, 1988</td>
</tr>
<tr>
<td></td>
<td>Option Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002AA</td>
<td>Lot 1</td>
<td>1,650</td>
<td>Apr 30, 1988</td>
<td>Mar 11, 1988</td>
</tr>
<tr>
<td>0002AB</td>
<td>Lot 2</td>
<td>1,586 (LGP1845)</td>
<td>May 30, 1988</td>
<td>Apr 28, 1988</td>
</tr>
<tr>
<td>0002AC</td>
<td>Lot 3</td>
<td>2,050</td>
<td>May 30, 1989</td>
<td>May 8, 1989</td>
</tr>
<tr>
<td>0002AD</td>
<td>Lot 4</td>
<td>2,050</td>
<td>Jun 30, 1989</td>
<td>Jun 1, 1989</td>
</tr>
<tr>
<td>0002AE</td>
<td>Lot 5</td>
<td>2,075</td>
<td>July 30, 1989</td>
<td>July 7, 1989</td>
</tr>
<tr>
<td>0002AF</td>
<td>Lot 6</td>
<td>2,075</td>
<td>Aug 30, 1989</td>
<td>Aug 18, 1989</td>
</tr>
<tr>
<td>0005</td>
<td>GFM HAN</td>
<td>1,600</td>
<td>Feb 15, 1990</td>
<td>Jan 5, 1990</td>
</tr>
<tr>
<td>0001</td>
<td>LGP1846</td>
<td>300</td>
<td>Jan 10, 1991</td>
<td>Jan 18, 1991</td>
</tr>
<tr>
<td>Amendment</td>
<td>Description</td>
<td>Date</td>
<td>CLIN Effectivity</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>P00001</td>
<td>Type error. Delete C,3.1. Delete I. 15.</td>
<td>May 1987</td>
<td>0001AB</td>
<td></td>
</tr>
<tr>
<td>P00003</td>
<td>Partial release op yr 1.</td>
<td>Sep 1987</td>
<td>0002AA</td>
<td></td>
</tr>
<tr>
<td>P00006</td>
<td>HAN price delta. Add water analysis by KF and double-break titration with aqueous NaOH for HAN and TEAN.</td>
<td>Feb 1988</td>
<td>-- --</td>
<td></td>
</tr>
<tr>
<td>P00007</td>
<td>Change delivery destination.</td>
<td>May 1988</td>
<td>0002AA</td>
<td></td>
</tr>
<tr>
<td>P00009</td>
<td>Change funding for shipping.</td>
<td>Sep 1988</td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>P00010</td>
<td>Funds, balance of option year, and delivery schedule.</td>
<td>Jan 1989</td>
<td>0002AC,D,E,F 0002AC,D,E,F</td>
<td></td>
</tr>
<tr>
<td>P00011</td>
<td>Change destination.</td>
<td>Mar 1989</td>
<td>0002AC</td>
<td></td>
</tr>
<tr>
<td>P00012</td>
<td>Increase production of 1846 by 1,600 kg using GFM HAN.</td>
<td>Dec 1989</td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td>P00013</td>
<td>Increase production of 1846 by 800 kg.</td>
<td>Jun 1990</td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td>P.O. DAAD05-91-P-0968</td>
<td>Increase production of 1846 by 300 kg.</td>
<td>Dec 1990</td>
<td>0001</td>
<td></td>
</tr>
</tbody>
</table>
6. PROGRAM SUPPORT

During the LGP pilot production program, technical and management support was provided through program meetings, technical interchange meetings, participation in BRL-sponsored technical conferences, and participation in fact-finding and planning meetings with ARDEC and FDR personnel.

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 1987</td>
<td>Thiokol/BRL</td>
<td>LGP Fact-Finding and Planning</td>
</tr>
<tr>
<td>Aug 1987</td>
<td>Conference</td>
<td>3rd HAN-Based Liquid Propellant Conference</td>
</tr>
<tr>
<td>Dec 1987</td>
<td>Thiokol/BRL</td>
<td>Propellant Conference</td>
</tr>
<tr>
<td>Feb 1988</td>
<td>Thiokol/BRL/JPL</td>
<td>TIM on Analysis Procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LGP Fact-Finding and Planning</td>
</tr>
<tr>
<td>Apr 1988</td>
<td>Thiokol/BRL/FDR</td>
<td>LGP Fact-Finding and Planning</td>
</tr>
<tr>
<td>Aug 1988</td>
<td>Conference</td>
<td>4th HAN-Based Liquid Propellant Conference</td>
</tr>
<tr>
<td>Jan 1989</td>
<td>Thiokol/ARDEC</td>
<td>HAN and LGP Scaleup Production and Packaging Logistics</td>
</tr>
<tr>
<td>May 1989</td>
<td>Thiokol/BRL/ARDEC/GEO</td>
<td>TIM on Free Acid Analysis</td>
</tr>
<tr>
<td>Aug 1989</td>
<td>Conference</td>
<td>5th HAN-Based Liquid Propellant Conference</td>
</tr>
</tbody>
</table>
APPENDIX A:

STATEMENT OF WORK
INTENTIONALLY LEFT BLANK.
C.3 The Contractor shall perform as set forth in Section B and described in C.4 below for each particular contract line item number (CLIN).

C.3.1 The Contractor shall furnish the quantities as prescribed in Section B of CLIN 1000AA for First Article Government Testing in accordance with the provision in Section I at I.1.5 prior to continuance of remaining requirement.

C.4 The Contractor shall furnish the required chemicals to the Government at Aberdeen Proving Ground, Md in accordance with the requirements and specifications listed below.

C.4.1 Principal Features

C.4.1.1 The contractor shall furnish a total of 15,400 Kilograms (in accordance with Section B) of liquid propellant 1846. The liquid propellant 1846 contains 60.8% hydroxylammonium nitrate (HAN) 19.2% triethanolammonium nitrate (TEAN), 20.0% water.

C.4.1.2 The required HAN solution must be prepared from dilute solutions. HAN in solution at a concentration of from 18% to 24% (by weight) is commercially available. The straightforward way of preparing the concentrated solution is by stripping off the water under vacuum at a temperature not above 55°C. (131°F).

C.4.1.3 The only known supplier of dilute HAN in the United States is Southwest Analytical Chemicals, Austin, TX.

C.4.1.4 TEAN is not available commercially, and must be prepared by the vendor from the corresponding aliphatic amine and nitric acid. The vendor may choose his own supplier of the aliphatic amine. It must be at least 97.0% pure, as determined by gas chromatography.

C.4.1.5 Reagent-grade nitric acid must be used.

C.4.1.6 Manufacturing Guidelines for making TEAN:

a. the amine must be added to the nitric acid, never the reverse.

b. The temperature of the reaction vessel must not be allowed to rise above 40°C (40°F) at any time.

c. The product must be recrystallized at least once from water.

d. In removing the excess water, the temperature of the TEAN-water mixture must not be allowed to rise above 25°C (77°F).
PART I - THE SCHEDULE
SECTION B - SUPPLIES/SERVICES AND PRICES

C.4.1.7 Specifications:

a. The final products when shipped must not contain more than 5 parts per million (ppm) of any heavy metals, including (but not limited to) iron, nickel, copper, lead, and tin.

b. The composition of the liquid propellant must meet the specifications given in Paragraph 1 above within plus or minus 0.5%.

c. Analyses

i. The Vendor must furnish with each lot of each material an ultraviolet spectrum of the material. This spectrum shall cover the wavelength range from 285 to 315 nanometers.

ii. In addition, each lot of liquid propellant must be furnished with the following analytical data: titration with alcoholic butyl amine, and weight-per cent of carbon.

C.4.1.8 REPORTS

a. A final report must be prepared as part of this contract. This report shall contain a complete and detailed description of all of the technical effort expended on this contract. All of the procedures used both for preparation and for analysis must be documented.

b. This report must be prepared in accordance with the Mil Spec governing Department of Defense reports. A copy of this spec shall be made available on request. (Reference DI-S-4057)

c. If this final report contains proprietary information, this fact must be stated to the Contracting Officer's Technical Representative, and the report shall contain appropriate notification of this fact. Any such proprietary information shall be protected from unauthorized release or distribution. If there is no proprietary information in the report, it shall be published as a BRL Contractor Report.
PART I - THE SCHEDULE
SECTION D - PACKAGING AND MARKING

D.5100 PACKAGING:

The liquid propellant shall be shipped as follows:

a. Only 10-liter or 2.5 gallon polyethylene bottles shall be used.

b. The polyethylene must be new (so-called "virgin") material, certified for food-service. (Such bottles are readily available from several suppliers)

c. The closures on the bottles shall have some kind of "tamperproof" closure. It is not the intention to make this closure too tight; rather, the intention is to have positive evidence of tampering after the bottles have left the supplier's control.

c. The closure should permit leakage of gas if the pressure inside the bottle exceeds 14.7 psi gauge pressure (that is, a pressure 14.7 psi above ambient).
INTENTIONALLY LEFT BLANK.
APPENDIX B:

SHIPPING ARRANGEMENT DRAWING
INTENTIONALLY LEFT BLANK.
INTENTIONALLY LEFT BLANK.
APPENDIX C:

MSDS/IHSC FORM
INTENTIONALLY LEFT BLANK.
LIQUID GUN PROPELLANT
WARNING

MASS FIRE HAZARD IF CONFINED
- Do not attempt to extinguish.
- Burning propellant emits toxic gases.
- DoD Hazard Class 1.3C.

CORROSIVE
- Liquid corrosive effect. (slight)
- Mild oxidizing solution.
- Reacts with reducing materials.
- Avoid contact with metals and metal powders.

HEALTH EFFECTS
- Skin and eye irritant/corrosive.
- Avoid inhalation of aerosolized mists/vapors.
- Avoid ingestion and skin absorption of LGP.
- May cause hypotension, methemoglobinemia or HEINZ body formation in blood.
- Experimental material, hazards have not been fully characterized.

Figure C-1. Liquid Gun Propellant Hazards Communication Shipping Label
MATERIAL SAFETY DATA SHEET

Morton Thiokol, Inc.
Elkton Division
P.O. Box 241
Elkton, Maryland 21921-0241
Emergency Phone (301) 398-3000

PRODUCT IDENTIFICATION
A. Trade Name and Synonyms: Liquid Gun Propellant, LGP 1846

PHYSICAL DATA
A. Appearance and Odor: Water white to very pale straw colored solution. Odorless.
B. Volatiles: Water.

COMPOSITION

<table>
<thead>
<tr>
<th>Hazardous Ingredients</th>
<th>Percent</th>
<th>OSHA PEL</th>
<th>ACGIH TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hydroxylammonium Nitrate</td>
<td>61</td>
<td>--</td>
<td>NE</td>
</tr>
<tr>
<td>B. Triethanolammonium Nitrate</td>
<td>19</td>
<td>--</td>
<td>NE</td>
</tr>
<tr>
<td>C. Water</td>
<td>20</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

HEALTH HAZARD DATA
A. Threshold Limit Value: Not established.
B. Effects of Overexposure:
1. Respiratory: None known. Decomposition products are known to cause breathing difficulty and respiratory damage.
2. Eyes: Corrosive liquid effect, moderately severe eye injury if contacted with eyes. Decomposition products can be irritating.
3. Skin: Acidic, pH = 4, corrosive liquid effect, no known dermatitis.
4. Skin Absorption: No absorption observed.
5. Ingestion: Corrosive liquid effect may cause nausea, abdominal discomfort, and collapse. Decomposition products are also corrosive to internal organs.
6. Other: None currently known.

NE = Not Established
V. EMERGENCY AND FIRST-AID PROCEDURES
A. Inhalation: If decomposition products are inhaled, remove victim to fresh air. Call a physician and/or emergency facility immediately.
B. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Call a physician and/or emergency facility immediately.
C. Skin: Contact with the skin should be treated as with any corrosive material. Immediately flush the area with water. Wash with soap and water.
D. Ingestion: Accidental ingestion requires water intake (2 glasses) and induced vomiting.

VI. FIRE AND EXPLOSION HAZARD DATA
A. Liquid gun propellant is a DOT Class B (1.3) liquid explosive. (Reference: ARBRL-CR-00454, May 1981.) The material does not have a measureable flash point but does have an autoignition temperature (Setchkin) of 310 degrees C (590 F). No explosion occurs in an open fire test and the liquid survives 48 hours at 75 degrees C (167 F). The liquid does not explode under impact of a 4.4-lb weight at 28 inches in a standard cavity test and also does not yeild a positive card gap test at 70 cards.
B. Explosive Limits: DOT Class B explosive (1.3 hazard symbol).
C. Extinguishing Media: Do not attempt to fight burning propellant. Water, CO$_2$, or foam may be used to restrict spreading of fire after bulk of propellant has burned.
D. Special Fire Fighting Procedures: Propellant ingredients contain oxidizer and fuel. Do not fight fire. If ignited while contained, thrust created while burning may give this propellant uncontrollable ballistic properties. Fire fighting should be limited to preventing the spread of other fires.
E. Explosion Hazards: Static discharge, impact, friction, and pinch points between hard surfaces can initiate propellant fires and should be avoided. See VII, B.

VII. REACTIVITY DATA
A. Mild oxidizing solution capable of reacting with reducing materials.
B. Contact with metals should be avoided. Transition metal ion contamination promotes decomposition.
C. Best stored in inert polyethylene, polypropylene, or Teflon containers.
VIII. SPECIAL PRECAUTIONS
 A. Protective Measures:
 1. Acid-rated gloves and safety glasses should be worn when handling or transferring this solution.
 2. Avoid contact with eyes, skin, and clothing.
 3. Wash hands (contacted areas) thoroughly after handling.
 4. Spills should be diluted with water and flushed to a sanitary sewer system.

IX. ENVIRONMENTAL PROTECTION
 A. The considerable solubility of the dissolved salts provides adequate protection against buildup of crystals. The diluted aqueous solution provides nonhazardous waste. Can be burned in an incinerator when diluted.

"To the best of our knowledge the information contained herein is correct. All chemicals may present unknown health hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards which exist. Final determination of suitability of the chemical is the sole responsibility of the user. Users of any chemical should satisfy themselves that the conditions and methods of use assure that the chemical is used safely.

NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO THE INFORMATION CONTAINED HEREIN OR THE CHEMICAL TO WHICH THE INFORMATION REFERS."

THIS MATERIAL IS EXPERIMENTAL AND ANY HAZARDS ASSOCIATED WITH IT HAVE NOT BEEN FULLY CHARACTERIZED. THIS MATERIAL HAS BEEN PROVIDED EXCLUSIVELY FOR TESTING AND EVALUATION IN A LABORATORY ENVIRONMENT BY KNOWLEDGEABLE RESEARCH PERSONNEL.
MATERIAL SAFETY DATA SHEET

MSDS No. 054
Date Issued 5/12/86
Reviewed by: T. R. Cessario
Safety Manager

I. Product Identification
A. Trade Name and Synonyms:

Liquid Gun Propellant, LGP 1845

II. Physical Data
A. Appearance and Odor:

Water white to very pale straw colored solution, odorless.

B. Volatiles

Water.

III. Composition

<table>
<thead>
<tr>
<th>Hazardous Ingredients</th>
<th>Percent</th>
<th>PEL</th>
<th>TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hydroxylammonium Nitrate</td>
<td>63%</td>
<td>----</td>
<td>Not established.</td>
</tr>
<tr>
<td>B. Triethanolammonium Nitrate</td>
<td>20%</td>
<td>----</td>
<td>Not established.</td>
</tr>
<tr>
<td>C. Water (H₂O)</td>
<td>17%</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>
IV. Health Hazard Data
A. Threshold Limit Value: Not established.

B. Effects of Overexposure:
 1. Respiratory: N/A

 2. Eyes: Corrosive liquid effect, moderately severe eye injury if contacted with eyes.

 3. Skin: Acidic pH = 4, corrosive liquid effect, no known dermatitis.

 4. Skin Absorption: No absorption observed.

 5. Ingestion: Corrosive liquid effect may cause nausea, abdominal discomfort and collapse.

 6. Other: None currently known.

V. Emergency and First-Aid Procedures
A. Inhalation: N/A

B. Eyes: Immediately flush eyes with large amounts of water for at least fifteen (15) minutes.

C. Skin: Contact with the skin should be treated as with any corrosive material. Immediately flush the area with water. Wash with soap and water.

D. Other: Ingestion: accidental ingestion would require water intake (2 glasses) and induced vomiting.

VI. Fire and Explosion Hazard Data
A. Liquid gun propellant is a DOT class B, liquid explosive. (Reference: ARBRL-CR-00454, May 1981). The material does not have a measureable flash point but does have an autoignition temperature (Setchkin) of 310°C (590°F). No explosion occurs in an open fire test and the liquid survives 48 hours at 75°C (167°F). The liquid does not explode under impact of a 4.4 lb weight at 28 inches in a standard cavity test and also does not yield a positive card gap test at 70 cards.
VII. Reactivity Data

A. Mild oxidizing solution, capable of reacting with reducing materials.

B. Contact with metals should be avoided. Transition metal ion contamination promotes decomposition.

C. Best stored in inert polyethylene, polypropylene or teflon containers.

VIII. Special Precautions

A. Protective Measures

1) Acid rated gloves and safety glasses should be worn when handling or transferring this solution.

2) Avoid contact with eyes, skin and clothing.

3) Wash hands (contacted areas) thoroughly after handling.

4) Spills should be diluted with water and flushed to a sanitary sewer system.

IX. Environmental Protection

A. The considerable solubility of the dissolved salts provides adequate protection against build up of crystals. The diluted aqueous solution provides non-hazardous waste.
DISPOSITION FORM

For use of this form, see AR 360-15; the proponent agency is TAGO.

REFERENCE OR OFFICE SYMBOL

SMCAR-SF (385-16d)

SMCAR-AEE-B

ATTN: Mr. Downs

SMCAR-SF

20 April 1989

Mrs. Z. Luan/rgs/45558

DATE

DATE

CNT 1

TO

FROM

1. Reference:

a. AMC-R 385-21, 2 January 1987, Determination and Assignment of Ammunition and Explosives Hazard Classification

b. Army Technical Bulletin (TB) 700-2, 1 September 1982, Department of Defence Explosives Hazard Classification Procedures

c. DF, SMCAR-SF, 2 March 1987, Policy Regarding Interim and Final Hazard Classification (IHC and FHC) of Ammunition and Explosives (encl 3)

d. FONCON between Mr. Elliott, SMCAR-SF and Mr. Leveritt, SLCBR-IB-B, 19 April 1989, Subject: SAB

2. The Interim Hazard Classification (IHC) requested in reference d is at encl 1 and is applicable for shipment and storage of either small or in-process R&D quantities.

3. A copy of this IHC and DOT Exemption No. DOT-E-9256 (third revision) (encl 2) must be carried aboard each mode of transportation authorized by DOT Exemption No. DOT-E 9256 (third revision). In addition, a copy of this IHC will be expeditiously furnished by your office, upon receipt of a proper request, to any organization required to store these propellants.

4. Final Hazard Classification (FHC) IAW refs a, b and c is required for full scale production. To obtain FHC, the information contained in encl 3 should be compiled and forwarded through this office, to AMC Field Safety Activity.

5. In addition, to complete the safety data requirement, it will be necessary to obtain the following data for the liquid propellant 1846 & 1845.

Test needed for liquid propellant 1846

a. Detonation Test

b. Ignition & Unconfined Burning Test

c. Explosion Temperature (5 sec)

d. Friction Test (Apparatus & Comparison Values)
SMCAR-SP
SUBJECT: Interim Hazard Classification for Liquid Propellant 1845 and 1846

Test needed for liquid propellant 1845

a. Friction Test (Apparatus & Comparison Values)
b. Explosion Temperature (5 sec)
c. Electrostatic Discharge Test

3 Encls
As stated

CHARLES R. PETERS
Chief Hazard Classification Branch
MEMORANDUM FOR: Commander, Armament Research, Development and Engineering Center, ATTN: SMCAR-EE-B (Mr. Downs), Picatinny Arsenal, New Jersey 07806-5000

SUBJECT: Interim Hazard Classification No. 219-A-0293

2. Item: Propellant, Liquid LP 1846 and 1845 for Large and Medium Caliber guns

3. Reference Document: Ref a

4. Applicable Sections of Title 49 Code of Federal Regulations (49 CFR) for proper description and classification: 173.88(f)

5. Interim Hazard Classification:
 DOD Hazard Class: Group II (Liquid Propellant Storage Hazard Class)
 DOD Storage Compatibility Group: A (Liquid Propellant storage Group)
 DOT Hazard Class: Class B Explosive
 DOT Container Marking: Propellant Explosives (Liquid), Class B
 ON Serial Number: 0190
 Explosive Weight for QD: 60 lbs (27.25 kgs)

6. Period of Applicability: 6 months

7. Expiration Date: 19 Oct 89

8. a. Sections of Title 49 Code of Federal Regulations for Packaging:
 Packaging: Section 173.93(e)
 Marking: Section 172, Subpart D and Section 173.93(f)
 Labeling: Section 172, Subpart E (172.411) Explosive B Label

 b. Packaging Drawings: Dwg No. E40378, Rev-D (Morton Thiokol Inc.)

9. The point of contact is Zien Luu, SMCAR-SE, (201) 724-5558.

FOR THE COMMANDER:

JAMES E. ELLIOTT
Acting Chief, Safety Office
1. U.S. Department of Defense (DOD), Washington, D.C., and its contractors are hereby granted an exemption from certain provisions of the Department's Hazardous Materials Regulations to ship various kinds of explosives in commerce with a DOD Interim Hazard Classification. These shipments are subject to the limitations and special requirements specified herein and this exemption provides no relief from any regulation other than as specifically stated herein.

2. BASIS. This exemption is based on DOD's application dated September 4, 1987, submitted in accordance with 49 CFR 107.105 and the public proceeding thereon.

3. HAZARDOUS MATERIALS (Descriptor and class). Military explosives, explosive devices and ammunition - classed as explosive A, B or C on an interim basis.

4. PROPER SHIPPING NAME (49 CFR 172.101). The proper shipping name or generic description for each explosive, as appropriate.

6. MODES OF TRANSPORTATION AUTHORIZED. Motor vehicle, rail freight, cargo vessel, cargo aircraft only (see paragraph 8).

7. SAFETY CONTROL MEASURES.

a. Authorized Explosives. An explosive authorized to be transported under the provisions of this exemption is a new explosive covered by a written DOD Interim Hazard Classification that has been issued not more than one year before the date of transportation of the explosive.

b. Classification of Explosives. Each DOD Interim Hazard Classification of an explosive must be approved (by signature) by one of the following persons:

 Chief, Explosive Safety Branch (AFISC-SEV)
 Norton Air Force Base, CA 92409

 Director of Safety
 Combat Systems Directorate (06H)
 Naval Sea Systems Command
 Washington, DC 20362
The names of the persons holding the above listed positions shall be provided to the Office of Hazardous Materials Transportation (OHMT) on a current basis.

c. Delegation of Approval Authority. The chiefs of the U.S. Army and U.S. Air Force offices identified in 49 CFR 173.86(b)(2) may, with the Department of Defense Explosives Safety Board's (DDESB) concurrence, authorize, respectively, the following additional persons to grant (by signature) interim hazard classification approvals, subject to all the conditions and procedures of this exemption:

U.S. Army:

Chief, Safety Office
U.S. Army Missile Command
Redstone Arsenal, AL 25898-5130

Chief, Safety Office
U.S. Army Armament Research and Development Center
Dover, NJ 07801-6001

Chief, Safety Office
U.S. Army Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423

U.S. Air Force:

Chief, Weapons Safety
HQ, Air Force Systems Command
Andrews Air Force Base, MD 20334-5000

Director of Systems Safety
HQ, Armament Division (AFSC)
Eglin Air Force Base, FL 32542-5000

The names of the persons holding the above listed positions to whom approval authority is delegated shall be provided to the OHMT and to DDESB-KT on a current basis.
8. **SPECIAL PROVISIONS.**

a. This exemption applies only to the transportation of new explosives covered by DOD Interim Hazard Classifications. Also, this exemption authorizes DOD contractors to offer shipments of new explosives, which have been assigned a DOD interim hazard class, under commercial bills of lading.

b. A copy of the DOD Interim Hazard Classifications must be carried aboard each motor vehicle, cargo vessel and aircraft used to transport explosives covered by this exemption.

c. Packages are not required to be marked with the exemption number.

d. The requirements of 49 CFR 173.86 do not apply to explosives transported under this exemption.

e. Shipments by cargo aircraft must be transported by an air carrier authorized by an exemption to carry explosives. The air carrier, exemption held by the carrier, and type of explosive to be carried, must be identified to and approved in writing by this Office prior to the first shipment.

9. **REPORTING REQUIREMENTS.** Any incident involving loss of contents of the package must be reported to the OHMT as soon as practicable.

Issued at Washington, D.C.:

[Signature]

Alan L. Roberts

Director

Office of Hazardous Materials Transportation

Dist: FHWA, FRA, FAA, USCG
APPENDIX D:

REPRESENTATIVE QUALITY LAB DATA
INTENTIONALLY LEFT BLANK.
LABORATORY REPORT

TO: Morton Thiokol
55 Thiokol Road
Elkton, MD 21921

DATE: 04/08/88

SAMPLE:
Lab No:
Date Submitted:
Description:

Hydroxylamine Nitrate, 2.8 Molar,
Aqueous Solution, Catalog #417
Your PO #24712 WM, Partial Release #4

RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>Lot #8098</th>
<th>Customer Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay, %</td>
<td>24.76</td>
<td>25.0 ± 1.0</td>
</tr>
<tr>
<td>SO$_4$ (sulfate), ppm</td>
<td>< 10</td>
<td>10 max</td>
</tr>
<tr>
<td>Cl (chloride), ppm</td>
<td>1.6</td>
<td>10 max.</td>
</tr>
<tr>
<td>Ash, ppm</td>
<td>< 10</td>
<td>10 max.</td>
</tr>
<tr>
<td>Stabilizer (Free HNO$_3$)</td>
<td>0.008 Molar</td>
<td>0.01 Molar max.</td>
</tr>
<tr>
<td>Total Ca plus Mg, ppm</td>
<td>< 2</td>
<td>10 max.</td>
</tr>
<tr>
<td>Ba (barium), ppm</td>
<td>< 0.1</td>
<td>0.1 max.</td>
</tr>
<tr>
<td>Fe (iron), ppm</td>
<td>0.04</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Al (aluminum), ppm</td>
<td>< 0.1</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Pb (lead), ppm</td>
<td>< 0.1</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Ni (nickel), ppm</td>
<td>< 0.01</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Sn (tin), ppm</td>
<td>< 0.01</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Cu (copper), ppm</td>
<td>< 0.01</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Mg (magnesium), ppm</td>
<td>0.13</td>
<td>0.2 max.</td>
</tr>
<tr>
<td>Mn (manganese), ppm</td>
<td>< 0.01</td>
<td>0.2 max.</td>
</tr>
</tbody>
</table>

REMARKS:
To: R. G. Brasfield
CC: J. Mallick, R. R. Weldin, R. A. Biddle, J. L. Seador, J. J. Lehman, File
FROM: L. S. White
SUBJECT: TEAN Analysis

<table>
<thead>
<tr>
<th>TEAN Sublots</th>
<th>89-030-1, 89-031-1, 89-032-1, 89-033-1, 89-034-1, 89-035-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAN, % (titration)</td>
<td>79.36</td>
</tr>
<tr>
<td>Moisture, %</td>
<td>20.33</td>
</tr>
<tr>
<td>UV, %</td>
<td>79.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEAN Sublots</th>
<th>89-031-2, 89-032-2, 89-033-2, 89-034-2, 89-035-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAN, % (titration)</td>
<td>79.56</td>
</tr>
<tr>
<td>Moisture, %</td>
<td>19.90</td>
</tr>
<tr>
<td>UV, %</td>
<td>81.08</td>
</tr>
</tbody>
</table>

L.S. White
10/3/89
Date
TO: R. G. Brasfield
CC: J. Mallick, R. R. Weldin, R. A. Biddle, J. L. Seador, File
FROM: S. A. Bonsell
SUBJECT: HAN Analysis

HAN Lot 89-008

<table>
<thead>
<tr>
<th>% HAN (titration)</th>
<th>% Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.4</td>
<td>18.5</td>
</tr>
<tr>
<td>81.3</td>
<td>18.2</td>
</tr>
<tr>
<td>81.3</td>
<td>18.1</td>
</tr>
<tr>
<td>81.1</td>
<td>18.3</td>
</tr>
<tr>
<td>81.1</td>
<td>18.0</td>
</tr>
<tr>
<td>81.0</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Material is released for further processing.

LAB SUPERVISOR

8/9/89

SAB/asm
TO: R. G. Brasfield
FROM: S. A. Bonsell
SUBJECT: LGP 1846-09 Analysis

LOT 1846-09

<table>
<thead>
<tr>
<th></th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE, % (KF)</td>
<td>19.5</td>
<td>19.5</td>
<td>19.8</td>
</tr>
<tr>
<td>HAN, %</td>
<td>60.1</td>
<td>60.1</td>
<td>60.0</td>
</tr>
<tr>
<td>TEAN, %</td>
<td>20.7</td>
<td>20.7</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Material is released for further processing.

\[Signature\]

Lab Supervisor

10/5/89 Date
INTER-OFFICE MEMO
Quality Laboratory

TO: R. G. Brasfield

CC: J. Mallick, R. R. Weldin, R. A. Biddle, W. R. Brownell, J. J. Lehman, File

FROM: S. A. Bonsell

SUBJECT: LOP 1846-09 Analysis

Ref: QAL/147-89
Date: 9 October 1989

<table>
<thead>
<tr>
<th></th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE, % (KF)</td>
<td>20.30</td>
<td>20.20</td>
<td>20.29</td>
</tr>
<tr>
<td>HAN, %</td>
<td>60.04</td>
<td>60.07</td>
<td>60.19</td>
</tr>
<tr>
<td>TEAN, %</td>
<td>19.37</td>
<td>19.45</td>
<td>19.41</td>
</tr>
</tbody>
</table>

Material is released for further processing.

S. A. Bonsell
Lab Supervisor
10/9/89
Date
TO: R. G. Brasfield
CC: J. Mallick, R. R. Weldin, R. A. Biddle, W. R. Brownell, J. J. Lehman, File
FROM: S. A. Bonsell
SUBJECT: LCP 1846-09 Analysis

LOT 1846-09

MOISTURE, % (KF) 20.4
HAN, % 61.1
TEAN, % 19.3

Material is released for packaging.

[Signature]

Lab Supervisor

10/12/89 Date
TO: R. G. Brasfield
CC: J. Mallick, R. R. Weldin, R. A. Biddle, W. R. Brownell, J. J. Lehman, File
FROM: S. A. Bonsell
SUBJECT: LGP 1846-09 Analysis

Lot 1846-09

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE, % (KF)</td>
<td>20.4</td>
<td>19.5 - 20.5</td>
</tr>
<tr>
<td>HAN, % (Naoh titration)</td>
<td>61.1</td>
<td>60.3 - 61.3</td>
</tr>
<tr>
<td>TEAN, % (by difference)</td>
<td>19.3</td>
<td>18.7 - 19.7</td>
</tr>
<tr>
<td>NITRATE, moles (100g)</td>
<td>trace attached</td>
<td>info</td>
</tr>
</tbody>
</table>

Trace Metals:

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2</td>
<td><5</td>
</tr>
<tr>
<td>Ni</td>
<td><1</td>
<td><5</td>
</tr>
<tr>
<td>Cu</td>
<td><1</td>
<td><5</td>
</tr>
<tr>
<td>Pb</td>
<td><1</td>
<td><5</td>
</tr>
<tr>
<td>Sn</td>
<td><1</td>
<td><5</td>
</tr>
</tbody>
</table>

Material is released for shipment.

S. A. Bonsell
Lab Supervisor

Date: 05 January 1990
APPENDIX E:

ANALYTICAL PROCEDURES ANALYSIS WORKSHEETS
PRODUCT RELEASE FORMS
INTENTIONALLY LEFT BLANK.
ANALYTICAL PROCEDURES FOR LGP AND COMPONENTS

The attached procedures for the analysis of the in-process components and final mixtures of LGP compositions based on the TEAN - HAN - H₂O system are written for experienced personnel and are not considered appropriate for direct use without interpretation by a trained Chemist. No specification is made as to the instrumentation required. These procedures can be adapted to most automated titrimeters or to manual titration. Either a constant wavelength or a recording UV spectrophotometer can be used for the total nitrate concentration determination. The recording spectrophotometer is only required when a spectrogram is specified in the delivery of the final product LGP. Trace metal contamination analyses can be conducted using either AA or ICP instrumentation. The AA technique is adequate for acceptance of the LGP.

Analysis worksheets and components or product release sheets are also included with these procedures to aid in the application of the procedures.
TRIETHANOLAMMONIUM NITRATE (TEAN) SOLUTION

1. Titration With 0.2XXX N Aqueous Sodium Hydroxide

 1a. Pipette 5.0 ml of sample into a preweighed 30 ml beaker and reweigh to the closest 0.01mg (enter the weights and calculate the density in g/ml on the Data Sheet). Transfer all of the contents of the beaker, washing thoroughly, into a 500 ml Volumetric flask. Dilute to the mark with demineralized water (enter the values for dilution on the Data Sheet).

 1b. Pipette 50.0 ml aliquot of solution into a 150 ml beaker and add 50.0 ml of demineralized water. Titrate to the end-point with 0.2XXX N NaOH. Enter the value for the end-point and calculate the % TEAN on the Data Sheet. Titration should be run in triplicate.

2. Nitrate Determination by UV

 2a. Prepare and standardize a 0.1350 ± 0.0010 N HNO₃ standard using 0.2XXX N NaOH.

 2b. Determine the absorbance of the HNO₃ standard at 302 nanometers using the appropriate instrument settings. Enter the absorbance and calculate the moles NO₃/Abs on the Data Sheet.

 2c. Determine the absorbance of the TEAN solution prepared in 1a. Enter the absorbance values and calculate the % TEAN on the Data Sheet.

3. Water Content by Karl Fischer Titration

 3a. Fill a microsyringe with TEAN solution and weigh to the closest 0.01mg. Add 6-9 drops of the solution into the predried carrier solution and titrate to the endpoint using a Karl Fischer Aquameter. Reweigh the microsyringe as soon as possible after introduction of the sample. Using the volume (V, ml) of the titrant, the titer of the titrant (T, mg H₂O/ml) and the sample weight (W, g), calculate the % H₂O.

 \[
 \text{% H}_2\text{O} = \frac{10 \text{ VT}}{\text{W}}
 \]

 The titration should be run in duplicate.
HYDROXYLAMMONIUM NITRATE (HAN) SOLUTION (=24.3%) AS RECEIVED

4. Titration With 0.2XXXX N Aqueous Sodium Hydroxide

4a. Pipette 20.0 ml of sample into a preweighed 30 ml beaker and reweigh to the closest 0.1mg (enter the weights and calculate the density in g/ml on the Data Sheet). Transfer all of the contents of the beaker, washing thoroughly, into a 500 ml Volumetric flask. Dilute to the mark with demineralized water (enter the values for the dilution on the Data Sheet).

4b. Pipette 20.0 ml aliquot of solution into a 150 ml beaker and dilute with 80 ml of demineralized water. Titrate to the end-point with 0.2XXXX N NaOH. Enter the values for the end-point of the titration and calculate the % HAN on the Data Sheet. Titration should be run in triplicate.

5. Nitrate Determination By UV

5a. Prepare and standardize a 0.1350 ± 0.0010 N HNO₃ standard using 0.2XXXX N NaOH.

5b. Determine the absorbance of the HNO standard at 302 nanometers using the appropriate instrument settings. Enter the absorbance and calculate the moles NO₃/Abs on the Data Sheet.

5c. Determine the absorbance of the HAN solution prepared in 4a. Enter the values and calculate the % HAN on the Data Sheet.
HYDROXYLAMMONIUM NITRATE (HAN) SOLUTION
(=84%) AS CONCENTRATED

6. Titration With 0.2XXX N Aqueous Sodium Hydroxide

6a. Pipette 5.0 ml of sample into a preweighed 30 ml beaker and reweigh to the closest 0.01mg (enter the weights and calculate the density in g/ml on the Data Sheet). Transfer all of the contents of the beaker, washing thoroughly, to a 500 ml volumetric flask. Dilute to the mark with demineralized water (enter the values for the dilution on the Data Sheet).

6b. Pipette 25.0 ml aliquot of solution into a 150 ml beaker and dilute with 75 ml of demineralized water. Titrate to the end-point with 0.2XXX N NaOH (enter the values for the end-point of the titration on the Data Sheet). Titration should be run in triplicate.

7. Nitrate Determination by UV

7a. Prepare and standardize a 0.1350 ± 0.0010 N HNO₃ standard using 0.2XXX N NaOH.

7b. Determine the absorbance of the HNO₃ standard at 302 nanometers using the appropriate instrument settings. Enter the absorbance and calculate the moles NO₃/Abs on the Data Sheet.

7c. Determine the absorbance of the HAN solution prepared in 6a. Enter the values and calculate the % HAN on the Data Sheet.

8. Water Content by Karl Fischer Titration

8a. Fill a microsyringe with HAN solution and weigh to the closest 0.01mg. Add 6-9 drops of the solution into the predried carrier solution and titrate to the end-point using a Karl Fischer Aquameter. Reweigh the microsyringe as soon as possible after introduction of the sample. Using the volume (V, ml) of the titrant, the titer of the titrant (T, mg H₂O/ml) and the sample weight (W, g), calculate the % H₂O.

\[
\% H_2O = \frac{10 \times VT}{W}
\]

The titration should be run in duplicate.
LIQUID GUN PROPELLANT
LGP1845 AND LGP1846

9. Titration With Aqueous 0.2XXX N Sodium Hydroxide

9a. Pipette 4.0 ml of sample into a preweighed 100 ml Volumetric flask and reweigh to the closest 0.1 mg (enter the weights and calculate the density in g/ml on the Data Sheet). Dilute to volume with demineralized water.

9b. Pipette 9.0 ml aliquot of solution into a 100 ml beaker, add 50 ml of methanol, add 2.0 ml of Acetone and warm the beaker to = 40°C for about 1 minute. Titrate to a double break end-point with 0.2XXX N NaOH. Enter the values of the end-points and calculate the % HAN and the % TEAN on the Data Sheet. Titration should be run in triplicate.

10. Total Nitrate Determination by UV

10a. Prepare and standardize a 0.1350 ± 0.0010 N HNO₃ standard using 0.2XXX N NaOH.

10b. Determine the absorbance of the HNO₃ standard at 302 nanometers using the appropriate instrument settings. Enter the absorbance and calculate the moles NO₃/Abs on the Data Sheet.

10c. Pipette 5.0 ml of LGP sample into a preweighed 30 ml beaker and reweigh to the closest 0.01 mg. Transfer all of the contents of the beaker, washing thoroughly, into a 500 ml volumetric flask. Dilute to volume with demineralized water.

10d. Determine the absorbance of the above solution. Enter the values and calculate the total moles of nitrate per 100 g on the Data Sheet.

11. Water Content By Karl Fischer Titration

11a. Fill a microsyringe with LGP solution and weigh to the closest 0.01 mg. Add 6-9 drops of the solution into the predried carrier solution and titrate to the end-point using a Karl Fischer Aquameter. Reweigh the microsyringe as soon as possible after introduction of the sample. Enter the values and calculate the % H₂O on the Data Sheet. The titration should be fun in triplicate.
FREE ACID DETERMINATION IN HAN OR LGP SOLUTION

12. Acid Titration

12a. Pipette 50.0 ml of solution into a 150 ml beaker and add 50 ml of demineralized H₂O.

12b. Set pH on titrimeter to the 0-5 pH full scale range.

12c. Titrate solution with 0.2XXX N NaOH and determine value of titrant to end-point (≈ 2.5 pH).

12d. Calculate free acid by the following equation:

\[
\frac{(V_b)(M_b)}{(V_s)} = M_s
\]

Where:
- \(V_b \) = Volume base
- \(V_s \) = Volume Solution (50 ml)
- \(M_b \) = Molarity of base (0.2XXX)
- \(M_s \) = Molarity of Free Acid in Solution
TRACE METAL CONTAMINATION ANALYSIS

13. **Determination of Trace Metals**

13a. Prepare appropriate concentration of metal standard solutions (e.g., 1 ppm Fe, Ni, Cu, and Pb and 50 ppm Sn for AA technique).

13b. Prepare solutions for analysis by weighing 30.0 ± 0.1 grams of sample to be analyzed into a 100 ml volumetric flask and dilute to mark with demineralized water.

13c. Set appropriate instrument parameters for each element to be analyzed and obtain the absorbance of both the standard and the sample solutions.

13d. Calculate the ppm of each element from the calibration curve obtained for each standard solution.
HAN - TEAN

SAMPLE ____________________________ DATE ______________________

WEIGHS

______ g. Wt. S + B
______ g. Wt. Beaker
______ g. Wt. Sample

______ ml V_{pipette}

DILUTION

______ g W_s = ________ \frac{g_{W_s}}{ml}

Density

______ ml V_{pipette}

TITRATION

______ \frac{g_{W_s} \times 1000 \text{ mg}}{g} \times _____ ml V_p = _____ mg W_s

1. \frac{\text{MLb} \times Nb \times M_w \times 100}{100} = _____ %

_____ mg W_s

2. \frac{\text{MLb} \times Nb \times M_w \times 100}{100} = _____ %

_____ mg W_s

3. \frac{\text{MLb} \times Nb \times M_w \times 100}{100} = _____ %

_____ mg W_s

NO_3 UV

\frac{\text{Mol HNO}_3}{\text{Abs}} = \frac{\text{Mol NO}_3}{\text{Abs CAL}}

______ Abs S \times _____ \text{ Mol NO}_3 \times _____ \text{ MW} = _____ %

______ \frac{g_{W_s} \times 10}{ml V_F}

HAN MW = 96.04, TEAN MW = 212.20
SAMPLE __________________________ DATE _____________

______ _______ g W_s = _________ g/ml Density
______ _______ ml V_Pipette
______ W_s gms/100 ml

______ gms/ml x ______ ml = ______ gms x 1000 mg/gm = ______ mg W_s

______ V_o _______ V_o _______ V_o Break
______ V_1st _______ V_1st _______ V_1st Break
______ V_2nd _______ V_2nd _______ V_2nd Break

______ V_2nd Ave. _______ N x 100 = ______ Moles NO_3^-

\[
\% \text{ HAN} = \frac{(V_{1st} - V_o) \text{ ml} \times N \times 96.04 \times 100}{W_s} \times \frac{1}{100} \text{ N NaOH}
\]

\[
\% \text{ HAN} = \frac{(\text{________} - \text{________}) (\text{________} N) (96.04) (100)}{\text{mg W_s}}
\]

\[
\% \text{ HAN} = \frac{(\text{________} - \text{________}) (\text{________} N) (96.04) (100)}{\text{mg W_s}}
\]

\[
\% \text{ HAN} = \frac{(\text{________} - \text{________}) (\text{________} N) (96.04) (100)}{\text{mg W_s}}
\]
% TEAN = \((V_{2nd} - V_{1st}) \times N \times 212.2 \times 100\)
\[\frac{mg\ W_s}{mg\ W_s}\]

% TEAN = \((--- - ---) \times N \times 212.2 \times 100\)
\[\frac{mg\ W_s}{mg\ W_s}\]

% TEAN = \((--- - ---) \times N \times 212.2 \times 100\)
\[\frac{mg\ W_s}{mg\ W_s}\]

KARL FISCHER % \(H_2O\)

\[\frac{mg\ H_2O}{W_s\ gm \times 10}\]

TEAN

SAMPLE IDENTIFICATION: __

COMMENTS: __

ANALYSES

1) Solution Density: Hydrometer ______ g/cc Temperature ___°
 Pipette ______ g/cc

2) TEAN Content by Titration ______ %

3) Nitrate Content (UV) as TEAN ______ %

4) H₂O Content (KF) ______ %

5) Trace Metals: Fe ______ ppm
 Ni ______ ppm
 Cu ______ ppm
 Pb ______ ppm
 Sn ______ ppm

Material Approved for: ___

Released by: ___

Date: ___
DILUTE OR CONCENTRATED HAN SOLUTION

SAMPLE IDENTIFICATION: _________________________________

COMMENTS: ____________________________________

__

ANALYSES

1) Density Hydrometer ______________ g/cc Temperature ____ °
 Pipette ______________ g/cc

2) HAN Content by Titration _____________ %

3) Nitrate Content (UV) as HAN _____________ %

4) Water Content (KF) _____________ %

5) Free Acid Content _____________ M

6) Trace Metals:
 Fe _____________ ppm
 Ni _____________ ppm
 Cu _____________ ppm
 Pb _____________ ppm
 Sn _____________ ppm

Material Approved for: ________________________________

Released by: ________________________________

Date: ________________________________
LOT IDENTIFICATION: __

COMMENTS: ___

ANALYSES

1) Density: Hydrometer ___________ g/cc
 Pipette ___________ g/cc

2) H₂O Content (KF) ___________ % vs 16.3% (min), 17.3% (max)

3) Nitrate Content (UV) ___________ moles/100g vs 0.7449 (min)
 0.7600 (max)

4) Oxime/Acid Titration ___________ %HAN vs 62.7 (min), 63.7% (max)
 ___________ %TEAN vs 19.5 (min), 20.5% (max)

5) Ratio HAN/TEAN ___________ vs 3.06 (min), 3.28 (max)

6) Trace metals
 Fe ___________ ppm (<5ppm)
 Ni ___________ ppm (<5ppm)
 Cu ___________ ppm (<5ppm)
 Pb ___________ ppm (<5ppm)
 Sn ___________ ppm (<5ppm)

Material Approved for: __

Released by: ___

Date: __
LOT IDENTIFICATION: ________________________________

COMMENTS: ______________________________________

ANALYSES

1) Density: Hydrometer _________ g/cc
 Pipette _________ g/cc

2) H_2O Content (KF) _________ % vs 19.5% (min), 20.5% (max)

3) Nitrate Content (UV) _________ moles/100g vs 0.7184 (min)

4) Oxime/Acid Titration _________ % HAN vs 60.3 (min), 61.3% (max)
 _________ % TEAN vs 18.7 (min), 19.7% (max)

5) Ratio HAN/TEAN _________ vs 3.06 (min), 3.28 (max)

6) Trace metals Fe _________ ppm (<5ppm)
 Ni _________ ppm (<5ppm)
 Cu _________ ppm (<5ppm)
 Pb _________ ppm (<5ppm)
 Sn _________ ppm (<5ppm)

Material Approved for: ________________________________

Released by: ________________________________

Date: _______________________________________

- 68 -
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Administrator</td>
<td></td>
</tr>
</tbody>
</table>
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145 |
| 1 Commander |
U.S. Army Materiel Command
ATTN: AMCAM
5001 Eisenhower Avenue
Alexandria, VA 22333-0001 |
| 1 Commander |
U.S. Army Laboratory Command
ATTN: AMSLC-DL
2800 Powder Mill Road
Adelphi, MD 20783-1145 |
| 2 Commander |
U.S. Army Armament Research,
Development, and Engineering Center
ATTN: SMCC/IMI-I
Picatinny Arsenal, NJ 07806-5000 |
| 1 Director |
Benet Weapons Laboratory
U.S. Army Armament Research,
Development, and Engineering Center
ATTN: SMCC/IMI-L
Watervliet, NY 12189-4050 |
| 2 Commander |
U.S. Army Armament Research,
Development, and Engineering Center
ATTN: SMCC/IMI-L
Picatinny Arsenal, NJ 07806-5000 |
| 1 Director |
Benet Weapons Laboratory
U.S. Army Armament Research,
Development, and Chemical Command
ATTN: AMSMC-IM/L
Rock Island, IL 61299-5000 |
| 1 Director |
U.S. Army Aviation Research
and Technology Activity
ATTN: SAVRT-R (Library)
M/S 219-3
Ames Research Center
Moffett Field, CA 94035-1000 |

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Commander</td>
<td></td>
</tr>
</tbody>
</table>
U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010 |
| 1 Commander |
U.S. Army Tank-Automotive Command
ATTN: ASOFC-TAC-DIT (Technical
Information Center)
Warren, MI 48397-5000 |
| 1 Director |
U.S. Army Field Artillery School
ATTN: ATSH-CD
Ft. Sill, OK 73503-5000 |
| 1 Commandant |
U.S. Army Field Artillery School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660 |
| 1 Air Force Armament Laboratory
ATTN: WL/MNOI
Eglin AFB, FL 32542-5000 |
| 2 Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen |
| 1 Cdr, USATECOM
ATTN: AMSTE-TC |
| 3 Cdr, CRDEC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MSI |
| 1 Dir, VLAMO
ATTN: AMSLC-VL-D |
| 10 Dir, BRL
ATTN: SLCBR-DD-T |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Commander</td>
<td>U.S. Army Armament Research, Development and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-AEE-B, D. Downs</td>
</tr>
<tr>
<td></td>
<td>SMCAR-AEE-BR, G. Tutt</td>
</tr>
<tr>
<td></td>
<td>A. Beardell</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>3 Commander</td>
<td>U.S. Army Armament Research, Development and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Bldg 94</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-FSS-DH, J. Feneck</td>
</tr>
<tr>
<td></td>
<td>R. Kopmann</td>
</tr>
<tr>
<td></td>
<td>J. Irizarry</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>2 Commander</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>ATTN: SLCRO-CB, D. Squires</td>
</tr>
<tr>
<td></td>
<td>SLCRO-E, D. Mann</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709-2211</td>
</tr>
<tr>
<td>1 Commander</td>
<td>U.S. Army Biomedical Research and Development Lab</td>
</tr>
<tr>
<td></td>
<td>ATTN: SCRD-UBG-O, MAJ Allmond</td>
</tr>
<tr>
<td></td>
<td>Fort Detrick</td>
</tr>
<tr>
<td></td>
<td>Federick, MD 21701-5010</td>
</tr>
<tr>
<td>1 Commander</td>
<td>Naval Ordnance Station</td>
</tr>
<tr>
<td></td>
<td>ATTN: P. Skahan, Code 2810G</td>
</tr>
<tr>
<td></td>
<td>Indian Head, MD 20640</td>
</tr>
<tr>
<td>1 AFAL/RKPA</td>
<td>ATTN: CPT Wilkerson</td>
</tr>
<tr>
<td></td>
<td>Edwards AFB, CA 93523-5000</td>
</tr>
<tr>
<td>2 Director</td>
<td>Jet Propulsion Lab</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>Dave Maynard</td>
</tr>
<tr>
<td></td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA 91109</td>
</tr>
<tr>
<td>2 Director</td>
<td>CPIA</td>
</tr>
<tr>
<td></td>
<td>The John Hopkins University</td>
</tr>
<tr>
<td></td>
<td>ATTN: T. Christian</td>
</tr>
<tr>
<td></td>
<td>Tech Library</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins Road</td>
</tr>
<tr>
<td></td>
<td>Laurel, MD 20707</td>
</tr>
</tbody>
</table>

1 Calspan Corporation |
| ATTN: Tech Library |
| P.O. Box 400 |
| Buffalo, NY 14225 |

1 General Electric Ordnance System Division |
| ATTN: M. Shippey |
| 100 Plastics Avenue |
| Pittsfield, MA 01201-3698 |

1 IITRI |
| ATTN: Library |
| 10 W. 35th Street |
| Chicago, IL 60616 |

4 Olin Corporation |
| ATTN: Ken Woodward |
| Dave Cawfield |
| Sanders Moore |
| Ronald Dotson |
| P.O. Box 248 |
| Charleston, TN 37310 |

1 Veritay Technology, Inc. |
| ATTN: E. B. Fisher |
| 4845 Millersport Highway |
| P.O. Box 305 |
| East Amherst, NY 14051-0305 |

5 Thiokol Corporation |
| Tactical Operations |
| Elkton Division |
| ATTN: R. Biddle |
| R. Brasfield (4 copies) |
| P.O. Box 241 |
| Elkton, MD 21921-0241 |

2 Director |
| CPIA |
| The John Hopkins University |
| ATTN: T. Christian |
| Tech Library |
| Johns Hopkins Road |
| Laurel, MD 20707 |
This laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers below will aid us in our efforts.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

2. How, specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

4. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

BRL Report Number CR-680 Division Symbol

Check here if desire to be removed from distribution list.

Check here for address change.

Current address: Organization
Address

DEPARTMENT OF THE ARMY
Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT No 0001, APG, MD

Postage will be paid by addressee

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066