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Project Summary and Description of Report Contents

The included materials comprise Report of Progress covering the period 4/91 - 12/91 for the work being
conducted under ONR Grant No. N00014-91-J-1329. The project title is "Theoretical Issues in Adaptive Set-
Membership-Based Signal Processing." The research is being conducted in the Speech Processing Laboratory
and the Adaptive Signal Processing Laboratory under the direction of Co-Principal Investigators John R.
Deller, Professor of Electrical Engineering and Majid Nayeri, Assistant Professor of Electrical Engineering.
The following graduate students are conducting research directly related to the project:

I. Steve M.S. Liu (Ph.D. Candidate) - Convergent unified optimal bounding ellipsoid (UOBE) algo-
rithms and applications to speech recognition.

2. Shawn D. Hunt (Ph.D. Candidate) - Efficient neural network learning algorithms with selective
updating. Completion of Ph.D. anticipated 6/92.

3. Y.B. Lee (Ph.D. Candidate) - Novel set-membership-based algorithms for neural network learning.

4. Marwan M. Krunz (M.S. Candidate) - (onvergence and colored noise issues in UOBE algorithms.
UOBE optimization involving multiplc data weights. Simulation software development. Completion
of MS. degree anticipated 6/92. Will enter Ph.D. program.

Related work is being supported by the NSF under Grant No. MIP-9016734 entitled "'Applications and
Performance Evaluation of Set- Membership Algorithms for Signals in C .' All work cited below acknowledges
joint sponsorship.

The general purpose of this research is tile development and exploration of new set-membership-based
algorithms for adaptive identification of parametric signal and system models. We are pleased to report
progress in several important aspects, both theoretical and applied, of this general scope. The report consists
of several preprints of papers in review by repected journals, published and preprinted conference papers, and
some other supporting material. A clear understanding of our progress is inherent in the discussion of each
item in the following. These discussions are meant to illuminate the directions, rationale, and achievements
of our research, with the technical details left to the papers. The items appearing in the following are grouped
into papers written for journals, followed by conference papers, descriptions of dissertations in preparation.
then documents showing further evidence of research progress. Within each group, the items appear in
chronological order. The contents are as follows:

1. JOURNAL PAPER PREPRINTS, DRAFT MANUSCRIPTS. AND SUMMARIES

(a) J.R. Deller and S.F. Odeh, "Adaptive set-membership identification in
0(m) time for linear in parameters models," IEEE Transactions on Signal
Processing (revision submitted 10/91). [Preprint]

This paper is a revision of an earlier submission which was based principally upon the Ph.D.
dissertation of Souheil F. Odeh. The revision includes many new results obtained under ONR
sponsorship. Reported are four significant contributions to the field:

" A generalization of all fundamental results in Optimal Bounding Ellipsoid (OBE) processing
to the case of complex signal MIMO models. Such models occur in many important problems
including, for example, adaptive bearnforming and neural network learning.

" A class of cxplicztly adaptive OBE algorithms appears in a journal paper for the first time.
" A suboptimal test for innovation is developed which leads to a class of OBE algorithms which

empirically perform as well as those employing optimal checking. This check admits C((m)
computational complexity which represents a square root factor improvement over optimal
methods, as well as RLS.

" Compact parallel architectures are developed which can be used for running both optimal
and suboptimal algorithms at 0(m) expense.
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(b) J.R. Deller, M. Nayeri, and S.F. Odeh, "System identification using set-
membership-based signal processing," Proceedings of the IEEE (submitted
12/91 by invitation in response to paper proposal). [Letter of invitation
included with preprint]
In response to a proposal to the Proceedings, submission of this paper was encouraged by the
editors as the prefatory letters indicate. The paper is expository, reviewing the general field of
set-membership based identification algorithms, then focusing on the OBE algorithms which are
currently of most interest to the signal processing community. Reviewed are adaptive and "nonad-
pative" algorithms, efficient algorithms with suboptimal data checking, and parallel architectures
for implementation. In addition to the tutorial value of this paper, current research sponsored
in part by the ONR grant has lead to a unified framework into which all OBE algorithms may
be placed. The paper discusses the field from this point of view, and, in an appendix, provides
unified and rigorous theoretical developments which underlie all major developments in the OBE
field. These developments are scattered throughout the literature, and in some cases are absent.
incomplete, or misunderstood. Both the novice reader and the expert should benefit from this
work.

(c) S.D. Hunt and J.R. Deller, " 'Linearized' alternatives to back-propagation
based on recursive QR decomposition," IEEE Transactions on Neural Net-
tworks (submitted 8/91). [Preprint]

The class of learning methods presented in this paper were developed en route to the application of
set-membership principles to neural network training. The algorithm is based upon linearization of
the dynamics of a feedforward neural network based on error surface analysis, followed by training
using a QR d -. position version of the RLS algorithm. The algorithm can be used to train
networks "node-wise" (all weights connected to a node updated simultaneously ) or "layer-wise,"
and, in some cases all weights of the network can be updated simultaneously. The node-wise case
turns out to be theoretzcally similar to a method developed by Azimi-Sadjadi et al. (A-S), but
the QR implementation renders the present algorithm vastly superior in terms of numbers and
speeds of convergences. The reported method, as well as the A-S method, outperform conventional
back-propagation.

(d) J.R. Deller, M. Nayeri, and M.S. Liu, "Connections between the Fogel-
Huang and Dasgupta-Huang optimal bounding ellipsoid algorithms" (in
preparation, tenatively for Automatica) [Draft manuscript included].

The Fogel-Huang OBE (F-H OBE) algorithm is attractive in its clear interpretability, but in spite
of statements to the contrary in the literature, it does not have proven convergence properties.
On the other hand, the Dasgupta-Huang ORE (D-H OBE) is desirable in its proven convergence,
but its controversial optimization criterion is not amenable to clear intepretation of the method's
operation. In our work related to the Proceedings paper above, intriguing connections between
D-H ORE and F-H OBE (in fact, between D-H and a broadly genearlized version of F-H) were dis-
covered. These connections are apparently unknown to the research community, and are reported
in this paper. It is suggested that these findings could ultimately lead to an OBE algorithm with
the desirable properties of both methods.

(e) M. Nayeri, J.R. Deller, and M.S. Liu, "A converging optimal bound-
ing ellipsoid algorithm with volume minimization (tentative title)" (in
preparation, tentatively for A utornatica (special issue on signal processing)
). [Summary paper included]
We found the OBE algorithm alluded to in the discussion of the last paper. It is quite possible
that this will be a landmark paper which will have the same impact on the field as the original
F-H ORE and subsequent D-ll ORE,



(f) J.R. Deller and M. Nayeri, "Unifying the landmark developments in
optimal bounding ellipsoid processing," International Journal of Adaptive
Control and Signal Processing (in planning in response to recent invitation).
[Letter of invitation & planning paper included]

The Guest Editor of this special issue has written that papers with tutorial content are especially
welcome. This paper will tie together in one source several of the key unifying themes mentioned
in the descriptions above. Accordingly, it will decribe the general unifying themes, and lead the
reader to sources of information on rigorous theoretical details. In particular, we will develope
the "generic" Unified Optimal Bounding Ellipsoid (UOBE) algorithm, and show how all reported
algorithms, both adaptive and nonadaptive, are instances of UOBE. The interesting connections
between F-H OBE and D-H OBE described in paper Id above can be presented in this framework.
Finally, the algorithm which combines the desirable features of these two "landmark" algorithms
will be described. This paper will reach a large population of researchers in Europe whose work is
system and control-oriented and who might not be as familiar with the signal processing literature.

2. PUBLISHED AND PREPRINTED CONFERENCE PAPERS

(g) M. Nayeri, J.R. Deller, and M.M. Krunz, "Convergence and colored
noise issues in bounding ellipsoid identification," Proceedings of IC4SSP
'92, San Franscisco, March 1992 (to appear). [Preprint]

This paper presents the following new results a discusssion of almost sure convergence of the UOBE
estimator (ellipsoid center) under ordinary "white noise" conditions on the model disturbances.
then presents the following new results concerning the ellipsoid behavior under various noise
conditions:

" With white noise disturbances, UOBE algorithms involve ellipsoidal bounding sets which
converge in some unspecified way to some unspecified "size." This result represents the first
report in the literature of a covergence result for a "'non-D-H" algorithm. The original F-H
OBE paper has been misinterpreted to mean that the ellipsoid converges to a point.

" With colored noise inputs, the limiting ellipsoid must be a nontrivial set. Empirical evidence
suggests that the true parameters lie on the boundary of this limiting set.

" Arguments are made in support of the idea that the ellipsoid may collapse into a subspace
of the parameter space (thereby diminishing the volume of the ellipsoid to zero without its
being reduced to a point) if and only if the input is not persistently exciting.

(h) J.R. Deller and S.F. Odeh, "SM-WRLS algorithms with an efficient test
for innovation," Proceedings of the 9th IFAC / IFORS Symposium on Identifica-
tion and System Parameter Identification, vol. 2, pp. 1044-1049, July 1991
(written and presented by invitation). [Reprint]

This paper presents some of the ideas concerning suboptimal testing cited in the des r.ptioni of

paper Ia.

(i) J.R. Deller and S.D. Hunt, "A simple 'linearized' learniing algorithm
which outperforms back-propagation" (submitted to International Joint
Conference on Neural Networks, 1/92). [Preprint]

This paper presents sorme of the key developments of the algorithrr ited in the description f
paper Ic.
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3. BOOK ACKNOWLEDGING ONR SUPPORT

(j) J.R. Deller, J.G. Proakis, and J.H.L. Hansen, Dis'rele Time Procc.ssing
of Speech Signals, New York: Macmillan (writing completed, anticipated
publication in late 1992). [Table of contents included]

This book will acknowledge ONR research support during the period of authorship.
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Adaptive Set-Membership Identification in ((m) Time for
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Abstract

This paper describes some fundamental contributions to the theory and applicability of optimal
bounding ellipsoid (OBE) algorithms for signal processing. All reported OBE algorithms are placed
in a general framework which fruitfully demonstrates the relationship between the set-membership
principles and least square error identification. Within this framework, flexible measures for adding
explicit adaptation capability are formulated and demonstrated through simulation. Computational
complexity analysis of OBE algorithms reveals that they is of 0(m 2) complexity per data sample
with m the number of parameters identified, in spite of their well-known propensity toward highly-
selective updating. Two very different approaches are described for rendering the a specific OBE
algorithm, the set-membership weighted recursive least squares algorithm, of 0(m) complexity.
The first approach involves an algorithmic solution in which a suboptimal test for innovation
is employed. The performance is demonstrated through simulation. The second method is an
architectural approach in which complexity is reduced through parallel computation.
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1 Introduction

Set-membership (SM) identification of parametric systems is concerned with the computational de-

scription of feasible sets of solutions which are consistent with the measurements and the modelling

assumptions. SM algorithms have been the subject of intense research effort in recent years and

and many approaches has been explored. The papers in [1] and [2] provide a broad and current

overview of the area. In particular, comprehensive reviews of the field with extensive reference lists

are found in papers by Walter and Piet-Lahanier [3] and by Milanese and Vicino [4]. An extensive

list of application examples with references is also given in the Milanese paper. A tutorial on the

principal algorithm of interest in this paper, the so-called set-membership weighted recursive least

squares (SM-WRLS) algorithm, is found in [5].

One class of SM methods, the optimal bounding ellipsoid (OBE) algorithms2 , is of particular

interest to the signal community since it represents a merging of the SM approach and widely used

least square error (LSE) procedures for identifying linear models. The benefits of combining SM

considerations (when they are known) with LSE processing are twofold: First, the SM information

provides a feasible set of solutions which complements the unique LSE estimate. This feasible set

can help to compensate for the restrictive nature of the assumptions placed upon the LSE model.

Secondly, as we demonstrate in this paper, SM knowledge can greatly improve the efficiency of LSE

identification.

Two aspects of OBE processing are treated in this paper. In a general way, it is shown that

all reported OBE algorithms can be placed into a unified framework which is clearly related to

conventional LSE processing. This framework will embrace explicitly adaptive OBE algorithms

which will be demonstrated as a first major contribution of the paper. The second, and more

extensive, aspect of this paper is concerned with the computational efficiency of OBE algorithms.

OBE algorithms (both nonadaptive and adaptive) entail an interesting data selection procedure

which typically discards 70 - 95% of the incoming data. The basis for this selective updating

is a determination of whether the incoming datum is "informative" in the sense of refining the

feasibility set. The selective updating procedure, however, does not imply a similar reduction

in computational load, since the effort of checking for innovation in the data is approximately

as expensive as the updating itself. In either case, the processing requires O(m2 ) floating point

operations 3 per incoming datum, where m represents the number of parameters to be estimated.

'The original algorithm in this class due to Fogel and Huang [6] was called simply "OBE". We use this term to
indicate the broader class of similar algorithms. The SM-WRLS algorithm will be seen below to be a specific type of
OBE algorithm in this broader sense.

'One flop is taken to be a multiplication plus an addition operation.



This point has not been clearly brought out in the literature. A second focus of this paper is

to demonstrate two very different methods for making a specific OBE algorithm run in 0(m)

time. The first solution is algorithmic, while the second is architectural. The ability to execute

this interesting method in 0(m) time makes it highly competitive with conventional identification

techniques (especially recursive least squares (RLS)) which typically require O(m2 ) flops per point.

2 An Adaptive SM-WRLS Algorithm

2.1 The Model and the LSE Identification Problem

rhe basic identification problem is as follows: We observe a system which is generating output

sequence y(.) in response to input sequence u(.). Both input and output sequences are measurable,

and u(.) is assumed to be a realization of a stationary, ergodic random process. The system is

governed by a "true" model of form

y(n) = Ofx(n) + E.(n) (1)

in which x(n) is some m-vector of functions of p lags of y(.) at time n, and q lags plus the present

value of u(-), and where, F.(.) is the realization of a zero-mean. white noise error sequence. The

error sequence is not measurable and the "true" parameters 0. E R' are unknown. At time n we

wish to use the observed data on t e [1, n] to deduce an estimated model which is similar in form

to (1),

y(n) = OT(n)x(n) + s(n,0(n)). (2)

In the following, the identified parameter vector will be unique for each n (e.g. [7]), but will change

at every step. Hence, we index the parameter estimate by n. The error sequence will depend on

the choice of parameters, and we explicitly show this dependence. Neglecting the error term, this

model exhibits only linear functional dependence upon the parameter vector and has been called

a linear in unknown coefficients (e.g. [8]) or linear-in-parameters (LP) model (e.g. [3]). Special

cases of the LP model of (2) are the autoregressive-exogenous input (ARX) and autoregressive (AR)

models (e.g. [91 - [11]). For a current overview of methods that deal with nonlinear models, the

reader is referred to [31,[4].

In particular, we desire the weighted LSE model for which O(n) minimizes (n) = jj=U A,(t)(t, O(n)),

where A,(.) is a sequence of nonnegative weights which may depend on n. O(n) can be found as

the solution of the following classical linear algebra problem (e.g. [7]): Given data (or a system of

observations) on the interval t E [I.n] (n > m). and some set of error minimization weights. say

2



{A,(t), t = 1,2,..., n}, form the overdetermined system of equations

X(n)jv = y(n), (3)

and find the LS estimate, 0(n), for the vector v. X(n) is the mx n matrix with ith row T(i)xT(i)

and ,.(n) is the n-vector with ith element VA(i)y(i. Because of this interpretation, the pair

(y(n),x(n)) could appropriately be called an equation in many contexts in the following. This

term is not always satisfactory, however. Whereas the term "datum" is inappropriate to describe

(y(n), x(n)), and "data" can be misleading, we will frequently refer to (y(n), x(n)) as the data set

at time n. The expresbion "per n" should be interpreted to mean "per data set."

In principle, the LSE ,olution is the solution to the normal equations (e.g. [7]), C(n)O(n) =

c(n), where C(n) is the weighted normal matrix 4 [8, p. 62]

n

C(n) = XT(n).4n) =Z A,(t)x(t)XT(t) . ()
t=i

and c(n) df XT(n)y(n) = En, A,(t)x(t)y(t).

A recursive solution can be obtained for certain classes of time varying weights. Consider first

the case in which the weights are time invariant, i.e. A,(t) does not depend on n for any t. In

this case, we one can use a contemporary weighted recursive least squares (WRLS) algorithm based

on the QR decomposition (e.g. [7]) of the X(n) matrix of (3). We shall refer to this algorithm as

"QR-WRLS" to distinguish it from the more conventional WRLS algorithm based on the matrix

inversion lemma (e.g. [8],[91 - [11]) (MIL-WRLS) 5 . QR-WRLS, in principle, involves the application

of a sequence of orthogonal operators (Givens rotations) to (3) which leaves the system in the form

T(n) di(n)

V = (,5)

O(n m)xm d 2 (n)

where the matrix T(n) is an m x m upper triangular Cholesky factor [7] of C(n), i.e., C(n) =

XT(n)X(n) = TT(n)T(n), and Oj) denotes the i x j zero matrix. The system

T(n)O(n) = di(n) (6)

is easily solved using back substitution [7] to obtain the LSE estimate, O(n). This procedure can be

performed in a recursive manner using only about m2 memory locations. When the n + 1,t data set

'in many contexts C(n) is imprecisely called a "covariance" matrix. In fact, Iim-,- (l/n)C(n) is the covariance

matrix for the process if appropriate ergodicity assumptions are made.
'With the exception of the parallel processing architectures, developments throughout this paper may also be

based upon MIL-WRLS. Indeed, almost all of the existing SM algorithms of the type considered here are based on
the conventional method.

3



becomes available, it is weighted by V' 7(n) and incorporated into the system. Details are found

in [12]-[14]. We shall use the name QR-WRLS to refer to this form of the recursion. It will be

shown how this formulation makes possible the solution of the ellipsoid algorithms to be described

on contemporary parallel architectures for great speed advantages. It also avoids initialization

problems encountered in the use of MIL-WRLS [14].

The QR-WRLS algorithm can coneniently accommodate certain classes of time varying weights

of interest in this work. The first is the case in which previous weights are scaled at time n by a

time dependent scalar,
A, _(t)

A,(t) - Vt < n- (7)
((n-I) -

((.) is a scaling sequence which depends on the nature of the method. A common use for such scaling

is to effect adaptation by exponential forgetting. In this case ((n) = a -1 , Vn, where 0 < a < 1.

This scaling is conveniently carried out in the course of QR-WRLS by simply "iultiplying the matrix

and vector T(n) and dj(n) by a - 1/2 prior to considering (y(n),x(n)) [13]. By a straghtforward

generalization of the work in [13], it can be shown that time-varying scaling may be accomplished

by a similar premultiplication by (-'/ 2 (n - 1). Let us denote the scaled system of equations at

time n - 1 by T,(n - 1)0,(n) = dl,,(n).

A second type of time varying weights is used to achieve adaptation by exclusion. In this case it is

desired to remove some prior data sets from the system prior to considering (y(n), x(n)). Let the set

of times corresponding to data sets to be excluded be T,-_. Then, whereas A,,_ 1 (t) > 0, t E Tn-z,

it is to be true that A,(t) = 0, t c T-,. This case is accomodated within QR-WRLS by simply

reentering the data set to be forgotten with its previous weight as though it represented new data.

then making some simple sign changes in the algorithm [5],[151. Because the data sets are removed

by "reversing" the Givens rotations which originally included them, this process is often call back-

rotation. It is notable that previous data sets can likewise be partially excluded using a similar

back-rotation method [16],[17]. After all desired data sets are removed, the system of equations is

often said to be downdated at time n - 1, and we shall denote this by writing

Td(n - l)Gd(n) = dl,d(n). (8)

If it were to be solved for, Od(n) would represent an estimate at time n - I without knowledge of

the excluded data sets.

2.2 The BE Constraint and the Feasibility Set

A widely-research class of SM problems is those involving bounded error (BE) constraints (e.g.

[3]-[6],[15]-[33]). In BE identification, a pointwise bound on the true error sequence is assumed.
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Ordinarily this takes the form 6

< n) (9)

where -y(.) is a known positive sequence. It follows immediately from (1) and (9) that the true

parameters must be in the set

,(n)= {o (y(n) - OTx(n)) < -y(n)}. (10)

When intersected over a given time range usually form convex polytopes of feasible parameters, say

9(n) = ntl1 w(t). Methods which track these polytopes [3],[4], [18]-[21] result in interesting but

very complex algorithms which, at present, are not suitable for fast signal processing applications.

OBE algorithms are of much lower complexity and work with an outer bounding hyperellipsoid, a

superset of the polytope [6],[22]-[29]. The ellipsoid is "optimized" at each step by making some

measure of its size as small as possible in light of the incoming data.

One of the drawbacks of the OBE approach from a set-theoretic point of view is that the

hyperellipsoidal bounding sets are sometimes quite "loose" supersets of the actual feasibility sets

(polytopes) (e.g. [221,[30]). This problem renders the resulting feasible superset "pessimistic" in

that it may contain many points which are infeasible, and not reflect the size of the true feasible set.

Whether certain measures can be taken, or particular OBE algorithms can be used, to minimize

this problem, is an open issue. One possible solution is the use of inner bounds, as suggested in

[30],[31]. In the present work the relative size of the bounding set will turn out to be somewhat

inconsequential. It is the information afforded by the existence of the ellipsoid which is important.

2.3 Combining the BE and LSE Problems: The SM-WRLS Algorithm

OBE algorithms are fruitfully viewed as a marriage between the LSE and BE problems for LP

models. With this point of view, signal processing engineers have begun to exploit the benefits of

BE information in the context of LSE identification problems. In particular, LSE identifiers exploit

no point-by-point information which can be used to ascertain the usefulness of observations. This

fact manifests itself in the effective retention of the entire parameter space as a "feasible set," and

results in wasteful processing. BE constraints, when they are known, provide a finite feasible set

and offer the possibility of including only data points which contribute to the reduction of this set.

As mentioned above, the polytope Q(n) arising directly from BE considerations is not easy to

track and manipulate. Further, Q(n) is not clearly related to the LSE solution. However, it has

been shown in three special cases of scaling sequences, ((.) (recall definition below (7)) . that there

6This form is slightly less general than stating asymmetrical amplitude bounds. cmi,(n) < e.(n) < rm.,(n), but
the very slight loss of generality is worth the significant analytic gain afforded by this assumption.
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is an outer bounding hyperellipsoid, say f(n), which contains f2(n) and which is closely associated

with the LSE estimate O(n) [6],[26],[27]. A description of the hyperellipsoid is embodied in the

following:

Proposition 1 Let Q(n) c 7Zm be the feasibility set arising from BE constraints as above. Let
O(n) denote the weighted LSE estimate with associated normal matrix C(n). The weights used in
the estimation are A,(-) -pith A,( 1) > 0. There exists a hyperellipsoidal set of parameter vectors
[(n) C 7In, such that 0,. E Q(n) C [(n), which is given by

[1(n) {6 I f{[0o(n)] O(n)[0-(n)] < 1}

where i,(n) is the scalar quantity, K(n) a,. OT(n)C(n)O(n) + Et =, 'Y(n)A,(t) [1- -(t)y'(t)]

and P(n) = C(n)/K(n).

Note that the ellipsoid is centered on the LSE estimate, O(n), and its defining matrix is a scaled

version of the normal matrix, C(n).

The proof of Proposition 1 is a generalization of the proofs of similar results for special cases

(discussed below) found in [6] and [261. Another related result for complex-valued, multiple input

- multiple output systems is proved in [161,[34].

Clearly, the weights A,(.) parameterize [(n) and presumably can serve to minimize its size and

orientation in the parameter space. Because we want to work with recursive LSE estimation, in

particular QR-WRLS, let us henceforth restrict our attention to weight sequences which conform to

the simple forms of time variance described in Section 2.1 - scaling and exclusion. This effectively

restricts to one the number of free parameters available to control the bounding ellipsoid. The

central objective of an optimal bounding ellipsoid (OBE) algorithm is to employ these free weights

in the context of LSE estimation to sequentially minimize the ellipsoid size in some sense. A

significant benefit is that often no weight exists which minimizes the ellipsoid size in some sense,

indicating that the incoming data set is uninformative in the SM sense.

In a general sense, reported (nonadaptive) OBE algorithms differ in the scaling sequences, ('),

used in creating time varying weights. Fogel and Huang's original OBE algorithm (henceforth called

Fogel-Huang OBE) (61, and the more recent method by Dasgupta and Huang (henceforth called

Dasgupta-Huang OBE) [271, are not presented from this explicit LSE point of view, and this unified

approach has not been widely discussed. Some general ideas along these lines may be inferred from

[33] and a unified treatment will be found in [34]. The set membership weighted recursive least

squares (SM-IWRLS) algorithm is the simplest in this sense, employing unity scaling, ((n) = I Vn.

We henceforth focus on SM-WRLS because this absence of scaling is essential to achieve the desired

low complexity algorithm. Details of the other reported algorithms are left to the original papers

and enhancements by Belforte et al. [22], and Rao et al. [23],[24].
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Nonadaptive SM-WRLS (when based upon QR-WRLS) is comprised of the following steps: At

time n,

1. In conjunction with the incoming data set (y(n),x(n)), find the optimal weight, say A(n),

which will (prospectively) minimize the size (according to some set measure) of (n), say

Js{f2(n)}. (This will generally require knowledge of C(n - 1) or T(n - 1), and K(n - 1).)

2. Discard the data set if A*(n) < 0.

3. Update O(n) using QR-WRLS (see Section 2.1).

4. Update (n) of Proposition I according to

K(n) d(n) 112 +R(n) (12)

with

((n) = 4n - 1) + A,(n)-y(n) (I - -1(n)y2(n)) (13)

where k(O) -f 0.

Expressions (12) and (13) are derived in [5],[15]. A detailed version of SM-WRLS is described in

[51.

2.4 Adaptation by Back-Rotation

While OBE algorithms in general, and the SM-WRLS algorithm in particular, have been shown to

have inherent and fortuitous adaptive properties as a result of their optimal weighting strategies.

measures have been suggested by Deller and Odeh (5],[151-[171, and Norton and Mo (33] to render

explicit and controlable adaptation. All adaptive strategies for ellipsoid algorithms work on the

general principle of inflating the "current" ellipsoid in some sense before considering an incoming

data set. The basis for this inflation is to contain the shifting true parameters while at the same

time increasing some measure of "size" of the ellipsoid (see (16) and (17) below), making it more

likely that the incoming data, with potentially novel information, will be selected.

For SM-WRLS, simple forms of adaptation have been based upon exponential forgetting and

by exclusion or back-rotation [5],[15]-[17]. Norton and Mo have also worked with exponential

forgetting and other forms of adaptation in a broader context [33]. While exponential forgetting

is conveniently integrated into OBE algorithms, in the following, we shall focus exclusively upon

adaptation methods which are based on back-rotation for two reasons: First, exponential forgetting

precludes the achievement of the low complexity algorithm ultimately sought in this work. Secondly.

due to the fact that heavily weighted points remain influential in the estimate for very long periods



of time, exponential forgetting has not been found to be as effective in tracking fast time variations

in system dynamics (16],[34]. In the case of adaptation by back-rotation, the system of equations (6)

is downdated prior to considering the data set at time n. The result is (8). The altered ellipsoid is

centered on O(n- 1) and has associated matrix Cd(n- 1)/Kd(n- 1) = TdT(n- 1 )Td(n- 1)/rd(n- 1).

Proper downdating of the scalar K(n - 1) is easy. Upon rewriting the definition of r,(.) from

Proposition 1 at time n - 1,
n-i

g(n - 1) = OT(n - l)C(n - 1)0(n - 1) + A,,_-.(t) 1 (t) -7-1(t)y2(t)] (14)
t=1

it becomes immediately clear that if data sets at times t E T,_I are eliminated from the system,

then the normal matrix is simply replaced by its downdated version and all deleted terms should

be removed from the sum on the right. Correspondingly, the downdated version of (12) written for

time n - 1 becomes

n

Kd(n- =11 dld(n - 1) 112 + [(n - 1)- E-i A. - l (t) 7 (t) (I - - 1(t)Y2(t))] (15)
t=1I

and the term R(n - 1) in (13) should be replaced by Rd(n - 1) which is defined to be the term in

square brackets.

A wide range of adaptation strategies is inherent in the general formulation described above,

many of them computationally inexpensive. We have found two forms of adaptation by back-

rotation to be particularly effective. These are:

I. Windowing. Let I be a fixed "window length." For each n > 1, let T,_ = {n - I}.

2. Selective Forgetting. At time n check some predetermined criterion indicating whether adap-

tation is necessary. If so, select the set to be forgotten according to some other criterion.

The first case above corresponds to the use of a sliding rectangular window of length 1, outside of

which all previous data sets are completely removed. The estimate at time n covers the range [n -

I + 1, n]. The windowing technique is made possible by the ability to completely and systematically

remove data sets at the trailing edge of the window. Only one back-rotation is required prior to

optimizing at time n, and this is only necessary if n - 1) j 0.

At significantly higher computational expense, smoother windows can be implemented by back-

rotation. This is accomplished by partial rotation of an included data set according to a schedule

which gradually eliminates the data set [16],[17]. Since each included data set is back-rotated

multiple times, the computation required to effect such a window is frequently not warranted by

the benefits of slightly improved frequency resolution. For details, see [161.



Selective forgetting represents a very general class of techniques in which the data sets to be

removed ,rom the system are selected according to certain user defined criteria. The selection

process can be, for example, to remove (or downweight) only the previously heavily weighted data

sets, to remove the data sets that were accepted in regions of abrupt change in the signal dynamics,

or to remove the data sets starting from the first data set and proceeding sequentially. Whatever

the criterion, a fundamental issue is to detect when adaptation is needed to improve the parameter

estimates. An example is explored in the simulation studies below.

2.5 Optimization

In the nonadaptive case, Fogel and Huang [6] suggest two set measures on Q(n) for optimization.

These measures may also be applied to the downdated system extant at time n - 1 if adapation is

employed. For generality, we assume downdating in the following. If adaptation is not used, it is

only necessary to drop subscripts "d" where they occur. The first Fogel and Huang set measure is

the determinant of the matrix 0(n),

p,{j)(n)} det{(n)} (16)

and the second is the trace,

1t{(f(n)} 'f tr {(n)}. (17)

p,0{(n)} is proportional to the square root of the volume of Q(n) whileat1 {fl(n)} is proportional to

the sum of its semi-axes. The following is a slightly generalized version (to accommodate adpatation

by downdating) of results found in [6],[26]. Further generalizations are found in [34].

Proposition 2 Let T,_ 1 be the set of times corresponding to data sets to be excluded by back-
rotation prior to time n. Then let A,(t), t E [1, n] indicate the weights to be used to optimize (16)
or (17) at time n. Under the adaptation by exclusion policy, for t E [1,n - 1] and t . 'T, -1.
A.(t) = A,, _(t). Fort E [1,n- 1] andt E .F, -1, A,(t) = 0. Then,

1. if it exists, \*(n) which minimizes the volume measure (16) is the unique positive root of the
quadratic equation

F,() = a2 
2 + ajA + ao =0 (18)

where, a2 = {(m - 1)y(n)G'(n)},

a= {(2m - 1) + -'(n)6 2(n, Od(n - 1))- Kd(n - 1)- 1 (n)Gd(n)} y(n)Gd(n),

and ao = m [-y(n) - E 2(n. Od(n - 1))] - Kd(n - 1)Gd(n),

in which all quantities are defined above except Gd(n) zT(n)C'l(n)x(n).

2. if it exists, the weight A)(n) which minimizes the trace measure (17), is the unique positive
root of the cubic equation

Ft(A) = b3A
3 + b2 A

2 + bjA + bo (19)
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with b 3 - '(n)G 2 (Gd(n) - Id(fl - l)Hd(n))

b2 =3-y(n)Gd(n)tGd(rl) - Id(fl - 1)Hd(n)],

bi Hd(n)Gd(n)Id(n - l)Kd(fl - 1)

- 2Hd(n)Id(n - l)[yr(n) - £2 {rz, 0d(n - 1))]

- Gd (n)E2 (n, Od (n - 1)) + 3- (f)Gd(fl),

and bo ,(n) - 62(nl, d(n - 1)) - fd(nfld(n - l)Kld(n -1)

where Hd(n) XT(n)C 2(n)x(n) and Id(fl) de-f tr Cd(n).

For later computational considerations we note the following. In the context of QR-WRLS, the

inverse normal matrix, Cd 1(n - I), never appears, yet it is needed to compute Gd(n) and Hd(n).

The following circumvents this problem:

Lemma 1 In the context of QR- WRLS, the scalars Gd(n) and Hd(n) can be computed using
O(M 2 /2) flops.

Proof. Write

Gd(n) = x T(n)T,'(n - l)T T(n _ l)x(n) df gT(n)g(n) fl n) 12' (20)

in which denotes the 12 norm. Now x(n) =TT(n - l)g(n), and T T(n - 1) is lower triangular,

so g(n) is found by back-substitution using (in 2 + m)/2 flops. Now note that

Hdj(n) = x T(n)Tl(n~ -l)T-T (n~ -l)T 1 (n- )Td T (n~ -l)x(n) (21)

= gT(n)Tdl(n - 1)T.T(n - l)g(n) = hT(n)h(n) Ih.(n) 1

and back-substitution can once again be employed. 0

3 Implementing SM-WRLS in (9(m) Time

3.1 Complexity Considerations

A precise comparison of the computational loads of various OBE algorithms is given in [34]. The

number of flops (see footnote 3) required for the (generally adaptive) SM-WRLS algorithm under

consideration here may be approximated by

ft-~ O(c M 2 ) + bO(c 2 "12 ) + PO(C3 M2 ) (22)

where, p is the average number of data sets accepted per n: b is the average number of back-rotations

per n, and C1 ,.C2 and C3 are small numbers (all in the range 0.3 - 2.3) which depend upon whether
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QR-WRLS or MIL-WRLS is used. For QR-WRLS upon which we have principally focussed in this

paper, cl = 0.5, C2 = 2, and c3 = 2.5. The first term is due to the procedure which checks for

information in the incoming data. The others are attributable to adaptation, and solution update,

respectively. If either an exponential forgetting factor or a non-unity scaling sequence (other OBE

algorithms), is used, an additional term of 0(m 2 /2) must be added. Apparently, the SM-WRLS

algorithm, as presently formulated, is an "0(m 2 )" process. The objective of the section below is to

demonstrate two distinct methods for reducing the effective complexity to 0(m), thereby making a

SM-WRLS algorithm a desirable alternative to standard RLS-based methods from a computational

point of view.

Two approaches are taken. The first is an algorithmic solution which will reduce the true

complexity to 0(m) for processing on a sequential machine. The second is a hardware solution

which reduces the basic algorithm to 0(m) parallel complexity, with even further reduction possible

if the algorithmic measures are combined.

3.2 0(m) Processing on a Sequential Machine

From a signal processing point of view, one of the most interesting aspects of an OBE algorithm

is its inherent ability to select only data points which are informative in the sense of refining

the feasible set. The fact that typically 70 - 95% of the data are rejected by this criterion (e.g.

[6],[17],[23]-[29]) would seem to imply a remarkable savings in computation. However, this is only

true to the extent that the checking for usefulness of the incoming data set is negligibly expensive

compared with the inclusion of it in the estimate. We have seen above, however, that the checking

procedure is not inexpensive (see lead term of (22)) - a point which has not been made clear in

reported research. The approach taken here is to render the checking procedure an 0(m) process

in a manner which does not (empirically) degrade performance of the algorithm.

Before detailing the methods, some points about the use of the approximation "O(m)" are

necessary. The first concerns a practical matter. The objective in the following is to reduce

the computational complexity of the algorithms to an average of 0(m) flops per n. It will be

appreciated that, without data buffering, the data flow is still limited by the worst case 0(m 2 )

computation. However, if a buffer is included, the algorithm easily be structured to operate in

0(m) average time per n. Further, by using interrupt driven processing of the checking procedure.

it may be possible to reduce the average time even further. Other points concern algorithmic

details. We reiterate that the use of a unity scaling sequence (SM-WRLS algorithm) is required in

order to avoid an invariant 0(m 2/2) flops per n. We specifically assume the use of this algorithm

below, although the 0(m) checking procedure to be developed does not depend on this choice.
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Secondly, (22) indicates that an adaptive strategy must involve a sufficiently small average number

of back-rotations per n so that the O(m 2) adaptation term in (22) does not overwhelm gains made

by reducing the checking cost. In the windowing case above, for example, we would expect that

b z p and the adaptation is not unduly expensive. A selective forgetting strategy which meets this

condition will also be illustrated in the simulations below. Finally, we note that even if the checking

procedure can be made 0(m), terms bO(m 2 ) and pO(m2 ) (typically b z p) persist in (22). This

means that to truly achieve 0(m) complexity, b and p must be 0(1/m). For large m, this will

not be always be the case. In fact. some experimental evidence suggests, not unexpectedly, that p

increases, rather than decreases, with increasing m. For "large" m (conservatively, say, m > 10),

therefore, it is the case that the complexity is reduced to O(pm2) by O(m) checking. It should be

clear however, that neither 0(m) nor O(pm2) complexity can be achieved if the checking procedure

remains O(m2 ) . We therefore pursue an 0(m) test for information in an incoming data set.

In principle, the information checking procedure for the volume or trace algorithms consists of

forming either F,(A) or Ft(A) of (18) and (19), then solving for the positive root. However, since

a2 > 0, and bi > 0, i = 1,2,3, there is at most one such root in either case, and the test reduces to

one of checking the zero order coefficient for negativity [35]. When the test is successful, then the

root solving and updating procedes. requiring the standard MIL- or QR-WRLS load, plus a few

operations for finding the optimal weight. In spite of Lemma 1, the most expensive aspect of this

information test is the computation of the quantity Gd(n) or Hd(n), each requiring 0(m 2 /2) flops.

The trick to making the SM-WRLS algorithm an 0(m) procedure is to find a way to avoid the

computation of Gd(n) or Hd(n) at each n. We first develop a method which accomplishes this for

the "volume" algorithm, then argue that it pertains to the "trace" optimization criterion as well.

Let us denote the estimation error vector at time n by

0(n) ' . - O(n). (23)

It follows immediately from (11) that oT(n)C(n)O(n) < x(n) . While it is tempting to view '(n)

as a bound on 0(n) (see discussion of the Dasgupta-Huang algorithm below), it is important to

note that each side of this inequality is dependent upon A,(n). In fact, let us temporarily write

the two key quantities as functions of A,(n) : C(n, A,(n)) and K(n. A,(n)) and consider the usual

volume quantity to be minimized at time n.

,(n) det [V(n,A (n))C-'(n, An(n))]. (24)

It is assumed that enough data sets have been included in the normal matrix at time n - I so

that its elements are large with respect to the data in the incoming data set. For the choice of
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weighting strategy employed here, the quantity det C(n, An(n)) is readily shown to be monotonically

increasing with respect to An(n) on the domain (0, oc) [161, with C(n,0) -f C(n - 1, A_(n -1)).

Under the assumption above, det C(n, A,(n)) will not increase significantly over reasonably small

values of An(n). The attempt to maximize det C(n, A,(n)) in (24) causes a tendency to increase

A,(n) in the usual optimization process. However, the attempt to minimize K(n, An(n)) generally

causes a tendency toward small values of A,(n), unless a minimum of K( n, A,(n)) occurs at a "large"

value of A,(n). To pursue this idea and further points of the argument, we use two key facts about
K ,A(n)):

Proposition 3 (n,A,(n)) has the following properties: I. On the interval A,(n) E (0, oo),
r(n, A,(n)) is either monotonically increasing or it has a single minimum. 2. K(n, A,(n)) has
a minimum on A,(n) E (0, oc) iff

- 1)) > -y(n). (25)

To verify this result we need the following which is proven in [34]:

Lemma 2 For n > 1, the sequence K(.) can be computed recursively as

K(n) = K.I(n - 1) + A,(n)-t(n) - An(n)l + )) (26)
1 + A,1,(n)Gd(n)'

Proof of Proposition 3: For simplicity, we write A,(n) as A. Using (26) from Lemma 2, we can

write
Q(A) df OK(n. A)_ G (n)7(n)A' + 2Gd(n)7(n)A + [7(n) - 52 (n, Od(n 1))] (27)

- A Gd(n)2 A2 + 2Gd(n)A + I

and
02K(n A) - 2[G (n) + -(n)d(n))E2 ( n.,O (n - 1))

0A2  (G2(n)A 2 + 2Gd(n)A + 1)2

The denominator of Q(A) is positive on A E (0, -.c) and therfore has a root on A E (0. 0) iff its

numerator does. The the numerator is a convex parabola with its minumum at A = -l/Gd(n) < 0.

and it therefore has a unique positive root on the interval (0,-'G) iff 1(n) - E2(nOd(n - 1)) < 0.

Further Q(A) > 0 for all A > 0. so the root, if it exists, will correspond to a minimum of K(n. A).E3

Accordingly, it can be argued that: If det C(n, A(n)) is increasing, but not changing signifi-

cantly over reasonably small values of A,(n), then it is sufficient to seek A,(n) which minimizes

,( n, A,(n)). If (n, A,(n)) is monotonically increasing on A,(n) 0, this value is A,(n) = 0 which

corresponds to rejection of the data set at time n. It suffices, therefore to have a test for a minimum

of K(n,.A,(n)) on positive A,(n). A simple test is embodied in condition (25) which determines
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whether the square of the current residual exceeds the upcoming error bound. If this test is met,

it is then cost effective to proceed with the standard optimization centered on (18). Otherwise, the

explicit construction and solution of ao of (18) can be avoided.

In fact, this suboptimal test for innovation is similar to that used in the Dasgupta-Huang OBE

algorithm reported in [27]. The suboptimal test of Dasgupta is to accept the incoming data set

only if' E2 (n,O(n - 1)) < -y(n) - rc(n - 1). This inequality likewise tests for a minimum of K

with respect to A,(n), and differs in form from (25) because of the scaling factors (see (7) and

surrounding discussion) which depend on the optimal weights, C(n - 1) = (1 - A)(n)) - 1 in the

Dasgupta case. While this dependence precludes the construction of a reasonable expression in

An(n) with which to minimize the set measure /u({(n)}, the Dasgupta hyperellipsoid nevertheless

does have a volume at each n, and it is therefore possible to attempt to apply the above arguments.

A problem arises in the Dasgupta-Huang case, however, because the relative independence of C(n)

and A,(n) is not tennably argued. Therefore, the simplified test in this case is not subject to the
"'same" justification as (25). Interestingly, however, if A,(n), which is already constrained to [0, 1)

in the Dasgupta-Huang algorithm, happens to be very small at a particular n, then the algorithm

approaches the case of unity scale factors (((n) ;s 1) as in SM-WRLS, and it can be argued that

the normal matrix changes only slightly. In this case, but only in this case, the arguments above

are applicable. Of course, artificially constraining the weights to be small for all n destroys the

optimization process in the Dasgupta-Huang method, so that this analysis provides support for the

suboptimal test only for isolated and infrequent times. Dasgupta and Huang argue simply that

K(n) is "a bound on the estimation error," and should be minimized. This claim has been disputed

by Norton and Mo [33] and is not clearly supported here. Generally, the arguments in support of

(25) are valid only for certain types of scaling sequences which do not cause the estimation process

to "forget" too quickly. This is not generally the case with the Dasgupta-Huang strategy.

Before proceding, another comparison to the Dasgupta-Huang OBE algorithm should be made.

One of the principal advantages of their method is the ability to conveniently prove convergence of

the ellipsoid to a point (0.). The original Fogel and Huang paper [6] is often cited as proving that

the bounding ellipsoid in the Fogel-Huang OBE algorithm converges to a point under ordinary

conditions on E.(.). In fact, the paper only proves this convergence for the case of unity weights so

that the fundamental optimization process is not taken into account. No known proof of this de-

sirable result for the Fogel-Huang OBE algorithm, or for any version of SM-WRLS exists, whether

optimal or suboptimal checking is used. While the estimate itself is guaranteed to converge asymp-

totically under proper conditions on E.(.) (e.g. [10]), the ellipsoid is not guaranteed to diminish

7Subscripts "d- are omitted here since their algorithm does not involve this form of adaptation.
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asymptotically. However, we have found empirically that the optimal and suboptimal tests tend

to produce an ellipsoid with a similar "size" at a given point in the signal, and to produce similar

estimates, in spite of the fact that the suboptimal test tends to use fewer data (see simulations

below).

A further interpretation of (25) is possible which also allows the extension of the test to include

"trace" minimization as well. A simple rationale for the suboptimal test is as follows:

Proposition 4 If the test of (25) is met, then a positive optimal weight exists for either the volume
or trace criterion.

Proof: We show that the zero order cofficients ao and bo, of (18) and (19), respectively, will never

be positive if the test is met. Consider a0 = m [-(n) - E2(n, Od(n - 1))] - Kd(n - 1)Gd(n). Write

(11) for the downdated case at time n - 1. then multiply through by rd(n - 1). The result is

[0 - Od(n - l)IT Cd(n- 1)[0 - Od(n - 1)] < Kd(n- 1). If Cd(n- 1) is positive definite, this implies

that "r(n) > 0. Further G4(n) = xT(n)Cd(n - 1)x(n) > 0, so ao < 0 if the test (25) is met.

Now, consider b0 = y(n) - - 2(nOd(n - 1)) - Hd(n)Id(n - 1)Pd(n - 1). By similarly showing that

Hd(n) > 0 and Id(n - 1) > 0. the desired result for the trace criterion is obtained. 11

In the volume case, for example, the suboptimal check tests whether a0 is negative if the term

Kd(n - I)Gd(n) is neglected. This ignored term is always negative and becomes small as n increases.

For a given set of preceding optimal weights. A*(1),. .., A*(n - 1), the suboptimal test will never

fail to accept an data set which would have bec.- accepted by the optimal test. A similar analysis

applies to the coefficient b0 of the trace algorithm.

With the inexpensive test afforded by (25). the checking procedure becomes an 0(m) procedure.

Consequently, for sufficiently small p, the SM-WRLS algorithm can be run in 0(m) time per n.

3.3 Simulation Studies and Further Discussion

OBE algorithms which do not include explicit adaptation measures have been demonstrated in

numerous papers cited above. Our principle objective here is to briefly iliustrate the use of the

adaptive and, particuilarly, the 0(m) suboptimal checking procedures.

We consider the identification of a time varying AR(14) model of the form

14
y(n) = a,.(n)y(n - i) + .(n). (29)

t=1

A set of "true" AR parameters were derived using iinear prediction analysis (e.g. [36]) of order 14

on an utterance of the word "'sevpn" by an adult male speaker. The original speech waveform is
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shown in Fig. 1 to illustrate the time varying nature of the signal. A 7000 point sequence, y(n),

was generated by driving the derived set of parameters with an uncorrelated sequence, F.(n), which

was uniformly distributed on [-1, 1].

The speech signal was not used directly in this study for a simple r-ason. The problem of

determining proper bounds for the model error is a nontrivial one for real speech, and a proper

description of this point would seriously sidetrack the present discussion. Similarly, space would

not permit a careful discussion of the performance of the algorithm in cases in which noise bounds

are uncertain or violated. The predecessor (optimal. nonadaptive case) methods to those illustrated

here have been successfully applied to real speech and these results are reported in [26] where some

of these more difficult issues are also adressed. In the same vein, the artificial noise permits carefully

controlled statistical properties. The model noise used here is uncorrelated, and this algorithm in

its present form will converge to a bias if this is not the case. A discussion of colored noise, while

interesting and useful, is beyond the scope of this paper. The interested reader is referred to

[241,[28],[34]. While the uniform distribution chosen here has become conventional in testing OBE

algorithms, it is worth noting that the performance of the methods is bound to be affected to some

extent by the choice of this distribution. This becomes clear upon recognizing that Lhe algorithm

tends to favor the acceptance of data at time n when the residual is large. In some preliminary

runs with bounded but nonuniform distributions, we do not find these effects to be very significant.

In the simulations below, we apply the conventional and adaptive SM-WRLS algorithms with
"volume" optimization to the identification of the a,. parameters. We discuss several simulation

results. Only the result for a4. is shown in each case to conserve space. Of the 14 parameters,

a4. emerged as the most difficult to track and gave the worst performance. Each figure shows two

curves, one for the true parameter, the other for the estimate obtained by the algorithm under

study.

In several previous studies, it has been demonstrated that that OBE algorithms have inherent

adaptive capabilities by virtue of their optimal data weighting strategies, even when not explicitly

designed to be adaptive (e.g. [24]-[29]). The adaptive capability of "nonadaptive" OBE algorithms

is somewhat unpredictable and fortuitous, especially for fast time variations. Further they are

subject to divergence if the true parameters mnove outside the feasible set. Nevertheless, SM-WRLS

and other OBE algorithms often demonstrate this inherent ability. The present example is contrary.

Figure 2 illustrates the result of applying SM-WRLS to the time varying waveform. The estimate

clearly fails to appropriately track the true parameter in this case.

Before proceeding, let us use the present result to emphasize a principal point made in the paper.

The result of Fig. 2 is achieved using only the fraction p = 0.079 of the data. Other examples
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are found in the literature where good tracking is achieved with similar, or even smaller, fractions

of the data used. It is important to keep in mind, however, that the computational complexity

of the SM-WRLS algorithm is only a factor of about five better than conventional RLS, and the

"p = 0.079" figure must not be interpreted to the contrary. Herein lies the motivation for the

suboptimal checking procedure.

Next, we show the simulation resuits of the variations on the adaptive SM-WRLS algorithm.

Figure 3 shows the results of the windowed SM-WRLS algorithm using windows of lengths 500, 1000,

and 1500. This strategy uses the fractions p = 0.221, 0.174, and 0.143 of the data, respectively, but

remains an O(m 2 ) process because optimal checking is used. Additionally, each time an accepted

point occurs at the trailing edge of the window, a back-rotation is needed to effect adaptation. This

implies an average number of back-rotations b : p per n (see Section 3.1). More data and more

rotations than with the unmodified SM-WRLS algorithm are used, but more accurate estimates

result and the time varying parameters are tracked more quickly and accurately. As expected,

adapting over smaller windows tended to improve time resolution, but increased the variation of

the estimate and increased the number of points accepted. Conversely, the longer windows yielded

smoother estimates using fewer data, but at the expense of slower tracking. While no ,vindow length

in this range yielded grossly unacceptable estimates, the 1000 point window illustrated represents

a good tradeoff between the demands of time and frequency resolution.

Figure 4 illustrates the use of suboptimal checking in conjunction with windowed SM-WRLS

with a window of length 1000. Interestingly, the fraction of the data used is p, = 0.087 which is

about half that required in the same experiment with optimal data checking (Fig. 3(b)). This

means that the suboptimal checking not only reduced the computational effort of checking, but

also decreased by a factor of two the number of m2 ccmplexity rotations required. Nevertheless,

the estimate trace is quite similar to the optimal case, the only difference being a slight increase

in the variance near the end of the trace. Similar results were obtained for windows of length 500

and 1500.

The selective forgetting strategy chooses data sets to be removed from the system based on user

defined criteria. Here the set of times to be back-rotated is as follows. Let t' < n correspond to

the "oldest" data set remaining in the estimate. Then _F,_1 = {t' ..... t"}, where the elements in

the set are ordered, t' < ... < t". and t" < n is the smallest time for which some other criterion

is met. The determination of when to apply the forgetting procedure and when to stop removing

data sets at a given time is discussed in the following.

The parameter a4, to be tracked in this study is characterized by relatively fast time variations

in the time region 2000 - 6000. The fact that the parameters change relatively slowly in the
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first 2000 points induces the algorithm to accept some points which, in turn, causes the ellipsoid

volume to decrease. An increase in the --confidence" of the estimate results. Near time 2000, the

ellipsoid volume becomes very small. When the parameters move rapidly away from their current

location, they eventually move outside the ellipsoid which is therefore no longer a valid bounding

ellipsoid. When this condition happens, it eventually leads to a negative value of to(n). For a

stationary system, K(n) is always positive, so that this condition indicates that a violation of the

theory (in particular, the violation of the assumption of stationary dynamics) has taken place". A

similar condition was also reported by Dasgupta and Huang [27] while applying their algorithm

to nonstationary systems. In our simulation studies, we find that a negative ro(n) is often an

effective indicator of need for adaptation, and we use this criterion as the prompt to begin selective

forgetting. Whenever accepting a data set causes n(n) to become negative, the algorithm starts

rotating out the selected data sets until K(n) becomes positive again.

Figure 5 shows the simulation results of the selective forgetting strategy described here. The

fraction p = 0.129 of the data is accepted by the estimation procedure and about 73% of these are

back-rotated for adaptation. This implies a small "b" factor of about 0.094 per n so that adaptation

is not expensive in this case. The checking process is still 0(m 2), however, so the overall process

remains of 0(m 2) complexity. Suboptimal checking for the same experiment is illustrated in Fig.

6. In this case P' = 0.088 of the data is used with similar results. About 63% of these data are

back-rotated, so that b = 0.0.5.5. Once again, the suboptimal test has preserved the quality of the

estimate and lowered not only the checking complexity, but also the number of actual rotations

that need be implemented.

Compared to the windowed adaptive strategies, for this example the selective forgetting strategy

yields smoother estimates using even fewer computations, but with poorer time resolution. (Recall

that a4, was found to be the most difficult to track in this simulation, so that this result is the

worst case.) In general, we have found that selective forgetting (as employed here) generally uses

fewer data and produces smoother estimates, but the tracking ability is not as reliable (though

sometimes superior) to the windowed method [16],[34]. In fact. the selective forgetting strategy (as

used here) tends to outperform windowing in cases of very fast time variations in the dynamics.

The conservative schedule of back-rotations employed in the present technique accounts for this

observation. Ko(n) > 0 is only a necessary condition for the true parameters to be inside the current

ellipsoid. The fact that K (.) goes negative at a particular time does not precisely determine Lhe point

at which system dynamics began to change. If the variations are slow, this may occur (if at all) long

after the dynamics begin to change. In fact, Ko(n) < 0 often indicates a rather severe breakdown of

'Mathematically, r(n) < 0 indicates an ellipsoid of negative dimensions.
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the process indicating that the "true" parameters have moved well outside the current ellipsoid at

time n. In cases of fast changing dynamics that this "breakdown" occurs rapidly enough to render

the condition "r(n) < 0" good locator of changing dynamics which require "immediate" adaptation

to preserve the integrity of the process. The present example represents a very challenging case in

the sense that variations apparently occur too rapidly to be tracked by standard SM-WRLS (see

Fig. 2), yet not quickly enough to allow very high time resolution by the chosen selective forgetting

method. Other methods for selection leading to a more aggressive elimination of past data may

assist in the tracking at the expense of higher fractions of data used.

4 Architectural Solutions to Achieving ((m) Time

4.1 Systolic Architecture

In this section we develop parallel architectures on which both suboptimal and optimal checking

versions of SM-WRLS will run in 0(m) time. Here the efficiency is achieved by parallelism so that

the number of operations is effectively reduced by simultaneous execution of many ccmputations.

Accordingly, the 0(m) flop per n load to be achieved is actually a parallel complexity since many

processors might be performing 0(m) flops simultaneously. From a temporal viewpoint, the pro-

cessing is reduced from the 0(m 2) time required to compute the optimal solution sequentially, to

O(m).

In the following we will assume the use of SM-WRLS (no scaling) for simplicity. Unlike the

sequential case, however, scaling can be done in parallel here and does not add a significant com-

putational burden. The modification of the following to include scaling is straightforward. We also

use ellipsoid volume minimization for optimization, but a similar machine may be developed to

implement trace optimization.

We first discuss the "nonadaptive" case. The fundamental parallel solution is made possible by

the QR-WRLS version of SM-WRLS. The main computational requirements are a GR processor

(to effectively execute the QR decomposition) to update the matrix [T(n) Idl(n)] at each step,

and a back substitution (BS) processor to solve for the scalar G(n) and also for the estimate 0(n)

at each n. Systolic processors for these operations, based on the original work of Gentleman and

Kung [37] and Kung and Leiserson (38]. are well known. It is the purpose of this section to manifest

this algorithm as a parallel architecture based on these processors.

The need for implementing the algorithm on a parallel architecture arises from the fact that

portions of the algorithm are compute-bound, specifically, updating the matrix [T(n) I di(n)] and

computing the value G(n) and the parameter vector 0(n). The architecture that speeds up the
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computation of these quantities and satisfies the desirable characteristics of systolic arrays (SA's)

is shown in Fig. 7. Although this architecture is based on SA design methodologies, it is used

here to process one data set at a time (more on this below), and therefore, is not used as a SA.

This architecture provides an improvement over that described in [391 by replacing the global

buses with iocal buses for communication between adjacent cells. For simplicity of notation, the

figure shows a purely autoregressive case of order three, AR(3). Once the processor is understood,

it should be clear that the architecture is perfectly capable of handling the general LP model case

discussed above. In the discussion below, the vector notations x(n) and 0(n) are used, however,

the architecture of Fig. 7 uses the vectors y(n) and a(n) instead to denote the special case AR(3),

where y(n) = [y(n - 1) y(n - 2) y(n - 3)]T .

The architecture is composed of two SA's, several memory management units (i.e., First-in

First-out (FIFO) and Last-in First-out (LIFO) stacks 9), multiply-add units (MAU's), multiplexers

(MPX's), and demultiplexers (DMX's). The first SA is a triangular array that performs QR

decomposition using GR's [37, 40] which are particularly suitable for solving recursive linear LSE

problems. The diagonal (circular) cells perform the "Givens generation" (GG) operations and all

other (square) cells in the triangular array perform the GR operations. There is a delay element

at the lower right-hand corner of the triangular array that is used to synchronize the flow of the

generated entries into the FIFO stacks and to simplify the control of these stacks once they are

filled and ready to output their contents to the BS array. The operations performed by this array

are shown in Fig. 8 [37, 40]. Therefore, the triangular array rotates the new data set into the upper

triangular matrix [T(n) I di(n)], where the ti, cells update the matrix T(n) and the right-hand

column (d1 j) cells update the vector d 1(n). The element tij denotes the ij h element of the matrix

T(n) and the element d1j denotes the jrh element of the vector d1 (n).

The second array is a linear array that performs the BS operations shown in Fig. 9 [38]. Note

that the same BS array is used to solve for the vectors g(n + 1) and 0(n) with the data provided to

the appropriate cells in the required order by the FIFO and LIFO stacks. The FIFO stacks feed the

lower triangular matrix TT(n) to solve for the vector g(n + 1), and hence, the value G(n + 1). The

LIFO stacks feed the upper triangular matrix T(n) to solve for the parameter vector 0(n). The

values G(n+ 1) = 11 g(n+ 1)112 and 11 dj(n) 112 are generated by the MAU's shown in Fig. 10. The

number of segments in each stack is equal to the number of elements the stack holds. Therefore,

the leftmost stack consists of m segments. whereas the rightmost stack has only one segment.

gThe architecture shown in Fig. 7 does not include any of the LIFO stacks that were used to hold the matrix
T(n) in the architecture reported in [39]. This is achieved by slightly increasing the complexity of the cells used
in the triangular array so that they can be used as - rage elements as well. This is facilitated by the diagonal
interconnections between adjacent cells which now constitute the LIFO stacks.
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The system shown in Fig. 7 works as follows. The first m+1 data sets (with appropriate

weights) enter the triangular array (from the top) in a skewed order, and the matrix [T(n) I di(n)]

is generated and stored inside the cells. A shift register with appropriate feedback connection and

data sequencing can be used to hold and feed the data set to the array. The initial upper triangular

matrix residing in the array, and corresponding to the first m + 1 data sets, is ready after 3m + 1

GG time cycles. The GG time cycle is that of the triangular array performing the GG operations

without square roots, which is the time required to perform five flops [40],[41]. In order to prevent

data collision, the flow of data in the triangular array moves along a corresponding wavefront and is

controlled by the slowest cells in the array, viz., GG cells. The data are fed to the array one (skewed)

data set at a time, therefore, the contents of each cell remains constant after the completion of

the current recursion. After the new data set is rotated into the matrix [T(n) I di(n)], the vectors

g(n + 1) and 0(n) are computed. All the ti, cells in the triangular array load their contents on the

tout lines (tout +- x), and then pass these elements across the diagonal lines (tout + ti,) (see

Figs. 7 and 8). This obviates LIFO stacks. The FIFO stacks are still needed, however, to compute

the vector g(n + 1). The FIFO stacks are filled with the elements of the lower triangular matrix

TT(n) as they are generated. This is done by loading the t~i entry on the tout line (tout--- x) when

it is generated. This entry propagates down the diagonal cells (with the function tout - tj, ) until

it arrives at and fills the appropriate FIFO stack. For the cells in the right-hand column, which

generate the vector di(n), the operations are different because it is this column that constitutes

the LIFO stack for the vector dj(n). Hence, after the new data set is rotated into the array, all the

cells in the right-hand column load their contents on the xout lines (xout - x), and then they pass

these elements down the column (xout - xin) (see Figs. 7 and 8). The output xot leaving the

bottom cell in this column passes through the delay element and is routed to both the MAU and

the MPX feeding the d1j elements to the BS array. The elements dim and tm leave the triangular

array at the same time because of this delay element. The timing diagram of the triangular array

is shown in Table 1. In this table, the inputs refer to the elements fed to the cells in the top row.

The circle (O) represents the GG cell and the square (0) represents the GR cell (see Fig. 7). The

outputs refer to the elements that are produced in the array cells and are written columnwise; i.e.,

the first column in the table represents the first column in the array, and so on.

The BS array is used to solve for the vectors g(n + 1) and 0(n). The vector g(n + 1) is solved

using (20) and the parameter vector 0(n) using (6). Therefore, the vector g(n + 1) is generated

from the matrix TT(n), which is residing in the FIFO stacks, and the vector x(n + 1) which is

available. The entries are fed to the BS array every other BS time cycle, where the BS time cycle

is the time required to perform one flop. As the gi entries are output from the left-end processor
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of the BS array, they enter the MAU to generate the value G(n + 1) after 2m + 1 BS time cycles.

Likewise, the parameter vector 0(n) is generated using the matrix T(n) and the vector di(n) which

are stored in the triangular array. Starting one BS time cycle after the initiation of the first BS

operation, the appropriate entries (of the second BS operation) are also fed to the BS array every

other BS time cycle. The parameter vector 0(n) is output from the left-end processor of the BS

array in reversed order and interleaved with the vector g(n + 1) as shown in Fig. 7. The value

di(n) 11' is generated using a MAU one BS time cycle after the last (mth) element of the vector

di(n) is generated. The timing diagram of the BS array is shown in Table 2 in which the inputs

refer to the elements fed to the shown cells, and the outputs refer to the elements produced by the

left-end processor in the array.

The values K(n) and E2 (n + 1.0(n)) are then computed, and hence, the value A,,+,(n + 1) which

determines whether the new data set is to be accepted or not. If the new data set is accepted, then

the weighted new data set enters the triangular array and the same procedure described above takes

place producing a new [T(n + 1) 1 d 1(n + 1)] matrix after 2m + 1 GG time cycles, and therefore,

an updated G(n + 2), 0(n + 1), and K(n + 1). On the other hand, if the new data set is rejected,

then the triangular array preserves its contents (hold state), but the value G(n + 2) is updated to

make the decision concerning the next data set. In the latter case, the same TT(n + 1) matrix is

used as the previous TT(n) matrix, and hence, the feedback on the FIFO stacks. This procedure

is repeated for every new data set.

The computational complexities (in flops per data set) for the architecture of Fig. 7 is approx-

imated by [16]

f - C - 0(3m)+ pO(1lm) (30)
parallel

where the first term accounts for checking and the second for solution update, with p defined as

usual. As noted at the outset, the complexities of the solution are parallel complexities in the

sense that they denote the effective number of operations per data set, though many processors

can be performing this number of operations simultaneously. Accordingly, the parallel complexity

indicates the time it takes the parallel architecture to process the data, regardless of the total

number of operations performed by the individual cells. The GG and GR operations constitite the

main computational load of the algorithm as shown in Table 3. In this table, the number of flops

associated with the GR's is multiplied by five to account for the GG cycle time. These operations

are avoided when the data set is rejected, and thus, a significant savings in computation time is

achieved.

Suboptimal checking may also be used in conjunction with the parallel processing. In this case

it is simply unnecessary for the processor to compute the first three items in Table 3 in order to
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check the incoming data set. The reduction in computation, which is is not as significant as in the

sequential processing case, is reflected by the approximation

f lbopt ( 9 (M) + p'O( I IM) (31)
parallel

for small p' [16].

4.1.1 Adaptive Compact Architecture

The architecture described above can be modified to improve cell utilization and to incorporate

adaptation by back-rotation. The basic idea behind the compact architecture is to map the triangu-

lar array of Fig. 7 into a linear array (called the GR array), that is, mapping all of the GG cells into

one GG cell and all the GR cells that are on the same diagonal into one GR cell. This constitutes

a permissible schedule because the projection vector, d, is parallel to the schedule vector, .', and all

the dependency arcs flow in the same direction across the hyperplanes (e.g. [42, Ch. 3]). In other

words, this schedule satisfies the conditions s-"d> 0 and sT> 0, for any dependence arc F.

The compact architecture implementation of the adaptive SM-WRLS algorithm is shown in

Fig. 11. The operations performed by this architecture are similax to those of Fig. 7 with the

exception that the GG and GR cells are now capable of performing back rotation (see Fig. 12) and

are embedded in a slightly more complicated modules needed for scheduling. These modules are

called GG' and GR', and are shown in Fig. 13.

This architecture uses 0(m) cells (one GG' cell and m GR' cells) compared with 0(m 2) cells

(m GG cells and (m 2 + m)/2 GR cells) used in the architecture shown in Fig. 7. and yet has the

same computational efficiency per n. Note however that the LIFO stacks that were embedded in

the triangular array of Fig. 7 are now needed to hold the matrix T(n).

The system shown in Fig. 11 works as follows. Each data set (with its optimal weight) enters the

GR array (from the top) in a skewed order, and the matrix [T(n) I di(n)] is generated and stored in

the appropriate memory units. Note that the GR array can operate in two modes, forward (6 = +1)

and backward (6 = -1) rotation modes (see Fig. 12). In the backward rotation mode, the data set

'o be removed is re-introduced to the GR array with the appropriate weight. At the end of each

recursion, the FIFO stacks contain the lower triangular matrix TT(n) needed to solve for the vector

g(n + 1). and hence, the value G(n + 1). The LIFO stacks contain the upper triangular matrix

T(n) needed to solve for the parameter vector b(n). The values G(n + 1) = 11 g(n + 1) 112 and

11 di(n) 112 are generated by the MAU's. Note that the values which were propagating downward

in the triangular array of Fig. 7 are now propagating leftward due to the new scheduling. Note

also that the vector dl(n) is treated differently from the matrix T(n). When the element dl, is
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computed, it is stored in an internal register in the GR' cell (see Fig. 13). After generating and

storing the matrix [T(n) I di(n)], the processor is ready to compute the vectors g(n + 1) and

0(n) using the BS array. The vector d1(n) is downloaded into the latches which serve as a LIFO

stack used in conjunction with the other LIFO stacks (containing the matrix T(n)) to solve for

the parameter vector 0(n). The timing diagram of the GR array is shown in Table 4 in which

the input (output) columns show the elements that are input (output) to (from) the corresponding

GG (Q) or GR (0) cells. Compared to the triangular array of Fig. 7, it is noted that the cell

utilization per update (or downdate) has increased by a factor of 2.25 for the case when m = 3,

or by (.5m 2 + 1.5m)/(m + 1) in general. The operations and timing diagram of the BS array are

described in detail above.

The adaptive compact architecture of Fig. 11 has slightly more complicated cells than that of

Fig. 7, but requires the same number of operations to check and incorporate a data set. However, the

compact architecture processor may additionally be used to back-rotate a data set for adaptation.

The forward and backward rotation modes have the same parallel complexity. Therefore, it is only

necessary to add terms of the form bO(llm) to either (30) or (31) to account for back-rotation,

where b has the usual meaning.

5 Conclusions

Two general contributions have been made to the theory and application of OBE algorithms for

linear-in-parameters models. We have first suggested that all reported OBE algorithms, both

nonadaptive and adaptive, can be placed into a general framework which is intimately related to

recursive LSE processing. A flexible form of explicit adaptation has been demonstrated within this

framework. In particular, a general technique based on "back-rotation" within the context of the

QR-decomposition based version of WRLS offers a flexible array of adaptation strategies and good

tracking ability. Secondly, two very different approaches to rendering a specific OBE algorithm,

SM-WRLS, of 0(m) per n computational complexity have been proposed. The computational com-

plexity of the optimal OBE algorithms is of 0(m 2) flops per n in spite of the highly discriminating

data selection through set-membership criteria. This fact has not been made clear in the literature.

This paper has demonstrated both an algorithmic and an architectural solution to this problem,

making the SM-WRLS method superior to many other LSE techniques in a computational sense.

In signal processing applications, this computational advantage is complemented the existence of

the feasible set of solutions for which many other interesting purposes may be found.
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0 y(n - 1)
1 y(n - 2) ti
2 ,(n - 3) t13
3 y(n) t22  t13
4 t23  d 1
5 t3 d12
6 d13

Table 1: Timing diagram of the triangular array of Fig. 7.

Inputs Outputs

Time 0 0 0 0

0 ti, y(n -1)
1 t 3, d1 3 t2 91

2 t22, y(n - 2) t23 t3 a

3 t22, d12 t23  t3 92
4 t3, y(n - 3) ti 2  a2

5 t1j,di1  g3

6 a,

Table 2: Timing diagram of the back substitution array of Fig. 7.
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Table 3: Numbers of operations required by the GG and GR cells in the architecture of Fig. 7.
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2 y(n - 3) t 1 2
3 y(n) t22  t434 t23 dit
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6 d13

Table 4: Timing diagram of the GR array of the compact architecture of Fig. 11.
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ABSTRACT

This paper is concerned with set-membership (SM) identification which refers to a class of algorithms
which uses certain a priori knowledge about a parametric model to constrain the solutions to certain
sets. The emerging field of SM-based Signal Processing is receiving considerable attention and is becoming
increasingly popular around the world. This paper initially surveys the types of problems and solutions
being researched, then focusses on identification techniques of particular currency in the signal processing
field. Specifically. the case in which bounds on the model errors are known has be of particular interest
to SM researchers. We show that these -bounded error" (BE) algorithms can be combined with various
forms of least square error (LSE) signal processing algorithms with interesting and beneficial consequences.
A general framework embracing all currently used BE/LSE algorithms is developed, then strategies for
adaptation and for implementation on parallel machines are discussed. Computational complexity benefits
are considered for the various algorithms. The paper is tutorial, leaving many of the formal details to
appendices which presents a theoretical treatment of the key results. These appendices serves to unify
many related results appearing in the literature.
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1 Introduction to Set-Membership-Based Signal Processing

System identification is concerned with the deduction of a mathematical model of a dynamical system based

on measurable signals and other attributes of the physical situation. The principal focus of this paper will

be upon the paradigm in which sufficient information exists to specify a good ("true") parametric form

for the underlying dynamics, and the identification problem is reduced to correctly parameterizing the

mathematical form.

In a broad sense, set-membership (S.1) identification is concerned with the description of sets of param-

eter solutions which are consistent with the measurements and the modelling assumptions. Accordingly

SM identification is sometimes called parameter bounding identification or similar names. The name "SM"
identification derives from the fact that an SM algorithm, in principle, ascertains whether a particular

parameter vector is a member of the feasible set.

SM identification is novel in its pursuit of set solutions rather than particular solutions which are sought

by conventional methods. A feasible sot which arises as a consequence of SM processing is a reflection of

the assumptions made about the "true" model, and its "size" is inversely proportional to the amount

of information available about the "true" model. The fundamental benefit of this approach is that it

yields solutions which are based only upon tenable modelling assumptions. A set of solutions consistent

with known information can be preferable to. or complemetary to, a single solution based on tenuous

assumptions. If an appropriate SI algorithm exists, it is only necessary to have sufficient modelling

information to provide a sufficiently small feasible set for a given purpose. For example, a resulting set

might be small enough so that its centroid would provide a good model in some application.

We remark that the given description of an SM identification algorithm above does not necessarily

exclude methods whose solutions are a single parameter vector. However, a consistent theory requires

that, as time progresses., feasible sets be subsets of their predecessors (see below). The class of algorithms

that produces an invariant single point estimate is certainly a very uninteresting one. We will discuss this

point with respect to the conventional least square error (LSE) solution in the paper.

After discussing the general modelling and identification issues and defining notation in Section 2, this

paper will focus on four classes of identification problems:

1. "Other" SM Problems. The principal focus of this paper is upon SMl methods currently being

employed in signal processing applications. In Section 3 we begin a taxonomy of SI methods and

survey problems which are outside the scope of the present paper.

2. The LSE Problem. The purpose of this brief discussion in Section 4 will be to view this well-known

problem in relation to the SM approach in preparation for further developments.

3. The Bounded Error (BE) Problem. We continue our discussion of the taxonomy of SM methods in



Section 5 with the BE problem. This class of SM algorithms is predicated upon a model with additive

errors whose magnitudes are assumed bounded. A vast majority of the research on SM identification

to date has focused on this problem and a variety of algorithms has resulted. The purpose here will

be to introduce the problem and review this body of research. At the "bottom" of the BE class of

techniques, we will encounter the ellipsoid bounding algorithms in which the LSE and BE problems

interface.

4. Combined LSE / BE Problem. The heart of this paper is Section 6 in which we formulate and discuss

the Unified Optimal Bounding Ellipsoid (UOBE) algorithm which represents an explicit combination

of the two classes of problems above for the linear parametric model. The UOBE algorithm is

actually a class of algorithms that embraces many LSE/BE algorithms proposed in the literature.

It will be discovered that the benefits of combining BE considerations (when they are known) with

LSE processing are twofold: First, the BE information provides a feasible set of solutions which

complements the unique LSE ("infeasible" by virtue of its uniqueness) estimate. This feasible set

can help to compensate for the extremely restrictive nature of the assumptions placed upon the LSE

model. A colored noise sequence, for example, represents a violation of the basic tenets of LSE

modelling which might be ameliorated by the BE considerations. Secondly, it will be shown how BE

knowledge can greatly improve the efficiency of LSE identification.

In its focus on Problem 4 above, this paper provides a what might be called a "signal processing"

perspective on the field of SM identification. By this we mean that we approach the problem with a

predisposition toward linear models and LSE processing which are firmly entrenched and successfully

employed in many signal processing applications. The authors' principal interest in SM theory has been

its implications for complexity improvement, architectures, adaptation, and bias-reduction in linear LSE

algorithms. The work of Fogel. Huang and colleagues [24],[41],[49],[51],[99]-[10l1 also falls into this realn

and this relationship will be explored in detail. A different perspective on this field is provided by the work

of a number of research groups in Europe. most of whom approach SM identification with an interest in

control and system science. These researchers, whose work will be discussed in the material to follow, have

focused on a broad array of algorithms and models, mostly in conjunction with the BE constraint. This

work has tended to focus on the development and analysis of novel, sometimes very complex. identification

algorithms for bounding feasibility sets. While extremely interesting, this work has not yet yielded methods

which are as immediately applicable to practical problems as the well known LSE approaches discussed

here'. We review these "BE" developments in Section 5 and direct the reader to specific information about

this interesting work. Recent surveys of the SM field which focus on the BE research are found in papers

This is not to say that applications have not occured. Some examples are cited below.
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by Walter and Piet-Lahanier [121], and by %Milai.e and Vicino [75]. Both survey papers contain extensive

and useful reference lists. The reader interested in a much lighter tutorial on a specific form of UOBE

algorithm, the "SM-WRLS" algorithm, is directed to the paper by Deller [27].

Whatever the particular interest in pursuing SM algorithms, it is clear that all researchers are excited

about their tremendous potential for application to problems of practical importance. Milanese and Vicino

[75], for example, list a broad range of areas to which SM techniques have been applied. Among them are

applications to biology and chemistry [141,[82], [130]; pharmacokinetics [44],[73]; time series analysis [118];

economic modelling (76]; speech and image processing [29],[30],[108],[111]; ecology [58],[109]; measurement

[11],[13],[104],[110]; and robust adaptive control [2],[24],[39],[55],[60],[62],[67],[112],[117]. Recently, artificial

neural network training algorithms have been the subject of studies involving the SM algorithms [25],[50].

SM algorithms have also been explored with regard to their tracking ability for adaptive identification

[16],[17],[241,[321,[86],[871-[891. Finally, another novel way in which BE methods have been applied is to

the problem of model structure identification [114]. Because of this significant potential for application.

SM algorithms continue to be the subject of intense research effort.

2 Formalities

In this brief section, we formally define notation for the identification problem to be studied and discuss

some important aspects of the modelling problem.

2.1 General Identification Problem

The general modelling setup employed in the discussion as follows: We assume that we are observing some

physical discrete time system which is generating a complex-valued vector sequence, y(.) of dimension k.

in response to complex vector-valued input u(.). The sequence u(.) is assumed to be a realization of an

ergodic. wide sense stationary stochastic process. Both input and output sequences are measurable. The

consideration of a complex, multiple-input-nzultiple-output (MIMO) system will generalize many of the

results found in the literature. Of course, the real or complex single-input--single-output (SI50) system

is contained in this analysis as a special case. Although many of the developments in the literature are

explicitly for SISO systems, these are trivially generalized to an arbitrary (finite) number of inputs (MISO).

Of the remaining developments, most are concerned with SO. but implicitly or explicitly Mil. hence MISO.

systems. With regard to the dimensions of inputs and outputs. therefore, the developments here (liffer from

previously published results principally in terms of the generalized number of outputs. Upon occassion.

we will wish to discuss a result from the literature. In this case we shall remark that we are dealing with

a SISO or MISO system, and let k = 1 and the output and error (defined below) be denoted in regular
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typeface, y(-) and E(.), to denote scalars. Though SI systems do occur in such discussions, we shall not

have occassion to use the scalar notation for the input sequence.

At time n, mathematical model of the form

y(t) = Tl'[t, e(n).,y, u,e, p,q, r] + E(t, 1(n))(1

is proposed to account for the dynamics of the physical system. For any time t, I is a k-vector of functions

of the "present" input u(t), and p. q, and r lags of the sequences y(.), u(.). and e(-,9(n)), respectively.

T1 is parameterized by a matrix e(n), and E(., e(n)) is a complex k-vector error sequence which depends

upon the parameterization. In all models of interest in SM analysis, the additive error sequence appears,

In general, the model will depend upon the time n at which we are constructing the model (we may have

different information at different times). As we shall see below, however, the only unknown in the model

will be the parameterization. Hence. the dependence of the model upon n will arise through the parameters

alone. Accordingly, we show 49(n) as a function of the modelling time n.

It is assumed that a "true" time-invariant model, of form, say,

y(t) = .[t,e.,y,u.e.,p.,q., r.] + e.(t), (2)

is exactly accounts for the observed dynamics. While the form of T1. is known, the "true" parameters, e.,

are unknown and must be sought by the identification. Naturally. we take TI, p, q, and r of the proposed

model to be equivalent to their "true" counterparts. The "'true" noise sequence, E.(-), is generally not

known on a sample-by-sample basis, but certain of its properties are known (e.g., second order statistical

properties) and are attributed to the proposed model error. e(-, e(n)). Whether "local" information about
the error sequence is available or not is one of the distinguishing characteristics of a SM identification

problem. Frequently, identification approaches (in particular, the LSE approach) are based on asymptotic

properties of the sequence e.(-). Asymptotic properties fail to provide pointwise information with which

to pare down the space of parameter estimates. For example, second order statistical properties of the

sequence do not provide much specific information about the value e.(n) at a particular n. This is to be

contrasted with a SM problem, in which known attributes of the error sequence (or. infrequently, of other

aspects of the model) are available at every modelling time n. The following problem statement reflects

this class of constraints.

Problem 1 (General SM Identification Problem) Observations y(t), u(t) . t E [1. n] are "known" to

have been generated by a "true" model of form (2) whose error sequence has a specified set of attributfs.

say A,. on that time range. We propose a model of form (I) with I - .P p = p., q = q.. r = r.. whose

parameters. 0., are unknown. but whose crror sequence has properties , on the given time rang(. Find

the feasible set of parameters, Q(n), such that for each e E (1), the proposed model is consist(nit with

the, observations.



A SM problem will be said to be ill-posed if

Q(n+l) g (n). n=l,2,. (3)

If (3) were not true, it would be the case that there exists a potential parameterization of the "true" model

which is consistent with the observations on t E [1. n + 1] but not those on t E [1. n]. In turn, this implies

the potential for a time-varying "'true" system, in violation of the assumption about this system. This is

an indication that there is something inconsistent in the -pecification of the error attributes, or that the

data do not conform to the assumed "true" model.

2.2 "LP" vs. "non-LP" Models

Models of form (1) can be dichotomized into those which are are linear in the parameters (LP) sought.

and those which are not (non-LP). With regard to the general form (1), we see that any model in which

P has explicit nonlinear terms in the matrix 4(n) is immediately non-LP. For example 2.

y(t) = eH(n)A(t)e(n) + E(t, e(n)) (4)

where A(t) is some m x in matrix of functions of the lags of y(.) and u(.), is clearly non-LP. A model

cannot be LP, therefore, unless it can be written in the form

y(t) = eH(n)x(t) + E(t,4(n)). (5)

This is a necessary, but not a sufficient condition for a model to be LP, however, second necessary

condition is that the vector sequence x(.) contain no functions which have samples of the error sequence

E(-, O(n)) as arguments. One frequent occurrence of this non-LP type of mapping appears in the so-called

output error model (e.g. [52],[121]). For a SISO system3 the output error model takes the form (5) (with

y(.) = y(.). u(.) = u(.), and e(.,9) = E(.,9) scalars). where

x(t) = [ (t - 1) ... [1(t -p) u(t) u(t - 1) ... u(t -q)]H (6)

in which 9(.) represents the sequence y(.) - f(.,O). A second important non-LP model is the S[SO

autorfgressire - moving average with exogenous input (ARMAX) model which is of form (5) with

x(t) = [y(t - I1) ... y(t -p) u(t) u(t - l).. u(t - q) s(t - 1. 0) .. (t - r.O0)]H 7

2 Throughout. superscript H denotes the Hermitian transpose,
'[{enceforth. whenever a SISO system is mentioned in the paper. it is implicit that the model signals and parameters at,

real. This is for two simple reasons: I.To avoid superfluous details and notation, and 2. To accurately represent other research.
The general results of this paper are perfectly applicable to the complex SISO case. In the real case, "H" denotes the real
transpose.
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where r > 1. The autoregressive - moving average (ARMA) model is a special case of the ARMAX with

no u terms present in (7). Details on these non-LP models are found, for example, in [45],[52],[69].

LP models are characterized by difference equations of form (5) in which x(t) is any m-vector of

functions of the lags of y(.) and u(-) at time t. A special SISO case is the autoregressive with exogenous

input (ARX) model in which

x(t) = [y(t- I) y(t -p) u(t) u(t- i) ... u(t- q)]H. (8)

It is conventional to denote the parameters of the ARX model by

19 = [al " ." rp o C1  ... cl]H  (9)

so that the ARX system can be described in terms of the difference equation

P 7

y(t) : .,y(t - i) + E ciu(t - j) + C(t.19). (10)

A pure autoregressive (AR) model is a special case of the ARX model in which no u terms appear.

3 "Other" SM Problems

Before turning to the main SM problems of interest. we return to the broad definition of SM identification

given in the opening paragraphs and note the potential for many other types of algorithms within the

framework of the SM algorithm definition.

A taxonomy of SM methods is shown in Fig. 1. SM techniques are seen to be first subdivided into

those concerned with bounding parameters of input-output descriptions of systems (identification), and

those dealing with bounding state estimates in state space formulations (state estimation). While it is the

former class of techniques which is treated in this paper. it is the latter which is the subject of the seminal

papers on SM theory. The reader is referred to the early papers of Schweppe [102], Witsenhausen [131].

and Bertsekas and Rhodes [15] which treat the bounding of state estimates as a consequence of bounded

errors. More recent work on the state estimation problem appears in [1].[54].[63]4[66].[79],[98]. A significant

number of papers in Russian have also been published. In fact. according to Kurzhanski and V~vli [66],

some of the earliest reported work on this subject appears in the Russian paper by Krasovski [61]. For an

extensive list of papers in Russian. see [66]. While most of the work on state estimation has strong ties to

the identification methods to be discussed in the present paper, the papers by Anan ev and Kurzhaskii [1]

andl Morrell and Stirling [79] represent an interesting departure form the bounded error assumption. These

papers are concerned with bounded sets of probability distributions for a priori and a postrriori state

estimates. These constraints result in hounded sets of conditional mean estimates and error covariance

rn at rices.
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Contemporary research into SM methods has focused to a much greater extent on the second major

subdivision concerned with bounding of parameter sets in input-output models. Most of this work has

treated the BE problem, though at least one broader class of constraints has been studied. Combettes and

Trussell [20]-[22] have rigorously investigated feasibility sets which arise as a consequence of -true" prob-

ablistic attributes of measurement noise. These sets are constrained parameters which result in residuals

which are consistent with the noise properties. Noise properties considered are range, moments, and various

second and higher order properties. Combettes and Trussell [23] have also derived feasibility sets for AR

model parameters under constraints of stability and bounded (in norm) perturbations on the correlation

matrix and vector in the normal equations.

4 The Least Square Error (LSE) Problem

We digress momentarily from the taxonomy of SM methods to interject some material on the conventional

LSE problem. This information will be needed in the "lower levels" of the BE discussion to follow, and

will play a major role in the developments of the paper.

LSE modelling is a classic and well-understood tool for identification which has an extensive research

history quite apart from SM theory. The goals of this brief section are twofold: First, we wish to discuss

the LSE approach in relation to the SM approach in preparation for their combination in the main section

of the paper. Secondly, necessary notation for the future development will be introduced.

4.1 Relationship Between the LSE and SM Problems

The general LSE problem (for the time interval t E [1, n]) is stated as follows:

Problem 2 ((Weighted) LSE Problem) Observations y(t), u(t), t E [1, n], are taken from a system

assumed to follow a "true" model of form (2). For a similar model of form (I), find the set of parameter

vectors (usually a singleton), say E(n). such that for each 9 E -(n). and for any parameters F,

n n
nt=l t=l

where An(.) is a sequence of nonnegative weights which may depend on n. and 1I denotes the Ck norm.

This problem resembles the form of the general SM problem. Problem 1, posed above. In particular.

the result at time n appears to be a "'leasible' set. E(n). However, E(n) is not a feasible set, and this is

not a proper SM problem. The differences between the LSE problem and a SM problem have been alluded

to above and are subtle and revealing.

Feasible sets of solutions in SM problems arise because of some set of attributes we ascribe to the tric

model error at a given time. Any parameter vectors which can produce the given observations and an
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error sequence which has these attributes is feasible. Of course, the true parameters must be an element of

any feasible set. Conspicuously missing from Problem 2 is any explicit statement of the attributes of the

"true" error E.(.) on the range t E [ 1, n]. which are required in an SM problem statement. In fact. we make

no such statement in the LSE problem. Implicitly, we assume that the "true" error sequence is "'white

noise," implying that asymptotically, it will have the smallest possible average squared value in light of the

observed data. We do not necessarily believe that the noise is "small" and "locally white" (on the finite

time range t E [1, n]) although these are precisely the conditions which underlie (1). The justification for

using (11) is that it asymptotically leads to the "'true" parameters if our assumption about e.(.) is indeed

correct. Along the way, the sets E(n) (usually single points) are not generally montonically decreasing,

and do not contain the true parameters 9.. They are not, therefore, "alid feasible sets.

Another way to view the situation above is as follows. Suppose we were to assume that (11) is a

reflection of some attribute. A, which we do believe about E.(t) on t E 1, n]. riz.,

9. is such that - A,(t) 1(1t) jj is minimal. (12)
t=1

In this case E(n) plays the role of a feasible set. Ordinarily. however, E(n) consists of a single point which

is therefore both the estimate and the true parameters. In this case since, generally, -(n + 1) -(n), n

1,2 ... , the SM problem is ifl-posed and our belief in (12) has led to a sequence of time varying true

parameters - contrary to another belief about the system.

However one views the situation, the conclusion is that the LSE problem is not a valid SM problem. The

basic deficiency is the absence of any useful information which serves to constrain the feasible parameters

in finite time. In fact, no attributes are assigned to the "true" error on a finite time basis, and the resulting

"'feasible set" is Q( n) = R.. for any n < -. This results in the necessity of incorporating all data into a

LSE estimate, since there is no point-by-point or finite range basis for doing otherwise. Combining the BE

considerations below will greatly remedy this inadaquacy of LSE processing.

Because we intend to blend the LSE and BE theory below, and also because LSE processing will emerge

as central to another important technique to be discussed, it is important to lay down a formal framework

for LSE identification.

4.2 LSE Problem: Formalities

Our discussions of LSE processing will focus exclusively upon models which are LP. The objective here is

to lay the formal foundation for these future discussions. Much of the formality described here represent

a generalization of developments appearing in the literature.

With reference to Problem 2 and surrounding discussion, we assume the existence of a "true" model of



form

y(t) = 09x(t) + e.(t) (13)

in which x(t) is some m-vector of functions of p. lags of y(.) and q. lags plus the present value of u(.),

and where, in accordance with the discussion immediately above. e.(.) is the realization of a zero-mean,

second moment ergodic, vector-valued random sequence whose components are independent:

E{e.(k- i)e j(k - j)} = lira e.(t - i)e(t - j) = a2 6(i - j)I (14)
n t=1

where E{.} denotes the expectation, cr2 is some finite constant, 6(.) is the Kronecker delta sequence (e.g.

[45, p. 37]) and I is the m x rn identity matrix. No finite time attributes are ascribed to e.(.). At time n

we wish to use the observed data on t E [1, n] to deduce an estimated model of the form (5).

y(t) = eH(n)x(t) + E(t. 9(n)) (15)

For the LP problem, the identified parameter vector will be unique for each n (e.g. [45],[52],[69]), but will

generally change at every step. Hence. the index n is very significant. In particular, we desire the weighted

LSE model for which 9(n) satisfies (11).

e(n) can be found as the solution of the following classical linear algebra problem [461: Given data (or

a system of observations) on the interval t E [1, n] (n > m), and some set of error minimization weights,

say A,(.), form the overdetermined system of equations

-K Y ( I )-V/A,_C) xH (2) - F 1)y 1 (2) (16

A(2),H() A(rj)yH(n)

A (n)OXH(n) - V/A--y~n

den ot ed

X(n)I = Y(n) , (17)

and find the LS estimate, 9(n), for the vector 1". Because of this interpretation, the pair (y(t).r(t))

could appropriately be called an equation in many contexts in the following. This term is not always

satisfactory. however. Whereas the term "'datun" is inappropriate to describe (y(t), x(t)), and "data- can

be misleading, we will frequently refer to (y(t),x(tMl as the data set at time t. The expression "'per t"

should be interpreted to mean "por data set."

There are well known nethds to solve this problem. The first is the "'batch- solution given by [461

19( { = xH(n)X(n) XH(n)Y(n) (IS)



with the matrix in brackets playing the role of the weighted covariance matrix4 . i.e.,
71

C(n) = XH(n)X(n) = Z An(t)x(t)xH(t) (19)
t=1

For future reference, we also note that the "auxiliary matrix" on the right side of (18) can be expressed as

it
C(n) XH(?n)Y(n) ZA,,t)x(C)yH(t). (20)

t=1

When written explicitly in the form

C(n)9(n) = Cxy(n) (21)

this equation is frequently refered to as the set of normal equations.

When the weights are time varying by virtue of time-dependent scaling of previous weights at time n.
i.e.,

A _1 (t)
,(t) = Vt < n- 1, (22)

(n - 1)

where ((.) is a time dependent normalizing sequence, then the weighted LSE solution can be computed

recursively using the relations [81]

C,(n) = C(n)/C(n) (23)

c-l(n) =- Ql(n- 1)- An(n) C s (n- 1)x(n)xH(n)C-l(n- 1) (24)
1 + A,,(n)G,(n)

e(n) = 9(n - 1) + A(n)C-l(n)x(n)eH(n.9(n - 1)) (25)

where G,(n) / x 1 (n)C- 1(n- I1)x(n). For future reference, let us also define the "unscaled" version of this
last quantity, G(n) _G(n)/(n) = H(n)C-1(n -)x(n). (in general, quantities with subscripts "'s" Will

indicate that the scale factor is included, and those without such subscripts are the unscaled counterparts.)

As an aside, we note that the scaling sequences ((.) will play a key role in the developments to follow.

One peculiarity will occur with regard to this sequence in a very important SM algorithm. In this case

((.) will be such that, for each n, ((n - 1) depends on a quantity which will not be computed until time

n. In general, we shall distinguish between "causal" and "noncausal" scaling sequences. A causal scaling

sequence ((.) is one for which, for every n, and for all n' > n. -(n) is independent of any quantity which

is not computed until time n'. In simple terms. a causal scaling sequence is one which does not depend

on "future" processing to determine its "present" values. If (() is not causal, then it is noncausal. It

might seem that a noncausal sequence would be all but impossible to work with, but, as noted, we shall

encounter one interesting case to the contrary.

4 More precisely, this is a normal matrix which becomes a -covariance- matrix asymptotically if scaled by 1/n. and if tht
mean of the vector x(f) is zero for all t. We shall use the conventional term "covariance" in this work.
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When the scaling sequence -(.) is unity for all time, then the (24) and (25) are usually called recursive

least squares (RLS) (e.g. see [69][81]) or sequential least squares (SLS) (e.g. see [45]), and the word
.'weighted" is sometimes added to give WRLS or WLS. When the scaling factor is taken to be constant,

say ((n) = a - ' Vn, and such that 0 < a < 1. then a is called a fogetti2g factor (FF), and acronym like

"SLSFF" might be used. In any case, we will use the acronym "WRLS" to refer to a recursive computation

of the weighted LSE solution, and in particular we will call (23) - (25) MIL-WRLS to :ndicate recursions

based on the matrix inversion lemma (.I1L) [45].[69][8 1]. This is to be juxtaposed with QR- IVRLS

described in the following paragraph.

Whn the weights conform to (22). one can use a contemporary WRLS algorithm based on the QR

de composition of the X(n) matrix of (17) (2s14[331,[431,[481,[711,[721. The procedure, in principle, involves

the application of a sequence of orthogonal operators (Given's rotations) to (17) which leaves the system

in the form
T(n) Di(n)
__ __ _ = _ __(26)

0 (n-nz)xm D 2 (n)

where the matrix T(n) is an m x m upper triangular Cholesky factor [46] of C(n) (see (27) below), and

0,, denotes the i x j zero matrix. D 1(n) and D.2(n) are m x k and (n - m) x k matrices, respectively.

which result from the operations on Y( n). It will be useful in our work below to note that

C( X) = xH(n)X(n) = T1 (n)T(n) (27)

because T(n) represents an orthogonal transformation on X(n). The system

T(n)9(n) = D1 (n) 2S)

is easily solved using back substitution [46] (k times, once for each column of 9(n) and D1 (n)) to obtain

the LSE estimate. 9(n). When the n + 1" data set becomes available, it is weighted by [A,+,(n + l)]i/2

and the matrices T(n) and DI(n) are scaled by ,(.)) - 1 2 before incorporating this new informalion. This

procedure can be performed in a recursive manner using only about m2 + km memory locations. Details

for the SISO case (which are easily generalized) are found in [28].[33].[4,8].[71]. We shall ;ise the name

QR-WRLS to refer to this form of the recursion. This formulation mak,, possible the solution of the

ellipsoid algorithms to he described on contemporary parallel architectures (discussed in Section 6.7) for

great speed advantages.
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5 The Bounded Error (BE) Identification Problem

5.1 Overview

We now return to Fig. I and the survey of SM methods and discuss the most widely researched group of

techniques, those based on a BE constraint. The general problem statement is as follows:

Problem 3 (BE Identification Problem) Observations y(t), u(t). t E [1. n] are --known" to harc been

generated by a "true" model of form (2) whose error sequence is5 "'pointwise energy bounded"

A, e 11 ()2< a(n), (29)

where (.) is a known positive sequenceb. IV( propose a model of form (I) with / =_ P p = p.q

q., r = r., whose parameters. e,, are unknown. but whose error sequence adheres to A, at time n. Find

the feasible set of parameters, Q(n). such that for each e E Q(n), the proposed model is consistent with

0 the observations.

BE methods are categorized into those which the models are LP and those which are non-LP (see

Section 2.2). The feasible solution sets that arise as a consequence of error bounding assume different

geometries in the parameter space, depending on the form of the model. In general, constraints of form

(29). in conjunction with a model of form (1) and the measured data. imply pointwise feasible sets

,(n) = fe1 I y(n) - P[n..y.u,ep.q.r] !I< (n)}. (:30)

These can be intersected over time to create a feasible set over the range t E [1, n]!

t=1

For a non-LP model the "local" ,'(n) are generally hypersurfaces in C "  which, when intersected over

time, create sets which may have highly irregular geometries and which need not be connected in the

parameter space (see e.g. Fig. 2 and [121]). The work that has been (one on such problems has been

largely concerned with developing novel algorithms for MISO. real parameter. systems,.which bound Q(n).

Specific approaches can be found in [6]. [4].[ 1814 19] [:34-[:6] [56] [.[74] 4] [90] [933.[97]4[14].[1 0].

1 13), [12:3]. [12:1., [128].129]. Since the focus of this paper is upon a special class of LP methods an(t signal

"This is slightly less general than stating asv metrical amplitude bounds. ,m , ) <11 -. (n) 11< b ,). ut the very
Aight loss of generality is worth the significant analytic gain afforded by this a.ssumption.

';We shall assume this sequence known throughout this paper. While determination of appropriate error bounds often
follows naturally from the physical constraints of the problem. in other cases this determination is challenging. One theorti,-al
approach is found in [1201. while an experimental discussion for a particular application is found in [2(1].
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processing applications, we shall not further pursue the topic of non-LP models 7 . An excellent place to

begin a review of non-LP methods is with the recent paper by Walter and Piet-Lahanier [121].

In the LP model case, error bounding implies pointwise "'hyperstrip" regions of possible parameter sets

in the space,

=y(n) - e9Hx(n) 112< -Y(7) (:32)

which, when intersected over a given time range (see (31)), usually form convex polytopes of feasible

parameters (see Fig. 3). Three different approaches have been introduced which describe or characterize the

feasible parameter sets. The first approach (developed for real, generally MISO, systems) produces exact

parameterized descriptions of these polytopes [7].[ 16].[ 17].[73],[77],[78],[92],[122],[ 125]-[127]. Although this

approach is recursive and simple, its computational complexity increases with the number of vertices of the

polytope. The second approach (also for real MISO systems) gives orthotopic outer bounds of the solutioi,

sets [5],[73],[77]. This approach yields exact parameter uncertainty intervals at the expense of very complex

computations. The third approach is of much lower complexity compared to the first two and works with an

outer bounding' hyperellipsoid. a superset of the polytope (24],[26],[27],(29]-[:32],[37],[38],[41],[49],[51],[84]-

[89],[99]-[101].

Ellipsoid algorithms are often presented as BE procedures, and indeed they do follow from the BE

constraints. However, they are more fruitfully viewed as a marriage between the LSE and BE problems

for LP models. With this point of view. signal processing engineers have begun to exploit the benefits of

BE information in the context of LSE identification problems. To stress this point of view, we feature the

ellipsoid algorithms in their own section to follow. This subject will be covered in considerable detail and

will comprise the remainder of the paper.

6 Combining the LSE and BE Problems: Ellipsoid Algorithms

6.1 A Unified Optimal Bounding Ellipsoid (UOBE) Algorithm

Please note that the rigorous development of several of the key results to follow are found in the appendices.

The benefits of combining BE considerations, when they are known. with LSE identification have

b*en alluded to in Section 4.2. LSE identifiers exploit no point-by-point information which can he used

to ascertain the usefulness of observations. This fact manifests itself in the effective retention of the

entire parametpr space as a "feasible set.' and results in wasteful processing. The idea to combine BE

t, Miderations with LSE identification did not arise out of a quest to make LSE processing more efficienl.

With one exception. Methods developed for ARX (LP) models have been extended for use with ARMA and ARMAX

(non-[,P) models [84].[ 9 9 1.[ 10 1]. We will discuss these techniques below.
'Inner bounding algorithms of the last two approaches have also been presented in [83],[116].
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however. Rather, it resulted from the discovery that ellipsoid bounding algorithms are very closely related

to WRLS. While, clearly the feasible set arising from any SM algorithm will contain the LSE estimate, it

is the ellipsoid algorithms which have a particularly attractive relationship.

We begin by seeking a solution to the SM (BE) problem. Since we are working with an LP model, the

BE constraint (see Problem 3) is given by

11 y(n) - e'x(n) 1l2< (n). (33)

It follows readily that (see Lemma 1 in Appendix A.2)

A* t) y(t)- eHX(t) 112< Z ,A(t)Y(t) (34)

t=1 t=1

for any positive numbers A,(t), t E [1, i]. For any nonnegative sequence A,(-), (34) specifies a set to which

e9 must belong. Let us denote this set,

* n

Q {n (9 An (t1y(t) - e91X(t) 112< I:An(t)-y(t)} (35)
t=l t=l

Note that all elements of Q(n) need not be in the usual feasible set, Q(n), consisting of the intersection of

pointwise "hyperstrips" (see (31) and (32)). In fact, Q(n) can be almost any size depending on the choice

of numbers A,(t),t E [I.n]. (Note that A.) is indexed (subscript) by the end-time n because we might

wish to have a completely different sequence of parameters at each n1 to control the size, placement, etc.

of the hyperellipse.) Whatever sequence A,(.) is chosen, however, the set Q(n) must contain the feasible

set, and therefore 49:

9. E Q(n) C Q(n). (36)

The following development is rigorously supported by Proposition I in Appendix A.l. Some manipu-

lation of (35) shows that the set Q (n) may be expressed as follows:

Q(n) = { tr {e - &(n)]H(, - (,)]} < 1} (37)

where tr{.} denotes the trace of a matrix. This set as a hyperellipsoid in 7R2rxk. with its "center" at

0 &- n ). We give meaning to the term "hyperellipsoid" below. The fundamental connection of this ellipsoidal

set to to the weighted L."E problem is as follows: The center of the elhpsoid is exactly the weighted LSE

estimate using weights A,(.).

e,(n) = e(n). (38)

and the ellipsoid matrix P(n) is a scaled version of the associated covariance matrix

C(n)

NO) -
*(,



(see (18) and (19)), and where K(n) is the scalar quantity,
?1,

K(n) d'f tr{e(n)C(ni)e(n)} + E'y(t)A,(t) [1- 7-'(t) I Y(t) 112] (40)
t=1

To give meaning to the 'erm "hyperellisoid," consider a single column, say Oi(n), of 4(n), corresponding

to output yi(') in vector y(.). Using (37), we see that Oi(n) is constrained to be an element of a set which

is properly called a hyperellipsoid. say.

=i(n) Oi I [Oi-Oi(n)]H C(n) [ - Oi(n)] < 1}. (41)

In particular, when 61 (n) is real and of dimension two, the perimeter of Oi(n) is precisely what is con-

ventionally regarded as an ellipse in IZ 2 (see Fig. 3). Notice that all outputs yi(), i= 1,2,...,k, will

apparently share the same "ellipsoid matrix," C(n)/OK(n), but their corresponding ellipsoids will be cen-

tered on different estimates. This fact will be important in the optimization problem to be discussed

below. Also note that the influence of the -'other" outputs in y(.) on the ellipsoid Qi(n) arises through the

parameter ,(n). This means that the MIMO solution, as we shall describe it here, is not equivalent to a

decomposition of the problem into k MISO systems. However, the MIMO problem does correctly include

the MISO problem as a special case.

We conclude therefore that under known BE constraints, a hyperellipsoid can be associated with a

weighted LSE estimation problem and conversely. This set is illustrated in Fig. 3 for the two-dimensional

case. Clearly, the weights A,(-) parameterize the ellipsoid and presumably can serve to minimize its size

and orientation in the parameter space. Anticipating that we will want to work with recursive least

squares estimation, let us henceforth restrict our attention to weight sequences which conform to the

scaling pattern9 (22). This effectively restricts to one ( viz. A,(n)) the number of free parameters available

to control the bounding ellipsoid at tite it. The central objective of a bounding ellipsoid algorithm is to

employ the weights in the context of LSE r'stimation to sequentially optimize some feature of the ellipsoid

(directly or indirectly related to its "size"). A significant benefit is that often no weight exists which can

minimize the ellipsoid, indicating that the incoming data set is uninformative in the SM sense.

While it may not be immediately apparent from the original developments in the literature, all published

bounding ellipsoid algorithms, both adaptive and nonadaptive, adhere to the following steps. Let us refer

to this set of operations as the Unified Optimal Bounding Ellipsoid (UOBE) algorithm (for a complex

MIMO LP system): At time n.

I. In conjunction with the incoming data set (y( n), x(n)), find the weight, say A,(n), which will prospec-

tivoly optimize some quantitativo feature of Q( n) related to its "size." (This will require knowlodgo

of C(n - 1). K(n - l). and ((n - 1).)

'An exception to this rule is that, for adaptive strategies to be discussed below, we will additionally allow A,(t) to be et

to zero for one or more t < n - 1.

15



2. Discard the data set (y(n),x(n)) if A,(n) < 0.

3. Update C(n) and 1(n) using MIL-WRLS or QR-WRLS (see Section 4.2).

4. Update (n) according to (40) or one of the recursions given in Lemma 2 in Appendix A.2.

With one exception (see Dasgupta-Huang OBE algorithm below), all published OBE algorithms operate

on the principle of minimizing a set measure on ! (n) by choice of A(n). For a SISO system, Fogel and

Huang suggest two set measures for the optimization. The first is the determinant of the matrix #- 1 (n).

2 f( n)} f. det{145-1(n) }1 (42)

and the second is the trace,
90~f(n)}d' tr {#-'(n)}. (43)

(Having established these quantities as set measures on f(n), for simplicity, we shall henceforth write

jL,(n) and 4t(n). We shall also occassionally write j(n) to mean "either M,(n) or A.t(n).") In the MISO

case in which O (n) is clearly intepretable as an ellisoid (see (41)), uv(n) is proportional to the square of

the volume of the ellipsoid, while Ipt(n) is proportional to the sum of the square root of its semi-axes. A

moment's reflection will indicate that the same two measures are meaningful in the MIMO case, since they

result in the minimization of the volume or trace of the common ellipsoid shared by all the outputs (see

discussion below (41)).

It is shown in Proposition 2 in Appendix A.1 that. when the scaling sequence is causal (see discussion

below (25)), then A,(n) is the unique positive root of the polynomials F,(A) and Ft(A) for the volume and

trace measures respectively, where F, is a quadratic,

Fv(A) = a 2 A2 + alA + a0 , (44)

and Ft is a cubic polynomial

Ft(A) = b3A3 + b2 A2 + blA + b0  (45)

The coefficients a, and bi are given in terms of quantities which are known prior to time n.

Interestingly, we will find that the optimization procedure is not "locally" affected by a causal scaling

process. This is so because neither measure u, nor Mt is changed when the scale factor is included. To

show precisely what we mean by this, consider the optimization problem at time n. All previous w,ights

will be modified by scale factor ((n - 1). We have called the resulting covariance matrix C,(n - I)

C( n - I )/ '(n - 1). The definition of K( n - 1)in (40) will indicate that the effect of weight scaling on this

quantity is likewise a simple scaling,
= n -)16
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Accordingly, the ellipsoid matrix C(n - l)/K(n - 1) is changed to C,(n - 1)/K,(n - 1). by the scaling

procedure. Note, however, that the scale factors cancel in this ratio, so that either of the measures of size

will remain unchanged. It is very important not to infer that the optimization process is independent of

the scaling factors. Clearly the existing covariance matrix and K value at each time is influenced by the

complete history of the scale factors. The consequence of the analysis above is simply that the ellipsoid

volume at a specific time is not affected by scaling. This will have implications for theoretical developments

surrounding the optimal weight (see Proposition 2) in Appendix A.l.

Finally, we note an important fact to which we will return in Section 6.6. For the volume algorithm

using weights of form (22), it can be shown that, if an optimal weight exists, it will definitely shrink the

volume of the ellipsoid. A similar result can be obtained for the trace measure [80]. This has important

implications for convergence of the ellipsoid, the analysis of which has been widely misunderstood.

A detailed version of the UOBE algorithm for a MISO system, which is based on QR-WRLS and the

volume criterion, appears in Fig. 4. It should be clear how to incorporate changes necessary to implement

a "trace" algorithm, or to introduce additional outputs. This general algorithm will embrace any of the

specific algorithms discussed below. We now discuss variations on this general algorithm.

6.2 The Fogel-Huang OBE Algorithm

6.2.1 History and Development of F-H OBE.

The first major journal paper on the application of ellipsoid algorithms to parametric LP models was

published by Fogel and Huang in 1982 [41]. The Fogel-Huang algorithm is frequently called the optimal

bounding ellipsoid (OBE) algorithm, and we shall adopt the name "F-H OBE" in this paper to distinguish

it from another algorithm to be presented below. F-H OBE was originally presented for the SISO ARX

model, but it is easily generalized using the developments described in this paper. This method follows

the basic framework of the UOBE algorithm enumerated above, with the following specific conditions:

1. ('(n) = K(n) for each n,

2. MIL-WRLS is used to implement the recursions (but QR-WRLS can be used as well):

3. Set measures (42) and (43) are employed.

It is interesting to note that. because the scaling sequence (.) is equivalent to the sequence K(.) in F-H

OBE. the ellipsoid matrix at time ni. 0( n). is identical to the scaled covariance matrix C,(n) = C(u, )/C( )

whose inverse is computed directly in the course of the MIL-WRLS equations. This is a consequenco of

the geometric approach taken (see below) rather than a deliberate choice of the scaling sequence. We also

note that there is nothing to preclude the use of QR-WRLS in conjunction with F-H OBE. Alternative
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versions of OBE have been published and will be described below, but first it is interesting to place the

F-H OBE development in historical perspective.

In [41], using the BE constraints only, Fogel and Huang arrive at the ellipsoid of form (37) and recog-

nize that the center of the ellipsoid is a weighted LSE estimate. However, the LSE problem is not pursued

directly. Instead, tie fact that elipsoids can be used to bound the feasible set is used as a motivation for

the following geometric approach: Assume that a membership set Q(n - 1) is known at time n - 1. We

need not be aware of parameters A,0_(t), t E [. n - 11, nor even that there is a LSE problem underlying

the membership set. The objective is to find a new (small, if possible) ellipsoid which superscribes the

intersection of ! (n - 1) with the incoming feasible "hyperstrip" ,'(n) (see (32) and Fig. 5). The work of

Kahan [53] had shown that a family of such circumscribing ellipsoids could be computed using relations

which the authors then manipulate into the equations which comprise F-H OBE. The quantity q(n) (equiv-

alent to A,(n)) emerges as a single parameter with which to control the size of the ellipsoid Q(n). We will

henceforth refer to q(n) as A,(n), even though this does not connote the geometric spirit of the original

F-H OBE development.

F-H OBE is sometimes called the rnininum volurne sequential (MVS) algorithm when it is is based

upon sequential minimization of/zt.(n). This involves the construction, and solution for the roots of, the

quadratic equation (44) to find the optimal parameter A,(n). Similarly, the minimum trace sequential

(MTh) algorithm is based upon minimization of /t(n) by optimizing ,(n). This procedure requires the

construction and solution for the positive root of the cubic equation (45).

The F-H OBE algorithm was the first UOBE-type algorithm to be presented as having potential

benefits for signal processing [49]. These benefits derive from the optimization procedure, as alluded to

above. Generally speaking (precise comments are found in Section 6.6 below), as n increases, the true

feasible set Q(n). and the ellipsoid P(n), decrease in size and it becomes increasingly likely that"

Q(n) = .;(n) n2 Q(n - i) - Q(n - 1). (48)

This means that the new data set is not providing any useful information in the sense of shrinking the

membership set. There is no positive parameter A,,(n) with which to combine the data set at time n

with the current ellipsoid to create a smaller ellipsoid. The manifestation, therefore, is that the "optimal"

parameter in the sense of minimizing p(n). A,(n), is nonpositive. In this case the data set at time n should

be rejected and the computational effort of processing it avoided. In many simulations and experiments

with real data e .a. [2 1],[29],[32].[49]). typically 70 - 957 of the data are "'rejected" in this sense.

"lt also becomes increasingly likely that

ofni = -fin o (n - 1) = Qln - 1), 171

but this does not necesarily mean that the incoming data set cannot be used to minimize the ellipsoid.



A critical point about this data selection process nust be made which was not necessarily evident in the

early papers. One must be very careful not to infer that the complexity of the F-H OBE (or any UOBE)

algorithm is drastically reduced (say, by 90%) by virtue of this data selection procedure. In fact, in its

basic form. if the parameter matrix -. is of dimension rn x k. then each of the optimality checks requires

0(tn2) complex floating point operations (cflops), then. when accepted another 0[(2 + .5k)nz2 ] cflops are

required to update the covariance matrix and parameter estimates"1 . To process the data set directly

using WRLS requires 0(3m2) cflops. While a dramatic decrease in the number of data used results, the

computational load is not significantly decreased. especially for large Yn. There are methods to remedy

this problem which will be discussed below.

As an aside, we note that the MIVS version of the F-H OBE algorithm is suboptimal in the following

sense. When one of the hyperplanes bounding -;( n) does not intersect Q(n - I). a smaller (volume) (( n)

can be achieved by repositioning the nonintersecting plane to be tangent to Q(n - 1). Belforte and Bona

have suggested this procedure in [5] (see also [9]). As pointed out by Walter and Piet-Lahanier [121].

the modified procedure is equivalent to the ellipsoid with parallel cuts (EPC) algorithm developed by

researchers working in linear programming [59].[103].

6.2.2 Dasgupta-Huang OBE

A significant variation on the F-H OBE algorithm has been suggested by Dasgupta and Huang [24] since

the publication of the originai algorithm. Again. the method is originally developed for the SISO ARX

model, but can be generalized using the devlopmnents in this paper. The Dasgupta-Huang OBE (D-H

OBE) algorithm has two unusual features with respect to all other UOBE algorithms. These are the use

of nroncausal scale factors, and an optimization procedure which does not seek to directly minimize a set

measure on Q(n). D-H OBE employs the sca!e factors

*-((n - 1) = (1 - A (7n))-  (1

With reference to (19) and (22), it is seen that. for a given optimal weight A( n). the updated co,ariance

matrix is a convex combination of C(n - 1) and the new data outer product.

* ~C(n) =( I - A'(n))C(? - 1) + ?50)n~1 (r (I

\ ordingly, this choice of scale factors constraints the optimal weights to the range [0, o] for o < 1. The

central benefit of this method is that it provides the means with which to prove asymptotic and exponential

convergence of the ellipsoid, and cessation of updating, iising Lvaponov theory. ,'pon convergence, the

rosidi)als, _(. &(.)) are guaranteed to rnain in the "dead zone" indicated by the error houin(s, i.e..

Throtuihout a (flop i taken to he one -omplpx multiplication and in,. , omple.x iddition

* 19)



lim (t.9(n)) 12< 1(t). The number (1 - A*(n)) is referred to as a "forgetting factor" by Dasgupta
n -,

and Huang, and, although it does serve to downweight the past contributions of to the covariance matrix,

it is not a forgetting factor in the conventional sense, since it is not a free parameter and therefore does not

eplicitly control adaptation. The algorithm does exhibit some adaptation capabilities as do other UOBE

algorithms due to the optimal data weighting. Explicitly adaptive UOBE algorithms will be discussed

below.

A second significant difference in the D-H OBE algorithm occurs in the technique employed for deter-

mining "optimal" weights A*,(n). Rather than minimize a set measure such as (44) or (45). the weight is

chosen to minimize P(n). subject to the constraint that it be in the allowable range [0, al. The reason for

this choice is that N(n) is a bound on the Lyapunov function used in the minimization. A side benefit is

that the check for usefulness of the data set is very cost effective. We will return to a discussion of this

*"unconventional" optimization technique. as well as issues of computational efficiency, in two places below.

It is notable that. in spite of the "noncausal" scaling factor ;t time n - 1. ((n - 1), which might be

expected to create intractable nonlinearities with respect to A*(n). it is still possible to derive polynomials

like (44) and (4.5) with which to optimize set measures of Q(n) [68). Doing so, however, defeats one of the

main purposes of using the complicated scale factors, and whether such an optimization has any usefulness

remains an open question. We return to this issue in Section 6.5.2.

6.3 The SM-WRLS Algorithm

6.3.1 History and Development of SM-WRLS.

Whileo developed geometrically, we know that the F-H OBE algorithm solves a LSE problem with time
varying wights. From this point of view. it is interesting to note that the algorithm is charged with focusing

on the hyperstrip 't n) associate(] with the "new" data set. Intuitively, the scaling down of previous weights

is consistent with this concentration on the new data set. However, it is prudent to wonder whether a

tighter, or at least "simpler" membership set could be found. The SM-WRLS algorithm, to which we now

turn, addresses both the concern for a more conventional algorithm and the more "'uniform" attention to

the true feasible set.

Even though Fogel and Huang clearly state in their 1982 paper that there is an LSE problem underlying

F-H OBE. the geometric approach taken tends to obscure its presence. The approach. notwithstanding.

ho%%ever. the irnilaritv of the F-H OBE (as well as the D-H OBE) equations to WRLS is striking. and

it has not gone unnoticed in the literature. In their recent paper, Walter and Piet- Lahanier make the

following remarks 11211: "Let us ,tress. however, that the EP(' and MVS algorithms are not just another

variat ion of R LS. As Schweppe puts it [021. a comparison of set theoretic concepts with stochastic theory

rewvals that
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1. the detailed mathematical manipulations are very different.

2. the final equations look similar,

3. the final equations behave quite differently in general.

"Moreover, the type of information needed is completely different. The RLS algorithm only requires

measurements, whereas the EPC and MVS algorithms also require bounds on the errors." As we know

from above, however, the difference between WRLS and F-H OBE (or any UOBE algorithm) is not as

different as one may infer from these comments. As Norton and Mo have recently written concerning

F-H OBE [861, "The algorithm [F-H OBE] differs from recursive least squares by an extra data-dependent

scaling of [the ellipsoid matrix #(n)]." In a 1989 paper, Deller [26] similarly recognized that "[F-H] OBE

is 'WRLS with time varying weights'." It is this recognition, combined with Norton and Mo's formulation

for adaptive ellipsoid processing, that led to the UOBE formulation taken in this paper. (We will see that

UOBE also embraces adaptive strategies below.)

Until recently, however, this uniformity of ellipsoid algorithms was not fully appreciated. In the early

and mid 1980's, Deller and students [30],[37],[38].[70], recognized the similarity of F-H OBE to RLS,

attempted to associate an ellipsoid directly with WRLS rather than conversely. The result is an OBE-

like algorithm which is exactly interpretable as conventional WRLS (i.e., only equations (24) and (25)

with C,(n) = C(n) or ((n) = 1, Vn). with the sequence of optimal ellipsoid parameters An(.) simply

interpretable as the weights used in the process. Fogel and Huang's volume measure jz(n) has been used

as the optimization criterion, but the trace measure can be employed as well. In later work, the use of

QR-WRLS was suggested to enhance the method in a number of ways to be described [26].

The algorithm proposed by Deller and others has been called set membership weighted recursive least

squares (SM- WRLS) to emphasize the nature of their approach. SM-WRLS is. in fact, a UOBE algorithm

with the following conditions:

1. ('(n) = I for each n;

2. QR-WRLS is used to implement the recursions (but MIL-WRLS can also be used):

3. Volume measure /,(n) is used as the optimization criterion (but Pt (f7) can be used as well).

6.3.2 Illustration

At appropriate points in the paper, we will illustrate the behavior and performance of the UOBE ap-

proach through simulation studies. A common set of two systems will be used which will be introduced

here. For simplicity, the SM-WRLS algorithm is used as the nominal algorithm. The volume measure

is employed as the optimization criterion. Many other example studies are found in the literature (e.g.
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[9],[24],[26],[27],[41],[49],[86],[89],[101]) including some with real data (e.g. [29],[77]). In particular, many

studies with time-invariant systems have been published, so we advance immediately to the case of time

varying parameters.

We consider the estimation of the parameters of a real signal, real parameter, time varying AR(2J

model of the form 12

y(t) = al.(t)y(t - 1) + a2.(t)y(t - 2) + .(t) (51)

with 1.(t) = [ai.(t) a2 ,(t)]H. Two similar systems will be used. The first is a more severe test of the

tracking ability of an identification algorithm. In this case the pole pair of the system alternates abruptly

between 0.8 ± jA.2 and -0.8 ± j0.2 every 1000 samples, so that a,. alternates between ±1.6, and a2.

remains constant at 0.68. In the second system, the poles alternate between the same sets of conjugate

pairs. but the transisitions are gradual rather than abrupt. In this case a,. changes linearly (between +1.6

and -1.6 and vica versa) over 1000 point ranges, then remains fixed for 1000 point intervals. We shall

refer to the two systems as the -'fast" and -'slow" systems, respectively, though we hasten to point out the

the "'slowly" time varying system does not represent a trivial tracking problem. Since only a,. changes in

each case, it is the more interesting parameter to observe. To conserve space, we show only the results for

a,. in each simulation. We found nothing particularly unusual or unexpected in the results for a2,.

A 7,000 point sequence, y(-), was generated by driving the parameter sets with an uncorrelated sequence,

,( )which was uniformly distributed on [-0.5, 0.5]. ,.(.) was generated using a random number generator

based on a subtractive method [94].

The inherent ability of UOBE algorithms (without any special adaptive provisions) to adapt and track

time varying parameters is sometimes quite dramatic. In this work, we have intentionally chosen systems for

which SM-WRLS exhibits less than excellent tracking performance in order to ilustrate several important

points. For reference, in Figs. 6 (a) and (b), we show the results of using standard RLS in the identification

(no data selection and optimization. A,,(n) = ((n) = I for all n). The algorithm is clearly incapable of

following the parameters in either the fast or slow case. The RLS results can be contrasted with those using

SM-WRLS in Fig. 7. Though not excellent. the SM-WRLS results are improved with respect to RLS (at

least initially), and it is important to note that this improved performance comes with somewhat improved

computational efficiency (more on this below). In this case SM-WRLS uses only the fractions p = 0.020

(fast systemi) and p = 0.025 (slow) of the data and vet yields better parameters estimates in the early

stages of identification. However, two important points are to be emphasized here. First. SM-WRLS does

not rmliably and predictably adapt to time varying systems. Even for more slowly time varying sYstens.

2Note that for the first time in this paper, we have allowed the dynamics of the "'true" system to be time varying. The

theoretical developments above do not strictly support the identification of such systems, so the issue of adaptation is an
Important one to which will shall pay close attention in the following.
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SM-WRLS (and UOBE algorithms in general) cannot be used in adaptive schemes with confidence. This

motivates the need for specifically adaptive techniques. Further, a deeper analysis of this situation reveals

a very important second point. The quantities p ,n) and the sign of K(n) (sgn{K(n)}) are shown in Figs.

8(a) and 8(b), respectively. At time n = 1000 we see a very disturbing development. The volume begins

to increase, and the parameter K becomes negative. Both of these trends are in violation of theory, but

they arise precisely because the theoretical development does not strictly support the identification of time

varying systems. The most revealing anomaly is the appearance of a negative K which indicates an "'ellipsoid

of negative dimensions." Theoretically speaking, the algorithm has become completely disintegrated at

time n = 1000, and its performance is therefore not predictable based on SM principles. Nevertheless, we

see that the parameters continue to be tracked rather well for at least another cycle. Apparently. there

is significant benefit to using the "optimization'* process even if the success is not analyzable. In fact, we

have seen this phenomenon in many other simulations. It is more likely to occur with rapid changes in

dynamics (as we discuss below), but may occur in slower systems as well. The conclusion is that, not only

is the apparent adaptive capability of U OBE algorithms unpredictable, but even when good tracking does

occur, the good performance is not necessarily attributable to the proper principles of the underlying the

methods. In turn, this latter observation adds to the uncertainty in predicting adaptive performance. We

shall return :o these points in future discussions.

6.4 Adaptive UOBE Algorithms

6.4.1 Introduction

While UOBE algorithms have been observed to have inherent and fortuitous adaptive capabilities as a result

of their optimal weighting strategies, we have just seen that these capabilites are unpredictable at best. Ac-

cordingly, measures have been suggested by Norton and Mo [86], and Dpllr and Odph [26],[27].[31].[32].,S 7] -

[891 to render explicit and controlable adaptation 3 . Of three general methods suggested by Norton and

Mo, the bound incrementing method does not closely follow the UOBE paradigm established above. so

we refer the reader to the original paper for details. The other two Norton methods are discussed below.

All adaptive strategies for ellipsoid algorithms work on the general principle of iteratively inflating the

"'current" ellipsoid in some sense before considering an incoming data set. The basis for this inflation

is to contain the shifting true parameters while at the same time increasing some measure of "-size" of

the ellipsoid (see (42) and (43) below), making it more likely that the incoming data, with potentially

novel information, will be selected. Deller and Odeh have suggested the use of QR-WRLS in the adaptive

methods because of the convenient, computational interpretation of the procedure. In principle, however.

1 Additionally, Norton and Mo briefly discuss adaptive strategies for other than ellipsoid algorithms.
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MIL-WRLS can be used as well.

6.4.2 Exponential Forgetting

A general UOBE algorithm can be designed to be explicitly adaptive within the established framework

by judicious choice of scaling sequence <(-), One seemingly reasonable choice is to let the scaling effect a

conventional forgetting factor,

(n)=a 0 < a < 1 (52)

for all n. The computational mechanisms for including such a forgetting factor into both forms of WRLS

is found in Section 4.2. Additionally, if another scaling sequence "(.) is part of the algorithm for some

purpose other than adaptation (e.g. in F-H OBE). then the sequence ((.)/a can used for scaling in order

to achieve forgetting. Deller and Odeh have called this method exponential forgetting, while Norton and

Mo call it scalar bound inflation because of its equivalence to progressively "loosning" the past -f bounds

(see (29)) as time goes on. Norton and Mo also point out that once any past optimal weight is tampered

with, all weights in its future become suboptimal in the sense considered above and should, in principle,

be reevaluated. As they acknowledge, however, this is not practically feasible in most applications.

One important detail must be made clear. We have noted in the discussion surrounding (46) that weight

scaling will effect both the covariance matrix C(n - I) and parameter K(n - 1) in such a way that the

overall ellipsoid matrix is not affected. This means that the "expansion" we desire in the present context

will not take place if the scaling is carried out "properly." The remedy is to scale only the covariance

matrix prior to optimization. That is. the scaled matrix C,(n - 1) is used in constructing polynomial
(44) or (45), but K( n - I) is not scaled until after the data set is considered. It will be noted that a

formal problem arises with respect to our previous discussion, since the weights A,( 1)..... An - 1) are

used in the scaled covariance matrix, while the weights A,,( 1) .. , A, 1 (n - 1) remain in K(n - 1). This

nuance, however, is necessary to achieve the desired result. Since the theoretical developments underlying

the UOBE algorithm do not, strictly speaking. support identification of time-varying systems. the use of

UOBE for adaptive purposes is based on heuristic procedures of which this --improper" scaling is a part.

With the exception of the minor issue discussed above, exponential fogetting amount6 to a UOBE

algorithm with non-unity scaing. Accordingly, it is somewhat inefficient because O(O.5m 2 + krn) multiplies

are required at each n just to implement the forgetting factor (see Section 6.5.1). Further, it has not been

found to be effective for adaptation in simulations. unless the system dynamics are changing rather slowly

[87]. We shall discuss this effect in the simulations below. The reason is that the exponential decay of the

influence of past data sets is frequently rot fast enough to discount very heavily weighted data, so that

the estimate does not respond to fast changes in the system dynamics. To counter this problem, a small i

might be proposed, but this has the effoct of creating a very small effective -window" which, in turn. leads
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to high variability and loss of spectral resolution. From the point of view of the ellipsoid, the pre-scaling

by a results in an inflation in the volume by a factor inversely proportional to a" 12. Therefore. a large a

results in little change in the ellipsoid, while a small o causes severe inflation of the elhpsoid and induces a

series of -'oscillation-;" in the ellipsoid size. Further, this cycle of expanding and shrinking el1ipslds causes

a tendency to accept more data sets. Therefore, from the SM point of view, small values of a are least

desirable. These phenomena will be illustrated in the simulation studies below.

The adaptive UOBE algorithms to which we now turn do not depend on a fixed factor, such as a.

to expand the ellipsoid volume. HowevPr, these algorithms expand the ellipsoid by (selectively) removing

previously accepted influential data sets from the system, either partially or completely, and therefore,

relinquishing their influience on the current ellipsoid. thereby allowing it to expand and adapt to the

changes in the signal dynamics.

6.4.3 Forgetting by Back-Rotation

The forms of adaptation to be discussed here do not fit as neatly into our previous %-rmalisms as does

exponential forgetting. Let us begin with the general UOBE algorithm for which the scaling sequence

is ,'(.). Having obtained an estimate e(n - I) with assuciated covariance matrix C(n - 1). we wish to

consider the incoming data set (y( n), x( n)). Before doing so. however, and even prior to scaling, we adjust

the existing system of equations in order to "'downweight" the influence of some. nr all. of the previous

data sets. The means by which the existing data sets are modified is to, in effect, introduce different

minimization weights. In the present situation, we wish to change (in general, all) weights used at time

,- A,, \(t). t E [1,,n- 1] to a new set, say A,,q(t). t E 'l, n - I] We assume that the new set of

weights is not obtained by simple scaling, but restrict ourselves to the case in which the new weights will

he of the form

l(53)

where 0 < ,-I) < 1. In effect, we wish to remove the a fraction equivalent to,;, _(t) of the coi.tribution

of the data set at time t from the estimate. Not surprisingly, this can be accomplished by treating

(y(t, x(t)) as a new data set with "'weight'" -;, (t)A,_j(t). In the MIL-WRLS context, no modifications

to the basic algorithm are required. In the context of QR-WRLS where the square root of the weight i.,

takoi, (see discussion bcow (28)). this is achieved by using weight [s-i t)',-.i(t)]i/2 and introducing

snic sign changes in the algorithm [26).[27],! .8

The mpthod by which an data set is compietelv removed from the previous system using QR doconm-

V.siti0 by (;ivns' rotations has been called back rotatiori in the papers cited above. We will use this

term to reer to removal bv both QR-WRLS and MIL-WRLS even though it loses its technical significance

for the latter. The technique to partiallj remove a prior dat a set is a simple generalization suggested in
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[32).[87),[881. Let us now formalize this procedure, focusing on QR-WRLS (similar developments can he

* obtained for the MlIL-WRLS version).

Suppose we. in principle, sequentially modlifv weights as described above. beginniing at timie t =1. Trhe

following (and similar) quantities will pertain to the '-downdated- systemi of equations whose weights have

been modified to time t: in - 1: 0. Tj(n - 1: t), Dl,,jn - 1: t). 09j(n - 1: t),.hd(n - 1: t), where each is

0 similar to familiar quantities in the foregoing discussions. We also oit the second argumrent if it is it - 1.

For example. C 1( o - 1 C(a-ii - I Following the mfodification of the th data set. the downdated

equation to be solved in the QR-WRLS ijiethod (if the( solution were desired) is

T Tj( n- 1: t)o9 (n - 1: 0 = Di~ini- 1: t). (54)

The downdlated ellipsoid matrix is C1I( Y) - 1: / )/H I(n - 1:1t) where

C In - 1:W 1 T1(n - 1: t)T4(n - 1:1t) .(55)

* lpo - 1: t) bl.j(n - 1) + Rqin - 1:1t). (56)

with 611,(n - 1) tr{ D{"(n - 1 )DI, ( o - I) I} and

The( quanitity i ( - 1: 0) '=" kn - 1) represents the uipdat ed value of i which includes ( y( n - I). x( n - 1)).

Equations (.56) and (57) follow immediately from the( (lefilnition of K found in (.10) and a basic understanding

of the back rotation process being under-taken. Folwn alicos-Vdwdating just prior to litime

* ~the algorit hin uses the dow ndate(l Yvstem to compute the (lowndlated and( scaled quantities

~''1s( ) H(IO C7'(II - I )X(1 -K(I?) -. rII(I?)C-( n - 1 )X(71).

It U.' n ( 2 [ -1( x 01 )C ) ( 11 r? X1 71)C7( 4. ) X( 71) (TnecessaryN for trace only) (5)

and

K'.j, / 1 ) ~ ( - I )(1 (60)
0 I

Ln tm rn . thelse numlrbers are, used in place of their tlnombiowndated- coumt erpart s in (I 1(1 or (-U')) to test for

Ow thexitorce of'. and to compute. tHep optlimal weoight for ( y( 0), x(no On(,e the( optimal A( 0) is fouind.

A, 1.oi 2 .. ..it -

* for the next iteration.

TFhe rr wess described ai)( ve woulId a ppear to ho extra~rdln an! v c oniputationallv expensive inl gneral

I nce ejc F past weri zllt is 1110(1 fied at each ii - 1. Recall. hn wever. thiat -mo'st"* dati a ,t s are never
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included in the estimate in the first place (A (n) = 0) and therefore the system need not be downdated

at these times. If the data set at time t. for example. was not included in the estimate, then formally

C n - 1; t+ 1) = C(n - 1; t), T4( n - 1: t+ 1) = T( n - 1; t), etc.. and no computation is required. A similar

situation obtains if a data set. say at time t. was completely removed by back-rotation so that A,_I (t) = 0.

In this case, no computational effort is required to downdate this data set at time n - 1. Further. in many

cases the modification of a particular data set is not desired. If. for example, the data set at t is not to be

altered, then 0,,_(t) 0, and no computation is necessary. Finally, note that when the -'new" data set at

n is rejected ( A(rn) = 0), then T( n) = Ti(n - I) and i9(n) = e n(t - 1), and. once again, no computation

is actually required.

A wide range of adaptation strategies is inherent in the general formulation described above, many of

them computationally inexpensive. Thre cases are considered:

1. 1 is a constant window length and, for all n,

t . t = -l

{M,It- = (62)
0. other t

2. 1 is a constant window length and. for all n. 1 - ,-(t) is zero prior to time n - I + I and smoothly

(perhaps linearly) tapers to unity at t'-ie n.

:3. T,-I is some past set of equations to be -'forgotten," arid.

,:,-T,) (63)

0. t ,_

I'he first case above corresponds to the use of a sliding window of length 1. outside of which all

previous data sets are completely removed. Nortcn and Mo have called this case fixed memory bounding

N6 while Deller and Odeh have called it simply rindowig and have suggested an efficient algorithm for

impltementing it [32],[87],[881. The estimate at time n covers the range [n - I + 1, n]. The win(l wiIng

tOhnique is made possible by the ability to conploty and systematically renove data sets at the, trailing

p(igp of the window. Only one back-rotation is required prior to optimizing at time n. and this is, only

iecessary if AI( n - 1) A*_ -1) $ 0.

'ase 2 represents another windowed, or finite memory, approach, but in this case the wind,,w is

permitted to taper smoothly to zero as it moves into the past. For example, the effective weights might

decrease linearly when mnoving toward the trailing e(tge of the window, lence. the data set at tlihe tr iii rig

e(lge has an effective weight of i - i( - I - I) and the data set to be rotatod in has an offocive weight

of A T(). ro reiterate an important point Made in the general d iscusision above, although each alta ,,It
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must be partially rotated out I times, only those data sets that were previously accepted (in the past I

recursions) need to be considered by the algorithm. Let us refer to this method as tapered forgetting.

We remark that a tapered window can smooth the estimate, but at the expense of a significant amount

of computation. Each accepted point must be back rotated about 1 times where it can be true that I >> m.

Depending on the circustances. the extra computation required to implement the smoother window may not

be warranted by the extra amount of computation (see simulations below and [87] for further discussion).

Case 3 is a different type of strategy which Deller and Odeh call selective forgetting. This technique

selectively chooses the data sets to be removed from the system based on certain user defined criteria ir,

order to remove their influence from the system. The selection process can be, for example, to remove (or

downweight) only the previously heavily weighted data sets, to remove the data sets that were accepted

in regions of abrupt change in the signal dynamics, or to remove the data sets starting from the first data

set and proceeding sequentially. Whatever the criteria, a fundamental issue is to detect when adaptation

is needed to improve the parameter estimates. This issue is further investigated in the simulation studies

below.

6.4.4 Illustration

The simulation results of the several variations on the general adaptive SM-WRLS algorithm are shown.

We continue with the example initiated in Section 6.3.2. The reader is reminded that only the results for

a,. are shown.

The first experiment concerns the use of exponential forgetting. We noted above that this form of

adaptation will often fail to track quickly varying parameters. This was the case with both the "slow"

and"fat' systems used here for any reasonable forgetting factor. The problem is the inability to "forget"

heavily weighted data quickly enough. Accordingly, we tried the experimental procedure of replacing any

optimal weight by unity before incorporating the chosen data set. The results for forgetting factor a 0.99

are shown in Fig. 9. Whereas the "weight override" might be expected to cause a vastly increased fraction

of the data to be used. in fact only fractions p = 0.07. and p = 0.09-1 of the data were used for the

fast and slow systems, respectively. Clearly, the tracking is very good for the slow system, and perhaps

acceptable for some purposes for the f-st system. o = 0.99 was the smallest forgetting factor which would

give 'acceptable" tracking in the sense of reaching the "target" values during the each cycle in the fast

case. This large forgetting factor is responsible for the variability seen in the regions which are easier to

track. The estiTnate can, of course, be smoothed by choice of a smaller a. In the slow case. the estimato

'an be smoothed considerably befor, timp resolution is lost.

Figure 10 shows the volume traces, and Fig. I1 sgn4 ( n )}. as functions of n. As in the "'ionaulaptiv"

experiMTIents, we observe a tend-ncy for K to become negative when the )arameters change abruptly. The
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problem is not as "serious" as it was with the nonadaptive cases because the algorithm tends to "recover."

That is, when t goes negative, the volume goes into a trend of expansion (due to forgetting) ultimately

leading to a positive .. We can imagine that the ellipsoid ultimately becomes large enough to ..recapture"

the moving parameters, and bring the identification back into line with the underlying principles. However,

a positive K is a necessary but not sufficient condition for this to be true (for the ellipsoid to contain the

true parameters), so we must be careful with this analysis. In the use of specifically adaptive algorithms.

generally we observe that the identification does enter phases in which it operates outside the principles of

SM identification, but that it tends to recover and operate properly due to the adaptation measures.

Figure 12 shows the simulation result of the windowed SM-WRLS algorithm using a window of length

250. This strategy uses only the fraction p = 0.094 of the data for the fast system, and p = 0.10 for the

slow system. Since most of the data sets rotated into the system are eventually rotated out, this strategy

effectirely uses about twice the number of data sets rotated in (b ; p). More data than with the unmodified

SM-WRLS algorithm are used, but more accurate estimates result and the time varying parameters are

tracked more quickly and accurately. For the slow system, we observe that the algorithm behaves properly

(in the sense that K remains positive) for nearly the entire range. For the fast system, there are relatively

short recovery phases (, 100 points) required after each abrupt change in dynamics. The volume traces

behave as expected with trends toward increase (due to -'forgetting") interrupted by occassional decreases

as data sets are accepted. An example for the slow case is shown in Fig. 13.

As expected, the estimates are smoothed, time resolution lessened, and the fraction of accepted points

decreases, as window lengths increase. The parameter estimates for the fast system and window length

1 = 500 are shown in Fig. 14 as an example. The fractions of data accepted are p = 0.070 and p = 0.060

for the fast and slow systems, respectively. Also not unexpectedly, recovery periods, which were virtually

nonexistent for the slow system with I = 250, are now present with 1 = 500. though still for a small fraction

of the time. The recovery phases for the fast case increase in duration so that they now occupied more

than one-third of the range.

As the window length continues to increase, the effects reported above continue to change in the ex-

pected ways. In particular, it is not unexpected that at some point, the process would begin to disintegrate

from a theoretical point of view, since as I - x. the "'windowed" algorithm approaches "nonadaptive'

SM-WR[S. In fact. the recovery phases for the fast system continue to increase until at I = 1000. the

parameter K is negative for nearly the entire range following the initial change. The process erodes an(l

fails to track properly after the first one and one-half cycles. Interestingly. only the fraction p = 0.030

of the data are used in this estimate, and most of these are taken in the initial cycles. The paranieter

estimate and K are shown in Figs. 15(a) and 15(b) for this case.

A, an aside, we oberve that this and similar UO3E algorithms are frequently capable of tracking whilo,
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using small fractions of data, even "'in violation of theory" (K < 0). However, empirically, the estimate

frequently diverges after a problem dependent interval. This suggests the possibility of monitoring K and

"rpsetting" the algorithm after a sustained period of "violation." (The selective forgetting approach to

be described can be interpreted as a highly conservative version of this procedure.) Such a procedure

would be quite unpredictable unless the theoretical analysis the of the process under conditions of negative

K is forthcoming. In fact, this "unpredicitability" is the same problem encountered when no adaptation

measures are taken, but with some alleviation or postponement of the undesirable performance.

The selective forgetting strategy selects tile data sets to be (partially or completely) removed from the

estimate according to certain criteria in order to remove their influence on the result. In keeping with

foregoing developments, the selection procedure used here is to monitor the parameter K for positivitv.

When it is found that N(n) < 0 for some n, we simply back-rotate previously accepted data sets, beginning

with the oldest data set remaining in the estimate, until this number becomes positive. We reiterate

that K(n) merely being positive does not insure that the true parameters have returned to the interior

of the bounding ellipsoid, so the procedure is purely experimental. This technique yields the simulation

results shown in Figs. 16(a) and 16(b) for the fast and slow systems, respectively. The identification of

the fast system uses only p = 0.050 of the data, 84.07 of which are back-rotated for a"laptation. so that

b = 0.042. For the slow system, the rates are p = 0.064 and b = 0.047. While usually requiring even

less computational effort, this method is seen to provide superior estimates to those obtained from the

other adaptive techniques. For the fast system, it is noted that large errors occur in the estimates at the

points of discontinuity in the true parameters. At some computational expense., this could be potentially

be resolved by, after forgetting, rernoving the data ,set (y(n), x( n)) which caused K( n) to go negatirve and

recomputing the weight (or some sinilar heuristic).

6.5 Implementing the UOBE Algorithm in 0(m) Time

6.5.1 Complexity of the Basic UOBE

From a signal processing point of view, one of the most interesting aspect of a UOBE algorithm is its

inherent ability to select only data points which are informative in the sense of refining th, feasible set.

fhe fact that typically 70% - 95% of the data are rejected by this criterion would seem to imply a remarkable

savings in computation. We have noted in Section 6.2. however, that this is only true to the extent that

the SM preprocessing of the incoming data set is negligibly expensive compared with the inclusion o)f it in

the estimate. In this section. we examine some factors related to &his complexity issue.

A comparison of the computational loads of the various algorithms discussed in this paper is sh,,wn in

Table I. A complex floating point operation (cflop) is taken to be approximately one complex multiplirati,,n

plus one complex addition operation. Additions which are unpaired with multiplications are ien,,r,,d.



The numbers shown arise from efficient procedures which avoid recomputation of quantities, for example

e (n, e(n - 1)), which are shared among different operations. Only numbers dependent upon rn and k are

shown with constant (usually small) numbers of cflops ignored. Not shown in the table are tallies to update

n(n), and the number of operations needed to compute an optimal weight when the data set is accepted.

K(n) requires about 4 cflops in the MIL-WRLS cases, and (m+ 1)k in the QR-WRLS cases. Optimal

weights require a small number of cflops (about 25) which may be thought of as nearly independent of

r and k since all quantities computed are used for other purposes. Figures shown are based on volume

optimization, but the trace tallies are nearly identical,

The following analyses are applicable to the usual case in which the number of outputs from the system.

k, is small relative to the number of parameters estimated. m. In fact, for simplicity, let us set k =1 (MISO

system). The general conclusions reached. however, are valid when k << m, and we shall continue to show

y(.) and e(.,e(.)) as vectors.

As a standard of comparison, we note that conventional MIL-WRLS requires 0(3m2 ) cflops per n with

an additional 0(m 2/2) required to include a scaling sequence ((.). For QR-WRLS, 0(2.5m2 ) cflops per n

are required with an additional 0(m 2 /2) needed for scaling.

From Table 1. we may state that the average operation count for an adaptive UOBE algorithm imple-

mented on a sequential machine is approximated by

f"Pt - O(c 1,m' 2 ) + ,;O(m 2 /2) + b0(c2rn 2 ) + pQ(c 3m 2 ) flops per n (64)

where, s is unity if the algorithm involves a scaling sequence and/or a forgetting factor and is zero otherwise:

p is the average number of data sets accepted per n; b is the average number of back-rotations performed

per n: and c1 ,c 2 and c3 are small numbers (all in the range 0.5 - 2.5) which depend upon whether MIL-

WRLS or QR-WRLS is used. The first term is due to the procedure which checks for information in the

incoming data. The others are attributable to scaling, adaptation, and solution update, respectively. The

subscript "opt" is used to indicate that the proper optimization described above is used. Apparently, the

UOBE algorithm, as presently formulated, is an "(rn 2 )" process. The objective of the section below is to

demonstrate a method for reducing the effective complexity to ( 0(m) by reducing the checking cost. thereby

making a UOBE algorithm a desirable alternative to standard RLS-based methods from a computational

point of view. We also mention a parallel precessing approach which likewise achieves the O(m) goal.

Before detailing the methods, some points about the use of the approximation "O(ni' are necossary.

The first concerns a practical matter. The objective in the following is to reduce the computational

complexity of the algorithms to an a' rzgf of O(n) flops per n. It will b appreciated that. without

data buffering, the data flow is still limited by the worst case O(in2) compitation. However, if a buffer

is included, the algorithm easily be structured to oporate in (m) average time per n. Further. by using

interrupt driven processing of the checking proce(lur,, it may be possible to reduce the average time even
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further. Other points concern algorithmic details. We see from (64) that the use of a unity scaling sequence

(SM-WRLS algorithm) is required in order to avoid an invariant 0((m 2 /2) flops per n. We specifically

assume the use of this algorithm below, although the 0(m) checking procedure to be developed does not

depend on this choice. Secondly, we note that even if the checking procedure can be made 0(m). terms

bO((m 2 ) and po(rn 2 ) (typically b : p) persist in (64). This means that to truly achieve 0(m) complexity.

b and p must be 0(1/m). For large in, this will not be always be the case. In fact, some experimental

evidence suggests, not unexpectedly, that p increases, rather than decreases, with increasing m. For -'large"

7n (conservatively, say, m > 10), therefore. it is the case that the complexity is reduced to ((pm 2 ) by

0(m) checking. It should be clear however, that neither 0(m) nor O(prn2 ) complexity can be achieved if

the checking procedure remains 0((m 2 ). We therefore pursue an 0(m) test for information in an incoming

data set.

With UOBE, the number of computations needed for each n depends on whether the corresponding

data set is accepted for processing by the optimization criterion. UOBE is essentially reverts to NIIL-WRLS

or QR-WRLS when a data set is accepted. Since most of the time the data set is rejected. for significant

complexity gain. a UOBE algorithm must require many fewer than 0(3m2 ) flops for checking. We digress

momentarily, therefore, to view some of the details of the checking procedure.

In principle, the information checking procedure for the volume or trace algorithms consists of forming

either F.(A) or Ft(A) of (44) and (.15), then solving for a positive root. In either case, however, the

polynomial can have at most one positire root (see Proposition 2 in Appendix A.1). The test therefore

reduces to one of testing the zero order term for negativity. When the test is successful, then the root

solving and updating procedes, requiring the standard MIL- or QR-WRLS load. plus a few operations for

finding the optimal weight. The most expensive aspect of this information test is the computation of the

quantity ('p n ) in the case of volume minimization, or H( n) for trace minimization. (For generality, we

assume downdating is used. If this is not the case. it is merely nocessary to drop the subscripts "d" on all

quantities.) In the MIL-WRLS case. this requires oi 2 ) flops. In the QR-WRLS case, a problem arises

because G U n) depends upon the in?, rs( normal matrix. C7 , which i, not ot horwise used in the troces.

Similarly. Upi n) depends on C- 2 . In the paper by l)elr (27]. the following mthod has been suggested

to sidlestep this problem for (;,'i n): Recalling, the, defi nition of (;i( ri ) and n)ting and (27). we can write

(14(n) = x11(n )T- 1( n - I )T-r, - I ) 9 1)g ( ,1 1 g 1 .

Since xrx n= T 1 ( ri - I )gi( n ). and th, matrix T1 1 fn - 1) iP lower triangular. g ii 7) is easilv found froin t fie

available quantities at time ri b forward siubi t ii t ion. The proced ure can beo repeated to coniput e /I, ,I1

if needed, since

( g,:' (ouiT~f? h~1jvhp ) 2 iin)
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The total computational load for this method is O(m 2 /2) for Gd(n) and O(m 2 ) for Hd(n) which is far less

than the effort required to invert C d( n - 1). When MIL - WRLS is used for the covariance and parameter

update in UOBE, the checking ("precomputation" of Gq(n)) removes 0(9(m) flops from the update load.

but the checking does not contribute to the update for QR-WRLS.

6.5.2 Suboptimal Tests for Innovation in the Data

In spite of the simplifications suggested above, the computation of the quantities Gd(n) and Hi(n) remain of

0(rn') complexity. Clearly, the trick is to try to avoid the computation of these numbers in the information

checking procedure. Deller and Odh f321 have proposed a simple suboptimal updating rule: Include the

data set at time n only if

e(n.,(n - )) 12< -1(n). (67)

This rule is used for both the volume and trace minimization versions of the UOBE and is not affected by

inclusion of a causal scaling sequence. (( -). The rationale for this test is simple. The zero order cofficients

a0 and be, of (44) and (45). respectively, will never be positive if the test is met. In the volume case. for

example, the suboptimal check tests whether a0 is negative if the term -Kd(n - 1)Gd(n) is neglected. This

ignored term is always negative and becomes small as n increases if no forgetting is used. For a given set

of preceding optimal weights. A-(1) ...... *(n - I ). the suboptimal test will never fail to accept a daia st

which would have been accepted by the optimal test. A similar analysis applies to the coefficient b0 of the

trace algorithm.

.\ deeper analysis of this suboptimal test has been made for the volume algorithm, by Deller and Odeh

[32]. Let us denote the estimatior, rror matrix at time n by

O( n ) t-" 9. - ( ? ). 6S)

Ihe following inequality results imnniediately from (37) (10):

6H -)C(np9(T1) < K(I?).

While it is tempting to view K( n) as a bound on 1(n) (see discussion of t he [)-I OBE algorithm belowI, it

is important to note that each side of this inpquality is dependent upon A,( n ). In fact. let is I 'i1l)orarily

write the two key quantities as functions of Af o ). C( n. A,((n ) and K( n. A,( n )). and consider the ,,.,ial

voltiime (uiantity to be minimized at time n,

d CK ( t( ,. ii) )C-' ( u. A,I( n))]. (70

It is assumed that enough data ;Pts have been included in the covariance natrix at time n - 1 so t hat it

eleennts are targe with respect to the incoming data' '. If a causal scaling sequence is included, the, qulalim it

"The validity of this assumption depends t, some extpnt on the choice of scaling sequence ( -) if one is included
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det C(n, A,(n)) is readily shown to be monotonically increasing with respect to A,(n) on the interval [0, -)

[87], with C(n, 0) I=" C(n - 1, A 1_,( n - 1 )). Under the assumption above, det C( n. A,(n)) will not increase

significantly over reasonably small values of A,,(7). The attempt to maximize detC(n.A,(n)) in (70)

causes a tendency to increase A,(n) in the usual optimization process. However, the attempt to minimize

K(n. A,(n)) generally caises a tendency toward small values of A,(n). unless a minimum of K(n. A,(n))

occurs at a "large" value of A,(n). To pursue this idea and further points of the argument, we use two

key facts about (n,An(n)) which are given in Proposition 3 in Appendix A.l. These are that K(n.AA,(n))

is either monotonically increasing on positive A's or it has a single minimum. A necessary and sufficient

test for that minimum is (67). Accordingly. it can be argued that: If det C(n. A,(n)) is increasing, but

not changing significantly over reasonably small values of A,,(n), then it is sufficient to seek A,( n) which

minimizes K(n, A,(n)). If K(n .A,n )) is monotonically increasing on A,( a) > 0, this value is A,(n) = 0

which corresponds to rejection of y( n ). x( n)). It suffices, therefore to have a test for a minimum of

K(n,A,(n)) on positive A,(n). As noted above, a simple test is embodied in condition (67). If this test is

met, it is then cost effective to proceed with the standard optimization centered on (44). Otherwise. the

explicit construction and solution of a0 of (44) can be avoided.

In fact, this suboptimal test for innovation is similar to that used in the D-H OBE algorithm reported

in [241 and discussed in Section 6.2.2. The test used in D-H OBE is to accept the incoming data set only

ifl

-2n.O( n - 1)) < 4 n) - K(n - 1) . (71)

This inequality likewise tests for a minimum of K(O) with respect to A,( n ). and differs in form from (67)

because of the noncausal scaling factors (see (22) and surrounding discussion). There has been some

controversv in the literature as to the meaning of this test. Dasgupta and Iluang argue simply that ,.(n

is "'a bound on the estimation error," and should be minimized. Indeed. tie ui nimiz.,tion of h:(r) is the

Optimization criterion used in D-H OBE. and no apparent connection to a set measure on the- underlying

ellipsoid is made. Dasgupta and Huang's claim has been disputed by Norton and Mo [861 and is not clearly

supported by the heuristic arguments above. bocais,, the relative independence of C( n) and A,( n) is not

tenably argued. Nevertheless. examination of the analytical arguments above does, reveal some interestinoz

*i riilarities between the use of the D-H test and tho su boptimal test (67). Those revelations nearly blt

not quite) provide justification for the D-11 test.

While it is not exploited in the D-t (OBE alzorithm for reasons discussed iii Section 6.2.2, the 1)-Il

hvpPrelipsoid nevertheless dofs have a volmie at e-ach Pi. Iiu ft al. [6] have roently shown" that thre

A scalar error is shown since this algorithm is devloped for a SIS() model.
lg omewhat unexpectedly, perhaps, becaui,, of th. niocauisal ;4 ale. fa(tors an,! the nonlinearities in .\,A, whi, h wmild I,

expected to arise.
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is a quadratic equation in A similar to (44) which must be solved to find the optimal "volume" root (see

Corollary 2 in Appendix A.1). For the sake of discussion, let us call the weight which optimizes volume

Av, and that which optimizes K(n) A". The volume quadratic has the amazing property that its zero order

coefficient is identical to that in (44), a0 . and may be checked for negativity as a necessary and sufficient

test for the existence of an optimal weight A". Similarly to the suboptimal SM-WRLS strategy, the D-H

test (71) comes quite close to being a sufficient test for negativity of a0 , and therefore a sufficient test for

whether the volume can be diminished. Further, even if the D-H weight As is not equal to A1' (and it likely

will not be), it can still be shown to shrink the volume [68] as long as A' > 0 exists. Consequently, if (71)

were exactly a test for a0 < 0. then it would follow that the D-H algorithm, by reducing K simultaneously

reduces volume. The fact that AK does not optimally minimize volume is apparently a small price to pay

for the ability to prove convergence. Regrettably, the test (71) is not quite sufficient to assure a0 < 0.

Additionally, it is must be true that (U n) > ink. This condition is most likely to be met for small n.

precisely when the most data sets are likely to be accepted. However, there is no assurance in general that

this condition will prevail. Consequently the D-H OBE test, while part of a very different approach. comes

intriguingly close to being justified by the same means as the suboptimal test associated with SM-WRLS.

but falls somewhat short. Some further theoretical work may ultimately resolve the apparent problem.

Interestingly, the Deller-Odeh test (67) could be used as a -'suboptimal" criterion for accepting data in

the D-H OBE algorithm. That is, (71) is satisfied whenever (67) is met. The benefit of this suboptimal

approach would be that it would assure that volume would be decreasing at each step by minimizing K,

thereby providing a clear pointwise justification for the D-H approach. Before such an approach were

adopted. it would be necessary to ascertain that the convergence result (which is the raison-d etre for the

D-t1 OBE algorithm) is preserved.

6.5.3 Computational Complexity of UOBE Algorithms with Suboptimal Checking

Recall that the purpose of this pursuit is to find a way to avoid the rn
2 flops necessary to carry out the

chocking process in the optimal algorithm. The test (67) requires only O(rm) cflops, so that the revisod

operation count is1 7

f* , Q( - 0071) + ( rn/2 ) + b'O(e3 rn2 ) + p'O(c.2 m
2 ) cflops per n 72)

where b' is the average number of back-rotations per n under the suboptimal checking policy: p' ropresont,

the fraction of the data sets which are included in the update: and .s indicates whether scaling is used.

we have stessed above, even as p' - 0 the suboptimal algorithm remains of ( m 2 /'2) complexity per n it

1
7Note that Gd(n) is no Ionger computed in the chpcking phase so that the operation count for MIL-WRLS I , ih,- full

01 *rr2 )
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a sequential machine, unless SM-VRLS (((n) = I Vn) is used. Herein lies one of the most compelling

reasons for the choice of the simplest form of UOBE algorithm in signal processing.

In light of (72), let us briefly consider the computational loads imposed by the specific adaptation

strategies described above. In each case. we assume QR-WRLS underlies the process, but the discussion

for ML-WRLS is similar.

Of the adaptation methods described above, exponential forgetting is the most expensive computation-

ally, unless the UOBE algorithm already employs a non-unity scaling sequence. If the algorithm does not

employ a scaling sequence (s = 0 in (64) and (72)). then the inclusion of the forgetting factor essentially

imposes one (s = 1) and adds ((rn 2 /2) cflops per rt. If the algorithm does contain a scaling sequence,

then the forgetting factor can be combined with it prior to scaing, requiring only one cflop per n.

Since back-rotation is essentially equivalent to a covariance (or T(n)) update' 8 for an incoming data

set, each of these rotations takes 0(2.5m2 ) cflops. If b back-rotations are performed on the average at

each n, then effectively (0(2.5bm) additional operations are required by the adaptation procedure. Since

p is usually small, whether a particular adaptation strategy is cost-effective depends on the number b. For

simple windowing, for example, b ; p and the adaptation adds negligibly to the computational load. For

tapered forgetting, on the other hand. b , pl, where I is the effective window length which may be quite

large. In this case, the adaptation might be the dominant cost requirement, completely overshadowing

any savings gained by suboptimal testing. for example. A high computational cost, therefore, might be

incurred for the benefits of a tapered window in the analysis. Finally, the cost of the selective forgetting

routine depends entirely upon the criterion employed for deciding to back-rotate a previous data set, which,

in turn, determines the value of b. An example will be discussed below in the simulation studies.

6.5.4 Illustration

To illustrate the efficient methods based on suboptimal checking, we continue the study of the systems

described in Section 6.3.2. Not unexpectedly, the suboptimal *nonadaptive" SM-WRLS algorithm fails to

track either system properly. The result is similar to Fig. 7.

As illustrations of adaptive methods. we repeat the exponential forgetting and selective forgetting

experiments performed above. We use the same techniques and conditions except that the suboptimal

test is employed. Figure 17 shows the parameter estimates. and Fig. 18 the sgn{K(.)} traces, resulting

from exponential forgetting. Comparing Figs. 9 and 17 we see that in the case of the fast system, the

parameters resulting from suboptimal testing track the true parameters more accurately for the first two

cycles, but then show signs of "'breakdown" in the third cycle unlike the parameters resulting with optimal

checking. No definitive conclusions can be drawn from this comparison of fast system results. In particular,

"'Note that a parameter ,jolut:on update is not required, just the covariance update.
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it should not be concluded that suboptimal testing will lead to faster disintegration of tracking. Indeed,

by comparing Figs. 11 and 18, we see that there is a much greater tendency for K to remain positive in the

suboptimal case. In fact, there is evidence in the K trace that the failure to track well in the third cycle

is a transient effect from which the identification may recover. In the slow system case, somewhat more

variance is seen in the parameter estimate with respect the optimal checking case, but this is apparently

:elated to the many fewer data selected. Note the remarkable improvement in the K behavior with respect

to the optimal case, indicating that the identification is more likely operating within the principles of SM

theory for suboptimal checking. Another important observation is that the number of data sets -,elected by

suboptimal checking is many fewer (roughly half) that required by optimal checking. We currently have

no explanation for these preferable behaviors of the suboptimal checking case, but. importantly, they have

been quite generally observed across many simulations.

In a second experiment, selective forgetting is used in conjunction with the suboptimal testing. For this

case, the parameter results are practically indistinguishable from those obtained using optimal checking

(see Fig. 16). The notable difference is once again in the greatly reduced number of data used in the

suboptimal checking experiments. For the fast system p' = 0.022 and b = 0.019, and for the slow system

p' = 0.041 and b = 0.028. Again each of these fractions is roughly half the corresponding figure required

in the optimal checking cases.

In summary, we generally observe that the suboptimal technique uses about half as many data. but

produces comparable estimates to those obtained using the optimal procedure. This is true whether good

or bad tracking results. This means that not only does the suboptimal procedure reduce the complexity

of testing the data sets for innovation (motivation for its development), but it also reduces (by about a

factor of two) the number of operations spent in rotating data sets into the system of equations. Further.

suboptimal checking frequency results in more *'meaningful" identification in the sense that K has a much

higher tendency to remain positive. Other examples using suboptimal checking are found in [32],[87],[S9].

6.6 Convergence Issues and Colored Noise

In the following, we return the the case of time-invariant systems and (iscuss a few issues related to

convergence and colored inputs.

One of the interesting and practical benefits of having interpreted UfOBE algorithm as a WRLS algo-

rithm with a bounded error "'overlay'" is the immediate consequence for convergence of the estimator. It is

well-known that if the sequence .(.) is wide-sense stationary, second moment orgodic almost surely (a.s. .

white noise (see discussion surrounding (14)). then the WRLS estimator o(.) will converge asymptotic0l"

to 9. a.s. (e.g. [45]). In the present case. w,- need only to add the qualifier that the UOBE algorithm tm

rcasp to accept data in order to lay claim to this useful result.
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Likewise, we may even assert a.s. convergence of the WRLS estimate, albeit to a bias, when e.(.) is

colored and persistently exciting 19 (p.e.) [47]. Even in the presence of colored errors, therefore, as long

as the acceptance of data does not cease. and the -'sampling" induced by data selection does not interfere

with the p.e., we may expect the UOBE estimate to converge.

It would be interesting to have a precise understanding of the asymptotic behavior of the hyperellipsoidal

feasible set, especially in the case of colored noise. Knowledge that the ellipsoid is vanishing (white noise).

or becoming as small as possible (colored noise), could be very useful information indeed. In the white

noise case, a sufficiently small ellipsoid could serve as a reinforcing indicator of convergence, and offer a

means of determining error bounds on the estimate. In the colored case, a small feasible set (known to

contain the true, unbiased estimate) coulh be indispensible. Unfortunately, a convergence proof for most

instances of the UOBE algorithm is not forthcoming. The original OBE paper by Fogel and Huang [411 is

sometimes misunderstood to indicate the convergence of the bounding ellipsoid to a point under ordinary

conditions on e.(.). In fact, the paper only proves this convergence for the case of unity weights so that

the fundamental optimization process is not taken into account. No known proof of this desirable result

for the F-H OBE algorithm, or for any instance of UOBE with causal scaling exists, whether optimal or

suboptimal checking is used. However, it can be shown for the volume algorithm with causal scaling (see

Corollary 3 in Appendix A.1) that if an optimal weight exists at time n, then if the data set is included

using this weight, then the volume will certainly decrease:

,(n) < P,(n - 1) . (73)

This indicates that the ellipsoid volume will converge to some unspecified size in some unspecified manner.

A similar result can be demonstrated for the trace algorithm [80).

In spite of this encouraging result, one of the drawbacks of the volume approach is that the set measure

P,, is not a proper "metric" in the parameter space. By this we mean the following: Suppose we propose

the distance measure d such that at time n, d(e(n),.) =,,(n). We immediately find that d fails to be

a proper metric since d(9(n), 9.) = 0 does not imply that 9(n) 49.. This unfortunate situation arises

because the ellipsoid may potentially degenerate and reside in a subspace of Cm Xk. thereby achieving zero

volume without being reduced to a point. According to Nayeri ft al. [80], this will likely only occur if

p.e. is not achieved, and is therefore a more important problem with colored disturbances. This potential

anomaly provides motivation to consider the use of the trace measure for which a degenerate ellipsoid will

not produce a zero set measure.

It has frequently been noted is that the hyperellipsoidal bounding sets resulting from UOBE algorithms

can be quite -loose" supersets of the Pxact feasibility sets (polvtopes) (e.g. [V ].[83]), particularly in "finite'

'lPlewe read the abbreviation "p.e.'" as 'persitently exciting" or "persistency of excitation," as appropriate.
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time2". However, many simulation studies in the literature (white noise case) have shown the volume of the

ellipsoids to become quite small in the "long term." Further, as we and other researchers have demonstrated.

the empirical convergence and tracking properties of the UOBE estimator are favorable in spite of the few

data used. This is an indication that the prsen'cf of the ellipsoid and the optimization procedure centered

on it, are quite useful for signal processing, regardless of our present inability to completely understand

its behavior in theory. The results presented above offer further support for "'good behavior" of this class

of algorithms by indicating that the ellipsoid measures will converge to some unspecified size in some

unspecified manner. This result has not boen clearly understood, and its finding offers some hope that a

proof of conv,,rgence (in some sense) for the VOBE algorithms may be found in the white noise case.

The D-H OBE algorithm [2-tJ has been cited above as an instance of UOBE which does exhibit con-

vergence of the ellipsoid under usual -'white noise'" excitation conditions. From the UOBE point of view.

the trick employed by Dasgupta and Itiang is to use a noncausal scaling sequence which is also pointwise

optimized in a certain sense. In particuflar '(r) (1 - A'(n))-l for each n, so that the previous weights

are also modified in a mrnner which is consistent with the optinal objective 2
1 of minimizing K(n). This

choice of scaling sequence and minimization criterion admits th( clever use of Lyapunov theory to obtain

the convergence result. As we hav. also indicated above, the checking criterion for the D-H OBE method

is of U(rTO) complexity per ri, adding another attractive feature. These theroretical and computational

benefits notwithstanding, in published iniulation studies, this method has not been shown to exhibit any

sign,ficavt advantage in estimation or tracking with respect to the adaptive SM-WRLS methods. for ox-

ample. discussed above. A-s we have also discussed above, tie inability to determine the precise meaning

,of the optimization criterion leaves open some fundamental qu''stions in the interpretation of Ilhe beha%,im

of the method.

Finally, we note that some work with colored disturbance. has boon roported. The D-H 013E algorith1

has been extended to the case of an ARMA ISISO) model by Rao ft al. in [99]-[101]. In this case the error

is filtered by a linear ( MA) filter creating a colored noise s:equence. say.

4- ,b -). 71)
1=1

Rao's approach is to estimate the unobservable seqence --.(-) bY the errors 0) ? - i, O( n - ), 0, 1.. r

at time r?, then use the D- H OB E developments. Error bouinds on .( are not sufficient to bound 0' .. so

that the ellipsoid is no lon ger gui arantee(d to contain I the true parameters..A condition on thlw b,. paranet ors

is dtprminod such that this violation does not occr Nct su rprisinly, the condition implies a rostricion

on the arnotint of correlation which can be indruced by the MA\ filter.

2'Norton .as proposed the use of inner boiinds a.s a possible rrmedy for this problm si I][115]
2 Recall that this is not the minimization of the eIlipsoid ,ize pfr , .e ,iscijssin in Sections 6 2.2 and 6.-'.2.
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Related work is found in the paper by Norton [84] in which the ARMAX model is studied. In this work,

the effects of the coloring of the noise upon the bounds is studied both analytically and experimentally.

The results indicate the possibility of non-convex bounds on the true feasible set, Q(.), in the colored

noise case. An attempt is made to relate these anomalies to the bias that occurs in conventional WRLS

processing due to the colored noise.

Nayeri et al. [80] have argued that the ellipsoid must remain nontrivial in the colored noise case (i.e.

lim,n-. Q(n) {9.}) and have conjectured that the 1. will appear on the boundary of the limiting

ellipsoid when e.(.) is p.e. Some interesting effects of non-p.e. disturbances alluded to above are also

studied in the cited paper.

6.7 Parallel Hardware Implementations

One of the advantages of the QR-WRLS-based UOBE formulation, and the feature which motivated its

development [26], is that it immediately admits solution by contemporary parallel architectures. This is

critical because it reduces the complexity of the optimal algorithm from 0(m 2) to 0(m), where m is the

number of parameters to be estimated. The significant reduction of computational complexity and parallel

hardware implementation of SM algorithms improve their potential for real time applications. Systolic

architectures for both nonadaptive [311 and adaptive [871,[881 versions of the SM-WRLS algorithm have

been developed by Odeh and Deller. The adaptive architecture has somewhat more complex cells, but

the computational savings with respect to sequential solutions is identical. The complexity of the parallel

computation is given by

f uP, - 0(3m) +pO(llm) flops per n (75)
parallel

if the optimal checking is implemented, where p, as above, is the fraction of the data accepted by the SM

considerations. If suboptimal checking is employed, the average count is

f ,tbopt 0 0(m) + p'O(llm) flops per n. (76)
parallel

where p' likewise indicates the acceptance ratio. When adaptation by back-rotation is added to either

strategy, and additional bO( 1 lm) (or b'O( I Im)) flops per n are required on the average, where b and b'. as

above, indicate the average number of back-rotations computed per n in the optimal and suboptimal cases.

Note that these tallies represent parallel complexities in the sense that they denote the effective number

of operations per n. though many processors can be performing this number of operations simultaneously.

Accordingly the parallel complexity indicates the time it takes the parallel architecture to process the data

regardless of the total number of operations performed by the individual cells.

Unlike the sequential algorithms, scaling may be added to the parallel processors (to implement the

F-H OBE algorithm, for example) at virtually no computational cost, but at the negligible hardware cost
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of m multiplication units.

The parallel architectures described in papers cited above are developed for real, scalar observations,

but can be used for complex scalar observations. The necessary modifications are concerned with the

basic Givens rotation operations. These are elementary and are found, for example, in [48]. However, the

general complex vector observation case of the SM-WRLS (UOBE) algorithm is not readily mapped into

similar architectures. The generalized architecture that efficiently implements this case has not yet been

developed.

7 Conclusions and Further Issues

The emerging field of SM-based signal processing is receiving considerable attention and is becoming

increasingly popular around the world. In this paper, we have given a general review of SM theory and a

broad coverage of general SM algorithms and related topics. The majority of this paper has been concerned

with a class of SM algorithms for estimating the parameters of linear-in-parameter system or signal models

in which the error sequence is pointwise "energy bounded." Specifically, we have focused on the case of

ellipsoid algorithms which have been shown to represent a blending of the classical LSE methods with the

BE constraints.

The combined LSE/BE algorithm has been formulated as a UOBE strategy which embraces all reported

algorithms, adaptive and nonadaptive. Within this framework, a flexible strategy based on "back-rotation"

has been proposed to make the UOBE algorithms specifically adaptive. The adaptive strategies as well as

the nonadaptive cases performed well in simulation trials.

In general, SM approaches are interesting because they produce srets of feasible solutions based on

tenable assumptions where no unique solution may otherwise exist. In the signal processing (LSE) domain,

a unique solution exists, but the set provided by UOBE is interesting from two points of view. First, the

feasible set may complement the unique LSE solution in cases in which the ordinary asumptions about

the model error are tenuous (for example. where the model noise is colored). Secondly, from the feasible

set arises an interesting data selection technique which can lead to significant computational complexity

improvement. UOBE algorithms typically reject 70 - 95% of the incoming data sets because they fail to

refine the existing ellipsoidal feasible set in some sense. This should not be misintepreted, however, to imply

a 70 - 95% load improvement. In fact, certain constraints must be observed to achieve more than a gain

of about five in complexity improvement with respect to conventional WRLS. If a sequential computing

machine is to be used, then suboptimal checking (for feasible set refinement) must be used. A method

suggested in this paper has been found to perform quite well, and yields O(m) complexity compared with

(at least) 0(m 2/2) for the optimal algorithm. This lowered complexity can be preserved with adaptive
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strategies which do not require excessive reiteration over the past data sets. Secondly, scaling factors (q(.),

see Section 4.2), including exponential forgetting factors, cannot be used except at O(m 2/2) expense. No

compelling reason for the use of such factors has been observed in simulation studies in the literature. (A

theoretical argument exists for the use of scaling factors in the D-H OBE algorithm [24]. In this case, the

scaling strategy leads to convergence of the ellipsoidal bounding set in a certain sense.) Finally, a parallel

processing version of the UOBE method has been presented with which to achieve 0(m) complexity under

virtually any condition of scaling, adaptation, optimal or suboptimal checking. Real applications of these

identification techniques will benefit when these relatively simple architectures can be dedicated to the

process. It is interesting to note that the infrequent updating which results as a consequence of the UOBE

considerations, may lead to strategies for time-sharing of these parallel processors.

The simulation results presented illustrate important points about the various UOBE methods and

show that the adaptive algorithms yield accurate estimates using very few of the data and quickly adapt

to fast variations in the signals dynamics.

Some of the key theoretical results underlying the UOBE class of algorithms appear in the appendices

of this paper. These appendices unify many theoretical results found in the literature.

Many interesting open research problems remain in SM-based signal processing. Among them are the

pursuit of different adaptation strategies. refined hardware solutions, and a world of other challenges that

will emerge as these exciting new techniques continue to be applied to practical problems. As computing

power continues to increase, many of the more complex error bounding, and other SM, algorithms will

begin to attract more attention of signal processing engineers. In this sense, the techniques upon which

this paper has focused may ultimately comprise a very small part of the overall impact which SM-based

techniques will have on the signal processing technologies.
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A Appendices

These appendices present results which will rigorously support informal arguments made in the main

text. For generality, we will include a scaling sequence (of the form (22) unless otherwise noted) in the

WRLS recursions. "Unscaled" results are obtained by simply dropping subscripts "s" or setting <() = I

wherever it occurs. Without loss of generality, however, we shall not explicitly include the downdating

process for adaptation which was developed in the paper. If the solution at time n - I is to be downdated

prior to consideration of (y(n),x(n)), then all quantities implicitly or explicitly involving past data will

be modified, and then will enter the developinents in precisely the same way as their -un-downdated"

comterparts. In this case, for example, every occurence of G,(n) = xT(n)C-l(n - 1)x(n) should be

replaced by G1,.(n) =- x(n)C,1( - )x( t1).

A.1 Propositions and Corrollaries

Proposition 1 Let Q(n) C C",kxk be the feasibility set arising from BE constraints as in (29). Given
observations on time range t E [1. n], let 1(n) denote the weighted LSE estimate with associated covariance
matrix C(n). The weights used in the (stimation arc An(t) with A,( 1) > 0. There exists a hyperellipsoidal
set of parameter vectors, Q(n) C C?71kxk . such that 19. E Q(nj C 0(n), which is given by

0 in)=tr{[e _ ()H C(0[ - 4(n] < 1 (9 E Cnkxk 77)
K( t)

wize re,
K(n)it) tr WH( 71C( n)e(71)} +r £: Ajt)- (t)( - -l(t)I11 y(t) 112). -Is)

t=l

Remark: When k = I this the result ot Proposition I reduces to a generalization of the MISO case result

found in many papers in the literature. When k $ 1. a hyperelliposidal bounding set is also associated

with each scalar component of the output vector as we show in the following corollary.

Corollary 1 Under the conditions of Proposition I, feasible parameter ectors associated with output y,
(column i of 09), say Oi, are confined to a hyperllipsoidal membership sft. say Q,( it). which is c( utured

on its current weighted LSE estimate. Oi(n ).

{jn) Oj 1 [0, - 0,(?)]" C(7 n [0, - 0j( n)] < l} o , c Crnkl(79
K( it)I

Remark: This means simply tl,at there is a hyvperOllipsoidal domain in the parameter s, bspace which

contains all possible parameter vector. and which is centered on the WRLS estimate. Note ihat the

ellipsoid associated with each y,. i = 1,2 .... k. is identical to all others except for its center.
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Proposition 2 If it exists, the weight )(n) which minimizes

1. the volume measure Mi1 (n) is the unique positive root of the quadratic equation

F,,)=a \2+ aA + a0  0 (so)

where, a2  {(mk - 1)j(n)G2(n)}.

a, {(2mrk - 1)+ -y-(n) 1 e(n. e(n - 1)) 11 -,(n - I)--'(n)G,(n)} (n)G,(n),

and a0 =mk [-1(n)- 11 eh(,. e(n - 1)) 11 ] - ,(n - )G,(n):

2. the trace measure jut(n) is the unique positive root of the cubic equation

Ft(A) = b3 A3 + b.2 A2 + bjA + bo (81)

with b3 =(n)G1(n)(G,(n) - 1,(n - 1)H,(n))

b2  3y(n)G((n)[G,(n) - I(n - I)H5 (n)],

b= H3(n)G(n)I(n - I)Ks(n - 1) - 2rt,(n)8 (n - 1) [-y(n)- 11 e(n, e(n - 1)) 112]

-G,(n) 11 e(n, (n - 1)) 112 +37(n)G,(n),

and bo = -y(n)- 11 e(n, e(n - 1))12 -H3 (n)13 (n - I)tc(n - 1),
weeG() d, T2- XT\ l C-2

,here G(n) = T(n)Cs(n - 1)x(n), H,(n) =T(n)Cs(n - 2)x(n), and I(n) tr C,(n).

Remark: Many of the inherent scale factors in the coefficients above cancel, but for practical implementa-

tion it is more useful to express the coefficients with the scaled quantities included. By cancelling the scale

factors, however, the following can immediately be observed for either optimization criterion: If A,*,(n)

denotes the optimal weight (or, in fact. any root of the polynomial) at time n with scahng, while A(n)

denotes the weight resulting if no scaling takes place, then A .s(n) = A,(n)((n).

Corollary 2 There is an inherent hyperellipsoid associated with the D-H OBE algorithm whose volumc

at time n would be minimized by the positive root of the quadratic F,,(A) = a'.A 2 + a',A + ao where a2 =

a2 + ao - a,. a1 = a - 2a 0 , and a = ao, where ai, i = 0.1.2 are defined as in Proposition 2.

Remarks:

1. Interestingly, the quadratic in Corollary 2 can be obtained by using the scale factor (n) (1 -

A (n))- 1 in the results of Proposition 2. That this should be true is not obvious because of the

nonlinearities in A which are created by these scale factors.

2. A similar result likely obtains for the trace case.

3. The utility of this result remains an open question because to use weights which are optimal in this

sense does not necessarily admit the convergence results obtained by the Dasgupta-liuang analysis.
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Corollary 3 Consider the UOBE algorithm with simple scale factors and volume optimization. If an

optimal weight exists at time n, then its ?ise will certainly diminish the volume, tt,(n) < p,(n - I).

Remark: A similar result can be obtained for the trace measure [80].

Proposition 3 K(n,A,(n)) has the following properties: 1. On the interval A,(n) e (0, :C), K(n. A,(n))
is either monotonically increasing or it has a single minimum. 2. K(n. A,(n)) has a rinimum on A, (n) E

(0, C) iff
11 E(n. ln - 1)) 112> 1(n). (82)

Proposition 4 Consider the UOBE algorithm with causally scaled weights as in (22). Then, if suboptimal
check (82) holds, a positive optimal weight ,rists for either the volume or trace algorithm.

Remark: The D-H OBE [24] algorithm uses a similar test (see (71)), derived by very different arguments.

See the discussion in Section 6.5.2 for interesting similarities between Proposition 4 and D-H OBE.

A.2 Lemmas

Lemma 1 Condition (29) implies

A,(t)I E.(t) 112< A,(t)-t(t) (83)
t=1 t=I

for any non-negative (real) sequence A,(.). The equality cat be removed for n > to, where to is the minimurn
t for which A,(t) X 0.

Lemma 2 The scalar sequence K(.) of (7,8) can be computed recursively in two ways:

1. In the context of MtIL- WRLS:

(n) = ,(n - 1) + e(n,)(-n - 1)) 112
1 + A n(; n

with K,(n- 1) K(r?- l)/((n - 1) andK ,(O) "0.

2. In the context of QR- WRL,5: Let T0( )9( n) = D, represent the triangular system of equations to be
olved at time n and let 61 i0n It {D{'(n)Di(n)}. Then.

Kn)= 61( )+ :(+n) (5)

with

(,, -= m- - 1)+± Ai ,,?( n) ( - -'(n) 1 y(n I) 11' (86)

wher i,,( - 1) is defind as abore.
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A.3 Proofs

Proof of Lemma 1: That the equality holds for n < to is obvious. At to

A I(to) 11 e.(to) 12< A,,(to)j(to). (87)

Since A (t) = 0 for t < to, (87) may be written

to to

SA t) e.( t) 112<L A,(t) (t). (88)
t=1 t=1

Sequentially add inequalities A,(t) 11 e.(t) 112< A,,(t),y(t) for t = to + 1, .... n. noting that the inequality

between the sums is preserved. 0

Proofs of Proposition 1 and Corollary 1: Upon writing 1.(t)) 112 as tr{6(t) (t)}, it follows

immediately from Lemma 1 that

-4. (_ < E A,(t) (t) •(89)
t=1 t=1

This constrains the possible parameter matrices to the set

O(n) eOI E \,(t) tr { [y(t)- eHX(t)] [y(t) -- llX(t)]} < I An(t)7(t)} . (90)

Expanding the trace term.

Q(n)= {n I",A(t) tr{y(t)yH(t)- eHx(t)YH(t) -Y(t)XH(t) + eHx(t)XH(t)e}

t=l

Moving the summation across terms,

Itr{Cy(n) _ eH Cxy(n) _ CH! 1  )e + IeHC(n)e} < An(t) 0 92
t=l

where definitions of Cxy(.) and Cy(.) are inherent. Since Cxy(n) = C(n)9(n).

CHy(n,) = 9HncH(n) = H(I)C(I,). (93)

This substitution in (92) and some simple manipulation yields
n

WI,)=49 1 tr{OHc(n)e - eHc(n)e(n) - oH(n)C(n)e} < -A,(t)-(t)- tr{Cy(i)j !)4)

('ompleting the square on the left side yields

Q(n) = {e I tr{onc(n)e - e9C(n)e(n) - eH(ri)C ( n ) e + O H ( n )c ( a ) O

n

< -- A,t)(t) - tr{Cy(,)} + tr{9H(n)C(6n)O(,} =K(n)} (95

t=1

33



The definition of n(n) in (95) is seen to be equivalent to that given in (78) by noting that

tr {Cy(n)} = Z" An(t) 11 y(t) 112. It follows that the set is described by

OI)= 4 tr{i919(11)]H C(n) [e - (n)]}I<K( n)} (96)

Since C(n) is positive definite almost surely, the left side of this inequality must be a positive number.

Therefore K(n) > 0. Dividing both sides by K(n) yields (77). El

To prove Corollary 1, it is convenient to write

k

tr{[9 - ,,)IH C(,f [O -) e [e]} E (97)
J=1

where cj indicates the Jth diagonal element of [e - e(n)]" C( n) [e - 9( n)]. Now it is clear that

ci = [09 - oi(n)]H C(n) [0, - oi(n)] (98)

for any i, where Oi and Oi(n) are the th columns of 09 and 09(n), respectively. It is also true that all the

cjs are positive since C(n) is a positive definite matrix. Therefore.

k

ri < -Cj < K(n) for any i C [I.k] . (99)
J=I

Dividing through by b(n) yields inequality (79). 11

Proof of Lemma 2: Case 1. Inserting the right side of (25) into (TS) for 9(n) gives

(n) = tr { 19(n- 1) + A,(n)C-l(n)x(n)eH(n,19(n - 1))] C(n)

tlx en- 1) + An(n)C- 1(n)x(ll)EH (nI.e(71 _ 1)) 1} +4 E A,(t)- (t) (1 - Y1 '(t) fly(t) 1)(100)

tr {9H(n - 1) [C{(n - 1) + A,()x(n)xH (n) I (9(n - 1) +

A,(n)e(nO(n - 1))x H(n)19(n - 1)+ , (n)19 (n- I)xtn)eH(n.9(n- 1)) +

A 2(nn, 19(n - 1))xH(n) [C71(n - 1)- A,(71)C: - (n - 10)x(()n(n)C7'(n - 1)1 ) .1( u - I)

+ r A A1t (t) (1 - y(t) 12) (101
t=1

= K,(,, - I) 4- A,(n)j(n) - A,(n)II y(') 112 +
,()tr {[y(n) - e(n, 09(n, - 1))] [y(n) - E(n. e(n - U11] + O(n.09(n- l)[y(n) - e(n. 19(n,-1)]

A ( ~ ~ +) A.1(, )( 9 )(;,([y( ,, ) - ( n. 9( ,, - 1 ))] H( ,,. 9( ,,- 1)) +t 1 + ( ) (102z

=K(n - I) + A,(nh(n) - A,(n) tr {(n.49(1 - I ))e"1(n.49(n- )) [ - 1 A,(n)G(n) J):3
+ A5(n)G5 (n)
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Equation (84) follows immediately upon recognizing the trace term to be 11e(n,19(n - 1)) 12

Case 2. Because T(n) is obtained by an orthonormal transformation of X(n) (see ( 19)).

tr{O9H(n)C(n)e9(n)} tr{9Hn)THrn)T(n)e(n)} = tr{ID, (n)Di(n)} (104)

This is the first term in the basic expression for K~(n) in (78). The second term can be written as

((n-I

The desired recursion follows immediately. 13

Proof of Proposition 2: For simplicity. let uis denote A,(n) by A throughout the proof.

Volume case. Define

We wish to minimize ii,(n) = det .8(n), and it will be convenient to do so by minimizing the rto22

d~ wi,,n) _ det B(n) det )

un- 1) -det B(n - 1) B(n - 1)'(07

From (24) and (106)

.8(n) _ B(n - 1) -AB(n - l)x(n)xH(n)B(n - 1) 18
K(n) K.,a K(n - 1) [1 + AG,(n)]

_B(n - 1)((n - 1) A (<2 (n _ I)B(n - 1 )x(nz)x"(n)B(n - 1)

B(n - 1) AB(n - )x(n)xH(rz)B(n - 1)
K,,(n - 1) K,2(n - 1) [1 + AG,(n)]

Defining h(n) I~ + AG,(n) and r(n) d'I I'(n)/K,(n - 1) yields

8(n) = B(n - 1)r(n) {I - Ax(n) [B(n - I)X(Il)]H) 10!))

Ktz- 1)h(n)

So.

v()= det B(n) -(e j- r(n)Axc(n) _[ - I )x(n)]"'1 (110)
_______ - ) f _ ( - I )h(n) [~

Using the matrix identity [37] (for the complex case)

det(cI + vz H) = r"' ki(C+ VIIlZ)

where r. z E C", and r is a real number, we obtain

v,(n) = 71 (n) {r(n) - r)A t-B(n - xn 112)
1 K,(n- I )h(70

22 Recal from Section ti. I that B(n - 1) may be considered either the volume of the scaled or inscaled ellipsoid -it tiit-
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This can be written as

v,(n) = r'k(n)1 AG(n) rk(n) 11:3)

h(n) h(n)

Therefore, to minimize '(n) with respect to A. (113) is differentiated and the result is set to zero,

iv,(n) _0 (rrnk( n) rnkr"mk 1 (n) dr(n) rmk(n)
O A  OA h(n) h(n) OA h2(n) (114

Since rmk-l(n) > 0 (see proof of Proposition I).

h2 (n) Ovj kh kh n )  r(n)G5 (n). (113)
rmk-i(n) OA OA

Now using Lemma 2 we can write

K(n) A.(n) A, e( . ( - 1))Ir1+n)- - 1 +12(116)Kr(n - 1) K(n - 1) K,(n - 1)h(n)

Differentiating this result with respect to A yields

Or(n) 1 e(n, 6(n - 1))t12

OA - Ks(n- 1) I( n)- 4() " (117)

Putting this result in (115) and replacing r(n) with the right side of (116) yields

h'(n) OA (n) I 1( 1t,21(n - 1)) ]12

r4-I(n) OA ,(n, n - I) h( ) -

{ A-\(n) All((n.&(n -1)) V}I 18)
+ ,(7 1 ) c,(n - 1)h(n)

After some algebra.

, (n - l)ha(n) 0 "( n) = 2 21

r k '(n) OA ink H n)hin)- 11 E(n. e(n 1)) 112 1

In- I1)h( n) + Al (n)h(ni) - A 11 E(nit 1(n - I ) G'21 O(n

When h(n) is replaced by (1 + AG,(n)) on the right, the following result is obtained

K(= - ) V(n) i n F,,(A) (120)
r -l( 7 ) OA

where F,,(A) is exactly the quadratic of (8o). Since the factor in front of the derivative on the left is proitiwv

for any positive A. a positive root of F ,(A) corresponds to (0i',(n)/0A) = 0.

It iF noted that the discriminant of the quadratic is always positive so that the roots are always real.

Moreover. when ao > 0 it is found that a, > 0 as well. Since a, is always positive, this implies that the

roots are both negative, since no positive A satisfies (SO) in this case. On the other hand, when a, < 0.

this immediately implies that the roots have opposite signs. Thus exactly one positive root is found. In

the proof of Corollary 3 below, this root will b,, demonstrated to minimize the volume measure.
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Trace case. As above r(n) df -(n)/n,( - 1) and h(n) df ( + AG,(n)r 1 . Note that pt(n) trfbmB(n)}

and also define
dtn , t(n) tr {B(n)}

tt(n - 1) tr{B(n - 1)}(

Beginning with (109) it is easy to show that

tr{B(n)} =r(n) [ tr{B(n - 1)}- K,(n- Ah XH(n)B 2(n - 1)x(n)] (122)

so that

vt(n) =nr(n) - )h(nAxH(n)B 2(n - I)x(n)
tr {B(n - 1)} (n - 1)(n n)

r(n)- r(n)A xH(n)C_2 (n - 1)x(n). (123)
t rB(n - I)h-(n)

Letting H(n)d'! xH(n)C- 2 (n- 1)x(n)and =(n- i)"= tr{B(n- 1)}.

r(n)A /(n) = r(n) I- A H(n) (124)
vt(n) = r(n) - I( 1)h(n) r(n - 1)h(n)

Differentiating with respect to lambda and setting the result to zero yields

OAt(n) Or(n)( A ) r(n) I1Gb(n) 0. (125)

OA- OA - (n- 1)h(n) ' ) I(n -1)h(n) (n)

Now using (116) and (117) in this result yields

dvt(n) _ 1 11 - j(n.e(n - 1) 112 A
OA = ,(n - 1) ( )(n - I(n - 1)h(n) H ( n )

+ A-y(n) E f e(n _(n- 1) ) 1 ( Gs(n)A) H(n)= 0. (126)

S+,(n- I) ,(n - I)H(n (n- )h(n) h(n)

After algebraic manipulation this becomes

Ovt(n) _ V(A)
OA D(A)

where N(A) is precisely the cubic equation Ft(A) described in the proposition, and D(A) = K,(n -

l)-y-'(n)h 3 (n). Since D(A) > 0 for all A > 0, it is sufficient to seek the positive root(s) of the numerator.

It is straightforward to show that coefficients b.2 and b3 are always positive. When b0 > 0 then b > 0,

so in this case there can be no positive solution to F(A) = 0. When b0 < 0, we claim that there is exactly

one positive real root. The quantity (-be/b3 ), which is real and positive, is the product of the roots, so

there must be at least one real positive root. The remaining two are a complex conjugate pair, or are

both negative or both positive. Now the quantity (-b 2 /b 3 ) is the sum of the roots and is negative. This

guarantees that the remaining two roots cannot both be positive. Therefore. the remaining two are oit hr

complex or negative, and the claim is verified. 0
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Sketch of Proof of Corollary 2: The procedure parallels the steps used to prove Proposition 2 for the

volume case [68]. 0

Proof of Corollary 3: Again we use A to indicate A,,(n). and A' for A;(n). Since n is fixed, we write the

volume ratio of (107) to show its explicit dependence upon A. v,(A), and suppress the dependence upon n.

From (115),
Odv,(A)

-Q(A)R(A) (128)OA

where, for n fixed, we make the definitions

def rmnk-( n )Or(n)

Q(A) = - 2 ) and R(A) rmkh(n) - r(n)G,(n). (129)h2(n2) OA

For future reference, also notice that

Ks(n- 1)h(n)R(A)= F,(A) (1:30)

where F,(A) is the volume quadratic of Proposition 2. This becomes evident upon comparing (114) and

(120). Consequently,
Odv,tA) OR(A) ,Q(A)

OA2  
- A Q(A)+ R(A) -A (131)

It is easy to demonstrate that Q(A) is positive, and that its derivative is bounded, for A e [0. X). Now

with the aid of (117) we can write

0R1(A) I rn) KIm6( 1)) H 0nOA = (ink - 1)G,(n) dO + 2rnk K5 (n -) (n) (132)(9A dA (n - 1)h ( )

Because of (130) it is clear that R(A*) = 0. Reference to the definition of R(A) in 129). therefore

immediately shows that
dr(n) > 0. (133)

('onsequently.
0R(A) 1

OA J >0. (134)

It follows immediately that

0v(,)j > 0 135)

so that A* corresponds to a minimum of i,,(A) with respect to A (see Fig. 19). Further. since

r(n)] , = I sele (116)). and h( n)J\=,,= 1 1:6)

we have from (113) that ii,.)(A)] \=,) = 1. and also that 2(01 1. Therefore. from (128) and (130),
__ _F,,(O) _ ____

dv,.(A) R(O) - < 0 13T)
.A K ,(n - ) K,(n - 1)
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where ao is the zero order coefficient of the quadratic which is negative if an optimal root exists. It follows

that v,(A) < I and the corollary is proven .3

Proof of Proposition 3: For simplicity, we write A,(n) as A. Using (84) from Lemma 2, we can write

A(A) dK,(n.)_ ; 2(,7(n)A 2 + 2G,(,,)j(,n)A+ [j(n)- Ile(n. e(n - 1)112] (112)
O-A Gs(n) 2A2 + 2G,(n)A + I

and and -- 02(nA) 2[G (n) + 1 (n)G,(n)] 11 e(n.O(n - 1) 112
dA 2  (G'2 (n)A 2 + 2G,(n)A + 1)2

The denominator of k(A) is positive on A E (0, x) and therefore k(A) has a root on A E (0,.) iff its

numerator does. The roots of the numerator are always real. Moreover, the numerator has a unique

positive root on (0,-c) iff [I (n)- 11 e(n.O(n - 1)) 1121 < 0. Further since k(A) > 0 for all A > 0. the root,

if it exists, will correspond to a minimum of K(n. A). El

Proof of Proposition 4: If (67) holds, then a0 of F,(A), and b0 of Ft(A). are both negative. Now see the

proof of Proposition 2. C

61



SM-Techniques

SM-Techniques State Estimation SM-Techniques for 1/0 Models
(State Bounding) (Parameter Bounding)

Bounded Error Method Other Constraints

Non-Linear- in- Parameters Linear-in-Parameters

Problems Pnoblems

I i I
Bounding Ellipsoid Polytope Exact Set

Algorithms Bounding Algorithms Descriptions

Figure 1: A taxonomy of SM methods.
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,/ /

/ /

Figure 2: For non-LP models, pointwise feasible sets are hypersurfaces. and the accumulated feasible set,
Q(n), formed by their intersection can be highly irregular. Q(n) need not be connected in the parameter
space. flustrated is the case of a real signal, SISO system for which the parameters comprise real vectors
of dimension two.
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Figure 3: In the LP model case, error bounding implies pointwise "'hyperstrip'" regions of possible parameter
sets in the space, which, when intersected over a given time range usually form convex polytopes of feasible
parameters. These sets are called f(n) when time range t E [1.n] is included. Associated with a LSE
problem with weights A,(.) is a hyperellipsoidal set 02(n) which is centered on the LSE estimate which
contains the feasible set I(n) and. consequently, the true parameters 0..Illustrated is the case in which
the parameters comprise a real vector of dimension two.

65



Figure 4:

THE ['OBE ALGORITHM BASED ON QR-W\RLS AND VOLIUME MINIMIZATION. THE CASE OF A SC4ALA1Z

O~tr is S HOW~N.

INITIALIZATION: Fill (rn + 1) x ( in + 1) working miatrix. W. with zeros.

A(n) = <(T) 1. n. 1.2.,i- 1

i4o) = 0

RECURSION: For n =1. 2.

STEP 1. (Skip 2 3 if t, < 12 +~ I) Update (;,( n). :In, 0(nr 1)

T,(n - 1) = "-(i - 1)T(m - 1) (miultiply top in rowsofW TV (n1)

Solve TH( n - I)g( n) x( n) for g( n) by back substitution.

6',(n) 11g(;) 12  
- n-I)rn

STEP 2. (Skip if n < it? + I ) Check for and compute optimial A-(n).

Consider ao of (44). If ao > 0. set A*(n) =_ 0. Go to STEP :3.

If ao < 0, solve (414) for positive root A*,( n).

STEP :3. (Skip if n < in + I1) If A' (n) =0. set

T(n) T(n -I

an(I go to STEP T.

Otherwise, continue.
STEP 1. Update T(n).

Replace bottomi row of WV by VA7,(70[IIn I)

Rotate this --new eqluation" into TV using Guivens rotations.

leaving the result [T(ni) Id, (it i in the upper in rows of TV.

These rotations involve thr scalar computations (e.g. [33])
It Vk + lWrn+1.k7t' and I" -

1 k~ +1 4-~l(T

for k j+j j + . m +I anid for j 1. 2.. in:

where, (T Wa/P. r Wmf ,n+L/P, P lU'2 + +1 i* is unity2

and Vt'j (VtWj'k) is the j.k element of WV pre- (post-)( rot at ion.

ST EP 5. (Skip if ni < in) Update 0(m) m.solving T( n)0(n) -:- d(ii) by

back substitution.

STEP 6. Update Kin) and Rin) according, to

Kdnl ) (di(n) J2)4- tinl

Compute antI store *)nly i ( 1 if I K To.

STEP 7. If new data set (y(n l4-1 , (n + I) available, return to STEP I.

"Generally T(n) does not become nonsin~ular until n = rn I The first 0(n) cannot be computed until n ?n ~-I and

the first A,*(n) at ni = m 4- 2. We arbitrarily set Aln =t I )n the initial range.

"AF is set to -1 to rotate an equation out of the estimate [3
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fl(n -1)

oi)n)

Figure 5: The F-Hf OBE algorithm circumscribes the intersection of the current hyperstrip and the existing
hyperellipsoid, w4.4) fl Q(n - 1), with another hyperellipsoid a.
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Figure 7: Results of using nonadaptive" SNI-WRLS on the (a) fast system: p =0.020, and b) slow
system: p = 0.025.
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FigureS: (a) p,.(n) and (b) sgn{(n)} for the "nonadaptive" SM-WRLS simulation of Fig. 7(b).
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Figure 9: Parameter estimate results using exponential forgetting adaptation with optimal weights over-

ridden as described in the text. Forgetting factor a 0.99. (a) Fast system: p = 0.073. (b) Slow system:
p = 0.094.
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Figure 11: sgn{ 1n)} vs. n for the exponential forgetting experiments of Fig. 9 . (a) Fast system. b)
Slow system.
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Figure 12: Simulation result of the windowed SMI-WRLS algorithm (I = 2.50). j a) Fast svystem: p 0.094.
(b) Slow system: p = 0. 10.
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Figure 13: a,(n) vs. n for the 1 = 250 length window and the slow system.
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Figure 14:. Simulation result of the windowed SM-WRLS algorithm (1 =.500) for the fast system: p =0.070.
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Figure 15: Parameter estimate and K(n) vs. n for the fast system using windowed estimation with I 1000.
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Adaptation by Covariance &,
Algorithm Checking Back-Rotation Solution Update

Conventional MIL-WRLS b(2m2 + 2m) 3m" + (k + 3)
Conventional QR-WRLS b[2.Srn2 + (4k + 1)rn] (2.5 + 0.Sk)mr + (4.5k + 1),n

Optimal UOBE (MIL-WRLS) m" + (k + l)m + k b(2m' + 2m) p[2m' + (k + 2)mn])

Optimal UOBE (QR-WRLS) 0.5m 2 + (1.5 + k)m + k b[2.5m" + (4k + l)m] p[(2.5 + O.5k)m 2 + (45k + l)m]
Suboptimal UOBE (MIL-WRLS) km + k b'(2m 2 + 2m) p'[3m2 + (k + 3)m]
Suboptimal UOBE (QR-WRLS) km + k b'[2.5m2 + (4k + l)m] p'[(2.5 + O.5k)m" + (4.5k + lim]

Parallel
Optimal UOBE (QR-WRLS) 3m b(llm) p(llm)

Parallel
Suboptimal UOBE (QR-WRLS) (m + 1) b'(llm) p'(llm)

Table 1:
Approximate computational complexities in average number of cflops per data set for the various techniques
discussed in the text. m is the number of parameters in the model: k the dimension of the output vector:

p and p' represent the average number of data sets accepted per n in the optimal and suboptimal cases.
respectively (typically p' < p): and b and b are the average number of back-rotations performed per n in

the optimal and suboptimal cases, respectively (typically Y < b). For each sequential a]gorithm scaling
or adaptation by exponential forgetting require 0.57n 2 + (k + 0.5)nt cflops for each procedure. If both
procedures arc to be used. they can be combined and implemented at about the same cost as a sil"e
procedure. In the parallel cases, scaling and exponential forgetting can be achieved at virtually no cost. In
the parallel processing cases, the loads in the table represent parallel complexities (see text), and results
are for the case k = I since architectures for the MO case have no been devloped.
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Abstract

A class of algorithms is presented for training multilayer perceptrons which implement nonlinear
mappings using purely "linear" techniques. The methods are based upon linearizations of the
network using error surface analysis, followed by a contemporary least squares estimation procedure.
Specific algorithms are presented to estimate weights node-wise, layer-wise, and for estimating the
entire set of network weights simultaneously. In several experimental studies, the node-wise method
is superior to back-propagation and an alternative linearization method due to Azimi-Sadjadi 0 al.
in terms of number of convergences and convergence rate. The layer and network- wise updating
offers further improvement.
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1 Introduction

This paper introduces a new class of learning algorithms for multilayer perceptrons (MLP) with

improved convergence properties. In spite of the nonlinearites present in the dynamics of a NIL P.

the learning algorithm is purely "'linear" in the sense that it is based on a contemporary version

of the conventional recursive least squares (RLS) algorithm (e.g. [11). Accordingly, unlike the

popular "nonlinear" algorithms used to train ,ILPs, the linear algorithm and its potential variants

will benefit from the well-understood theoretical properties of RLS and VLSI architectures for its

implementation.

A MLP is a an artifical neural network consisting of nodes grouped into layers. In this paper. we

consider a two-layer network1 , an example of which is illustrated in Fig. 1, but the generalization

of the method to an arbitrary number of layers will be obvious. Each node above the input layer

in the ILP passes the sum of its weighted inputs through a non-linearity to produce its output.

The inputs to layer zero are external. The outputs of the last layer are the outputs of the network.

Let us now formalize the network and define notation. The number of nodes in layer i is

denoted Ni, with N0 indicating the number of input nodes at the bottom of the network. The

weights connecting to node k (k') of layer two (one) are held in the Nj-vector (NO-vector) ur,

(W'k,). The inputs to the nodes in all layers except the first are the outputs of the layer below. W

denote by N the number of training patterns

{(x(n),t(n)), n = 1,2_ N

in which each x(n) is an No-vector of inputs to the bottom laver of the network, and each t(n) ii

'Some authors might choose to call this a three layer network. We shall designate the bottom layer of "nodes" a-
Iaevr zero" and not count it in the total number of layers. Layer zero is a set of linear nodes which simply pa.- Ih

inputs unaltered. For this reason, we choose not to show circular nodes in the diagram.



N2-vector of target outputs (final layer outputs which are desired in response to the corresponding

input). The computed outputs of layer two (one) in response to x(n) comprise the N2-vector (.V1-

vector) y(n) (y'(n)). Throughout the discussion, ri will be used to denote the jt element of vector

r.

Finally, we need to formalize the nonlinearity associated with the nodes. For given weights. w.,

connected to node k of the final layer, for example, the output in response to input x(n) is

Yk(n) =

in which S(.) is a nonlinear mapping. Typically, for example, a sigmoidal function would be used:

1+cS(a) = I + Ie-12"  (3)

Any function which is once differentiable can be employed in the methods to be presented. F'ilialv.

for convenience we also define

uk(n) f wT Y,(n).

Clearly, uk(n) is the input to node k in the output layer in response to pattern n. ul(n) is similarly

defined as the input to node 1 in layer one.

Many training (weight estimation) algorithms exist for this type of network [2] - [6]. The most

popular is the so-called back-propagation algorithm [5], [6]. Back-propagation performs satisfac-

torily in some cases if given enough time to converge. However, convergence can be too slow for

many applications (e.g. [7])

One attempt to develop faster training methods is represented by the class of algoritlitis iI

which the netwofk mapping is "linearized" in some sense in order to take advantage of linear

2



estimation algorithms. In particular, S(.) can be replaced by a linear approximation. A recent

example employing this strategy is the method reported by Azimi-Sadjadi et al. [2]. We shall refer

to this technique as the A-S algorithm. While the initial method developed in this paper will be

shown to be equivalent in certain theoretical senses to the A-S algorithm, its derivation is quite

different (providing a second interpretation of the underlying linearization) and the implementation

approach will result in significantly improved performance.

2 Linearization Algorithm

The training problem for the two layer MLP is stated as follows: Given a set of N training patterns

as in (1), find the network weights which minimize the sum of squared errors,

N

E = -- (t(n) - y(n))T(t(n) - y(n)). (5)
nrl

The purpose of this section is to describe the theoretical basis for a -linearized" solution of this

problem.

Before continuing, we note a simple fact which will reduce the number of details in our discussion.

It i easy to show from (5) that if only the weights connected to the output layer are allowed to

change, with the other weights in the network held constant, then E is minimized by minimizing

the errors associated with each node independently. That is, if Ek denotes the error associated

with output node k,
N

E= Z[tk(n) - Yk(n )]2 ,()
n=1

then E = _'V2 Ek. In any given layer, each node in that laver involves a distinct set of weights

(those directly connected to it), and each set of weights may be optimized (to reduce its nod's

error) independently of the others. This means that without loss of generality, we may focus oil a



single output node. (Whatever optimization method is discovered for this node will then be applied

to other nodes in the layer.) Let us concentrate on, say, node k and seek weights which minimize

(6).

First we wish to concentrate on the training of the weights in the final layer, so let us write Ek

in a form which explicitly features these weights,

N

Ek = E[tk(n) - S(WTy(n))12. (7)
n=1

Algorithms for finding the optimal solution, say wZ, to this problem are well-known if the niodeled

output depends only upon a linear combination of pattern-invariant (constant) weights. In the

linear case yk(n) = S(wky'(n)) = 3Wky'(n), for some constant 0 (which can be taken as unity

without loss of generality), and the error expression takes the form

N

Ek = Ek(n) - wTy'(n)] 2 .
n=1

The solution in the linear case is the solution to the classical linear least squares "normal equations"

[,]. The solution of the normal equations can proceed in a variety of ways. It is also possible to

arrive at the solution without explicitly forming the normal equations. This is the case. for example.

when using the least mean square (LMS) (e.g. see [9] or [10]) algorithm, a recursive solution which

amounts to "back-propagation" for a linear network. A second popular method is the conventional

recursive least square (RLS) algorithm (e.g. see [11]). A contemporary version of the latter will

serve as a computational basis for the algorithm be described in this paper, and RLS is also the

basis for the A-S algorithm to which we wish to relate the method of this paper. Appropriate

description and formalism will be introduced as needed.

It is well-known that least squares estimation problems may be discussed in terms of their orrur



surfaces, in this case the graph of Ek as a function of wk. Whatever the form of the least square

estimation algorithm, the ideal goal is to find the weight vector, say w;, corresponding to the global

minimum of Ek(Wk). It is important to future developments to note that Ek depends not only

on Wk but also upon the training patterns {(x(n), tk(n)), n E [I, N]} (see (7)). (In fact, since we

have "frozen" the weights in the first layer, it is more appropriate in this case to view Ek as a

function of Wk and the pairs {(y'(n), tk(n)), n E [1, NJ}.) Once the training patterns are fixed, the

error function may be described as a surface over the NI-dimensional hyperplane corresponding to

the weights. Theoretically, the pairs {(y'(n), tk(n)), n E [1, N]} represent partial realizations of a

two dimensional stochastic process which generates them. In this sense

Ek(Wk, {(y'(n), tk(n)), n E [1, N]}) (9)

is only a sample error surface. In a pure sense, we would like to find weights corresponding to the

global minimum of E {Ek(wk)} where t" denotes the expected value. We must be content, however.

to work with the sample surface provided by the training data.

The point of this discussion of error surfaces is to note that different algorithms construct and

use different sample error surfaces from the data. With LMS (or back-propagation), error surfaces

are sequentially constructed from individual training patterns, i.e., error surfaces of the form

Ek(Wk,(y'(n),tk(n))). n = 1,2 - N (10)

are created, and for each n. the weights are moved in the direction of the negative gradient on

that surface. The convergence properties are well-understood. RLS 2 , on the other hand, creates

'Of course, here we are speaking of a linear model identification.



sequentially more refined error surfaces of the form

Ek(Wk, {(y'(j),tk(j)),j E [1,n]}) (11)

as n is incremented. At each step, if a weight update is computed, the solution corresponds to the

unique minimum of the newly refined surface. We can appreciate, therefore, that even if we neglect

nonlinearities, the estimation processes behave quite differently with respect their error surface

analysis.

The linearization technique adopted in this work can be explained in terms of the error surface

analysis. The error surface over which we would like to find the (global) mininium by choice of

weights is given by (7). Suppose we wish to construct a "linearized" error surface, say Ek. which

is -'similar" in some sense to Ek in a neighborhood of the present weights. Recalling that Ek is a

function not only of the weights, but also of the training patterns, the fundamental question is: ('rtn

the pairs {(y'(n), t(n)), n E (1, N]} be modified in some sense, say (y'(n), t(n)) --- (/(n), k(T)).

so that

N

Ek(Wk, 1(94(n)k(n)), n E [1,N]}) [fk(n - w (n)]' (12)
n=1

N

Ek(Wk, {(y'(n),tk(n)),n E [1, NJ)) = Z-[tk(n) - S(wTy'(n))] 2

n=1

in some neighborhood of the present weights? The answer to this question is the key theoretical

development described in the following paragraphs.

In the ensuing discussion, the notation wZ will be used to designate a local minimum of Ek.

Ideally, w, will be the global minimum, but we have no way to assure this. The objective is to

find, by a 'linear" algorithm. a close approximation to wz,.
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The algorithm to be described proceeds in iterations, indexed by i = 1,2,.... Each iteration

represents one complete training cycle through the N training patterns. Suppose that a weight

vector estimate wk(i- 1) results from iteration i- 1. In iteration i, by manipulation of the data, we

work with a "linearized" error surface which is similar to the nonlinear surface in the neighborhood

of wk(i - 1). The similarity follows from two criteria:

I. Ek(wk(i - t), {(g.'(n),k(n)), n E [1, A]}) = Ek(wk(i - 1), {(y' (n),tk(n)), n E [1,N]});

2. 2U I Wk=Wk(:-1) = W Wk=Wk(i-i

The first task is to manipulate the pairs {(y',(n), tk(n)), n E [1, N]} so that these criteria hold. This

is accomplished as follows. It follows from Criterion 1 that

N N

Z(tk(n) - yk(n) 2 = E(fk(n - T(i - 1)9'(n))2. (13
n=1 n=1

By letting
tk(n) - yk(n) t-(n) - wT(i - 1) (n), 1)

or

ik(n) = (tk(n) -yk(n)) + wT(i- 1)y(n), 1.)

for each n. Criterion 1 is met. Now we take the partial derivatives required in Criterion 2. For tL

"nonlinear" error,

= -2 Z(tk(n) - Yk(n))(uk(,n))Y'(n)
-wkJ wk=w(,-1) n=1

IV
= -2 Z,(tk(n) - yk(n))S(wT(i - )y'(n))y'(n) Ii

n=1



where

A-u, ) def dS(a)1 (17)

,tUk(n)) - dco I t Uk N(17

All inputs and outputs in this and similar expressions are those associated with weights wk(i- 1) (or

the "'current" set of weights around which linearization is taking place), but we will avoid writing

ulk(i- 1,n), for example, for simplicity. For the "linear" error,

E-2 - wT(i - i),(n))9' (n). (18)
j W==Wk(1-)

Equating (16) and (18), in light of (14) we have

9' (n) = S(wr(i - 1)y'(n))y'(n). (19)

All quantities needed to compute the modified pair (f(n), 9'(n)) are known or can be calculated

at pattern n. This procedure is repeated for each k (output node).

Before extending the analysis down to layer one, let us ponder the significance of what we

have done. By modifying the data pairs, we have created a "linear" error surface which is sim-

ilar to the "nonlinear" one in the neighborhood of wk(i - 1). In particular, the error surfaces

match at that point, and their gradients are identical with respect to the weight vectors. We can

find the Wk which minimizes Ek by simple linear least squares processing of the modified data

{( tfk(n), y'(n)), n E [1, N]}. The linear estimate will correspond to a minimum of the error surface

Ek which need not be near a minimum of Ek. However, because the error surfaces and the gradi-

ents match with respect to the weight vector of node k, if the weight change is smalU enough. the

weight change will be in the direction of decreasing Ek. Accordingly. the linear weights must he

constrained to remain in a reasonably small neighborhood of Wk(i - 1). Because Ek is reduced at



each iteration, it is to be expected that a minimum of E will be reached by repeating this procedure.

In turn, this implies convergence to the "nonlinear" solution for the weights, using purely linear

techniques.

Let us now move down to the lower layer and consider the estimation of the weights {w j E 1.

By similar reasoning to the above, we may focus on a single node, say node i. However, we must now

optimize w' with respect to the entire external error, E, since all nodes in the upper layer are af-

fected by these weights. Suppose that we ar working on the ith cycle through the training patterns

and that all weights in the upper layer are fixed at their newly updated values {wk(i), k E [1,. .2 ]}.

Taking the derivative of E with respect to w ,

OE N N2

- = -2 1 1(t(n) - y,(n)),(uJ(n))wj,{i)S([w;]TXf(n))x(n) (20)
Owl' n=1 J=

where wt.(i) denotes Vt' element in weight vector w,(i) (weight on connection from node I in layer

one to node j in layer two). This expression can be written

0 E .vn ) ( WI] X n )X I)(2
-2 Z(t(n) - ytn)[w]Txn)(n

whero t,( n) is called the target ralue for inner node I and is defined such that

NV2

(t'(n) - y(n)) = Z_(tj(n) - y(n))S(u,(n))wuj(i). (22)

IFhe quantity on the right side of (22) is commonly called the back-propagated error for node 1. TIhe

-olition sought, say w't, is one for which

O,] = 0. (23
0w' , ,";.



In the top layer, for node k we sought wt such that

OwE] = 0. (24)

With reference to (16), it is clear that the present optimization problem is equivalent to the ones

encountered at the upper nodes. In particular, the same hnearization considerations can be applied

to obtain modified input and target values, say

(t(n).x(n)) - (' j(n),.t(n)) (2.5)

and the set of layer one weights w(i) computed accordingly for each 1.

Before continuing, let us note the relationship to the A-S algorithm noted above. In fact. to this

point in the discussion, the methods are nearly equivalent though derived from different starting

points. In the ith iteration through the training patterns, prior to updating the weights wk at

pattern n, node k is "linearized" in the A-S algorithm by approximating S(a) by a linear function

which is tangential to3 S at wT(i - 1)y'(n). In effect, S(a) is approximated by the first two terms

of a Taylor series,

S(0) -:z (a)= S(wk(i- 1)y'(n))(a- wk(i- 1)y'(n))+ S(wk(i- 1)y'(n)) (26)

- S(w'(i/ - 1)y'(n))o + [S(wk(i- 1)y'(n)) - kS(w[(i- 1)y'( n) )wT(i - 1)y'(

def
d Kk(n)a + bk(n).

Azimi-Sadjadi et al. [2] recognized that by using this approximation in (16), the oplimization

3In fact, if w(s, n-1) denotes the weight estimates after pattern n-1 in iteration i, then in the A-S algorithm. S(.)
is linearized around these weights rather than the weights at the end of the previous cycle. Of course, this process
could also be used in our algorithm. but we find that it makes no significant difference, and the computational expense
of updating the weights at each n is avoided in our case.
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problem became equivalent to a set of linear least square error normal equations if the data

were r. )dified according to (15) and (19). Therefore, by quite different means, the theoretical

developments arrive at the same set of linear equations to be solved.

In principle, once the linearization is achieved at iteration i and pattern n, any least mean

square type algorithm can be employed to update the weight estimates. The A-S method uses the

conventional RLS algorithm. In this case, neglecting any error weighting, RLS takes the form of

the two recursions (written for node k in the top layer) [11, Ch.5],

P(i,n) = - 1)9' (n)[9' (n)]Tp(i,n- 1)

1 + [9'(n)]TP(i,n - 1)9'(n)

wk(i, n) wk(i, n - 1) + P(n)9'(n)[fk(n) - [k(n)]. (28)

wk(i, n) is the estimate of the weights Wk followii g pattern n in the ith iteration through the

training data, and P- 1 (i, n) is the covariance matrix at the same "time" in the process,

n

P-1( i, n) k~ y k~j[,~)T (29)

j=1

Note that wk(i,O) tef wk(i - 1, N) and similarly for the covariance matrix. This presents the

question of how wk(O, 0) and P(0, 0) should be initialized. The inverse covariance matrix contains

theoretically infinite values at the outset and a proper initialization for the weights is practically

not known (this means that the initial linearizations of the training data are based on potentially

very bad weight estimates). This issue will be addressed further below. Also, it is clear t hat

Lhis solution, as written, will continue to "accumulate" past linearized sets of data which might.

in fact, be linearized around very poor weight estimates. Therefore, the A-S algorithm includes

a "'forgetting factor" [11] in the RLS recursions. This is equivalent to using a weighted error

criterion with time varying (exponentially decaying) weights. This can make convergence slow if

11



the forgetting factor is large. If the forgetting factor is small, then past values are forgotten more

quickly, but leads to convergence problems. We will also comment further on this issue below.

We have found that the choice of conventional RLS as a solution method seriously impairs

the ability of this linearization method to converge on a proper set of network weights. As an

alternative, therefore, we suggest the method presented in the following section.

3 Solution by QR Decomposition

In order to improve convergence the algorithm developed above can be implemented using QR

decomposition [1, 8]. This algorithm has distinct advantages over conventional RLS. First, the

QR algorithm does not suffer from initialization problems noted above for RLS. It also permits the

inclusion of several very flexible "forgetting" strategies. To illustrate the operation of the algorithm,

it is sufficient to consider the estimation of weights wk in the output layer of the network. All

notation is consistent with that used above except the number of nodes in layer one is denoted l.

In effect, the linearization technique described above reduces the problem at the ith iteration

through the training patterns to one of finding the least square error solution of the overdetermined

system of equations

((1)) T k(1)

k - k( 2 )

Wk(i) = (30)

k fk(N)

The QR decomposition method is based upon transforming this system into an upper triangular

12



system by applying a series of orthonormal operators (Givens rotations). The resulting system is

T(N) di(N)

Wk(i) = (31)

O(N-M)XM d 2 (N)

where the matrix T(N) is M x M upper triangular and Oixj denotes the i x j zero matrix. The

solution for Wk(i) is easily obtained by back-substitution. A recursive version of the solution is also

possible. The recursive algorithm is shown in Fig. 2. For details the reader is referred to [1].

For discussion of further benefits of the decomposition algorithm, it is useful to view the A

matix, defined in Fig. 2, as four partitions. Following the rotation of the nth equation, in Step 2,

for example,
T(n) d1 (n)

A (32)

OiXM d2 (n)

As is the case with the A-S method, a forgetting factor must be employed to gradually reduce

the effects of earlier linearizations. This is very easily accomplished in the QR algorithm by simply

multiplying the top M rows of the matrix A (matrix T(n) and vector dl(n)) by a factor 3 < 1

prior to the rotation of the n + 1-1 pattern equation. In this context, both the forgetting factor

and the frequency of weight updates can be varied. In addition to exponential forgetting factors.

equations can be "rotated out" of the matrix. This is done by changing S in Fig. 2 to -1 and

rotating in the equation to eliminate. Thus, for example, only the last Q > M equations can be

used to calculate the weight updates by sequentially removing equation n - Q + 1 prior to inclusioll

of equation n. This procedure effects a sliding window over which the estimates are computc(.

Another forgetting method useful for MLPs is possible because no initialization of the updating

13



equatioas is necessary. Because there are no initialization problems the system can be re-initialized

at any step, thus completely "forgetting" the past linearized values. These and a number of other

flexible forgetting strategies made possible by this algorithm may prove very useful in the training

of MLPs.

In addition to new forgetting factors, using the QR implementation also allows the frequency

of updating of the weights to vary. As with conventional RLS, the weights can be updated every

time a new linearization has been used 4 .

The theoretical results above, along with those in Section 2, can be combined to form a learning

algorithm for MLPs. First, the weights of the network must be initialized. This is done randomly,

each weight being selected from a uniform distribution over the set [-1,1]. Once the initial weights

are chosen, the weight updating can begin. First, a training pattern is input to the system. Because

the weights are not updated until all the trair'-ig patterns have been used, convergence does

not depend on the order in which the training patterns are used. Given a training pattern, the

algorithm calculates linearized training patterns for the last layer nodes and these are rotated into

the corresponding A matrix. Each node has a "separate" A matrix. The target outputs of the

layer below are calculated next using back- propagation. The A matrices for the first laver are

then updated. A new training pattern is then used to calculate a new set of linearized inputs and

outputs. This is repeated until all the training patterns have been used. The A matrices are then

used to calculate updated weights. This continues until the network converges to a solution. tBy

definition the solution is said to have converged when the change of the norm of the vector of all the

weights is below a threshold. As with other training algorithms for MLPs, this algorithm may not

converge to the weights corresponding to the global minimum of the function of E. Also, although

the algorithm approximates a gradient system, because it is not a gradient system, there is 1no

'This can be as often as every pattern (see Footnote 3), or at the end of each iteration through the patterns a.,
has been our convention.
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guarantee that the algorithm will converge to aliy solution. Thus for implementation a maximum

is placed on the number of iterations.

4 Complete Layer and Network Updating

The back-propagation algorithm updates each weight at each node individually. All the weights in

the network except one are fixed and this is changed to reduce E. The algorithm described in the

previous section updates all the weights connected to one node simultaneously. All the weights in

the network except those connected to one node are fixed, and those weights are updated to reduce

E. These two methods of updating weights may not be optimal because E is a function of all the

network weights and may not be minimized by updating the weights of each node independently.

Minimizing an error implies there is a target value. There are no given target values for the inner

layers so these are computed assuming the weights of the layers above are fixed. These target values

allow the weights of each node to be updated independently. This makes the computations easier.

but does not take into consideration the interdependence of the nodes.

The next step in the development is to demonstrate how to update all the weights connected

to one layer simultaneously.

The following derivation uses the linearization of the nonlinearity suggested by (26). Note that

N1

yk(f) = S(wky'(n)) = S(ZWkj '(n))
j---

.1=1

and
N0

'(n) = w x(n)) = S(

15



The linearization replaces S(u) by Ku + b. Thus

N,

yk(n) = k(f)(ZWkjY1 (f))+ bk(n) (35)
j=1

and
No

-/y(n) = K' n)(wlxl(n)) + b'(n), (36)
L=1

so
SOO

,N1  No

Pkn Kk(n)(Z Uwk,[K'(n)(Z: w',jxj(n)) + b'(n)]) + bk(n).
.1=1 1=1

To update the weights in layer two, the weights in layer one of the network are fixed. With

these weights fixed, the weights connected to different nodes in the output layer can be updated

independently and the same update equations as in the previous section result. To update the

weights in the first layer, the weights in the last layer are fixed. Thus

,'1 NO 'VI

9k(n) = Kk(n)Z EWk,j K(n)E w1xj(n) + Kk(n)Z EWk,jb' + bk(n), (:38)
j=1 1= =1

or

N, No N,

!Jk(n-) = Y :K-nW~K'nx~)w, + [Z(Kk(n)Wk,b', + bk(n)] (:39)
)=1 1=1 j=1

so
NJ N No

Pk(fl) [ZIE4K(n)Wk.b'(n)+ bk~n) = ZE (Kk(n)Wk,,K(n)x(n))w'>. (410)
J=1 )=1 1=1

Hence for one output, this is the same as a linear system with NO x N1 inputs and one output. The

linearized output and inputs are

NI

fk(n) = t k(n) - Z[A'k(n)t'k.)b'(n)] + bk(n). (I1
j=1
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and

tjj = Kk(n)wk,jK;(n)zI(n). (42)

For one output, yk(n), and N training patterns,

N

Ek = Z(tk(n) - yk(,l)) 2, (43)
n=1I

while for N 2 outputs and one training pattern

, 2

E = Z(tk(n) - yk(n))2 , (11
k=1

where yk(n) has the form above. The weights in the output layer are held constant, so all the Yk

are a function of all the weights in the first layer. Because the yk(n) for all k and for all n are

functions of the same weights, we can use the same technique to update the weights of the two

systems above, given by (43) and (44). Thus, the N2 output network with one training pattern is

treated as a one output network with N2 training patterns. This is done for each training pattern.

Thus if there are N training patterns and N2 outputs, the number of linearized training patterns

is N x N2. This method allows us to update all the weights in the same layer simultaneously.

Ultimately the goal is to update all the weights of the network simultaneously. Some improve-

nent in convergence can be expected because the weights are not independent.

Simultaneous updating of all weights can easily be accomplished for a one output network using

the derivation above. From (38)

,V.1 N0  N1

= E Z[Kk(n)K(n).(n)Wk.,Wj + [Kk(n)b'(n)IWkJ + bk(n). -15)
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Letting

WJt = WkWjl (46)

then
N 1 No N1

Yk(n) = Z Z[K(n)K'(n)x(n)]4,I + Z[Kk(n)b'(n)1Wj + bk(n) (47)
j=l 1=1 j=1

or
N1 No NI

(yk(n) - bk(n)) = EZIIK(n)K'(n)xdn)jwt4, + E[Kk(n)b',(n)]wkj. (48S)
j=I 1=1 j=1

This is a linear system with one output and N0 x N1 + N1 inputs. The system can be solved for

wk,, and wt, and (46) can be used to solve for w',.
kii

5 Experimental Results

5.1 Single Node Updating

The results given in this section compare three training strategies for an MLP. These are:

1. Conventional back- propagation (no linearization).

2. Conventional RLS with a forgetting factor (A-S Algorithm).

3. QR decomposition with an exponential forgetting factor.

Each of the three strategies was used to train each of the following networks:

1. a two-bit parity checker,

2. a four-bit parity checker, and

3. a four-bit bit counter.

The architectures for these three networks are illustrated in Fig. 3.
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The two-bit parity checker (XOR) network has two inputs, two hidden layer nodes and one

output node. An additional input is added at each layer whose value was always unity, to serve as

a bias for each node. The output function S(.) is the sigmoid defined in (3). The initial weights were

chosen as follows. Each weight in the network was selected randomly from a uniform distribution

over the set [-1, 1]. This procedure was repeated 100 times to select 100 sets of initial weights. The

same 100 sets of weights were used for all 3 implementations. For the back-propagation algorithm,

a factor of 0.04 was used in the weight updating equation. The A-S algorithm was implemented [2]

using no weight change constraints. The forgetting factor for this and for the QR decomposition

implementation was 0.98. The QR decomposition implementation used a weight constraint of 0.2.

Thus the weight vector associated with each node was allowed to change at most by 0.2 during

each iteration.

The four-bit parity checker network has four inputs, four hidden layer nodes and one output

node. A bias input is also added to each layer. Two output functions were used. These were the

same sigmoid function as above, and the logic activation function. The logic activation function

is a three piece piecewise linear function. It is zero at zero, has slope one from zero to one. and

slope zero everywhere elsewhere. This makes the derivative of S(.) easy to determine everywhere

except at zero and one where it does not exist. This does not pose a problem in implementation

if we let S(a) = I if a E (0, 11 and zero else. Two sets of 100 random initial weights were used for

the three implementations. The first set of weights was random as in the two-bit parity checker.

and the second set of weights was as described by Azimi-Sadjadi et al. in their paper. The A-S

method selects the weights so that the outputs of the network will be between zero and one. This

is (one so that the derivative will not be zero and weight updating can take place. The four-bit

bit counter had four inputs, four hidden layer nodes and two outputs. An extra input was added

to each layer. The logic activation function was used as the output function. Two sets of initial
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weights, random and as described by Azimi-Sadjadi, were used. The results are shown in Table 1.

The table shows the number of times each implementation found weights that solved the problem

for the 100 initial weight sets.

Simulations were also run comparing the output error of each algorithm. In the resulting figures.

the error in dB means the following: Let e(i) be the sum of the squared errors incurred in iteration

i through the training patterns, averaged over the 100 initial weight sets. Then, plotted in the

figures is 10 log(e(i)/p) (dB), where a is the maximum possible error in any iteration.

Fig. 4 shows the errors of the three X-OR implementations. Fig. 5 shows the errors of the QR

decomposition algorithm using different forgetting factors and different weight constraints. The

number of convergences for each of the setting was 78 for number one, 60 for number two, 56 for

number three and 64 for number four. It is apparent that the parameters which yield the most

convergences do not necessarily lead to the lowest average error.

These results indicate a clear advantage for the QR decomposition strategy. Algorithmic differ-

ences among the three implementations account for performance differences. One difference is the

initialization needed for the RLS equations. With the RLS strategy, both the covariance matrix

recursion and the weight vector recursion must be initialized using theoretically incorrect values.

Because of initializations, the RLS algorithm is not guaranteed to move the estimate in the direc-

tion of greatest decrease of E, or even of decreasing E, for the first iterations. Of the two RLS

recursions, the weight recursion seems to be the most sensitive to the initialization problem. This

is because P is initialized with large values, P- 1 is small and the effect of this initialization is

relatively small. The weight recursion is sensitive to initialization because (28) depends expticitlv

upon wk(i, n - 1). The QR algorithm has only an implicit dependence on the weights, as do all

linearization algorithms, because the linearizations depend on the weights.
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There is also a difference in the performance of the network using different functions for S(.).

The logic activation function proved superior to the sigmoid in these experiments. This is probably

because the error will always be positive using the sigmoid, but can be zero for the threshold logic

activation function. No matter how the weights are adjusted, the output of the sigmoid will always

be bounded by one, so that the training pattern outputs can never be matched exactly. With the

threshold logic activation function, once the weights are adjusted so that the output is off the ramp

(the linear region), the output can be zero or one in which case the difference between the training

output and the actual output can be zero.

5.2 Layer Updating and Network Updating

This section gives the results for the algorithms given in Section 4. The first algorithm updates

the network weights by layers. All the weights in the same layer are updated simultaneously. The

second algorithm updates all the weights in the network simultaneously. Both algorithms were used

to train a two-bit parity checker (XOR) network. The same network architecture and the same

100 sets of initial weights as in the previous section were used in the simulations. The layer-wise

updating algorithm has a forgetting factor of 0.3 and a weight constraint of 1.0. Thus the vector of

the weights in each layer was allowed to change by at most 1.0 during any iteration. The network-

wise updating algorithm had the same forgetting factor and weight constraint. The results are

shown in Table 2. As in Table 1. Table 2 shows the number of times each algorithm found weights

that solved the problem for the 100 initial weight sets.

Fig. 6 shows the errors of the two X-OR implementations of this section and the error of the

QR decomposition implementation of the single node updating algorithm. The convergence results

.how the advantage of layer-wise weight updating and network-wise weight updating over node-wise

updating. Layer-wise weight updating also proved better in the error analysis
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6 Conclusions

A new implementation of a node-wise weight updating algorithm for multilayer perceptrons and new

algorithms that update weights layer-wise and network-wise have been presented in this paper. The

QR decomposition implementation has been shown to be superior to standard recursive equations

for the node-wise updating algorithm. This result should prove to be beneficial not only for this

algorithm, but for all MLP training algorithms that use recursive equations for implementation. The

layer-wise and network-wise weight updating algorithms were developed to improve the convergence

rate and the speed of convergence. Both objectives were accomplished, with the layer-wise weight

updating algorithm showing a significant advantage over both the single node weight updating

algorithm used as a reference and standard back-propagation.
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l&a61es A&Z

Table 1: Number of convergences per 100 sets of initial weights

2in- lout 4in-lout 4in-2out
siginoid sigmoid logic activation logic activation

Impementation random random A-S random A-S random A-S
weights weights weights weights weights weights weights

Q-R 78 5 5 51 57 1 16
Back-Prop 11 0 0 1 53 0 0

A-S 8 0 0 1 37 0 9

Table 2: Number of convergences per 100 sets of initial weights

2in-lout
sigmoid

Impementation random weights
Layer-wise updating 96

Network-wise updating i 99
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Figure 1: Two-layer perceptron. The bottom set of "nodes" (input) are linear and are designated
layer zero.
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Figure 2: Weight Estimation Using Recursive QR Decomposition

WEIGHT ESTIMATION USING RECURSIVE QR DECOMPOSITION

Initialization: Initialize an (M + 1) x (Al + 1) working matrix, say A, to a null matrix.

Recursion: For i = 1,2,... (iteration); and, For n = 1,2 ... , N (pattern),

1. Enter the next equation into the bottom row of A,

[t n) ] ,49)

2. -Rotate" the new equation into the system using

A4 rnk = Amkc + AM+I,kTS
4 +'I - AkS + Am+ikoS

for k = m,m + 1....M + 1 and m = I ,...,M where = A,/p, r = Ai+j/p. p
(A2m, + A2M+ 1 )1/2, S is unity (useful later), and Ak(Ak) is the m,k element of A pre-
(post-)rotation. No other elements of A are affected.

3. Solve for the least square estimate of the weights wk if desired. (Solution after the n" pattern
will produce what has been called wk(i, n) in the text, and wk(iN) = wk(i).)

4. If n < N, increment n. Otherwise check convergence criterion and increment i and reset 7 if
not met.

Termination: Stop when some convergence criterion has been met.
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,, is r ivergence properties. While the underlying bounded error asstinpti H gives rise to hI algorit linis. thle
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cri I c1(t eniployed in Dasgupt a- Huang: and. 2. sug1gest that an algori tlhii with Iile desirable propecrt ies ,flwthI
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1 Introduction

Set-membership-based (SM) system identification algorithms offer an interesting alternative to conventional tech-

niques. SM methods have been receiving increasing attention internationally. Recent reviews of this field are found.

for example. in [1]1[3]. This note is restricted to the class of algorithms known as optimal bounding ellipsoid (OBE)

algorithms which follow from a bounded -rror constraint. We explore some interesting connections which exist be-

tween two landmark OBE algorithms - the Fogel-Huang (F-H) [4] and Dasgupta-Huang (D-H) [5] O3E algorithms

which have not been well appreciated. These connections suggest the p(ssibility that the desirable properties of

both may be blended into a single OBE algorithm.

The bounded error identification problem is as follows: Assume that we are observing some physical system

which is generating sequence y(.) E C in response to input u(.) G C1. u(-) is a realization of an ergodic, wide sense

stationary stochastic process. Both input and (output sequences are measurable. We assume the existence of a --true-

niodel of form

y(n) = O.z(n) + C.(n) (I)

in which X(7n) is some rn-vector of functions of p lags of y(.) and q lags plus the present value of u(.). and where

C.(.)e C .?? is the realization of a zero-mean, second moment ergodic, complex vector-valued random sequence

whose conponents are independent. The matrix 9. E C ×1x parameterizes the model. At time n we wish to use the

observed data on t E [1, n] to deduce an estimated model of the samt, form. The parameter estimate is denoted by

0-(n) and the residual process by c(.. e(n)). Trhe dependence of the residual upon the parameter estimates is highly

significant, so it is shown explicitly.

Deller et al. [3] have recently shown that all reported OBE algorithms, including F-H OBE and D-H OBE. can

be unified into a general framework which they call the Unified OBE (IOBE) algorithm. We initially present the

I'OBE fraiework: IVOBE algorithms arise from a bounded error constraint:

t l ( ) 11 2 < , , ) .( 2 )

where is a known positive sequence. At time n, a set of parameters can be found which are consistent with the

o)servatins and this sequence of hounds. The exact set is difficult to describe and track. but. in conjuncti(on with

wight , rr,'ursiri lcit iquare (WRLS) processing (e.g. [6. 7J). 2( i) can be shown to be contained in a superset of

he form (e.g. [3],[11.[8]
- 1 1Ctn)

Q(n) 0- tr{[(9 - N(n)] [- 1(n)]} < 1 (3)
K) I

wher,, t r {}detotes the trace of a matrix, N(n) is the WR LS paratieter estimat e at Iie i using weights A,(I).. I(T).

C(n) is the weighted covariance matrix, and K(n) is thite scalar quantity

O n(,) ._ tr{O "(,C ,)o ,) A,(t) [-,(t)- 11 Y(,)i ]  a

Qf o is a iyperell ipsil in C"' k. with its center at 00), By examining a single nutput say y,(.). the i0 ' c uponent

4 yi t wo see that a coninon "'ellipsoid riatrix" Crn /K(n) is shared by each 4 the individual outputs, bli That

each is ,-aitprpd ,n a different pararmieter ,st rite represented by column i of N(). ) We conclude therefore that under

kI ,ndel ,rror iitstraints. a h-perellip , Pil an be assnciater with a W\'RLS recursion and conversely.



The subscript 'n" on the weights A,(.) is used to indicate that the weights may be dependent upon the time

of estimation. In general, time dependent weights are not easily integrated into \VRLS algorithms except in simple

cases. One such case occurs in the UOBE algorithm in which the weights are time varying by virtue of a scaling

procedure. The weights used at time n are given by

AL (t)
A-(t) - for t < n - I ,5)((n-I1)

and \,(n), where ((-) is a positive scaling sequence. We make the reasonable assumption that the sequence (-)

is "causal" in the sense that ((n) does not depend upon any quantities not available at time n. The method for

integrating scaled weights into WRLS is given inherently in [4] and [8], and exp!icitly in [3] and [9]. While the weights

are directly related to the size, orientation, and location of the ellipsoid in the parameter space, this scaling procedurc

rffectouply restricts to one ( riz. A,(n)) the number of free parameters available to control the bounding ellipsoid at

tine n. The central objective of the I'OBE algorithm is to employ the weights in the context of WRLS estimation

to sequentially minimize the ellipsoid size in some sense. A significant benefit is that often no weight exists which

call minimize the ellipsoid, indicating that the incoming data set is uninformative in the SM sense.

All UOBE algorithms adhere to the following steps: At time n,

I. In conjunction with the incoming data set (y(n), x(n)), find the weight. say A,(n), which is optimal in some

sense (see below):

2. Discard the data set if,\ (n) < 0.

3. Update C(n) and 4(n) using some version of WRLS (e.g. see [8]).

41. Update K(n) using (4) or one of the recursions in [3].

l'hree fundamental variations on the UOBE method have been reported in the literature. The most recent, the

D-I OBE algorithm [5]. is unlike the others in one important aspect. This difference lies in the criterion used for

determining optimal weights. This difference, on one hand, allows for a proof of convergence of the ellipsoid in a

-ertain sense. On the other hand, the optimization criterion used is controversial and somewhat difficult to interprot.

Further, the usual optimization criterion so profoundly changs the development of the algorithm, that its identity

as a member rf the OBE class of algorithms has not been appreciated.

The other two reported OBE methods are the F-H OBE algorithm [4] (((ni) = ,(n)) and the S.M- WRL.S' algorithii

,,f Deller et al. [8],[10] (((n) = 1). Variations on. and enhancements to. each of these algorithms, as well as D-11

OBE, are found in the literature (e.g. [11]-[14]). The stated purpose of this paper is to make connections between

D-If ORE and F-H OBE. However, the important contrast exists between D-l1 OBE and any I'OBE algrithn with

"conve'ntional optimization- based on a meaningful set measure as described below. Let us refer to the latter ,lass

,,f alvorithns as I'ORE-p. and genoralize the discussion.

IMORE-v algorithms operate on the optimization principle of (prospectively) minimizing some set measure, if

Q(,0 . say p { .(n) . Fogel and Huang [1] suggest two set measures. The first is the determinant of the invIrse

nipsil qmatrix

1, {Q(T)} -det {,(n)C- 1(n)}
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andl the second is the trace.

(We shiall henceforth write p1 ()and ;it u) for simlplicity.) In tile single output case in which Q( i) is clearly n

tepretable as an ellipsoid, jin ) is proportional to the square of the v-olune of Lhe ellipsoid, while pt( n ) is prop)ortijonal

to the sumn of squares of its sei-axes. Thie sanme two iteasures are, meaningful Iiltt thmiult iple output case, since they

result in thle minimization of thle volumie or trace tf the coin in ellipsoid 4i-,red by all thle out puts (see diiscussion1

below (4)).

Thie general mnethod for finding -he I OBHE-p )ptlinial weight for mininmizing the either set mlea.sure is given inl [311

These methods include results for F-1l OBE and SNl-WRLS as special cases, but optimization strategies are also

given of course in the original papers. It is found that A'1( ) Is the nnique l)o)sitive-( root of the polynomials F, ( A)

and F1( A) for the volume and trace mneasures respect ive-ly, where F, Is a quadratic.

P', (A) = aA'2 + aI A + (n o$

anid F, is a cubic ;)olynoiriial

P' (A) b.3 A3 + h2A2 + b, A + bn (9)

The coefficients rzi and b, are given in ternis of quantities which aret, known prior to time nt, and which, in turn,

are dlependlent upon the scalitng sequence (( .). The interesting feature of the I'OBE-pi algorithms is thle infrequent

existence of thle optitnal weight leading to infrequent updating of thle parameter estimates. This reductiotn inl the(

need for updating, in turn, results, in computational efficiencies and interestitng performance properties.

Ii cont rast. the D- H OBE algoritlhui uses scale factors "(it) = (I - A,* (it))- I and an optimization procedure

which does not seek to (direct ly iniize a set measure on ( n ) such as (63) or (7). Rat her. thle weight is chosen t~o

ruininuze c( ri) . subject to the const raint t hat it he in the allowable range [IJ.o(} with 0 < it < I (see helow). Thei

choice of scaling sequence results in the covariance ntat rix att lite ?I

whItic h is seen to be a con vePx cotrn inat ion of C(ni - 1 ) aid t ilie new dat a outer prodIuct . Here we see lie- reason

for the coust rai nt ott the range of opt imial weights. This coustrrttion provides ile mneatis, wit i witichI to prov.e

aisvutpt otic and exponential conivergence of thle ellipsoid, and cessation of uipd ating, u sinrg Lyaponov t heor prt

rotnIvergence. the( residuals. c ( 1((. )) are- guaranteed to retnain in the "(lead zonle' indicated by the error hon rids.

[)asgu pta and H uang [51 sh1ow that such an weight optimtral weight Int the sense of niiiirriiz i g K r)) exists iOr

sj i2( . 19( i) - I )) > -n -itt-I) I

where, K, n - I ) =inK n - I1 I. thel( .lI" value of t he P; parameoter. A c( rri nglY t!,Is s imple and crtitlit a-

tona 'lly rlt inPesv test may,1. he etnrel tn let ertiin whet her t iet, Ithe erret dat a set (i) r( ii))i usefil ill t 11,

, entse f the optlinizationl criterion Iwvr.whether this gol f ititlinihing KOO Ii) is maningful remains ;itt V1slif

,of rttrvsvFr, en an analytical poitnt .f viwthle teas( n fIr t his choice- is t hat Ktit) Is A hcound on t liel,- oii

fmiurtion isedl il( th itiiiization. a.-l the 'Iv'~t~ f ilie [Aapmi-x, fuin ii is used to poe rvre
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he algorithm. Fronti an interpretive point of view, however. diminishinig K(nu) Is not helpful because its rniagnit tde

is not clearly related to the "size" of tilie set Q( n) Dasgupta and 11tiang [5] argue siply that K( n) Is "a bound oni

he est imation error." and should be minimized. Norton and Mo [15] dispute this claimi with tlte ob~servat ion that

Linui izing x( n)] is claimied in[5] to mninimi ze a hound onl the estimation error, but thet quantity mnimruized IS nlot

a bound on the parameter error, nor does it bear a simuple relation to it."

Hence, we have arrived at the apparent phIiloisoph ical and practical ilemnia which initiated t Iiis disc ussin.

WNhen faced with the choice of OBE alyorit hrns. dioes one opt for the D-1 O B E iiethod with its p~roveni convergen~fce

propert ies, or thet I 'GB -p (including F-11 01BE) algorit his withI their clear interpret ation" In tile following ( ectII in.

we demonstrate somne heretofore uinrec(19tliiod c oinect tins bet ween the tniet hodis which prov ide a better basis fo-r

mraking t his choice.

2 Connections Between the D-H OBE and UOBE-1 i (F-H OBE) Al-

gorithms

I it spite, I) soiei statpomen t s to the con trainy [i the lit eratuire (based on apparent misunderst andi rigs oftho oruttinal

F-Il paper rlI), theore is no known proof of convergence of the F-H- OBE algorithmn according to anyv reasonable

riltt ina. In part icuilar, F-1l OBE is not kniowti to converge tin the sense detscribed for D- H GOBE. These stat ietint s

;tpply to I 'GBF-It :ilg rit hrus in general. Weo shall not puirsue( such a convergence result. Rather, we shall shiow that

'111 f thw -'intrrpretability" of I 'BE-p algorithmis iniay be -transferred" to D-1H OBE.

It is soitew hat cuiriouis that we have cal led the D- H miethod an -G0B3F oloritlhiil. Thie bounding elli psoiud c early

uilprlies. thet prowess bit its use in tilie optimnizat ion pro( 'dure is obscure. IHerein lies the crux of the problem withl

interpret at iont WXhile It is not exploited in the( D-1 O B E algorithm,. the D-11I hvperellipsoid nevert heless dot~s have

uttei and trace, set ineastirps at each ii. fIn fact, because D-1 O B E is fundamentally a I 'B F algorithlum. ie, 1'mipl

r ,t y rt of(,S), if it exists, will nimirize it, . A simlilar stateliemit applies to (9) and it, Thie utility of this volimit

(r trace, resi It reuniai ns an o)pen quest ion at tist, point In ouir dliscussion. because to lise, weights which are, opt it il III

the'se c~uvn i'senises does not niecessarily aulmnit the eon itrrnct results Abtained by thle D-Il analysis.

Ili' C)tned on bePt ween the two mlet hods rests fundamientally in thre ze-ro order coeticionts afi and 1),)I (iflf

o)ptitizat iii wlvn unials (10. and (9). Tefollowing resuilt has been shown in (3]:

Tlwnretn I Thr quadratic F, (A,\) associated with thr I '0BE-Iu alqorithmis h zis a uiniquie pwsihic rot ( t/i'h t it atoz

ruu~t. ~u o zi u~< 0 . 'urrularfuj. cuibu rqimatio Ft(,) has au uniquef poiifrr ro)ot iIT br < 0,

Lilt it, huetce-forth restrict our attenitioin to u th v''luintie tnlriiuizaiion case- with ite iuuerstannriug t hat aI l);iri,I

'hs~i tappltes to) tOw trace measure. 'Ehe .c ffcifent "() I,'u 9"n by[L

ovliwro If ri 1 C~ ?I - I Ir x uIt. C, 1, 7 C( i) /1 ti , Ii n all o ther i ua itti- it v ee(n leti iel a Iy -\ ItI 

lhat tilt, -ipitari.n -'f this quantityl is ti-arlv as con puttoalxpeulsixe as sinuiply incluiding ?te nw bitl~ 11)

he arrit ~le ndl 0,lb10i l3 suigest thet suloptinal testing procedure, iu which the tow data itre it, I IF



While originally developed using a different argumient. it is seen that the test ( 13) has a very useful in terpretato0n

in terms of the "proper' test an < 0. In fact. 13) is equivalent to tostingl whether

an + KAI < 0 (14)

where K, is the last termi in (12). Since N1 > 1) f3] . in OphInmat Weight in the sense Of dirnlin sh zng p ( n ) wvill always

exist if the suboptimal test (1-1]) is 5atisjied. Experimental studies have shown that the I-OBE-p algorit hii with

,suboptimal testing performs as well ais theopiite algorthmn in termis of tracking and (empirical) convergence, while,

frequently using significantly fewer dat a e.gul see [121. [13]).

Let us now examine the test eniploved by 0asg"iipt a and H uanig, given in ( 11). Recall that this test is designed

to determine whet her an optimal weight *xists it ile sense of minimizing K(ni). say A*; ( n). However, in light of the

developments above, the D- H test, may also bo seen to be a snboplurnal test for the existence of an optrniat w ugh I in

the senrse of dun in ushung p., , say A1,; ( n ). In: fact. tht liD-Il test is equivalent to testing whether

a, 4- K,) < 0 (15)

where 16 =K(n- 1) [(G,(nz)/nk) - 1[. 1iufortiinatelv. thle truth of ( 15) is not sufficient to assure that no, < () because

K, is not necessarily positive. If it were addit ionally known that C. ( n) > Ink, then ( 15) would be a siifficient test.

Hlowever, because of the weighting strategy, wsed in Dl-H1 ORE, there is no reason to believe that this latter condit ion

holds iii general. So the fl-H test comes int rigf;iniglv close to being a check for thle existence of A, , (ni ). but falls

somewhat shonrt. Nevertheless. tilie Dl-I1 test (-an be Interpreted as a suboptinmal test. for the existence of an opt imial

'voltinie weight.

To sum miarize the resulIt above, at tite ii. there Is an opt inual weight in thle senise of milnmi7ing/i. (70 . A', (n) > 1).

assciaed iththeD- elIid The test ( 11) is aI siiboptimiaI check for the existence of a positive value of

A ,(n). The relevance of this, result for ID-Il13 B in which K,. not ji, , is iniinized, is as follows. While getierally

A';( i ) :4 A,, ri ). roughlv speaking. A, ( i) will be positive, and the dat a used, only when thle volumie canbi

inin ituzed . While A,, 00i is not dlesignedI to imiinmize pi, . it will still duinish the Volume, though not optiniall%. InI

turni. this fact is a conse iience, of the foillowing. whFtich can be in ferredl from thle work in [3]:

Theoroix 2 For anq U, 'ODE algo ruthin . if A*~ , 00i > 0. tn if unt; positir ic eut I~ sd u ,(t

nseqiientlv. to the extent that ( II ) Is a useful test for a positive A,,; (n). It can be stated tiat the Dl-Il ORE

algorithm diminishes the volume at each tep in tHep process of mtinimizing K.

Fihe argumnents above are not rigorous because II1) is not an exact check for aI positive A\, , (ii). Further, al gorit lii s

which it,, differenit weight4 ran only be ,tnpairelf trllhat is, at a given ii. Hocwever, it seemis Intuitiivo that If

in algom ithuin which suiboptinually dimilnishes vollinue at eachi ii can be shuwn to cotuverge. then a rmorgent ;lg-rIt hn

which optititahlv diinishes p., cotuld Io eroe ii rutraterl. By showing thuat D)-1 ORE and I OBE-;i (F-H1 ()BE) are lucre

!tndiar bhan bad prevtisly been uinrrst-odl. this discuissioni stuvgfesTs that such -anI algorithm rnav be fri h-'ontur
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ABSTRACT

A newly modified set-membership algorithm is introduced. It is shown that the forgetting covariance
updating in conjunction with minimum volume data selecting strategy result 1.1 a landmark performance level in
system identification. A suboptimal test for data selection is introduced which is computationally efficient.
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I. INTRODUCTION

The behavior of optimal bounding ellipsoid algorithms (OBE) such as Fogel-Huang and SM-WRLS has
attracted the attention of prominent researchers. While the strong performance of these algorithms can not be
disputed, there are no -,pporting theoretical proofs for their converging behavior. Dasgupta and Huang [4] intro-
duced an ORE algorithm whose convergence was shown theoretically by employing a Lyapunov technique.
However, the data-selection strategy implemented in this algorithm is the center of some debate. This originates
from a controversial criterion used to measure the performance of the algorithm if new data are to be selected.

In this paper, we introduce a modified SM-WRLS algorithm whose convergence will be proven in the
most general system identification setting. This algorithm employs the covariance updating used by Dasgupta
and Huang, and selects the incoming data according to SM-WRLS volume minimization strategy.

2. MODIFIED SNI-WRLS ALGORITIM

Since the Modified SM-WRLS algorithm is also an OBE .lgorithm, it adheres to the general steps outlined
in [8). To address the update recursions and data-selection strategy, let us adopt similar notation used in [8].

Update Recursions: The modification ot the SM-WRLS Covariance updating to

C(n) = (l-?,,)C(n-l) + ?,n x~x$ (1)

w 0 , 1 . has a profound effect on other measures employed in SM-WRLS as indicated below, where
t(n) = C-1(n):

S[.011) ,,xn P (n -1)x, -xV$P (n - 1)P 1 XP,-l - Gn

0, =n- 1- , +?n(L nE

F = V V, -r,_Tn (2)

I -X, +XG,

S-.rp (n - I )xC

Data Selection. Selection of the incoming data involves the minimization of the bounding ellipsoid's volume,
with respect to the weights ?,,. The optimal weight, denoted by X:, is given by

A' = max(O.f lma) (3)

where . is the larger root of the following quadratic equation:

(X, 2 + aX I + , = ( I (4)

where

CLx = 2mE - 2m; - mGny, - 2K,,G,, - K ,IGn - G,71,, + G,

(,= m(, y , - K iG



Theorem 1: Equation (4) has at most one positive root in which case the selection of the data point
guarantees the shrinkage of the bounding ellipsoid in volume. Moreover, this positive root lies in the
interval (0,1).

This result implies that the data must be discarded if
- >0

Also, noting that (1) represents a convex combination of C(n) and x,,x4 matrices, Theorem I suggests that as

long as a positive root to (4) is found, no extra monitoring is needed to satisfy the 0 5 X_" < 1 condition. This is
a very convenient data selection strategy.

3. CONVERGENCE OF THE ALGORITHM,

This modified SM-WRLS algorithm shows an attracting convergence behavior as given by the following
Theorem.

Theorem 2: Let us assume that the noise process vn) is persistently exciting with pointwise energy

bound

v2(n) < y (5)

Then, the modified SM-WRLS shows convergence in the following sense:

(1) lim I 10,-0'l =1 0

(2) lim ?$=0
* n -4-0'

n3) lim E [0,

Example:

Let us consider a simple AR(2) mtxJel given by

v(n) = a lv(n-l) + av(n-2) + v(n)

where a 1.6 and a, = -0.68 and v(n ) is a white noise sequence where y,, = 0.5 in (5). Figure I clearly indi-
cates the asymptotic convergence of the parameters to the desired values. Also shown in Fig. 2 is the volume of
the bounding ellipsoid as more data is selected. The asymptotic convergence of the optimal weight ?. " to tero is
,shown in fig. 3. Figure 4 indicates that in the limit E2 will be equivalent to the input noise v(n ), as expected.

4. SUBOPTIMAL TEST

There are some common features of SM-WRLS that are inherited by the modified version one of which is
the feasibility of the same suboptimal test shown in [31 and [8]. This is so because of the resemblance of the (-.,
coefficient in (4) to its counterpart in conventional SM-WRLS. Figure 5 shows the relative computationad
requirements for the optimdl and suboptimal tests associated with this algorithm.



REFERENCES

[1] F.C. Schweppe, "Recursive state estimation: Unknown but bounded errors and system inputs," IEEE
Trans. Automatic Control, vol. AC-13. pp. 22-28, 1968.

[2] D.P. Bertsekas and I.B. Rhodes, "Recursive state estimation for a set-membership description of uncer-
tainty," IEEE Trans. Automatic Control, vol. AC-16, pp. 117-128, 1971.

[31 J.R. Deler, Jr., "Set membership identification in digital signal processing, IEEE ASSP Magazine, vol.
6, no. 4, pp. 4-20, Oct. 1989.

[41 S. Dasgupta and Y. F. Huang. "Asymptotically convergent modified recursive least squares with data-
dependent updating and forgetting factor for systems with bounded noise, IEEE Trans. Information
Theory, vol. IT-33, pp. 383-392, 10,7.

15] Y. F. Huang, "A recursive estimation :algorituirm using selective updating for spectral analysis and adap-
tive signal processing," IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-34, pp. 1331-
1334, 1986.

[6] Y. F. Huang and A.K. Rao, "Application of a recursive estimation algorithm with information-
dependent updating to ARMAX models and ARMA models with unknown inputs," Proc. IEEE Int.
Conf Acoust., Speech, and Siqnal Process. '87, Dallas, vol. 2, pp. IX)7-1010, 1987.

[7] S.F. Odeh and J.R. Deller, Jr., "An SM-WRLS algorithm with an efficient test for innovation: Simula-
tion studies and complexity issues," Proc. IEEE hIt. Conf. Acoust.. Speech, and Signal Process. '91.
Toronto, vol. 5, pp. 3413-3416. May 1991.

[1 J. R. Deller, M. Nayeri, and S. F. Odeh, "System identification using set-membership-based signal pro-
cessing," Proceeding of the IEEE, submitted 12/91.



2

1.9-

1.5

1.4r-

I.3

1.2'

100 10L 102 10, 104O0

n

0i

-0.2-

-0.4-

I .

-0.6--1 -

a (2) -

-0.8- ,

-1.32-

10 10 10 2  101 10 4  0

n

Fig. 1. Asymptotic convergence of a(1 and a (2) to a and a, in the example.



100

10-1

V. E
10-2 L

10. 3

10 I
100 10' 102 103 104 105

n

Fig!. 2. Almost inonotonicallv deceasins! characteristic of die volume measure.



10 T ITI I -I I

101-

10A I

100 101 102 103 104 105

n

Fig. 3. Asymplotic convergence of X,* to iMO.



100

00101 102 103 104 105

n

Fig. 4. 42 vs. n for dhe identitication of AR(2) model in the example.



sub-optimal vs. optimal test
700

600

~400-

300-

0
12 3 45 6 7

Fig. 5. Tbe number of selected points vs. n, for the optimal and suboptimal tests.



THE UNIVERSITY
OF BIRMINGHAM

Prof. J.R. Deller Facult of Enineeng

Dept. of Electrical Engineering School of Electronic and

Michigan State University Electrical Engineering

260 Engineering Building Edgbaston
East Lansing Birmingham Bi. _"

Michigan 48824 United Kingdom

UNITED STATES Telephone 121 t 2
Fax 021 414 4291

Telex 133762 ( t'BHAMf G

Head of School
8th January 1992 Professor D. J. Crpasev

Head of Postgraduate Division

Research

Professor J. P. Norton

Direct Line 121 414 I.'I W .10!

Dear John,

I am writing to invite you to contribute a paper to a special issue of the
International Journal of Adaptive Control and Signal Processing devoted to Bounded-
Error Estimation. As you know, this topic is gaining international interest very rapidly
and has been the subject of a great deal of discussion at recent meetings such as the IFAC
identification symposium in Budapest and the CDC in Brighton. IJACSP is a
particularly suitable journal because of the strong recent interest shown in the topic by
the signal-processing community. I am hoping, as guest editor, that we can use this
special issue to spread awareness of bounding techniques and their potential; a
contribution from you would strengthen the special issue considerably. At present the
expectation is that the main focus will be on parameter bounding and state bounding
rather than parameter-bound-based control design, although the latter is not positively
excluded. Material with a strong tutorial content will be especially welcome, and so
would reports of applications. Papers discussing applications of parameter or state
bounding which have not yet been well explored (including control design, but
emphasising the requirements for bound computation rather than the details of control
synthesis) will also be very welcome.

Contributions will be refereed to ensure compatibility with the other contributions
and readability will be given a high priority, especially in the more theoretical papers.
Provisionally the deadline for submissions is 31st May 1992, with the intention that the
issue should appear about the end of 1992. We hope to provide rapid and constructive
refereeing to allow easy revision where necessary.

You may wish to consider updating and extending a suitable conference paper,
with the permission of the copyright holder, if you have such a paper not being rewritten
for another journal.

I hope very much that you can respond positively to this invitation, and I look
forward to seeing your contribution in due course.

Yours sincerely,

r J. L

Prof J.. Nrto



Convergence and Colored Noise Issues in Bounding Ellipsoid Identification

.,1..Nayeri. .. R. Deller. Jr., and M.M. Krunz

Michigan State University
Department of Electrical Engineering

USSP Group: Speech Processing & Adaptive Signal Processing Laboratories
East Lansing. M[ 48824-1226 USA

email: majidaee.msu.edu phone. t517) :353-1857 FAX: 517) 353-1980

Abstract, is the weighted covariance matrix, and n(n) is the scalar quantity

This paper is concerned with the convergence and bias proper- ,

ties of a general class of optimal bounding .llip3u i OBE algn- = \,(t (,(t)- Y(t)

rithms. OBE algorithms are set-memoers/ip Sl1 based identi- r=1

fication algorithms which are applied to models which arc Lijiear- .

in-parameters, and are closely related to weighted recursive least with A(n) - tr{ 9H(e) C(n) E(n)}. We shall refer to n(n) as
square error (WRtLS) methods. a "ahypereilipsoid" in C"-1. with its "center" at e(n). Indeed.if all quantities are real, and m = 2 and k = I, this set forms

an ellipse in R2 . By examining a single output - say y,l). the
1. Introduction and Formalities ,Ch component of y(.) - we see that a common "ellipsoid matrix"

Ths paper will generalize the basic OBE identification prob- C(ri)/(n) is shared by each of the individual outputs, but that
lem with respect to existing pubication~s in several ways. First. a each is centered on a different parameter estimate represented

by column of O(.). We conclude therefore that under bounded
complex signal. MIMO system is considered. This treatment sub-

sume comonpaxmetrc mdel sich s th ;TO AX mdelerror constraints, a hyperellpsoid can be associated with a WRLSsunes common para\metric models s,.ch as the 5150 ARX modelreusoancnvsly
(e.g. [7) as special cases. Secondly, a unified OBE UOBE. alsgo- recursion and conversely.
(etg. is sevelpehices. Scondlains &Unrepoed OBE algo- The subscript "'n" on the weights \,(.) is used to indicate that
rithmn is developed which contains all reported OBE algorithms, the weights may be dependent upon the time of estimation. In

both adaptive and nonadaptive, as special cases.

Assume that we are ohset ving some physical system which is general. time dependent weights are not easily intearated into

generating sequence v(-) E Ck in response to input .d-. E C.
, WRLS algorithms except in simple cases. One such case occurs

ti( ) is a realization of an ergodic, wide sense stationary stochastic in the UOBE algorithm in which the weights are time varying by
virtue of a simple scahng procedure. The weights used at timeprocess. Both input and output sequences are measurable. We aegvnb

assume the existence of a -true" model of form ae given by

3(n) = (n) -- r.(n) (I) \.(ti - \n-,(t) for t< rL- 1. (51
.{rn- 1)

in which .r( v) is sotne rn-vector of functions of plags of 9l )andlags plu s presen vlue of functiand where l ) yt ) isd and \,(n). where ,(.) is a positive scaling sequence. When O() is1 lags plus the present value if i { ). and where t-.(' ) E-Ck is.

the realization of a zero-mean. second moment ergodic, complex independent of .\.(j) for all t. j > n, then we shall call these simply

vector-valued random sequence whose components are indepen- sca led weights. The method for integrating scaled weights into
WRLS is given inherently in [4] and (61, and explicitly in '51 anddent. The matrix 0. E C'a, Parameterizes the model . At time

n we wish to use the observed data on t E [1. ns] to deduce an 9]. While the weights are directly related to the size. orientation.

estimated model of the same form. The parameter estimate is and location of the eipsoid in the parameter space. this s.-ui'ig
denoted by (~n) and the residual process by lr . Pitt)). The pro" ure eff e yetvely restricts to one ( viz. \,(n))' the numhe "f

dependence of the residual upon the parameter estimates is highly free parameters available to gnrtrol the bounding ei!:psoid it tim-
inc so ithe rsis duow plicty parameterestimat. The central objective of the UOBE algorithm is to ertiplov

n amost all SM-based techniques. a ;asibe the weights in the context of WRLS estimation to sequentially

arises from direct or indirect constraints on the additive error se- minimize the ellipsoid size in some sense. A significant benefit

quence. VOBE algorithms arise from a bounded errorconstraint: Is that often to weight exists which can rrumnize the ellipsoid.
indicating that the incoming data set is uninformative in the SM

Il r.(n) 112< -in), 12) sense.
All bounding ellipsoid algorithms, both adaptive and nonadap-

where "i is a known positive sequence. At time n. a sci of pa- tive. adhere to the following steps. Consequently. we call this set
rameterscan be found which are consistent with the observations of operations the Unified Optimal Bounding Ellipsoid 'I OBE:

and this sequence of bounds. The exact set is difficult to describe adgorithm: At time n.

and track, but. in ,onjunction with WRLS processing, it can be
shown to be contained in a superset of the form Ie.g.1,6i) 1. Inconjunctionwith the incormngdataset ( 7(n).r;':O.find

the weight. say \;os,. which is optimal in some sense (see

9 t r 694 - 9 -'9 1 -, 1 1 3 below,;
2. Discard the data set if v(v.) < O,

where tr 3 denotes the trace of a matrix. )(nlis the WRLS pa- 3. Update ("(n) and 9f-) using some version of WR LS few
rameter estimate at time ising weights ',,! 1).---. ',, r, "(ni) see 41]).

1This work was supported by the Office of Naval Ressearch 'in- 4. T pdate ,(n) using (4) or one f the recursions in iL ]

der Contract No N00014-91-J-1329 and by the National Science Three fundamental variations on the 'OBE method have beet
Foundation under I ;rant No. \[lP+9016734 reported in the literature. The most recent, due to Dsipta

Presented at ICASSP-92, March 23-26, San Francisco, California, USA.



and Huang (-D-H OBE") [2], is unlike all the others in certain of excitation, we may expect the UOBE estimate (ellipsoid center)
respects. From the present point of view. one of the key differences to converge.
is that the weight pattern follows (5), but the weights are notsim plt scaled according the definition above. These differences. Convergence of the Ellipsoid. It would be interesting to have

simpy sale accrdig te dfiniionaboe. hesediferece a precise understanding of the asymptotic behavior of the hy-
on one hand, allow for a proof of convergence of the ellipsoid in apreis fesing e c the case of e nse
a certain sense and make the analysis in this paper seemingly perelltpsoidal teasible set. especially in the case of colored noise.

unnecessary. On the other hand, the optimization criterion used Knowledge that the ellipsoid is vanishing (white noise), or be-

is controversial and somewhat difficult to interpret. Space does coming as small as possible (colored noise), could be vry useful
information indeed. In the white noise case, a sufficiently small

not permt elaboration upon D-H OBE, and no precise connection ellipsoid could serve as a reinforcing indicator of convergence, and
offer a means of deternuning error bounds on the estimate in fi-

exists in the literature. Ht -e, the analysis in this paper is not nite time. In the colored noise case, a small feasible set (known to
apparently related to D-H OBE. However, interesting connections contain the true, unbiased estimate) could be indispensible. in-1o exist and these will be the subject ofa forthcorrmng paper 81. cnantetu.ubae siae ol eidsesbe n

fortunately, no known proof of this desirable result for any case of
'Conventional" OBE algorithms operate on the optinization UOBE with simply scaled weights exists. The remainder of this

principle of (prospectively) minimizing some set measure of l]t 'i ps
say { L(n)}. For the SISO case. Fogel and Huang (6] suggest two paper indicates recent progress made toward the understanding

set measures. The first is the determinant of the inverse "ellipsoid of the convergence properties of the ellipsoid. in the presence of

matrix"both white and colored noise disturbances.
matrix"det {.(n) -1 (6) We first present an important contribution toward the under-

Sstanding of the asymptotic behavior of the ellipsoid:
and the second is the trace,

Proposition 1 Consider the UOBE algorithm wtth sTnple s-aie

0(n)}= tr { (n) C-1 (r). 17) factors as itn (5). If an optimal weight erists at time n. thn its
,se wil certainly dirmintsh the set measure,

(We shall henceforth write u,(n) and tain) for simplicity.) In the
%1ISO case in which 0'(n) is clearly intepretable as an ellipsoid. on) < M(n - 1)ig

A,,(n) is proportional to the square of the volume of the ellipsoid. ,,herp A is either mv or At. Therefore. in jeneral
while kii(n) is proportional to the sum of squares of its serm- n) < 4i(n - 1). Further. for tke trace measure, at{l(n)} =0
axes. The same two measures are meaningful in the MIMO case. ff (n)) = { = 9.).
since they result in the minimization of the volume or trace of
the nommon ellipsoid shared by all the outputs Isee discussion Proof: We prove the result for av. The proof for at is simi-

below (4)). The original OBE algorithm of Fogel and Huang ("F- lar. The last line of the proposition will be verified in the future

H OBE") [61 follows these UOBE steps with ((n) = K[n) for each discussion.
ft. The set-membership weighted recursitv least squares alg9rithm For simplicity, we write An(n) as \. Also, the functional de-

(MV,- WRLS) of Deller et al. (e.g. see (31,[41) is a UOBE algorithm pendence of a, (n) up.,n \ for a fixed n is the central issue, so we

with ((,L) = I for all n. write ,.1 (). It has bt-ii shown that3 (5]
The general method for finding the UOBE optimal weight for I \G,(n) _ r- 5 (n)

minimizing the either set measure is given in '5]. These methods ,(\) r .. ) I - h_) - (9)

include results for F-H OBE and SM-WRLS as special case, but ) h(n)

optimization strategies are also given of course in the original where h1(o) ' I + \(;.i L) and r(n) ' K)r)/,(n - I). r,(r,)
papers. In the volume case, it is found that the optimal weight is
givenby the unique positive root of a quadratic equation in An(n). (toi'((to. and G,(n) ''( -1) xH(rn) C-

1
(n - I) .rt). Thus

say F,, \,(n)), whose coefficients are expressed in terms of known it is found that
quz.vtities at time n - 1. The optimal trace weight. if it exists. = Q( \(R(\) (10)
is the unique positive root of a cubic polynomial. say Ft( \n(n)). here,
The critical feature to keep in rmnd is the infrequent updating w
of L_'OBE which leads to interesting performance properties and ..t r' n 1 -i) n ) r )r(n)
computational efficiencies. and R(" 

- .kh(, n L -

111)

2. Convergence Issues For future reference, also note that [51

Asymptotic Estimates. One of the interesting and practical K.(r - I )I-O) \ = F,

benefits of having interpreted UOBE algorithm as a WRLS al- where F. i is the volume quadratic solved to find the ,optinial
gorithm with a bounded error "overlay" is the immediate conse- weight. Consequently.
quence for convergence of the estimator. It is weU-kno~n t',at if ,\ _RI \I Q)Q \)
the sequence !.(n) is wide-sense stationary, second moment er- - Q( ( + R( 1 13)
godic alrost surely (a.s.). white noise. then the WRLS estimator
9(n) will converge asymptotically to 9. a.s. (e.g. r7l). In the It is easy to demonstrate that Q( \ s positive. and that its deriva-

present case, we need only to add the qualifier that the l'OBE tive is hounded, for \ 0 x Now it can be shown that Ni
algonthm not cease to accept data in order to lay claim to this Kin \'I) .\ (n. 9(t - 11) 2

useful result. v~o) = - 1 -e
Likewise, we may even assert a-s. convergence of the WRLS

estimate, albeit to a bias, when .nr is colored and persistently allowing us to write. using (111.
,xciting 2 

(p.e.) .7 Even in the presence of colored errors, there-
for-. as lonu as the acceptance of data does not -ease. and the IR( !)'-) . r(n-. (;, - "H n )"
infrequencv of updating does not interfere with the persisitency *', K) .1 - I ) 2t,

2
Please ra the bbreviation "p.e.' as "persitently exciting"

or 'persistency of excitation.' as appropriate 'k rrular result for a less general case is found in 41



class of algorithms by indicating that the ellipsoid measures will

converge to some unspecified size in some unspecified manner.

This result has not been clearly understood, and its finding offers
some hope that a proof of convergence for the UOBE algorithms
may be found in the white noise case.

Colored Noise. Whether or not the UOBE ellipsoid can ulti-
mately be proven to converge to a point with white noise distur-

hbances. such a result would cause a contradiction in the colored

4 noise case. This is so because if Lm- 1(n) is a single p ,t,
then this implies that Lim_ _Gn) = 0. in violation of the

.IT- basic principles of least square estimation (the estimate must be
biased). We therefore conclude the following:

Proposition 2 With .,(ored n ise disturban,!fs, hm,- 11) n)
z5 i. z " ntririal set.

Empirical evidence leads to the following conjecture:

Conjecture 1 W4ith a p.e. input. 9. is Dn the boundary f !.he

imttin, set.

Fig. t: Typical plot of a,(\) vs. \. When a positive root of
F, (A) exists, it corresponds to a minimun of the volume measure. Of course Proposition 2 is not suprising for a non-p.e. excitation

for which the algorithm will cease to accept data in finite time due
to lack of innovation. However, that -.he ellipsoid should remain

Because of (12) it is clear that R( V) 0). Reference to the nontrivial for p.e. inputs is not as apparent, since each time a
definration of R( \) in (I}. therefore immediately sh ws that data set is accepted, the set measure &(n) must be diminished.

> Consequently - = . > 0. It fol- This brings us to another interesting issue centered on the set

lows immediately that " . > 0 so that \" corre- easure used in the optimization.

sponds to a minimum of Ut) \). Further. since -I(r)iJ=) Persistency of Excitation. In the following, we focus on the
S(see 14)).andc Mn = = I, we have from (9) that u = volume and trace measures, but the discussion might be general-

1. and also that Q(0) =I. Therefore, from ( 10) and ( 121. izable in certain ways to broader classes of measures. The lengths
af the ellipsoid axes at time n ;-re inversely proportional to the

) [\)] - /RIO)- F, O) ____ (16 square roots of the eignvalues, say e,. = 1. -, oif the rnatrix
=,(n - I) K , n- I) C(n)/ Tn). Accordinly. convergence of the ellipsoid to a single

where t) is the zero order coefficient of the quadratic. F..) I point requires that 6, - )c for all i. Lim,, ( n) remains non-

here q0 i+ t. Itrhasrben howent o that nopositive roots f \ trivial iff one or more .f the e, remains finite. This implies that,
L2 \+ 'i f \ +- 10. It has been shown 5 i that no positive roots wf in the presence of coi.red disturbances, im,-,c 4i4tn) must be
F,. ist if 10 > .and exactly one exists if 1, < O. It follows positive since one or ni.,re finite eigenvalues will make this so. On
that the deirvativein (6) is negative: hence. . \) < 1 and the the other hand. a, becomes zero much more readily, because a

single infinite eigenvalue is sufficient to cause im- .t (n) = 0.

In spite of this encouraging result. one of the drawbacks of That is. the ellipsoid need only -collapse in one dimenson" to
tie volume approach is that the set measure a. is not a proper assure zero volume, In this sense, ,i, is a -v eaker" set measure
'metric" in the parameter space. By this we mean the following: than ot.

"ruppose wc propose the distance measure I such that at time The behavior of K(-) is not well enough understood to make
11. 11 ()n). o).) = A,0, We immediately find that i fails to definitive conclusions about the conditions under which limiting
he a proper metric since if 9(n). 9.) = 0 does not imply that ellipsoid may remain nontrivial in fewer than rm dimensions. This
(-)In) = H.. [his unfortunate situation arises because the el- has implications for both white and ,olored noise. For white nose.

lipsoid may potentiailv degenerate and reside in a subspace of this means we do not know when (if ever) the ellipsoid will collapse
(-

* , 
thereby achieving zero volume without being reduced to to a point. For colored noise, it simply means we do not know

a point. This will Likely only occur if p.e. is not achieved as we when the ellipsoid will collapse into a subspace of the paranie-
detail below, and is therefore a more important problem with col- ter space (since it must remain nontrivial). However. use of the
.ired disturbances. This potential anomaly provides motivation volume measure permits an ;ntriguing situation to ari.e piecisety
to consider the use of the trace measure for which a degenerate because of its weakness. 'Ap believe that this situiation points
llipsoid will not produce a zero set measure. to the general condition under which the collapse may occur.

One of the drawbacks of the UOBE approach is that the hyper- The asymptotic - rme measure may be zero even if the el-
,llipsoidal bounding sets are sometimes quite "loose" supersets of lipsoid is ,f intfinite extent in one or more fimensions. That is,

the exact feasibility sets (polytopes) (e.g. [].l101). particularly the finte eigenvaluefs) which imply a nontnvial linuting set may
in "finite" time. However. many simulation studies in the liter- be :,,' I('leary. this ,annot be the case with the trace tea-
atiire (white noise case) have shown the volume 4f the elipsoi-Ls ureince it would imply that lim, -, Ln) = . i nder what
to become quite small in the long term. Furtht. a.s we inI , onditions uight this 'degenerate" volume situati: n occur.' It is
other researchers have demonstrated, the empirical ,onvergence tempting to sumnise that a p.e. input would be necessary to drive
.and tracking properties of the 'lOBE estimator are favorable in he volume dtimately to zero. However. precisely the opposite

spite of the few data used. This is an indication that the pr-s-nc- is truje. A singular Lima-- -'.n)/,n;( occurs Tff lim.--, ( 'i I

i)f the -Ilipsoid and the optimization procedure centered on it. are is singular In turn, this is indicative of a non-p.e. input In
quite useful for signal processing, regardless of our present inabil- this -ase the ellipsoid expands without bound in the null space
ity to completely understand its behavior in theory [he results .4 limra- ,( Kn),. while it must collaspe in (at least ,tie 'Ii-
presented above offer further support for good behavior oif this mension of the range space in ,rder to prevent the %oluzne frini
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Fig. 3: "Asymptotic" ellipsoid resulting from second example.

"interestingly, the second experiment produces a more desirable01- outcome in this regard, and does so using fewer data, in spitea2  of the bound violation. UOBE algorithms are remarkably robust

to, and indeed sometimes benefit from, such violations and other
-1,. In the second example, al. = 1.6, a2. = -0.65, and the sys-

tem is excited by a constant c.(.) = 0.322 selected by choosing
3- a value from a random realization, at a random time, in the co-

(b) sine process above. Accordingly, -(.) is taken as the constant
-4 -Y = 2 = e-.max(). This noise is p.e. of order one, and is there-

fore not sufficient to uniquely identify the system. In this case
S.3 *2 k 0 1 3 4 30/7000 (0.43%) of the data were used. The ellipsoid in Fig. 3

al is the resulting set at time n = 7000. A collapsing dimension is
apparent as the covariance matrix becomes singular and the fea-

Fig. 2: "Asymptotic" ellipsoids resulting from first example. sibility set begins to occupy the null space of the ellipsoid matrix.
In each case, ' denotes the true parameters and x the estimate
(ellipsoid center). (a) - = 2. (b) -Y = 1.25.

(1] G. BeLforte, B. Bona, and V. Cerone, "Identification. struc-also diverging. If the ellipsoid converges in every dimension of the ture selection and validation ... with SM error...,' Math. and
range space, then the feasible set exists entirely within the null Computers zn Simul., vol. 32. 561-569, 1990.
space of lim,,,. C(n)/it(n), except for the intersection (point.
line, plane, hyperplane) with the range space. This analysis leads (2] S. Dasgupta and Y.F. Huang, "Asymptotically convergent
to the following conjecture: modified RLS with data dependent updating ... " IEEE

Trans. Information Theory, vol. 33, 383-392. 1987.
Conjecture 2 "Degeneracy" of the limiting ellipsoid (collapse [3] J.R. DeLler. Jr., "SM ID in DSP." IEEE .4SSP Magazine.
of im,.i, 0(n) into a s3bspace), will occur in the volume case vol. 6, 4-22, 1989.
if the input is non.p.e.

[4] J.R. Deller, Jr. and T.C. Luk, -Linear prediction ... based
Examples. In order to illustrate these ideas, we present two on SM," Computer Speech and Lang., vol. 3, 301-327, 1989.
simple examples. In the both examples an AR(2) model of the
form y(n) = ai.y(n - 1) + a2.y(n - 2) + e.(n) is used. In the [5] J.R. Deller, Jr., M. Nayeri. and S.F. Odeh. "System ID using
first example the parameters are al. = 0.6. a2 . = 0.1, and SM-based signal processing," IEEE Proc. (in review).

.(.) is a realization of the stochastic process ,fcos[(rn/16) + ) [61 E. Fogel and Y.F. Huang. "On the value of information in
with a uniformly distributed random phase. This noise is p.e. system ID . Automatica. vol. 18. 229-238, 1982.
of order two. Two identifications were performed on this sys-
tem using volume optimization. In the first, iY(n) is (prop- [7] G.C. Goodwin and K.S. Sin, Adaptive Filtering. Prediction.
erly") chosen to be the constant -f = 2 = erm.(), while in and Control. Englewood Cliffs, NJ: Prentice-Hah, 1984.
the second experiment -Y = 1.25 in slight violation of the proper
bound. The 'asymptotic" (n = 7000) ellipsoids are shown in [8] M.S. Liu, M. Nayeri, and J.R. Deller, Jr., Unpublished re-
Figs. 2(a) and 2(b), respectively. In the first case 128/7000 search notes, Michigan State University, 1991.
(1.8%) of the data were selected by the optimization procedure,
while in the second. 101/7000 (1.4%) were used. In both experi- [9] J.P Norton. .4n Introduction to dentification, London and
ments the parameter estimates are identical to six decimal places: Orlando. Florida: Academic Press, 1986.
s1 (7000) = 1.961508, s 2 (7000) = -0.999855. Both outcomes ad- [10] J.P. Norton, "... computation of inner bounds for the param-
here to Pro o.iti-n 2 in the production of a nontrivial limiting eters of Linear models," Int. J. Control, vol. 50. 2423-2430.
set with a biased estimate. Some support is seen for Conjecture 1 1989
in the proximity of the true parameters to the ellipsoid boundary.



Centre National do la Recherche Scientifique Ecole Suplrieure drEiectricit6

LABORATOIRE DES SIGNAUX & SYSTEMES
Associe M 'Universit6 Paris-Sud

ECOLE SUPERIEUFE D'ELECTRICITE
Plateau do Moulon - 91192 GIF-s/YVETTE cedex (FRANCE)

Tel: (1) 69.41.80.40 -Tel6copie :(1) 69.41.30.60

Professor J. Deller
Department of Electrical Engineering and System Science
Michigan State University
260 Engineering Bldg
East Lansing
MI 48824-1226
USA

Gif, February 1, 1990

Dear Professor Deller:

We have just received the first announcement for the 9th IFAC/IFORS
Symposium on Identification and System Parameter Estimation to be held in Budapest,
Hungary, July 8-12 1991. This congress which takes place every three years is, as you
probably know, the largest international conference devoted to identification problems.
We feel it is a unique opportunity to present the state of the art in estimation in the
bounded-error context and to bring together the bounded-error community. We therefore
propose to organize one or several session(s) on this topic, and would like to invite you to
participate.

The proposal for sessions must be submitted to the organizing committee by
March 31, 1990. The final decision for the selection of sessions will be announced by
April 30, 1990, so that if the session was not accepted you could still submit papers
individually as the deadline for paper submission is July 15, 1990.

If you are interested in participating to such a session, could you please let us
know by sending us a prospective title with a list of authors and a short abstract as soon
as possible and to be received no latter than March 15th 1990. The length of the final
paper should not exceed 6 Pergamon laysheets.

We hope that our proposal will be accepted and the resulting session(s) will
be as rewarding as the IMACS Conference in Paris has been.

E. Walter H. Piet-Lahanier

ADRESSE POSTALE LSS - SUPELEC- 91192 GIF-s/YVETTE (FRANCE)



9th IFAC/IFORS Symposium on Identification and System Parameter Estimation
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Abstract

This paper is concerned with the set membership weighted re- in Section 2. In Section 3, the performance of this strategy is
cursive least squares (SM-WRLS) algorithm which can be used compared to that of SM-WRLS using simulation studies. A de-
for estimating the parameters of linear system or signal models tailed analysis of the computational complexity issues is found in
in which the error sequence is pointwise -energy bounded." This Section 4.
algorithm works with bounding hyperellipsoida regions to de-
scribe the solution sets. A new strategy is developed which can
be applied to virtually any version of the SM-WRLS algorithm to 2 Theoretical Development
improve the computational efficiency. A significant reduction in 2.1 The SM-WRLS Algorithm
computational complexity can be achieved by employing a "sub-
optimal" test for information content in an incoming equation. We consider the estimation of the parameters of a general
The proposed check is argued to be a useful determiner of the ARMAX(p,q) (9] model of the form
ability of incoming data to shrink the ellipsoid. The performance
of this strategy is compared to that of SM-WRLS using simula- y(n) = a,y(n - i) + E bw(n - j) + vcn) (2)
tion studies. =--o

keywords: bounded-error identification. parameter estimation, - 9Tz(n) + v(n)
adaptive estimation, set-membership theory, system identification

in which y(n) is a scalar output; w(n) is a measurable. uncorre-
1 Introduction lated, input: and v(n) is an uncorrelated process, known to be

bounded as ;v 1), which is independent of w(n). For conve-

The set membership weighted recursive least squares (SM.- WRLS) nience, we also employ the vector notations

algorithm [1.2, 31 is an efficient technique which can be used for ZT(n) n - 1)...y(n - p)w(n)w(n - 1)... w(n - q)] (3)
estimating the parameters of linear system or signal models under
a prori information which constrains the solutions to certain and
sets. When data do not help refine these membership sets, the O1 - [aia2... abob, ... b] (4)
effort of updating the parameter estimates at those points canoe avoided. The SM-WRLS algorithm is concerned with the 00 represents the vector of parameters to be estimated. We define

oe aoidd. he S.WRS agorihm s cncered iththe the integer m = p i- q + 1 noting that m should be reduced to
case in which the error sequence, say v(n). is pointwise "energy siply m = p t p A case.

bounded," simply m = p for the pure AR case.

y(n)v'(n) < I() Let us define 0(N) to be the conventional weighted LS es-
timate of 90 using the data on the range n = 1.2.... V, with

where the sequence "r(n) is known or can be estimated from the squared error minimizat'on weights A(n). Also denote the (weighted)
data. Constraints of form (1), in conjunction with the model and covariance matrix for the data by C(N). As a consequence of the
data, imply pointwise "hyperstrip" regions of possible parameter bounds on the sequence v(n), at time N there is a computable
sets in the parameter space which, when intersected over a given hypereillpsoidal domain in the parameter space which certainly
time range. usually form convex polytopes of permissible solu- contains 90 and which is centered on the LS estimate. This set
tions for the "true" parameters. While exact descriptions of these is given by (3]
polytopes are possible (e.g., see (4]), algorithms of much lower
complexity have been developed which work with a bounding fQ(N) = [1(8- (.V))T 1 ,,C(N)( - 6(N)) < 1} (5)
hyperellipsoid, a tight superset of the polytope [1. 2, 3, 5, 6, 7]. 1(.V.
The SM-WRLS algorithm is one such algorithm which is for- 9ER-, where,
mulated such that it is exactly the familiar weighted recursive
least squares solution [8, 91 with the SM considerations handled (n)
through a special weighting strategy. A tutorial on the SM- ,c(N) = 9 N)C(N)#(N) + - - ?(n)y2(n) 6,(n(n)

WRLS algorithm, and on general SM identification is found in n
[2). = Idi(V) III + k(,V) (7)

One of the advantages of the SM-WRLS frrnulation is that
it immediately admits solution by contemporary systolic array in which 11 " I denotes the Euclidean norm.

processors for speed advantages [i]. The systolic array imple-
mentations of this algorithm are presented in r10. 1 1. In this pa- d1 (V) = T(N(9(N) ,8)
per, however, we will develop a "suboptimal" strategy which can with T(.V) the upper triangular Cholesky factor '12] of C) .V
be applied to virtually any version, adaptive or -non-adaptive,' !more on this below), and R(N) denotes the sum on the right
of the SM-WRLS algorithm to improve the computational effi- side of (6). It is useful to note that
ciency. The theoretical development of this strategy is presented

'This work was supported in part by the National Science Foundatin of k(n) = k(n - 1+) + i l - !(n)y2(n), = 0 9
the Lnited Sittes tinder Gratt No. MIP.9016734. and is part by the Office n)
of NaJah Research under 'ontrw-. N,, 414812"1-



Very importantly, the 'size' of this domain is a function of only equation can be partially removed. This will permit a broader
one unknown at time n, A(n), the error minimization weight at class of adaptive strategies. In SM terms, back rotation causes
time n. The 'SM strategy" of updating the parameter vector at the ellipsoidal membership set to expand due to the removal of
time n involves the computation of the A(n) which nminmzes the information. This expansion entices the algorithm to incorporate
size of 1(n). The volume of the ellipsoid. 11(n), is proportional present data. The back rotation technique requires that all the
to the quantity weights with the corresponding equations ifor weights other than

zero I be stored for later use.

det B(n) -det ,nC- ) = det . 10) In the Appendix, we see that at each step in the SM-WRLSdet C(In) algorithm, the upper triangular system of simultaneous equations

A reasonable strategy is to find an optimal weight. A' n), at each rsn(n) = di)?i. is solved when data ace accepted) to obtain

step which minimizes the "volume ratio" of the ellipsoids at ns and the optimal estimate 2. 3. 10!. Suppose in approaching time
- h: n that the past equation to be (partially) removed is at time

det Bin) r Rotating this equation out of the system is accomplished by
V(A(n)) = det B) ~- I (11) re-introducing it as though it were a new equation. A weight

Ths-e.-""t, where m is the fraction of the equation to be removed
This weq ght is taken to be the most positiv rot of the quadratic from the system, is used. and some sign changes in the rotation
equation [31 equations are necessary :131. Let us refer to the system of equa-

F(A) = 2A+-iA - cko = 0 (12) 'ons with - removed as the "downdated" system at time n - 1,

where, and label the related quantities with subscript d. i.e.,

a, = (m - 1)Gl(n) TI(n - l)d(n - 1) = di.4 (n - 1) 115)

al = {2m - 1 + -(n)c1_,(n) - ,Kin - .)-(n( n)}G(n) The downdated ellipsoid matrix is Cd(n - l)/rq(n - II where

o = mfl - -r(n)e,2_i(nsC - (n - rinGfn) Cdin 1) Tr(n - l)Td(n - 1) (16)

and where. ,1(n - 1) = -dl.(n-1) 12 + ,(n - 1) (17)

G(n) =- zr(,)C-i(n - lZ)xn) 113) with

and _,(n) is the residual at time n based on the parameter ;4A(r)

f,-(") = &(n) - (n - 1)z(n) . (14) Equations (17) and (18) follow immediately from the definition
of ,t found in (6). These relations can be used repeatedly regard-

One important consequence of this approach is that often no A(n) less of the number of equations (partially or completely) removed
exists which will further shrink f!(n). Generally, this means that prior to time n. If more than one equation is removed prior to n,
the equation2 

(y(n), z(vn)) at n has -no information" which has ,R(n- 1) in the right-hand side of (18) is replaced by kt(n - 1) for
not already been incorporated into the estimate. In this case the all downdates after the first one. Following all necessary down-
equation is 'rejected" (A(n) effectively set to zero) saving the dating just prior to time n, the algorithm uses the downdated
computational expense otherwise necessary to incorporate it. system to ,-ompute the quantities Gd(n) and £,i.,i(n) which are

In a recent paper [l1, SM-WRLS was formulated into a more necessary to compute the optimal weight for the equation at n.
contemporary WILLS algorithm which is amenable to a systolic To compute a downdated SM-WRLS estimate, therefore, it is
architecture implementation. The algorithm is given in the Ap- only necessary to downdate the matrix T(n - 1) and the vector
pendix of this paper. In Steps 4 and 5 of the algorithm, the LS di(n - 1) and to solve for bd(n - 1) prior to Step 1, then replace
problem is solved using a sequential "QR" decomposition using all relevant quantities in Step I by their downdated versions.
Given# rotation@ (GR's), a method which is well-understood and Ki(n - 1) and i(n - 1) are downdated according to (17) and
becoming widely used for this purpose [13. 14. 151. (It is im- i 18 . Then A*(n) is found in Step 2 using (12) with downdated
portant to note the meaning of the matrix T(n) in this process. quantities. Note that downdating is unnecessary if the equation
We first encountered T(n) in (8) where it was defined as the r was rejected by SM-WRLS. In this case Ti(n - I) = T(n - 1)
upper-triangular Cholesky factor matrix of C(n) at each step, and 01(n - 1) = 0(n - 1). Conversely, when the 'new" equation
i.e., C(n) = Trf(n)T(n) (see Appendix)). The more novel part at n is rejected, then T(n) = Td((n - 1) and 8(n) = 4d(n - 1).
of the algorithm in Steps 1, 2. 3 and 6, is concerned with the A wide range of adaptation strategies is inherent in the gen.

computation of the optimal weights. Here the method had to eral formulation described above. Three major subcases are iden-
be designed to avoid the costly inversion of the matrix C(n), tified (windowing, graceful forgetting, and selective forgetting)
nominally necessary to compute G(s). The quantity K(n) is aso in [I1, 16). In each of these subcases. the objective is to expand
efficiently computed in this context. The reader is referred to [11 the ellipsoidal region of possible solutions in order to track fait
for details., time variations in the signal. For illustration and comparison

purposes in the simulations below, we use one of the adaptive

2.2 Adaptive SM-'WRLS Algorithm strategies, namely, the selective forgetting in which the equations
are removed from the estimate according to certain user-defined

In this section. we presnt ac adaptive SM-WRLS algorithm with criteria in order to remove their influence on the result. The selec-
aoveyfl e m s b tion criterion used here is to remove the equations starting from

The adaptive algorithm presented here uses back rotation' the first accepted equation remaining in the estimate at a given
inorder toatiaelayorompesnte fore pss ioroation time, and proceeding sequentiaily until some other condition isin order to partially or completely 'forget' past information en- satisfied. The determination of when to apply the forgetting pro.

abling it to track (potentially fast) time varying signals. Back cedure and when to stop removing equations at a given time is

rotation [131 is a Givens rotation-based technique that removes discussed in ti6].

ior rotates out) a previously included equation from the system.

In this paper we modify the back rotation so that a previous 2.3 Suboptimal Test for Innovation

'Since the LS procem represiea u eas ort to fit the ri model parameters
to .v equatios of the form svia) . #r,1 ,), we refer to the pae ) 1 (sf),z(n)) A significant reduction in computational complexity can be achieved
"a 'eqsatios' throaghout thi paper hy employing a 'suboptima.l" test for information content in an



incoming equation. The proposed check is argued to be a useful This is a concave upward quadratic function with its minimum
determiner of the ability of incoming data to shrink the ellipsoid, at
but it does not rigorously determine the existence of an optimal A (n) = -G-1(n) < 0 . ,24)
SM weight in the sense described above. The main issue here Two real roots of 123) always exist,
is to avoid the computations of the quantities necessary at each
step to construct and solve the quadratic (12) in cases in which -I " in",._lin2

the quadratic turns out only to be useful for the purpose of check- G in)
ing for the existence of a meaningful weight. Since most of the
time these computations result in the rejection of incoming data, the smaller corresponding to a maximum of ,( n, .n 1, the larger
a more efficient test could significantly reduce the complexity of to a mnrnimum. Only the larger root can be positive since the
the algorithm, lower root is bound to be less than A'n). Therefore. it is only

The estimation error vector at time n can be denoted by possible for ,(n, A(n)) to exhibit a minimum or to be increasing
on positive An)d. It is easy to use (25) to verify that the larger

9(n) 5 9- , - 0s n19) root is positive iffcondition (21) is met.
The following inequality results immediately from (5 With these results. it can be argued that: Ifdet C(n, Ai is

increasing, but not changing significantly over reasonably small

T n An< )2 values of AWvs, then it is sufficient to seek A(n) which minimizes
9 s(nC(n:fn) <~ dni • 20) ,In, A(n)). lf v n.A(n)) is monotonically increasing on A(n) ? 0,

Usin% a similar inequality, Dasgupta and Huang :6] have noted this value is Al n) = 0 which corresponds to rejection of the equa-

that tiir iqn)-like quantity provides a bound on the error vector tion at time n. It suffices, therefore to have a test for a minimum

sequence and have suggested minimizing this quantity with re- of ,t(n, A(n)) on positive A(n). As noted above, a simple test is

spect to A(n) in an effort to decrease computational complexity. embodied in condition (21). f this test is met. it is then cost

However, this minimization does not, in general, imply an in- effective to proceed with the standard optimization process cen-

provement in the estimate with respect to previous times, since tered on (12). Otherwise, the explicit construction and solution

both sides of the inequality (20) are dependent upon A(n). Fur- of (12) can be avoided.

ther, the nonexistence of a minimum of xj n) with respect to Aln) It is to be noted that ev.n if (21) is met, it is possible that
the optimization procedure will still reject the datum. Perhaps

is not very informative in this sense. However. further arguments the imizati p e l sill reject dat Phapsare presented here to provide support for this process in the SM- more importantly, it is also possible for (21) to reject data which
WRLS context, would have been accepted by the usual process. These ideas willWRLScontxt.be explored in the simulation studies below.

Consider the usual volume quantity to be minimized at time benexplor e th atin s iie below.vs. efied n (1). et s tmporril wrte he to ky qan- Finally, note that when the simplified test (21) accepts then , d efin ed in (10 ). L e t u s tem p o rarily w rite th e tw o key q u a n - n w e u t o , t e e a e t o s t o p t h e g t w i h i
tities there as functions of A(n) : C(n.A(n)) and ,(nA(n)). It new equation, therene tools to compute the weight which isis asumed that enough equations have been included in the co- "optimal" in the sense of minimizing ,t(n, A(vi;). In paticular.

this would be the larger of the roots in (25). However, it clearlyvariance matrix at time n - 1 so that its elements are large with makes more sense to compute the optimal weight according to
respect to the data in the incoming equation. Now the quan-
tity detC(n,A(n)) is readily shown to be monotonically increas- 12), since ints computation is not much more expensive. The
ing with respect to A(n) on A(n) E Ax) !16], with C(n,0) = provement i the computational complexity due to "subopti-
C(n-1. A*( n-)), where A*(n-1) indicates the optimal weight at mal checking" is discussed in Section 4. It is important to note

that the general adaptive formulation of Section 2.2 is amenable
time n - I. Under the assumption above, det C(n, A(n)) will not

increase significantly over reasonably small values of A(n). The to the suboptimal technique described here. The performance of

attempt to maximize det C(n, A(n)) in (10) causes a tendency to the suboptimal and the adaptive suboptimal techniques will be

increase A(n) in the usual optimization process. However, the at- investigated in the next section.

tempt to minimize ,(n, A(n)) generally causes a tendency toward
small values of X1n). unless a minimum of ,(n,A(n)) occurs at 3 Simulation Studies
a "large" value of A(n). To pursue this idea and further points
of the argument. key results about K(n, A(n)) are noted in the in this section. we consider the estimation of the parameters of
following, two time varying AR(2) models of the form

Theorem 1 e; vn. A(n)) has the following properties: y(n) = at(n)y(n - 1) + al(n)y(n - 2) + v(n' . (26)

" On the domain A(n) E [0, x). ,i n, A(n)) is either mono- Two sets of AR parameters were derived using linear prediction
tonically increasing or it has a single minimum. (LP) analysis of order two on utterances of the vords "four" and

"six" by an adult male speaker. The datu here sampled at 10
" (n.A(n)) h a a minimum on A(n) E [0, :o) iff kHz after 4.7 kHz lowpass filtering, and rCae 'forgetting factor'

(n) > -(n)2 in the LP algorithm (see [171) was " = 0.996. A 7000 point
sequence, y(n), for each case (for and "six") was generated

by driving the appropriate set of r &rameters with an uncorrelated
Lemma I [3]. Let A'(n - 1) denote the optimal weight in the sequence. vn). which was uniformly distributed on [-1. 11 in
sense of ( 11) (which might be zero) at time n - 1. Then the simulations below, we apply the conventional and suboptimal

,),-,(,,) SM-WRLS algorithms to the estimation of the a, parameters.
, n, A(n) = ,(n - I(n - )+(n) I A(n) j (22) We discuss a number of simulation results. To conserve space,

I I only the result for a, .s llustrated in each case. Each figure shows
two curves, one fo: Ltie true parameter, the other for the estimate

Proof' of Theorem I The minimum of (nA(n() with respect obtained by thb algorithm under study.
to A(n) can be found by differentiating (22) and setting the result Figures Ind 2 show the simulation results of the conven-
equal to 0, tional SM WRLS algorithm for the words four and six using only

(n. A)) = -f-1.86% 3 ad 2.16% of the data. respectively. Figures 3 and 4 show
aA() = G(u) (n)+2G(( (1 - 7(n)E,,_,(n)- 0 the simulation results of the conventional SM.WRLS algonthm

(23) with suboptimal data selection. In this case. only 1.19% and
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Figure 1: Simulation results of the S.M-WRLS algorithm for the Figure 3: Simulation results of the SM-WRLS algorithm with

word four. 1.86% of the data is employed in the estimation pro- suboptimal data selection for the word four. 1.19% of the data

cess. is employed in the estimation process.
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Figure 2: Simulation results of the SM-WRLS algorithm for the Figure 4: Simulation results of the SM-WRLS algorithm with
word su. 2.16% of the data is employed in the estimation process suboptimal data selection for the word six. 1.53% of the data is

employed in the estimation process.

1.33% of the datta are Used for the words four and six, respec-
tively. Compared to the conventional SM-WRLS algorithm (see The sim .ulation results of the selective forgetting SM.WRLS tech-

Figs, 1 and 2), the suboptimal technique uses slightly fewer data tuque with suboptimal data selection are shown in Figs. 7 and 8.

but produces comparable estimates. It is interesting to note that This strategy uses only 1.89% and 1.86% of the data for the words

most of the equations (97.6% for the word four and 94.4% for four and six, respectively. Compaed to the selective forgetting

the word six) that are accepted by the suboptimal techinique ae strategy (Figs. 5 and 6), the selective forgetting technique with

also accepte by the conventional SM.WRLS algorithm. It is suboptimal data selection uses fewer data but produces compa-

also interesting to note that the equations that are accepted by rable estimates. On the other hand. when compared to conven-

the suboptimal technique but not by the conventional SM.WRLS tional SM.WRLS with suboptimal data selection (Figs. 3 and

algorithm bie mostly in regions of fast changing dynamics. 4 ). the selective forgetting suboptimal technique use" more data
Figures 5 and 6 show the simulation results of the sective but produces better estimates.

forgetting adaptive strategy. This strategy uses only 3.6% and

2.93% of the data for the words four and six. respectively. More 4 Complexity Analysis
data than with the conventional S-WRLS algorithm are used.

but more accurate etimates resth and the time varying paramn. In order to perform a detailed analysis of the computational com-

eters are tracked more quickly and accurately. This can be eas. plexities, we employ the following notations: if the fraction of the
dy 2 asn when the parameter dynamics change abruptly near the data accepted by the conventional SM-WRLS algorithm i de-
point 2100 for the word four (see Fig. 5) and near the points noted by r, elction o the word six. .% the SM-WRLS
2000 and 4500 for the word six (see Fig. 6), algorithm with suboptimal data selection by (s < r) and the

We have noted that the general formulation of the adaptive fraction of the data accepted by the S S-WRLS algorithm after

SM-WRLS algorithm is amenable to echnique, passing use sghl fewe dt q with st dyta seletn a he total computational
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Figure 7: Simulation results of the selective forgetting SM-WRLS
algorithm with suboptimal data selection for the word four.

Figure .5: Simulation results of the selective forgetting SM-WRLS [.9% of the data is employed in the estimation process.
algorithm for the word four. 3.6% of the data is employed in the
estimation process. a

tre
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cope i - th conentonaFigure 8: Simulation results of te selective forgetting SM-WRLS
algorithm with suhoptimal data selection for the word six. 1.86%

Figure 6: Simulation re~uits of the selective forgetting SM-WRLS of the data is employed in the estimation process.
algorithm for the word six. 2.83% of the data is employed in the
estimation process. ring SM-WRLS algorithms is given by

complexity of the conventiona1SM.WRLS algorithm is given hy ('
r  + 2.r + 13)+r' [2.5m 2 

+ 10Si + 5] +t [2m2 + 10in + 5i

[161 (29)
(m2 + 2m + 13) +r i2m' + 3m + 7] (27) flops per equation. For the suboptimal selective forgetting SM-WRLS algorithms, it is given by

floating point operations (flops) per equation. For the SM.WRLS
algorithm with suboptimal data selection, it is given by (161 (M + 1) + s [.5m' + 1.5m + 12] (30,

( + 1)* m2 + m + 12+ tI 2 4- 3m+7 (28) _r L2.5m 2 + 10.5m + ] 2

flops per equation. When considering a typical example to com- flops per equation. Again, the computational complexity is re-
pare the complexities of the two strategies, the suboptimal strat- duced by 60 - 70%.
egy reduces the computational complexity of the conventional
algorithm by 60 - 70%. which is clearly advantageous especially 5 Conclusion
when noting that the simulation results of the two strategies are
comparable. This paper presents a suboptimal data checking strategy for the

If the fractions of the data used by the adaptive SM-WRLS SM.WRLS algorithm. It also shows how adaptation can be in-
algorithms are denoted by the same symbols used above, and the corporated into SM-WRLS in a very general way by introducing
fraction of the data removed from the system is denoted by u. a flexible mechanism by which the algorithm can forget the in-
then the total computational complexity of the selective forget- fluence of past data. The suboptimal technique which can be
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Abstract: A class of algorithms is presented for training multilayer perceptrons using purely linear" tech-
niques. The methods are based upon linearizations of the network using error surface analysis. followed by a
contemporary least squares estimation pro-.,urp. Specific algorithms are presented to estimate weights node-
wise, layer-wise, and for estimating the entire set of network weights simultaneously. In several experimental
studies, the node-wise method is superior to back-propagation and an alternative linearization method due to
Azimi-Sadjadi et al. in terms of number of convPrgences and convergence rate. The layer and network-wise
updating offer further improvement.

1. Introduction

This paper introduces a new class of learning algorithms for feedforward neural networks (FNN) with im-
proved convergence properties. In spite of the nonlinearities present in the dynamics of a FNN, the learning
algorithm is purely "linear" in the sense that it is based on a contemporary version (see (1]) of the recursive
least squares (RLS) algorithm (e.g. [2]). Accordingly, unlike the popular back-propagation algorithm used to
train FNNs (3, 4], the new learning algorithm and its potential variants will benefit from the well-understood
theoretical properties of RLS and VLSI architectures for its implementation.

A FNN is an artificial neural network consisting of nodes grouped into layers. In this paper, we consider
a two-layer network 2, but the generalization of the method to an arbitrary number of layers is not difficult.
Working from the bottom up, we shall frequently refer to layers zero, on,. and two as the "input," "hidden,"

and "output" layers, respectively. Each node above the input layer in the FNN passes the sum of its weighted
inputs through a non-linearity to produce its output. The inputs to the input layer are the external inputs to
the network, and the outputs of the output layer are the external outputs.

The number of nodes in layer i is denoted .N,, with NO indicating the number of input nodes at the bottom
of the network. The weight connecting node j in the hidden layer to node k in the output layer is denoted uk j.
The weight connecting input node I to node j in the hidden laver is denoted w. We denote by N the number
of training patterns of the form

{(x1(n), x2(n).... '. x v (n): tI(n), t,(n).... try(n)), n = 1. 2...... }, l)

in which x1(n) is the input to the 0~" node in layer zero. and tk(n) is the target output for node k in the output
layer (output desired in response to the corresponding input). The computed outputs of layer two [one] in
response to t,(n), ..... xN(n) are denoted yt(n) .... y.v [!/(n) ..... y,\.]. Finally, we need to formalize the
nonlinearity associated with the nodes. Consider node k in the output layer. For given weights. wkj, j e 1.. N,.
the output in response to the nth input is

k(n= ( uyn) (2)

in which .5( ) is a differentiable nonlinear mapping. For future purposes, we define S(.) to be the derivative of

.5(). For convenience, we also define u! n) '= J = ,' y(n) r Clearly. iuk(n) is the input to node k in the
output layer in response to pattern n. ui) is similarly defined as the input to node I in the hidden layer.

'Acknowledgements: Th, work was supported by the Ofice of Naval Research under Contract No. N00014-91-J-1329. and by
the National Science Foundation under Grant No. MIP-9016734. Mr. Hunt was also supported by a fellowship from the ! 'mversitv
of Puerto Rico.

2
Some authors might choose to call this a ,h.-- layr network. We shall designate the bott.m layer of "nodes" as -'layer zero'

and not count it in the total number of layers Layr zero is a set of linear nodes which simply pass the inputs unaltered.



Many training (weight estimation) algorithms exist for this type of network (e.g. [3] - Azimi-Sadjadi 89. The
most popular, the back-propagation algorithm [3], [4], performs satisfactorily in some cases if given enough time
to converge. However, the literature abounds with example applications in which back-propagation convergence
is too slow for practical usage (e.g. see [81). One attempt to develop faster training methods is represented by
the class of algorithms in which the network mapping is "linearized" in some sense in order to take advantage
of linear estimation algorithms. It is with this class of algorithms that this paper is concerned.

2. Linearization Algorithm

The fundamental training problem for the two layer FNN is stated as follows: Given a set of N training pat-
terns as in (1), find the network weights which minimize the sum of squared errors, E = Z=I2 A(n)(tk( n 1-

yk(n)) 2 ,where the weights A(.) are included for generality. For a given set of training pairs, E is a function of
the weights of the network. A graph of E over the weight space is frequently called an error surface. Ideally. a
training algorithm would find the weights corresponding to the global minimum of the error surface. Training
algorithms usually operate by sequentially presenting the training patterns and moving the weights toward a
minimum of the error surface. The procedure is repeated several times using different initial weights in order
to locate the best minimum. Ideally, ,ail weights will be altered with each presentation of the set of training
patterns so that the weights may move in the direction of steepest descent. In this case the algorithm represents
a true gradient descent approach. In practice. however, no reasonable algorithm exists which can simultaneous
change each weight in the network. In fact. the popular back-propagation algorithm works on only one wpight
at a time. One of the principal benefits of the method to be presented here is that many weights can be
simultaneously updated.

The linearization technique adopted in this work can be explained in terms of errol surface analysis. In
effect, for a present set of weights and a given training pattern, we construct a "linearized" network with an
error surface, say E, which is "similar" in some sense to E in a neighborhood of the present weights. There are
two similarity criteria: first, that the magnitude of E and £ be the same at the present weights: and second,
that the derivatives of E and E with respect to the weights to be updated be the same at the present weights
(since the other weights are not altered, it is not necessary that the derivatives with respect to those weights
match).

Let us digress momentarily from the simple two layer network and use more general description. Suppose
that the weights connected to one or more nodes in layer L are to be updated simultaneously'. This may include
as few as one. and as many as all, nodes in layer L. Denote the set of such selected nodes by A'. Denote by .V
the set of all nodes above layer L to which any node in A' is connected, directly or indirectly. Let all weights not
connected to nodes in A' and ." be fixed at present values 4 . Then it is shown in [9] that a "linearizd" network
whose error surface E is similar to E in the senses above is constructed by replacing the nonlinearity 5(-) for
each node in ' and A4 by a linear approximation. say S(.), consisting of the first two terms of a Taylor series
around the 'present" value of the node's input. For example, suppose the kh output node is to be linearized
with respect to the n"i training pattern. Let dk,, denote the present value of weight ,.. Then.

ti=,l ,(n) [u-Zt~kj '(n)I+ ( IkJY(n) 3

V, [- ( N ti -Vef

b k,(yti Y(n) u+ ± [ f( iyj.n) -y, wy.iy'(n)) E t y,(n) = k':(n)u bi(n

In fact, since S(u) = S(u) if u is the input corresponding to the present weights, any node not in A' or may
also be linearized with no effect on the solution. Therefore. we may assume without loss of generality that the
,,ntire network is linearized, even if only a portion of the weights is to be updated.

It will be,-ome clear below that once th- network is linearized by replacing the operation S(.) by 5() in all
ippropriate nodes, in principle any least square error algorithm can be used to update the weights. Algorithms
based ,n similar ideas for updating weights one node at a time are given by Azimi-Sadjadi et al. [5] (hencrforth.
.- < ,zlqorithm i and bv Hunt and Deller [9]. The former is based on the conventional RLS algorithm '2' with a

If -n% weight -onnected a node is to be updated, then every weight connected to that node must be updated. This "'constraant

is ,rdin.vrilv hn-,afic iad n ,, it implies the ability to simultaneously update more than one weight.
In ,rtain as"e it i% pssible to update weights in different layers simultaneously. We discuss one case at the end of this sect i. n

2



forgetting factor, while the latter employs a contemporary QR decomposition algorithm [L, 10] for significant
performance improvement. The view of the method taken above allows us to to further exploit the linearization
by complete layer-wise updating of weights for even further improvement. Let us pursue this layer-wise approach.

Suppose we wish to update all weights in the output layer simultaneously. We must linearize all output
nodes (and may arbitrarily linearize any other nodes). For node k in the output layer. the output in response
to input n is computed as in (2). Let 9k(n) represent the output of node k after S(uk(n)) as been replaced by
S(uk(n)) = Kkuk(n) + bk. Accordingly.

N,

yk(n) = Kk(n)[Z tlk 1y' -*- bk n) or fk(fl) = k(n)]( (n] 4
J~i J=1

with 4(n) !eff qk(n) - bk(n). We speak _)f the rightmost form in (4) as descriptive of a (inearz:ed node since

the output is a purely linear combination of the inputs to the nude. The network with all appropriate nodes
linearized will be called the linearized network. Since Yk(n) = Yk(n) at the present weights, the error at the k"h
node will be the same for the linearized and -riginal network if the target value for fk(n). say ik(n), is taken to
be .to)

tt())- bk (n)

and the linearized inputs to node k at pattern n are

rk '(n) = /k(r y'(n), j 1 2 ...... I(6)

Note that the linearized inputs are dependent upon k, so that we have effectively increased the number of
training pairs by a factor of A.

The problem has effectively been reduced to one of estimating weights for a single-layer linear network. In
order to simultaneously update the all weights in the output layer. the system of .V x V, equations

tk(n)= tkWkr , k = 1.2 ...... % n 1.2, V (7)

must be solved for the least square estimate of the A I< .V weizhts wk. k [1..2,] j [1.,A d . However, since

all weights in the hidden layer are fixed, the outputs (n) are independent of k. This means that the equations
indexed by different values of k are independent of one another, and the sets of weights connected to different
outputs may be updated independently. In the output layer, therefore, there is no theoretical difference between
layer-wise and node-wise updating. This is not true at lower layers. however, as we now show for the hidden
layer of the present network.

To update all weights in the hidden layer simultaneously, the weights in the output layer are fixed and all
nodes in the network must be linearized. The outputs of the hidden layer with S(.) replaced by 5 (.) are given
by

.V')
n= I'(r)[Z wr u] + b'(n). j = 2 ...... Vi

1=1

Substituting (8) in the leftmost expression in (4) results in

', N1 , V

9k() - K k,((n)u k b ( n) +- bn =(n ) ukJ. n n)x:( n) )
1=1 ,:1 ,:l

As above, we can now view the problem as one of training a single-layer linear mapping with target outputs

.'1

and inputs
, n) = Jk(n v L N(nt(nf). 11
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The weight estimates for w', j E [ 1,.Vi] I E [ I.V 0] comprise the least square error solution to the system of
equations .v1 .'%

nk L2... V n= 1. 2 ....... (12)

Unlike the output layer. we see that the problem cannot be decomposed into separate solutions fcr sets of
weights connected to individual nodes in the hidden layer. This is a reflection of the fact that all weights in the

hidden layer are coupled through their 'mixing" in the output layer. This means that the simultaneous solution
for all weights in the hidden layer should be beneficial with respect to a node-wise solution. Indeed we will find
this to be the case in the experiments. Of course. this same intra-layer dependence of weights would continue

if there were further hidden layers to be considered.
Note that, for a fixed k, the inputs to the linearized nc'work, r'(n), n E [ .V], are most conveniently viewed

as two-dimensional (indexed by couples {j. W1). There are V such "grid" inputs for each k. paired with the \"

values of t'(n). If there were further hidden layers in the network, we would find that the effective inputs would
continue to increase in dimension. Further, it is noted that the role of k in (12) is somewhat superfluous. In
principle, the index is used to keep track of which of .V2 outputs in the linearized network is being considered.

However. the training pairs ( 111n): . X ,..k y(n)), k [ T.1] ri E [1..V], can be re'-dexed by

mapping pairs (k, n) - i so that the training pairs may be written (t(i): (i)). i E [1( A.'.
Of course, an identical system of equations to 112) results, but the linearized network may be viewed as a single

output linear layer with V x V, training pairs.
Updating of some subset of the weights in the hidden layer (in particular. 'node-wise" as in the A-S algo-

rithm) is tantamount to solving the subsystem of (12) corresponding to the desired weights, introducing the
updated values into the system. solving for the next desired subset, etc. Clearly, this will result in a different
solution than the simultaneous solution. In terms of the error surfaces, this process consists of continually up-
dating the error surface as "partial" information becomes available, then moving in the direction of the gradient
with respect to a new subset of weights in the updated surfaces. Intuitively, movement "at once" with respect

to the -complete" gradient would seem to be a preferable procedure. Indeed, the later operation corresponds
to the simultaneous updating.

The linearization allows us to approximate the error surface of the n, tlinear system for only a small neigh-
borhood around the present weights. Because of the criteria ,sed to cotiitruct E the weights will be changed

in the direction of the true gradient in the nonlinear space, but will move to the minimum of E which may be
quite far from the neighborhood over which E :z E Accordingly. the weights must be allowed to change only a
-mall amount using the training patterns of the linearized s sem If the linearized procedure results in a large
-,hange of weights, measures must be taken to decrease the :iteration. The updating procedure is repeated untI

changing the weights does not result in a decrease in error. The algorithm prnceeds as follows: linearize the
system around the present weights. change the weights by a small amount to decrease error, then repeat the

procedure. This is done until changing the weights does not decrease the error or a maximum on the numbr
of linearizations is reached.

For the same reason that simultaneous layer-wise estimation of weigh*.i is beneficial, we should expect even
more benefit from complete network updating if such were possible. It follows from the developments above
that entire network updating is possible for at least one case. [f there ,, a sinqle node in the output liqer ,,f tht

net rork. let k = 1 and define
u t ' ' I

U, = U LL' = W1 iU'; 1

From (9) it follows that

N NO N

(9 1(n) - bi(n)) = Z AIx(n)[ '(n)x(n)]t'T> -4 Z A'1(nb'n)]w1

This ran be interpreted as an attempt to train a single linear layer with one output and (.V0  - . :
inputs. In this case, there will be only .A linearized training patterns. The system can be solved for ,i : itd

IV [ El..\' t l I, .V)j and 113) can be used to solve for w>. j [ Vt1 ] I l,.V 0].

3. Experimental Results
The results given in this section compare five trainng strategies for a FNN. These are: 1. ',.nvent,:nal

back-prnpagation ino linearization in the sense described here, weight-wise updating): 2. A-S algorithm no

4



I Impementation - Back-Prop A-S Node Updating j Layer Updating Network Upatingi
No. of Convergences - 11 S8 78 96 9

Table 1: Number of convergences per 100 sets of initial weights in experiments with the XOR network.
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Figure 1: Average error in dB for the XOR implementations vs. iteration number. IBack-propagation: 2.A-S
algorithm: 3. Node-wise updating: 4.Layer-wise updating: 5.Network-wise updating.

linearization, then conventional RLS with a forgetting factor for node-wise updating): .3. Linearization method
,lescribed above with node-wise updating based on QR decomposition: .4. Same as 3 with bayer-wise updating: 5.
Same as 3 with complete network updating. The two-bit parity checker (XOR) network used in the simulativns
has two inputs, two hidden layer nodes and one output node. An additional node is added at each layer whose
,utput value was always unity, to serve as a bias for each node in the laver above. The initial weights w cr
chosen as follows Each weight in the network was selected randomly from a uniform distribution ,vr the
interval [-I '1I. This procedure was repeated 100 times to select 100 sets of initial weights. The same 1)) sets
cf weights were used for all five implementations. For the back-propagation algorithm, a factor ,of 0)4 was
used in the weight updating equation. The A-S algorithm was implemented using no weight change ,onstraints.
The forgetting factor for A-S and for the QR decomposition implementation was 0.98. The QR decomp,sit in
implementation used a weight constraint of 0.2. meaning that the weight vector associated with each node was
allowed to change at most by 0.2 in Euclidean norm (luring each iteration. The layer-wise updating algorithm
has a forgetting factor of 0.3 and a weight constraint of 1.0. The network-wise updating algorithm had the same
forgetting factor and weight constraint as the layer case

Simulations were run to compare the number of times each implementation found weights that solve the
XOR problem for the 100 initial weight sets. The results are shown in Table I.

Simulations were also run to compare the output error of each algorithm. In the resulting figures, the error
in dB means the following: Let E(i) be the sum of the squared errors incurred in iteration i through the traininl
patterns, averaged over the 100 initial weight sets. Then. plotted in the figures is 10 log((ii/p) (dB). where ji
is the maximum possible error in any iteration. Figure I shows the errors of the four XOR implementaticiis

I ! II ! !! | ! 1 !5



4. Conclusions

A new implementation for node-wise weight updating algorithm for feedforward neural networks and new
algorithms that update weights layer-wise and network-wise have been presented in this paper. The QR decom-
position implementation has been shown experimentally to be superior to standard recursive equations for she
node-wise updating algorithm. The layer-wise and network-wise weight updating algorithms were developed
to improve the convergence rate and the speed of convergence. Both objectives were accomplished, with the
layer-wise weight updating algorithm showinz a significant advantage over both the single node weight updating
algorithm used as a reference, and the widely used back-propagation algorithm.
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