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Project Summary and Description of Report Contents

The included materials comprise Report of Progress covering the period 4/91 - 12/91 for the work being
conducted under ONR Grant No. N00014-91-J-1329. The project title is “Theoretical Issues in Adaptive Set-
Membership-Based Signal Processing.” The research is being conducted in the Speech Processing Laboratory
and the Adaptive Signal Processing Laboratory under the direction of Co-Principal Investigators John R.
Deller, Professor of Electrical Engineering and Majid Nayeri, Assistant Professor of Electrical Engineering.
The following graduate students are conducting research directly related to the project:

1. Steve M.S. Liu (Ph.D. Candidate) — (Convergent unified optimal bounding ellipsotd (UOBE) algo-
rithms and applications to speech recognition.

2. Shawn D. Hunt (Ph.D. Candidate) — Efficient neural network learning algorithms with selective
updating. Completion of Ph.D. anticipated 6/92.

3. Y.B. Lee (Ph.D. Candidate) — Novel set-membership-based algorithms for neural network learning.

4. Marwan M. Krunz (M.S. Candidate}) — C'onvergence and colored noise issues in UOBE algorithms.
UOBE optimization involving multiple data weights. Simulation software development. Completion
of M.S. degree anticipated 6/92. Will enter Ph.D. program.

Related work is being supported by the NSF under Grant No. MIP-9016734 entitled “Applications and
Performance Evaluation of Set-Membership Algorithms for Signalsin C*." All work cited below acknowledges
Joint sponsorship.

The general purpose of this research is the development and exploration of new set-membership-based
algorithms for adaptive identification of parametric signal and system models. We are pleased to report
progress in several important aspects, both theoretical and applied, of this general scope. The report consists
of several preprints of papers in review by repected journals, published and preprinted conference papers, and
some other supporting material. A clear understanding of our progress is inherent in the discussion of each
item in the following. These discussions are meant to illuminate the directions, rationale, and achievements
of our research, with the technical dctails left to the papers. The items appearing in the following are grouped
into papers written for journals, followed by conference papers, descriptions of dissertations in preparation.
then documents showing further evidence of research progress. Within each group, the items appear in
chronological order. The contents are as follows:

l. JOURNAL PAPER PREPRINTS. DRAFT MANUSCRIPTS. AND SUMMARIES

(a) J.R. Deller and S.F. Odeh, “Adaptive set-membership identification in
O(m) time for linear in parameters models,” [EEE Transactions on Signal
Processing (revision submitted 10/91). [Preprint]

This paper is a revision of an earlier submission which was based principally upon the Ph.D
dissertation of Souheil F. QOdeh. The revision includes many new results obtained under ONR
sponsorship. Reported are four significant contributions to the field:

e A generalization of all fundamental results in Optimal Bounding Ellipsoid (OBE) processing
to the case of complex signal MIMO models. Such models occur in many important problems
including. for example, adaptive heamforming and neural network learning.

o A class of crplicitly adaptive OBE algorithms appears in a journal paper for the first time.

e A suboptimal test for innovation is developed which leads to a class of OBE algorithms which
~mpirically perform as well as those employing optimal checking. This check admits O(m)
romputational complexity which represents a square root factor improvement over optimal
methods, as well as RLS.

e Compact parallel architectures are developed which can be used for running both optimal
and suboptimal algorithms at Q(m) expense.




(b) J.R. Deller, M. Nayeri, and S.F. Odeh, “System identification using set-

(c)

(d)

membership-based signal processing,” Proceedings of the IEEE (submitted
12/91 by invitation in response to paper proposal). [Letter of invitation
included with preprint]

In response to a proposal to the Proceedings, submission of this paper was encouraged by the
editors as the prefatory letters indicate. The paper is expository, reviewing the general field of
set-membership based identification algorithms, then focusing on the OBE algorithms which are
currently of most interest to the signal processing community. Reviewed are adaptive and “nonad-
pative” algorithms. efficient algorithms with suboptimal data checking, and parallel architectures
for implementation. In addition to the tutorial value of this paper. current research sponsored
in part by the ONR grant has lead to a unified framework into which all OBE algorithms may
be placed. The paper discusses the field from this point of view. and. in an appendix, provides
unified and rigorous theoretical developments which underlie all major developments in the OBE
field. These developments are scattered throughout the literature, and in some cases are absent,
incomplete, or misunderstood. Both the novice reader and the expert should benefit from this
work.

S.D. Hunt and J.R. Deller, “ ‘Linearized’ alternatives to back-propagation
based on recursive QR decomposition,” [EEE Transactions on Neural Net-
works (submitted 8/91). [Preprint]

The class of learning methods presented in this paper were developed en route to the application of
set-membership principles to neural network training. The algorithm is based upon linearization of
the dynamics of a feedforward neural network based on error surface analysis, followed by training
using a QR d ~mposition version of the RLS algorithm. The algorithm can be used to train
networks “node-wise” (all weights connected to a node updated simultaneously ) or “layer-wise,”
and. in some cases all weights of the network can be updated simultaneously. The node-wise case
turns out to be theoretically similar to a method developed by Azimi-Sadjadi et al. (A-S), but
the QR implementation renders the present algorithm vastiy superior in terms of numbers and
speeds of convergences. The reported method. as well as the A-S method, outperform conventional
back-propagation.

J.R. Deller, M. Nayeri, and M.S. Liu, “Connections between the Fogel-
Huang and Dasgupta-Huang optimal bounding ellipsoid algorithms” (in
preparation, tenatively for Adutomatica) [Draft manuscript included].

The Fogel-Huang OBE (F-H OBE) algorithm is attractive in its clear interpretability, but in spite
of statements to the contrary in the literature. it does not have proven convergence properties.
On the other hand, the Dasgupta-Huang OBE (D-H OBE) is desirable in its proven convergence.
but its controversial optimization criterion is not amenable to clear intepretation of the method’s
operation. In our work related to the Proceedings paper above, intriguing connections between
D-H OBE and F-H OBE {(in fact, between D-H and a broadly genearlized version of F-H) were dis-
covered. These connections are apparently unknown to the research community, and are reported
in this paper. It is suggested that these findings could ultimately lead to an OBE algorithm with
the desirable properties of both methods.

M. Nayeri, J.R. Deller, and M.S. Liu, “A converging optimal bound-
ing ellipsoid algorithm with volume minimization (tentative title)” (in
preparation, tentatively for Automatica (special issue on signal processing)
). [Summary paper included]

We found the OBE algorithm alluded to in the discussion of the last paper. It is quite possible
that this will be a landmark paper which will have the same impact on the field as the original
¥-H OBE and subsequent D-Il OBE.




(f)

J.R. Deller and M. Nayeri, “Unifying the landmark developments in
optimal bounding ellipsoid processing,” International Journal of Adaptive
Control and Signal Processing (in planning in response to recent invitation).
[Letter of invitation & planning paper included]

The Guest Editor of this special issue has written that papers with tutorial content are especially
welcome. This paper will tie together in one source several of the key unifying themes mentioned
in the descriptions above. Accordingly, it will decribe the general unifying themes, and lead the
reader to sources of information on rigorous theoretical details. In particular, we will develope
the “generic” Unified Optimal Bounding Ellipsoid (I’OBE) algorithm, and show how all reported
algorithms, both adaptive and nonadaptive, are instances of UOBE. The interesting connections
between F-H OBE and D-H OBE described in paper 1d above can be presented in this framework.
Finally, the algorithm which combines the desirable features of these two *landmark” algorithms
will be described. This paper will reach a large population of researchers in Europe whose work is
system and control-oriented and who might not be as familiar with the signal processing literature.

2. PUBLISHED AND PREPRINTED CONFERENCE PAPERS

(¢) M. Nayeri, J.R. Deller, and M.M. Krunz, “Convergence and colored

noise issues in bounding ellipsoid identification,” Proceedings of [CASSP
92, San Franscisco, March 1992 (to appear). [Preprint]

This paper presents the following new results a discusssion of almost sure convergence of the UOBE
esttmator (ellipsoid center) under ordinary “white noise” conditions on the model disturbances.
then presents the following new results concerning the ellipsoid behavior under various noise
conditions:

o With white noise disturbances, UOBE algorithms involve ellipsoidal bounding sets which
converge in scme unspecified way to some unspecified "size.” This result represents the first
report in the literature of a covergence result for a "non-D-H” algorithm. The original F-H
OBE paper has been misinterpreted to mean that the ellipsoid converges to a point.

* With colored noise inputs. the limiting ellipsoid must be a nontrivial set. Empirical evidence
suggests that the true parameters lie on the boundary of this limiting set.

e Arguments are made in support of the idea that the ellipsoid may collapse into a subspace
of the parameter space (thereby diminishing the volume of the ellipsoid to zero without its
being reduced to a point) if and only if the input is not persistently exciting.

(h) J.R. Deller and S.F. Odeh, “SM-WRLS algorithms with an efficient test

for innovation,” Proceedings of the 9% [FAC / IFORS Symposium on I[dentifica-
tion and System Parameter Identification, vol. 2, pp. 1044-1049, July 1991
(written and presented by invitation). [Reprint]

This paper presents some of the ideas concerning suboptimal testing cited in the des r.ption of
paper la.

J.R. Deller and S.D. Hunt, “A simple ‘linearized’ learniug algorithm
which outperforms back-propagation” (submitted to International Joint
Conference on Neural Networks, 1/92). [Preprint]

This paper presents some of the key developments of the algorithm -ited in the description of
paper lc.




3. BOOK ACKNOWLEDGING ONR SUPPORT

() J.R. Deller, J.G. Proakis, and J.H.L. Hansen, Discrele Time Processing
of Speech Signals, New York: Macmillan (writing completed, anticipated
publication in late 1992). [Table of contents included]

This book will acknowledge ONR research support during the period of authorship.
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Abstract

This paper describes some fundamental contributions to the theory and applicability of optimal
bounding ellipsoid (OBE) algorithms for signal processing. All reported OBE algorithms are placed
in a general framework which fruitfully demonstrates the relationship between the set-membership
principles and least square error identification. Within this framework, fiexible measures for adding
explicit adaptation capability are formulated and demonstrated through simulation. Computational
complexity analysis of OBE algorithms reveals that they is of O(m?) complexity per data sample
with m the number of parameters identified, in spite of their well-known propensity toward highly-
selective updating. Two very different approaches are described for rendering the a specific OBE
algorithm, the set-membership weighted recursive least squares algorithm, of ©@(m) complexity.
The first approach involves an algorithmic solution in which a suboptimal test for innovation
is employed. The performance is demonstrated through simulation. The second method is an
architectural approach in which complexity is reduced through parallel computation.
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1 Introduction

Set-membership (SM) identification of parametric systems is concerned with the computational de-
scription of feasible sets of solutions which are consistent with the measurements and the modelling
assumptions. SM algorithms have been the subject of intense research effort in recent years and
and many approaches has been explored. The papers in [1] and [2] provide a broad and current
overview of the area. In particular, comprehensive reviews of the field with extensive reference lists
are found in papers by Walter and Piet-Lahanier [3] and by Milanese and Vicino [4]. An extensive
list of application examples with references is also given in the Milanese paper. A tutorial on the
principal algorithm of interest in this paper, the so-called set-membership weighted recursive least
squares (SM-WRLS) algorithm, is found in [3].

One class of SM methods, the optimal bounding ellipsoid (OBE) algorithms?, is of particular
interest to the signal community since it represents a merging of the SM approach and widely used
least square error (LSE) procedures for identifying linear models. The benefits of combining SM
considerations (when they are known) with LSE processing are twofold: First, the SM information
provides a feasible set of solutions which complements the unique LSE estimate. This feasible set
can help to compensate for the restrictive nature of the assumptions placed upon the LSE model.
Secondly, as we demonstrate in this paper, SM knowledge can greatly improve the efliciency of LSE
identification.

Two aspects of OBE processing are treated in this paper. In a general way, it is shown that
all reported OBE algorithms can be placed into a unified framework which is clearly related to
conventional LSE processing. This framework will embrace ezplicitly adaptive OBE algorithms
which will be demonstrated as a first major contribution of the paper. The second, and more
extensive, aspect of this paper is concerned with the computational efficiency of OBE algorithms.
OBE algorithms (both nonadaptive and adaptive) entail an interesting data selection procedure
which typically discards 70 — 95% of the incoming data. The basis for this selective updating
is a determination of whether the incoming datum is “informative” in the sense of refining the
feasibility set. The selective updating procedure, however, does not imply a similar reduction
in computational load, since the effort of checking for innovation in the data is approximately
as expensive as the updating itself. In either case, the processing requires @(m?) floating point

operations® per incoming datum, where m represents the number of parameters to be estimated.

*The original algorithm in this class due to Fogel and Huang [6] was called simply “OBE”. We use this term to
indicate the broader class of similar algorithms. The SM-WRLS algorithm will be seen below to be a specific type of
OBE algorithm in this broader sense.

*One flop is taken to be a multiplication plus an addition operation.




This point has not been clearly brought out in the literature. A second focus of this paper is
to demonstrate two very different methods for making a specific OBE algorithm run in O(m)
time. The first solution is algorithmic, while the second is architectural. The ability to execute
this interesting method in O(m) time makes it highly competitive with conventional identification

techniques (especially recursive least squares (RLS)) which typically require O@(m?) flops per point.

2 An Adaptive SM-WRLS Algorithm

2.1 The Model and the LSE Identification Problem

The basic identification problem is as follows: We observe a system which is generating output
sequence y(-) in response to input sequence u(-). Both input and output sequences are measurable,
and u(-) is assumed to be a realization of a stationaryv, ergodic random process. The system is

governed by a “true” model of form
y(n) = 07z(n) +e.(n) (1)

in which x(n) is some m-vector of functions of p lags of y(-) at time n, and ¢ lags plus the present
value of u(-), and where, <.(-) is the realization of a zero-mean. white noise error sequence. The
error sequence is not measurable and the “true” parameters @, € R™ are unknown. At time n we
wish to use the observed data on t € [1,n] to deduce an estimated model which is similar in form
to (1),

y(n) = 07 (n)z(n) + £(n.6(n)). (2)

In the following, the identified parameter vector will be unique for each n (e.g. [7]), but will change
at every step. Hence, we index the parameter estimate by n. The error sequence will depend on
the choice of parameters, and we explicitly show this dependence. Neglecting the error term, this
model exhibits only linear functional dependence upon the parameter vector and has been called
a linear in unknown coefficients (e.g. [8]) or linear-in-parameters (LP) model (e.g. [3]). Special
cases of the LP model of (2) are the autoregressive-ezogenous input (ARX) and autoregressive (AR)
models (e.g. [9] - [11]). For a current overview of methods that deal with nonlinear models, the

reader is referred to [3].(4].

[n particular. we desire the weighted LSE model for which #(n) minimizes £(n) = % Soreq An(t)ed(t,0(n)).

where A, () is a sequence of nonnegative weights which may depend on n. 8(n) can be found as
T

the solution of the following classical linear algebra problem (e.g. [7]): Given data (or a system of

observations) on the interval t € [l.n] (n > m). and some set of error minimization weights, say




{An(t), t = 1,2,...,n}, form the overdetermined system of equations
X(n)y =y(n), (3)

and find the LS estimate, 8(n), for the vector v. X (n)is the m x n matrix with i** row \/X,(2)2T (i)
and g(n) is the n-vector with i** element \/A,(i)y(i). Because of this interpretation. the pair
(y(n),x(n)) could appropriately be called an equation in many contexts in the following. This
term is not always satisfactory, however. Whereas the term “datum” is inappropriate to describe
(y(n),z(n)), and “data” can be misleading. we will frequently refer to (y(n),z(n)) as the data set
at time n. The expression “per n” should be interpreted to mean “per data set.”

In principle, the LSE :olution is the solution to the normal equations (e.g. [7]), C(n)8(n) =

c(n), where C(n) is the weighted normal matrix* [8, p. 62]
T(n)2gn) = Y Aa(t)a(t)" (2) . (1)
t=1

and ¢(n) € XT(n)y(n) = iz, Aa(t)2(t)y(2).

A recursive solution can be obtained for certain classes of time varying weights. Consider first
the case in which the weights are time invariant, i.e. A,(t) does not depend on n for any ¢. In
this case, we one can use a contemporary weighted recursive least squares (WRLS) algorithm based
on the QR decomposition (e.g. [7]) of the X (n) matrix of (3). We shall refer to this algorithm as
“QR-WRLS" to distinguish it from the more conventional WRLS algorithm based on the matrix
inversion lemma (e.g. [8],[9] - [11]) (MIL-WRLS)®>. QR-WRLS, in principle, involves the application

of a sequence of orthogonal operators ( Givens rotations) to (3) which leaves the system in the form

T(n) di(n)

v= ()

0(n—m.)Xm d(n)

where the matrix T(n) is an m X m upper triangular Cholesky factor [7] of C(n), i.e., C(n)

XT(n)X(n) = TT(n)T(n), and 0;y, denotes the ¢ x j zero matrix. The system
T(n)8(n) = dy(n) (6)

is easily solved using back substitution [7] to obtain the LSE estimate, (n). This procedure can be

performed in a recursive manner using only about m? memory locations. When the n+ 1% data set

*In many contexts C(n) is imprecisely called a “covariance™ matrix. In fact, limp . {1/n)C(n) is the covariance
matrix for the process if appropriate ergodicity assumptions are made.

With the exception of the parallel processing architectures, developments throughout this paper may also be
based upon MIL-WRLS. Indeed, almost all of the existing SM algorithms of the type considered here are based on
the conventional method.




becomes available, it is weighted by \/X,(n) and incorporated into the system. Details are found
in [12]-[14]. We shall use the name QR-WRLS to refer to this form of the recursion. It will be
shown how this formulation makes possible the solution of the ellipsoid algorithms to be described
on contemporary parallel architectures for great speed advantages. It also avoids initialization
problems encountered in the use of MIL-WRLS [14].

The QR-WRLS algorithm can conveniently accommodate certain classes of time varying weights
of interest in this work. The first is the case in which previous weights are scaled at time n by a

time dependent scalar,

An=1(t)
((n—1)
¢(+) is a scaling sequence which depends on the nature of the method. A common use for such scaling

An(t) = Vi< n—1. (7)

is to effect adaptation by ezponential forgetting. In this case {(n) = a~!, Vn, where 0 < a < 1.

This scaling is conveniently carried out in the course of QR-WRLS by simply multiplying the matrix
and vector T(n) and d;(n) by a~'/2 prior to considering (y(n),z(n)) [13]. By a straghtforward
generalization of the work in [13], it can be shown that time-varying scaling may be accomplished
by a similar premultiplication by (~'/2(n — 1). Let us denote the scaled system of equations at
time n — 1 by Ty(n — 1)8,(n) = d, 5(n).

A second type of time varying weights is used to achieve adaptation by ezclusion. In this case it is
desired to remove some prior data sets from the system prior to considering (y(n),z(n)). Let the set
of times corresponding to data sets to be excluded be 7,_;. Then, whereas A,_1(¢) > 0, t € T4,
it is to be true that A\,(t) = 0, t € 7,_;. This case is accomodated within QR-WRLS by simply
reentering the data set to be forgotten with its previous weight as though it represented new data,
then making some simple sign changes in the algorithm [5],[15]. Because the data sets are removed
by “reversing” the Givens rotations which originally included them, this process is often call back-
rotation. It is notable that previous data sets can likewise be partially excluded using a similar
back-rotation method [16],{17]. After all desired data sets are removed, the system of equations is

often said to be downdated at time n — 1, and we shall denote this by writing
Tq(n — 1)84(n) = dy 4(n). (8)

If it were to be solved for, 84(n) would represent an estimate at time n — 1 without knowledge of

the excluded data sets.

2.2 The BE Constraint and the Feasibility Set

A widely-research class of SM problems is those involving bounded error (BE) constraints (e.g.

(3]-[6].[15]-(33]). In BE identification, a pointwise bound on the true error sequence is assumed.




Ordinarily this takes the form®
ex(n) < ¥(n), (9)

where v(-) is a known positive sequence. It follows immediately from (1) and (9) that the true

parameters must be in the set

a(n) = {81 (sn) - 672 (m))" < 5(m}. (10)

When intersected over a given time range usually form convex polytopes of feasible parameters, say
n) = Ni=, w(t). Methods which track these polytopes {3],(4], [18]-[21] result in interesting but
very complex algorithms which, at present. are not suitable for fast signal processing applications.
OBE algorithms are of much lower complexity and work with an outer bounding hyperellipsoid, a
superset of the polytope [6],(22]-{29]. The ellipsoid is “optimized” at each step by making some
measure of its size as small as possible in light of the incoming data.

One of the drawbacks of the OBE approach from a set-theoretic point of view is that the
hyperellipsoidal bounding sets are sometimes quite “loose” supersets of the actual feasibility sets
(polytopes) (e.g. [22].{30]). This problem renders the resulting feasible superset “pessimistic” in
that it may contain many points which are infeasible, and not reflect the size of the true feasible set.
Whether certain measures can be taken, or particular OBE algorithms can be used, to minimize
this problem, is an open issue. One possible solution is the use of inner bounds, as suggested in
(30],(31]. In the present work the relative size of the bounding set will turn out to be somewhat

inconsequential. It is the information afforded by the ezistence of the ellipsoid which is important.

2.3 Combining the BE and LSE Problems: The SM-WRLS Algorithm

OBE algorithms are fruitfully viewed as a marriage between the LSE and BE problems for LP
models. With this point of view, signal processing engineers have begun to exploit the benefits of
BE information in the context of LSE identification problems. In particular, LSE identifiers exploit
no point-by-point information which can be used to ascertain the usefulness of observations. This
fact manifests itself in the effective retention of the entire parameter space as a “feasible set,” and
results in wasteful processing. BE constraints, when they are known, provide a finite feasible set
and offer the possibility of including only data points which contribute to the reduction of this set.

As mentioned above, the polytope §}(n) arising directly from BE considerations is not easy to
track and manipulate. Further, Q(n) is not clearly related to the LSE solution. However, it has

been shown in three special cases of scaling sequences, ((-) (recall definition below (7)) . that there

®This form is slightly less general than stating asymmetrical amplitude bounds. €min(n) < £.(n) < £max(n), but
the very slight loss of generality is worth the significant analytic gain afforded by this assumption.




is an outer bounding hyperellipsoid, say (n), which contains Q(n) and which is closely associated
with the LSE estimate 8(n) [6],[26],[27]. A description of the hyperellipsoid is embodied in the

following:

Proposition 1 Let (n) C R™ be the feasibility set arising from BE constraints as above. Let
0(n) denote the weighted LSE estimate with associated normal matriz C(n). The weights used in
the estimation are A,(-) with A, (1) > 0. There exists a hyperellipsoidal set of parameter vectors,
QU(n) C R™, such that 8. € Q(n) C Qn), which is given by

A(n) = {6 | {(6 - 0n) ®(n)[6 - O(n)]} < 1} (11)

where k(n) is the scalar quantity, k(n) = 0T(n)C(n)8(n) + T, v(n)Aa(t) [1 — v~ H(B)Y?(1)],
and #(n) = C(n)/k(n).

Note that the ellipsoid is centered on the LSE estimate, 8(n), and its defining matrix is a scaled
version of the normal matrix, C(n).

The proof of Proposition 1 is a generalization of the proofs of similar results for special cases
(discussed below) found in {6] and [26]. Another related result for complex-valued, multiple input
— multiple output systems is proved in [16],{34].

Clearly, the weights A,(-) parameterize Q(n) and presumably can serve to minimize its size and
orientation in the parameter space. Because we want to work with recursive LSE estimation, in
particular QR-WRLS, let us henceforth restrict our attention to weight sequences which conform to
the simple forms of time variance described in Section 2.1 — scaling and exclusion. This effectively
restricts to one the number of free parameters available to control the bounding ellipsoid. The
central objective of an optimal bounding ellipsoid (OBE) algorithm is to employ these free weights
in the context of LSE estimation to sequentially minimize the ellipsoid size in some sense. A
significant benefit is that often no weight exists which minimizes the ellipsoid size in some sense,
indicating that the incoming data set is uninformative in the SM sense.

In a general sense, reported (nonadaptive) OBE algorithms differ in the scaling sequences, ((-),
used in creating time varying weights. Fogel and Huang’s original OBE algorithm (henceforth called
Fogel-Huang OBE) [6], and the more recent method by Dasgupta and Huang (henceforth called
Dasqupta-Huang OBE) [27], are not presented from this explicit LSE point of view, and this unified
approach has not been widely discussed. Some general ideas along these lines may be inferred from
[33] and a unified treatment will be found in [34]. The set membership weighted recursive least
squares (SM-WRLS) algorithm is the simplest in this sense, employing unity scaling, ¢(n) =1 Vn.
We henceforth focus on SM-WRLS because this absence of scaling is essential to achieve the desired
low complexity algorithm. Details of the other reported algorithms are left to the original papers
and enhancements by Belforte et al. [22]. and Rao et al. [23],[24].




Nonadaptive SM-WRLS (when based upon QR-WRLS) is comprised of the following steps: At

time n,

1. In conjunction with the incoming data set (y(n),z(n)), find the optimal weight, say Az(n),
which will (prospectively) minimize the size (according to some set measure) of (n), say

u{Q(n)}. (This will generally require knowledge of C(n — 1) or T(n — 1), and &(n — 1).)
2. Discard the data set if A;(n) < 0.
3. Update 6(n) using QR-WRLS (see Section 2.1).
4. Update x(n) of Proposition 1 according to
K(n) = || dy(n) || +&(n) (12)

with
K(n) = K(n = 1)+ Aa(n)y(n) (1= 77} (m)y(m)) (13)

def

where £(0) = 0.

Expressions (12) and (13) are derived in [5],{15]. A detailed version of SM-WRLS is described in
(5]

2.4 Adaptation by Back-Rotation

While OBE algorithms in general, and the SM-WRLS algorithm in particular, have been shown to
have inherent and fortuitous adaptive properties as a result of their optimal weighting strategies.
measures have been suggested by Deller and Odeh (5],[15]-[17], and Norton and Mo [33] to render
explicit and controlable adaptation. All adaptive strategies for ellipsoid algorithms work on the
general principle of inflating the “current” ellipsoid in some sense before considering an incoming
data set. The basis for this inflation is to contain the shifting true parameters while at the same
time increasing some measure of “size” of the ellipsoid (see (16) and (17) below), making it more
likely that the incoming data, with potentially novel information, will be selected.

For SM-WRLS, simple forms of adaptation have been based upon exponential forgetting and
by exclusion or back-rotation [5],(15]-[17]. Norton and Mo have also worked with exponential
forgetting and other forms of adaptation in a broader context [33]. While exponential forgetting
is conveniently integrated into OBE algorithms. in the following, we shall focus exclusively upon
adaptation methods which are based on back-rotation for two reasons: First, exponential forgetting
precludes the achievement of the low complexity algorithm ultimately sought in this work. Secondly.

due to the fact that heavily weighted points remain influential in the estimate for very long periods
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of time, exponential forgetting has not been found to be as effective in tracking fast time variations
in system dynamics (16),{34]. In the case of adaptation by back-rotation, the system of equations (6)
is downdated prior to considering the data set at time n. The result is (8). The altered ellipsoid is
centered on @,(n—1) and has associated matrix C4(n—1)/kq(n—1) = T} (n— DTqe(n—-1)/k4(n-1).

Proper downdating of the scalar k(n — 1) is easy. Upon rewriting the definition of x(:) from
Proposition 1 at time n — 1,

n—1

K(n=1) = 6T(n = )C(n - DO(n = )+ T Aca(t)(t) [-774(09%(1)] . (14)
t=1

it becomes immediately clear that if data sets at times t € 7,_; are eliminated from the system,
then the normal matrix is simply replaced by its downdated version and all deleted terms should
be removed from the sum on the right. Correspondingly, the downdated version of (12) written for

time n — 1 becomes

Ka(n = 1) =| dia(n = 1) |2+ [R(n = 1) = 3 Aca(03(8) (1= 77 (0)8%(0)) (15)
t=1
teThy
and the term R(n — 1) in (13) should be replaced by &£4(n — 1) which is defined to be the term in
square brackets.
A wide range of adaptation strategies is inherent in the general formulation described above,

many of them computationally inexpensive. We have found two forms of adaptation by back-

rotation to be particularly effective. These are:
1. Windowing. Let | be a fixed “window length.” For each n > {,let 7,_; = {n - {}.

2. Selective Forgetting. At time n check some predetermined criterion indicating whether adap-

tation is necessary. If so, select the set to be forgotten according to some other criterion.

The first case above corresponds to the use of a sliding rectangular window of length I, outside of
which all previous data sets are completely removed. The estimate at time n covers the range [n —
I+ 1,n]. The windowing technique is made possible by the ability to completely and systematically
remove data sets at the trailing edge of the window. Only one back-rotation is required prior to
optimizing at time n, and this is only necessary if Ay _;(n —1) # 0.

At significantly higher computational expense, smoother windows can be implemented by back-
rotation. This is accomplished by partial rotation of an included data set according to a schedule
which gradually eliminates the data set [16],(17]. Since each included data set is back-rotated
multiple times. the computation required to effect such a window is frequently not warranted by

the benefits of slightly improved frequency resolution. For details, see [16].




Selective forgetting represents a very general class of techniques in which the data sets to be
removed .rom the system are selected according to certain user defined criteria. The selection
process can be, for example, to remove (or downweight) only the previously heavily weighted data
sets, to remove the data sets that were accepted in regions of abrupt change in the signal dynamics,
or to remove the data sets starting from the first data set and proceeding sequentially. Whatever
the criterion, a fundamental issue is to detect when adaptation is needed to improve the parameter

estimates. An example is explored in the simulation studies below.

2.5 Optimization

In the nonadaptive case, Fogel and Huang [6] suggest two set measures on {(n) for optimization.
These measures may also be applied to the downdated system extant at time n — 1 if adapation is
employed. For generality, we assume downdating in the following. If adaptation is not used, it is
only necessary to drop subscripts *d” where they occur. The first Fogel and Huang set measure is

the determinant of the matrix $#(n),
o {QUn)} = det{B(n)} (16)

and the second is the trace,
pAQUn)} E tr {B(n)}. (17)

1o {Qn)} is proportional to the square root of the volume of Q(n) while u,{€(n)} is proportional to
the sum of its semi-axes. The following is a slightly generalized version (to accommodate adpatation

by downdating) of results found in [6],(26]. Further generalizations are found in [34].

Proposition 2 Let T,_, be the set of times corresponding to data sets to be excluded by back-
rotation prior to time n. Then let A, (t),t € [1,n| indicate the weights to be used to optimize (16)
or (17) at time n. Under the adaptation by erclusion policy, for t € [l,n— 1] and t & T,_,.
An(t) = An_y(t). Fort€[l,n~ 1] and t € Fo_y, An(t) = 0. Then,

1. if it exists, A,(n) which minimizes the volume measure (16) is the unique positive root of the
quadratic equation
F,(M) = a2 +a1h +ap=0 (18)
where, az = {(m - 1)y(n)G3(n)}.
a1 = {(2m ~ 1) + 771 (n)e(n.04(n ~ 1)) = Ka(n = 1)Y™H(n)Ga(n)} y(n)Ga(n),
and ag = m{y(n)— c*(n.8y(n 1))] = ka(n — 1)Ga(n),

in which all quantities are defined above except G4(n) o .rT(n)Cd“(n):c(n).

(£

if it erists, the weight Ay (n) which minimizes the trace measure (17), is the unique positive
root of the cubic equation
Fu(A) = 0303 + 6207 + b)) + b (19)




with bs = ¥(n)GYGa(n) — Iy(n — 1)Hy(n)),
by = 37(n)Ga(n)[Ga(n) - Li(n — 1)Hy(n)),
by = Ha(n)Ga(n)ly(n - 1)ky(n - 1)
—2Ha(n)lg(n = 1)[7(n) — *(n,84(n - 1))]
-Gy(n)e*(n.84(n - 1)) + 37(n)Gy(n),
and bo = v(n) — €%(n.0s(n — 1)) = Ha(n)l4(n — L)kg(n — 1),

where Hy(n) o zT(n)C;'Z(n):t(n) and I;(n) < tr C 4(n).

For later computational considerations we note the following. In the context of QR-WRLS, the
inverse normal matrix, C;l(n - 1), never appears, yet it is needed to compute G4(n) and Hy(n).

The following circumvents this problem:

Lemma 1 In the contert of QR-WRLS, the scalars Gy4(n) and Hy(n) can be computed using
O(m?/2) flops.

Proof: Write
Ga(n) = T ()T (n - VT T(n - Dz(n) ¥ gT(n)g(n) = || g(n) ||? (20)

in which || - || denotes the I; norm. Now x(n) = TT(n - 1)g(n), and TT(n — 1) is lower triangular,

so g(n) is found by back-substitution using (m? + m)/2 flops. Now note that

Hyn) = zT(m)T;'(n- DT T(n- )T (n- VT (n - 1)x(n) (21)
= ¢"(MT7 (n- DT T(n-1)g(n) € RT(n)h(n) = || h(n) ||?

and back-substitution can once again be employed. a

3 Implementing SM-WRLS in O(m) Time

3.1 Complexity Considerations

A precise comparison of the computational loads of various OBE algorithms is given in [34]. The
number of flops (see footnote 3) required for the (generally adaptive) SM-WRLS algorithm under

consideration here may be approximated by
fopt ~ Oeym?) + bO(cam?) + pO(czm?) (22)

where, p is the average number of data sets accepted per n: b is the average number of back-rotations

per n: and ¢;. ¢z and ¢3 are small numbers (all in the range 0.5 - 2.5) which depend npon whether
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QR-WRLS or MIL-WRLS is used. For QR-WRLS upon which we have principally focussed in this
paper, ¢; = 0.5, ¢ = 2, and ¢3 = 2.5. The first term is due to the procedure which checks for
information in the incoming data. The others are attributable to adaptation, and solution update,
respectively. If either an exponential forgetting factor or a non-unity scaling sequence (other OBE
algorithms), is used, an additional term of @(m?/2) must be added. Apparently, the SM-WRLS
algorithm, as presently formulated, is an “©O(m?)” process. The objective of the section below is to
demonstrate two distinct methods for reducing the effective complexity to @(m), thereby making a
SM-WRLS algorithm a desirable alternative to standard RLS-based methods from a computational
point of view.

Two approaches are taken. The first is an algorithmic solution which will reduce the true
complexity to O(m) for processing on a sequential machine. The second is a hardware solution
which reduces the basic algorithm to O(m) parallel complexity. with even further reduction possible

if the algorithmic measures are combined.

3.2 O(m) Processing on a Sequential Machine

From a signal processing point of view, one of the most interesting aspects of an OBE algorithm
is its inherent ability to select only data points which are informative in the sense of refining
the feasible set. The fact that typically 70 - 95% of the data are rejected by this criterion (e.g.
(6],{17].[23]-[29]) would seem to imply a remarkable savings in computation. However, this is only
true to the extent that the checking for usefulness of the incoming data set is negligibly expensive
compared with the inclusion of it in the estimate. We have seen above, however, that the checking
procedure is not inexpensive (see lead term of (22)) - a point which has not been made clear in
reported research. The approach taken here is to render the checking procedure an @(m) process
in a manner which does not (empirically) degrade performance of the algorithm.

Before detailing the methods. some points about the use of the approximation “O(m)" are
necessary. The first concerns a practical matter. The objective in the following is to reduce
the computational complexity of the algorithms to an average of O(m) flops per n. It will be
appreciated that, without data buffering. the data flow is still limited by the worst case O(m?)
computation. However, if a buffer is included. the algorithm easily be structured to operate in
O(m) average time per n. Further, by using interrupt driven processing of the checking procedure.
it may be possible to reduce the average time even further. Other points concern algorithmic
details. We reiterate that the use of a unity scaling sequence (SM-WRLS algorithm) is required in
order to avoid an invariant @(m?/2) flops per n. We specifically assume the use of this algorithm

below. although the O(m) checking procedure to be developed does not depend on this choice.
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Secondly, (22) indicates that an adaptive strategy must involve a sufficiently small average number
of back-rotations per n so that the ©(m?) adaptation term in (22) does not overwhelm gains made
by reducing the checking cost. In the windowing case above, for example, we would expect that
b~ p and the adaptation is not unduly expensive. A selective forgetting strategy which meets this
condition will also be illustrated in the simulations below. Finally, we note that even if the checking
procedure can be made @(m). terms 6O(m?) and pO(m?) (typically b = p) persist in (22). This
means that to truly achieve @(m) complexity, b and p must be O(1/m). For large m. this will
not be always be the case. In fact. some experimental evidence suggests, not unexpectedly, that p
increases, rather than decreases, with increasing m. For “large”™ m (conservatively, say, m > 10),
therefore, it is the case that the complexity is reduced to O(pm?) by O(m) checking. It should be
clear however, that neither O(m) nor O(pm?*) complexity can be achieved if the checking procedure
remains @(m?) . We therefore pursue an O(m) test for information in an incoming data set.

In principle, the information checking procedure for the volume or trace algorithms consists of
forming either F,(A) or Fi(\) of (18) and (19), then solving for the positive root. However, since
a; > 0,and b; > 0, : = 1,2,3, there is at most one such root in either case, and the test reduces to
one of checking the zero order coefficient for negativity [35]. When the test is successful, then the
root solving and updating procedes. requiring the standard MIL- or QR-WRLS load, plus a few
operations for finding the optimal weight. In spite of Lemma 1. the most expensive aspect of this
information test is the computation of the quantity G4(n) or Hy(n), each requiring O(m?/2) flops.
The trick to making the SM-WRLS algorithm an O@(m) procedure is to find a way to avoid the
computation of G4(n) or Hy(n) at each n. We first develop a method which accomplishes this for
the “volume” algorithm, then argue that it pertains to the “trace” optimization criterion as well.

Let us denote the estimation error vector at time n by
O(n) = 0. - 0(n). (23)

It follows immediately from (11) that 9T(n)C(n)é(n) < k(n) . While it is tempting to view x(n)
as a bound on 6(n) (see discussion of the Dasgupta-Huang algorithm below), it is important to
note that each side of this inequality is dependent upon A,(n). In fact, let us temporarily write
the two key quantities as functions of A\ (n): C(n,A.(n)) and K(n,A,(n)) and consider the usual

volume quantity to be minimized at time n,
o)} = det [k(n. An(n))C ™ (n. An(n)] (24)

It is assumed that enough data sets have been included in the normal matrix at time n — 1 so

that its elements are large with respect to the data in the incoming data set. For the choice of
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weighting strategy employed here, the quantity det C(n, A,(n)) is readily shown to be monotonically
increasing with respect to A,(n) on the domain (0,%0) [16], with C(n,0) £ C(n - 1,A5_,(n - 1)).
Under the assumption above, det C(n, A,(n)) will not increase significantly over reasonably small
values of A\,(n). The attempt to maximize det C(n, A (n)) in (24) causes a tendency to increase
An(n) in the usual optimization process. However, the attempt to minimize k(n, Ap(n)) generally
causes a tendency toward small values of A, (n), unless a minimum of k(n, A,(n)) occurs at a “large”
value of A,(n). To pursue this idea and further points of the argument, we use two key facts about

k(n, A(n)):

Proposition 3 x(n,A,(n)) has the following properties: 1. On the interval A, (n) € (0,),
k(n,An(n)) is either monotonically increasing or it has a single minimum. 2. k(n.A.(n)) has
a minimum on A,(n) € (0,00) iff

2 (n.04(n - 1)) > y(n). (23)

To verify this result we need the following which is proven in [34]:

Lemma 2 Forn > |, the sequence (-} can be computed recursively as

3 (n.04(n - 1))
1+ A(n)Ga(n)

K(n) = ki(n — 1) + An(n)r(n) = An(n) (26)

Proof of Proposition 3: For simplicity, we write A.(n) as A. Using (26) from Lemma 2, we can

write
Q) Ik(n.A) G )y (n)A2 4+ 2G4(n)y(n)A + [1(n) — £%(n,04(n — 1))] (27)
-9 T Ga(n)2A? + 2G4 (n)A + 1
and .
O(N) = D k(n.N) _ 2[G3n) + 7(n)Ga(n)eX(n.04(n — 1)) (28)

ON? (G4(n)A? 4+ 2G4(n)) + 1)?
The denominator of Q(A) is positive on A € (0,~) and therfore has a root on A € (0,00) iff its
numerator does. The the numerator is a convex parabola with its minumum at A = —1/G4(n) < 0.
and it therefore has a unique positive root on the interval (0,2) iff y(n) — c3(n.04(n — 1)) < 0.
Further Q(A) > 0 for all A > 0. so the root, if it exists, will correspond to a minimum of x(n.A).0O

Accordingly, it can be argued that: If det C(n.A,(n)) is increasing, but not changing signifi-
cantly over reasonably small values of A, (n). then it is sufficient to seek A,(n) which minimizes
k(n.An(n)). If k(n.A,(n)) is monotonically increasing on A,(n) > 0. this value is A,(n) = 0 which
corresponds to rejection of the data set at time n. It suffices. therefore to have a test for a minimum

of k(n.A,(n)) on positive A, (n). A simple test is embodied in condition (25) which determines

13




whether the square of the current residual exceeds the upcoming error bound. If this test is met,
it is then cost effective to proceed with the standard optimization centered on (18). Otherwise, the
explicit construction and solution of ag of (18) can be avoided.

In fact, this suboptimal test for innovation is similar to that used in the Dasgupta-Huang OBE
algorithm reported in [27]. The suboptimal test of Dasgupta is to accept the incoming data set
only if? ¢%(n,0(n — 1)) < y(n) — &(n — 1). This inequality likewise tests for a minimum of
with respect to An(n), and differs in form from (25) because of the scaling factors (see (7) and
surrounding discussion) which depend on the optimal weights, {((n — 1) = (1 — A%(n))~! in the
Dasgupta case. While this dependence precludes the construction of a reasonable expression in
Ax(n) with which to minimize the set measure u,{{Q(n)}, the Dasgupta hyperellipsoid nevertheless
does have a volume at each n, and it is therefore possible to attempt to apply the above arguments.
A problem arises in the Dasgupta-Huang case, however, because the relative independence of C(n)
and A,(n) is not tennably argued. Therefore, the simplified test in this case is not subject to the
“same” justification as (25). Interestingly, however, if A,(n), which is already constrained to [0, 1)
in the Dasgupta-Huang algorithm, happens to be very small at a particular n, then the algorithm
approaches the case of unity scale factors ({(n) = 1) as in SM-WRLS, and it can be argued that
the normal matrix changes only slightly. In this case, but only in this case, the arguments above
are applicable. Of course, artificially constraining the weights to be small for all n destroys the
optimization process in the Dasgupta-Huang method, so that this analysis provides support for the
suboptimal test only for isolated and infrequent times. Dasgupta and Huang argue simply that
k(n)is “a bound on the estimation error,” and should be minimized. This claim has been disputed
by Norton and Mo [33] and is not clearly supported here. Generally, the arguments in support of
(25) are valid only for certain types of scaling sequences which do not cause the estimation process
to “forget™ too quickly. This is not generally the case with the Dasgupta-Huang strategy.

Before proceding, another comparison to the Dasgupta-Huang OBE algorithm should be made.
One of the principal advantages of their method is the ability to conveniently prove convergence of
the ellipsoid to a point (0.). The original Fogel and Huang paper [6] is often cited as proving that
the bounding ellipsoid in the Fogel-Huang OBE algorithm converges to a point under ordinary
conditions on ¢.(-). In fact, the paper only proves this convergence for the case of unity weights so
that the fundamental optimization process is not taken into account. No known proof of this de-
sirable result for the Fogel-Huang OBE algorithm, or for any version of SM-WRLS exists, whether
optimal or suboptimal checking is used. While the estimate itself is guaranteed to converge asymp-

totically under proper conditions on £.(-) (e.g. [10]), the ellipsoid is not guaranteed to diminish

"Subscripts “d” are omitted here since their algorithm does not involve this form of adaptation.
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asymptotically. However, we have found empirically that the optimal and suboptimal tests tend
to produce an ellipsoid with a similar “size” at a given point in the signal, and to produce similar
estimates, in spite of the fact that the suboptimal test tends to use fewer data (see simulations
below).

A further interpretation of (25) is possible which also allows the extension of the test to include

“trace” minimization as well. A simple rationale for the suboptimal test is as follows:

Proposition 4 If the test of (25) is met. then a positive optimol weight ezists for either the volume
or trace criterion.

Proof: We show that the zero order cofficients ag and bg, of (18) and (19), respectively, will never
be positive if the test is met. Consider ag = m [y(n) — £3(n.04(n — 1))] — ka(n — 1)G4(n). Write
(11) for the downdated case at time n — 1. then multiply through by k4(n — 1). The result is
(0 -84n-1)TCy(n-1)[0-65(n - 1)] < ka(n—=1). If Ca(n—1) is positive definite, this implies
that kg(n) > 0. Further G4(n) = T (n)Cy(n - Da(n) > 0, so ag < 0 if the test (25) is met.
Now, consider bp = y(n) ~ £%(n.04(n — 1)) = Hy(n)I3(n — 1)k4(n = 1). By similarly showing that
Hy(n) > 0 and Iy{(n ~ 1) > 0. the desired result for the trace criterion is obtained. a

In the volume case, for example, the suboptimal check tests whether aq is negative if the term
k4(n —1)G4(n) is neglected. This ignored term is always negative and becomes small as n increases.
For a given set of preceding optimal weights, A*(1),...,A*(n — 1), the suboptimal test will never
fail to accept an data set which would iave beea accepted by the optimal test. A similar analysis
applies to the coeflicient bg of the trace algorithm.

With the inexpensive test afforded by (25). the checking procedure becomes an O(m) procedure.

Consequently, for sufficiently small p, the SM-WRLS algorithm can be run in @O(m) time per n.

3.3 Simulation Studies and Further Discussion

OBE algorithms which do not include explicit adaptation measures have been demonstrated in
numerous papers cited above. Our principle objective here is to briefly iliustrate the use of the
adaptive and. particuiarly, the @(m) suboptimal checking procedures.

We consider the identification of a time varving AR(14) model of the form
14
y(’n):Za,.(n)y(n—i)+s.(rz). (29)
t=1

A set of “true™ AR parameters were derived using iinear prediction analysis (e.g. [36]) of order 14

on an utterance of the word “seven™ by an adult male speaker. The original speech waveform is

-
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shown in Fig. 1 to illustrate the time varying nature of the signal. A 7000 point sequence, y(n),
was generated by driving the derived set of parameters with an uncorrelated sequence, ¢.(n), which
was uniformly distributed on [-1.1].

The speech signal was not used directly in this study for a simple r~ason. The problem of
determining proper bounds for the model error is a nontrivial one for real speech, and a proper
description of this point would seriously sidetrack the present discussion. Similarly, space would
not permit a careful discussion of the performance of the algorithm in cases in which nnise bounds
are uncertain or violated. The predecessor (optimal. nonadaptive case) methods to those illustrated
here have been successfully applies to real speech and these results are reported in [26] where some
of these more difficult issues are also adressed. In the same vein, the artificial noise permits carefully
controlled statistical properties. The model noise used here is uncorrelated, and this algorithm in
its present form will converge to a bias if this is not the case. A discussion of colored noise, while
interesting and useful, is bevond the scope of this paper. The interested reader is referred to
[24],(28],[34]. While the uniform distribution chosen here has become conventional in testing OBE
algorithms, it is worth noting that the performance of the methods is bound to be affected to some
extent by the choice of this distribution. This becomes clear upon recognizing that che algorithm
tends to favor the acceptance of data at time n when the residual is large. In some preliminary
runs with bounded but nonuniform distributions, we do not find these effects to be very significant.

In the simulations below, we apply the conventional and adaptive SM-WRLS algorithms with
“volume” optimization to the identification of the a,. parameters. We discuss several simulation
results. Only the result for a4. is shown in each case to conserve space. Of the 14 parameters,
a4. emerged as the most difficult to track and gave the worst performance. Each figure shows two
curves, one for the true parameter, the other for the estimate obtained by the algorithm under
study.

In several previous studies, it has been demonstrated that that OBE algorithms have inherent
adaptive capabilities by virtue of their optimal data weighting strategies, even when not explicitly
designed to be adaptive (e.g. [24)-[29]). The adaptive capability of “nonadaptive” OBE algorithkms
is somewhat unpredictable and fortuitous, especially for fast time variations. Further they are
subject to divergence if the true parameters move outside the feasible set. Nevertheless. SM-WRLS
and other OBE algorithms often demonstrate this inherent ability. The present example is contrary.
Figure 2 illustrates the result of applying SM-WRLS to the time varying waveform. The estimate
clearly fails to appropriately track the true parameter in this case.

Before proceeding, let us use the present result to emphasize a principal point made in the paper.

The result of Fig. 2 is achieved using only the fraction p = U.079 of the data. Other examples
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are found in the literature where good tracking is achieved with similar, or even smaller, fractions
of the data used. It is important to keep in mind, however, that the computational complexity
of the SM-WRLS algorithm is only a factor of about five better than conventional RLS, and the
“p = 0.079” figure must not be interpreted to the contrary. Herein lies the motivation for the
suboptimal checking procedure.

Next, we show the simulation resuits of the variations on the adaptive SM-WRLS algorithm.
Figure 3 shows the results of the windowed SM-WRLS algorithm using windows of lengths 500, 1000,
and 1500. This strategy uses the fractions p = 0.221, 0.174, and 0.143 of the data, respectively, but
remains an @(m?) process because optimal checking is used. Additionally, each time an accepted
point occurs at the trailing edge of the window, a back-rotation is needed to effect adaptation. This
implies an average number of back-rotations b = p per n (see Section 3.1). More data and more
rotations than with the unmodified SM-WRLS algorithm are used, but more accurate estimates
result and the time varying parameters are tracked more quickly and accurately. As expected,
adapting over smaller windows tended to improve time resolution, but increased the variation of
the estimate and increased the number of points accepted. Conversely, the longer windows yielded
smoother estimates using fewer data, but at the expense of slower tracking. While no window length
in this range yielded grossly unacceptable estimates, the 1000 point window illustrated represents
a good tradeoff between the demands of time and frequency resolution.

Figure 4 illustrates the use of suboptimal checking in conjunction with windowed SM-WRLS
with a window of length 1000. Interestingly, the fraction of the data used is p’ = 0.087 which is
about half that required in the same experiment with optimal data checking (Fig. 3(b)). This
means that the suboptimal checking not only reduced the computational effort of checking, but
also decreased by a factor of two the number of m? complexity rotations required. Nevertheless,
the estimate trace is quite similar to the optimal case, the only difference being a slight increase
in the variance near the end of the trace. Similar results were obtained for windows of length 300
and 1500.

The selective forgetting strategy chooses data sets to be removed from the system based on user
defined criteria. Here the set of times to be back-rotated is as follows. Let t' < n correspond to
the “oldest” data set remaining in the estimate. Then F,_y = {¢'.....t"}, where the elements in
the set are ordered, t' < --- < t”, and t’ < n is the smallest time for which some other criterion
is met. The determination of when to apply the forgetting procedure and when to stop removing
data sets at a given time is discussed in the following.

The parameter a4. to be tracked in this study is characterized by relatively fast time variations

in the time region 2000 - 6000. The fact that the parameters change relatively slowly in the
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first 2000 points induces the algorithm to accept some points which, in turn, causes the ellipsoid
volume to decrease. An increase in the “confidence” of the estimate results. Near time 2000, the
ellipsoid volume becomes very small. When the parameters move rapidly away from their current
location, they eventually move outside the ellipsoid which is therefore no longer a valid bounding
ellipsoid. When this condition happens. it eventually leads to a negative value of k(n). For a
stationary system, x(n) is always positive, so that this condition indicates that a violation of the
theory (in particular, the violation of the assumption of stationary dynamics) has taken place®. A
similar condition was also reported by Dasgupta and Huang [27] while applying their algorithm
to nonstationary systems. In our simulation studies, we find that a negative &(n) is often an
effective indicator of need for adaptation, and we use this criterion as the prompt to begin selective
forgetting. Whenever accepting a data set causes k(n) to become negative, the algorithm starts
rotating out the selected data sets until xK(n) becomes positive again.

Figure 5 shows the simulation results of the selective forgetting strategy described here. The
fraction p = 0.129 of the data is accepted by the estimation procedure and about 73% of these are
back-rotated for adaptation. This implies a small “b” factor of about 0.094 per n so that adaptation
is not expensive in this case. The checking process is still O(m?), however, so the overall process
remains of @(m?) complexity. Suboptimal checking for the same experiment is illustrated in Fig.
6. In this case p’ = 0.088 of the data is used with similar results. About 63% of these data are
back-rotated, so that & = 0.055. Once again, the suboptimal test has preserved the quality of the
estimate and lowered not only the checking complexity, but also the number of actual rotations
that need be implemented. '

Compared to the windowed adaptive strategies, for this example the selective forgetting strategy
yields smoother estimates using even fewer computations, but with poorer time resolution. (Recall
that a4. was found to be the most difficult to track in this simulation, so that this result is the
worst case.) In general, we have found that selective forgetting (as employed here) generally uses
fewer data and produces smoother estimates, but the tracking ability is not as reliable (though
sometimes superior) to the windowed method [16].[34]. In fact. the selective forgetting strategy (as
used here) tends to outperform windowing in cases of very fast time variations in the dynamics.
The conservative schedule of back-rotations employed in the present technique accounts for this
observation. k(n) > 0 is only a necessary condition for the true parameters to be inside the current
ellipsoid. The fact that x(-) goes negative at a particular time does not precisely determine ihe point
at which system dynamics began to change. If the variations are slow, this may occur (if at all) long

after the dynamics begin to change. In fact, x(n) < 0 often indicates a rather severe breakdown of

8Mathematically, x{n) < 0 indicates an ellipsoid of negative dimensions.
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the process indicating that the “true” parameters have moved well outside the current ellipsoid at
time n. In cases of fast changing dynamics that this “breakdown” occurs rapidly enough to render
the condition “k(n) < 0” good locator of changing dynamics which require “immediate” adaptation
to preserve the integrity of the process. The present example represents a very challenging case in
the sense that variations apparently occur too rapidly to be tracked by standard SM-WRLS (see
Fig. 2), yet not quickly enough to allow very high time resolution by the chosen selective forgetting
method. Other methods for selection leading to a more aggressive elimination of past data may

assist in the tracking at the expense of higher fractions of data used.

4 Architectural Solutions to Achieving O(m) Time

4.1 Systolic Architecture

In this section we develop parallel architectures on which both suboptimal and optimal checking
versions of SM-WRLS will run in O@(m) time. Here the efficiency is achieved by parallelism so that
the number of operations is effectively reduced by simultaneous execution of many ccmputations.
Accordingly, the O(m) flop per n load to be achieved is actually a parallel complezity since many
processors might be performing O(m) flops simultaneously. From a temporal viewpoint, the pro-
cessing is reduced from the @O(m?) time required to compute the optimal solution sequentially, to
O(m).

In the following we will assume the use of SM-WRLS (no scaling) for simplicity. Unlike the
sequential case, however, scaling can be done in parallel here and does not add a significant com-
putational burden. The modification of the following to include scaling is straightforward. We also
use ellipsoid volume minimization for optimization, but a similar machine may be developed to
implement trace optimization.

We first discuss the “nonadaptive” case. The fundamental parallel solution is made possible by
the QR-WRLS version of SM-WRLS. The main computational requirements are a GR processor
(to effectively execute the QR decomposition) to update the matrix [T(n) | di(n)] at each step,
and a back substitution (BS) processor to solve for the scalar G(n) and also for the estimate 8(n)
at each n. Systolic processors for these operations, based on the original work of Gentleman and
Kung [37] and Kung and Leiserson [38], are well known. [t is the purpose of this section to manifest
this algorithm as a parallel architecture based on these processors.

The need for implementing the algorithm on a parallel architecture arises from the fact that
portions of the algorithm are compute-bound, specifically, updating the matrix [T(n) | di(n)] and

computing the value G(n) and the parameter vector 8(n). The architecture that speeds up the
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computation of these quantities and satisfies the desirable characteristics of systolic arrays (SA’s)
is shown in Fig. 7. Although this architecture is based on SA design methodologies, it is used
here to process one data set at a time (more on this below), and therefore, is not used as a SA.
This architecture provides an improvement over that described in [39] by replacing the global
buses with iocal buses for communication between adjacent cells. For simplicity of notation, the
figure shows a purely autoregressive case of order three, AR(3). Once the processor is understood,
it should be clear that the architecture is perfectly capable of handling the general LP model case
discussed above. In the discussion below, the vector notations x(n) and 8(n) are used, however,
the architecture of Fig. 7 uses the vectors y(n) and a(n) instead to denote the special case AR(3),
where y(n) = [y(n — 1) y(n - 2) y(n ~ 3)|7.

The architecture is composed of two SA’s, several memory management units (i.e., First-in
First-out (FIFO) and Last-in First-out (LIFO) stacks®), multiply-add units (MAU’s), multiplexers
(MPX’s), and demultiplexers (DMX’s). The first SA is a triangular array that performs QR
decomposition using GR’s {37, 40] which are particularly suitable for solving recursive linear LSE
problems. The diagonal (circular) cells perform the “Givens generation” (GG) operations and all
other (square) cells in the triangular array perform the GR operations. There is a delay element
at the lower right-hand corner of the triangular array that is used to synchronize the flow of the
generated entries into the FIFO stacks and to simplify the control of these stacks once they are
filled and ready to output their contents to the BS array. The operations performed by this array
are shown in Fig. 8 (37, 40]. Therefore, the triangular array rotates the new data set into the upper
triangular matrix [T(n) | di(n)], where the t;; cells update the matrix T(n) and the right-hand
column (d,;) cells update the vector dy(n). The element t;; denotes the i5** element of the matrix
T(n) and the element d;; denotes the j** element of the vector di(n).

The second array is a linear array that performs the BS operations shown in Fig. 9 {38]. Note
that the same BS array is used to solve for the vectors g(n + 1) and @(n) with the data provided to
the appropriate cells in the required order by the FIFO and LIFO stacks. The FIFO stacks feed the
lower triangular matrix T'T (n) to solve for the vector g(n + 1), and hence, the value G(n + 1). The
LIFO stacks feed the upper triangular matrix T(n) to solve for the parameter vector @(n). The
values G(n+1) =] g(n+1)])? and || d1(n) ||? are generated by the MAU’s shown in Fig. 10. The
number of segments in each stack is equal to the number of elements the stack holds. Therefore,

the leftmost stack consists of m segments, whereas the rightmost stack has only one segment.

*The architecture shown in Fig. 7 does not include any of the LIFO stacks that were used to hold the matrix
T(n) in the architecture reported in [39]. This is achieved by slightly increasing the complexity of the cells used
in the triangular array so that they can be used as - rage elements as well. This is facilitated by the diagonal
interconnections between adjacent cells which now constitute the LIFO stacks.
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The system shown in Fig. 7 works as follows. The first m+1 data sets (with appropriate
weights) enter the triangular array (from the top) in a skewed order, and the matrix [T'(n) | d;(n))
is generated and stored inside the cells. A shift register with appropriate feedback connection and
data sequencing can be used to hold and feed the data set to the array. The initial upper triangular
matrix residing in the array, and corresponding to the first m + 1 data sets, is ready after 3m + 1
GG time cycles. The GG time cycle is that of the triangular array performing the GG operations
without square roots, which is the time required to perform five flops [40],{41]. In order to prevent
data collision, the flow of data in the triangular array moves along a corresponding wavefront and is
controlled by the slowest cells in the array, viz., GG cells. The data are fed to the array one (skewed)
data set at a time, therefore, the contents of each cell remains constant after the completion of
the current recursion. After the new data set is rotated into the matrix {T'(n) | d,(n)], the vectors
g(n + 1) and @(n) are computed. All the ¢;; cells in the triangular array load their contents on the
toue lines (t,,; +«— ), and then pass these elements across the diagonal lines (tou: «— tin) (see
Figs. 7 and 8). This obviates LIFO stacks. The FIFO stacks are still needed, however, to compute
the vector g(n + 1). The FIFO stacks are filled with the elements of the lower triangular matrix
TT(n) as they are generated. This is done by loading the t;; entry on the t,,; line (¢,,; — z) when
it is generated. This entry propagates down the diagonal cells (with the function t,,; «— t;) until
it arrives at and fills the appropriate FIFO stack. For the cells in the right-hand column, which
generate the vector d;(n), the operations are different because it is this column that constitutes
the LIFO stack for the vector dy(n). Hence, after the new data set is rotated into the array, all the
cells in the right-hand column load their contents on the z,,, lines (z,,; — z), and then they pass
these elements down the column (z,4¢ — i) (see Figs. 7 and 8). The output z,, leaving the
bottom cell in this column passes through the delay element and is routed to both the MAU and
the MPX feeding the d,; elements to the BS array. The elements d;,, and t,,,, leave the triangular
array at the same time because of this delay element. The timing diagram of the triangular array
is shown in Table 1. In this table, the inputs refer to the elements fed to the cells in the top row.
The circle () represents the GG cell and the square (O) represents the GR cell (see Fig. 7). The
outputs refer to the elements that are produced in the array cells and are written columnwise; i.e..
the first column in the table represents the first column in the array, and so on.

The BS array is used to solve for the vectors g(n + 1) and 6(n). The vector g(n + 1) is solved
using (20) and the parameter vector @(n) using (6). Therefcre, the vector g(n + 1) is generated
from the matrix TT(n), which is residing in the FIFO stacks, and the vector z(n + 1) which is
available. The entries are fed to the BS array every other BS time cycle. where the BS time cycle

is the time required to perform one flop. As the g; entries are output from the left-end processor
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of the BS array, they enter the MAU to generate the value G(n + 1) after 2m + 1 BS time cycles.
Likewise, the parameter vector §(n) is generated using the matrix T'(n) and the vector d;(n) which
are stored in the triangular array. Starting one BS time cycle after the initiation of the first BS
operation, the appropriate entries (of the second BS operation) are also fed to the BS array every
other BS time cycle. The parameter vector 8(n) is output from the left-end processor of the BS
array in reversed order and interleaved with the vector g(n + 1) as shown in Fig. 7. The value
Il di(n) ||? is generated using a MAU one BS time cycle after the last (m**) element of the vector
dy(n) is generated. The timing diagram of the BS array is shown in Table 2 in which the inputs
refer to the elements fed to the shown cells, and the outputs refer to the elements produced by the
left-end processor in the array.

The values x(n) and €?(n + 1.6(n)) are then computed, and hence, the value A 41(n+1) which
determines whether the new data set is to be accepted or not. If the new data set is accepted, then
the weighted new data set enters the triangular array and the same procedure described above takes
place producing a new [T(n + 1) | di(n + 1)] matrix after 2m 4+ 1 GG time cycles, and therefore,
an updated G(n + 2), 8(n + 1), and &(n + 1). On the other hand, if the new data set is rejected,
then the triangular array preserves its contents (hold state), but the value G(n + 2) is updated to
make the decision concerning the next data set. In the latter case, the same T7(n + 1) matrix is
used as the previous T7(n) matrix, and hence, the feedback on the FIFO stacks. This procedure
is repeated for every new data set.

The computational complexities (in flops per data set) for the architecture of Fig. 7 is approx-
imated by [16]

[ o ~O@Bm)+ pO(11m) (30)

parallel

where the first term accounts for checking and the second for solution update, with p defined as
usual. As noted at the outset, the complexities of the solution are parallel complexities in the
sense that they denote the effective number of operations per data set, though many processors
can be performing this number of operations simultaneously. Accordingly, the parallel complexity
indicates the time it takes the parallel architecture to process the data, regardless of the total
number of operations performed by the individual cells. The GG and GR operations constitute the
main computational load of the algorithm as shown in Table 3. In this table, the number of flops
associated with the GR’s is multiplied by five to account for the GG cycle time. These operations
are avoided when the data set is rejected, and thus, a significant savings in computation time is
achieved.

Suboptimal checking may also be used in conjunction with the parallel processing. In this case

it is simply unnecessary for the processor to compute the first three items in Table 3 in order to
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check the incoming data set. The reduction in computation, which is is not as significant as in the
sequential processing case, is reflected by the approximation

[ susope ~ O(m) + p'O(11m) (31)

parallel

for small p’ [16].

4.1.1 Adaptive Compact Architecture

The architecture described above can be modified to improve cell utilization and to incorporate
adaptation by back-rotation. The basic idea behind the compact architecture is to map the triangu-
lar array of Fig. 7 into a linear array (called the GR array), that is, mapping all of the GG cells into
one GG cell and all the GR cells that are on the same diagonal into one GR cell. This constitutes
a permissible schedule because the projection vector, d, is parallel to the schedule vector, 5, and all
the dependency arcs flow in the same direction across the hyperplanes (e.g. [42, Ch. 3}). In other
words, this schedule satisfies the conditions §7d > 0 and 57¢ > 0, for any dependence arc € .

The compact architecture implementation of the adaptive SM-WRLS algorithm is shown in
Fig. 11. The operations performed by this architecture are similar to those of Fig. 7 with the
exception that the GG and GR cells are now capable of performing back rotation (see Fig. 12) and
are embedded in a slightly more complicated modules needed for scheduling. These modules are
called GG’ and GR/, and are shown in Fig. 13.

This architecture uses @(m) cells (one GG’ cell and m GR’ cells) compared with O(m?) cells
(m GG cells and (m? + m)/2 GR cells) used in the architecture shown in Fig. 7. and yet has the
same computational efficiency per n. Note however that the LIFO stacks that were embedded in
the triangular array of Fig. 7 are now needed to hold the matrix T'(n).

The system shown in Fig. 11 works as follows. Each data set (with its optimal weight) enters the
GR array (from the top) in a skewed order, and the matrix {T'(n) | d,(n)] is generated and stored in
the appropriate memory units. Note that the GR array can operate in two modes, forward (6 = +1)
and backward (§ = —1) rotation modes (see Fig. 12). In the backward rotation mode, the data set
to be removed is re-introduced to the GR array with the appropriate weight. At the end of each
recursion. the FIFO stacks contain the lower triangular matrix T7(n) needed to solve for the vector
g(n + 1). and hence, the value G(n + 1). The LIFO stacks contain the upper triangular matrix
T(n) needed to solve for the parameter vector O(n). The values G(n + 1) =1 g(n+1)]|?* and
Il di(n) ||* are generated by the MAU's. Note that the values which were propagating downward
in the triangular array of Fig. 7 are now propagating leftward due to the new scheduling. Note

also that the vector dy(n) is treated differently from the matrix T(n). When the element d, is
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computed, it is stored in an internal register in the GR’ cell (see Fig. 13). After generating and
storing the matrix [T(n) | dy(n)], the processor is ready to compute the vectors g(n + 1) and
O(n) using the BS array. The vector dy(n) is downloaded into the latches which serve as a LIFO
stack used in conjunction with the other LIFO stacks (containing the matrix T(n)) to solve for
the parameter vector (n). The timing diagram of the GR array is shown in Table 4 in which
the input (output) columns show the elements that are input (output) to (from) the corresponding
GG (Q) or GR (D) cells. Compared to the triangular array of Fig. 7, it is noted that the cell
utilization per update (or downdate) has increased by a factor of 2.25 for the case when m = 3,
or by (.5m? + 1.5m)/(m + 1) in general. The operations and timing diagram of the BS array are
described in detail above.

The adaptive compact architecture of Fig. 11 has slightly more complicated cells than that of
Fig. 7, but requires the same number of operations to check and incorporate a data set. However. the
compact architecture processor may additionally be used to back-rotate a data set for adaptation.
The forward and backward rotation modes have the same parallel complexity. Therefore, it is only
necessary to add terms of the form dO(11m) to either (30) or (31) to account for back-rotation,

where b has the usual meaning.

5 Conclusions

Two general contributions have been made to the theory and application of OBE algorithms for
linear-in-parameters models. We have first suggested that all reported OBE algorithms, both
nonadaptive and adaptive. can be placed into a general framework which is intimately related to
recursive LSE processing. A flexible form of explicit adaptation has been demonstrated within this
framework. In particular, a general technique based on “back-rotation™ within the context of the
QR-decomposition based version of WRLS offers a flexible array of adaptation strategies and good
tracking ability. Secondly, two very different approaches to rendering a specific OBE algorithm.
SM-WRLS, of O(m) per n computational complexity have been proposed. The computational com-
plexity of the optimal OBE algorithms is of @(m?) flops per n in spite of the highly discriminating
data selection through set-membership criteria. This fact has not been made clear in the literature.
This paper has demonstrated both an algorithmic and an architectural solution to this problem,
making the SM-WRLS method superior to many other LSE techniques in a computational sense.
In signal processing applications. this computational advantage is complemented the existence of

the feasible set of solutions for which many other interesting purposes may be found.
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Figure 1: Acoustic waveform of the utterance “seven” upon which the time varying system in the
simulation studies is based.

estimate

-1 A /

true

-3 —

0 \ 2 3 “ 3 6 »
Sample. n (%103

Figure 2: “Nonadaptive” SM-WRLS algorithm applied to the estimation of parameter a4.. Only
p = 0.079 of the data is used, but the estimate fails to track the true parameter.
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Figure 3: Windowed SM-WRLS with optimai data checking applied to the estimation of parameter
a4.. The window lengths are 1a) 500. (b) 1000. and (¢} 1500 points. and the fractions (a) p = 0.221.
(b1 0.174. and (¢ 0.143 of the data are used in the estimation.
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Figure 4: Windowed SM-WRLS with suboptimal data checking applied to the estimation of pa-
rameter aq.. The window length is 1000 points and the fraction p = 0.087 of the data is used in
the estimation.
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Figure 5: “Selective forgetting” SM-WRLS with optimal data checking applied to the estimation
of the parameter a4.. The criterion for selective removal of past points is described in the text.
The fraction p = 0.129 of the data is used by the estimation procedure and the adaptation is
computationally very inexpensive.
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Figure 6: “Selective forgetting” SM-WRLS with suboptimal data checking applied to the estimation
of the parameter a4.. The criterion for selective removal of past points is described in the text.
The fraction p = 0.088 of the data is used by the estimation procedure and the adaptation is
computationally very inexpensive.
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Inputs Outputs
Time O a a (T(n) | dy]
0 y(n-1)
1 y(n-2) tn
2 y(n —=3) ti2
3 y(n) ta lhs
4 taa dy
3 taa diy
6 dia

Table 1: Timing diagram of the triangular array of Fig. 7.

Inputs Outputs

Time O Q0 0 O

0 th,y(n-1)

1 33, dvs tia %

2 tiz,y(n = 2) tas t3 a3

3 | ta,dia t23 b3 o7

4 [ta,y(n-=3) t a3z

5 t11,dn g3

6 a

Table 2: Timing diagram of the back substitution array of Fig. 7.




|  Element Computed | flops per n |

é(n +1,0(n)) m+ 1
coefficient of quadratic (XX) 7
Marln+1) 5+ /m+1
G(n + 1) and 8(n) 2m + 1
If data set is accepted:

update m+1l+. ./
Givens rotations 5(2m + 1)
K(n) 4

Table 3: Numbers of operations required by the GG and GR cells in the architecture of Fig. 7.
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Time| O o o o |QO o 0 o

0 y(n-1)

1 y(n-2) tn

2 y{n —3) tiz

3 y(n) | tas ti3

4 taa dy,

5 ta3 dia

6 dia

Table 4: Timing diagram of the GR array of the compact architecture of Fig. 11.
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ABSTRACT

This paper is concerned with set-membership (SM) identification which refers to a class of algorithms
which uses certain a priori knowledge about a parametric model to constrain the solutions to certain
sets. The emerging field of SM-based Signal Processing is receiving considerable attention and is becoming
increasingly popular around the world. This paper initially surveys the types of problems and solutions
being researched, then focusses on identification techniques of particular currency in the signal processing
field. Specifically. the case in which bounds on the model errors are known has be of particular interest
to SM researchers. We show that these “bounded error™ (BE) algurithms can be combined with various
forms of least square error (LSE) signal processing algorithms with interesting and beneficial consequences.
A general framework embracing all currently used BE/LSE algorithms is developed, then strategies for
adaptation and for implementation on parallel machines are discussed. Computational complexity benefits
are considered for the various algorithms. The paper is tutorial. leaving many of the formal details to
appendices which presents a theoretical treatment of the key resuits. These appendices serves to unify
many related results appearing in the literature.
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1 Introduction to Set-Membership-Based Signal Processing

System identification is concerned with the deduction of a mathematical model of a dynamical system based
on measurable signals and other attributes of the physical situation. The principal focus of this paper will
be upon the paradigm in which sufficient information exists to specify a good (“true™) parametric form
for the underlying dynamics, and the identification problem is reduced to correctly parameterizing the
mathematical form.

In a broad sense, set-membership (SM) identification is concerned with the description of sets of param-
eter solutions which are consistent with the measurements and the modelling assumptions. Accordingly,
SM identification is sometimes called parameter bounding identification or similar names. The name "SM”
identification derives from the fact that an SM algorithm, in principle, ascertains whether a particular
parameter vector is a member of the feasible set.

SM identification is novel in its pursuit of set solutions rather than particular solutions which are sought
by conventional methods. A feasible set which arises as a consequence of SM processing is a reflection of
the assumptions made about the “true” model. and its “size” is inversely proportional to the amount
of information available about the “true” model. The fundamental benefit of this approach is that it
yields solutions which are based only upon tenable modelling assumptions. A set of solutions consistent
with known information can be preferable to, or complemetary to, a single solution based on tenuous
assumptions. If an appropriate SM algorithm exists, it is only necessary to have sufficient modelling
information to provide a sufficiently small feasible set for a given purpose. For example, a resulting set
might be small enough so that its centroid would provide a good model in some application.

We remark that the given description of an SM identification algorithm above does not necessarily
exclude methods whose solutions are a single parameter vector. However. a consistent theory requires
that, as time progresses, feasible sets be subsets of their predecessors (see below). The class of algorithms
that produces an invariant single point estimate is certainly a very uninteresting one. We will discuss this
point with respect to the conventional least square error (LSE) solution in the paper.

After discussing the general modelling and identification issues and defining notation in Section 2, this

paper will focus on four classes of identification problems:

. “Other™ SM Problems. The principal focus of this paper is upon SM methods currently being
employved in signal processing applications. In Section 3 we begin a taxonomy of SM methods and

survey problems which are outside the scope of the present paper.

2. The LSE Problem. The purpose of this brief discussion in Section 4 will be to view this well-known

problem in relation to the SM approach in preparation for further developments.

3. The Bounded Error (BE) Problem. We continue our discussion of the taxonomy of SM methods in




Section 5 with the BE problem. This class of SM algorithms is predicated upon a model with additive
errors whose magnitudes are assumed bounded. A vast majority of the research on SM identification
to date has focused on this problem and a variety of algorithms has resulted. The purpose here will
be to introduce the problem and review this body of research. At the *bottom” of the BE class of
techniques, we will encounter the ellipsoid bounding algorithms in which the LSE and BE problems

interface.

4. Combined LSE / BE Problem. The heart of this paper is Section 6 in which we formulate and discuss
the Unified Optimal Bounding Ellipsoid ( UOBE) algorithm which represents an ezplicit combination
of the two classes of problems above for the linear parametric model. The UOBE algorithm is
actually a class of algorithms that embraces many LSE/BE algorithms proposed in the literature.
It will be discovered that the benefits of combining BE considerations (when they are known) with
LSE processing are twofold: First. the BE information provides a feasible set of solutions which
complements the unique LSE (“infeasible” by virtue of its uniqueness) estimate. This feasible set
can help to compensate for the extremely restrictive nature of the assumptions placed upon the LSE
model. A colored noise sequence, for example, represents a violation of the basic tenets of LSE
modelling which might be ameliorated by the BE considerations. Secondly, it will be shown how BE

knowledge can greatly improve the efficiency of LSE identification.

In its focus on Problem 4 above. this paper provides a what might be called a “signal processing”
perspective on the field of SM identification. By this we mean that we approach the problem with a
predisposition toward linear models and LSE processing which are firmly entrenched and successfully
emploved in many signal processing applications. The authors’ principal interest in SM theory has been
its implications for complexity improvement, architectures, adaptation, and bias-reduction in linear LSE
algorithms. The work of Fogel. Huang and colleagues [24].[41].[49],(51].[99]-[101] also falls into this realm
and this relationship will be explored in detail. A different perspective on this field is provided by the work
of a number of research groups in Europe. most of whom approach SM identification with an interest in
control and system science. These researchers, whose work will be discussed in the material to follow. have
focused on a broad array of algorithms and models. mostly in conjunction with the BE constraint. This
work has tended to focus on the development and analysis of novel, sometimes very complex. identification
algorithms for bounding feasibility sets. While extremely interesting, this work has not yet yielded methods
which are as immediately applicable to practical problems as the well known LSE approaches discussed
herel. We review these "BE" developments in Section 5 and direct the reader to specific information about

this interesting work. Recent surveys of the 5M field which focus on the BE research are found in papers

'This is not to say that applications have not occured. Some examples are cited below.




by Walter and Piet-Lahanier {121]. and by Milauwse and Vicino [75]. Both survey papers contain extensive
and useful reference lists. The reader interested in a much lighter tutorial on a specific form of UOBE
algorithm, the “SM-WRLS” algorithm., is directed to the paper by Deller [27].

Whatever the particular interest in pursuing SM algorithms. it is clear that all researchers are excited
about their tremendous potential for application to problems of practical importance. Milanese and Vicino
(75], for example, list a broad range of areas to which SM techniques have been applied. Among them are
applications to biology and chemistry [14].[82], [130]; pharmacokinetics [44],[73]; time series analysis [118];
economic modelling {76]; speech and image processing [29],[30],[108],[111]; ecology {58].[109]; measurement
(11],[13],{104],(110]; and robust adaptive control [2].[24],[39],(55].(60],(62].(67],[112].[117]. Recently, artificial
neural network training algorithms have been the subject of studies involving the SM algorithms [25].[50].
SM algorithms have also been explored with regard to their tracking ability for adaptive identification
[16],{17].[24],(32],[86],{87]-[89]. Finally, another novel way in which BE methods have been applied is to
the problem of model structure identification [114]. Because of this significant potential for application.

SM algorithms continue to be the subject of intense research effort.

2 Formalities

In this brief section, we formally define notation for the identification problem to be studied and discuss

some important aspects of the modelling problem.

2.1 General Identification Problem

The general modelling setup employed in the discussion as follows: We assume that we are observing some
physical discrete time system which is generating a complex-valued vector sequence. y(-) of dimension k.
in response to complex vector-valued input u(-). The sequence u(-) is assumed to be a realization of an
ergodic. wide sense stationary stochastic process. Both input and output sequences are measurable. The
consideration of a complex, multiple-input—multiple-output (MIMQO) system will generalize many of the
results found in the literature. Of course, the real or complex single-input—single-output (SISQ) system
is contained in this analysis as a special case. Although many of the developments in the literature are
explicitly for SISO systems, these are trivially generalized to an arbitrary (finite) number of inputs (MISO).
Of the remaining developments, most are concerned with SO, but implicitly or explicitly MI. hence MISO.
systems. With regard to the dimensions of inputs and outputs. therefore, the developments here differ from
previously published results principally in terms of the generalized number of outputs. Upon occassion,
we will wish to discuss a result from the literature. In this case we shall remark that we are dealing with

a SISO or MISO system, and let k¥ = 1 and the output and error (defined helow) be denoted in regular




typeface, y(-) and ¢(-), to denote scalars. Though SI systems do occur in such discussions. we shall not
have occassion to use the scalar notation for the input sequence.

At time n, mathematical model of the form
y(t) = P[t.O(n).y. u.e.p.q, 7} + £(t.O(n)) (1)

is proposed to account for the dynamics of the physical system. For any time t, ¥ is a k-vector of functions
of the "present” input u(t), and p. q. and r lags of the sequences y(-), u(-). and (-, @(n)), respectively.
¥ is parameterized by a matrix @(n). and £(-.@(n)) is a complex k-vector error sequence which depends
upon the parameterization. In all models of interest in SM analysis, the additive error sequence appears.
In general. the model will depend upon the time n at which we are constructing the model (we may have
different information at different times). As we shall see below. however, the only unknown in the model
will be the parameterization. Hence. the dependence of the model upon n will arise through the parameters
alone. Accordingly, we show @(n) as a function of the modelling time n.

It is assumed that a “true” time-invariant model, of form, say.
y(t) = P.[t.O,. y,u. .. Da. qu. Ta] + €.(1), (2)

is ezxactly accounts for the observed dynamics. While the form of ¥, is known, the “true” parameters, @.,
are unknown and must be sought by the identification. Naturally, we take ¥, p, ¢, and r of the proposed
model to be equivalent to their “true” counterparts. The “true” noise sequence, €.(-), is generally not
known on a sample-by-sample basis. but certain of its properties are known (e.g., second order statistical
properties) and are attributed to the proposed model error. e(-.@(n)). Whether “local” information about
the error sequence is available or not is one of the distinguishing characteristics of a SM identification
problem. Frequently. identification approaches (in particular, the LSE approach) are based on asymptotic
properties of the sequence €.(-). Asymptotic properties fail to provide pointwise information with which
to pare down the space of parameter estimates. For example. second order statistical properties of the
sequence do not provide much specific information about the value e.(n) at a particular n. This is to be
contrasted with a SM problem. in which known attributes of the error sequence (or. infrequently. of other
aspects of the model) are available at every modelling time n. The following problem statement reflects

this class of constraints.

Problem 1 (General SM Identification Problem) Observations y(t), u(t). t € [1.n] are “known” to
have been generated by a “true” model of form (2) whose error sequence has a specified set of attributes.
say An. on that time range. We propose a model of form (1) with W =W¥_., p=p., q=q.. 7 = r.. whose
parameters, ©,, are unknown. but whose error sequence has properties A, on the given time range. Find
the feasible set of parameters, Q(n). such that for each @ € Q(n), the proposed model is consistent with

the observations.




A SM problem will be said to be ill-posed if
Qn+ 1) Z2An), n=1,2,.... (3)

If (3) were not true, it would be the case that there exists a potential parameterization of the “true” model
which is consistent with the observations on t € [1.n + 1] but not those on ¢ € [1.n]. In turn. this implies
the potential for a time-varying “true” system. in violation of the assumption about this system. This is
an indication that there is something inconsistent in the <pecification of the error attributes. or that the

data do not conform to the assumed “true” model.

2.2 “LP” vs. “non-LP” Models

Models of form (1) can be dichotomized into those which are are linear in the parameters (LP) sought.
and those which are not (non-LP). With regard to the general form (1), we see that any model in which

¥ has explicit nonlinear terms in the matrix @(n) is immediately non-LP. For example?.
y(t) = @ (n)A(1)O(n) + &(t,O(n)) (4)

where A(t) is some m X m matrix of functions of the lags of y(-) and u(-), is clearly non-LP. A model

cannot be LP, therefore, unless it can be written in the form

y(t) = @7 (n)z(t) + e(t.O(n)). (:

]
—

This is a necessary, but not a sufficient condition for a model to be LP, however. second necessary
condition is that the vector sequence x(-) contain no functions which have samples of the error sequence
e(-,©(n)) as arguments. One frequent occurrence of this non-LP type of mapping appears in the so-called
output error model (e.g. [52],(121]). For a SISO system?® the output error model takes the form (3) (with

yi-)=y(-). ul-) = u{-}), and e(-, @) = ¢(-, &) scalars). where
z(t) =[Gt —1) - Jt—p)wt) u(t—1) -~ u(t — q))" (6)

in which §(-) represents the sequence p{-) — <(-.@). A second important non-LP model is the SISO

autoregressive - moving average with exogenous input (ARMAX) model which is of form (5) with

() =[y(t=1) -yt =—p)ultyuft —=1) - u(t —q)s(t-1.0) --- E(t—r.O)]H (7)

‘Throughout. superscript 4 denotes the Hermitian transpose.

‘Henceforth. whenever a SISO system is mentioned in the paper. it is implicit that the model signals and parameters are
real. This is for two simple reasons: 1.To avoid superfluous details and notation, and 2. To accurately represent other research.
The general results of this paper are perfectly applicable to the compler SISO case. In the real case, “H” denotes the real
transpose.




where r > 1. The autoregressive - moving average (ARMA) model is a special case of the ARMAX with
no u terms present in (7). Details on these non-LP models are found. for example, in [45],[52],[69].

LP models are characterized by difference equations of form (3) in which x(t) is any m-vector of
functions of the lags of y(-) and u(-) at time f. A special SISO case is the autoregressive with erogenous

input (ARX) model in which
H
2(t)=[y(t—1) -yt =p)ult)ut = 1) - ut = q)]". (8)
It is conventional to denote the parameters of the ARX model by
@:[al-napcocl---cq]H (9

so that the ARX system can be described in terms of the difference equation

P

q
Y = aylt—i)+ Y cult—j)+(t.O). (10)

=1 1=0

A pure autoregressive (AR) model is a special case of the ARX model in which no u terms appear.

3 “Other” SM Problems

Before turning to the main SM problems of interest. we return to the broad definition of SM identification
given in the opening paragraphs and note the potential for many other types of algorithms within the
framework of the SM algorithm definition.

A taxonomy of SM methods is shown in Fig. 1. SM techniques are seen to be first subdivided into
those concerned with bounding parameters of input-output descriptions of svstems (identification), and
those dealing with bounding state estimates in state space formulations (state estimation). While it is the
former class of techniques which is treated in this paper. it is the latter which is the subject of the seminal
papers on SM theory. The reader is referred to the early papers of Schweppe [102], Witsenhausen [131].
and Bertsekas and Rhodes [15] which treat the bounding of state estimates as a consequence of bounded
errors. More recent work on the state estimation problem appears in [1].[54].[63].[66].[79].[98]. A significant
number of papers in Russian have also been published. In fact. according to Kurzhanski and Valyi [66].
some of the earliest reported work on this subject appears in the Russian paper by Krasovski [61]. For an
extensive list of papers in Russian. see [66]. While most of the work on state estimation has strong ties to
the identification methods to be discussed in the present paper. the papers by Anan’ev and Kurzhaskii 1]
and Morrell and Stirling [79] represent an interesting departure form the bounded error assumption. These
papers are concerned with bounded sets of probability distributions for a priori and a posterior: state
estimates. These constraints result in bounded sets of conditional mean estimates and error covariance

matrices,
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Contemporary research into SM methods has focused to a much greater extent on the second major
subdivision concerned with bounding of parameter sets in input-output models. Most of this work has
treated the BE problem, though at least one broader class of constraints has been studied. Combettes and
Trussell [20]-[22] have rigorously investigated feasibility sets which arise as a consequence of “true” prob-
ablistic attributes of measurement noise. These sets are constrained parameters which result in residuals
which are consistent with the noise properties. Noise properties considered are range. moments, and various
second and higher order properties. Combettes and Trussell [23] have also derived feasibility sets for AR
model parameters under constraints of stability and bounded (in norm) perturbations on the correlation

matrix and vector in the normal equations.

4 The Least Square Error (LSE) Problem

We digress momentarily from the taxonomy of SM methods to interject some material on the conventional
LSE problem. This information will be needed in the “lower levels™ of the BE discussion to follow, and
will play a major role in the developments of the paper.

LSE modelling is a classic and well-understood tool for identification which has an extensive research
history quite apart from SM theory. The goals of this brief section are twofold: First, we wish to discuss
the LSE approach in relation to the SM approach in preparation for their combination in the main section

of the paper. Secondly, necessary notation for the future development will be introduced.

4.1 Relationship Between the LSE and SM Problems
The general LSE problem (for the time interval t € [1.n]) is stated as follows:

Problem 2 ((Weighted) LSE Problem) Observations y(t). w(t), t € [l.n], are taken from a system
assumed to follow a “true™ model of form (2). For a similar model of form (1), find the set of parameter

vectors (usually a singleton). say =(n). such that for each @ € =(n). and for any parameters I,

L& 2 Lo :
=S At et @) P< = > An(t) | e(t. T |2 (11)
n n
t=1 t=1
where \,(-) is a sequence of nonnegative weights which may depend on n. and || - || denotes the C* norm.

This problem resembles the form of the general SM problem. Problem 1, posed above. In particular.
the result at time n appears to be a “{easible” set, =(n). However. Z(n) is not a feasible set, and this is
not a proper SM problem. The differences between the LSE problem and a SM problem have been alluded
to above and are subtle and revealing.

Feasible sets of solutions in SM problems arise because of some set of attributes we ascribe to the frue

model error at a given time. Any parameter vectors which can produce the given observations and an




error sequence which has these attributes is feasible. Of course, the true parameters must be an element of
any feasible set. Conspicuously missing from Problem 2 is any explicit statement of the attributes of the
“true” error €,(-) on the range t € [1.n]. which are required in an SM problem statement. In fact. we make
no such statement in the LSE problem. Implicitly, we assume that the “true” error sequence is “white
noise,” implying that asymptotically, it will have the smallest possible average squared value in light of the
observed data. We do not necessarily believe that the noise is "small™ and “locally white™ (on the finite
time range t € [1, n]) although these are precisely the conditions which underlie (11). The justification for
using (11) is that it asymptotically leads to the “true” parameters if our assumption about e.(-) is indeed
correct. Along the way, the sets =(n) (usually single points) are not generally montonically decreasing.
and do not contain the true parameters @.. They are not. therefore, --alid feasible sets.

Another way to view the situation above is as follows. Suppose we were to assume that (11) is a

reflection of some attribute. A,. which we do believe about e.(¢) on t € [1, n]. viz..

. JR= 2 . .
©. is such that - Z)\n(t) || e«(t) ])* is minimal. (12)

t=1
In this case Z(n) plays the role of a feasible set. Ordinarily. however, =(n) consists of a single point which
is therefore both the estimate and the true parameters. In this case since, generally, Z(n+ 1) € Z(n). n =
1,2..... the SM problem is ill-posed and our belief in (12) has led to a sequence of time varying true
parameters — contrary to another belief about the system.

However one views the situation. the conclusion is that the LSE problem is not a valid SM problem. The
basic deficiency is the absence of any useful information which serves to constrain the feasible parameters
in finite time. In fact. no attributes are assigned to the “true” error on a finite time basis. and the resulting
“feasible set™ is Q(n) = R™ for any n < x. This results in the necessity of incorporating all data into a
LSE estimate, since there is no point-by-point or finite range basis for doing otherwise. Combining the BE
considerations below will greatly remedy this inadaquacy of LSE processing.

Because we intend to blend the LSE and BE theory below. and also because LSE processing will emerge
as central to another important technique to be discussed. it is important to lay down a formal framework

for LSE identification.

4.2 LSE Problem: Formalities

Our discussions of LSE processing will focus exclusively upon models which are LP. The objective here is
to lay the formal foundation for these future discussions. Much of the formality described here represent
a generalization of developments appearing in the literature.

With reference to Problem 2 and surrounding discussion. we assume the existence of a “true” madel of




form

y(t) = 0% z(t) + e.(t) (13)

in which z(t) is some m-vector of functions of p. lags of y(-) and g¢. lags plus the present value of u(-).
and where, in accordance with the discussion immediately above, e.(-) is the realization of a zero-mean,

second moment ergodic, vector-valued random sequence whose components are independent:
1 n
N H g N i & o Hp N 260
E{e.(k-)el(k-))} = lim —~ ;_le.(t el (t—j)=0%6(i - j)I (14)

where E{-} denotes the expectation, o is some finite constant, §(-) is the Kronecker delta sequence (e.g.
[45, p. 37)) and I is the m X m identity matrix. No finite time attributes are ascribed to e.(-). At time n

we wish to use the observed data on t € [1.n] to deduce an estimated model of the form (3).
y(t) = @ (n)z(t) + e(t. O(n)) (15)

For the LP problem. the identified parameter vector will be unique for each n (e.g. {45],[52],{69]). but will
generally change at every step. Hence. the index n is very significant. In particular, we desire the weighted
LSE model for which @&(n) satisfies (11).

©(n) can be found as the solution of the following classical linear algebra problem [46]: Given data (or
a system of observations) on the interval ¢t € [1.n] (n > m), and some set of error minimization weights,

say An(-), form the overdetermined system of equations

[ty =] [ /Aty — |
mm”m -, An(‘z?y”(‘z) - 16
VA () — | VA () =
denoted
X(n)[ =Y(n). (17)

and find the LS estimate, &(n). for the vector I'. Because of this interpretation, the pair (y(t).z(t))
could appropriately be called an equation in many contexts in the following. This term is not always
satisfactory. however. Whereas the term “datum” is inappropriate to describe (y(t),z(¢)). and “data” can
be misleading. we will frequently refer to (y(t).x(f)) as the data set at time t. The expression "per t"
shonld be interpreted to mean “per data set.”

There are well known methods to solve this problem. The first is the “batch™ solution given by [16]

Oin = (X" n)X(n) U XH(n)Y(n) (1)




with the matrix in brackets playing the role of the weighted covariance matrix!. i.e.,
C(n) = X" (n) ZA (t) . (19)
For future reference, we also note that the “auxillary matrix” on the right side of (18) can be expressed as
Cay(n) = X¥ ()Y ZA (t). (20)

When written explicitly in the form

C(n)®(n) = Cpy(n) (21)

this equation is frequently refered to as the set of normal equations.
When the weights are time varying by virtue of time-dependent scaling of previous weights at time n.
ie.,
’\n—l(t)

’\n(t):E(Tl‘__l‘)' Vtén—l. (22)

where ((-) is a time dependent normalizing sequence, then the weighted LSE solution can be computed

recursively using the relations [81]

Cs(n) = C(n)/¢(n) (23)
Y _ Cl(n-1zx (n)mH(n)C"(n—l)
1 - 1 _ _ ; 3 .
C™'(n) = C;' (n-1)=A(n) T+ h(n)Gan) (24)
O(n) = O(n- 1)+ A(n)C Y n)x(n)ef (n. @ (n—1)) (25)

where G4(n) & £ (n)C7Y(n—1)z(n). For future reference. let us also define the “unscaled” version of this
last quantity, G{n) & Gs(n)/¢(n) = 2" (n)C~(n = 1)x(n). (in general, quantities with subscripts ~s™ will
indicate that the scale factor is included, and those without such subscripts are the unscaled counterparts.)

As an aside, we note that the scaling sequences ((-) will play a kev role in the developments to follow.
One peculiarity will occur with regard to this sequence in a very important SM algorithm. In this case
¢(-) will be such that, for each n, {(n — 1) depends on a quantity which will not be computed until time
n. In general, we shall distinguish between “causal” and “noncausal” scaling sequences. A causal scaling
sequence ((-) is one for which, for every n. and for all n’ > n. ((n) is independent of any quantity which
is not computed until time n’. In simple terms. a causal scaling sequence is one which does not depend
on “future” processing to determine its “present” values. If {(-) is not causal. then it is noncausal. It
might seem that a noncausal sequence would be all but impossible to work with. but. as noted. we shall

encounter one interesting case Lo the contrary.

*More precisely. this is a normal matrix which becomes a “covariance™ matrix asymptotically if scaled by 1/n. and if the
mean of the vector r(t) is zero for all t. We shall nse the conventional term “covariance™ in this work.
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When the scaling sequence ((-) is unity for all time. then the (24) and (25) are usually called recursive
least squares (RLS) (e.g. see [69].[81]) or sequential least squares (SLS) (e.g. see [45]), and the word
“weighted” is sometimes added to give WRLS or WSLS. When the scaling factor is taken to be constant,

! Vn, and such that 0 < a < 1. then a is called a fogetting factor (FF), and acronym like

say {(n) = a~
“SLSFF” might be used. In any case, we will use the acronym “WRLS" to refer to a recursive computation
of the weighted LSE solution, and in particular we will call (23) - (25) MIL-WRLS to ‘ndicate recursions
based on the matriz inversion lemma (MIL) {45].[69].[81]. This is to be juxtaposed with QR-WRLS
described in the following paragraph.

When the weights conform to (22), one can use a contemporary WRLS algorithm based on the QR
decomposition of the X(n) matrix of (17) [23].[33],(43].[48].[71].{72]. The procedure, in principle. involves
the application of a sequence of orthogonal operators (Given's rotations) to (17) which leaves the system

in the form
T(n) Dy(n)

Ir= (26)
0(n~—m)xm D'Z(n)

where the matrix T(n) is an m x m upper triangular Cholesky factor [46] of C(n) (see (27) below). and

0.,, denotes the i x j zero matrix. Dj(n) and Dy(n) are m x k and (n — m) X k matrices, respectively.

which result from the operations on Y(n). It will be useful in our work below to note that
Cin) = X" ()X (n) = TH(n)T(n) (27)
because T(n) represents an orthogonal transformation on X(n). The system
T(n)@(n) = Di(n) (2%)

is easily solved using back substitution [46] (k times. once for each column of @(n) and Di(n)) to obtain
the LSE estimate, @(n). When the n + 1% data set becomes available. it is weighted by [A,41(n + 1)]'/2
and the matrices T(n) and D(n) are scaled by [((r)]"1/2 before incorporating this new informaiion. This
procedure can be performed in a recursive manner using only about m? + km memory locations. Details
for the SISO case (which are easily generalized) are found in [28].[33].[48].[71]. We shall use the name
QR-WRLS to refer to this form of the recursion. This formulation maks; possible the solution of the
ellipsoid algorithms to be described on contemporary parallel architectures (discussed in Section 6.7) for

great speed advantages.




5 The Bounded Error (BE) Identification Problem

5.1 Overview

We now return to Fig. 1 and the survey of SM methods and discuss the most widely researched group of

techniques, those based on a BE constraint. The general problem statement is as follows:

Problem 3 (BE Identification Problem) Observations y(t), u(t). t € [1.n] are “known” to have been

generated by a “true” model of form (2) whose error sequence is> “pointwise enerqgy bounded”
An sl e«dn) |12 < 5(n), (29)

where () is a known positive sequence®. We propose a model of form (1) with ¥ = .. p = p..q =
G«. T = r., whose parameters, ©., are unknoun. but whose error sequence adheres to A, at time n. Find
the feasible set of parameters, Q(n). such that for each @ € Q(n), the proposed model is consistent with

the observations.

BE methods are categorized into those which the models are LP and those which are non-LP (see
Section 2.2). The feasible solution sets that arise as a consequence of error bounding assume different
geometries in the parameter space. depending on the form of the model. In general, constraints of form

(29). in conjunction with a model of form (1) and the measured data. imply pointwise feasible sets
w(n) = {@ | | y(n) —®[n.@.y.ue.p.q.rll*< 7(71)}. (30)

These can be intersected over time to create a feasible set over the range ¢t € [1. n],
Q(n) = () (). (31)

For a non-LP model the “local™ w(n) are generally hypersurfaces in C™** which. when intersected over
time, create sets which may have highly irregular geometries and which need not be connected in the
parameter space (see e.g. Fig. 2 and [121]). The work that has been done on such problems has been
largely concerned with developing novel algorithms for MISO. real parameter, systems..which bound Q(n).
Specific approaches can be found in [6]. [8].[10].[18].[19].[34]-[36].[56].[57].[74].[84].[90].[93].[97].[104].[105].
[113).[123]. [124). [128].[129]. Since the focus of this paper is upon a special class of LP methods and signal

"This is slightly less general than stating asvmmetrical amplitude bounds, ymin(n) <|| ca(n) ||< Ymax{n). but the verv
slight loss of generality is worth the significant analvtic gain afforded by this assumption.

"We shall assume this sequence known thronghout this paper. While determination of appropriate error bonnds often
follows naturally from the physical constraints of the problem. in other cases this determination is challenging. One theoretical
approach is found in (120]. while an experimental discussion for a particufar application is found in [29].




processing applications, we shall not further pursue the topic of non-LP models”. An excellent place to
begin a review of non-LP methods is with the recent paper by Walter and Piet-Lahanier [121].

In the LP model case, error bounding implies pointwise “hyperstrip” regions of possible parameter sets
in the space,

win) = {@[ ly(n) - @"2(n)|*< ‘y(n)}. (32)

which, when intersected over a given time range (see (31)). usually form convex polytopes of feasible
parameters (see Fig. 3). Three different approaches have been introduced which describe or characterize the
feasible parameter sets. The first approach (developed for real, generally MISO, systems) produces exact
parameterized descriptions of these polvtopes [7].[16].[17].[73],[77).[78].[92].[122],[125]-[127]. Although this
approach is recursive and simple. its computational complexity increases with the number of vertices of the
polvtope. The second approach (also for real MISO systems) gives orthotopic outer bounds of the solutici
sets [5],[73],[77]. This approach yields exact parameter uncertainty intervals at the expense of very complex
computations. The third approach is of much lower complexity compared to the first two and works with an
outer bounding® hyperellipsoid. a superset of the polytope [24].[26],(27],{29]-[32],[37],[38].[41].[49].[51].[84]-
(39].[99]-[101].

Ellipsoid algorithms are often presented as BE procedures, and indeed they do follow from the BE
constraints. However, they are more fruitfully viewed as a marriage between the LSE and BE problems
for LP models. With this point of view. signal processing engineers have begun to exploit the benefits of
BE information in the context of LSE identification problems. To stress this point of view, we feature the
ellipsoid algorithms in their own section to follow. This subject will be covered in considerable detail and

will comprise the remainder of the paper.

6 Combining the LSE and BE Problems: Ellipsoid Algorithms

6.1 A Unified Optimal Bounding Ellipsoid (UOBE) Algorithm

Please note that the rigorous development of several of the key results to follow are found in the appendices.

The benefits of combining BE considerations. when they are known. with LSE identification have
bern alluded to in Section 1.2. LSE identifiers exploit no point-by-point information which can be used
to ascertain the usefulness of observations. This fact manifests itself in the effective retention of the
eutire parameter space as a “feasible set.” and results in wasteful processing. The idea to combine BE

considerations with LSE identification did not arise out of a quest to make LSE processing more efficient.

“With one exception. Methods developed for ARX (LP) models have been extended for use with ARMA and ARMANX
tnon-LP) models [34].[99].[101]. We will discuss these techniques below.
*Inner bounding algorithms of the last two approaches have also been presented in [33].[116].
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however. Rather, it resulted from the discovery that ellipsoid bounding algorithms are very closely related
to WRLS. While, clearly the feasible set arising from any SM algorithm will contain the LSE estimate. it
is the ellipsoid algorithms which have a particularly attractive relationship.

We begin by seeking a solution to the SM (BE) problem. Since we are working with an LP model, the

BE constraint (see Problem 3) is given by
ly(n) ~ @ a(n) |< 1(n). (33)

It follows readily that (see Lemma 1 in Appendix A.2)

YAl y) — @2ty [IP< Y Au(t(t) (34)
t=1

t=1
for any positive numbers A, (t), t € [1. n]. For any nonnegative sequence A,(-), (34) specifies a set to which

@, must belong. Let us denote this set.
Q(n) = {@ D At [ y(t) - @%a(t) |P< ZAn(tmt)}- (35)
t=1 t=1

Note that all elements of Q(n) need not be in the usual feasible set, {(n), consisting of the intersection of
pointwise “hyperstrips” (see (31) and (32)). In fact, Q(n) can be almost any size depending on the choice
of numbers An(t).t € [1.n]. (Note that A,(-) is indexed (subscript) by the end-time n because we might
wish to have a completely different sequence of parameters at each n to control the size, placement, etc.
of the hyperellipse.) Whatrver sequence \.(-) is chosen, however, the set Q(n) must contain the feasible
set, and therefore @.:

@. € Q(n) C Q(n). (36)

The following development is rigorously supported by Proposition 1 in Appendix A.l. Some manipu-

lation of (35) shows that the set (n) may be expressed as follows:
Qn) = { tr {© ] [@ - @.(m}"8(n)e - @.(n)}} < 1} (37)

where tr{-} denotes the trace of a matrix. This set as a hyperellipsoid in R*™**_ with its “center” at
@.(n). We give meaning to the term “hyperellipsoid™ below. The fundamental connection of this ellipsoidal
set to to the weighted LSE problem is as follows: The center of the ellipsoid is exactly the weighted LSE

estimate using weights A,(+).
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(see (18) and (19)), and where k(n) is the scalar quantity,
K(n) % t{@F (n)C(m)@(n)} + 3 1(DA(0) [L =y [ 9(0) [1P] - (40)
t=1

To give meaning to the verm “hyperellisoid.” consider a single column, say 8;(n), of @(n), corresponding
to output y;(-) in vector y(-). Using (37), we see that @;(n) is constrained to be an element of a set which

is properly called a hyperellipsoid. say.

Qi(n) = {Bi | {6: - ei(n)]Hf((n)

n)

In particular, when 8;(n) is real and of dimension two, the perimeter of Q;(n) is precisely what is con-

(6, - 8,(n)] < 1}. (11)

ventionally regarded as an ellipse in R? (see Fig. 3). Notice that all outputs y;(-). i = 1,2,....k, will
apparently share the same “ellipsoid matrix.,” C(n)/x(n), but their corresponding ellipsoids will be cen-
tered on different estimates. This fact will be important in the optimization problem to be discussed
below. Also note that the influence of the “other™ outputs in y(-) on the ellipsoid Q;(n) arises through the
parameter k(n). This means that the MIMO solution, as we shall describe it here, is not equivalent to a
decomposition of the problem into & MISO systems. However, the MIMO problem does correctly include
the MISO problem as a special case.

We conclude therefore that under known BE constraints, a hyperellipsoid can be associated with a
weighted LSE estimation problem and conversely. This set is illustrated in Fig. 3 for the two-dimensional
case. Clearly, the weights A,(-) parameterize the ellipsoid and presumably can serve to minimize its size
and orientation in the parameter space. Anticipating that we will want to work with recursive least
squares estimation. let us henceforth restrict our attention to weight sequences which conform to the
scaling pattern® (22). This effectively restricts to one ( viz. A\,(n)) the number of free parameters available
to control the bounding ellipsoid at titne 1. The central objective of a bounding ellipsoid algorithm is to
employ the weights in the context of LSE rstimation to sequentially optimize some feature of the ellipsoid
(directly or indirectly related to its “size™). A significant benefit is that often no weight exists which can
minimize the ellipsoid. indicating that the incoming data set is uninformative in the SM sense.

While it may not be immediately apparent from the original developments in the literature. all published
bounding ellipsoid algorithms. both adaptive and nonadaptive, adhere to the following steps. Let us refer
to this set of operations as the ['nified Optimal Bounding Ellipsoid (UOBE) algorithm (for a complex
MIMO LP system): At time n.

1. In conjunction with the incoming data set (y(n).x(n)). find the weight. say A% (n), which will prospec-
tively optimize some quantitative feature of (n) related to its “size.” (This will require knowledge

of C(n - 1. k(n~1). and {(n-1).)

*An exception to this rule is that, for adaptive strategies to be discussed below. we will additionally allow An{?) to be set
to zero for one or more t < n — 1.




2. Discard the data set (y(n),z(n))if A%(n) <0.
3. Update C(n) and ©(n) using MIL-WRLS or QR-WRLS (see Section 4.2).
4. Update s(n) according to (40) or one of the recursions given in Lemma 2 in Appendix A.2.

With one exception (see Dasgupta-Huang OBE algorithm below), all published OBE algorithms operate
on the principle of minimizing a set measure on Q(n) by choice of Az(n). For a SISO system. Fogel and

Huang suggest two set measures for the optimization. The first is the determinant of the matrix $~!(n]).
po{Qn)} = det{P!(n)} (42)

and the second is the trace,

AU} E tr {7 (n)). (43)

(Having established these quantities as set measures on {)(n), for simplicity, we shall henceforth write
pv(n) and pe(n). We shall also occassionally write u(n) to mean “either p,(n) or u¢(n).”) In the MISO
case in which {)(n) is clearly intepretable as an ellisoid (see (41)), u,(n) is proportional to the square of
the volume of the ellipsoid, while u,(n) is proportional to the sum of the square root of its semi-axes. A
moment’s reflection will indicate that the same two measures are meaningful in the MIMO case, since they
result in the minimization of the volume or trace of the common ellipsoid shared by all the outputs (see
discussion below (41)).

It is shown in Proposition 2 in Appendix A.1 that. when the scaling sequence is causal (see discussion
below (25)), then A;(n) is the unique positive root of the polynomials F,(A) and Fy() for the volume and

trace measures respectively, where F, is a quadratic,
Fy(A) = agA* + a1A + ao , (44)

and F; i1s a cubic polynomial

Fi(A) = 0322 + 5302 4 byA + b . (45)

The coefficients a; and b; are given in terms of quantities which are known prior to time n.

Interestingly, we will find that the optimization procedure is not “locally” affected by a causal scaling
process. This is so because neither measure u, nor p, is changed when the scale factor is included. To
show precisely what we mean by this. consider the optimization problem at time n. All previous weights
will be modified by scale factor ((n — 1). We have called the resulting covariance matrix C,{n - 1) &
Cin—-1)/{(n—=1). The definition of x(n — 1) in (40) will indicate that the effect of weight scaling on this
quantity is likewise a simple scaling,

1ot Kin = 1)

N’(n—l):g(—n—_l). (16)
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Accordingly, the ellipsoid matrix C(n — 1)/k(n — 1) is changed to C,(n — 1)/ks(n — 1). by the scaling
procedure. Note, however, that the scale factors cancel in this ratio, so that either of the measures of size
will remain unchanged. It is very important not to infer that the optimization process is independent of
the scaling factors. Clearly the existing covariance matrix and s value at each time is influenced by the
complete history of the scale factors. The consequence of the analysis above is simply that the ellipsoid
volume at a specific time is not affected by scaling. This will have implications for theoretical developments
surrounding the optimal weight (see Proposition 2) in Appendix A.l.

Finally, we note an important fact to which we will return in Section 6.6. For the volume algorithm
using weights of form (22), it can be shown that. if an optimal weight exists, it will definitely shrink the
volume of the ellipsoid. A similar result can be obtained for the trace measure [30]. This has important
implications for convergence of the ellipsoid. the analysis of which has been widely misunderstood.

A detailed version of the UOBE algorithm for a MISO system, which is based on QR-WRLS and the
volume criterion. appears in Fig. 4. It should be clear how to incorporate changes necessary to implement
a “trace” algorithm. or to introduce additional outputs. This general algorithm will embrace any of the

specific algorithms discussed below. We now discuss variations on this general algorithm.

6.2 The Fogel-Huang OBE Algorithm
6.2.1 History and Development of F-H OBE.

The first major journal paper on the application of ellipsoid algorithms to parametric LP models was
published by Fogel and Huang in 1982 [41]. The Fogel-Huang algorithm is frequently called the optimal
bounding ellipsoid (OBE) ulgorithm. and we shall adopt the namne “F-H OBE” in this paper to distinguish
it from another algorithm to be presented below. F-H OBE was originally presented for the SISO ARX
model. ‘but it is easily generalized using the developments described in this paper. This method follows

the basic framework of the UOBE algorithm enumerated above. with the following specific conditions:
1. {{(n) = k(n) for each n;
2. MIL-WRLS is used to implement the recursions (but QR-WRLS can be used as well):
3. Set measures (42) and (43) are employed.

It is interesting to note that. because the scaling sequence ((-) is equivalent to the sequence x(-) in F-H
OBE. the ellipsoid matrix at time n. ®(n). is identical to the scaled covariance matrix C,(n) = C(n)/(n)
whose inverse is computed directly in the course of the MIL-WRLS equations. This is a consequence of
the geometric approach taken (see below) rather than a deliberate choice of the scaling sequence. We also

note that there is nothing to preclude the use of QR-WRLS in conjunction with F-H OBE. Alternative
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versions of OBE have been published and will be described below, but first it is interesting to place the
F-H OBE development in historical perspective.

In [41], using the BE constraints only, Fogel and Huang arrive at the ellipsoid of form (37) and recog-
nize that the center of the ellipsoid is a weighted LSE estimate. However, the LSE problem is not pursued
directly. Instead, the fact that ellipsoids can be used to bound the feasible set is used as a motivation for
the following geometric approach: Assume that a membership set 2(n — 1) is known at time n — 1. We
need not be aware of parameters A,_;(t). t € {l.n — 1], nor even that there is a LSE problem underlying
the membership set. The objective is to find a new (small. if possible) ellipsoid which superscribes the
intersection of Q(n — 1) with the incoming feasible “hyperstrip™ w(n) (see (32) and Fig. 3). The work of
Kahan [53] had shown that a family of such circumscribing ellipsoids could be computed using relations
which the authors then manipulate into the equations which comprise F-H OBE. The quantity g(n) (equiv-
alent to A\,(n)) emerges as a single parameter with which to control the size of the ellipsoid Q(n). We will
henceforth refer to g(n) as A,(n), even though this does not connote the geometric spirit of the original
F-H OBE development.

F-H OBE is sometimes called the minimum volume sequential (MVS) algorithm when it is is based
upon sequential minimization of ., (n). This involves the construction, and solution for the roots of, the
quadratic equation (44) to find the optimal parameter AJ(n). Similarly, the minimum trace sequential
(MTS) algorithm is based upon minimization of y.(n) by optimizing A,(n). This procedure requires the
construction and solution for the positive root of the cubic equation (43).

The F-H OBE algorithm was the first UOBE-type algorithm to be presented as having potential
benefits for signal processing [19]. These benefits derive from the optimization procedure, as alluded to
above. Generally speaking (precise comments are found in Section 6.6 below). as n increases, the true

feasible set 2(n). and the ellipsoid Q(n). decrease in size and it becomes increasingly likely that!®

Qn)y=w(m)NQUn—-1)=Qn-1). (%)
This means that the new data set is not providing anv useful information in the sense of shrinking the
membership set. There is no positive parameter A,(n) with which to combine the data set at time n
with the current ellipsoid to create a smaller ellipsoid. The manifestation. therefore, is that the “optimal”
parameter in the sense of minimizing p(n). A (n),is nonpositive. In this case the data set at time n should
be rejected and the computational effort of processing it avoided. In many simulations and experiments

with real data (e.g. [24].[29].[32].[49]). typically 70 - 95% of the data are “rejected™ in this sense.

"It also becomes increasingly likely that
) =m0 WUn = 1) =VUn = 1), N

but this does not necesarily mean that the incoming data set cannot be used to minimize the ellipsosd.
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A critical point about this data selection process must be made which was not necessarily evident in the
early papers. One must be very careful not to infer that the complexity of the F-H OBE (or any UCOBE)
algorithm is drastically reduced (say. by 90%) by virtue of this data selection procedure. In fact. in its
basic form. if the parameter matrix @. is of dimension m x k. then each of the optimality checks requires
O(m?) complex floating point operations (cflops), then. when accepted another O[(2 + .5k)m?] cflops are
required to update the covariance matrix and parameter estimates!!. To process the data set directly
using WRLS requires O(3m?) cflops. While a dramatic decrease in the number of data used results. the
computational load is not significantly decreased. especially for large m. There are methods to remedy
this problem which will be discussed below.

As an aside. we note that the MVS version of the F-H OBE algorithm is suboptimal in the following
sense. When one of the hyperplanes bounding «(n) does not intersect Q(n — 1). a smaller (volume) Q(n)
can be achieved by repositioning the nonintersecting plane to be tangent to Q(n — 1). Belforte and Bona
have suggested this procedure in [3] (see also [9]). As pointed out by Walter and Piet-Lahanier [121].
the modified procedure is equivalent to the ellipsoid with parallel cuts (EPC) algorithm developed by

researchers working in linear programming {59].[103].

6.2.2 Dasgupta-Huang OBE

A significant variation on the F-H OBE algorithm has been suggested by Dasgupta and Huang [24] since
the publication of the originai algorithm. Again. the method is originally developed for the SISO ARX
model. but can be generalized using the devlopments in this paper. The Dasgupta-Huang OBE (D-H
OBE) algorithm has two unusual features with respect to all other UOBE algorithms. These are the use
of noncausal scale factors. and an optimization procedure which does not seek to directly minimize a set

measure on (n). D-H OBE emplovs the scale factors
Cn—=1=(1=An)" " (19)

With reference to (19) and (22). it is seen that. for a given optimal weight A>(n). the npdated co.ariance

matrix is a convex combination of C{n — 1) and the new data outer product.
Cin)=(1-A(n})C(n -1} + )'1(71)1'(71).3’](71) {50

Accordingly. this choice of scale factors constraints the optimal weights to the range [0.n] for a < 1. The
central benefit of this method is that it provides the means with which to prove asymptotic and exponential
convergence of the ellipsoid. and cessation of updating. using Lvaponov theory. Upon convergence, the

residuals, (.. @(-)) are guaranteed to remain in the “dead zone” indicated by the error bounds. ie..

""Throughont. a cflop is taken to be one complex multiplication and one complex additnon.

19




lim,{:’;’o | e(t.@(n)) ||*< 7(t). The number (1 — Az(n)) is referred to as a “forgetting factor” by Dasgupta
and Huang, and. although it does serve to downweight the past contributions of to the covariance matrix,
it is not a forgetting factor in the conventional sense, since it is not a free parameter and therefore does not
erplicitly control adaptation. The algorithm does exhibit some adaptation capabilities as do other UOBE
algorithms due to the optimal data weighting. Explicitly adaptive UOBE algorithms will be discussed
below.

A second significant difference in the D-H OBE algorithm occurs in the technique emploved for deter-
mining “optimal” weights A%(n). Rather than minimize a set measure such as (44) or (45). the weight is
chosen to minimize k(n). subject to the constraint that it be in the allowable range [0.a]. The reason for
this choice is that x(n) is 2 bound on the Lyvapunov function used in the minimization. A side benefit is
that the check for usefulness of the data set is very cost effective. We will return to a discussion of this
“unconventional” optimization technique. as well as issues of computational efficiency, in two places below.

It is notable that. in spite of the “noncausal™ scaling factor at time n — 1. ((n — 1), which might be
expected to create intractable nonlinearities with respect to AZ(n). it is still possible to derive polynomials
like (44) and (43) with which to optimize set measures of Q(n) [68]. Doing so. however, defeats one of the
main purposes of using the complicated scale factors. and whether such an optimization has any usefulness

remains an open guestion. We return to this issue in Section 6.5.2.

6.3 The SM-WRLS Algorithm
6.3.1 History and Development of SM-WRLS.

While developed geometrically, we know that the F-H OBE algorithm solves a LSE problem with time
varying weights. From this point of view. it is interesting to note that the algorithm is charged with focusing
on the hyvperstrip win) associated with the “new” data set. Intnitively, the scaling down of previous weights
is consistent with this concentration on the new data set. However, it is prudent to wonder whether a
tighter. or at least “simpler” membership set could be found. The SM-WRLS algorithm. to which we now
turn, addresses both the concern for a more conventional algorithm and the more “uniform™ attention to
the trie feasible set.

FEven though Fogel and Huang clearly state in their 1982 paper that there is an LSE problem underlving
F-H OBE. the geometric approach taken tends to obscure its presence. The approach. notwithstanding.
however, the ~similarity of the F-H OBE (as well as the D-H OBE) equations to WRLS is striking, and
it has not gone unnoticed in the literature. In their recent paper. Walter and Piet-Lahanier make the
following remarks [121]: “Let us stress. however, that the EPC and MVS algorithms are not just another
variation of RLS. As Schweppe puts it [{02]. a comparison of set theoretic concepts with stochastic theorv

reveals that




1. the detailed mathematical manipulations are very different.
2. the final equations look similar.
3. the final equations behave quite differently in general.

“Moreover, the type of information needed is completely different. The RLS algorithm only requires
measurements, whereas the EPC and MVS algorithms also require bounds on the errors.” As we know
from above, however, the difference between WRLS and F-H OBE (or any UOBE algorithm) is not as
different as one may infer from these comments. As Norton and Mo have recently written concerning
F-H OBE [86], “The algorithm [F-H OBE] differs from recursive least squares by an extra data-dependent
scaling of [the ellipsoid matrix #(n)].” In a 1989 paper. Deller [26] similarly recognized that “[F-H] OBE
is ‘WRLS with time varying weights™.™ It is this recognition, combined with Norton and Mo's formulation
for adaptive ellipsoid processing, that led to the UOBE formulation taken in this paper. (We will see that
UOBE aiso embraces adaptive strategies below.)

Until recently, however, this uniformity of ellipsoid algorithms was not fully appreciated. In the early
and mid 1980’s, Deller and students {30].[37],[38].[70], recognized the similarity of F-H OBE to RLS,
attempted to associate an ellipsoid directly with WRLS rather than conversely. The result is an OBE-
like algorithm which is exactly interpretable as conventional WRLS (i.e.. only equations (24) and (25)
with C,(n) = C(n) or {(n) = 1, Vn). with the sequence of optimal ellipsoid parameters A}(-) simply
interpretable as the weights used in the process. Fogel and Huang's volume measure y,(n) has been used
as the optimization criterion, but the trace measure can be employed as well. In later work, the use of
QR-WRLS was suggested to enhance the method in a number of ways to be described [26].

The algorithm proposed by Deller and others has been called set membership weighted recursive least
squares (SM-WRLS) to emphasize the nature of their approach. SM-WRLS is, in fact. a UOBE algorithm

with the following conditions:
1. {(n) =1 for each n;
2. QR-WRLS is used to implement the recursions (but MIL-WRLS can also be used);

3. Volume measure pu,{n) is used as the optimization criterion (but p,(n) can be used as well).

6.3.2 Illustration

At appropriate points in the paper, we will illustrate the behavior and performance of the UOBE ap-
proach through simulation studies. A common set of two systems will be used which will be introduced
here. For simplicity, the SM-WRLS algorithm is used as the nominal algorithm. The volume measure

is emploved as the optimization criterion. Many other example studies are found in the literature (e.g.
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[9],[24],(26],[27].[41],[19],[86],[89],{101]) including some with real data (e.g. [29].[77]). In particular, many
studies with time-invariant systems have been published, so we advance immediately to the case of time
varying parameters.

We consider the estimation of the parameters of a real signal. real parameter, time varying AR(2)
model of the form!?

Y1) = ar()y(t — 1) + apu(t)y(t — 2) + £.(8) (51)

with @.(t) = [a1.(2) az.(t)]H. Two similar systems will be used. The first is a more severe test of the
tracking ability of an identification algorithm. In this case the pole pair of the system alternates abruptly
between 0.8 £ j0.2 and —0.8 & j0.2 every 1000 samples, so that a;. alternates between 1.6, and a,.
remains constant at 0.68. In the second system. the poles alternate between the same sets of conjugate
pairs. but the transisitions are gradual rather than abrupt. In this case a;. changes linearly (between +1.6
and —1.6 and vica versa) over 1000 point ranges, then remains fixed for 1000 point intervals. We shall
refer to the two systems as the “fast™ and “slow” systems, respectively, though we hasten to point out the
the “slowly” time varying system does not represent a trivial tracking problem. Since only a;. changes in
each case. it is the more interesting parameter to observe. To conserve space. we show only the results for
ay. in each simulation. We found nothing particularly unusual or unexpected in the results for a:..

A 7.000 point sequence. y(-). was generated by driving the parameter sets with an uncorrelated sequence.
z.(). which was uniformly distributed on [-0.5.0.5]. ¢.(-) was generated using a random number generator
based on a subtractive method [94].

The inherent ability of UOBE algorithms (without any special adaptive provisions) to adapt and track
time varving parameters is sometimes quite dramatic. In this work, we have intentionally chosen systems for
which SM-WRLS exhibits less than excellent tracking performance in order to illustrate several important
points. For reference, in Figs. 6 (a) and (b). we show the results of using standard RLS in the identification
(no data selection and optimization. A,(n) = ((n) = 1 for all n). The algorithm is clearly incapable of
following the parameters in either the fast or slow case. The RLS results can be contrasted with those using
SM-WRLS in Fig. 7. Though not excellent. the SM-WRLS results are improved with respect to RLS (at
least initially). and it is important to note that this improved performance comes with somewhat improved
computational efficiency (more on this below). In this case SM-WRLS uses only the fractions p = 0.020
(fast svstem) and p = 0.025 (slow) of the data and vet yields better parameters estimates in the early
stages of identification. However, two important points are to be emphasized here. First. SM-WRLS does

not reliably and predictably adapt to time varving svstems. Even for more slowly time varying svstems.

"?Note that for the first time in this paper. we have allowed the dynamics of the “true” system to be time varving. The
theoretical developments above do not strictly support the identification of such systems. so the issue of adaptation is an
important one to which will shall pay close attention in the following.
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SM-WRLS (and UOBE algorithms in general) cannot be used in adaptive schemes with confidence. This
motivates the need for specifically adaptive techniques. Further, a deeper analysis of this situation reveals
a very important second point. The quantities y,(n) and the sign of x(n) (sgn{x(n)}) are shown in Figs.
8(a) and 8(b), respectively. At time n = 1000 we see a very disturbing development. The volume begins
to increase, and the parameter x becomes negative. Both of these trends are in violation of theory, but
they arise precisely because the theoretical development does not strictly support the identification of time
varying systems. The most revealing anomaly is the appearance of a negative x which indicates an “ellipsoid
of negative dimensions.” Theoretically speaking. the algorithm has become completely disintegrated at
time n = 1000, and its performance is therefore not predictable based on SM principles. Nevertheless. we
see that the parameters continue to be tracked rather well for at least another cycle. Apparently. there
is significant benefit to using the “optimization™ process even if the success is not analyzable. In fact, we
have seen this phenomenon in many other simulations. It is more likely to occur with rapid changes in
dynamics (as we discuss below). but may occur in slower systems as well. The conclusion is that. not only
is the apparent adaptive capability of UOBE algorithms unpredictable, but even when good tracking does
occur, the good performance is not necessarily attributable to the proper principles of the underlying the
methods. In turn. this latter observation adds to the uncertainty in predicting adaptive performance. We

shall return :o these points in future discussions.

6.4 Adaptive UOBE Algorithms
6.4.1 Introduction

While UOBE algorithms have been observed to have inherent and fortuitous adaptive capabilities as a result
of their optimal weighting strategies. we have just seen that these capabilites are unpredictable at best. Ac-
cordingly, measures have been suggested by Norton and Mo [R6]. and Deller and Odeh [26].[27].[31].[32].[837]~
[%9] to render explicit and controlable adaptation'®. Of three general methods suggested by Norton and
Mo, the bound incrementing method does not closely follow the UOBE paradigm established above. so
we refer the reader to the original paper for details. The other two Norton methods are discussed below.
All adaptive strategies for ellipsoid algorithms work on the general principle of iteratively inflating the
“current” ellipsoid in some sense before considering an incoming data set. The basis for this inflation
is to contain the shifting true parameters while at the same time increasing some measure of “size™ of
the ellipsoid (see (42) and (43) below). making it more likely that the incoming data. with potentially
novel information. will be selected. Deller and Odeh have suggested the nse of QR-WRLS in the adaptive

methods because of the convenijent compntational interpretation of the procedure. In principle. however,

" Additionaily, Norton and Mo briefly discuss adaptive strategies for other than ellipsoid algorithms.
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MIL-WRLS can be used as well.

6.4.2 Exponential Forgetting

A general UOBE algorithm can be designed to be explicitly adaptive within the established framework
by judicious choice of scaling sequence ((-). One seemingly reasonable choice is to let the scaling effect a
conventional forgetting factor,

(CHn)=a, 0<ac<l (52)

for all n. The computational mechanisms for including such a forgetting factor into both forms of WRLS
is found in Section 4.2. Additionally. if another scaling sequence ((-) is part of the algorithm for some
purpose other than adaptation (e.g. in F-H OBE). then the sequence ((-)/a can used for scaling in order
to achieve forgetting. Deller and Odeh have called this method ezponential forgetting, while Norton and
Mo call it scalar bound inflation because of its equivalence to progressively “loos=2ning” the past 4 bounds
(see (29)) as time goes on. Norton and Mo also point out that once any past optimal weight is tampered
with, all weights in its future become suboptimal in the sense considered above and should. in principle.
be reevaluated. As they acknowledge. however, this is not practically feasible in most applications.

One important detail must be made clear. We have noted in the discussion surrounding (46) that weight
scaling will effect both the covariance matrix C(n — 1) and parameter &(n — 1) in such a way that the
overall ellipsoid matrix is not affected. This means that the “expansion™ we desire in the present context
will not take place if the scaling is carried out “properly.” The remedy is to scale only the covariance
matrix prior to optimization. That is. the scaled matrix C4(n — 1) is used in constructing polynomial
{(44) or {45), but x(n — 1) is not scaled until after the data set is considered. It will be noted that a
formal problem arises with respect to our previous discussion. since the weights A, (1)...., An(n — 1) are
used in the scaled covariance matrix. while the weights A\,_1(1).....A,_1(n — 1) remain in &(n — 1). This
nuance, however, is necessary to achieve the desired result. Since the theoretical developments underlying
the UOBE algorithm do not. strictly speaking. support identification of time-varying systems. the use of
UOBE for adaptive purposes is based on heuristic procedures of which this “improper™ scaling is a part.

With the exception of the minor issue discussed above, exponential fogetting amounts to a UOBE
algorithm with non-unity scaling. Accordingly, it is somewhat inefficient because O@(0.5m? + km) multiplies
are required at each n just to implement the forgetting factor (see Section 6.5.1). Further. it has not been
found to be effective for adaptation in simulations. unless the system dynamics are changing rather slowly
[87]. We shall discuss this effect in the simulations below. The reason is that the exponential decay of the
influence of past data sets is frequently uot fast enough to disconnt very heavily weighted data. so that
the estimate does not respond to fast changes in the system dynamics. To counter this problem. a small &

might be proposed. but this has the effect of creating a very small effective “window™ which. in turn. leads
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to high variability and loss of spectral resolution. From the point of view of the ellipsoid. the pre-scaling
by a results in an inflation in the volume by a factor inversely proportional to a™/2. Therefore. a large a
results in little change in the ellipsoid, while a small « causes severe inflation of the ellipsoid and induces a
series of “oscillations™ in the ellipsoid size. Further. this cycle of expanding and shrinking ellipsc.ds causes
a tendency to accept more data sets. Therefore. from the SM point of view, small values of a are least
desirable. These phenomena will be illustrated in the simulation studies below.

The adaptive UOBE algorithms to which we now turn do not depend on a fixed factor. such as a.
to expand the ellipsoid volume. However. these algorithms expand the ellipsoid by (selectively) removing
previously accepted influential data sets from the syvstem, either partially or completely, and therefore,
relinquishing their influence on the current ellipsoid. thereby allowing it to expand and adapt to the

changes in the signal dynamics.

6.4.3 Forgetting by Back-Rotation

The forms of adaptation to be discussed here do not fit as neatly into our previous ‘ormalisms as does
expounential forgetting. Let us begin with the general UOBE algorithm for which the scaling sequence
is {(-). Having obtained an estimate @(n — 1) with assuciated covariance matrix C(n — 1). we wish to
consider the incoming data set {y(n).x(n)). Before doing so. however. and even prior to scaling, we adjust
the existing svstem of equations in order to “downweight” the influence of some. nr all. of the previous
data sets. The means by which the existing data sets are modified is to. in effect, introduce different
minimization weights. In the present situation. we wish to change (in general. all) weights used at time
n— 1. A, (). t € [Lun—1] to a new set. say \,_y4(t). t € [I.n — ] We assume that the new set of
weights is not obtained by simple scaling, but restrict ourselves to the case in which the new weights will
be of the form

An—lxi“):[l—‘vj': }”)]’\n—l(”- fE[l.ll—l] {3)

where 0 < £, _(t) < 1. In effect, we wish to remove the a fraction equivalent to -, _1(t) of the coi.tribution
of the data set at time ¢t from the estimate. Not surprisinglv. this can be accomplished by treating
{y(ti.z(t)) as a new data set with “weight™ ~o, . (£)A,_1(¢). In the MIL-WRLS context. no modifications
to the basic algorithm are required. In the context of QR-WKLS where the square root of the weight is

—t1/D . .
12 and introducing

taket (see discussion below (28)). this is achieved by using weight [ _({t)A,_ (1))
some sign changes in the algorithm [26].[27]./8x].

The method by which an data set is compietely removed from the previous syvstem using QR decom-
position by Givens' rotations has been called back rotation in the papers cited above. We will use this

term to refer to removal by both QR-WRLS and MIL-WRLS even though it loses its technical significance

for the latter. The technique to partially remove a prior data set is a simple generalization suggested in




[32].[87).[88]. Let us now formalize this procedure, focusing on QR-WRLS (similar developments can be
obtained for the MIL-WRLS version).

Suppose we. in principle, sequentially modifv weights as described above. beginning at time t = 1. The
following (and similar) quantities will pertain to the “downdated™ svstem of equations whose weights have
been modified to time t: Cy(n — 1:t).Tyn — i) Dyyn— 1:).@4n — 1:t),kg{n — 1:t), where each is
similar to familiar quantities in the foregoing discussions. We also omit the second argument if it is n — 1.
For example. C4(n — I)d:d Cyn~—1:n—-1). TIollowing the modification of the tth data set. the downdated

equation to be solved in the QR-WRLS method (if the solution were desired) is
Tin-1:0@dn—=1:t)= Dyin—1:t). {(54)
The downdated ellipsoid matrix is Cy{n — 1:1)/x4{n — 1:t} where

Cin-1:t)y = THn-10Tyn-1:t). (53)

Kin—18 = éi4n—-1)+ Keln—1:t), (56)

with 8, 4(n - )'E tr{D{id(n — 1Dy 4(n—1)} and

v
-1
—_

Faln— 1it) = Rl = Lt = 1) = s (O A1 (H)(t) (1 — 7Nty | y(t) H’)- (;

The quantity r(n - 1:0) L in - 1) represents the updated value of & which includes (y{n — 1).x(n — 1)}.

Equations (36) and (57) follow immediatelv from the definition of x found in (10) and a basic understanding
of the back rotation process being nndertaken. Following all necessary dowrdating just prior to time n.

the algorithm uses the downdated syvstem to compute the downdated and scaled quantities

(rq40) e :cH(n)C;l(n — Dxei(ni{{n) = .c”(n)C;_l(n ~ Lx{n). {3R)
Hiin) u x”(n)C;“)(n — Dz(niciin) = ‘r”(n)C;.j(n — l)x(n) (necessary for trace only). (39)
and
g Mgl — 1
Kistn —1) f Ei—(—)———) {60
cin -1}

in turn, these numbers are used in place of their “non-downdated™ counterparts in (.41) or (15} to test for
the existence of. and to compute. the optimal weight for {y(n).xz(n)). Once the optimal AL(n) is found.

we define

1
=
|

/\77~|.1(f'" t
Ait) = (61)
ATinh t=mn
for the next teration.

The process deseribed above would appear to be extraordinarily computationally expensive in general.

since eack past weight is modified at each n — 1. Recall. however. that “most™ data sets are never
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included in the estimate in the first place (A;(n) = 0) and therefore the system need not be downdated
at these times. If the data set at time t. for example, was not included in the estimate, then formally
Ciyn-1t+1)=C(n=-1:t),Tyn—-1:t+1)=T(n-1:t), etc.. and no computation is required. A similar
situation obtains if a data set. say at time ¢. was completely removed by back-rotation so that A, _{¢) = 0.
In this case. no computational effort is required to downdate this data set at time n — [. Further. in many
cases the modification of a particular data set is not desired. If. for example. the data set at ¢ is not to be
altered. then n-1(t) = 0. and no computation is necessary. Finally, note that when the “new”™ data set at
n is rejected (Ar(n) = 0). then T(n) = Ty(n - 1) and &(n) = @,4(n - 1), and. once again. no computation
is actually required.

A wide range of adaptation strategies is inherent in the general formulation described above. many of

them computationally inexpensive. Three cases are considered:
1. [is a constant window length and. for all n,

l. t=n-1 X
Fn-tlt) = : (62)
0. other t

2. [is a constant window length and. for all n. | ~ 2, () is zero prior to time n — [+ 1 and smoothly

(perhaps linearly) tapers to unity at time n.
3. T._1 is some past set of equations to be “forgotten.” and.

1. te T, .
Fa-tlt) = . (63)
0. t€7T,

The first case above corresponds to the use of a sliding window of length {. outside of which all
previous data sets are completely removed. Nortcn and Mo have called this case fired memory bounding
(X6] while Deller and Odeh have called it simply windowing and have suggested an efficient algorithm for
implementing it [32],[87],[88]. The estimate at time n covers the range [n — [ + l.n]. The windowing
technique is made possible by the ability to completely and systematically remove data sets at the trailing
eage of the window. Only one back-rotation is required prior to optimizing at time n. and this is only
necessary if A, _((n=1)y= A _,(n—=1)#0.

("ase 2 represents another windowed. or finite memory. approach. but in this case the window is
permitted to taper smoothly to zero as it moves into the past. For example, the effective weights might
decrease linearly when moving toward the trailing edge of the window. Hence. the data set at the trailing
edge has an effective weight of 7'\, _jin + | = ) aud the data set to be rotated in has an effective weight

of Ai(n). To reiterate an important point made in the general discussion above, although each data ot




must be partially rotated out ! times. onlv those data sets that were previously accepted (in the past {
recursions) need to be considered by the algorithm. Let us refer to this method as tapered forgetting.

We remark that a tapered window can smooth the estimate, but at the expense of a significant amount
of computation. Each accepted point must be back rotated about [ times where it can be true that { >> m.
Depending on the circustances, the extra computation required to implement the smoother window may not
be warranted by the extra amount of computation (see simulations below and [87] for further discussion).

Case 3 is a different type of strategy which Deller and Odeh call selective forgetting. This technique
selectively chooses the data sets to be removed from the system based on certain user defined criteria in
order to remove their influence from the system. The selection process can be, for example, to remove (or
downweight} only the previously heavily weighted data sets, to remove the data sets that were accepted
in regions of abrupt change in the signal dvnamics. or to remove the data sets starting from the first data
set and proceeding sequentially. Whatever the criteria. a fundamental issue is to detect when adaptation
is needed to improve the parameter estimates. This issue is further investigated in the simulation studies

below.

6.4.4 Illustration

The simulation results of the several variations on the general adaptive SM-WRLS algorithm are shown.
We continue with the example initiated in Section 6.3.2. The reader is reminded that only the results for
1y. are shown.

The first experiment concerns the use of exponential forgetting. We noted above that this form of
adaptation will often fail to track quickly varving parameters. This was the case with both the “slow™
and “fast” systems used here for any reasonable forgetting factor. The problem is the inability to “forget™
heavily weighted data quickly enough. Accordingly. we tried the experimental procedure of replacing any
optimal weight by unity before incorporating the chosen data set. The results for forgetting factor o = 0.99
are shown in Fig. 9. Whereas the “weight override™ might be expected to cause a vastly increased fraction
of the data to be used. in fact only fractions p = 0.073 and p = 0.094 of the data were used for the
fast and slow svstems, respectively. (learly, the tracking is verv good for the slow system. and perhaps
acceptable for some purpuses for the trst svstem. a = 0.99 was the smallest forgetting factor which would
give “acceptable”™ tracking in the sense of reaching the “target™ values during the each cycle in the fast
case. This large forgetting factor is responsible for the variability seen in the regions which are easier to
track. The estimate can. of course, be smoothed by choice of a smaller a. In the slow case. the estimate
can be smoothed considerably before time resolution is lost.

Figure 10 shows the volume traces. and Fig. 11 sgn{x(n)}. as functions of n. As in the “nonadaptive”

experiments, we observe a tendency for s to hecome negative when the parameters change abruptly. The
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problem is not as “serious” as it was with the nonadaptive cases because the algorithm tends to “recover.”
That is, when x goes negative, the volume goes into a trend of expansion (due to forgetting) ultimately
leading to a positive k. We can imagine that the ellipsoid ultimately becomes large enough to “recapture”
the moving parameters, and bring the identification back into line with the underlying principles. However,
a positive x is a necessary but not sufficient condition for this to be true (for the ellipsoid to contain the
true parameters), so we must be careful with this analysis. In the use of specifically adaptive algorithms.
generally we observe that the identification does enter phases in which it operates outside the principles of
SM identification, but that it tends to recover and operate properly due to the adaptation measures.

Figure 12 shows the simulation result of the windowed SM-WRLS algorithm using a window of length
250. This strategy uses only the fraction p = 0.094 of the data for the fast system, and p = 0.10 for the
slow system. Since most of the data sets rotated into the system are eventually rotated out, this strategy
effectively uses about twice the number of data sets rotated in (b = p). More data than with the unmodified
SM-WRLS algorithm are used. but more accurate estimates result and the time varying parameters are
tracked more quickly and accurately. For the slow svstem, we observe that the algorithm behaves properly
(in the sense that x remains positive) for nearly the entire range. For the fast system, there are relatively
short recovery phases (= 100 points) required after each abrupt change in dynamics. The volume traces
behave as expected with trends toward increase (due to “forgetting™) interrupted by occassional decreases
as data sets are accepted. An example for the slow case is shown in Fig. 13.

As expected, the estimates are smoothed. time resolution lessened, and the fraction of accepted points
decreases. as window lengths increase. The parameter estimates for the fast system and window length
[ = 500 are shown in Fig. 14 as an example. The fractions of data accepted are p = 0.070 and p = 0.060
for the fast and slow systems, respectively. Also not unexpectedly. recoveryv periods. which were virtually
nonexistent for the slow system with [ = 250. are now present with { = 500. though still for a small fraction
of the time. The recovery phases for the fast case increase in duration so that they now occupied more
than one-third of the range.

As the window length continues to increase. the effects reported above continue to change in the ex-
pected ways. In particular, it is not unexpected that at some point. the process would begin to disintegrate
from a theoretical point of view. since as | — x. the "windowed™ algorithm approaches “nonadaptive”
SM-WRLS. In fact, the recovery phases for the fast system continue to increase until at [ = 1000. the
parameter x is negative for nearly the entire range following the initial change. The process erodes and
fails to track properly after the first one and one-half cycles. Interestingly. only the fraction p = 0.030
of the data are used in this estimate, and most of these are taken in the initial cycles. The parameter
estimate and s are shown in Figs. 153(a) and 15(b) for this case.

As an aside. we obzerve that this and similar UOBE algorithms are frequently capable of tracking while
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using small fractions of data, even “in violation of theory™ (x < 0). However, empirically, the estimate
frequently diverges after a problem dependent interval. This suggests the possibility of monitoring x and
“resetting” the algorithm after a sustained period of “violation.” (The selective forgetting approach to
be described can be interpreted as a highly conservative version of this procedure.) Such a procedure
would be quite unpredictable unless the theoretical analysis the of the process under conditions of negative
x is forthcoming. In fact, this “unpredicitability™ is the same problem encountered when no adaptation
measures are taken. but with some alleviation or postponement of the undesirable performance.

The selective forgetting strategy selects the data sets to be (partially or corupletely) removed from the
estimate according to certain criteria in order to remove their influence on the result. In keeping with
foregoing developments, the selection procedure used here is to monitor the parameter « for positivity.
When it is found that x(n) < 0 for some n, we simply back-rotate previously accepted data sets, beginning
with the oldest data set remaining in the estimate. until this number becomes positive. We reiterate
that x({n) merely being positive does not insure that the true parameters have returned to the interior
of the bounding ellipsoid, so the procedure is purely experimental. This technique yields the simulation
results shown in Figs. 16(a) and 16(b) for the fast and slow systems, respectively. The identification of
the fast system uses only p = 0.050 of the data. 84.0% of which are back-rotated for adaptation. so that
b = 0.042. For the slow system. the rates are p = 0.064 and b = 0.047. While usually requiring even
less computational effort, this method is seen to provide superior estimates to those obtained from the
other adaptive techniques. For the fast system. it is noted that large errors occur in the estimates at the
points of discontinuity in the true parameters. At some computational expense, this could be potentially
be resolved by. after forgetting, removing the data set (y(n).x(n)) which caused x(n) to go negative and

recomputing the weight (or some similar heuristic).

6.5 Implementing the UOBE Algorithm in O(m) Time
6.5.1 Complexity of the Basic UOBE

From a signal processing point of view. one of the most interesting aspect of a UOBE algorithm is its
inherent ability to select only data points which are informative in the sense of refining the feasible set.
[he fact that typically T0% — 95% of the data are rejected by this criterion would seem to imply a remarkable
savings in computation. We have noted in Section 6.2, however, that this is only true to the extent that
the SM preprocessing of the incoming data set is negligibly expensive compared with the inclusion of it in
the estimate. In this section. we examine some factors related to this complexity issue.

A comparison of the computational loads of the various algorithms disenssed in this paper is shown in
Table 1. A complex floating point operation (cflop) is taken to be approximately one complex multiplication

plus one complex addition operation. Additions which are unpaired with multiplications are ignored.
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The numbers shown arise from efficient procedures which avoid recomputation of quantities, for example
e(n.@(n — 1)), which are shared among different operations. Only numbers dependent upon m and k are
shown with constant (usually small} numbers of cflops ignored. Not shown in the table are tallies to update
k(n), and the number of operations needed to compute an optimal weight when the data set is accepted.
k(n) requires about 4 cflops in the MIL-WRLS cases, and (m + 1)k in the QR-WRLS cases. Optimal
weights require a small number of cflops (about 25) which may be thought of as nearly independent of
m and k since all quantities computed are used for other purposes. Figures shown are based on volume
optimization, but the trace tallies are nearly identical.

The following analyses are applicable to the usual case in which the number of outputs from the system,
k.is small relative to the number of parameters estimated. m. In fact, for simplicity, let us set £ = 1 (MISO
system). The general conclusions reached. however, are valid when k << m. and we shall continue to show
y(-) and (-, @(-)) as vectors.

As a standard of comparison, we note that conventional MIL-WRLS requires @(3m?) cflops per n with
an additional @(m?/2) required to include a scaling sequence ((-). For QR-WRLS, O(2.5m?) cflops per n
are required with an additional @(m?/2) needed for scaling.

From Table 1. we may state that the average operation count for an adaptive UOBE algorithm imple-

mented on a sequential machine is approximated by
fopt ~ O(cym?) + sO(m?/2) + bO(c,m?) + pO(c3m?) flops per n (64)

where. s is unity if the algorithm involves a scaling sequence and/or a forgetting factor and is zero otherwise;
p is the average number of data sets accepted per n: b is the average number of back-rotations performed
per n: and ¢y.c; and c3 are small numbers (all in the range 0.5 - 2.5) which depend upon whether MIL-
WRLS or QR-WRLS is used. The first term is due to the procedure which checks for information in the
incoming data. The others are attributable to scaling, adaptation, and solution update. respectively. The
subsecript “opt™ is used to indicate that the proper optimization described above is used. Apparently. the
UOBE algorithm, as presently formulated. is an “O(m?)" process. The objective of the section below is to
demonstrate a method for reducing the effective complexity to O(m) by reducing the checking cost. thereby
making a UOBE algorithm a desirable alternative to standard RLS-based methods from a computational
point of view. We also mention a parallel processing approach which likewise achieves the O(m) goal.
Before detailing the methods. some points about the use of the approximation “O(m)" are necessary.
The first concerns a practical matter. The objective in the following is to reduce the computational
complexity of the algorithms to an average of O(m) flops per n. It will be appreciated that. without
data buffering. the data flow is still limited by the worst case O{m?) computation. However. if a butfer
is included. the algorithm easily be structured tu operate in O(m) average time per n. Further. by using

interrupt driven processing of the checking procedure, it may be possible to reduce the average time even
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further. Other points concern algorithmic details. We see from (64) that the use of a unity scaling sequence
(SM-WRLS algorithm) is required in order to avoid an invariant @(m?*/2) flops per n. We specifically
assume the use of this algorithm below, although the O(m) checking procedure to be developed does not
depend on this choice. Secondly. we note that even if the checking procedure can be made O(m). terms
bO(m?) and pO(m?) (typically b = p) persist in (64). This means that to truly achieve O(m) complexity.
b and p must be O(1/m). For large m. this will not be always be the case. In fact, some experimental
evidence suggests, not unexpectedly, that p increases. rather than decreases. with increasing m. For ~large”
m (conservatively, say, m > 10), therefore. it is the case that the complexity is reduced to O(pm?) by
O(m) checking. It should be clear however. that neither O(m) nor O(pm?) complexity can be achieved if
the checking procedure remains O(m?). We therefore pursue an O(m) test for information in an incoming
data set.

With UOBE. the number of computations needed for each n depends on whether the corresponding
data set is accepted for processing by the optimization criterion. UOBE is essentially reverts to MIL-WRLS
or QR-WRLS when a data set is accepted. Since most of the time the data set is rejected. for significant
complexity gain, a UOBE algorithm must require many fewer than ©(3m?) flops for checking. We digress
momentarily, therefore, to view some of the details of the checking procedure.

In principle, the information checking procedure for the volume or trace algorithms consists of forming
either F.{A) or Fi(A) of (44) and (15). then solving for a positive root. In either case, however. the
polvnomial can have at most one positive root (see Proposition 2 in Appendix A.l1). The test therefore
reduces to one of testing the zero order term for negativity. When the test is successful, then the root
solving and updating procedes. requiring the standard MIL- or QR-WRLS [oad. plus a few operations for
linding the optimal weight. The most expensive aspect of this information test is the computation of the
quantity (7,(n) in the case of volume minimization. or H(n) for trace minimization. (For generality. we
assume downdating is used. If this is not the case. it is merely necessary to drop the subscripts “d™ on all
quantities.) In the MIL-WRLS case. this requires O(m*) flops. In the QR-WRLS case. a problem arises
because (7 {n) depends upon the inverse normal matrix. C;‘. which is not otherwise used in the process.
Similarly, H(n) depends on C;z. In the paper by Deller [27]. the following method has been suggested

to sidestep this problem for (74 n): Recalling the definition of (+;(n) and noting and (27). we can write
(ig{n) = .I:H(n)T;‘(n -1 bT?T( n—tiziny g’{[(n’)gi( ni=lganml?. (65)

Since rin) = T.f/(n ~ g (n). and the matrix T',»If n—1)islower triangular. g /4 n) is easily found from the
available quantities at time n by forward substitution. The procedure can be repeated to compute Hin)

if needed, since
Hany =gty =0T i~ gamyE R mhn) = T hyiny 166)
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The total computational load for this method is O(m?/2) for G4(n) and O(m?) for Hy(n) which is far less
than the effort required to invert Cy(n—1). When MIL—-WRLS is used for the covariance and parameter
update in UOBE, the checking (“precomputation” of GG4(n)) removes @(m?*) flops from the update load.

but the checking does not contribute to the update for QR-WRLS.

6.5.2 Suboptimal Tests for Innovation in the Data

In spite of the simplifications suggested above, the computation of the quantities G4(n) and H,4(n) remain of
O(m?) complexity. Clearly. the trick is to try to avoid the computation of these numbers in the information
checking procedure. Deller and Odeh {32] have proposed a simple suboptimal updating rule: Include the
data set at time n only if

i e(n.@(n - 1)) I*< 1(n). (67)

This rule is used for both the volume and trace minimization versions of the UOBE and is not affected by
inclusion of a causal scaling sequence. ({-). The rationale for this test is simiple. The zero order cofficients
ap and bg, of (44) and (45). respectively. will never be positive if the test is met. In the volume case. for
example, the suboptimal check tests whether ag is negative if the term —ky(n — 1)G4(n) is neglected. This
ignored term is always negative and hecomes small as n increases if no forgetting is used. For a given set
of preceding optimal weights. A=(1)... .. A*(n — 1). the suboptimal test will never fail to accept a data set
which would have been accepted by the optimal test. A similar analyvsis applies to the coeflicient by of the
trace algorithm.

A deeper analysis of this suboptimal test has been made for the volume algorithm by Deller and Odeh

(32]. Let us denote the estimatior rror matrix at time n by
On)Ee.-0e(n). {65)
The following inequality results immediately from (37) - (10):
- H - )
@ (niC(n)@B(n) < k(n). (69
While it is tempting to view x{n) as a bound on @(n) (see discussion of the D-H OBE algorithm below . it
is important to note that each side of this inequality is dependent upon A (n). I[n fact. let us temporarily

write the two key quantities as functions of A (n). C(n.A.(n)) and x{n. X, (n)). and consider the usnal

volume quantity to be minimized at time n.

poiny = detintn. A (nNC™ N A (n))]. (TN

It is assumed that enough dara sets have been included in the covariance matrix at time n — 1 so that its

elements are jarge with respect to the incoming data'*. If a causal scaling sequence is included. the quantity

“The validity of this assumption depends to <ome extent on the chaice of scaling sequence ({-} if one is included
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det C(n. A(n)) is readily shown to be monotonically increasing with respect to A,(n) on the interval [0, x )
(87]. with C(n.0) L Cn-1, A;_y(n—=1)). Under the assumption above, det C{n.A,(n})) will not increase
significantly over reasonably small values of A,(n). The attempt to maximize det C(n.A,(n)) in (70)
causes a tendency to increase A, (n) in the usual optimization process. However. the attempt to minimize
k(n.Ap(n)) generally caises a tendency toward small values of A,(n). unless a minimum of k(n.A,(n))
occurs at a “large” value of A,(n). To pursue this idea and further points of the argument. we use two
kev facts about k(n, Ay(n)) which are given in Proposition 3 in Appendix A.l. These are that x(n. A, (n))
is either monotonically increasing on positive A's or it has a single minimum. A necessary and sufficient
test for that minimum is (67). Accordingly. it can be argued that: If det C(n. A {(n)) is increasing, but
not changing significantly over reasonably small values of A,(n), then it is sufficient to seek A}(n) which
minimizes s{n, A (n)). If k(n.A.{n)) is monotonically increasing on A.(n) > 0, this value is A, (n) = 0
which corresponds to rejection of {y(n).x(n)). It suffices, therefore to have a test for a minimum of
K(n,A,(n)) on positive A, (n). As noted above. a simple test is embodied in condition (67). If this test is
met, it is then cost effective to proceed with the standard optimization centered on (44). Otherwise. the
explicit construction and solution of «g of (44) can be avoided.

In fact, this suboptimal test for innovation is similar to that used in the D-H OBE algorithm reported
in [24] and discussed in Section 6.2.2. The test used in D-H OBE is to accept the incoming data set only
'Ifls

;“)(71.9(71—1))<*,(n)—r{(n—1). (71)

This inequality likewise tests for a minimum of k(n) with respect to A, (n). and differs in form from (67)
because of the noncausal scaling factors {see (22) and surrounding discussion). There has been some
controversy in the literature as to the meaning of this test. Dasgupta and Huang argue simply that ~x(n)
is "a bound on the estimation error.” and should be minimized. [ndeed. the minimiz.ition of ~{n) is the
optimization criterion used in D-H OBE. and no apparent connection to a set measure on the underlving
ellipsoid is made. Dasgupta and Huang's claim has been disputed by Norton and Mo [R6] and is not c¢learly
supported by the heuristic arguments above, because the relative independence of C(n) and M. (n) is not
tenably argued. Nevertheless, examination of the analytical arguments above does reveal some interesting
siinilarities between the use of the D-H test and the suboptimal test (671, These revelations nearly (but
not quite; provide justification for the D-H test.

While it is not exploited in the D-H OBE algorithm for reasons discussed in Section 6.2.2, the D-H

hvperellipsoid nevertheless dors have a volnme at each n. Liu ¢t al. 16X] have recently shown!® that there

> A scalar error is shown since this algonthm is developed for a SISO modet.
"“Somewhat nnexpectedly. perhaps. becanse of the noncausal scale factors andd the nonlinearities in Aaini which would be
expected to arise.
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1s a quadratic equation in A similar to (44) which must be solved to find the optimal “volume™ root (see
Corollary 2 in Appendix A.1). For the sake of discussion. let us call the weight which optimizes volume
AV, and that which optimizes k(n) A*. The volume quadratic has the amazing property that its zero order
coefficient is identical to that in (44). ag. and may be checked for negativity as a necessary and sufficient
test for the existence of an optimal weight A", Similarly to the suboptimal SM-WRLS strategy, the D-H
test (71) comes quite close to being a sufficient test for negativity of ag, and therefore a sufficient test for
whether the volume can be diminished. Further. even if the D-H weight A" is not equal to A* (and it likely
will not be), it can still be shown to shrink the volume [68] as long as A" > 0 exists. Consequently. if (71)
were exactly a test for ag < 0, then it would follow that the D-H algorithm. by reducing & simultaneously
reduces volume. The fact that A* does not optimally minimize volume is apparently a small price to pay
for the ability to prove convergence. Regrettably, the test (71) is not quite sufficient to assure ag < 0.
Additionally. it is must be true that (G;(n) > mk. This condition is most likely to be met for small n.
precisely when the most data sets are likely to be accepted. However, there is no assurance in general that
this condition will prevail. Consequently the D-H OBE test, while part of a very different approach. comes
intriguingly close to being justified by the same means as the suboptimal test associated with SM-WRLS.
but falls somewhat short. Some further theoretical work may ultimately resolve the apparent problem.
Interestingly, the Deller-Odeh test (67) could be used as a “suboptimal” criterion for accepting data in
the D-H OBE algorithm. That is, (71) is satisfied whenever (67) is met. The benefit of this suboptimal
approach would be that it would assure that volume would be decreasing at each step by minimizing .
thereby providing a clear pointwise justification for the D-H approach. Before such an approach were
adopted. it would be necessary to ascertain that the convergence result (which is the raison-d'etre for the

D-H OBE algorithm) is preserved.

6.5.3 Computational Complexity of UOBE Algorithms with Suboptimal Checking

Recall that the purpose of this pursuit is to find a way to avoid the m? flops necessary to carry out the
checking process in the optimal algorithm. The test {67) requires only O(m) cflops. so that the revised

operation count is!’

fsunopt ~ Olm) + sOf m?/2) + B O(e3m?) + p'O(c,m?) cflops per n {

-1
[ 2%

where b’ is the average number of back-rotations per n under the suboptimal checking policy: p’ represents
the fraction of the data sets which are included in the update: and s indicates whether scaling is used. As

we have stessed above. even as p’ — 0 the suboptimal algorithm remains of ©O(m?/2) complexity per n on

'"Note that (G4n) is no longer compnted i1n the checking phase so that the operation count for MIL-WRLS i the full
O im?y




a sequential machine, unless SM-WRLS ({(n) = | Vn) is used. Herein lies one of the most compelling
reasons for the choice of the simplest form of UOBE algorithm in signal processing.

In light of (72), let us briefly consider the computational loads imposed by the specific adaptation
strategies described above. In each case. we assume QR-WRLS underlies the process, but the discussion
for MIL-WRLS is similar.

Of the adaptation methods described above. exponential forgetting is the most expensive computation-
ally, unless the UOBE algorithm already employs a non-unity scaling sequence. If the algorithm does not
employ a scaling sequence (s = 0 in (64) and (72)). then the inclusion of the forgetting factor essentially
imposes onc (s = 1) and adds O(m?/2) cflops per n. If the algorithm does contain a scaling sequence,
then the forgetting factor can be combined with it prior to scaling, requiring only one cflop per n.

Since back-rotation is essentially equivalent to a covariance (or T(n)) update!® for an incoming data
set, each of these rotations takes O(2.5m?) cflops. If b back-rotations are performed on the average at
each n, then effectively ©(2.5bm?) additional operations are required by the adaptation procedure. Since
p is usually small. whether a particular adaptation strategy is cost-effective depends on the number 6. For
simple windowing, for example, b6 = p and the adaptation adds negligibly to the computational load. For
tapered forgetting, on the other hand. b = pl, where [ is the effective window length which may be quite
large. In this case, the adaptation might be the dominant cost requirement. completely overshadowing
any savings gained by suboptimal testing. for example. A high computational cost, therefore. might be
incurred for the benefits of a tapered window in the analysis. Finally, the cost of the selective forgetting
routine depends entirely upon the criterion emploved for deciding to back-rotate a previous data set. which.

in turn, determines the value of . An example will be discussed below in the simulation studies.

6.5.4 Illustration

To illustrate the efficient methods based on suboptimal checking, we continue the study of the svstems
described in Section 6.3.2. Not unexpectedly, the suboptimal “nonadaptive™ SM-WRLS algorithm fails to
track either system properly. The result is similar to Fig. 7.

As illustrations of adaptive methods. we repeat the exponential forgetting and selective forgetting
experiments performed above. We use the same techniques and conditions except that the suboptimal
test is employed. Figure 17 shows the parameter estimates. and Fig. 18 the sgn{x(-)} traces, resulting
from exponential forgetting. Comparing Figs. 9 and 17 we see that in the case of the fast system. the
parameters resulting from suboptimal testing track the true parameters more accurately for the first two
cycles, but then show signs of “breakdown™ in the third cycle unlike the parameters resulting with optimal

checking. No definitive conclusions can be drawn from this comparison of fast system results. In particular,

"*Note that a parameter solution update is not required. just the covariance update.
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it should not be concluded that suboptimal testing will lead to faster disintegration of tracking. Indeed,
by comparing Figs. 11 and 18, we see that there is a much greater tendency for k to remain positive in the
suboptimal case. In fact, there is evidence in the » trace that the failure to track well in the third cycle
is a transient effect from which the identification may recover. In the slow system case, somewhat more
variance is seen in the parameter estimate with respect the optimal checking case, but this is apparently
celated to the many fewer data selected. Note the remarkable improvement in the x behavior with respect
to the optimal case, indicating that the identification is more likely operating within the principles of SM
theory for suboptimal checking. Another important observation is that the number of data sets selected by
suboptimal checking is many fewer (roughly half) that required by optimal checking. We currently have
no explanation for these preferable behaviors of the suboptimal checking case. but. importantly, theyv have
been quite generally observed across many simulations.

In a second experiment, selective forgetting is used in conjunction with the suboptimal testing. For this
case, the parameter resnlts are practically indistinguishable from those obtained using optimal checking
(see Fig. 16). The notable difference is once again in the greatly reduced number of data used in the
suboptimal checking experiments. For the fast svstem p’ = 0.022 and b = 0.019. and for the slow system
p' = 0.041 and b’ = 0.028. Again each of these fractions is roughly half the corresponding figure required
in the optimal checking cases.

[n summary. we zenerally observe that the suboptimal technique uses about half as many data. but
produces comparable estimates to those obtained using the optimal procedure. This is true whether good
or bad tracking results. This means that not ouly does the suboptimal procedure reduce the complexity
of testing the data sets for innovation (motivation for its development). but it also reduces (by about a
factor of two) the unmber of operations spent in rotating data sets into the system of equations. Further.
suboptimal checking frequency results in more "meaningful” identification in the sense that x has a much

t

higher tendency to remain positive. Other examples using suboptimal checking are found in [32].[%7].[R9].

6.6 Convergence Issues and Colored Noise

In the following. we return the the case of time-invariant systems and discuss a few issues related to
convergence and colored inputs.

One of the interesting and practical benefits of having interpreted UOBE algerithm as a WRLS algo-
rithm with a bounded error “overlay™ is the immediate consequence for convergence of the estimator. It is
well-known that if the sequence €.(-) is wide-sense stationary. second moment ergodic almost surelyv (a.s.).
white noise (see discussion surrounding ( 14)). then the WRLS estimator @(-) will converge asvmptoticallv
to @, as. (e.g. [45]). In the present case. we need only to add the qualifier that the UOBE algorithm not

cease to accept data in order to layv claim to this useful result.
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Likewise, we may even assert a.s. convergence of the WRLS estimate, albeit to a bias. when e.(-) is
colored and persistently exciting!® (p.e.) [47]. Even in the presence of colored errors, therefore, as long
as the acceptance of data does not cease. and the "sampling” induced by data selection does not interfere
with the p.e., we may expect the UOBE estimate to converge.

[t would be interesting to have a precise understanding of the asymptotic behavior of the hyperellipsoidal
feasible set, especially in the case of colored noise. Knowledge that the ellipsoid is vanishing (white noise).
or becoming as small as possible (colored noise). could be very useful information indeed. In the white
noise case, a sufficiently small ellipsoid could serve as a reinforcing indicator of convergence, and offer a
means of determining error bounds on the estimate. In the colored case., a small feasible set (known to
contain the true, unbiased estimate) could be indispensible. Unfortunately. a convergence proof for most
instances of the UOBE algorithm is not forthcoming. The original OBE paper by Fogel and Huang {41} is
sometimes misunderstood to indicate the convergence of the bounding ellipsoid to a point under ordinary
conditions on e.(-). In fact. the paper only proves this convergence for the case of unity weights so that
the fundamental optimization process is not taken into account. No known proof of this desirable result
for the F-H OBE algorithm. or for any instance of UOBE with causal scaling exists, whether optimal or
suboptimal checking is used. However. it can be shown for the volume algorithm with causal scaling (see
Corollary 3 in Appendix A.1) that if an optimal weight exists at time n, then if the data set is included

using this weight, then the volume will certainly decrease:
wo{n) < py(n—1). (73)

This indicates that the ellipsoid volume will converge to some unspecified size in some unspecified manner.
A similar result can be demonstrated for the trace algorithm [30].

In spite of this encouraging result. one of the drawbacks of the volume approach is that the set measure
i, 15 not a proper “metric” in the parameter space. By this we mean the following: Suppose we propose
the distance measure d such that at timme n. d(@(n),@.) = u,(n). We immediately find that d fails to be
a proper metric since d(@(n),®.) = 0 does not implv that @(n) = @.. This unfortunate situation arises
because the ellipsoid may potentially degenerate and reside in a subspace of C"**_ thereby achieving zero
volume without being reduced to a point. According to Nayeri et al. {R0]. this will likely only occur if
p.e. is not achieved. and is therefore a more important problem with colored disturbances. This potential
anomaly provides motivation to consider the use of the trace measure for which a degenerate ellipsoid will
not produce a zero set measure.

It has frequently been noted is that the hyvperellipsoidal bounding sets resulting from UOBE algorithms

can be quite “loose” supersets of the exact feasibility sets {polvtopes) (e.g. [R].[83]), particularly in ~finite”

""Please read the abbreviation “p.e.” as “persitently exciting” or “persistency of excitation.” as appropriate.
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time?°. However, many simulation studies in the literature (white noise case) have shown the volume of the
ellipsoids to become quite small in the “long term.” Further. as we and other researchers have demonstrated.
the empirical convergence and tracking properties of the UOBE estimator are favorable in spite of the few
data used. This is an indication that the presence of the ellipsoid and the optimization procedure centered
on it, are quite useful for signal processing, regardless of our present inability to completely understand
its behavior in theory. The results presented above offer further support for “good behavior™ of this class
of algorithms by indicating that the ellipsoid measures will converge to some unspecified size in some
unspecified manner. This result has not been clearly understood. and its finding offers some hope that a
proof of convergence (in some sense) for the UOBE algorithims may be found in the white noise case.

The D-H OBE algorithm [24] has been cited above as an instance of UOBE which does exhibit con-
vergence of the ellipsoid under usual “white noise™ excitation conditions. From the UOBE point of view,
the trick emploved by Dasgupta and Huang is 1o use a noncausal scaling sequence which is also pointwise
optimized in a certain sense. In particular ((n) = (1 — A;(n))~! for each n, so that the previous weights
are also modified in a maunner which is consistent with the optimal objective?! of minimizing x(n). This
choice of scaling sequence and minimization criterion admits the clever use of Lvapunov thecry to obtain
the convergence result. As we have also indicated above. the checking criterion for the D-H OBE method
is of O(m) complexity per n. adding another attractive feature. These theroretical and computational
henefits notwithstanding. in published simulation studies. this method has not been shown to exhibit any
sign*ficart advantage in estimation or tracking with respect to the adaptive SM-WRLS methods. for ex-
ample, discnssed above. As we have also discussed above. the inability to determine the precise meaning
of the oprimization criterion leaves open some fundamental quostions in the interpretation of the hehavior
of the method.

Finally. we note that some work with colored disturbances has been reported. The D-H OBE algorithm
has been extended to the case of an ARMA (5I5SO) model by Rao ¢t al. in [99]-{101]. In this case the error

15 filtered by a linear (MA) filter creating a colored noise sequence. sav,

;‘_{I/):f_[ll\-Lsz,f.lrl-i). (rh
=1
Rao’s approach is to estimate the unobservable sequence z.(-) by theerrots s(n—1.@(n—1)), 1 = 0.1..... r

at time n, then use the D-H OBE developments. Error hennds on z.(-) are not sufficient to hound =/ i-). 50
that the elhipsoid is no longer guaranteed to contain the true parameters. A condition on the b, parameters
15 determined such that this violation does not occur. Not surprisingly. the condition implies a restriction

on the amount of correlation which can he induced by the N A filter.

*’Norton has proposed the use of mnner bonnds as a pussible remedy for this problem [23].[115]
*'Recall that this 1s not the minimization of the ellipsoid size per o See discussion in Sections 6.2.2 and 6.5.2.
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Related work is found in the paper by Norton [84] in which the ARMAX model is studied. In this work,
the effects of the coloring of the noise upon the bounds is studied both analytically and experimentally.
The results indicate the possibility of non-convex bounds on the true feasible set, £2(-), in the colored
noise case. An attempt is made to relate these anomalies to the bias that occurs in conventional WRLS
processing due to the colored noise.

Nayeri et al. [80] have argued that the ellipsoid must remain nontrivial in the colored noise case (i.e.
limp—o Q(n) # {@.}) and have conjectured that the @, will appear on the boundary of the limiting
ellipsoid when e.(:) is p.e. Some interestirg effects of non-p.e. disturbances alluded to above are also

studied in the cited paper.

6.7 Parallel Hardware Implementations

One of the advantages of the QR-WRLS-based UOBE formulation. and the feature which motivated its
development [26], is that it immediately admits solution by contemporary parallel architectures. This is
critical because it reduces the complexity of the optimal algorithm from @(m?) to O(m), where m is the
number of parameters to be estimated. The significant reduction of computational complexity and parallel
hardware implementation of SM algorithms improve their potential for real time applications. Systolic
architectures for both nonadaptive [31] and adaptive [87],[88] versions of the SM-WRLS algorithm have
been developed by Odeh and Deller. The adaptive architecture has somewhat more complex cells, but
the computational savings with respect to sequential solutions is identical. The complexity of the parallel
computation is given by

[ o~ O(3m)+ pO(1lm) flops per n (73)

parallel

if the optimal checking is implemented, where p, as above, is the fraction of the data accepted by the SM
considerations. If suboptimal checking is employed, the average count is

[ subopt ~ O(m)+ p'O(11m) flops per n. (76)
parallel

where p’ likewise indicates the acceptance ratio. When adaptation by back-rotation is added to either
strategy, and additional bO(11m) (or ’'O(11m)) flops per n are required on the average, where b and &', as
above, indicate the average number of back-rotations computed per n in the optimal and suboptimal cases.
Note that these tallies represent parallel complexities in the sense that they denote the effective number
of operations per n. though many processors can be performing this number of operations simultaneously.
Accordingly the parallel complexity indicates the time it takes the parallel architecture to process the data
regardless of the total number of operations performed by the individual cells.

Unlike the sequential algorithms. scaling may be added to the parallel processors (to implement the

F-H OBE algorithm, for example) at virtually no computational cost. but at the negligible hardware cost
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of m multiplication units.

The parallel architectures described in papers cited above are developed for real, scalar observations,
but can be used for compler scalar observations. The necessary modifications are concerned with the
basic Givens rotation operations. These are elementary and are found. for example, in [48]. However, the
general complex vector observation case of the SM-WRLS (UOBE) algorithm is not readily mapped into
similar architectures. The generalized architecture that efficiently implements this case has not yet been

developed.

7 Conclusions and Further Issues

The emerging field of SM-based signal processing is receiving considerable attention and is becoming
increasingly popular around the world. In this paper, we have given a general review of SM theory and a
broad coverage of general SM algorithms and related topics. The majority of this paper has been concerned
with a class of SM algorithms for estimating the parameters of linear-in-parameter system or signal models
in whicb the error sequence is pointwise “energy bounded.” Specifically, we have focused on the case of
ellipsoid algorithms which have been shown to represent a blending of the classical LSE methods with the
BE constraints.

The combined LSE/BE algorithm has been formulated as a UOBE strategy which embraces all reported
algorithms, adaptive and nonadaptive. Within this framework. a flexible strategy based on “back-rotation”
has been proposed to make the UOBE algorithms specifically adaptive. The adaptive strategies as well as
the nonadaptive cases performed well in simulation trials.

In general, SM approaches are interesting because they produce sets of feasible solutions based on
tenable assumptions where no unique solution may otherwise exist. In the signal processing (LSE) domain.
a unique solution exists, but the set provided by UOBE is interesting from two points of view. First, the
feasible set may complement the unique LSE solution in cases in which the ordinary asumptions about
the model error are tenuous (for example. where the model noise is colored). Secondly, from the feasible
set arises an interesting data selection technique which can lead to significant computational complexity
improvement. UOBE algorithms typically reject 70 - 95% of the incoming data sets because they fail to
refine the existing ellipsoidal feasible set in some sense. This should not be misintepreted, however, to imply
a 70 - 95% load improvement. In fact, certain constraints must be observed to achieve more than a gain
of about five in complexity improvement with respect to conventional WRLS. If a sequential computing
u.achine is to be used, then suboptimal checking (for feasible set refinement) must be used. A method
suggested in this paper has been found to perform quite well, and vields O(m) complexity compared with

(at least) O(m?/2) for the optimal algorithm. This lowered complexity can be preserved with adaptive
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strategies which do not require excessive reiteration over the past data sets. Secondly, scaling factors ({(-),
see Section 4.2), including exponential forgetting factors, cannot be used except at @(m?/2) expense. No
compelling reason for the use of such factors has been observed in simulation studies in the literature. (A
theoretical argument exists for the use of scaling factors in the D-H OBE algorithm [24]. In this case, the
scaling strategy leads to convergence of the ellipsoidal bounding set in a certain sense.) Finally. a parallel
processing version of the UOBE method has been presented with which to achieve O(m) complexity under
virtually any condition of scaling, adaptation. optimal or suboptimal checking. Real applications of these
identification techniques will benefit when these relatively simple architectures can be dedicated to the
process. It is interesting to note that the infrequent updating which results as a consequence of the UOBE
considerations, may lead to strategies for time-sharing of these parallel processors.

The simulation results presented illustrate important points about the various UOBE methods and
show that the adaptive algorithmns vield accurate estimates using very few of the data and quickly adapt
to fast variations in the signals dvnamics.

Some of the key theoretical results underlying the UOBE class of algorithms appear in the appendices
of this paper. These appendices unify many theoretical results found in the literature.

Many interesting open research problems remain in SM-based signal processing. Among them are the
pursuit of different adaptation strategies. refined hardware solutions, and a world of other challenges that
will emerge as these exciting new techniques continue to be applied to practical problems. As computing
power continues to increase, many of the more complex error bounding, and other SM, algorithms will
begin to attract more attention of signal processing engineers. In this sense. the techniques upon which
this paper has focused may ultimately comprise a very small part of the overall impact which SM-based

techniques will have on the signal processing technologies.
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A Appendices

These appendices present results which will rigorously support informal arguments made in the main
text. For generality, we will include a sczling sequence (of the form (22) unless otherwise noted) in the
WRLS recursions. “Unscaled”™ results are obtained by simply dropping subscripts “s” or setting ¢((n) = |
wherever it occurs. Without loss of generality, however, we shall not explicitly include the downdating
process for adaptation which was developed in the paper. If the solution at time n — | is to be downdated
prior to consideration of (y(n).z(n)). then all quantities implicitly or explicitly involving past data will
be modified, and then will enter the developments in precisely the same way as their “un-downdated”
counterparts. In this case, for example. every occurence of G4(n) = =T (n)C ' (n - 1)x(n) should be

replaced by G 5(n) = mT(n)C;‘l(n — Da(n).

A.1 Propositions and Corrollaries

Proposition 1 Let Q(n) C C™*** be the feasibility set arising from BE constraints as in (29). Given
observations on time range t € [1.n], let @(n) denote the weighted LSE estimate with associated covariance
matriz C(n). The weights used in the estimation are \,(t) with A,(1) > 0. There ezists a hyperellipsoidal
set of parameter vectors, Qn) C C™ ™k such that @, € Q(n) C Q(n). which is given by

Qn) = {@ ‘ ir{[@—@(n)}”g((,—n))[@—@(n)]} < 1} . @ g Crhxk (77)
Kin
where,
K(n) = rr{@”(n)C(n)@(n)}+ZAn(fmt}<1 =37 Ty P). (7%)
t=1

Remark: When £ = | this the result ot Proposition | reduces to a generalization of the MISO case result
found in many papers in the literature. When & # 1. a hyperelliposidal bounding set is also assoriated

with each scalar component of the output vector as we show in the following corollary.

Corollary 1 Under the conditions of Proposition 1. feasible parameter vectors associated with output y,
(column t of @), say 8;, are confined to a hyperellipsoidal membership set. say Q,(n). which is centered
on its current weighted LSE estimate, 6;(n}).

H Cin)

K{n)

Qu(m = {60 | 16~ 0,0n) 6-6mj<1} . gect (791

Remark: This means simply that there is a hvperellipsoidal domain in the parameter subspace which
contains all possible parameter vectors and which is centered on the WRLS estimate. Note that the

ellipsoid associated with each y,. i = 1.2..... k. is identical to all others except for its center.




Proposition 2 If it exists, the weight A} (n) which minimizes
1. the volume measure u,(n) is the unique positive root of the quadratic equation
FoA) = a2 X + a1 +ag=0 (%0)
where,  ay = {(mk — 1)y(n)G?(n)}.

= {@2mk = 1)+ 571 (0) || e(n.O(n — 1)) I =xy(n = 1)37Hn)Go(r)} 1(m)Giln),
and ap = mk [y(n)= || &(n.O(n - 1)) ||*] — ks(n = 1)Gs(n);

(o

the trace measure py(n) is the unique positive root of the cubic equation
Fi(N) = b3 + boA? + by + bg (81)

with by = y(n)G}(n)(G —I{n—=1)Hy{n)) .

by = 3y(n )G(n)[m ) I(n = 1)H(n)).

by = Hy(n)Gy(n)ls(n — L)kg(n = 1) = 2 (n)l(n — 1) [y(n)~ || e(n,O(n - 1)) ||*]
~Gy(n) || &(n.O(n - 1)) ||* +37(n)Gs(n)

and bo = v(n)~ || e(n,@(n - 1)) ||? - Is(n — 1)ks(n = 1),

where G4(n) € a:T(n)Cs'l(n— De(n), Hy )‘“‘ mT(n)c;'z(n—z)m(n), and I,(n) ¥ tr Cy(n).

Remark: Many of the inherent scale factors in the coefficients above cancel, but for practical implementa-
tion it is more useful to express the coeflicients with the scaled quantities included. By cancelling the scale
factors. however, the following can immediately be observed for either optimization criterion: If A} (n)
denotes the optimal weight (or. in fact. any root of the polynomial) at time n with scaling, while A} (n)

denotes the weight resulting if no scaling takes place, then A} (n) = A% (n)((n).

Corollary 2 There is an inherent hyperellipsoid associated with the D-H OBE algorithm whose volume

at time n would be minimized by the positive root of the quadratic F:,(/\) = a.'z/\'z + (1’1,\ + a[) where a.i, =

! R ! . R . o, . B
ay + ag — ay, a; = a; — 2ag, and ay = ag, where a;. i = 0.1.2 are defined as in Proposition 2.

Remarks:

l. Interestingly. the quadratic in Corollary 2 can be obtained by using the scale factor ¢((n) = (1 -
AX(n))~! in the results of Proposition 2. That this should be true is not obvious because of the

nonlinearities in A which are created by these scale factors.
2. A similar result likely obtains for the trace case.
3. The utility of this result remains an open question because to use weights which are optimal in this

sense does not necessarilv admit the convergence results obtained by the Dasgupta-Huang analvsis.
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Corollary 3 Consider the UOBE algorithm with simple scale factors and volume optimization. [f an

optimal weight exists at time n, then its use will certainly diminish the volume, p,(n) < p,(n —1).

Remark: A similar result can be obtained for the trace measure [80].

Proposition 3 x(n,An(n)) has the following properties: 1. On the interval An(n) € (0, ), K{n. A, (n))
is either monotonically increasing or it has a single minimum. 2. k(n.A,(n)) has a minimum on A,(n) €

(0,2) uff
|l e(n.®n - 1) |I*> y(n). (82)

Proposition 4 Consider the UOBE algorithm with causally scaled weights as in (22). Then, if suboptimal
check (82) holds, a positive optimal weight < zrists for either the volume or trace algorithm.

Remark: The D-H OBE [24] algorithm uses a similar test (see (71)), derived by very different arguments.

See the discussion in Section 6.5.2 for interesting similarities between Proposition 4 and D-H OBE.

A.2 Lemmas

Lemma 1 Condition (29) implies

n

YAt [ enlt) [P Ant)r(t) (83)
t=1

t=1

for any non-negative (real) sequence A\, (-). The equality can be removed for n > ty, where to is the minimum
t for which A, (t) £ 0.

Lemma 2 The scalar sequence k(-) of (78) can be computed recursively in two ways:
1. In the context of MIL-WRLS:

Aa(n) | e(n.®O(n = 1)) ||?
1+ A (n)Ge(n)

k(n) = Ky(n— 1)+ Ay(n)y(n) -

def

with ke(n — l)dé{ k(n - 1)/¢(n = 1) and x,0) = 0.

2. In the contert of QR-WRLS: Let T(n)@(n) = Dy represent the triangular system of equations to be
solved at time n and let §;(n) = tr {Df{(n)Dl(n)}. Then,

Kiny=ééy(n)+ K(n) (83)

with
R(n) = &g(n = 1)+ Autmy(n) (1= 37 (m) | y(n) 12) (R6)

where K,(n — 1) is defined as above,




A.3 Proofs
Proof of Lemma 1: That the equality holds for n < tp is obvious. At o
Anlto) I} e«(to) [I°< An(to)7(to)- (87)

Since An(t) = 0 for t < to, (87) may be written

to to
ST A0 [l enlt) [P< Y An(t)¥(8) - (3%)
t=1 t=1
Sequentially add inequalities A,(t) || €.(t) 1< Au(t)y(t) for t = to + 1..... n, noting that the inequality
between the sums is preserved. O

Proofs of Proposition 1 and Corollary 1: Upon writing || e.(t)) [|? as tr {e,‘(t)sf’(t)}. it follows

immediately from Lemma 1 that
> Aalt) tr{[y(t)_@,ﬂ ] [y(t) ] } Z,\ (39)
t=1

This constrains the possible parameter matrices to the set

{@ | ZA ) ur{ [u(0) - ©”=(0) [y(t)—e”mm]”}<§n:An(t)v(t)} SENCY
t=1

Expanding the trace term.

= {@ IS At tr{y(t)yH(t)—@H:c(t)yH(t)—y(t)a:H(t)@+@H:c(t)a:H(t)@}
t=1

< il:’\n(t)‘ﬂt)} . | (91)
t=1
Moving the summation across terms,
Qn) = {@ | tr{Cy(n) - @1 Cqy(n) - Clly(n)® + @”C(n)@} < iAn(m(t)} (92)
where definitions of Czy(-) and Cy(-) are inherent. Since Cgpy(n) = C(n)@(n).
Cly(n) = © (1)CY (n) = @7 (n)C(n). (93)
This substitution in (92) and some simple manipulation yields
Qn) = {@ | tr{@HC( 1@ — @Hc(n)@(n) - ©H(n) @} Z’\n 1y(t) - tr{Cy(n)}} (94)
(C'ompleting the square on the left side yields
- {@ | tr{@HC (1)@ - @7 C(n)@(n) - @7 (n)C(n)® + @H(n)C(;z)@(n)}

< Z/\ tr{Cy n)} + tr{@”( )C(n)@(n)} «f n(n)} (95)

\S1]
W




The definition of k(n) in (95) is seen to be equivalent to that given in (78) by noting that

tr{Cy(n)} = iz An(t) || y(2) |2, It follows that the set is described by

Q(n) = {@ | tr{[@ —em)cm)e - @(n)]} < H(n)} . (96)
Since C(n) is positive definite almost surely. the left side of this inequality must be a positive number.
Therefore x(n) > 0. Dividing both sides by x(n) vields (77). o
To prove Corollary 1, it is convenient to write
k
tr{[@—e)(n)]”C(n)[@—@(n)]}:Zc, (97)
=1

where ¢; indicates the j!* diagonal element of [@ — @(n)}H C(n)[® - O(n)]. Now it is clear that
e; = [0; - 8;(n)] C(n)[8; - 6,(n)] (98)

for any i, where 8; and 0;(n) are the ;** columns of @ and @(n), respectively. It is also true that all the

c,’s are positive since C(n) is a positive definite matrix. Therefore,

k
(‘,‘<ZC_,<H(TI) for any !/ € [1.k] . (99)
J=1
Dividing through by x(n) yields inequality (79). a

i

Proof of Lemma 2: Case 1. Inserting the right side of (25) into (7X) for @(n) gives

H
K(n) = tr{[@(n——1)+/\n(n)C_‘(n):c(n)e”(n.@(n—1))} C(n)

x [@(n ~ 1)+ Aa(n)C (m)z(n)ef (n.O(n - 1))]} + ; () (8) (1= 37" ) | (1) §2)100)

= tr{@”(zz— 1 [Cs(n— 1)+An(,z)m(n)m“(n)] O(n-1) +

Anln)e(n.BO(n - 1))1:”(11)@(71 — 1)+,\n(n)@H(" _ I):E(n)eH(n.@(n 1+
C;'(n - Hz(n)zl(n)C}!
I+ AM(n)Gy(n)

\(n)e(n.@(n — l))ccH(n) [C;l(n— 1) — Au(n) s (n— I)] z(nelm.@m -1

+ 3 ) (1= 37w |P)
t=1

= Kg(n— D)+ An(n)y(n) = Aun) || y(n) || +
An(n) tr{[y(n) —e(n.O(n - 1)]{y(n) —e(n.On - 1N +e(n.On - 1)) [y(n) —e(n.On - 1" +

A(nje(n.O(n - l))e”(n.@(n - 1))G,(n)
1+ /\n(")("s(n)

ly(n) —e(n.O(n - 1))]5”(11.@(11— 1)) +

= Ke(n~—1)+ A (n}yin)=A,(n)} tr{e(n.@(n - 1)}5”(77.@(72 - l))} {l An(r) (1) } .

T+ A(m)Gn)
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Equation (84) follows immediately upon recognizing the trace term to be || (n,O(n ~ 1)) ||2.

Case 2. Because T(n) is obtained by an orthonormal transformation of X(n) (see (19)).

tr{@”(n)C(n)@(n)}: n{@”(n)T”(n)T(n)@(n) = tr{D{’(n)Dl(n)}. (104)

4

This is the first term in the basic expression for x(n) in (78). The second term can be written as

Tich A (W) (1 =171 L y(0) 1Y) = ) ]
n-1) +)\n(n)7(n)(l—7 I} y(n) || ) (105)
The desired recursion follows immediately. a

Proof of Proposition 2: For simplicity. let us denote A,(n) by A throughout the proof.
Volume case. Define

def

B(n) € k(n)C~(n) (106)
We wish to minimize p,(r) = det B(n). and it will be convenient to do so by minimizing the ratio??

4t Mo(n)  det B(n) B(n)

i) = o) T detBioD) - B 1) (107)
From (24) and (106)
B(n) B(n—l)_/\B(n—l)a:(n):cH(n)B(n—l) 108)
k(n)  Ks(n-—1) k2(n — 1) [l + AG4(n)] (107
_ B(n-1)(n-1) B )‘Cz(n -1)B(n - Dz(n)zf(n)B(n - 1)
- k(n— 1) K2(n — 1) [1 + AG4(n)]
_ B(n-1) 3 B(n - Hz(n)zH(n)B(n - 1)
T Rg(n—1) Ki(n — 1)1 + AG(n)]
Defining h{n) T4 AG4(n) and r(n) o k(n)/Ks(n — 1) vields
_ __deln) "
B{(n) = B(n - 1)r(n) {I = Dh(n] (B(n - Dx(n)] } . (109)
So,
B B(n) { r{n)iz(n) H
vy(n) = det —————B(n_ 0= det{r(n)I — __xs(n— Dh(n) (B(n - lyxz(n)) } ) (110)
Using the matrix identity [37] (for the complex case)
det(cl + vzH):r’"k“((+sz) (111)
where v, z € C™** and ¢ is a real number. we obtain
_ ket y_ ety g .
vyin)=r (n){r(n) ras(n—l)h(n)B(n Dx(n) ). (112)

*?Recall from Section 6.1 that B(n — 1) may be considered either the volume of the scaled or unscaled ellipsoid at time
n—1

't
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This can be written as

AGs(n) rmk(n)
_ .mk _ -~ :
vy(n)=r (n){l hn) } ) (113)
Therefore, to minimize v,(n) with respect to A, (113) is differentiated and the result is set to zero,
61/‘v(n) - _0_ rk(n) _ mkr"""“(n)(’)r“(n) B r":%(n)Gs(n) (114)
(52 oA\ h{n) h(n) () h2(n)
Since r™*~1(n) > 0 (see proof of Proposition 1).
h%(n) dv.(n) ar(n) .
R T mkh(n) T r(n)Gs(n) (115)
Now using Lemma 2 we can write
K(n) Av(n) M oe(n,®(n - 1)) |1? )
= — =1 —
L e VT wa(n — L)h(n) (116)
Differentiating this result with respect to A vields
or(n) 1 X | e(n.®(n - 1)) HZ -
oA ‘ms(n—l)[’(") R (n) (o
Putting this result in (115) and replacing r(n) with the right side of (116) vields
h*(n) Ov.(n)  mkh(n) )= fe(n.®(n - 1)) |? B
T ey v R h2(n)
Ay(n) MMl e(n.®@(n — 1)) 1}?
1 v . 3
{ +Ii5(n—l) Ks(n — 1)h(n) Goln) (11%)
After some algebra,
ks(n = D)h3(n) Qvy(n) 5 s
() o - mk [7(7:)/1 (n)= |l e(n.®(n = 1)) || ] - (119)
Ks(n — 1Yh(n) + Ay(n)h(n) = Ajje(n.@(n - 1)) || ] (is(n
When h(n) is replaced by (1 + AG,(n)) on the right. the following result is obtained
i 1VA3 ) ¢
Ke(n — LYh?(n) Ov,(n) - FUN) (120}

rm=l{n) oA
where F, (A} is exactly the quadratic of {80). Since the factor in front of the derivative on the left is positive
for any positive A, a positive root of F,(A) corresponds to (dv,(n)/dA) = 0.

[t is noted that the discriminant of the gqunadratic is always positive so that the roots are always real.
Moreover, when ag > 0 it is found that ay > 0 as well. Since a, is always positive. this implies that the
roots are both negative, since no positive A satisfies (30) in this case. On the other hand. when ay < 0.
this immediately implies that the roots have opposite signs. Thus exactly one positive root is found. In

the proof of Corollary 3 below, this root will be demonstrated to minimize the volume measure.

-
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Trace case. As above r(n) & K(n)/Kks(n — 1) and h(n) =1+ AGs(n))~!. Note that g (n) = tr{bmB(n)}

and also define
det  Me(m) tr{B(n.)}

vifn) = =

we(n —1) tr{B(n - 1)}
Beginning with (109) it is easy to show that

_ - A H( o \B2n —
tr{B(n)}_r(n)[tr{B(n 1)} h‘s(n—l)h(n)m (n)B*(n — lax(n)]|,
so that
_ rin)A H 2.
v(n)y = r(n)-— B k(= l)h(n)m (n)B*(n - )x(n)
= r(n)-— r{n)A H(n)C‘z(n—- 1)x(n).

t{B(n - 1)}h(n)"

ef

Letting H(n)dz a:H(n.)C_z(n — Da(n)and I{n - 1)d:d tr{B(n - 1)}.

ut(n)zr(n)———r(—n)—)\-—H(n):r(n)(l——I( A

I(n = Dh(n) n—1)h(n)H(")>'

Differentiating with respect to lambda and setting the result to zero yields

Own(n) Or(n) (. A )_ r(n) (_Gs(n)/\) L
IX I (1 [(n—l)h(n)H(n) I{n— 1)h(n) 1 hin) Hin) =0.

Now using (116) and (117) in this result vields

dve(n) 1 _len.®(n-1) 1|2 ( A )
AN Kidn-=1) (7(11) h(n) L= I{n - 1)h(n)H(n)

| Av(n)  |le(n.@(n 1)) || 1 (; _ Gy(n)A
B G T ks(n— VH(n) ) I(n=Dh(n) "  h(n)

After algebraic manipulation this becomes

du(n) _ V()

AN D(N)

where ¥(A) is precisely the cubic equation F;(A) described in the proposition, and D(X)

)H(n) = 0.

(121)

(123)

(125)

(126)

(127)

Ks(n —

1)y~ Y n)h3(n). Since D(A) > 0 for all A > 0. it is sufficient to seek the positive root(s) of the numerator.

It is straightforward to show that coefficients b, and b3 are always positive. When by > 0 then &, > 0.

so in this case there can be no positive solution to F;(A) = 0. When by < 0, we claim that there is exactlv

one positive real root. The quantity (—hg/b3), which is real and positive, is the product of the roots. so

there must be at least one real positive root. The remaining two are a complex conjugate pair. or are

both negative or both positive. Now the quantity (—by/b3) is the sum of the roots and is negative. This

guarantees that the remaining two roots cannot both be positive. Therefore, the remaining two are either

complex or negative, and the claim is verified.

O




Sketch of Proof of Corollary 2: The procedure parallels the steps used to prove Proposition 2 for the

volume case [68]. o

Proof of Corollary 3: Again we use A to indicate A,(n). and A~ for AZ(n). Since n is fixed. we write the
volume ratio of (107) to show its explicit dependence upon A. v,(A). and suppress the dependence upon n.

From (115),
dvy(A)

JA

= Q(A)R(A) {128)
where, for n fixed, we make the definitions

get rmk—l(")

hi(n

drin)

and R(/\)d:Ef mkh(n) o

—r(n)Ggn). (129)

7

Q(A)
For future reference, also notice that
Ks(n — 1 A(n)R(A) = F,(A) (130)

where F,(A) is the volume quadratic of Proposition 2. This becomes evident upon comparing (114) and

(120). Consequently,
9u,(\) _ IR(N) 9Q(M)
INT O oA

It is easy to demonstrate that Q()) is positive, and that its derivative is bounded. for A € [0.x). Now

QM)+ R(N) (131)

with the aid of (117) we can write

OR(A) . dr(n) . | e(n.@(n — 1)) ||* G4(n)
5 - (mk — l)Gs(n)——(_)/\ + 2mk PRERENTETY .

(132)

Because of (130) it is clear that R(A*) = 0. Reference to the definition of R(A) in (129). therefore

immediately shows that

dr(n) ,
. 13
d’\ ],\:\‘ >0 ( ;)
(‘onsequently.
(?R(A)J
— > 0. 134
dA A=\ ( )
It follows immediately that
O (N)
>0 135
| L)
so that A® corresponds to a minimum of v, (A) with respect to A (see Fig. 19). Further. since
rin)]\_y = 1 (see (116)). and h(n)]\_, =1 (136)
we have from (113) that z/,.(/\)]\___o = 1. and also that ()(0) = 1. Therefore. from (128) and (130},
()Vv(’\) Fv(O) fp
= R 0) = = < 137
123 S BN (0) Ke(n—1)  Ke{n-=1) (3]
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where ag is the zero order coefficient of the quadratic which is negative if an optimal root exists. It follows

that v,(A*) < 1 and the corollary is proven . |
Proof of Proposition 3: For simplicity, we write A (n) as A. Using (84) from Lemma 2, we can write

KA Ok(n.A) GHn)v(n)A2 +2G5(n)y(m)A + [v(n)= || (n. O(n = 1) ||?] 13%)
9N Gs(n)2A2 4+ 2G(n)A + 1 e

and
(A & J*xin. ) _ 20GEn) + v(n)Gs(n)] | e(n.@(n = 1) 12
T9A (G2{n)A? +2G(n)A + 1)2

(139)

The denominator of K(z\) is positive on A € (0.>) and therefore A(\) has a root on A € (0.} iff its
numerator does. The roots of the numerator are always real. Moreover, the numerator has a unique
H

positive root on (0, %) iff [y(n)— || e(n.@(n — 1)) ||*] < 0. Further since K(X) > 0 for all A > 0. the root.

if it exists, will correspond to a minimum of k(n.A). 0

Proof of Proposition 4: If (67) holds. then ag of F,,(A), and bg of F;(\). are both negative. Now see the
proof of Proposition 2. O
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SM-Techniques
|

SM-Techniquis State Estimaton SM-Techniqucsjfor /O Models
(State Bounding) (Parameter Bounding)
[ l L
Bounded Error Method Other Constraints
r L 1
Non-Linear-in-Parameters Linear-in-Parameters
Problems Problems
l |

BoundiLg Ellipsoid Po{ynope Exact Set
Algorithms Bounding Algorithms Descriptions

Figure 1: A taxonomy of SM methods.
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Figure 2: For non-LP models, pointwise feasible sets are hypersurfaces. and the accumulated feasible set,
Qn). formed by their intersection can be highly irregular. Q(n) need not be connected in the parameter
space. [llustrated is the case of a real signal, SISO system for which the parameters comprise real vectors
of dimension two.
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Figure 3: In the LP model case, error bounding implies pointwise “hyperstrip” regions of possible parameter
sets in the space, which, when intersected over a given time range usually form convex polytopes of feasible
parameters. These sets are called 2(n) when time range ¢t € {l.n] is included. Associated with a LSE
problem with weights A,(-) is a hyperellipsoidal set Q(n) which is centered on the LSE estimate which
contains the feasible set 2(n) and. consequently. the true parameters O..[llustrated is the case in which

the parameters comprise a real vector of dimension two.
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Figure 1:

THE UOBE ALGORITHM BASED 0N QR-WRLS AND VOLUME MINIMIZATION. THE CASE OF A SCALAR
OUTPUT IS5 SHOWN.

INITIALIZATION: Fill (m + 1) x {m + 1) working matrix. W. with zeros.

Alny=¢(n)=1. n=1.2..... m+ 1
k(0)=0
RECURSION: Forn=1.2.....
STEP 1. (Skip® if n < m + 1) Update (/y(n). :(n.8(n — 1)).

T,n-1)=¢Yn—-1)T(n—-1) {(multiply top m rows of W by CHon - 1))
Solve T ,H(n - 1)g(n) = x(n) for g(n) by back substitution.
Gyln) =|| g(n) |i2
c(n.@(n—1)) = y(n)—0"(n-Lax(n)

STEP 2. (Skip if n < m + 1) Check for and compute optimal A}(n).
Consider ag of (44). If ag > 0. set A%(n) = 0. Go to STEP 3.
If ag < 0, solve (4) for positive root A, (n).

STEP 3. (Skipif n <m+ 1) If Aj(n) =0, set
Tiny=Tyn-1)
@n)y=06(n-1)
R =r-1
and go to STEP 7.
Otherwise. continue.

STEP L Update T'(nj.
Replace bottom row of W by \/Ar(n) [;1:”(11) i y(n)].
Rotate this "new equation” into W using Givens rotations.
leaving the result [T(n) | d(n}] in the npper m rows of W.
These rotations involve the scalar computations (e.g. [33])
W= Woo + Woperdand W)= =Werb + 108
fork=j.j+1..... m+ 1 and for j = 1.2..... m:

where, o = W), /p. 7= Wopii/p. p= W7 +eWi L dis unity<?

and W, (W;k) is the j, k element of W pre- (post-) rotation.

STEP 5. (Skip if n < m) Update @(n)(n). solving T'( n)@(n) = dy(n) by
back substitution.
STEP 6. Update x(n} and £(n) according to

fin) = [Rle= D)/ = D]+ Asn)s(n) {1 = s~ Hnyytin)
Kinty = | di(n) (2 + R&(n)
(ompute and store nnly () if ¢ < m.
STEP 7. If new data set {y(n + 1), x(n + 1)) available, return to STEP [.

“Cienerally T(n) does not become nonsingular until » = m ~ 1. The first #{n} cannot be computed until n = m + 1 and
the first AL(n) at n = m + 2. We arbitrarily set Ain) =1 5n the initial range.
Mg s set to — 1 to rotate an equation out of the estimate 33].
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Q(n-1

axn)

9,

Figure 5: The F-H OBE algorithm circumscribes the intersection of the current hyperstrip and the existing
hyperellipsoid, w(n) N Q(n — 1), with another hyperellipsoid ©~).
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Algorithm

Checking

Adaptation by
Back-Rotation

Covariance &
Solution Update

Conventional MIL-WRLS

b(2m? + 2m)

3m® 4+ (k+3)m

Conventional QR-WRLS

b2.5m° + (4k + 1)m]

(2.5 +D.5k)m* + (4.3k + 1)m

Optimal UOBE (MIL-WRLS)

mi+(k+ m+k

b(2m? + 2m)

p2m? + (k + 2)m])

Optimal UOBE (QR-WRLS)

0.5m° +(1.5+kym + &

b(2.5m* + (4k + 1)m]

p[(2.5 + 0.5k)m” + (4.5k + 1im)]

Suboptimal UOBE (MIL-WRLS) km + k b'(2m? + 2m) o' 3m?* + (k + 3)m]
Suboptimal UOBE (QR-WRLS) km + k b[2.5m? + (4k + 1)m] | p[(2.5 + 0.5k)m* + (4.5k + 1}m]
Parallel
Optimal UOBE (QR-WRLS) Im b(11m) p(11m)
Parallel
Suboptimal UOBE (QR-WRLS) (m+1) b'(11m) p'(llm)

Approximate computational complexities in average number of cflops per data set for the various techniques
discussed in the text. m is the number of parameters in the model: k the dimension of the output vector:
p and p’ represent the average number of data sets accepted per n in the optimal and suboptimal cases.
respectively (tvpically p’ < p): and b and b’ are the average number of back-rotations performed per n in
the optimal and suboptimal cases. respectively (typically b’ < b). For each sequential algorithm scaling
or adaptation by exponential forgetting require 0.35m? + (k + 0.5)m cflops for each procedure. If both
procedures arc to be used. they can be combined and implemented at about the same cost as a single
procedure. In the parallel cases, scaling and exponential forgetting can be achieved at virtually no cost. In
the parallel processing cases. the loads in the table represent parallel complexities (see text), and results

Table 1:

are for the case k = | since architectures for the MO case have no been devioped.
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Abstract

A class of algorithms is presented for training multilayer perceptrons which implement nonlinear
mappings using purely “linear” techniques. The methods are based upon linearizations of the
network using error surface analysis, followed by a contemporary least squares estimation procedure.
Specific algorithms are presented to estimate weights node-wise, layer-wise, and for estimating the
entire set of network weights simultaneously. In several experimental studies, the node-wise method
is superior to back-propagation and an alternative linearization method due to Azimi-Sadjadi et al.
in terms of number of convergences and convergence rate. The layer and network- wise updating
offers further improvement.

Acknowledgements

This work was supported by the National Science Foundation under Grant No. MIP-9016734
and by the Office of Naval Research under Contract No. N00014-91-J-1329. Mr. Hunt was also
supported by a fellowship from the University of Puerto Rico.




List of Tables

1 Number of convergences per 100 sets of initial weights

2 Number of convergences per 100 sets of initial weights

.................




List of Figures

1 Two-layer perceptron. The bottom set of “nodes” (input) are linear and are desig-
nated layer zero. . . . . . . ... 25
2 Weight Estimation Using Recursive QR Decomposition . .. ... ... ... ... . 26
3 Network architectures for (a) the two-bit parity checker, (b) the four-bit parity
checker, and (c) the four-bit bit counter used in the simulation studies. . . . . . . . . 27
1 Average error in dB for the X-OR implementations vs. iteration number. 1.back-
propagation; 2.A-S algorithm; 3. QR decomposition. . . . ... ... ... ... ... 23
5 Average error in dB for the QR X-OR implementation vs. iteration number, using
different forgetting factors and weight change constraints. 1. v = 0.98,y = 0.2: 2.
v=098,7y=1.0;3. vr=0.1,y=1.0;4. v =0.1,7 = 0.2; where v is the forgetting
factor and 7 is the weight constraint. . . . . . . .. .. ... ... ... .. ... ... 25
6 Average error in dB for the X-OR algorithms vs. iteration number. 1. Single node

updating; 2. Layer updating; 3. Complete network updating. . ... ... ... . . 20

it




1 Introduction

This paper introduces a new class of learning algorithms for multilayer perceptrons (MLP) with
improved convergence properties. In spite of the nonlinearites present in the dynamics of a MLP.
the learning algorithm is purely “linear” in the sense that it is based on a contemporary version
of the conventional recursive least squares (RLS) algorithm (e.g. [1]). Accordingly. unlike the
popular “nonlinear” algorithms used to train MLPs, the linear algorithm and its potential variants
will benefit from the well-understood theoretical properties of RLS and VLSI architectures for its
implementation.

A MLP is a an artifical neural network consisting of nodes grouped into layers. In this paper. we
consider a two-layer network!, an example of which is illustrated in Fig. 1, but the generalization
of the method to an arbitrary number of layers will be obvious. Each node above the input layer
in the MLP passes the sum of its weighted inputs through a non-linearity to produce its output.
The inputs to layer zero are external. The outputs of the last layer are the outputs of the network.

Let us now formalize the network and define notation. The number of nodes in layer ¢ is
denoted V,, with .Vy indicating the number of input nodes at the bottom of the network. The
weights connecting to node k (k’) of layer two (one) are held in the Nj-vector (Ng-vector) wy
(w),). The inputs to the nodes in all layers except the first are the outputs of the layer below. We

denote by N the number of training patterns

{(z(n).t(n)), n=1,2....,¥}, (1)

in which each x(n) is an .Vg-vector of inputs to the bottom layer of the network, and each ¢(n) is an

'Some authors might choose to call this a three layer network. We shall designate the bottom layer of “nodes™ as
“layer zero™ and not count it in the total number of layers. Layer zero is a set of linear nodes which simply pass the
inputs unaltered. For this reason. we choose not to show circular nodes in the diagram.




V,-vector of target outputs (final layer outputs which are desired in response to the corresponding
input). The computed outputs of layer two (one) in response to x(n) comprise the Vp-vector (.V;-

vector) y(n) (y'(n)). Throughout the discussion, r; will be used to denote the j** element of vector

Finally, we need to formalize the nonlinearity associated with the nodes. For given weights. wy.

connected to node k& of the final layer, for example, the output in response to input z(n) is

yk(n) = S(wly'(n)) (2]

in which S(-) is a nonlinear mapping. Typically, for example, a sigmoidal function would be used:

1

S(G) = T_re:.

Any function which is once differentiable can be employed in the methods to be presented. Finally.
for convenience we also define

ui(n) def wly'(n). (1)

Clearly, ux(n) is the input to node k in the output layer in response to pattern n. w,(n) is similarly
defined as the input to node [ in layer one.

Many training (weight estimation) algorithms exist for this type of network [2] - [6]. The most
popular is the so-called back-propagation algorithm [5], [6]. Back-propagation performs satisfic-
torily in some cases if given enough time to converge. However, convergence can be too slow for
many applications (e.g. [7])

One attempt to develop faster training methods is represented by the class of algorithms iu

which the network mapping is “linearized™ in some sense in order to take advantage of linear




estimation algorithms. In particular, S(-) can be replaced by a linear approximation. A recent
example employing this strategy is the method reported by Azimi-Sadjadi et al. [2]. We shall refer
to this technique as the A-S algorithm. While the initial method developed in this paper will be
shown to be equivalent in certain theoretical senses to the A-S algorithm, its derivation is quite
different (providing a second interpretation of the underlying linearization) and the implementation

approach will result in significantly improved performance.

2 Linearization Algorithm

The training problem for the twolayer MLP is stated as follows: Given a set of .V training patterns

as in (1), find the network weights which minimize the sum of squared errors,

it
—

N
E =3 (t(n) - y(n)T(t(n) - y(n)). (:
n=1

The purpose of this section is to describe the theoretical basis for a “linearized” solution of this
problem.

Before continuing, we note a simple fact which will reduce the number of details in our discussion.
[t iz easy to show from (5) that if only the weights connected to the output layer are allowed to
change, with the other weights in the network held constant, then E is minimized by minimizing
the errors associated with each node independently. That is, if Ex denotes the error associated

with output node k,

N
Ee = [te(n) — yi(n)]?, (6)
n=1

then £ = Z}:;’l £. In any given layer, each node in that layer involves a distinct set of weights
{those directly connected to it), and each set of weights may be optimized (to reduce its node’s

error) independently of the others. This means that without loss of generality, we may focus on a




single output node. (Whatever optimization method is discovered for this node will then be applied
to other nodes in the layer.) Let us concentrate on, say, node k and seek weights which minimize
{6).

First we wish to concentrate on the training of the weights in the final layer, so let us write Ey

in a form which explicitly features these weights,

N

Ex =Y [t(n) - S(w]y'(n)) (

n=1

=1

Algorithms for finding the optimal solution, say w3, to this problem are well-known if the modeled
output depends only upon a linear combination of pattern-invariant (constant) weights. In the
linear case yx(n) = S{wiy'(n)) = Jwiy'(n), for some constant 3 (which can be taken as unity

without loss of generality), and the error expression takes the form

N
Ei =Y [te(n) - wiy'(n)]%. (2)

n=1

The solution in the linear case is the solution to the classical linear least squares “normal equations”
[3]. The solution of the normal equations can proceed in a variety of ways. It is also possible to
arrive at the solution without explicitly fcrming the normal equations. This is the case. for example.
when using the least mean square (LMS) (e.g. see [9] or [10]) algorithm. a recursive solution which
amounts to “back-propagation™ for a linear network. A second popular method is the conventional
recursive least square (RLS) algorithm (e.g. see [11]). A contemporary version of the latter will
serve as a computational basis for the algorithm be described in this paper. and RLS is also the
basis for the A-S algorithm to which we wish to relate the method of this paper. Appropriate
description and formalism will be introduced as needed.

[t is well-known that least squares estimation problems may be discussed in terms of their error




surfaces, in this case the graph of Ej as a function of wi. Whatever the form of the least square
estimation algorithm, the ideal goal is to find the weight vector, say w}, corresponding to the global
minimum of Eix(wy). It is important to future developments to note that Ex depends not only
on wy but also upon the training patterns {(z(n),t(n)), n € [1, N]} (see (7)). (In fact, since we
have “frozen” the weights in the first layer, it is more appropriate in this case to view Ej as a
function of wy and the pairs {(y'(n),tk(n)).n € [1, N]}.) Once the training patterns are fixed, the
error function may be described as a surface over the N,-dimensional hyperplane corresponding to
the weights. Theoretically, the pairs {(y'(n).tx(n)),n € {1, N]} represent partial realizations of a

two dimensional stochastic process which generates them. In this sense

Ex(wi. {(y'(n). ti(n)), n € [1, N]}) (9)

is only a sample error surface. In a pure sense. we would like to find weights corresponding to the
global minimum of £ { Ex(w)} where £ denotes the expected value. We must be content, however,
to work with the sample surface provided by the training data.

The point of this discussion of error surfaces is to note that different algorithms construct and
use different sample error surfaces from the data. With LMS (or back-propagation), error surfaces

are sequentially constructed from individual training patterns, i.e., error surfaces of the form

E(wi, (Y (n). te(n))). n=1,2,....N (10)

are created, and for each n. the weights are moved in the direction of the negative gradient on

that surface. The convergence properties are well-understood. RLS?, on the other hand, creates

20f course, here we are speaking of a linear model identification.

(1)




sequentially more refined error surfaces of the form

Ex(wi, {(¥'(7), t(3)), 5 € [1,n]}) (11)

as n is incremented. At each step, if a weight update is computed, the solution corresponds to the
unique minimum of the newly refined surface. We can appreciate, therefore, that even if we neglect
nonlinearities, the estimation processes behave quite differently with respect their error surface
analysis.

The linearization technique adopted in this work can be explained in terms of the error surface
analysis. The error surface over which we would like to find the (global) minimum by choice of
weights is given by (7). Suppose we wish to construct a “linearized” error surface, say E;. which
is “similar” in some sense to Ei in a neighborhood of the present weights. Recalling that Et is a
function not only of the weights, but also of the training patterns, the fundamental question is: Can
the pairs {(y'(n),t(n)),n € (1. N]} be modified in some sense, say (y'(n),t(n)) — (Fi(n). tx(n)).

so that

N
Ex(wi, {(gh(n). T(n)),n € [1,N]}) = Y _[ik(n) — wigh(n))? (12)
n=1

N
~ Ex(wr, {(¥/(n).te(n)).n € [LN]}) = 3 [tu(n) = S(wly/(n)]?
n=1

in some neighborhood of the present weights? The answer to this question is the key theoretical
development described in the following paragraphs.

In the ensuing discussion, the notation wj will be used to designate a local minimum of Ey.
Ideally, w} will be the global minimum, but we have no way to assure this. The objective is to

find, by a “linear™ algorithm. a close approximation to wy.




The algorithm to be described proceeds in iterations, indexed by i = 1,2,.... Each iteration
represents one complete training cycle through the N training patterns. Suppose that a weight
vector estimate wi(? ~ 1) results from iteration ¢ — 1. In iteration 7, by manipulation of the data. we
work with a “linearized” error surface which is similar to the nonlinear surface in the neighborhood

of wi(i — 1). The similarity follows from two criteria:

L Ex(we(i = 1), {(Zh(n), &(n)).n € [1, ¥]}) = Ex(wi(i = 1), {(yk(n). t(n)),n € [L. N]}):

2. 2L ] = 2| :
R W=We(1-1) CWk Wie=Wg(i~-1)

The first task is to manipulate the pairs {(y}(n),tx(n)),n € {1, V]} so that these criteria hold. This

is accomplished as follows. It follows from Criterion 1 that

N N
Y (teln) = ge(n))? = D (Ee(n) — wi (i = D)gi(n)). (13)
n=1 n=1
By letting
te(n) — ye(n) = te(n) — wi(i — )Fi(n), (1)
or
(n) = (te(n) = ye(n)) + wl(i — DFL(n), (15)

for each n. Criterion 1 is met. Now we take the partial derivatives required in Criterion 2. For the

“nonlinear” error,

J0E;

0wl w, =w,(i-1)

N
= =23 (t(n) = ye(n)S(uk(n))y'(n)
n=1

N
= =2 Z(tk(n) ~- w(nNS(wl(i - D)y'(n)y'(n) (16
n=1




where

. o dS
S(uk(n)) & d(a")

(17)

a=uk(n)
All inputs and outputs in this and similar expressions are those associated with weights wy(i—1) (or
the “current” set of weights around which linearization is taking place), but we will avoid writing
ug(t - 1,n), for example, for simplicity. For the “linear™ error,
= Y
oFE

T = =23 (f(n) ~ wi (i ~ HF()Fr(n). (18)
Wk W, =W (i-1) n=1

Equating (16) and (18), in light of (14) we have
Yi(n) = S(wi(i - Dy'(n))y'(n). (19)

All quantities needed to compute the modified pair (fx(n),y%(n)) are known or can be calculated
at pattern n. This procedure is repeated for each k (output node).

Defore extending the analysis down to layer one, let us ponder the significance of what we
have done. By modifying the data pairs, we have created a “linear™ error surface which is sim-
ilar to the “nonlinear” one in the neighborhood of w(: — 1). In particular, the error surfaces
match at that point, and their gradients are identical with respect to the weight vectors. We can
find the wy which minimizes E, by simple linear least squares processing of the modified data
{(fx(n),¥'(n)), n € [1, N]}. The linear estimate will correspond to a minimum of the error surface
E« which need not be near a minimum of E;. However, because the error surfaces and the gradi-
ents match with respect to the weight vector of node k. if the weight change is small enough. the
weight change will be in the direction of decreasing E%. Accordingly. the linear weights must he

constrained to remain in a reasonably small neighborhood of wi(i — 1). Because Fy is reduced at




each iteration, it is to be expected that a minimum of E will be reached by repeating this procedure.
[n turn, this implies convergence to the “nonlinear” solution for the weights, using purely linear
techniques.

Let us now move down to the lower layer and consider the estimation of the weights {w_'} J €L
By similar reasoning to the above, we may focus on a single node, say node i{. However, we must now
optimize w; with respect to the entire external error, E, since all nodes in the upper layer are af-
fected by these weights. Suppose that we are working on the i** cycle through the training patterns
and that all weights in the upper layer are fixed 2* their newly updated values {wg(z), & € [1..\2]}.

Taking the derivative of E with respect to w;,

V2

N
ZZ‘(" )= y(n )S(u s(n))w;ale) [wl] z(n))z(n) (20)

Ow,

where w, (i) denotes {** element in weight vector w,(i) (weight on connection from node ! in layer

one to node j in layer two). This expression can be written

N
}: )= y(n)S([w) z(n))z(n) (219

dw,

where f}(n) is called the target ralue for inner node [ and is defined such that

to

N, )
(ti(n) = yi(n)) = D (4, (n) = g, (RNS(uy(n))w, (3. (21
J=1

I'he quantity on the right side of (22) is commonly called the back-propagated error for node [. The

. 1 . .
solution sought. say w,;*, is one for which

oF
Jw,

N
-

ARERS
i




In the top layer, for node k we sought wj such that

OE

— =0. 24
awk]w,,:w; ()

With reference to (16), it is clear that the present optimization problem is equivalerti to the ones
encountered at the upper nodes. In particular, the same linearization considerations can be applied

to obtain modified input and target values, say

~
(1)
~—

(ti(n). 2(n)) — (#1(n), Z1(n)) (;

and the set of layer one weights w;(i) computed accordingly for each [.

Before continuing, let us note the relationship to the A-S algorithm noted above. In fact. to this
point in the discussion, the methods are nearly equivalent though derived from different starting
points. In the ith iteration through the training patterns, prior to updating the weights w; at
pattern n, node k is “linearized” in the A-S algorithm by approximating S(«) by a linear function
which is tangential to® S at w} (i — 1)y’(n). In effect, S(a) is approximated by the first two terms

of a Taylor series,

S(a) = S(a)=$(wl(i- )y'(n))a-wi(i-1)y(r)+S(wl(i-1y'(n)) (26)
= $S(wi(i~ 1)y (n))a+[S(wi(i - 1)y'(n) - S(wl(i - Dy’ (n))w(i-1)y'(n)]

I Ki(n)a + bi(n).

Azimi-Sadjadi et al. (2] recognized that by using this approximation in (16), the op*imization

*In fact, if w(s, n—1) denotes the weight estimates after pattern n—1 in iteration i, then in the A-S algorithm, 5(-)
is linearized around these weights rather than the weights at the end of the previous cycle. Of course. this process
could also be used in our algorithm. but we find that it makes no significant difference, and the computational expense
of updating the weights at each n is avoided in our case.

10




problem became equivalent to a set of linear least square error normal equations if the data
were r.>dified according to (15) and (19). Therefore, by quite different means, the theoretical
developments arrive at the same set of linear equations to be solved.

In principle, once the linearization is achieved at iteration 7 and pattern n, any least mean
square type algorithm can be employed to update the weight estimates. The A-S method uses the
conventional RLS algorithm. In this case, neglecting any error weighting, RLS takes the form of

the two recursions (written for node & in the top layer) (11, Ch.5],

_ P(i,n = Dgi(m)gp(m)]TP(i,n - 1)
1+ (g (n)]TP(i,n - 1)yi(n)

wi(ivn) = wi(i,n—1) + P()gh(n)[ik(n) — [G(n)]. (25)

Pin) = 1

wi(z,n) is the estimate of the weights w; followir g pattern n in the i** iteration through the

training data, and P~!(i,n) is the covariance matrix at the same “time” in the process,

P ) ST gl(wiIT. (29)

Note that wg(z,0) def wi(t — 1, V) and similarly for the covariance matrix. This presents the

question of how w(0,0) and P(0,0) should be initialized. The inverse covariance matrix contains
theoretically infinite values at the outset and a proper initialization for the weights is practically
not known (this means that the initial linearizations of the training data are based on potentially
very bad weight estimates). This issue will be addressed further below. Also. it is clear that
ihis solution, as written, will continue to “accumulate” past linearized sets of data which might.
in fact, be linearized around very poor weight estimates. Therefore, the A-S algorithm includes
a “forgetting factor™ [11] in the RLS recursions. This is equivalent to using a weighted error

criterion with time varying (exponentially decaying) weights. This can make convergence slow if

11




the forgetting factor is large. If the forgetting factor is small, then past values are forgotten more

quickly, but leads to convergence problems. We will also comment further on this issue below.
We have found that the choice of conventional RLS as a solution method seriously impairs

the ability of this linearization method to converge on a proper set of network weights. As an

alternative, therefore, we suggest the method presented in the following section.

3 Solution by QR Decomposition

In order to improve convergence the algorithm developed above can be implemented using QR
decomposition {1, 8]. This algorithm has distinct advantages over conventional RLS. First, the
QR algorithm does not suffer from initialization problems noted above for RLS. It also permits the
inclusion of several very flexible “forgetting” strategies. To illustrate the operation of the algorithm,
it is sufficient to consider the estimation of weights wj in the output layer of the network. All
notation is consistent with that used above except the number of nodes in layer one is denoted 3/.

In effect, the linearization technique described above reduces the problem at the it# iteration
through the training patterns to one of finding the least square error solution of the overdetermined

system of equations
((NT - te(1)

(@2nT - . tk(2)
wi(1) = . (30)

(V) J

The QR decomposition method is based upon transforming this system into an upper triangular

12




system by applying a series of orthonormal operators (Givens rotations). The resulting system is

T(N) di(N)

wi(i) = (31)

| O(N-ayxM | | d2(N) |

where the matrix T(N) is M x M upper triangular and 0;x; denotes the i x j zero matrix. The
solution for wg(t) is easily obtained by back-substitution. A recursive version of the solution is also
possible. The recursive algorithm is shown in Fig. 2. For details the reader is referred to [1].

For discussion of further benefits of the decomposition algorithm, it is useful to view the A
matix, defined in Fig. 2, as four partitions. Following the rotation of the n!* equation, in Step 2.

for example,

T(n)|di(n)

da(n)

| Dixm

As is the case with the A-S method, a forgetting factor must be employed to gradually reduce
the effects of earlier linearizations. This is very easily accomplished in the QR algorithm by simply
multiplying the top M rows of the matrix A (matrix T(n) and vector di(n)) by a factor 3 < 1
prior to the rotation of the n + 1°* pattern equation. In this context, both the forgetting factor
and the frequency of weight updates can be varied. In addition to exponential forgetting factors.
equations can be “rotated out” of the matrix. This is done by changing S in Fig. 2 to —1 and
rotating in the equation to eliminate. Thus, for example, only the last Q > M equations can be
used to calculate the weight updates by sequentially removing equation n — Q + 1 prior to inclusion
of equation n. This procedure effects a sliding window over which the estimates are computed.

Another forgetting method useful for MLPs is possible because no initialization of the updating

13




equations is necessary. Because there are no initialization problems the system can be re-initialized
at any step, thus completely “forgetting” the past linearized values. These and a number of other
flexible forgetting strategies made possible by this algorithm may prove very useful in the training
of MLPs.

In addition to new forgetting factors, using the QR implementation also allows the frequency
of updating of the weights to vary. As with conventional RLS, the weights can be updated every
time a new linearization has been used?.

The theoretical results above, along with those in Section 2, can be combined to form a learning
algorithm for MLPs. First, the weights of the network must be initialized. This is done randomly.
each weight being selected from a uniform distribution over the set [-1,1]. Once the initial weights
are chosen, the weight updating can begin. First, a training pattern is input to the system. Because
the weights are not updated until all the trair'ng patterns have been used, convergence does
not depend on the order in which the training patterns are used. Given a training pattern, the
algorithm calculates linearized training patterns for the last layer nodes and these are rotated into
the corresponding A matrix. Each node has a “separate” A matrix. The target outputs of the
layer below are calculated next using back- propagation. The A matrices for the first layer are
then updated. A new training pattern is then used to calculate a new set of linearized inputs and
outputs. This is repeated until all the training patterns have been used. The A matrices are then
used to calculate updated weights. This continues until the network converges to a solution. By
definition the solution is said to have converged when the change of the norm of the vector of all the
weights is below a threshold. As with other training algorithms for MLPs, this algorithm may not
converge to the weights corresponding to the global minimum of the function of E. Also, although

the algorithm approximates a gradient system, because it is not a gradient system, there is no

'This can be as often as every pattern (see Footnote 3), or at the end of each iteration through the patterns as
has been our convention.
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guarantee that the algorithm will converge to any solution. Thus for implementation a maximum

is placed on the number of iterations.

4 Complete Layer and Network Updating

The back-propagation algorithm updates each weight at each node individually. All the weights in
the network except one are fixed and this is changed to reduce E. The algorithm described in the
previous section updates all the weights connected to one node simultaneously. All the weights in
the network except those connected to one node are fixed, and those weights are updated to reduce
E. These two methods of updating weights may not be optimal because E is a function of all the
network weights and may not be minimized by updating the weights of each node independently.
Minimizing an error implies there is a target value. There are no given target values for the inner
layers so these are computed assuming the weights of the layers above are fixed. These target values
allow the weights of each node to be updated independently. This makes the computations easier.
but does not take into consideration the interdependence of the nodes.

The next step in the development is to demonstrate how to update all the weights connected
to one layer simultaneously.

The following derivation uses the linearization of the nonlinearity suggested by (26). Note that

M
we(n) = S(wly'(n)) = S(3_ wi,¥}(n)) (33)
j=1
and
No
¥i(n) = S({w)]T2(n)) = SO w),zi(n)). (34)
=1
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The linearization replaces S(u) by Ku + b. Thus

Ny
ge(n) = Ki(n)(Y_ we;45(n)) + bi(n)

>=1
and
No
g(n) = Ki(n)(D_ w),zi(n)) + b(n)
i=1
SO

Ny
Ge(n) = Ki(n)(Y we, (R (Zwm )) + bi(n)]) + bi(n).
=1

To update the weights in layer two, the weights in layer one of the network are fixed.

(v7)

With

these weights fixed, the weights connected to different nodes in the output layer can be updated

independently and the same update equations as in the previous section result. To update the

weights in the first layer, the weights in the last layer are fixed. Thus

\v

ge(n) = Ki(n) Y wi,K}(n) Zw,lll(n)+1\k Zwk,b1+bk(n)

1=1 =1 =1

or

Ny N
=D ) (Ki{n)ww,Ki(n)zi(n w,1+[2 Ki(n)wy ;b + b(n)]

SO
Nl ;’V] AVO

n) = (Y Ke(n)we,b)(n) + b(n)] = DY (Ki(n)we, K (n)zi(n))w),.
=1

1=11=1

{3R)

(39)

(40)

Hence for one output. this is the same as a linear system with Ng x NV, inputs and one output. The

linearized output and inputs are

N

fe(n) = tx(n) - Z[l\k(n Wk, Jb (n)] + b(n).

=1
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and

21 = Ki(n)wy ;Kj(n)zi(n). (42)

For one output, yx(n), and N training patterns,

N
Ex =) (t(n) - ye(n))?, (13)
n=1

while for N, outputs and one training pattern

N,
E =" (tx(n) - me(n))?, (41)

k=1

where yx(n) has the form above. The weights in the output layer are held constant, so all the y;
are a function of all the weights in the first layer. Because the y(n) for all k¥ and for all n are
functions of the same weights, we can use the same technique to update the weights of the two
systems above, given by (43) and (44). Thus, the N2 output network with one training pattern is
treated as a one output network with V; training patterns. This is done for each training pattern.
Thus if there are .¥ training patterns and N; outputs, the number of linearized training patterns
is .¥ x N,. This method allows us to update all the weights in the same layer simultaneously.

Ultimately the goal is to update all the weights of the network simultaneously. Some improve-
ment in convergence can be expected because the weights are not independent.

Simultaneous updating of all weights can easily be accomplished for a one output network using
the derivation above. From (38)

N1 Ng Ny

we(n) = 3 ST [Kie(n)R)(n)zdn)]we,w)y + Y [Ke(n)b)(n)]wk, + bi(n). (45)
=1

J=1l=1




Letting
wh, = wijwjy, (46)
then
N1 No
yk(n) = ZZ[[\’ (n)K(n z;(n)]wJ, + Z[K (n)b)(n)]wk,; + br(n) (47)
1=1l=1
or
Ni N, M
(ye(n) = bx(n)) = 3_ S (Ku(m)R)(n)zi(n)]w! +Z R (n)b(n)]wg,;. (48)

=tl=1
This is a linear system with one output and Vg x Ny + N inputs. The system can be solved for

wk,; and w,tw- and (46) can be used to solve for wg'l.

5 Experimental Results

5.1 Single Node Updating

The results given in this section compare three training strategies for an MLP. These are:
1. Conventional back-propagation (no linearization).
2. Conventional RLS with a forgetting factor (A-S Algorithm).
3. QR decomposition with an exponential forgetting factor.

Each of the three strategies was used to train each of the following networks:

1. a two-bit parity checker,

[V

. a four-bit parity checker, and

3. a four-bit bit counter.

The architectures for these three networks are illustrated in Fig. 3.
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The two-bit parity checker (XOR) network has two inputs, two hidden layer nodes and one
output node. An additional input is added at each layer whose value was always unity, to serve as
a bias for each node. The output function S(-) is the sigmoid defined in (3). The initial weights were
chosen as follows. Each weight in the network was selected randomly from a uniform distribution
over the set [—1,1]. This procedure was repeated 100 times to select 100 sets of initial weights. The
same 100 sets of weights were used for all 3 implementations. For the back-propagation algorithm,
a factor of 0.04 was used in the weight updating equation. The A-S algorithm was implemented [2]
using no weight change constraints. The forgetting factor for this and for the QR decomposition
implementation was 0.98. The QR decomposition implementation used a weight constraint of 0.2.
Thus the weight vector associated with each node was allowed to change at most by 0.2 during
each iteration.

The four-bit parity checker network has four inputs, four hidden layer nodes and one output
node. A bias input is also added to each layer. Two output functions were used. These were the
same sigmoid function as above, and the logic activation function. The logic activation function
is a three piece piecewise linear function. It is zero at zero, has slope one from zero to one. aud
slope zero everywhere elsewhere. This makes the derivative of §(-) easy to determine everywhere
except at zero and one where it does not exist. This does not pose a problem in implementation
if we let S(a) = 1if @ € [0,1] and zero else. Two sets of 100 random initial weights were used for
the three implementations. The first set of weights was random as in the two-bit parity checker,
and the second set of weights was as described by Azimi-Sadjadi et al. in their paper. The A-S
method selects the weights so that the outputs of the network will be between zero and one. This
is done so that the derivative will not be zero and weight updating can take place. The four-bit
bit counter had four inputs, four hidden layer nodes and two outputs. An extra input was added

to each layer. The logic activation function was used as the output function. Two sets of initial
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weights, random and as described by Azimi-Sadjadi, were used. The results are shown in Table 1.
The table shows the number of times each implementation found weights that solved the problem
for the 100 initial weight sets.

Simulations were also run comparing the output error of each algorithm. In the resulting figures.
the error in dB means the following: Let £(i) be the sum of the squared errors incurred in iteration
¢ through the training patterns, averaged over the 100 initial weight sets. Then, plotted in the
figures is 10log(e(:)/u) (dB), where p is the maximum possible error in any iteration.

Fig. 4 shows the errors of the three X-OR implementations. Fig. 5 shows the errors of the QR
decomposition algorithm using different forgetting factors and different weight constraints. The
number of convergences for each of the setting was 78 for number one, 60 for number two, 56 for
number three and 64 for number four. It is apparent that the parameters which yield the most
convergences do not necessarily lead to the lowest average error.

These results indicate a clear advantage for the QR decomposition strategy. Algorithmic differ-
ences among the three implementations account for performance differences. One difference is the
initialization needed for the RLS equations. With the RLS strategy, both the covariance matrix
recursion and the weight vector recursion must be initialized using theoretically incorrect values.
Because of initializations, the RLS algorithm is not guaranteed to move the estimate in the direc-
tion of greatest decrease of E, or even of decreasing E, for the first iterations. Of the two RLS
recursions, the weight recursion seems to be the most sensitive to the initialization problem. This
is because P is initialized with large values, P~! is small and the effect of this initialization is
relatively small. The weight recursion is sensitive to initialization because (28) depends explicitly
upon wi(i.n ~ 1). The QR algorithm has only an implicit dependence on the weights. as do all

linearization algorithms, because the linearizations depend on the weights.

20




There is also a difference in the performance of the network using different functions for S(-).
The logic activation function proved superior to the sigmoid in these experiments. This is probably
because the error will always be positive using the sigmoid, but can be zero for the threshold logic
activation function. No matter how the weights are adjusted, the output of the sigmoid will always
be bounded by one, so that the training pattern outputs can never be matched exactly. With the
threshold logic activation function, once the weights are adjusted so that the output is off the ramp
(the linear region), the output can be zero or one in which case the difference between the training

output and the actual output can be zero.

5.2 Layer Updating and Network Updating

This section gives the results for the algorithms given in Section 4. The first algorithm updates
the network weights by layers. All the weights in the same layer are updated simultaneously. The
second algorithm updates all the weights in the network simultaneously. Both algorithms were used
to train a two-bit parity checker (XOR) network. The same network architecture and the same
100 sets of initial weights as in the previous section were used in the simulations. The layer-wise
updating algorithm has a forgetting factor of 0.3 and a weight constraint of 1.0. Thus the vector of
the weights in each layer was allowed to change by at most 1.0 during any iteration. The network-
wise updating algorithm had the same forgetting factor and weight constraint. The results are
shown in Table 2. As in Table 1. Table 2 shows the number of times each algorithm found weights
that solved the problem for the 100 initial weight sets.

Fig. 6 shows the errors of the two X-OR implementations of this section and the error of the
QR decomposition implementation of the single node updating algorithm. The convergence results
show the advantage of layer-wise weight updating and network-wise weight updating over node-wise

updating. Layer-wise weight updating also proved better in the error analysis
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6 Conclusions

A new implementation of a node-wise weight updating algorithm for multilayer perceptrons and new
algorithms that update weights layer-wise and network-wise have been presented in this paper. The
QR decomposition implementation has been shown to be superior to standard recursive equations
for the node-wise updating algorithm. This result should prove to be beneficial not only for this
algorithm, but for all MLP training algorithms that use recursive equations for implementation. The
layer-wise and network-wise weight updating algorithms were developed to improve the convergence
rate and the speed of convergence. Both objectives were accomplished, with the layer-wise weight
updating algorithm showing a significant advantage over both the single node weight updating

algorithm used as a reference and standard back-propagation.
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Tables | & 2.

Table 1: Number of convergences per 100 sets of initial weights

2in-lout din-lout din-2out ]
sigmoid sigmoid logic activation logic activation
Impementation | random | random A-S random A-S random A-S
weights | weights | weights | weights | weights | weights | weights
Q-R 78 3 5 31 57 1 16
Back-Prop 11 0 0 1 33 0 ., 0 |
A-S 8 0 0 1 37 0 9 |

Table 2: Number of convergences per 100 sets of initial weights

2in-lout
sigmoid
Impementation random weights
Layer-wise updating 96
Network-wise updating 99
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Figure 1: Two-layer perceptron. The bottom set of “nodes” (input) are linear and are designated

layer zero.
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Figure 2: Weight Estimation Using Recursive QR Decomposition

WEIGHT ESTIMATION USING RECURSIVE QR DECOMPOSITION

[nitialization: Initialize an (A + 1) x (.M + 1) working matrix, say A, to a null matrix.

Recursion: For i = 1,2,... (iteration); and, Forn = 1,2...., NV (pattern),

1. Enter the next equation into the bottom row of A,

| 5T | i) | \49)

2. *Rotate” the new equation into the system using

mk = Amk0+ A sTS

Amk

Ak = —AnktS + AM4140S

fork = mm+1,... M+ 1and m = 1,...,M: where 0 = Apm/p, 7 = ArMyi/p. p =
(A% + Ad V2, S is unity (useful later), and Apnk(A/ ) is the m,k element of A pre-
(post-)rotation. No other elements of A are affected.

3. Solve for the least square estimate of the weights wy if desired. (Solution after the n** pattern
will produce what has been called w (7, n) in the text, and wi(i, N) = wi(i).)

4. If n < .V, increment n. Otherwise check convergence criterion and increment : and reset n if
not met.

Termination: Stop when some convergence criterion has been met.
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Abstract

The Dasgupta Huang Optimal Bounding Ellipsoid (OBE) algorithm for 1lentifying linear parametric systems has
been proven to converge under ordinary conditions on the model disturbances. This appealing property notwith-
standing. the algorithm is based upon an unusual optimization criterion which makes hehavior of the method difficult
tointerpret theoretically. On the other hand. the optimization strategy for the original Fogel-Huang OBE algorithm
is appraling in s stratghtforward intecpretability. but the method suffers from the lack of a clear understanding
of its convergence properties. While the underlying bounded error assamption gives rise to both algorithis, the
developments of the techniques are fundamentally very different. However. this note deseribes some interesting
relationships between the algorithms which: 1. provide theoretical support and interpretation of the aptinuzation
eriterion employed in Dasgupta-Huang: and. 2. suggest that an algorithm with the desirable properties of both

algorithms may exast.

ACKNOWLEDGMENTS

[his work was supported by the Office of Naval Research under Contract Noo NOOOTE01-J-1329 and by the National
Sewenee Foundation under Grant Noo MIP-O0 16734




1 Introduction

Set-membership-based (SM) system identification algorithms offer an interesting alternative to conventional tech-
niques. SM methods have been receiving increasing attention internationally. Recent reviews of this field are found.
for example. in [1]-{3]. This note is restricted to the class of algorithms known as optimal bounding ellipsord (OBE)
algorithms which follow from a bounded error constraint. We explore some interesting connections which exist be-
tween two landmark OBE algorithms - the Fogel-Huang (F-H) [4] and Dasgupta-Huang (D-H) [5] OBE algorithms
- which have not been well appreciated. These connections suggest the possibility that the desirable properties of
both may be blended into a single OBE algorithm.

The bounded error identification problem is as follows: Assume that we are observing some physical system
which is generating sequence y(-) € C* in response to input u{-} € C'. u(-) is a realization of an ergodic, wide sense
stationary stochastic process. Both input and output sequences are measurable. We assume the existence of a “true”
model of form

y(n) = O z(n) + e.(n) (1)

in which ®#(n) is some m-vector of functions of p lags of y(-) and q lags plus the present value of u(-). and where
€.(-) € C*¥ 777 is the realization of a zero-mean. second moment ergodic, complex vector-valued random sequence
whose rcomponents are independent. The matrix @. € C™** parameterizes the model. At time n we wish to use the
observed data on t € [1.n] to deduce an estimated model of the same form. The parameter estimate is denoted by
@(n) and the residual process by e(-. @(n)). The dependence of the residual upon the parameter estimates is highly
significant. so it is shown explicitly.

Deller €t al. [3] have recently shown that all reported OBE algorithms. including F-H OBE and D-H OBE. can
be unified into a general framework which they call the "nified OBE (UOBE) algorithm. We initially present the

"OBE framework: VOBE algorithms arise from a bounded error constraint:

Il e(m) IP< 5 (n). (:

[ 3N
—

where +(-) ts a known positive sequence. At time n. a set of parameters can he found which are consistent with the
observations and this sequence of bounds. The exact set 1s difficult to describe and track. but. in conjunction with
werghted recursive least square (WRLS) processing (e.g. [6. 7]). Q(n) can be shown to be contained in a superset of

the form (e.g. {3].[1].[8])

. C
mm={@hdm—@wm’fm@_@mn<& (3)
K(n
where tr{ -} denotes the trace of a matrix, @(n) is the WRLS parameter estimate at time n using weights A, (1), ... A, (n).

C(n) is the weighted covariance matrix. and s(n) is the scalar quantity

n
w(n) Z (@ (@Y + 3 A [v(O- 1y 7] (4

t=1
Qtn) s a hyperellipsoid in €™ % with its center at @(n). By examining a single autput  say y,(-). the ith romponent
of yt} wesee that a common “ellipsord matrnix™ Ctn)/wxin) s shared by each of the individual outputs, bat that
each s centered on a different parameter extimate represented by column 7 of @(-). We conclude therefore that under

hounded ereor constramnts. a hyperellipsotd ran be associated with a WRLS recursion and conversely.




The subscript “n” on the weights A, (-} is used to indicate that the weights may be dependent upon the time
of estimation. In general, time dependent weights are not easily integrated into WRLS algorithms except in simple
cases. One such case occurs in the UOBE algorithm in which the weights are time varying by virtue of a scaling
procedure. The weights used at time n are given by

An— ()

Anll) = ———
() ({n-1)

fort<n-1, (i

A
—

and A, (n), where ((-) is a positive scaling sequence. We make the reasonable assumption that the sequence ((-)
1s “causal™ in the sense that ((n) does not depend upon any quantities not available at time n. The method for
integrating scaled weights into WRLS is given inherently in (4] and {8], and explicitly in {3] and [9]. While the weights
are directly related to the size. orientation. and location of the ellipsoid in the parameter space, this scaling procedure
effectively restricts to one ( viz. A, (n)) the number of free parameters avaiable to control the bounding ellipsord ai
tume n. The central objective of the UOBE algorithm is to employ the weights in the context of WRLS estimation
to sequentially minimize the ellipsoid size in some sense. A significant benefit is that often no weight exists which
can minimize the ellipsoid, indicating that the incoming data set is uninformative in the SM sense.

All UOBE algorithms adhere to the following steps: At time n,

. In conjunction with the incoming data set (y{n).2(n)). find the weight, say A% (n), which is optimal in some

sense (see below);

[

Discard the data set if A5 (n) < 0.
3. Update C(n) and @(n) using some version of WRLS (e.g. see [8]).
4. Update x(n) using (1) or one of the recursions in [3].

Three fundamental variations on the UOBE method have been reported in the literature. The most recent. the
D-H OBE algorithm [5]. is unlike the others in one important aspect. This difference lies in the criterion used for
determining optimal weights. This difference. on one hand. allows for a proof of convergence of the ellipsoid in a
certain sense. On the other hand. the optimization criterion used is controversial and somewhat difficult to interpret.
Further. the usual optimization criterion so profoundly changes the development of the algorithm. that its identity
as a member of the UOBE class of algorithms has not been appreciated.

The ather two reported OBE methods are the F-H OBE algorithm [4] (¢(n) = x(n)) and the SM-WRLS algorithm
of Deller et al. [8].[10] ({(n) = 1). Variations on. and enhancements to. each of these algorithms. as well as D-H
OBE. are found in the literature (e.g. [11]—[14]). The stated purpose of this paper is to make connections between
D-H OBE and F-H OBE. However. the important contrast exists between D-H OBE and any UOBE algorithm with
“eanventional optimization™ based on a meaningful set measure as described below. Let us refer to the latter class
of algorithms as VOBE-u. and generalize the discussion.

UOBE-p algotithms operate an the optimization principle of (prospectively) minimizing some set measure of
Qin). say u{Qn)}. Fogel and Huang [1] suggest two set measures. The first is the determinant of the inverse
etlipsord matrx

16 {QUn)} B det {x(n)C~1(n)} ()




and the second is the trace,

wAQM Y E tr {k(n)C (). (7)

{We shall henceforth write g, (n) and g, (n) for simplicity.) In the single output case in which Q(n) is clearly in-
tepretable as an ellipsoid. g, (n) is proportional to the square of the volume of (he ellipsotd. while i (n) 1s proportional
to the sum of squares of its semi-axes. The same two measures are meaningful in the multiple output case. since they
result in the minimization of the volume or trace of the common ellipsoid sk-red by all the outputs (see discussion
below (1)).

The general method for finding the TOBE-z optimal weight for minimizing the either set measure is given in [3].
These methods include results for F-H OBE and SM-WRLS as special cases, but optimization strategies are also
given of course in the original papers. It is found that A} (n) is the unique positive root of the polynomials F, (A)

and Fy(A) for the volume and trace measures respectively. where F, 15 a quadratic.
[‘~,(/\):rlj/\2+(llz\+tln . ('\)

and Fy 15 a cubic polynomial

F((/\) :b;;/\3+’)'_7/\2+l)1/\+[)r) . (9)

The coefficients a; and b; are given in terms of quantities which are known prior to time n, and which, in turn.
are dependent upon the scaling sequence J(-). The interesting feature of the UOBE-y algorithms is the infrequent
existence of the optimal weight leading to infrequent updating of the parameter estimates. This reduction in the
need for updating, in turn. results in computational efficiencies and interesting performance properties.

[n contrast. the D-H OBE algorithm uses scale factors {(n) = (1 — A2 {n))~', and an optimization procedure
which does not seek to directly minimize a set measure on Q(n) such as (§) or (7). Rather. the weight is chosen to
minimize &(n). subject to the constraint that it be in the allowable range {).a} with 0 < o < | (see below). The

choice of scaling sequence results in the covariance matrix at time n.
Cin)=(1 =X (n)C(n =1+ Aie(n)xf(n) (1)

which is seen tn be a convex combination of C(n — 1) and the new data outer product. Here we see the reason
for the constraint on the range of optimal weights. This canstruction provides the means with which to prove
asymptotic and exponential convergence of the ellipsoid. and cessation of updating. nsing Lyaponov theary. Upon
convergence, the residuals. €(-. @(.)) are guaranteed to remain in the “dead zone” indicated by the error bounds,
e lim“,::1 [l e(t. @(n)) |1*> +(H).

Dasgupta and Huang [5] show that such an weight optimal weight in the sense of minimizing x(n) exists iff

SinBin -1 >~in) —ren=1). (1
. 1-f - 0 . . .

where noin = 1) = k(n = 1);n — 11 the “sealed” value of the & parameter. Accardingly this simple and computa-

tionally inexpensive test may he emploved to determine whether the the current data set (y(n). p(n)) 1s useful in the

sense of the optitization criterion However. whether this goal of mimmizing x(n) 1s meaningful remains an issue

of cantroversy. From an analytical point of view. the reason for this choice 1s that xtn) is a bound on the Lyvapunov

function nsed in the minimization. and the convergener of the Lyvapunov fanction is used to prove convergenee of




the algorithm. From an interpretive point of view, however. diminishing ~(n) is not helpful because its magnitude
is not clearly related to the “size” of the set Q(n). Dasgupta and Huang [5] argue simply that x(n) is "a bound on
the estimation error.” and should be minimized. Norton and Mo [15] dispute this claim with the abservation rhat
“Imintmizing x(n)] is claimed in {3] to minimize a bound on the estimation errar. but the quantity minimized is not
a bound on the parameter error. nor does it bear a suuple relation to it.”

Hence. we have arrived at the apparent philesophical and practical dilemma which imtiated this discussion.
When faced with the choice of OBE algorithms. does one opt for the D-H OBE method with its proven convergence
properties, or the UOBE-u (including F-H OBE) algorithms with their clear interpretation?” In the following section,
we demonstrate some heretofore unrecognized connections between the methods which provide a better basis for

making this choice.

2 Connections Between the D-H OBE and UOBE-; (F-H OBE) Al-

gorithms

[n spite of some statements to the contrary in the literature (based on apparent misunderstandings of the original
F-H paper [1]). there is no known proof of convergence of the F-H OBE algorithm according to any reasonable
eriteria. In particular. F-H OBE is not known to converge in the sense described for D-H OBE. These staternents
apply to UOBE-p algorithms in general. We shall not pursue such a convergence result. Rather. we shall show that
some of the “interpretability”™ of VOBE-u algorithms may be “transferred” to D-H OBE.

It 15 somewhat curious that we have called the D-H method an “OBE™ algorithm. The bounding ellipsoid elearly
nnderlies the process. but its use in the optimization proc *dure is obscure. Herein lies the crux of the problem with
interpretation. While it is not exploited in the D-H OBE algorithm. the D-H hyperellipsotd nevertheless dors have
volutie and trace set measures at each n. In fact, because D-H OBE is fundamentally a UOBE algorithin. the unigqae
posttive oo of (%) 4 it exists, will minimize g, . A similar statement applies to (9) and p,. The utility of this volume
or trace result remains an open question at this point in our discussion. because to use weights which are optimal in
these “ronventional” senses does not necessarily admit the conrergence results obtained by the D-H analysis.

The connection between the two methods rests fundamentally in the zero order coeflicients ay and b, of the

optunization polynomials (%) and {9). The following result has been shown in [3]:

Theorem 1 The quadratic F.(A) associated with the T"OBE-p algorithms has a unique pesitive rool (the optunal

wertht, Xty off an < 00 Simadarly, cubte equation F(A) has a unique po-itire root iff by < 0.

Let ns heneeforth restrict our attention to the volume minimization case with the understanding that a parallel

Aiscussion applies to the trace measure. The coofficient aa 15 given by [3]
o = mk ~in)=zin @(n~ 1)) !E:} — Ne(n = 1)n) (12

. ter _1 . ; inf X . - N . .
where Goany Z 20 C T in=lirin). Ciny = Cin)/Sn). and all other quantities have been defined above. Noting
that the computation of this quantity s nearly as compntationally expensive as simply including the new Jata

the estimate. Deller and Odeh [12].013] suggest the suboptimal testing procedure i which the new data are used it

fein Oin — 1)) %> ~(n). BT




While originally developed using a different argument. it 1s seen that the test (13) has a very useful interpretation

in terms of the “proper” test ap < 0. In fact. {13) is equivalent to testing whether
an+ Ay <0 {14)

where Ay is the last term in (12). Since Ay > U {3]. an optunal weight in the sense of dimimishing p(n) well always
erist if the suboptimal lest (13) 1s satisficd. Experimental studies have shown that the UOBE-u algorithm with
suboptimal testing performs as well as the uptitnal algorithm in terms of tracking and (empirical) convergence. while
frequently using significantly fewer data (e.g. see [12].{13]).

Let us now examine the test emploved by Dasgupta and Huang, given in (11). Recall that this test is designed
to determine whether an optimal weight exisis in the sense of minimizing x(n). say A; .(n). However, in light of the

developments above, the D-H test may also be seen to be a suboplimal test for the enistence of an optimal werght i

no

the sense of diminishing p, . say A7 (n). Ia fact. the D-H test is equivalent to testing whether

iy + 1\—'3 < U kl—))

where Ao = ky(n=1) [(Gy(n)/mk) — 1]. Unfortunately. the truth of (15} is not sufficient to assure that ay < 0 hecause
K5 is not necessarily positive. If it were additionally known that (/,(n) > mk, then (15) would be a suflicient rest.
However, because of the weighting strategy used in D-H OBE. there is no reason to believe that this latter condition
holds in general. So the D-H test comes intriguingly close to being a check for the existence of A7  (n). but falls
somewhat short. Nevertheless. the D-H test can be interpreted as a suboptimal test for the existence of an optimal
“volume weight.”

To sumrnarize the result above, at time n. there s an optimal weight in the sense of mimimizing . (nY. A} (n) > 0.
associated with the D-H ellipsoid. The test (11) 1s a suboptimal check for the existence of a positive value of
An o, (n). The relevance of this result for D-H OBE in which &, not g, is minimized, is as follows. While generally
An (n) £ AL (n), roughly speaking. A% ((n) will be positive. and the data used. only when the velume can be

ot

minimized. While AY _(n) is not designed to minimize g, . it will still diminesh the volume. though not optimally. In

-
n x

rurn. this fact is a conseauence of the fnllowing. which can be inferred from the work in (3]:
Theorem 2 For any (TOBE algorithm. of AL (n) > 0. then af any posttire wewght 1s used. p, (n) < g (n = 1).

Consequently, to the extent that (11) s a useful test for a positive A% (n). it van be stated that the D-H OBE
algorithm diminishes the volume at each step in the pracess of minimizing x.

The arguments above are not rigorous because (11) 15 not an exact check for a positive A% (n). Further. algorithms
which nse different weights ran only he compared “locally.” that is. at a given n. However, it seems intuitive that if
an algonthm whicn suboptimally dinunishes volume at cach n can be shown to converge, then a covergent algorithm
which optimally diminishes g, could be demonstrated. By showing that D-H OBE and UOBE-x (F-H OBE) are more

simitar than had previonsly been understond. this discussion suggests that sach an algorithm may be forthroming
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WITH VOLUME MINIMIZATION; A SUMMARY'
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ABSTRACT

A newly modified set-membership algorithm is introduced. It is shown that the forgetting covariance
updating in conjunction with minimum volume data selecting strategy result 1.0 a landmark performance level in
system identification. A suboptimal test for data selection is introduced which is computationally efficient.
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1. INTRODUCTION

The behavior of optimal bounding ellipsoid algorithms (OBE) such as Fogel-Huang and SM-WRLS has
atracted the attention of prominent researchers. While the strong performance of these algorithms can not be
disputed, there are nc <ioporting theoretical proofs for their converging behavior. Dasgupta and Huang [4] intro-
duced an OBE algorithm whose convergence was shown theoretically by emgploying a Lyapunov technique.
However, the data-selcction strategy implemented in this algorithm is the center of some debate. This originates
from a controversial criterion used to measure the performance of the algorithm if new data are to be selected.

In this paper, we introduce a modified SM-WRLS algorithm whose convergence will be proven in the
most general system identification setting. This algorithm employs the covariance updating used by Dasgupta
and Huang, and selects the incoming data according to SM-WRLS volume minimization strategy.

2. MODIFIED SM-WRLS ALGORITHM

Since the Modified SM-WRLS algorithm is also an OBE .lgorithm, it adheres to the general steps outlined
in [8]. To address the update recursions and data-selection strategy, let us adopt similar notation used in [8].
Update Recursions: The modification of the SM-WRLS Covariance updating to
Cn)y = (1-A,) Cn=1) + &, xx7 (n

wi® 0 <A, <1, has a profound effect on other measures employed in SM-WRLS as indicated below, where
Finy=C"(ny:

A, P(n=Dx, x[P(n-1)

Pn)= l\ [P(n—l)—
1-A

M ]L 1"}"n+}"nGn
8, =0, + A, P(nx,¢g,
€, = Vo — 071X, (2)
A (1=, )€,
r = (1=Ay ) K, _ S R St
Ko Koot Mt = TN,

.r,f Pin-Myx,

Q
a3
i

Data Selection: Selection of the incoming data involves the minimization of the bounding ellipsoid’s volume,
with respect to the weights A, . The optimal weight, denoted by A,, is given hy

A = max(OA,,) (3)
where A, is the larger root of the tollowing quadratic equation:
A+ h+owm=0 4
where
W= mv. - mel + mG Y, = 2mGy Yy = %, Ga + K Gy + Go¥y — G,y — 8,6,
oy = 2mes = 2myy - 2mGa Yy + 2Ka_1 Gy — Xpt G = Go¥a + €;G,

o= my, - me; - K,_;G,




Theorem I: Equation (4) has uf most one positive root in which case the selection of the data point
guarantees the shrinkage of the bounding ellipsoid in volume. Moreover, this positive root lies in the
interval (0,1).

This result implies that the data must be discarded if

ull >0

x>
Also, noting that (1) represents a convex combination of C(n) and x,x] matrices, Theorem 1 suggests that as
long as a positive root to (4) is found. no extra monitoring is needed to satisty the 0 < A, < 1 condition. This is
a very convenient data selection strategy.

3. CONVERGENCE OF THE ALGORITHM

This modified SM-WRLS algorithm shows an attracting convergence behavior as given by the following
Theorem.

Theorem 2: Let us assume that the noise process v(n) is persistently exciting with pointwise cnergy
bound

Vi) < Y, (5

Then, the modified SM-WRLS shows convergence in the following sense:

() lim !0, -8"11=0

n—~

(2) lim A, =0

n =

(3) lim gle [0.Y,]

n—ro

Example:
Let us consider a simple AR(2) model given by
viny=a,y(n-1) + uv(n-2) + vin)

where a; = 1.6 and g, = -0.68 and v(n) is a white noise sequence where v, = 0.5 in (5). Figure 1 clearly indi-
cates the asymptotic convergence of the parameters to the desired values. Also shown in Fig. 2 is the volume of
the bounding ellipsoid as more data is selected. The asymptotic convergence of the optimal weight A, to zcro is
shown in fig. 3. Figure 4 indicates that in the limit &7 will be equivalent to the tnput noise v(n), as expected.

4. SUBOPTIMAL TEST

There are some common features of SM-WRLS that are inherited by the modified version one of which is
the feasibhility of the same suboptimal test shown in [3] and {8]. This is so because of the resemblance of the o,
coefficient 1 (4 to its counterpart in conventional SM-WRLS. Figure 5 shows the relative computational
requirements for the optimal and suboptimal tests associated with this algorithm.




(5]

(6]

(7]

(8]
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Abstract:!

This paper is concerned with the convergence and bias proper-
ties of a general class of »rptimal bounding +llipsnd OBE " algo-
rithms. OBE algorithms are set-memdersaip . SM: hased identi-
fication algorithms which are applied to models which are linear-
in-parameters, and are closely related to weighted recursive least
square error ( WRLS) methods.

1. Introduction and Forrnalities

This paper will generalize th= basic OBE identification prob-
lem with respect to existing publications in several ways. First. a
complex signal, MIMO system is considered. This treatment sub-
sumes common parametric models sich as the SISO ARX model
(e.g. [7]) as special cases. Secondly, a unified OBE ['OBE: algo-
rithm is developed which contains all reported OBE algorithms.
both adaptive and nonadaptive, as special cases.

Assume that we are obseiving some physical system which is
generating sequence v{-) € C* in response to input u(-} &€ C!

u{-) is a realization of an ergodic. wide sense stationary stochastic
process. Both input and output sequences are measurable. We
assume the existence of a "true” model of form

y(n) = Gf’ r(n}) + <e(nj (1)

in which r(n) is sorne m.vector of functions of p lags of y(-) and
; lags plus the present value of 4{ ). and where <,(:) € (¥ is
the realization of a zero-mean. second moment ergodic. complex
vector-valued random sequence whose components are indepen-
dent. The matrix @, € C™** parameterizes the model. At time
n we wish to use the observed data on t € [1.n] to deduce an
estimated model of the same form. The parameter estimate is
denoted by 9(n) and the residual process by =({n. @(nj). The
dependence of the residual upon the parameter estimates is highly
significant. so it is shown explicitly.

In almost all SM-based techniques. a frasible parameter set
arises from direct or indirect constraints on the additive error se-
quence. 'OBE algorithms arise from a bounded error constraint:

1| ee(n) 12 < ¥{n), (2)

where ~(.) 15 a known positive sequence. At time n. a sct of pa-
rameters can be found which are consistent with the observations
and this sequence of bounds. The exact set is difficult to describe
and track. but. in conjunction with WRLS processing, it can be
shown to be contained in a superset of the form {e.g.[4].(5].[6])

Tiny,

(8- Binj < 1} 3)

Qi) = { A tri{ © ~ A=
<(n}
where tr{ } denotesthe trace of a matrix. @(n)is the WRLS pa-

rameter estimate at time = using weights Y,01).... . \qin). Tin)

! This wark was supported by thie Office of Naval Ressearch un-
der Contract No. N00014-91-J-1329 and by the National Science
Foundation under tirant No. MIP.901A734

phone: (517} 353-1837

FAX: 517} 353-1980

is the weighted covariance matrix, and »(n) is the scalar quantity

stn) 2R n) + Y alt) MO 11 v 7] (4)
t=1

def

with K(n) = tr{ ®(n) C(n) O(n)}. We shall refer to {}(n) as
a ~hyperellipsoid” in C™**, with its “center” at ©(n). I[ndeed.
if all quantities are real, and m = 2 and k = 1, this set forms
an ellipse in R2. By cxamining a single output - say y,(-}. the
' component of y(-) - we see that a common “ellipsoid matrix”
C(n)/s(n) is shared by each of the individual outputs, but that
each is centered on a different parameter estimate represented
by column : of ©(.). We conclude therefore that under bounded
error constraints, a hyperellipsoid can be associated with a WRLS
recursion and conversely.

The subscript “n” on the weights A, (-) is used to indicate that
the weights may be dependent upon the time of estimation. In
general. time dependent weights are not easily integrated into
WRLS algorithms except in simple cases. One such case occurs
in the UOBE algorithm in which the weights are time varying by
virtue of a simple scaling procedure. The weights used at time =
are given by

'\n-l(t)

Aa(ti =
BTy

fort <n-1. (3)
and \n(n). where {(-) is a positive scaling sequence. When {(n) is
independent of \,(;)} for all:. ) > n. then we shall call these simply
scaled weights. The method for integrating scaled weights into
WRLS is given inherently in [4] and {6], and explicitly in {5] and
(9]. While the weights are directly related to the size. orientation.
and location of the ellipsoid in the parameter space. this scaiing
pracedure =ffectively restricts to one ( nz. \p(n), the number -f
free parameters avarlabdle to ~ontrol the bounding ellipsord at ime
ri. The central objective of the UOBE algorithm is to employ
the weights in the context of WRLS estimation to sequentially
minimuze the ellipsoid size in some sense. A significant benefit
is that often no weight exists which can minimize the ellipsaid.
indicating that the incoming data set is uninformative in the SM
sense.

All bounding ellipsoid algorithms. both adaptive and nonadap-
tive, adhere to the following steps. Consequently. we call this set
of operations the Unified Optimal Bounding Elhpsord 1'OBE:
algorithm: At time n.

1. Inconjunction with the incoming dataset { y(n). r!+)). find
the weight. say \!(n). which is optimal in some sense (see
below):

2. Discard the data set if \%(n) < 0.

3. Update 7'(n) and ®{n) using some version of WRLS is g
see [4]).

4. U'pdate <(n) using {4) or one of the recursions in (5]

Three fundamental variations on the {'OBE method have heen
reported in the literature. The most recent, due to Dasgupta

Presented at ICASSP-92, March 23-26, San Francisco, California, USA.




and Huang ("D-H OBE") (2], is unlike all the others in certain
respects. From the present point of view. one of the key differences
is that the weight pattern follows (5), but the weights are not
simply scaled according the definition above. These differences.
on one hand. allow for a proof of convergence f the ellipsoid in
a certain sense and make the analysis in this paper seemingly
unnecessary. On the other hand, the optimization criterion used
is controversial and somewhat difficult to interpret. Space does
not permit elaboration upon D-H OBE, and no precise connection
between this method and more “conventional” OBE algorithms
exists in the literature. Hence, the analysis in this paper is not
apparently related to D-H OBE. However, interesting connections
45 exist and these will be the subject of a forthcoming paper [3].

“Conventional” OBE algorithms operate on the optimization
principle of (prospectively) minimizing some set measure of {1{n}.
say u{fl(n)}. For the SISO case. Fogel and Huang (6] suggest two
set measures. The first is the determinant of the inverse “ellipsoid
matrix”’

i () 2 det {x(r) C=1 ()

and the second is the trace,

6}

u;{Q(n)}"’=ﬁ tr {x(n) C~Y(n}}. ")
(We shall henceforth write u,(n) and ue(n) for simplicity.) In the
MISO case in which (n) is clearly intepretable as an ellipsoid.
uv(n) is proportional to the square of the volume of the ellipsoid.
while u¢(n) is proportional to the sum of squares of its semu-
axes. The same two measures are meaningful in the MIMO case.
since they result in the minimization of the volume or trace of
the sommon ellipsoid shared by all the outputs {see discussion
below (4)). The original OBE algorithm of Fogel and Huang (“F-
H OBE") [6] follows these UOBE steps with ¢((nr) = x(n) for each
n. The set-membership weighted recursive least squares algorithm
{SM-WRLS) of Deller et al. (e.g. see (3].[4]) is a UOBE algorithm
with ({n) = 1 for all n.

The general method for finding the UOBE optimal weight for
minimizing the either set measure is given in [3]. These methods
include results for F-H OBE and SM-WRLS as special cases. but
optimization strategies are also given of course in the original
papers. In the volume case, it is found that the optimal weight is
givenby the unigue positive root of a quadratic equationin An(n),
say Fu.{\n(n)), whose coefficients are expressed in terms of known
quantities at t‘'me n — 1. The optimal trace weight. if it exists.
is the unique positive root of a cubic polynomial. say Fi(\n(n)).
The critical feature to keep in mind is the infrequent updating
of UOBE which leads to interesting performance properties and
romputational efficiencies.

2. Convergence Issues

Asymptotic Estimates. One of the interesting and practical
benefits of having interpreted UOBE algorithm as a3 WRLS al-
gorithm with a bounded error “overlay” is the immediate conse-
quence for convergence of the estimator. [t is well.known t'.at if
the sequence <¢.(n) is wide-sense stationary. second moment er-
godic almost surely {a.s.). white noise. then the WRLS estimator
B(n) will converge asymptotically to O, as. (e.g. {7]}). [n the
present case, we need only to add the qualifier that the UOBE
algonthm not cease to accept data in order to lay claim to this
useful result.

Likewise. we mayv even assert a.s. convergence of the WRLS
estimate, albeit to a bias. when =,(n)is colored and persistently
exciting? (p.e.) (7]. Even in the presence of colored errors. there-
fors. as long as the acceptance of data does not cease. and the
infrequency of updating does not interfere with the persisitency

:Please r=ad the abbreviation ‘p.e.” as “persitently exciting”
or ‘persistency of excitation,” as apprnpriate

of excitation, we may expect the UOBE estimate (ellipsoid center)
to converge.

Convergence of the Ellipsoid. [t would be interesting to have
a precise understanding of the asymptotic behavior of the hy-
perellipsoidal feasibie set. especially in the case of colored noise.
Knowledge that the ellipsoid is vanishing (white noise). or be-
coming as small as possible {colored noise), could be very useful
information indeed. In the white noise case. a sufficiently small
ellipsoid could serve as a reinforcing indicator of convergence. and
offer a means of determining error bounds on the estimate in -
nite time. In the colored noise case. a small feasible set (known to
contain the true. unbiased estimate) could be indispensible. !'n-
fortunately, no known proof of this desirable result for any case of
UOBE with simply scaled weights exists. The remainder of this
paper indicates recent progress made toward the L.mderstandjng
of the convergence properties of the ellipsoid. in the presence of
both white and colored noise disturbances.

We first present an important contribution toward the under-
standing of the asymptotic behavior of the ellipsoid:

Proposition 1 Consider the UOBE algorsthin with simple srale
factors as in (5). If an optimal weight erists at time n. then 1ts
use will certainly diminish the set measure,

uln) < u{n =-1) (3)

where w is  etther uy, o7 ue. Therefore, in  general
u(n) < wul(n = 1). Further, for the trace measure, ue{Q{n)} =0

FQn) = {O(n)} ={ 8.}

Proof: We prove the result for u,. The proof for u¢ is simi-
lar. The last line of the proposition will be venified in the future
discussion.

For simplicity, we write \n(n) as \. Also. the functional e-
pendence of u.(n) up.n \ for a fixed n is the central issue. so we
write uy(\). It has been shown that® [5]

\Gs(n) _ rmk(n)

Av(\)=.""”171){1— =

) {9)

where A{n) L' 42 and r{n) ‘j:ﬂn(n)/n,(n — 1) ma(n) =
c(n}/C(n). and G,(n) ='¢ 1 =1) rH(n) C~'{n = 1) £(n}. Thus

it is found that

3 N
“)(\ = Q(VR(N) (10)
where,
. mk - | . " 3
(SIRY EY :——\—(q) and R(\) ’ﬁ'mkh(n] T S IE RN
as(n)
({11}

For future reference. also note that {3]

Ko{n = LR(RIN) = FL()) 112}

where F,(\} is the volume quadratic solved to find the optuimal
weight. Consequently.

PN

() RN G 4 pen 220
t\< A\

LAY
[t is easy to demonstrate that Q{ \) is positive, and that its deriva-
tiveis bounded. for \ £ 0. x ). Now it can be shown that [5]

(13}

A=) M ogfn, O(rn - 1)) 2

Kyln = L A(R)

<on =1y
BRY

allowing us to write. using (11).
) il e(n, @in = 1)) 502 ain)

) \ X )
Ri )=(mk—1)(:',(vz) r_( + mk
IR (A <o{n — 1}R2(m)
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*A sumular resuit for a less general case is found in (4]
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Fig. 1. Typical plot of uyw{\) vs. \. When a positive root of

F. (A} exists, it corresponds to a mummum of the volume measure.

Because of (12) it is clear that R(\*) = 0. Reference to the
definition of R(\} in (11}, therefore immediately sh ws that

d—g{‘-’]\_\_ > 0. Consequently 3—%‘331]\_\_ > 0. It fol-
5 .
lows immediately that 2.57"’_‘.‘J > 0 so that \* corre-
Az Al

sponds to a minimum of u,(\}. Further. since rinl},_, =
1 {see {14)). and A(nl}] oo = 1. we have from {9) that u. (0} =
t. and also that Q{0) = 1. Therefore, from (10} and {12}.

')Uvi\)] FL'(O) - 19

W e T k-1

where 15 i3 the zero order coefficient of the quadratic. F.(\) =
1232 + 1\ + 15. It has been shown [3] that no positive roots of
Fi{\) exist if 30 > 0. and exactly one exists if 10 < 0. [t follows
that the derivative in {16) 13 negative; hence, u. (V") < 1 and the
proposition is proven {see Fig. 1). a

{15)

[n spite of this encouraging result. vne of the drawbackz of
the volume approach is that the set measure 4. is not a proper
“metric” in the parameter space. By this we mean the following:
Suppose wo propose the distance measure 1 such that at time
a1 B(n). B.) = unin). We immediately find that 1 fails to
be a proper metric since i @(n}. B,) = 0 does not 1mply that
On) = O, This unfortunate situation arises because the el-
lipsoid may potentiaily degenerate and reside in a subspace of
C™M % thereby achieving zero volume without being reduced to
a point. This will likely only occur if p.e. is not achieved as we
Jetail below. and is therefore a more important problem with col-
ared disturbances. This potential anomaly provides motivation
to consider the use of the trace measure for which a degenerate
»llipsoid will not produce a zero set measure.

One of the drawbacks of the UOBE approach is that the hyper-
ellipsotdal bounding sets are sometimes quite “loose” supersets of
the exact feasibility sets (polytopes) (e.g. [1].[10]). particularly
in “firute” time. However. many simulation studies in the liter-
ature (white noise -ase) have shown the volume ~f the ellipsoiils
to become quite small in the “long term.” Further. as we and
other researchers have demonstrated. the empirical convergence
and tracking properties of the UOBE estimator are favorable in
spite of the few data used. This is an indication that the pregence
of the «llipsoid and the optimization procedure centered on 1t. are
quite useful for signal processing. regardless of our present inabil-
ity to completely understand its behavior in theory. The results
presented abave affer further support for “good behavior™ of this

class of algorithms by indicating that the ellipsoid measures will
converge to some unspecified size in some unspecified manner.
Thus result has not been clearly understood. and its finding offers
some hope that a proof of convergence for the UOBE algorithms
may be found in the white noise case.

Colored Noise. Whether or not the UOBE eilipsoid can ulti-
mately be proven to converge to a point with white noise distur-
bances. such a result would cause a contradiction in the colored
noise case. This is so because if limn— x {}{n) is a single p ¢,
then this implies that limp—» ©(n) = O, in violation of the
basic principles of least square estimation (the estimate must be
biased). We therefore conclude the following:

Proposition 2 With colored noise disturbances, limn—x 1)
15 1 ontrovial set.

Empirical evidence leads to the following conjecture:

Conjecture 1 With a p.e. input, O4 13 on the boundary of the
hGmiting set.

Of rourse Proposition 2 is not suprising for a non-p.e. excitation
for which the algorithm will cease to accept data in finite time due
to lack of innovation. However, that “he ellipsoid should remain
nontrivial for p.e. inputs is not as apparent, since each time a
data set is accepted, the set measure u(n) must be dirminished.
This brings us to another interesting issue centered on the set
measure used in the optimization.

Persistency of Excitation. In the following, we focus on the
volume and trace measures. but the discussion might be general-
izable in certain ways to broader classes of measures. The lengths
of the ellipsoid axes at time n ire inversely proportional to the
square roots of the eigenvalues, say ¢,. 1 = 1.... .. of the matnx
C(n)/~in). Accordingly. convergence of the ellipsoid to a single
point requires that ¢, — x for all 1. limn—~ }(n) remains non-
trivial iff one or more . f the ¢, remains finite. This implies that,
in the presence of coliored disturbances. limn_. « u:{n) must be
positive since one or more finite eigenvalues will make this so. On
the other hand. u. becomes zero much more readily, because a
single infinite eigenvalue is sufficient to cause imn .« e (n) = 0.
That is. the ellipsoid need only “collapse in one dimension” to
assure zero volume. In this sense, u, 15 a “weaker” set measure
than u:.

The behavior of x(-) is not well enough understood to make
definitive conclusions about the conditions under which limuting
ellipsoid may remain nontrivial in fewer than m dimensions. This
has implications for both white and colored noise. For white noise.
this means we do not know when (if ever) the ellipsoid will collapse
to a point. For colored noise. it simply means we do not know
when the ellipsoid will collapse into a subspace of the parame-
ter space (since it must remain nontrivial}. However, use of the
voliume measure permits an ntriguing situation to arise piecisely
because of its "weakness.” ‘\e believe that this situation paints
to the general condition under which the collapse may occur.

The asymptotic roiume measure may be zero even if the el
lipsoid 1s of tnfinite extent in one or more Jdimensions. That is.
the fintte eigenvalue(s) which imply a nontnvial imiting set may
he :era. (Clearly. this rannot be the case with the trace mea-
sure since it would imply that imn « « uc(n) = x .} Under what
conditions mught this “degenerate” volume situaticn pccur! It s
temnpting to surmise that a p.e. input would be necescary to drive
the volume wltimately to zero. However. precisely the vpposite
i1s true. A singular imyp—~ « 7(n)/x(n) occurs 1ff hma— «
15 singular. In turn. this is indicative of a non-p.e. input. In
this ~ase the ellipsoid expands without bound in the null space
A lima—~« T(n} x(n), while it must collaspe in (at least one 4.
mension of ) the range space in order to prevent the volume from

iy
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Fig. 2: “Asymptotic” ellipsoids resulting from first example.
In each case, ® denotes the true parameters and x the estimate
(ellipsoid center). (a) v = 2. (b} ~ = 1.25.

also diverging. If the ellipsoid converges in every dimension of the
range space, then the feasible set exists entirely within the null
space of limn—~c C(n)/x(n), except for the intersection (point,
line. plane, hyperplane) with the range space. This analysis leads
to the following conjecture:

Conjecture 2 “Degeneracy” of the limiting ellipsoid (collapse
of limn <o Q(n) tnto a subspace), will occur in the volume case
1ff the input 1s non.p.e.

Examples. In order to illustrate these ideas. we present two
simple examples. In the both examples an AR(2) model of the
form y(n) = arey(n = 1) + azey(n ~ 2) 4+ €4(n) is used. In the
first example the parameters are a;, = 0.6. a,, = 0.1, and
£a(') is a realization of the stochastic process \/Ecos[(wn/lﬁ) +£)
with { a uniformly distributed random phase. This noise is p.e.
of order two. Two identifications were performed on this Sys-
tem using volume optimization. In the first, v(n) is (“prop-
erly”) chosen to be the constant v = 2 = 24 max(-), while in
the second experiment v = 1.25 in slight violation of the proper
bound. The “asymptotic” (n = 7000) ellipsoids are shown in
Figs. 2(a) and 2(b). respectively. In the first case 128/700C
{1.8%) of the data were selected by the optimization procedure,
while in the second. 101/7000 (1.4%) were used. In bath experi-
ments the parameter estimates are identical to six decimal places:
1;(7000) = 1.961508, 2,(7000) = —0.999855. Both outcomes ad-
here to Proposition 2 in the production of a nontrivial limiting
set with a biased estimate. Some support is seen for Conjecture 1
in the proximity of the true parameters to the ellipsoid boundary.
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Fig. 3: “Asymptotic” ellipsoid resulting from second example.

[nterestingly, the second experiment produces a more desirable
outcome in this regard, and does so using fewer data. in spite
of the bound violation. UOBE algorithms are remarkably robust
to, and indeed sometimes benefit from, such violations and other

In the second example, ayjs = 1.6, a2+, = —0.65, and the sys-
tem is excited by a constant #.(-) = 0.322 selected by choosing
a value from a random realization, at a random time, in the co-
sine process above. Accordingly, ~(-) is taken as the constant
¥ = 2 = €e,max(-). This noise is p.e. of order one, and is there-
fore not sufficient to uniquely identify the system. In this case
30/7000 (0.43%) of the data were used. The ellipsoid in Fig. 3
is the resulting set at time n = 7000. A collapsing dimension is
apparent as the covariance matrix becomes singular and the fea-
sibility set begins to occupy the null space of the ellipsoid matrix.
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Abstract

This paper is concerned with the set membership weighted re-
cursive least squares (SM-WRLS) algorithm which can be used
for estimating the parameters of linear system or signal models
in which the error sequence is pointwise “energy bounded.” This
algorithm works with bounding hyperellipsoidal regions to de-
scribe the solution sets. A new strategy is developed which can
be applied to virtually any version of the 3M-WRLS aigorithm to
improve the computational efficiency. A significant reduction in
computational complexity can be achieved by emploving a “sub-
optimal” test for information content in an incoming equation.
The proposed check is argued to be a useful determiner of the
ability of incoming data to shrink the ellipsoid. The performance
of this strategy is compared to that of SM-WRLS using simula-
tion studies.

keywords: bounded-error identification. parameter estirnation,
adaptive estimation, set-membership theory, system identification

1 Introduction

The set membership weighted recursive least squares (SM-WRLS)
algorithm (1. 2, 3] is an efficient technique which can be used for
estimating the parameters of linear system or signal models under
a priori information which constrains the solutions to certain
sets. When data do not help refine these membership sets, the
effort of updating the parameter estimates at those points can
oe avoided. The SM-WRLS algorithm is concerned with the
case in which the error sequence, say v(n). is pointwise “energy
bounded,”

y(r)W¥(n) < 1 (1)

where the sequence v(n) is known or can be estimated from the
data. Constraints of form (1), in conjunction with the model and
data, imply pointwise “hyperstrip” regions of possible parameter
sets in the parameter space which, when intersected over a given
time range. usually form convex polytopes of permissible solu-
tions for the “true” parameters. While exact descriptions of these
polytopes are possible (e.g., see {4]), algorithms of much lower
complexity have been developed which work with a bounding
hyperellipsoid, a tight superset of the polytope (1. 2, 3,5, 6, 7.
The SM-WRLS algorithm is one such algorithm which is for-
mulated such that it is exactly the familiar weighted recursive
least squares solution [8, 9] with the SM considerations handled
through a special weighting strategy. A tutorial on the SM-
WRLS algorithm, and on general SM identification is found in
[2).

One of the advantages of the SM.-WRLS formulation is that
it immediately admits solution by contemporary systolic array
processors for speed advantages {1]. The systolic array imple-
rentations of this algorithm are presented in [10. 11]. In this pa-
per, however, we will develop a “suboptimal™ strategy which can
be applied to virtually any version. adaptive or “non-adaptive,”
of the SM-WRLS algorithm to improve the computational effi-
ciency. The theoretical development of this strategy is presented

!This work was supported 1n part by the National Science Foundation of
the Uaited States under Geaat No. MIP.9016734. and 1a part by the Office
of Naval Research under Montract No 4148126-01

*University of Wisconsin—Platteville
Department of Electrical Engineering
1 University Plaza
Platteville. WI 353818-3099 USA

in Section 2. In Section 3. the performance of this strategy is
compared to that of SM-WRLS using simulation studies. A de-
tailed analysis of the computational complexity issues is found in
Section 4.

2 Theoretical Development
2.1 The SM-WRLS Algorithm

We consider the estimation of the parameters of a general
ARMAX(p, ¢) (9] model of the form

P q
y(n) Zu.y(n-z)+Zb,w(n-—j)+v(n) (2)
=l

=0
0l z(n) + v(n)

in which y(n) is a scalar output; w(n) is a measurable, uncorre-
lated, input; and v(n) is an uncorrelated process. known to be
bounded as im (1), which is independent of w(n). For conve-
nience, we aso employ the vector notations

2T(n) = y(n = 1)- - y(n = plw(n)w(n-1)- - win - q)] (3)

and
87 = [a1a2---apboby - -b,] (4)

0, represents the vector of parameters to be estimated. We define
the integer m = p + ¢ + 1 noting that m should be reduced to
simply m = p for the pure AR case.

Let us define (V) to be the conventional weighted LS es-
timate of & using the data on the range n = 1.2... ..V, with
squared error minimizat.on weights A(n). Also denote the { weighted)
covariance matrix for the data by C(.V). As a consequence of the
bounds on the sequence v(n), at time N there is a computable
hypereilipsoidal domain in the parameter space which certainly
contains &y and which is centered on the LS estimate. This set
is given by (3]

QN = {o 110 - §(N)T—~C(N)B-B(N)) < 1} o

(V)
8 € R™, where,
A(N) = 8T (NIC(NIAN) + i A (1= v(n)g¥(m) 16)
= vin)
= 1di(V) P + A(Y) (7
in which || - || denotes the Euclidean norm.
di(N) = T(NI&(N) 8)

with T(.N) the upper triangular Cholesky factor (12} of C! V)
(more on this below), and %{.V) denotes the sum on the rght
side of (6). It is useful to note that

Aln}

k(n)=&(n~1)+
Y(n)

(1-~,m)y’(n)). K01 =0 .9




Very importantly, the “size” of this domain is a function of only
one unknown at time n, A(n), the error minimization weight at
time n. The “SM strategy” of updating the parameter vector at
time n involves the computation of the A(n) which minimizes the
size of (}(n). The volume of the ellipsoid. Q(n), is proportional
to the quantity

KMin)

det B(n) = det x(nr}C~'(n) = T C

(10}
A reasonable strategy is to find an optimal weight. A*in), at each
step which minimizes the “volume ratio” of the eilipsoids at n and
n-1:

_ _detBin)

T detBin-1’

This weight is taken to be the most positive ront of *he quadratic
equation [3]

V{A(n}) (11)

FM=aA?+ A +ag =0 (12)
where,
a; = (m-1G¥n)
a, = {2m-1+7(n)E_(n) - xin - 1)¥(n)G(n)}G(n)
ag = m[l - y(n)e_(n)] - x(n - 1)v(n)G(n)
and where,

G(n) = 2T(n)C~Yn - Diz(n) (13)

and €,.1(n) is the residual at time n based on the parameter
estimate at n — 1,

ea1(n) = y(n) = 87 (n ~ Ljz(n) . (14)

One important consequence of this approach is that often no A(n)
exists which will further shrink Q(n). Generally, this means that
the equation? (y(n).z(n)) at n has “no information” which has
not already been incorporated into the estimate. In this case the
equation is “rejected” (A(n) effectively set to zero) saving the
computational expense otherwise necessary to incorporate it.

In a recent paper {1}, SM.-WRLS was formulated into a more
contemporary WRLS algorithm which is amenable to a systolic
architecture implementation. The aigorithm is given in the Ap-

pendix of this paper. In Steps 4 and 5 of the algorithm, the LS

problem is solved using a sequential “QR"” decomposition using
Givens rotations (GR’s), a method which is well-understood and
becoming widely used for this purpose {13, 14, 15]. (It is im-
portaat to note the meaning of the matrix T(n) in this process.
We first encountered T(n) in (8) where it was defined as the
upper-triangular Cholesky factor matrix of C(n) at each step,
i.e., C(n) = TT(n)T(n) (see Appendix)). The more novel part
of the algorithm in Steps 1, 2, 3 and 6, is concerned with the
computation of the optimal weights. Here the method had to
be designed to avoid the costly inversion of the matrix C(n),
asominally necessary to compute G(n). The quantity x(n) is also
efficiently computed in this context. The reader is referred to (1}
for details.

2.2 Adaptive SM-WRLS Algorithm

[n this section, we present an adaptive SM-WRLS algorithm with
a very flexible mechanism by which it can “forget” the influence
of past data.

The adaptive algorithm presented here uses “back rotation”
in order to partially or completely “forget™ past information en-
abling it to track (potentially fast) time varying signals. Back
rotation {13] is a Givens rotation-based technique that removes
{or rotates out) a previnusly included equation from the system.
[n this paper we modify the back rotation so that a previous

ISiace the LS process represents an effort to fit the m model parameters
10 V equations of the form y(n) = 87 £(n), we refer to the par (y(n), z(n))
as an ‘equation” throughout this paper

equation can be partially removed. This will permit a broader
class of adaptive strategies. In SM terms, back rotation causes
the ellipsoidal membership set to expand due to the removal of
information. This expansion entices the algorithm to incorporate
Present data. The back rotation technique requires that all the
weights with the corresponding equations ( for weights other than
zero) be stored for later use.

ln the Appendix. we see that at each step in the SM-WRLS
a.lgon_thm. the upper triangular system of simultaneous equations
Tini@(n) = di(n). is solved (when data are accepted) to obtain
the optimal estimate {2, 3. 10]. Suppose in approaching time
n that the past equation to be (partially) removed is at time
r. Rotating this equation out of the system is accompiished by
re-introducing it as though it were a new equation. A weight
v 4A(T), where u is the fraction of the equation to be removed
from the system. is used, and some sign changes in the rotation
»quations are necessary (13]. Let us refer to the system of equa-
tions with - removed as the “downdated™ system at time n — 1,
and label the related quantities with subscript 4, i.e.,

Tyn—-1)04(n—-1)=dig(n-1). (15)
The downdated ellipsoid matrix is Cy{n — 1)/xq4(n — 1) where
Cyin~1) = TI(n-1)Tyn-1), (16)
min~1) = ldia(n- DI+ &n - 1) {17)
with
Riin = 1) = &(n = 1) = B30 (1-xm9¥m) . 18
1r)

Equations (17) and (18) follow immediately from the definition
of x found in (6). These relations can be used repeatedly regard-
less of the number of equations (partially or completely) removed
prior to time n. [f more than one equation is removed prior to n,
k(n~—1)in the right-hand side of (18) is replaced by x4(n - 1) for
all downdates after the first one. Following all necessary down-
dating just priot to time n, the algorithm uses the downdated
system to compute the quantities G4(n) and €,_1.4(n) which are
necessary to compute the optimal weight for the equation at n.
To compute a downdated SM-WRLS estimate. therefore, it is
only necessary to downdate the matrix T(n — 1) and the vector
dy(n - 1) and to solve for B4(n - 1) prior to Step 1, then replace
all relevant quantities in Step 1 by their downdated versions.
k4(n — 1) and Rq(n ~ 1) are downdated according to (17) and
(18). Then A*(n) is found in Step 2 using (12) with downdated
quantities. Note that downdating is unnecessary if the equation
r was rejected by SM-WRLS. In this case Ty(n - 1) =T(n-1)
and 84(n — 1) = 8(n — 1). Conversely, when the “new” equation
at n is rejected. then T{n) = Ty(n — 1) and @(n) = @4(n - 1).

A wide range of adaptation strategjes is inherent in the gen-
eral formulation described above. Three major subcases are iden-
tified (windowing, graceful forgetting, and selective forgetting)
in {11, 16]. In each of these subcases. the objective is to expand
the ellipsoidal region of possible solutions in order to track fast
time variations in the signal. For illustration and comparison
purposes in the simulations below, we use one of the adaptive
strategies, namely. the selective forgettingin which the equations
are removed from the estimate according to certain user-defined
criteria in order to remove their influence on the result. The selec-
tion criterion used here is to remove the equations starting from
the first accepted equation remaining in the estimate at a given
time, and proceeding sequentiaily until some other coundition is
satisfied. The determination of when to apply the forgetting pro-
cedure and when to stop removing equations at a given time is
discussed in [16].

2.3 Suboptimal Test for Innovation

A significant reduction in computational complexity can be achieved
hy employing a “suboptimai” test for information content in an




incoming equation. The proposed check is argued to be a usefal
determiner of the ability of incoming data to shrink the eilipsoid,
but it does not rigorously determine the existence of an optimal
SM weight in the sense described above. The main issue here
is to avoid the computations of the quantities necessary at each
step to construct aad solve the quadratic (12) in cases in which
the quadratic turns out only to be useful for the purpose of check-
ing for the existence of a meaningful weight. Since most of the
time these computations resuit in the rejection of incoming data,
a more efficient test could significantly reduce the complexity of
the algorithm.
The estimation error vector at time n can be denoted by

B(n)=0,-8in) . 119)
The following inequality results immediately from (3).
(-)T{n)C(nzéfn)<»<ln;4 (20)

Using a similar inequality, Dasgupta and Huang ‘6] have noted
that cheir x(n)-like quantity provides a bound on the error vector
sequence and have suggested minimizing this quantity with re-
spect to A(n) in an effort to decrease computational complexity.
However, this minimization does not, in gegeral, imply an im-
provement in the estimate with respect to previous times, since
both sides of the inequality (20) are dependent upon A(n). Fur-
ther, the nonexistence of a minimum of x{n) with respect to A(n)
is not very informative in this sense. However, further arguments
are presented here to provide support for this process in the SM-
WRLS context.

Consider the usual volume quantity to be minimized at time
n, defined in (10). Let us temporarily write the two key quan-
tities there as functions of A(n): C(n.A(n)) and x(n,A(n)). It
is assumed that enough equations have been included in the co-
variance matrix at time n — 1 so that its elements are large with
respect to the data in the incoming equation. Now the quan-
tity det C{n, A(n)) is readily shown to be monotoaically increas-
ing with respect to A(n) on A(n) € [0,0) {16], with C(n,0) =
C(n-1,A"(n-1)), where A*(n—1) indicates the optimal weight at
time n — 1. Under the assumption above, det C(n, A(n)) will not
increase significantly over reasonably small values of A(n). The
attempt to maximize det C(n, A(n})in (10) causes a tendency to
increase A(n) in the usual optimization process. However, the at-
tempt to minimize x(n, A(n)) generally causes a tendency toward
small values of A(n), unless a minimum of x(n, A(n)) occurs at
a “large” value of A(n). To pursue this idea and further points
of the argument. key results about x(n, A(n)) are aoted in the
following.

Theorem 1 x(n,A(n)) has the follounng properties:

o On the domain A(n) € [0.2). &(n, A(R)) 18 esther mono-
tonscally increasing or it Aas a single minimum.

o x(n,A(n)) has a minimum on A(n) € [0, 20) iff

A_i(n) >y7Yn). (21)

Lemma 1 [3/. Let A*(n — 1) denote the optimal weight in the
sense of (12) (which might be zero) at time n —~ 1. Then

A v
x(m Mn)) = A(n =13 (n=1))+ o) [ (nler-i(n)

iy |1+ A(n)G(n)] - ()
Proof of Theorem 1 The minimum of x(n. A(n)) with respect
to A(n) can be found by differentiating ( 22) and setting the result
equal to 0,

dx(n, An))

2 2 T v(nled =
Fn] _G(n)A(n)+zG(n)A(nJ+Ll y(n)ea_(n}[ =0.

(23}

This is a concave upward quadratic function with its minimum
at

A(n)= -G (n) < 0. i24)

Two real roots of {23) always exist,

~lz M Niea_jin)
Aroors(R) = “V(T)"l i25)
Al

the smaller corresponding to a maximum of x(n, A(n)), the larger
t0 a minimum. Only the larger root can be positive since the
lower root is bound to be less than A'(n}. Therefore. it is only
possible for (n. A(n}) to exhibit a minimum or to be increasing
on positive A(n). [t is easy to use (25) to verify that the larger
root is positive iff condition (21) is met. 3

With these results. it can be argued that: If det Cin Aint)is
increasing, but not changing significantly over reasonably small
values of A(n), then it is sufficient to seek A(n) which minimizes
k(7. A(n)). If syn. A(n)) is monotonically increasing on A(n) > 0.
this value is A{n) = 0 which corresponds to rejection of the equa-
tion at time n. [t suffices, therefore to have a test for a minimum
of x{n,A(n)) on positive A(n). As noted above, a simple test is
embodied in condition (21). If this test is met, it is then cost
effective to proceed with the standard optimization process cen-
tered on {12). Otherwise, the explicit construction and solution
of (12) can be avoided.

[t is to be noted that ev~n if (21) is met, it is possible that
the optimization procedure will still reject the datum. Perhaps
more importantly, it is also possible for (21) to reject data which
would have been accepted by the usual process. These ideas will
be explored in the simulation studies below.

Finally, note that when the simplified test (21) accepts the
new equation, there are tools to compute the weight which is
“optimal” in the sense of minimizing x(n,A{n)). In particular,
this would be the larger of the roots in (25). However, it clearly
makes more sense to compute the optimal weight according to
{12), since 'nis computation is not muchk more expensive. The
improvement in the computational complexity due to “subopti-
mal checking™ is discussed in Section 4. It is important to note
that the general adaptive formulation of Section 2.2 is amenable
to the suboptimal technique described here. The performance of
the suboptimal and the adaptive suboptimal techniques will be
investigated in the next section.

3 Simulation Studies

in this section., we coansider the estimation of the parameters of
two time varying AR(2) models of the form

y(n) = ay(n)y(n = 1) + az(n)y(n - 2) + v(n’ . (26)

Two sets of AR parameters were derived using linear prediction
(LP) analysis of order two on utterances of the words “four” and
“six” by an adult male speaker. The dats were sampled at 10
kHz after 4.7 kHz lowpass filtering, and tie “forgetting factor”™
in the LP algorithm (see [17]) was ~ = 0.996. A 7000 point
sequence, y(n), for each case (“for and “six") was generated
by driving the appropriate set of r arameters with an uncorrelated
sequence, v(n), which was uniformiy distributed on [~1.1]. In
the simulations below, we apply the conventional and suboptimal
SM-WRLS algorithms to the estimation of the a, parameters.

We discuss a number of simulation results. To conserve space,
only the result for a. .3 llustrated in each case. Each figure shows
two curves, one fo: he true parameter, the other for the estimate
obtained by th~ algorithm under study.

Figures | 1nd 2 show the simulation results of the conven-
tional SM WRLS algorithm for the words four and six using oaly
1.86% aad 2.16% of the data, respectively. Figures 3 and 4 show
the ~imulation results of the conventional SM-WRLS algorithm
with suboptimal data selection. In this case. only 1.19% and
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Figure 1: Simulation results of the SM-WRLS algorithm for the
word four. 1.86% of the data is employed in the estimation pro-
cess.
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Figure 2: Simulatioa results of the SM-WRLS algorithm for the
word six. 2.16% of the data is employed in the estimation process.

1.33% of the data are used for the words four and six, respec.
tively. Compared to the conventional SM-WRLS algorithm (see
Figs. 1 and 2), the suboptimal technique uses slightly fewer data
but produces comparable estimates. [t is interesting to note that
most of the equations (97.6% for the word four and 94.4% for
the word six) that are accepted by the suboptimal technique are
also accepted by the conventional SM-WRLS algorithm. [t is
also interesting to note that the equations that are accepted by
the suboptimal technique but not by the conventional SM-WRLS
algorithm lie mostly in regions of fast changing dynamics.

Figures 5 and 6 show the simulation results of the selective
forgetting adaptive strategy. This strategy uses only 3.6% and
2.83% of the data for the words four and six. respectively. More
data than with the conventional SM-WRLS algorithm are used.
but more accurate estimates resuit and the time varying param.-
eters are tracked more quickly and accurately. This can be eas.
ily seen when the parameter dynamics change abruptly near the
point 2100 for the word four (see Fig. 5) and near the points
2000 and 4500 for the word six (see Fig. 6).

We have noted that the general formulation of the adaptive
SM-WRLS algorithm is amenable to the suboptimal technique.
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Figure 3: Simulation results of the SM-WRLS algorithm with
suboptimal data selection for the word four. 1.19% of the data
1s employed in the estimation process.
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Figure 4: Simulation results of the SM-WRLS algorithm with
suboptimal data selection for the word six. 1.33% of the data is
employved in the estimation process.

The simulation results of the selective forgetting SM-WRLS tech-
nique with suboptimal data seiection are shown in Figs. 7 and 8.
This strategy uses only 1.839% and 1.86% of the data for the words
four and six, respectively. Compared to the selective forgetting
strategy (Figs. 5 and 6), the selective forgetting technique with
suboptimal data selection uses fewer data but produces compa-
rable estimates. On the other hand. when compared to conven-
tional SM-WRLS with suboptimal data selection (Figs. 3 and
4). the selective forgetting suboptimal technique uses more data
but produces better estimates.

4 Complexity Analysis

[n order to perform a detailed analysis of the computational com-
plexities, we employ the following notations: If the fraction of the
data accepted by the conventional SM-WRLS algorithm 1s de-
noted by r, the fraction of the data accepted by the SM-WRLS
algorithm with suboptimal data selection by s {3 < r), and the
fraction of the data accepted by the SM-WRLS algorithm after
passing the test (21) by t (¢ < s, then the total computational
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Figure 5: Simulation results of the selective forgetting SM-WRLS
algorithm for the word four. 3.6% of the data is employed in the
estimation process.
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Figure 6: Simulation results of the selective forgetting SM-WRLS
algorithm for the word six. 2.83% of the data is employed in the
estimation process.

complexity of the conventional SM-WRLS algorithm is given by
[16]
(m?+2m+13) + ¢ (2mP + 3m 4 7] (27)

floating point operations (flops) per equation. For the SM-WRLS
algorithm with suboptimal data selection, it is given by [16]

(m+l)+:[m’+m+l2]+t[2m2+3m+7] (28)

flops per equation. When considering a typical example to com-
pare the complexities of the two strategies, the suboptimal strat-
egy reduces the computational compiexity of the conventional
algorithm by 60 - 70%. which is clearly advantageous especially
when noting that the simulation results of the two strategies are
comparable.

If the fractions of the data used by the adaptive SM-WRLS
algorithms are denoted by the same symbols used above. and the
fraction of the data removed from the system 1s denoted by u,
then the total computational complexity of the selective forget.
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Figure 7: Simulation results of the selective forgetting SM-WRLS
algorithm with suboptimal data selection for the word four.
1.39% of the data is employed in the estimation process.
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Figure 8: Simulation results of the selective forgetting SM-WRLS
algorithm with suboptimal data selection for the word six. 1.86%
of the data is employed in the estimation process.

ting SM-WRLS algorithms is given by

(:5m? + 2.5m + 13) +r [2.5m + 10.5m + 5| +u [2m? + 10m + 5|

(29)
flops per equation. For the suboptimal selective forgetting SM-
WRLS algorithms, it is given by

(m+n+s[.sm’+1,sm+12] (30)

~t {z.smz +10.5m + 5] +u [2m’ +10m + 5]

flops per equation. Again. the computational complexity is re-
duced by 60 - 70%.

5 Conclusion

This paper presents a suboptimal data checking strategy for the
SM-WRLS algorithm. It also shows how adaptation can be in-
corporated into SM-WRLS in a very general way by introducing
a flexible mechanism by which the algorithm can forget the in.
fluence of past data. The suboptimal technique { which can be




applied to virtually any version. adaptive or non-adaptive, of the
SM-WRLS algonthm) uses many fewer data, is a square-root
factor better in computational complexity, and produces compa-
tabie estimates to the optimal algonthm.
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Appendix
SM-WRLS Algorithm Based on QR Decomposition

Initialization: Fill an (m + 1) x {m + 1) working matrix W
with zeros. Forn = 1,....,m + |, set Ajn} = 0. Set (0} = 0.
Recursion3: Forn=1,...,. v,

1. (Skip if n < m + 1 (see footnote).) Update Ginl.c,_;in)

as follows.
Solve
TTin - 1)gin) = z(n)
for g(n) by back-substitution. Compute G(n) = g(n) }|?
and

arin) = yin) = 8 (n = L)z(n).

2. (Skip if r € m + | {see footnote).) Compute the optimal
A*(n) by finding the most positive root of (12).

3. (Skipif n < m+1 (see footnote).) I A*(n) < 0,set T(n) =
T(n-1).8(n)=8(n-1),k(n) = &(n~ 1), and go to Step
7. Otherwise continue.

4. Update T'(n) as follows. Replace the bottom row of W by

T

\/A'(n ‘n)iy(n)j.

[
)=
“Rotat»” this new row into W using Givens' rotations,
leaving the result

{T(n)|di(n)
in the upper m rows of W. These rotations involve the
scalar computations [13. 14}).

'

“’.‘k = W".kd + Wm,l.gf6
w'-'nol.k = —Wv}gfé + W'm.ﬂ_gd’ﬁ
fork =7+ 1,...,m+1andfor ) = 1,2,...,m: where

g = W;]/vp‘ r= Wosia/p.
- W2 2
p= W) oW,

m+ly

§is xunity!, and W -W}'k) is the j, k element of W pre-
(post-) rotation.

wr

. (Skip if n < m isee footnote).} Update 8(n) by solving
T(n)8(n) = dy(n)
using back-substitution.

6. Update x(n) and &(n) according to (7) and (9). (Compute
and store oaly x(n)if n < m.)

-4

. lf n € N, increment n and return to Step .

'Generally Tin) does not become noamngular uotil n = m + 1 The first
#(n) cannot be computed unti n = m+ 1 and the first optimal weight. A*in),
cannot be computed unt n = m + 2 (it 18 convenient to let A(n) = | on the
wmutial range), and xin) » oot needed antil n = m + 1 However. kin) must
be compated for all n {begunmng with %(0) = 0) so that (7} » ethaently
started at n = m + 1. [t 13 assumed 1n this algonthm that v(n) » known for
all n. For procedures to estimate ~\n) and other details, see {3

‘5 u set 1o —1 10 rotate an equation owt of the extumate
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Abstract: A class of algorithms is presented for training multilayer perceptrons using purely “linear™ tech-
niques. The methods are based upon linearizations of the network using error surface analysis. followed by a
contemporary least squares estimation pro--dure. Specific algorithms are presented to estimate weights node-
wise, layer-wise, and for estimating the entire set of network weights simultaneously. In several experimental
studies, the node-wise method is superior to back-propagation and an alternative linearization method due to
Azimi-Sadjadi et al. in terms of number of convergences and convergence rate. The layer and network-wise
updating offer further improvement.

1. Introduction

This paper introduces a new class of learning algorithms for feedforward neural networks (FNN) with im-
proved convergence properties. In spite of the nonlinearities present in the dynamics of a FNN, the learning
algorithm is purely “linear” in the sense that it is based on a contemporary version (see {1]) of the recursive
least squares (RLS) algorithm (e.g. [2]). Accordingly, unlike the popular back-propagation algorithm used to
train FNNs (3, 4], the new learning algorithm and its potential variants will benefit from the well-understood
theoretical properties of RLS and VLSI architectures for its implementation.

A FNN is an artificial neural network counsisting of nodes grouped into layers. In this paper, we consider
a two-layer network?, but the generalization of the method to an arbitrary number of layers is not difficult.
Working from the bottom up, we shall frequently refer to layers zero, onr. and two as the “input.” “hidden.”
and “output” layers, respectively. Each node above the input layer in the FNN passes the sum of its weighted
inputs through a non-linearity to produce its output. The inputs to the input layer are the external inputs to
the network. and the outputs of the cutput layer are the external outpurs.

The number of nodes in layer 7 is denoted .V, with Vg indicating the number of input nodes at the bottom
of the network. The weight connecting node j in the hidden layer to node k in the output layer is denoted wy .
The weight connecting input node { to node j in the hidden layer is denoted w) ;. We denote by .V the number
of training patterns of the form

{(z1i(n), £2(n). .. .. Iy (n)ity(n) ta(n). .ty (n)). n=1.2.... NV}, (1)

in which r;(n) is the input to the {** node in layer zero. and ti(n) is the target output for node k in the output
layer (output desired in response to the corresponding input). The computed outputs of layer two [one] in
response to I(n),...,Zn,(n) are denoted yi(n).....yy, [¥(n).. . .. U{v,]- Finally, we need to formalize the
nonlinearity associated with the nodes. Consider node & in the output layer. For given weights. wy ;, j € [1..V,].
the output in response to the n'® input is

N
yeln) =5 Zwk‘,yj(n) (2)
1=1

in which S{.) is a differentiable nonlinear mapping. For future purposes. we define 5(-) to be the derivative of
. . def N + . . .

S(-). For convenience, we also define ug(n) = Z}\z‘l we ;y;(n) . Clearly. ux(n) is the input to node k in the
output layer in response to pattern n. uj(n) is similarly defined as the input to node ! in the hidden layer.

'Acknowledgements: Th . work was supported by the Office of Naval Research under Contract No. N00014-91-J-1329. and by
the National Science Foundation under Grant No. MIP-9016734. Mr. Hunt was also supported by a fellowship from the Unuversity
of Puerto Rico.

2Some authors might choose to call this a thr-» layer network. We shall designate the bott-m layer of “nodes” as “layer zero"
and not count it in the total number of lavers. Laver zern is a set of linear nodes which simply pass the inputs unaltered.




Many training (weight estimation) algorithms exist for this type of network (e.g. [3] - Azimi-Sadjadi 89. The
most popular, the back-propagation algorithm [3]. [4]. performs satisfactorily in some cases if given enough time
to convetge. However, the literature abounds with example applications in which back-propagation convergence
is too slow for practical usage (e.g. see [8]). One attempt to develop faster training methods is represented by
the class of algorithms in which the network mapping is "linearized” in some sense in order to take advantage
of linear estimation algorithms. [t is with this class of algorithms that this paper is concerned.

2. Linearization Algorithm

The fundamental training problem for the two layer FNN is stated as follows: Given as set of .V training pat-
terns as in (1), find the network weights which minimize the sum of squared errors, £ = Zn_l Zk_, ni{te{n)—
ye(n))? where the weights A(-) are included for generality. For a given set of training pairs, £ is a function of
the weights of the network. A graph of £ over the weight space 1s frequently called an error surface. [deally. a
training algorithm would find the weights corresponding to the global minimum of the error surface. Training
algorithms usually operate by sequentially presenting the training patterns and moving the weights toward a
minimum of the error surface. The procedure is repeated several times using different initial weights in order
to locate the best minimum. Ideallv. il weights will be altered with each presentation of the set of training
patterns so that the weights may move in the direction of steepest descent. In this case the algorithm represents
a true gradient descent approach. In practice. however, no reasonable algorithm exists which can simultaneous
change each weight in the network. In fact. the popular back-propagation algorithm works on only one weight
at a time. One of the principal benefits of the method to be presented here is that many weights can be
simultaneously updated.

The linearization technique adopted in this work can be explained in terms of error surface analysis. In
effect, for a present set of weights and a given training pattern, we construct a “linearized” network with an
errot surface, say £, which is “similar” in some sense to E in a neighborhood of the present weights. There are
two similarity criteria: first, that the magnitude of £ and £ be the same at the present weights; and second,
that the derivatives of £ and £ with respect to the weights to be updated be the same at the present weights
{since the other weights are not altered. it is not necessary that the derivatives with respect to those weights
match).

Let us digress momentarily from the simple two layer network and use more general description. Suppose
that the weights connected to one or more nodes in layer L are to be updated simultaneously®. This may include
as few as one. and as many as all. nodes in layer L. Denote the set of such selected nodes by .\". Denote by .\
the set of all nodes above layer L to which any node in .\ is connected, directly or indirectly. Let all weights not
connected to nodes in .V and .M be fixed at present values'. Then it is shown in [9] that a “lineariz>d™ network
whose error surface £ is similar to £ in the senses above is constructed by replacing the nonlinearity S(.) for
each node in .\" and .M by a linear approximarion. say S(-). consisting of the first two terms of a Taylor series
around the “present” value of the node's input. For example. suppose the k** output node is to be linearized
with respect to the n*? training pattern. Let i, denote the present value of weight wy ;. Then.

~N
Sluy o= Zwk,y](n) [u—Zuk]yJ (n)]+ S Zri-k']yg(n) i
1=1 1=1
' A A N
- - ~ -~ 5 - ' - def ..
= 5 Zw;wy;(n) u+ |5 Zu'k]y;(n) -8 Zwkv,y](n) thy;(n) = Ke(n)u+ be(n).
1=t 1= =t =1

[n fact. since S(u) = S(u) if u1s the input corresponding to the present weights. any node not in .\ or .M may
also be linearized with no effect on the solution. Therefore. we may assume without loss of generality that the
entire network is linearized. even if only a portion of the weights is to be updated.

It will become clear helow that once the network is lineatized by replacing the operation S(-) by () in all
wpropniate nodes. in principle any least square error algorithm can be used to update the weights. Algorithms
biased «n simular ideas for updating weights one node at a time are given by Azimi-Sadjadi et al. {5} (henceforih.
A~ algorithm) and by Hunt and Deller {9]. The former is based on the conventional RLS algorithm [2] with a

"If anv weight connected a node is to be updated. then every weight connected to that node must be updated. This “onstraint”
s srdinanly beneficial. 2ince 1t implies the ability to simultaneously update more than one weight.
*In . ertain -ases 1t 1s possible to update weights in different layers simultaneously. We discuss one case at the end of this sectinn




forgetting factor, while the latter employs a contemporary QR decomposition algorithm {1, 10] for significant
performance imptovement. The view of the method taken above allows us to to further exploit the linearization
by complete layer-wise updating of weights for even further improvement. Let us pursue this layer-wise approach.

Suppose we wish to update all weights in the output layer simultaneously. We must linearize all output
nodes (and may arbitrarily linearize any other nodes). For node k in the output layer. the output in response
to input n is computed as in (2). Let jr(n) represent the output of node k after S(ukx(n)) as been replaced by
S(ug(n)) = Keur(n) + br. Accordingly.

N, Ny
je(n) = Kk(n)[z Wiy, in)} = be(n) or I(n) = [\'k(n)[z we ;Y5 (n)] ()

=t =1

with Z¢(n) f Je(n) — be(n). We speak of the rightmost form in (4) as descriptive of a (inearized node since
the output is a purely linear combination of the inputs to the node. The network with all appropriate nodes
linearized will be called the linearized network. Since Jx(n) = ye(n) at the present weights, the error at the k"
node will be the same for the linearized and original network if the target value for Zi(n). say £¢(n), is taken to
be

I,vc(n)‘ié{fk(n)—bk(n) 13)

and the linearized inputs to node k at pattern n are

Fo i) Retnigi(n), j =12,V (5)

Note that the linearized inputs are dependent upon k. so that we have effectively increased the number of
training pairs by a factor of .Vs,.

The problem has effectively been reduced to one of estimating weights for a single-layer linear network. In
order to simultaneously update the all weights in the output layer. the system of .V x N2 equations

My

fk(n):kaJ!L'kj. k=1.2,..... Vo n=1.:

) =1
y=1

(3]
<\

{7)

must be solved for the least square estimate of the V; < Vs weights we,. & = [1. Vo] j € [1. V], However. since
all weights in the hidden layer are fixed. the outputs y)(n) are independent of k. This means that the equations
indexed by different values of k are independent of one another. and the sets of weights connected to different
outputs may be updated independently. In the output layer. therefore, there is no theoretical difference between
layer-wise and node-wise updating. This is not true at lower layers. however. as we now show for the hidden
layer of the present network.

To update all weights in the hidden layer simultaneously, the weights in the output layer are fixed and all
nodes in the network must be linearized. The outputs of the hidden layer with S(-) replaced by 5(-) are given
by

No
g;(n) = [\'}'(n){z wizi(n)] + bitn). j=12...... A\ (%)
i=1

Substituting (8) in the leftmost expression in (4) results in

v Ny N,
Je{n) - [z Kk(n)u.'kjb;(n) +be(n)] = Z Z[l\'k(n)u'k__,]\}'(n)r;(n)]w}',',. (9)
j=1 s=1.=1

As above. we can now view the problem as one of training a single-layer linear mapping with target outputs

N
fio{n) = te(n) = Z Ne(mhwe ;65(n) + be(n)] {10)

7=l

and inputs
P fdn) = Relnnee ; Ky(nizy(n). (L




The weight estimates for w;vl, j € [L. V] 1 € [1..Vy] comprise the least square error solution to the system of

equations
Ny Ny

UM—ZZqﬂuwkﬁlmwgmLQ ...... V. (12)
J=1

Unlike the output layer. we see that the problem cannot be decomposed into separate solutions for sets of
weights connected to individual nodes in the hidden layer. This is a reflection of the fact that all weights in the
hidden layer are coupled through their "mixing” in the output layer. This means that the simultaneous solution
for all weights in the hidden layer should be beneficial with respect to a node-wise solution. Indeed we will find
this to be the case in the experiments. Of course. this same intra-layer dependence of weights would continue
if there were further hidden layers to be considered.

Note that, for a fixed &, the inputs to the linearized nciwork. 2'{n), n € [1. V], are most conveniently viewed
as two-dimensional (indexed by couples {j. /). There are .V such ~grid” inputs for each k. paired with the N
values of ¢} (n). If there were further hidden layers in the network. we would find that the effective inputs would
continue to increase in dimension. Further. it is noted that the role of k in (12) is somewhat superfluous. In
principle, the index is used to keep track of which of .Vs outputs in the linearized network is being considered.
However. the training pairs (fi{n): 2, . .(n). . Ar"kqvl._\,n(n)). k€ [1.No] n e [1.V], can be reindexed by
mapping pairs (k. n) — 1 so that the training pairs may be written (£ (1): £, ((i)..... .i'fvhvo(i)). 1€ [1.Nx N2
Of course, an identical system of »qnations to (12) results, but the linearized network may be viewed as a single
output linear layer with .V x N2 rraining pairs.

Updating of some subset of the weights in the hidden layer (in particular. "node-wise” as in the A-S algo-
rithm) is tantamount to solving the subsystem of {12) corresponding to the desired weights, introducing the
updated values into the system. solving for the next desired subset. etc. Clearly. this will result in a different
solution than the simultaneous solution. In terms of the error surfaces, this process consists of continually up-
Jating the error surface as “partial” information becomes available. then moving in the direction of the gradient
with respect to a new subset of weights in the updated surfaces. Intuitively, movement “at once™ with respect
to the “complete” gradient would seem to be a preferable procedure. Tndeed. the later operation corresponds
to the simultaneous updating.

The linearization allows us to approximate the error surface of the nonlinear system for only a small neigh-
borhood around the present weights. Because of the criteria used to construct E, the weights will be changed
in the direction of the true gradient in the nonlinear space. but will move to the minimum of £ which may be
quite far from the neighborhood over which £ = £ Accordingly. the weights must be allowed to change only a
small amount using the training patterns of the linearized sys’em If the linearized procedure results in a large
~hange of weights. measures must be taken to decrease the 2 teration. The updating procedure 15 repeated unt:l
changing the weights does not result in a decrease in error. The algorithm proceeds as follows: linearize the
system around the present weights. change the weights by a small amount to decrease error. then repeat the
procedure. This 15 done until chang.ng the weights does not Jecrease the error or a maximum on the number
of linearizations is reached.

For the same reason that simultaneous layer-wise estimation of weigh*s 1s beneficial, we should expecr even
maore benefit from complete network updating if such were possible. [t follows from the developments abaove
that entire network updating is possible for at least one case. [f there 15 a single node in the output layer of the
network. let k = 1 and define

w;_, = we,w = w JU 1130
From (9) it follows that

N1 No

(Gi(n) - =Y S IR (B (n)zi(n) *mew)Mr ¥E

=l i=t1 i=1

This can be interpreted as an attempt to train a single linear layer with one output and (Vy < Ny = .\,
inputs. [n this case. there will be oniy .V linearized training patterns. The system can be solved for . . and
wh €1V 1 &{1.No] and (13) can be used to solve for w . j&[1..V)] 1€l V.

3. Experimental Results

The results given 1n this section compare five training strategies for a FNN. These are: 1. Conventional
back-propagation 1 no lineanization in the sense described here, weight-wise updating): 2. A-S algorithm inod




| Impementation — Back-Prop | A-S | Node Updating | Layer Updating | Network Upaating |
| No. of Convergences — 11 31 78 96 99 |

Table 1: Number of convergences per 100 sets of initial weights in experiments with the XOR network.
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Figure |: Average error in dB for the XOR tmplementations vs. iteration number. 1.Back-propagation: 2.A-5
algorithm; 3. Node-wise updating; 4 Layer-wise updating: 5. Network-wise updating.

linearization, then conventional RLS with a forgetting factor for node-wise updating): 3. Linearization method
described above with node-wise updating based on QR decomposition; 4. Same as 3 with [zyer-wise updating: 3.
Same as 3 with complete network updating. The two-bit parity checker {XOR) network used in the simnlations
has two inputs. two hidden layer nodes and one output node. An additional node is added at each layer whose
sntput value was always unity, to serve as a bias for each node in the laver above. The mitial weights wer»
rhosen as follows. Each weight in the network was selected randomly from a uniform distribution over rhe
interval {~1 i]. This procedure was repeated 100 times to select 100 sets of initial weights. The same 100) sets
~f weights were used for all five implementations. For the back-propagation algorithm, a factor of 0.04 was
used in the weight updating equation. The A-S algorithm was implemented using no weight change ronstraints.
The forgetting factor for A-S and for the QR decomposition implementation was 0.98. The QR decomposition
implementation used a weight constraint of 0.2, meaning that the weight vector associated with each node was
allowed to change at most by 0.2 in Euclidean norm during each iteration. The layer-wise updating algorithm
has a forgetting factor of 0.3 and a weight constraint of 1.0. The network-wise updating algorithm had the same
forgetting factor and weight constraint as the layer case.

Simulations were run to compare the number of times each implementation found weights that solve the
XOR problem for the 100 initial weight sets. The results are shown in Table [.

Simulations were also run to compare the output error of each algorithm. In the resulting figures. the error
in 1B means the following: Let (i) be the sum of the squared errors incurred in iteration ¢ through the training
patterns. averaged over the 100 initial weight sets. Then. plotted in the figures is 10 log(z(#)/u) (dB). where 4
13 the maximum possible error 1n any iteration. Fignre | shows the errors of the four XOR implementartions

MY}




4. Conclusions

A new implementation for node-wise weight updating algorithm for feedforward neural networks and new
algorithms that update weights layer-wise and network-wise have been presented in this paper. The QR decom-
position implementation has been shown experimentally to be superior to standard recursive equations for the
node-wise updating algorithm. The layer-wise and network-wise weight updating algorithms were developed
to improve the convergence rate and the speed of convergence. Both objectives were accomplished. with the
layer-wise weight updating algorithm showing a significant advantage over both the single node weight updating
algorithm used as a reference. and the widely nsed back-propagation algorithm.
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