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Abstract

Many of the tasks that are potential candidates for automation involve grasping. We are
interested in the programming of robots to perform grasping tasks. To do this, we propose
the notion of “perceptual programming,” where the key idea is to enable a systemn to observe
a human performing a task. understand it, and perform the task with minimal human inter-
vention. This allows the programmer to easily choose the grasp strategy.

A grasping task is composed of three phases: pre-grasp phase. static grasp phase. and
manipulation phase. The first step in recognizing a grasping task is identifving the grasp
uself (within the static grasp phase).

We propose to identify the grasp by mapring the low-level hand configuration to increas-
ingly more abstract grasp descriptions. To this end, we introduce a grasp representation
called the contact web which is composed of a pattern of effective contact points between
the hand and the object. We also propose a grasp taxonomy based on the contact web to sys-
tematically identify a grasp. Results from grasping experiments show that it is possible to
distinguish between various types of grasps.




Chapter 1 Introduction

Robot programming is an essential component of task automation. The current methods
for robot programming include teaching (e.g., [1], [2]), textual programming (e.g., [3],
[5]), and automatic programming (e.g., (4], [6], [8], [11]). The first two methods are by far
the most pervasive in both the industrial and academic environments. In teaching meth-
ods, the robot or manipulator learns its trajectory either through a teach pendant or actual
guidance through the sequence of operations (“teach-by-guiding” or less appropriately
“teach-by-showing”). Thi; method is the easiest to use since the implicit knowledge of the
task is not necessary. On the other hand, because “teach-by-showing” involves some
degree of repetition owing to errors, it can be tiring, and possibly risky. Furthermore, this
method is not easily transferable to a different system. Textual programming, while flexi-
ble, requires expertise and often a long development time. Several of the robot program-
ming languages include AL, AML, RAIL, RPL, and VAL. A summary of these
programming languages can be obtained from [5]. These problems can be alleviated by
automatic programming, where conceptually the only inputs to the robot system required
for generating the control command sequences are the description of the objects involved
in the task, and the task specifications. However, realization of a practical system with
automatic programming is difficult since important issues remain relatively unresolved in
a satisfactory manner. Sich issues include: How does one generate a sequence of opera-
tions? How can tasks be described unambiguously? If a task involves grasping, how can a
stable grasp be effected - should it be optimal from the “human” point of view or a purely
analytic point of view?

Although these problems exist for traditional approaches to task programming, we could
avoid such problems by ising a different approach. We are particularly interested in pro-
gramming the robot to pcrform grasping tasks. Because most tasks that are performed by
humans, especially manufacturing tasks [18], inivolve grasping, automation of such tasks
would certainly involve knowledge of grasps. This makes the analysis of grasps and their
purposes important. Much work on grasps concentrates on grasp synthesis, i.e., the deter-
mination of the “optimal” grasp given knowledge about the objects and the task. Either the
task specifications need to be explicitly enumerated [6], or the grasp chosen is to be opti-
mal according to some grasping quality metrics [7], or the grasp chosen is to be stable
(from the “human” point of view [8] or from the analytic point of view [9]). The issues of
task specification and grasping strategy are complicated and difficult.

The task programming approach that we propose to adopt is perceptual programming. In
perceptual programming, task programming is performed by demonstrating the task to the
system rather than by the traditional method of hand-coding. The realization of perceptual
programming would entail the understanding of hand grasping motions. The key idea is to
enable a system to do the following: observe a human performing a task, understand it,
and perform the task with minimal human intervention. Perceptual programming would
obviate the need to explicitly describe the required task, since the system is able to under-
stand the task based on observation of the task performance by a human.
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Work in this area would result in a greater understanding of grasping motions, to the
extent that recognition by a robotic system would be possible. The areas in which this
body of knowledge is potentially useful include planning and automation, and teleopera-
tion.

The ideas and goals of our work are very similar to those that embody the Assembly Plan
from Observation (APO) paradigm proposed by Ikeuchi and Suehiro [10]. They describe a
system that observes a human performing an assembly task while a geometric reasoner
analyzes and recognizes the task from observation, and generates the same assembly
sequence for a robot. In this paradigm, the human operator does all the thinking - the sys-
tem “understands” what needs to be done based on what is observed and performs the task
or tasks. A similar approach was taken by Kuniyoshi et al. [11] who developed a system
which emulates the performance of a human operator. However, their system is restricted
to pick-and-place operations.

This report is an accoun: of our work on grasp identification. In Chapter 2, we describe a
3-D structure called the contact web which can be used to classify a grasp. It also facili-
tates higher level descriptions of a grasp by using a special objective function. The experi-
ments conducted to justify the uses of the contact web and the objective function are
described along with their results in Chapter 3. We summarize our findings in Chapter 4.




Chapter 2 Grasp Identification

Grasp identification is central to the recognition of grasping tasks. In order to identify
grasps, we need a hand model, which is explained in the next subsection.

2.1 Hand Model

An articulated hand model whose finger movements closely resemble those of an actual

hand is used to infer the grasp observed in the scene. The human hand is depicted in Fig-
ure |.

Distai Interphalangeal 2 3

joins =}
Metacarpophalangeal
joints

Figure I Bones and joints of the human hand (taken from [23]).

Each finger 1s approximated to have four degrees of freedom. The four angular parameters
associated with finger movement (except the thumb) are directly associated with the
degree of finger abduction and the degrees of flexion at the metacarpophalangeal, proxi-
mal interphalangeal and distal interphalangeal joints (please refer to Figure 1). For the
thumb. they are the angular flexions in the carpometacarpal joints (two parameters), the
metacarpophalangeal joint and the interphalangeal joint In this hand model, limits of
these angular parameters which are consistent with anatomical and physiological studies
of the hand (e.g., {12], [13} and {14}) are imposed. Flexion angles are defined with respect

to the hand frontal plane! while the abduction angles are defined with respect to the sagit-
tal planes

Finger segments are modeled by cvlinders. Buchholz and Armsuong [28] model hand seg-
ments with ellipsoids for ease of analytic determination of contact points between the
hand and held object. which is also modeled by an ellipsoid. The ellipsoid-ellipsoid con-

I. The trontal plane 15 the planie paraile! to a flat hand with fingers extended.

1. The reference sagital plane of a tinger 1s the plane perpendicular to the frontal plane passing through the
principai long axis of the fully adducted and cxtended finger.
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tact algorithm allows modelling of soft tissue penetration. While the ellipsoidal modelling
is suitable for simulation, it is less suitable for tracking.

2.2 Classification of Grasps

There has been a lot of study in the medical community on the grasping capabilities of the
human hand, from the anatomical and functional points of view. Schlesinger [15] and Tay-
lor and Schwarz [14] associate human grasps primarily with the object shape in their cate-
gorization of six grasps (cylindrical, fingerntip, hook, palmar, spherical and lateral).
Griffiths’ [32] grasp classification is also based on objects of varying form. He partitions
the functions of the hand into cylinder grasp. ball grasp, ring grasp, pincer grasp and plier
grasp. McBride [33] took a different approach in dividing the function of the hand: his
classification depends on the parts of the hand which participate in the grasp (grasp with
the whole hand, grasp with thumb and fingers, and grasp with finger and palm). These
classifications , while expressive and intuitively informative, do not reflect a fundamental
analysis of the hand as an entity. They are either too dependent on the shape of the held
object ([14], [15], [32]), or arbitrary without any particular functional basis ([33]).

Napier [26], on the other hand, dichotomized grasps into precision grasps and power
graspsl. His classification of grasps is based on the purpose of the task, shape and size of
the object, and the posture of the fingers. This division of grasps into precision and power
grasps is the most widely accepted and used by researchers in the medical, biomechanical
and robotic fields. A power grasp is used for higher stability and security at the expense of
object maneuverability, while the converse is true for a precision grasp. A precision grasp
is characterized by a small degree of contact between the hand and the object. In this type
of grasp, the object is normally pinched between the thumb and the flexor aspects of at
least one finger. In a power grasp, however, the object is held tight by the fingers and the
palmz. The major classifications of a power grasp are the cylindrical power grasp and the
spherical power grasp. In a cylindrical power grasp, the thumb can either be adducted for
some element of precision, or abducted for more clamping action on the object. Hence-
forth the cylindrical power grasp refers to the former type while the “coal-hammer” grasp
refers to the latter type. Sollerman [29] uses a different terminology for power grasps: he
refers to the cylindrical power grasp, “coal-hammer” grasp, and spherical power grasp as
the diagonal volar grasp, transverse volar grasp, and spherical volar grasp respectively.

Cutkosky and Wright [16] construct a hierarchical tree of grasps beginning with Napier’s
distinction between precision and power grasps. At the lowest level, a grasp is chosen
based on object geometric details and task requirements. However, not only is the taxon-
omy incomplete, but because the grasp classification is discrete, there may exist problems
in categorizing grasps in intermediate cases (e.g., the shape of the object is somewhere
between being strictly prismatic and strictly spherical). In these cases, determination of

1. He actually referred to them as precision grips and power gnips. The termn “grasp™ is used throughout this
document for consistency.

2. An cxception is the lateral pinch. which is the grasp employed when tuming a key in a lock. This grasp
involves the thumb and the radial side of the index finger.
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the type of grasp will then be dependent mostly on human judgment rather than on reason-
ing.

In our effort to automate the recognition of grasps, we require a grasp taxonomy which
could provide a systematic way of identifying grasps based on the hand configuration and
object shape. Cutkosky and Wright’s grasp taxonomy is not suitable for use in our work
because, in addition to its limitations mentioned above, it presumes a priori knowledge of
the task requirements which are not available in our problem domain. We propose a grasp
taxonomy based on the analysis of the effective contact points of the hand with the
grasped object. The effective contact point of a finger segment represents the surface con-
tact of that segment with the object. The resultant spatial pattern of contact points forms
what we call a conract web.

2.3 The Contact Web

2.3.1 Definitions

A contact web is defined as a 3-D graphical structure connecting the effective points of
contact between the hand and the object grasped. When parts of a finger or palm make
contact with the grasped object. the actual contact area is finite. A point contact is useful in
representing the contact between the phalangeal segments and palm, and the object
because of ease of representation and analysis, and accommodation of uncertainty in
grasping. The shape and cardinality of the contact web yield important information about
the type of grasp effected.

Intradigital contact points are contact points along the same finger. /nterdigital contact
points are those located at different fingers. The contact notation adopted is illustrated in
Figure 2.

P{ is the intradigital contact point set for the ith phalange (i = C (the thumb), 1, 2, 3, 4);
E.g.. PI1 = {Cy3} refers to the finger tip contact point set of the index finger.
Pc = {phalanges in contact with object};
Py={ P; 1€ PC} (the contact point set);
No(Py) = cardinality of Py = number of phalanges in contact with object;
Ni(Py) = N, (i ekJP .’;) = total number of contact points.
C

Note: N (Py) =15.

max




~ Link 1
(Common to all fingers)  Link O (palm)

Figure 2 Contact Notation on the right hand (palmar side)

2.3.2 A Taxonomy based on the Contact Web

Cutkosky and Wrights’ taxonomy [16] provides a systematic way of finding a grasp that
will satisfy a particular set of task requirements and a particular object shape. However.
such a taxonomy is difficult to use if (as in our case) the task requirements are not known a
priori. We propose a grasp taxonomy which is based on the contact web. It provides a sys-
tematic way of recognizing grasps from the hand configuration and the object shape. In
addition. it provides a more continuous classification of grasps by not restricting the clas-
sification to discrete grasp groups.

Figure 3 shows the proposed major classifications of grasps and the type of contact web
associated with each major grasp group. The contact web provides an easy, compact and
convenient framework for describing grasps, giving insights into the type and shape of the
object grasped, and possibly, the tasks involved. Note that the contact point of the paim is
merely an artifact which represents the effective contact of the palm with the grasped
object. This point may or may not be physically in contact with the object.




Grasps

l
B 1

Volar Grasps Non-Volar Grasps
(Non-Planar |

Contac: Web) I | |
Composite
Non-Volar Grasps
(Planar (Non-Planar
Contact Web) Contact Web)

Figure 3 Major classifications of grasps for recognition

Fingertip Grasps

A power grasp is characterized by a high degree of contact between the hand and the held
object. This allows high clamping forces on the object. A feature that we use to first distin-
guish between grasps is the involvement of the palm surface in the grasp. Grasps which
involve the palm surface are called volar grasps while others are called non-volar grasps.
All volar grasps are power grasps. All but one type of non-volar grasps are precision
graspsl. The exception mentioned is the lateral pinch, which is the grasp assumed by the
hand when tuming a key in a lock. Although the lateral pinch does not involve the palm
surface, it emphasizes on the security of the object rather than its dexterity; hence it is a
power grasp. This is the reason why volar and non-volar grasps are not equivalent to
power and precision grasps respectively, and are not labeled as such in our taxonomy. The
non-volar grasps are further classified as fingertip grasps and composite non-volar grasps.
The fingertip grasp involves only the fingertips while the composite non-volar grasp
involves surfaces of other segments of the fingers in addition to the fingertips. The major
grasp classifications are shown in Figure 3, while the effective contact point notation is
depicted in Figure 2.

One interesting feature of a category of grasps is whether the contact web associated with
that category 1s planar or non-planar. The contact web formed by a volar grasp is spatially
non-planar (except for the platform pushz). In most non-volar grasps where the areas of
contact between the object and the hand are those of the fingertips (fingertip grasps), the
associated contact web is approximately planar. However, there are at least two identifi-

1. Napier [26] regards volar grasps as power grasps and non-volar grasps as precision grasps. This view is
shared by various other researchers in the medical and biomechanical fields (e.g., [28]. [31]). However, this
would not be strictly true if we adhere to the position that the type of grasp should be classified according to
the predominance of cither power or precision in the grasp (which. interestingly, Napier [26] adheres to as
well). The demand for power is higher than the demand for precision in the lateral pinch; though it is a non-
volar grasp, it is, by the power predominance definition, a power grasp. See text.

2. The platform push is a non-prehensile grasp: non-prehensile grasps are not considered in this work.
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able cases of non-volar grasps where the contact web is non-planar, namely the lateral
pinch and the pinch grasp. These are separately grouped as composite non-volar grasps.

The contact web enables a more continuous categorization of grasps as shown in Figure 4
and Figure 5. The degree of membership to a strictly prismatic grasp or spherical/disc
grasp lies in the degree of fit of the contact points to the respective shapes. In addition, the
contact web facilitates a mathematical framework for the recognition of grasps as
described in Subsection 2.5. Finally, as discussed in this subsection, this grasp taxonomy
provides a systematic means of grasp discrimination from observation.

2.3.3 Comparisons with Other Grasp Frameworks

Cutkosky discusses how to choose grasps based on task requirements and object shape,
and he implemented an expert system called “Grasp-Exp” to do this [18]. Cutkosky and
Howe {19], in a similar vein, relate grasp attributes such as dexterity and precision to ana-
lytic measures such as manipulability and isotropy in their grasp analysis. Iberall and
MacKenzie (23] concentrate on finding a grasp solution for the controller given antici-
pated object properties and predictable interaction outcome in terms of opposition space
and virtual fingers. Iberall [24] describes a neural network that maps qualitative task and
object properties (surface length in terms of finger span, object width, amount of forces,
and level of task precision) onto a desired prehensile posture. The mapping 1s based on
empirical evidence.

However, in each of these cases, an explicit analytical framework is not provided to iden-
tify a given grasp. In other words, they do not answer questions such as: Given a task
scene, what grasp is being used? On a lower level, what opposition space is present and
what is the number and composition of the available virtual fingers? On a higher level,
what task do the grasping actions achieve? In our scenario, object description is available
while task description is not available. The system has to somehow be able to determine
what grasping strategy has been employed based on viewing a multiple sequence of the
task.

Nguyen and Stephanou [25] describe a topological algorithm for continuous grasp plan-
ning. Their paper proposes a topological algorithm to determine a grasp expressed in
terms of low-level joint variables, given a high-level task description. Again, the assump-
tions made and the domain are different. In our framework, no task description is avail-
able. Instead, it is inferred.

Pao and Speeter [30] determine the matrix transformation linking the joint parameters of
the human hand and a multifingered robotic hand based on a predefined set of hand poses.
The robotic hand posture corresponding to any given hand configuration is then interpo-
lated using this matrix transformation. There is no higher level of abstraction in their
method as correspondence between the human and robotic hand configurations is estab-
lished based on low-level joint angles. As a result, it may be difficult to generalize this
scheme to less anthropomorphic robotic hands and for complicated tasks.
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Our framework provides a direct mathematical means to use higher-level conceptual terms

for describing the physical configuration of the hand. As mentioned earlier, it also pro-
vides a more continuous taxonomy of grasps.

Non-V01|ar Grasps

| |

Fingertip Grasps Composite Non-Volar Grasps
(Planar Contact Web) (Non-Planar Contact Web)
No(Py) = Ni(Py) No(Py) < Ny(Py)
L |
| | | 1
No(Py) = 2 No(Py) = 3 No(Pp) =2, No(Py) =5
o n I NPy =3,4 6 < NPy <13
rismatic, . o9O
gisc/sphere prismatic, i; ,,,,,,,, 0 o 9
(degenerate case)  tripod i %} g
(disc/sphere) lateral pinch
prismatic, pinch grasp
side opposition prismatic,
pad opposition

NO(PH NO(PH) 5

SN N

prismatic dlSC/S here prismatic disc/sphere

(3 colinear *** (cucu ar fit) (4 colinear ®*® (circular fit)
points)

points)

Note: All non-volar
grasps are precision
grasps, except the
lateral pinch.

Figure 4 Classification of non-volar grasps
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Volar Grasps (Non-Planar Contact Web)

|
[ L
N1(PIH) =15 N,(Py) < 15
[ X X ] I
Note: All volar
1anar/almost planar prismatic/ eee spherical grasps are
de enerate case) cylindrical power grasps

plat orm push

Figure 5 Classification of volar grasps

2.4 Virtual Fingers and Opposition Space

By analyzing the contact web, medium level grasp concepts such as virtual fingers and
opposition space, can be described. These two concepts, in turn, are the key elements in
characterizing the type of grasp and indicating the functionality of the grasp.

Arbib et al. [20] introduced the concept of the virtual finger: a functional unit which com-
prises at least one real physical finger (which may include the palm). The real fingers com-
posing a virtual finger act in unison to apply an opposing force on the object and against
the other virtual fingers 1n a grasp. This concept replaces the analysis of the mechanical
degrees of freedom of i wlividual fingers by the analysis of the functional roles of forces
being applied in a grasp.

Cutkosky and Howe [19] suggest that virtual fingers correspond to independently con-
trolled contact sites, and oppositions correspond to internal grasp forces. While Iberall
[22] indicates that the precision tripod grasp consists of two virtual fingers (thumb as one
and the index and third fingers as the other), Cutkosky and Howe [19] state that it may
have either two or three virtual fingers, depending on the amount of coupling between the
index and third fingers. We agree with this view. Finger force interaction is the basis for
virtual finger composition determination in our work.

[berall et al. [21] define opposition space as “the area within the coordinates of the hand
where opposing forces can be exerted between virtual finger surfaces in effecting a stable
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grasp.” They show that prehensile grasps involve combinations of the three basic opposi-
tions shown in Figure 6. Pad opposition is used in precision grasps, while palm opposition
provides a more powerful hold on the object. Finally, side opposition is a compromise
between these two oppositions in terms of dexterity and strength of the grasp. Opposition
space is an important concept in characterizing grasps.

Figure 6 Types of opposition (taken from [23]). (a) Pad opposition, (b) Palm opposition, (¢) Side
opposition

2.5 Recognizing Grasps from the Contact Web

We now illustrate how the contact web can be used to identify the grasp. As mentioned
earlier, there are three different types of opposition: pad opposition, palm opposition, and
side opposition. We start with the simplest type of opposition, namely, pad opposition, and
then proceed to side opposition. The detailed analyses involving these oppositions in the
next two subsections constitute the main ideas embodied in the mathematical framework
for grasp recognition.

2.5.1 Pad Opposition Only

There are at least two virtual fingers to effect this opposition. The degree of force coupling
between any two given forces fj .pp and fj oo, is defined to be their normalized dot product:

f. of.
D (i) = 2 2P

Ifi.cppl ’fj.cppl

The following is a proposed analytical method of determining the mapping of all the fin-
gers touching the grasped object into either one, two or three virtual fingers. Note that this
method does not presume the mapping of the thumb into one virtual finger.
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/ L) .
n real fingers ’;31\/ n-width .
which are11 & . s’ ® virtual finger with
functionally | & _. cohesive index
equivalent” . @7 Cvr

Ma(llpFing is dicfated by type of opposition
and location of contact point in grasp

Figure 7 Virtual finger mapping under the influence of opposition space and point contact placement

This method is based on the premise that the mapping and number of virtual fingers
depend on the location and degree of coupling between the fingers in contact with the
grasped object. This philosophy is illustrated in Figure 7. It quantifies the degree of cou-
pling between fingers and introduces the concept of the cohesive index of a virtual finger.
The cohesive index of a virtual finger indicates the degree to which the real fingers
mapped into it are functionally equivalent. Let the normal forces on the contact polygon
plane (CPP) be denoted as f ’i,cpp (i=1, ..., n), and the actual internal projected forces acting
on the object be represented by f; .;p (i=1, ..., n). Assume that there are nr real fingers in
contact with the grasped object and that f; ., are known for 1 = 1, ..., ngg Assume also.
that f icpp = [ icpp- The virtual finger membership index between fingers i and j (each with
only one contact point for the moment) is defined as:

_min ([f el [F5cppl) 1+ D (i)
i 7 max (]f 2

i.0pp|’ ‘ fj.cpp' )

[t can be seen that 0 <m; < 1. Two real fingers are more likely to be members of the same
virtual finger if the force vectors at the contact points are similar (i.e., both in terms of
force direction and magnitude). Obviously mitih= 1 and my; = m;;. Let VFy denote the set of
real fingers hypothetically belonging to the k™ virtual finger. Then the cohesive index for
that virtual finger is defined as the geometric mean of all the pairwise virtual membership
indices:

Cyex = I1 migj

i, jeVF
j2i k

where

o)

N(VF,) being the number of real fingers in virtual finger VF, and & is the reciprocal of the
number of possible pairs of real fingers in virtual finger VF,. Cy¢x characterizes the simi-
larity of action of the real fingers in VFy. If all the fingers in VFy act in unison, i.e., exert




13

forces equal in magnitude and direction, then Cy¢y = 1. However, if any two fingers in VF
exert forces in opposite directions, then Cypy = 0.

The problem of determining the number of virtual fingers and the constituents of each vir-
tual finger can be described as a non-linear mixed program:

Maximize
R —
Car = (5 TL G
ff 1 VF,i
¢ nyg! o
subject to
nye € {1,2,3}
Ry
\U VF, = RF
1=1
VFimVFj=®, i#j; (1<i,j<nygp)

The product term with the exponent in the objective function Gy is the geometric mean of
the membership indices of the hypothesized virtual fingers. This ensures that the division
of real fingers into virtuzl fingers is done in such a way that the real fingers in each virtual
finger act on the object in as similar a manner as possible. Cogr is called the grasp cohesive
index. The remaining factor in the objective function is a contrived one to favor a smaller
number of virtual fingers should there exist equivalency in the objective function (without
this factor) for different hand configurations comprising different numbers of virtual fin-
gers. RF is the set of real fingers in contact with the grasped object. For the following
examples, for simplicity, it is assumed that all the forces exerted are of unit magnitude
(this assumption does not detract from the basic principle). This assumption is altered
somewhat for the experiments which are described in subsequent sections.

Example 1 (see Figure 8)

2 3

myp =0
m;3=0

¥, "

Figure 8 Iustration for Example 1

For the simple case of the thumb and two fingers holding a prismatic object in place, the
highest value for Gy is obtained for VF| = {1} and VF; = {2, 3}. Cyg 1=l and (yg 2 =
1. giving Gegr max= 0.707. For VF| = {1}, VF, = (2} and VF3 = {3}, G = 0.550.
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Example 2(a) and (b) (see Figure 9)

(a)® = 30° (b)8 = 50°
my, = 0.07 myp =0.18
m;3 = 0.07 my3=0.18
my3 = 0.75 my3 = 0.41

Figure 9 Illustration for Example 2(a) and (b)

In this example, the object held is no longer prismatic but roughly resembles an ellipse.
For case (a), the highest value for G is again obtained for VF| = {1} and VF; = {2, 3}
(here Gegr max= 0-612). However, in case (b), the highest value for G is obtained for VF,
= {1}, VF; = {2}, and VF3 = {3} (Gefr, max= 0.550). (Note that 0 is the angle measured
with respect to the vertical line to which the force direction at contact point 1 is anti-paral-
lel.)

2.5.2 Side Opposition Only

Side opposition involves two fingers - the thumb and the index finger. Contact points that
are part of the same finger (i.e., intradigital contact points) are automatically grouped
together. This means that cither one or two virtual fingers exist in this type of grasp config-
uration. The k" “composite” finger comprising [ (= 2 or 3) intradigital contact points is
denoted by k — {1, ..., [} . The mixing rule employed for the “composite” finger is

(
1
m; LS., n = i(nmi,j—;,ﬂ‘ max mij_)p)
p=1 pe{l,.,t} "~

This rule makes it more difficult for “composite” fingers to be grouped together as virtual
fingers. The steps for determining the number of virtual fingers and their constituents pro-
ceed as for the previous :xamples. An example of how the mixing rule is used is shown in
Figure 10.

2 = 30°
m, , ,, = 007
m,,_,,= 0.07
1 -3
my 5,2 = 7(4.9><10 +0.07)

= 0.0375

Figure 10 Hlustration for mixing rule application
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2.5.3 Hand Configuration Notation

A shorthand notation for the configuration of the hand, say, VF; = {1}, VF; = {2, 3, 4} is
{(1)(234)}. This notation will be used in the remainder of this report.

2.5.4 General Mixing Rule for “Composite” Fingers
The virtual finger membership index between two “composite” fingers i and j is given by
the expression

M s Lty > {1} =

L {

H fl R
I +T1 )

max m; ! max m,
g=lpe{l, o} ' TPI7T poige{l, .} TP

1

o -

The expression on the right is easily seen to be commutative in “composite” fingers i and j.
This mixing rule has a simple physical interpretation: Each contact point on one “‘compos-
ite” finger is only matched to its nearest equivalent (in terms of force vector) and not to all
other points in the other “composite” finger. For each contact point of finger i, the largest
membership index with finger j is found and then multiplied together; the other term is
determined by interchanging these fingers.

We see that this expressicn reduces to the equation in subsection 2.5.2 when £ = 1. If the
two “composite” fingers are fully compatible, i.e., § = 6 = [(say) and m; = 1 for

: iop g
poq=1l.bthenmy o i, {1,...c} = 1,astobeexpected.
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Chapter 3 Experiments and Results

3.1 Analysis of Grasps by Human Subjects

3.1.1 Experiments Involving Precision Grasps

Several experiments were conducted to illustrate the use of the mathematical framework
for both precision and power grasps. Since force is not measured for these simple experi-
ments, a strong assumption is made here: The force exerted at each finger is the same. This
means that the sum of the forces at the contact points of each each finger is equal. So, if
there are two contact points at the thumb, then the force at each thumb contact is equal to
1.5 umes the force at each contact point on the other fingers. Also, note that only the con-
tact points of the fingers and/or palm with the grasped object are considered in the analy-
sis. Contact points of the finger on the hand itself are not taken into consideration; e.g.,
thumb contact with the index finger in the *“coal-hammer” grasp are disregarded. In prac-
tice, these “invalid” contact points can be determined by analyzing the hand configuration.

Table I Description of Experiments involving Precision Grasps

Experiment # Description

1 Four fingers and thumb on flat rectangular object (3.0 cm x 16.0 cm)

2 Three fingers and thumb on flat rectangular object (3.0 cm x 16.0 cm)

3 Two fingers and thumb on flat small circular object (diameter = 2.4 cm)

4 Four fingers and thumb on flat circular object (diameter = 5.8 cm)

5 Three fingers and thumb on flat circular object (diameter = 5.8 cm)

6 Three fingers and thumb on flat small right triangle (sides 5.2 ¢cm, 6.7 cm .
and 8.4 cm)

7 Four fingers and thumb on flat right triangle (sides 10.0 cm, 8.8 cm, and 13.3
cm)

8 Three or four fingers and thumb on flat elliptical object (a=3.4cm, b=2.0cm)!

9 Three or four fingers and thumb on flat elliptical object (a=4.0cm, b=2.0cm)

1. aand b are the semi-major and semi-minor axis lengths respectively.
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Table 2 Results of Experiments involving Precision Grasps

Experiment # Cog o Config,,, Cenr2 Config,

1 0.707 {(1X(2345)} 0.550 {(1X(2X345))
2 0.707 {(1X234)} 0.550 {(1X2)34)}
3 0.550 {(1X2)(3)} 0.528 1(1)(23))}

4 0.538 {(1}(2345)} 0.514 {(1X(234)(5)]
5 0.578 {(1)(234)} 0.518 {{(1)23)(4)}
6 0.561 {(1X234)} 0.550 {(1X(23)(4)}
7 0.595 {(1)(2345)) 0.550 {(1)(2X345)}
8 0.681 {(1X234)} 0.545 {(1)}23)4))
9 0.680 {(1%(2345)} 0.550 {(1X234)(5)}

In the tables of results, the numbers 0 and 1 refer to the palm and thumb respectively,
while the numbers 2, 3, 4, and 5 refer to the other four fingers in order (2 being the index
finger and 5 being the little finger). Table 2 shows the results of the experiments described
in Table 1 for a subject. Cegf max i the maximum grasp cohesive index while Cegs 5 1s the
second largest grasp cohesive index found for the hand configuration. Experiments 3, 4.
and 5 (with flat circular objects) are repeated for five other subjects, and their results are
shown in Table 3. As Table 3 indicates, the best cohesive indices do not exhibit a strong
consistency in values across different subjects. The optimal hand configuration depends
on the manner upon which the object is grasped. For example, in the tripod grasp, if the
object is grasped such that the index and middle fingers are separated relatively far apart,
as were most of the subjects’ hands in the experiments. then they are regarded as separate
virtual fingers. If, on the other hand, these fingers are kept close to one another, then they
will be grouped as one virtual finger, as for subject 5 (Table 3).

Table 3 Best Cohesive Indices for Precision Grasps on flat circular objects

Experiment # 3 4 S
S“bject # Ceﬂ,max Cen‘,max Ceﬂ‘.max
0 0.550 {(1H(2X3)} 0.538 {(1)(2345)} 0.578 {(1X234)}
1 0.550 {(1X2)(3)} 0.498 {(1)(2)(345)} 0.497 {(1X23)4)}
2 0.550 {(1)(2X3)} 0.523 {(1X23435)} 0.526 {(1X234)}
3 0.550 {(1)X2X3)} 0.492 {(1)(2)(345)} 0.512 {(DH(234)}
4 0.550 {{(1HX2X3)} 0.483 {(1X2)(345)} 0.510 {(1X23)4)}
5 0.574 {(1)(23)} 0.498 {(1)(2X345)} 0.514 {(1X23)4)}
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Table 3 lists the results for Experiments 8 and 9 which involves flat elliptical objects of
different eccentricities. In both these experiments, the thumb is considered as one virtual
finger and the other fingers as the other virtual finger. While most subjects used five fin-
gers in handling these objects, several of them used only four fingers.

Table 4 Best Cohesive Indices for Precision Grasps on flat elliptical objects

Experiment # 8 9
Subject # Ceft,max Cett,max
0 0.681 {(1)234)} 0.680 {(1)(2345)}
1 0.607 {(1)(2345)} 0.655 {(1)2345)}
2 0.660 {(1)2345)) 0.680 {(1X2345)}
3 0.666 {(1)2345)} 0.684 {(1)X2345)})
4 0.679 {(1X(234)} 0.658 {(1)(2345)}
5 0.664 {(1)(2345)} 0.687 {(1X(2345)}
6 0.620 {(1X234)} 0.673 {(1)(234))
7 0.655 {(1)234)} 0.680 {(1X(2345)}
8 0.663 {(1X(234)} 0.676 {(1)(234)}
9 0.648 {(1)(2345)} 0.676 {(1X2345}}
10 0.578 {(1X2345)}) 0.670 {(1)(2345)}

0.657 ((1(234)}

0.645 {(1)(2345)})

3.1.2 Experiments Involving Power Grasps

Eight experiments were performed to illustrate the use of the mathematical framework in
determining the number and composition of virtual fingers in power grasps. The experi-
ments involved marking the centers of each phalangeal segment and palm, and applying
different types of power grasps on rods of different thicknesses and a sphere. Description
of the experiments are listed in Table 5. It is assumed, for simplicity of this analysis, that
the effective forces at each contact point are normal to the object surface, and that they are
equal in magnitude.

The “coal-hammer” grasp is a special case of the cylindrical power grasp. and is identified
by the high degree of thumb abduction. We define the type 1 “coal-hammer” grasp to be
one in which the thumb does not touch the held object, while the type 2 “coal-hammer”
grasp refers to one in which the thumb touches the object. The type 2 grasp normally
occurs for a thick object, as in the case of experiment 2 described in Table 5.
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Table 5 Description of Experiments involving Power Grasps

Experiment # Description

1 Spherical power grasp. Radius of sphere = 3.26 cm.

2 Type 2 cylindrical “coal-hammer” grasp (thick cylinder). Radius of circular
cross-section = 3.30 cm.

3 Type 1 cylindrical “coal-hammer” grasp (medium-thick cylinder). Radius of
circular cross-section = 1.47 cm. (Note: the thumb does not touch the
cylinder)

4 Cylindrical power grasp (medium-thick cylinder). Radius of circular cross-
section = 1.47 cm.

S Type 1 cylindrical “coal-hammer” grasp (thin cylinder). Radius of circular
cross-section = 0.97 cm. (Note: the thumb does .0t touch the cyimnder)

6 Cylindrical power grasp (thin cylinder). Radius of circular cross-section =
0.97 cm.

7 Cylindrical power grasp (elliptical cross-section with a=3.3cm, b=1.9cm)!

8 Cylindrical power grasp (elliptical cross-section with a=4.1cm, b=1.9cm)

Table 6 Results of Experiments involving Power Grasps

Experiment # C.gr max Config,ax Cetr2 Config,

1 0.407 {(0X1)(2345)} 0.318 {(0)(1234)(5)}
2 0.542 {(9X1)(2345)) 0.270 {(0)(12345))

3 0.666 {(0)(2345)} 0.544 {(02345)}

4 0.531 {(0)(1X2345)} 0.337 {(0)(12345)}

5 0.650 {(0)(2343)}) 0.528 {(0)34)(25)}

6 0.522 {(0X(1)(2345)} 0.351 {{0)(12345))

7 0.538 {(0X1)(2345)} 0.427 {(0)(12345)}

8 0.537 {(0X1)(2345)} 0.415 {(0)(12345)}

It is interesting to note from Table 2 that, despite the differences in cylinder thickness. the
maximum grasp indices for the power grasps in experiments 2, 4 and 6 do not differ very
much from one another. It is also interesting to note that the grasp cohesive index remains
about the same despite changes in the cross-sectional shapes, as evidenced in the results of
Experiments 7 and 8 The corresponding values for the “coal-hammer™ grasps for experi-
ments 3 and 5 do not seem to be significantly different from each other.

1. a and b are the semi-major and semi-minor axis lengths respectively.
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Table 7 Best effective cohesive indices for power grasps (including type 2 “coal-hammer” grasps) on
cylinders of different thicknesses

Subject # Cet.max Cefrmax Cetr,max
(thick cylinder) (medium cylinder) (thin cylinder)
0 0.542 0.531 0.522
1 0.534 0.531 0.526
2 0.543 0.534 0.505
3 0.541 0.533 0.535
4 0.536 0.531 0.529
5 0.543 0.538 0.528
6 0.542 0.524 0.522
7 0.544 0.535 0.453
8 0.543 0.534 0.532
9 0.544 0.51 0.515
10 0.537 0.535 0.513
11 0.545 0.516 0.497

Table 7 shows the best grasp cohesive index for the power grasps on cylinders of different
thickness. Note that the type 2 “coal-hammer” grasp is virtually unidentifiable as a special
case of the power grasp on the basis of the grasp cohesive index alone. This is due to the
thumb touching the object. The virtual configuration and composition for all these grasps
and for all the different subjects is the same, namely, {(0)(1)(2345)}. The average value is
0.528, with the standard deviation of 0.017 (3.2% of the average value).
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Table 8 Best effective cohesive indices for type 1 “coal-hammer” grasps on cylinders of different
thicknesses
Subject # Cetr.max Cefr,max
(medium cylinder) (thin cylinder)
0 0.666 0.650
1 0.681 0.665
2 0.676 0.661
3 0.677 0.640
4 0.672 0.672
5 0.680 0.645
6 0.681 0.661
7 0.678 0.657
8 0.659 0.683
9 0.671 0.683
10 0.683 0.676
11 0.646 0.627

Table 8 lists the results for the tvre i “coal-hammer” grasps on two cylinders of differing
thicknesses. Again the best efiective cohesive index is relatively independent of the thick-
ness of the cylinder graspe.’ and the person holding the object. The mean best grasp cohe-
sive index is 0.666 with the standard deviuiion o1 0.016 (2.4% of the average index). The
configuration associated with all the indices is {(0)(2345)}.
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Table 9 Best effective cohesive indices for power grasps on cylinders with elliptical cross-section of
different eccentricities _

SUbjeCt # Ceﬂ',max Ceﬂ',max
(a=3.3cm; b=1.9cm) (a=4.1cm; b=1.9cm)

0 0.538 0.537
1 0.538 0.538
2 0.537 0.540
3 0.535 0.543
4 0.535 0.535
5 0.536 0.536
6 0.539 0.540
7 0.537 0.538
8 0.534 0.524
9 0.538 0.538
10 0.539 0.534
11 0.537 0.528

The virtual finger configuration and composition for all the subjects is {(0)(1)(2345)}. The
mean grasp cohesive index is 0.536 and the standard deviation is 3.8x10°3, which is about
0.7% of the mean. (Note: a and b in Table 7 are the semi-major and semi-minor axis
lengths respectively.) The mean grasp cohesive index for these grasp experiments is virtu-
ally the same as that for grasp experiments involving cylinders of circular cross-sections.
This further strengthens our claim that the grasp cohesive index can be used to identify
prismatic power grasps, regardless of the cross-sectional shape of the object held. The
similarity in the grasp cohesive indices can be attributed to the proximity of the four fin-
gers to each other and the high similarity in the finger configuration in this type of power

grasp.




Table 10 Best effective cohesive indices for spherical power grasps

Subject # Cett,max Cerr
0 0.407 {(0)(1)(2345)} 0.318 {(0)(1234)(5)}
1 0.400 {(0)(1X234)) 0.329 {(0X(123)(4)}
2 0.375 {(0)(1)(2345)} 0.294 {(0)(1234)X5)}
3 0.343 {(0)(123)(45)} 0.329 {(0)(1)2345)}
4 0.361 {(0)(1234)(5)} 0.310 {(0)(1)(2345)}
5 0.447 {(0)1)(2345)} 0.364 {(0)(1234)(5)}
6 0.326 {(0)(123)(45)) 0311 {(0)(1234¥5)}
7 0.444 {(0)(1)(2345)} 0.353 {(0)(1234)5)}
8 0.493 {(0)(1)(2345)} 0.449 {(0)(12345)}
9 0.488 {(0)(1)(2345)) 0.349 {(0)(12345)}
10 0.393 {(0)(1)(2345)} 0.366 {(0)(1234)(5)}

0.426 {(0)(1)X2345)}

0.312 {(0)(1234)(5)}

Similar experiments were conducted using a sphere. The results for the spherical power
grasps are shown in Table 10. The mean best grasp cohesive index is 0.409 with the standard
deviation of 0.051 (12.5% of the mean). As can be seen, the best grasp cohesive indices dif-
fer markedly from person to person, and even then, the configuration associated with the
best cohesive index is different for subjects 1, 3, 4, and 6. For the others, the configuration is
{(0)(1)(2345)}. Note that for subject 1, the last or little finger barely touched the ball and
hence was not considered in the analysis, and the configuration is {(0)(1)(234)} instead.
These results are based on the assumption that the force exerted by each finger is the same.
If the force data were available and that the thumb exerted a higher force than other fingers
(a possible scenario), then the optimal configuration {(0)(1)(2345)} may have been more
consistent for all subjects. This prediction has yet to be tested.

The reason for the higher disparity in the grasp cohesive index in spherical grasps than in
cylindrical grasps is that in cylindrical grasps, the fingers (excluding the thumb) are nor-
mally kept very close together. The relative inter-phalange arrangements in the cylindrical
grasps are consistent, despite the differing sizes of the cylinders handled. The amount of fin-
ger flexion (due to the different cylinder sizes) has little effect on the grasp cohesive index.
For spherical grasps, however, relative inter-phalange arrangements do differ markedly
from subject to subject, causing the higher range of grasp cohesive indices observed. It is
interesting to note that the grasp cohesive indices for the spherical grasps are all lower than
those for the cylindrical grasps. This is to be expected, because in a spherical grasp, the
amount of force interaction between fingers is higher than that in a prismatic power grasp.
The higher force interaction is, in turn, attributed to the more widely separated fingers in a
spherical grasp and the significant curvature of the sphere.




24

3.2 Procedure for Grasp Recognition
From this study, a grasp can be identified from the following general steps:

1. Compute the real finger 10 virtual finger mapping which yields the virtual finger composi-
tions and the grasp cohesive index.

|3

. If the palm surface is not involved in the grasp, classify it as a non-volar grasp.

3. Otherwise, by checking the grasp cohesive index and, if necessary, the degree of thumb
abduction, classify it either as a spherical, cylindrical or coal-hammer (type 1 or type 2)
power grasp.

A grasp can be classified as a volar grasp or non-volar grasp according to whether there is
volar-object interaction or not (Figure 11). If it is a non-volar grasp, further classification
can be done by checking if only the fingertips are involved in the grasp, and the contact
points’ closeness of fit to a circle or rectangle. This is illustrated in Figure 12. Unless the
grasp is a lateral pinch (in which case the grasp is a power grasp), the grasp is classified as a
precision grasp.

Contaclzt Web Map real fingers

“to virtual fingers

Is the
palm involved
in the grasp?

Yes No

Grasp is Volar Grasp is Non-Volar
Grasp (Figure 13) Grasp (Figure 12)

Figure 11 Recognition of major type of grasp

Non-Volar Grasp
No(Py) = N;(Py) No(Py) < N;(Py)

| |

Fingertip Grasp Composite Non-Volar Grasp

Classify according to Ny(Py) Classify according to Ny(Py)
and fit of contact points to and N,(Py)
circle or rectangle

Figure 12 Discrimination graph for non-volar grasps




Volar Grasp
l Grasp Cohesive Index
Spherical Cylindrical Power and  Type 1 “Coal-hammer”
Power Grasp Type 2 “Coal-hammer” Grasp
Grasps

Degree of Thumb Abduction

Cylindrical Type 2 “Coal-hammer”
Power Grasp Grasp

Figure 13 Discrimination graph for power grasps

The volar grasp discrimination procedure in step 3 is graphically depicted in Figure 13.
(Note that all volar grasps are power grasps.) The first level of classification is performed
using the following discrin ination function:

where |1, is the mean value of the grasp cohesive index for the ith power grasp category and
o, is the associated standard deviation. The power grasp category is identified by the largest
value of the discriminaticn function. Should the cylindrical and type 2 “coal-hammer”
grasps need to be discrim ..ated, we would then determine the degree of thumb abduction.
The type 2 “coal-hammer” grasp is associated with a high degree of thumb abduction. We
use the thumb in a standard position (fully extended and in the plane of the palm) as a refer-
ence line in determining the degree of thumb abduction. We consider deviations greater than
459 to be significant enough to be categorized as a type 2 “coal-hammer” grasp.
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Note that the object shape has not been directly taken into consideration here; the local
object shape (i.e., part of the object within the compass of the hand) has been implicitly
taken care of by the contact web.

3.3 Grasp Recognition from Range and Intensity Images

Three range and intensity image sequences of finger movements leading to different power
grasps were taken and then analyzed using the grasp recognition scheme described earlier.
In each sequence, the fingers are tracked to the final grasp configuration before the grasp is
identified. However, prior to this, the hand model needs to be initialized. This is done using
a separate program.

3.3.1 Hand Model Initialization

Each finger segment is modeled by a cylinder. The purpose of the hand model initialization
is to determine the finger segment cross-sectional radius and length, and the relative posi-
tions of the fingers. The assumed hand posture is with the fingers fully extended, and such
that the plane of the palm is approximately perpendicular to the camera viewing direction.
These fingers are taken to be the reference positions, and abduction angles are measured rel-
ative to these positions.

In addition, to facilitate the measurement of finger segment lengths, dark lines were drawn
across the finger at the distal and proximal interphalangeal joints (except for the thumb,
where a line was drawn across it at the interphalangeal joint). The proximal finger segment
length is calculated from empirical anthropometric studies of human finger segment length
ratios [13].

The steps involved in hand model initialization are:

. Thresholding and hand boundary extraction

The image is first thresholded by assigning background values to intensity pixels whose
corresponding range values are inadmissible and assigning foreground values if they are
admissible. Small regions are eliminated, leaving the hand in the resulting binary image.
Subsequently, the hand boundary is extracted using a simple 8-connected boundary fol-
lowing algorithm.

(9]

. Curvature analvsis of hand boundary
Using the convention that a convex portion of a body has negative curvature, the tips of
the fingers are located at points where curvature minima are observed. Similarly, the five
grooves between fingers are located at positions of curvature maxima.

3. Identification of finger regions

The finger regions are identified by noting that if the fingers are cyclically ordered anti-
clockwise, the thumb is farthest away from the fingers immediately preceding and fol-
lowing it.
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4. Location of interphalangeal joints and ~alculation of finger segment lengths

The position of the interphalangeal joints are approximated by using the Hough transform
to locate dark lines. The finger segment lengths are then calculated from the distances
between joints or between fingertips and the nearest joints.

5. Determination of best fit cylinders

3-D cylinders are fitted to the fingers from the hand range data using an iterative least-
square formulation.

Figure 14 shows the intensity image of a hand and three snapshots of the hand model initial-
ization program. Note that this program is run only once for a subject’s hand.

Figure 14 Hand model initialization. (a) Intensity image; (b) Identification of fingers; (c) Localization of
finger joints; (d) Cylindrical fitting of fingers.

3.3.2 Finger Tracking

The basic method used in finger tracking is local search of the minimum sum of two types of
matching errors: error in range data fitting, and error in matching the hypothesized finger 2-
D projection to the actual finger position in the image. The following assumptions made are:

1. The hand does not move; only the fingers move (via flexion, extension, abduction and
adduction).

(3]

. The first frame features a hand with fingers fully or nearly fullv extended.

3. There is no significant interphalangeal occlusion.
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3.3.3 Grasp Recognition Results

Three range and intensity images were r_corded and analyzed.

Example | (Figure 15 and Figure 16)
Four of the eight frames for this grasp sequence is shown in Figure 15.

Figure 15 Finger tracking sequence for Example 1. (a) Frame 1; (b) Frame 3; (¢) Frame 6; (d) Frame 8

POWER
SPHERICRL
GRASP

Figure 16 Recognition results for a spherical power grasp. (a) Range image of last frame of sequence;
(b) Range image of hand and object; (c) Alternate view of tracked fingers with object; (d)
Classification of grasp
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The grasp cohesive index for this example is 0.356, with the following virtual finger compo-
sitions: VF; = {0}, VF = {1}, and VF3 = {2, 3,4, 5}. This grasp is classified as a spherical
power grasp (Figure 16).

Example 2 (Figure 17 and Figure 18)

Part of the frame sequence for this example is shown in Figure 17.

Figure 17 Finger tracking sequence for Example 2. (a) Frame 1; (b) Frame 3; (¢) Frame 6: (d) Frame 8§

POUHER
CYLINDRICAL
GRASP

Figure 18 Recognition results for a cylindrical power grasp. (a) Range image of last frame of sequence;
(b) Range image of hand and object; (c) Alternate view of tracked fingers with object; (d)
Classification of grasp
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The grasp cohesive index for the second example is 0.508, with the following virtual finger
compositions: VF; = {0}, VF; = {1}, and VF3 = {2, 3, 4, 5}. From the grasp cohesive
index, this grasp can either be a cylindrical power or type 2 “coal-hammer” grasp. Since the
angle of the thumb subtends only 23° with the standard (original) thumb posture, it is classi-
fied as a cylindrical power grasp.

Example 3 (Figure 19 and Figure 20

Figure 19 shows four frames of the grasp sequence for Example 3.

Figure 19 Finger tracking sequence for Example 3. (a) Frame 1; (b) Frame 3; (c) Frame 6; (d) Frame 8

*COAL-HAMMER’
CYLINDRICAL
GRASP

Figure 20 Recognition results for a type 2 “coal-hammer” grasp. (a) Range image of last frame of
sequence; (b) Range image of hand and object; (c) Alternate view of tracked fingers with
object; (d) Classification of grasp
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The grasp cohesive index for this example is 0.527, with the following virtual finger compo-
sitions: VF = (0}, VFp = {1}, and VF3 = (2, 3, 4, 5}. As with example 2, just from the
grasp cohesive index alone, this grasp could be either a cylindrical power or a type 2 *“coal-
hammer” power grasp. From the high degree of thumb abduction (subtending 77° with the
original thumb configuration), it is thus classified as a type 2 “‘coal-hammer” grasp.

The experiments and their results described in Subsection 3.1 and Subsection 3.3 indicate
that it is possible to categor:ze grasps by using the contact web and real finger to virtual fin-

ger mapping. This mapping is instrumental in characterizing the type of grasp demonstrated
in the scene.




Chapter 4 Conclusions

A framework for recognizing a grasp has been described in this report. A 3-D structure com-
prising a network of effective contact points of the hand with the grasped object is proposed
as a tool for grasp analysis. We call this 3-D structure the contact web. It enables the grasp to
be classified in a more continuous manner. In addition, by employing a particular real finger
to virtual finger mapping, the grasp can be described in higher level conceptual terms such
as virtual finger composition and opposition space. Another important consequence of this
mapping is an index called the grasp cohesive index, which can be used to identify the
grasp.

The grasp is actually one of the three identifiable phases in a grasping task. The other two
phases are the pre-grasp and manipulation phases. Future work will be devoted to the analy-
sis of these two phases in our effort to automate the recognition of a grasping task. All this is
in line with our proposed notion of “perceptual programming,” which epitomizes the capa-
bility of a robotic system to replicate a task by observing and understanding the same task
performed by a human operator.
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