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ABSTRACT

The classical cloud-topped mixed-layer model is generalized to allow for arbitrary fractional
cloudiness and incomplete mixing.

The boundary-layer depth and turbulence kinetic energy (TKE) are prognostically
determined. The large turbulent eddies that contain most of the TKE and are primarily responsible
for the fluxes are modeled as convective circulations, with ascending and descending branches.
By assuming that the ventilation and entrainment layers at the lower and upper edges of the PBL
are dominated by small-scale turbulence in quasiequilibrium, boundary conditions are developed
for the rising and sinking branches of the convective circulations, and also for the scalar variances
associated with the convective circulations. The convective mass flux and the fractional area
covered by updrafts are diagnosed by the model. Fractional cloudiness occurs when the ascending
branches are saturated and the descending branches are not.

We use a modified bulk formula in which the square root of the TKE takes the place of the
wind speed. The advantages of this approach are discussed. The entrainment rate is also assumed
to be proportional to the square root of the TKE; the proportionality factor depends on the
inversion Richardson number, and also on an additional parameter that represents the effects of
evaporative cooling when clouds are present.

The ventilation mass flux is similarly parameterized. Instead of using a conventional bulk
formula in which the wind speed is multiplied by a transfer coefficient, we use a modified bulk
formula in which the square root of the TKE takes the place of the wind speed. The advantages of
this approach are discussed.

Large-eddy simulations are used to validate several aspects of the model's formulation.

For the special case of a well-mixed layer, the model predicts that the fractional area
covered by rising motion is near 1/2, and that dissipation in the interior of the layer is weak. When
the dissipation is weak and the fractional area covered by rising motion is small, the model gives
the "compensating subsidence -- detrainment" relationship that has become familiar in cumulus
parameterization theories. When the dissipation is strong and the fractional area covered by rising
motion is near 1/2, the model gives downgradient diffusion. For the shallow cumulus regime, the
model predicts that the fractional area covered by rising motion is smaller for the case of large-scale
rising motion than for that of large-scale sinking motion.

A number of idealized dry cases are simulated to illustrate the model's ability to predict the
development and evolution of partially mixed states. More extensive results, including both
overcast and partly cloudy cases, are presented in a companion paper.
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1. Introduction

In recent years, two new approaches have emerged for including the effects of the planetary
boundary layer (PBL) in large-scale models. The first, pioneered by Deardorff (1972) and further
developed by Randall (1976), Benoit (1976), and Suarez et al. (1983), involves coupling the large-
scale model with a "bulk" PBL model in which some aspects of the vertical structure of the mean
state are parameterized. Among the parameters introduced to represent the mean state are the PBL
depth, which is prognostically determined, and "jumps" or discontinuities at the PBL top. The use
of jumps amounts to a concession that, although the fine structure near the PBL top is important
for the PBL physics, it is unresolvable by any grid that can be used in a large-scale model.
Extensive results from a PBL parameterization based on a bulk model have been reported by
Randall et al. (1985). Advantages of the bulk approach are its simplicity and computational
economy. A disadvantage, up to now, is its inability to represent the internal structure of the PBL.

A second approach to PBL parameterization for large-scale models is to make use of a
higher-order-closure model in which one or more turbulence variables are prognostically
determined. This idea has aroused widespread interest, but has been adopted in practice only by
K. Miyakoda's group at the Geophysical Fluid Dynamics Laboratory (Miyakoda and Sirutis, 1977;
Miyakoda et al., 1983). Advantages of this approach are its relatively high degree of physical
sophistication and its ability to predict the internal structure of the PBL. Disadvantages are its
requirement for high vertical resolution, and its relative complexity. Both of these lead to
considerable computational expense.

The present paper reports an attempt to merge these two approaches, retaining the
advantages of each, and giving rise to what we call a "second-order bulk model", or S.O.B. We
have developed a bulk PBL model with a simple internal vertical structure and a simple second-
order closure, designed for use as a PBL pararneterization in a large-scale model. The mass-flux
concept has been used to parameterize the turbulent fluxes. Fig. I summarizes the conceptual
pedigree of the S.O.B., relative to earlier models used in boundary-layer and cumulus
parameterizations.

The basic framework of the model is shown in Fig. 2. The level just above the PBL top is
denoted by subscript B+, while the Earth's surface is denoted by S-. We define an infinitesimal
"entrainment layer" just below the PBL top, and an infinitesimal "ventilation layer" just above the
Earth's surface. The concept of an entrainment layer is motivated by the observations of Caughey
et al. (1982) and Nicholls and Turton (1986), who described it as a thin region of weak organized
vertical motions and vigorous small-scale mixing. The ventilation layer is more conventionally
known as the surface layer.

The depth of the PBL (in terms of pressure) is prognostically determined, and is denoted
by 8PM. The generic variable V represents a prognostic intensive scalar such as the dry static
energy, the the mixing ratio of water, or a component of the horizontal wind. Area-averaged
values of q1 are denoted by ip. The turbulent flux of , denoted by Fw, is defined at the top of the
surface layer, and at a level just below the PBL top. These levels are denoted by subscripts S, and
B, respectively. The turbulent momentum flux is also defined levels S and B.

An entrainment mass flux, E, carries mass across the PBL top, and is closely related to the
turbulent fluxes near the PBL top. Correspondingly, a ventilation mass flux, V, is associated with
the surface fluxes; in conventional parlance, V is the product of the surface air density, the surface
wind speed, and a transfer coefficient. For both the entrainment and ventilation layers, the model

incorporates diagnostic balances for mass, V7, and V,2. The entrainment and ventilation layers are
assumed to be thin enough so that such balance conditions are appropriate. Within the ventilation
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layer, the turbulent fluxes have to be carried by small eddies, since the organized vertical motions
associated with the convective circulations must vanish there. The ventilation layer is assumed to
be thin, in the sense that the turbulent fluxes at its top are approximately equal to those at the
surface. Similarly, within the entrainment layer the organized vertical motions associated with the
convective circulations become negligible, so that smaller eddies must again carry the turbulent
fluxes. The entrainment layer is assumed to be thin in the sense that the turbulent fluxes at its base
are approximately equal to those at the PBL top.

The vertically integrated TKE of the PBL is prognostically determined, and is denoted by

em. In addition, the vertically integrated scalar variances, ( V')2, are diagnostically determined.
Because the model makes use of these second-order turbulence variables, it can be viewed as a
highly simplified second-order closure model with very coarse vertical resolution. The coarse
vertical resolution is made palatable (and feasible) by the use of an explicit, prognostic PBL depth.
The fine vertical structures that typically occur near the PBL top and the Earth's surface are
parametrically included in the model, by methods similar to those used in mixed-layer models.
This parametric representation of the vertical structures of the entrainment and ventilation layers is
an alternative to explicitly resolving these thin layers; the latter approaci is followed in
conventional higher-order closure models and is the primary reason that such models require high
vertical resolution.

2. Convective Mass Flux Model

The "convective mass flux" concept introduced by Arakawa (1969) has been used by Betts
(1973, 1983), Albrecht, et ai. (1979), Hanson (1981), Penc and Albrecht (1986), Wang-and
Albrecht (1986, 1990), Randall (1987), and Chatfield and Brost (1987) to construct models of
PBLs containing a single family of convective circulations. The circulations have both ascending
and descending branches, and many of the papers just cited considered the possibility that
cloudiness can occur (or not) in either branch. None of these boundary-layer models is complete,
since none has included a method to determine a, the fractional area covered by rising motion.
Although Arakawa (1969) suggested that the convective mass flux could be determined by
considering the convective kinetic energy balance, the PBL models mentioned above have not
addressed this issue. Most of them have also retained the "well mixed" assumption, with the
notable exceptions of Betts (1973) and Albrecht et al. (1979). The "convective circulation" concept
has also been used in observational studies (based on conditional sampling and/or joint distribution
functions) by Lenschow and Stephens (1980, 1982), Greenhut and Khalsa (1982), and Wilczak
and Businger (1983), Mahrt and Paumier (1984), Grossman (1984), Khalsa and Greenhut (1985),
and Penc and Albrecht (1986). Recently, it has been used to analyze the results of large eddy
simulations, by Schmidt and Schumann (1989).

We assume that, in the interior of the PBL, the turbulent fluxes are entirely due to the
convective circulations, with rising branches covering fractional area ar, and sinking branches
covering fractional area I - c. Observations based on conditional sampling methods suggest that a
is typically less than 1/2 for the clear convective PBL (e.g., Lenschow and Stephens, 1980), and
greater than 1/2 for the cloud-topped PBL (e.g., Nicholls, 1989).

Consider an arbitrary scalar V', satisfying a conservation equation of the form

d d

(2.1)
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where p is the density, which is quasiconstant in time and the horizontal, as in the usual anelastic
approximation; V is the horizontal velocity vector, w is the vertical velocity; and S is the source of
tK per unit mass per unit time. The local time derivative and the V operator are defned on constant
height surfaces. Putting V =- 1 in (2.1) gives the corresponding mass conservation equation:

dzo=-v*(pv)--z(w).

(2.2)

Following Arakawa and Schubert (1974), we can apply (2.1) and (2.2) to an updraft of
fractional area a:

d (p - { V7. (apVWV) + V. [apV(. ~- V7)]} + p(,4V' - V.

-p(Pw. Ov.) - Pvz a( V.' - - . (f~ ++s

(2.3). VOV)+ ,UV)-PWC)
('2.4)

and to a downdraft of fractional area (I - a):

[d J a)I -V[p~(1- )V]+ V -.[p( - U)V -Vd II]- (wfd- V)

_ -d _ a)f '] + ( - a)S ,d.

(2.5)

=-a) V.[p(1- a)V1-p(u - v)-- d[Pwd(1 - a)].

(2.6)

Note that, because er is variable in time, there are local time-rate-of-change terms in (2.4) and
(2.6), even with the anelastic approximation. The air entering rising parcels has been assumed to
have the average properties of the sinking parcels, and vice versa. Area averages satisfy

(-=).Cor+ ()Mo-oa)'
(2.7)

where an overbar denotes an area average (over a grid box, say); this notation will be used only
where necessary to avoid confusion. Subscripts u and d denote upward and downward moving
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parcels, respectively. We can interpret .-1 and v -1 as time scales for mass flow from downdrafts
into updrafts, and from updrafts into downdrafts, respectively. The vertical turbulent flux of V
due to small eddies is denoted byf,. The time scale for destruction of the convective circulations
by lateral mixing due to smaller-scale turbulence is ri.

Arakawa and Schubert (1974) considered an arbitrary number of families of convective
updrafts, called subensembles, coexisting in a single environment. Each family of updrafts was
assumed to occupy a negligible fraction of the large-scale area under consideration. This "small-a"
assumption allowed them to treat the various subensembles independently, without considering
direct mechanical interactions between convective elements. In effect, the updrafts were assumed
to be far apart. For deep cumulus clouds, this assumption can be empirically justified, to some
extent. For convective circulations in the PBL, on the other hand, there is no basis to assume that
a is negligible compared with one; in fact, observations show the opposite (e.g., Lenschow and
Stephens, 1980; 1982). If we considered multiple families of convective updrafts, it would be
necessary to allow for the possibility of direct mechanical interactions among these families. A
wish to avoid such complexities, and our need to consider finite y, force us to restrict ourselves to
a single family of convective circulations.

The f, and rd, terms of (2.4) and (2.6) represent vertical fluxes and the effects of lateral
mixing, respectively. Both of these are associated with "small eddies" that appear as turbulence
from the point of view of the convective circulations. As already mentioned, the small-eddy fluxes
are logically necessary near the top and bottom of the PBL, where the organized vertical motions
associated with the convective circulations must vanish. We shall assume later that the small-eddy
fluxes are negligible in the interior of the PBL, but for the time being we carry them along for
generality.

The rd,, terms of (2.3) and (2.5) also require some comment. As discussed by Randall and
Huffman (1982), for the case of cumulus convection, in which narrow turbulent updrafts occupy a
broad, non-turbulent environment, and the turbulence has a sharp boundary at the cloud edge, the
effects of such small-eddy lateral mixing are essentially included in the entrainment and detrainment
terms of (2.3) and (2.5) (involving.t and v); they need not and should not be separately included
as "mixing" terms. This may not be the case for PBL plumes, however, which can have
significant turbulence in both their ascending and descending branches. The r&, terms of (2.3) and
(2.5) are, therefore, retained to allow for the possibility of such mixing.

Adding (2.4) and (2.6), and (2.3) and (2.5), and using (2.7), we recover the area-averaged

conservation equations for mass and V

o0=- V. (pi7 
-

0 -

(2.8)

d (JW + +3,W.

(2.9)

Naturally, all terms involving/p, v, and rd, have dropped out of (2.8-9), and r no longer appears
explicitly. In (2.9), the turbulent fluxes associated with the convective circulations are represented
by



P;T, = P ,- [(w. - -)(V, --V), + (w, --)(Yf,- -V)(1- C0]

= M (ip.- V/d),
(2.10)

where

M= pa(l - a)(w.- wd)
(2.11)

is the convective mass flux. The total turbulent flux of vis F,, = v, +f-.

By vertically integrating (2.4) and (2.6) through the PBL depth, and adding the results, we
obtain

d-PM + V'(8puVM)-gE=0.

(2.12)

Similarly, by vertically integrating (2.3) and (2.5) through the PBL depth, adding, and using
hydrostatics, we find that

4ji (0 VM p a.

= g( + M) + oM -' (9,)M.
(2.13)

In (2.12-13), subscript M denotes an average through the PBL depth (except in the case of 3u).
We recognize (2.12-13) as the "mixed-layer" equations, except that the horizontal advection term
of (2.13) takes into account the vertical structures of V and i.

Our problem now reduces to determining the turbulent flux profiles and the cloudiness. To
accomplish this, we develop a method to find the updraft and downdraft properties, including a,
as well as the convective mass flux Mc and the additional mass fluxes associated with entrainment
and ventilation.

3. Boundary conditions on Vr and FW

a)Fhces

The surface fluxes are assumed to satisfy the usual bulk aerodynamic formula,

(F,, = V( s_ -- s),
(3.1)

where V is the "ventilation mass flux," which is usually written as the product of surface wind
speed, a transfer coefficient, and the surface air density. Our method to determine V is discussed
later. We now assume that the fluxes at the top of the ventilation layer are entirely due to the
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convective circulations, and that the small eddy fluxes are negligible. Using this assumption with
(2.10), (3.1), and also using our assumption that the ventilation layer is thin, we can write

V( Vs- - Vs)= Ms( V - Vd)S"

(3.2)

This condition implies a consistency between the fluxes obtained from the bulk formula and those
determined from the mass flux model. Wang and Albrecht (1990) did not impose (3.2) or the
corresponding condition at the PBL top.

At level S, the parcels rising away from the lower boundary must be "charged" with the
properties of the boundary. We cannot assume, however, that the properties of the updrafts at
level S are the same as those of the boundary, because there can be very strong gradients across the
ventilation layer. The small eddies of the ventilation layer rapidly dilute air that has been in contact
with the boundary, by mixing it with air that has recently descended from the interior of the PBL.

As a result, I s- - ips >> J(. V- V')%; from (3.2), this implies that M s>> V. In order to take
this into account, we introduce a nondimensional parameter, Xv, such that

(.s- Vs= XV(Vs- - V)
(3.3)

in case Xv = 1, we get (V)s = Vs. Smaller values of Zv indicate stronger mixing by the small
eddies of the ventilation layer. We expect 0 < Xv << 1. By combining (2.7), (3.2), and (3.3), we
find that

zVMs = V(1 - as).
(3.4)

This is a "continuity equation" for the eddies, expressing a relationship between the convective
mass flux and the ventilation mass flux.

In the preceding discussion, it has been tacitly assumed that Xv is independent of Vp, i. e.,
that a single "mixing" parameter Xv satisfies (3.3) whether V is moist static energy, total water
mixing ratio, or some other intensive scalar. This assumption is supported by (3.4); if Ms, V,
and as are all independent of iV, then Xv must also be independent of iV. Such independence
suggests that Xv is a useful concept.

We now apply a similar analysis to the entrainment layer. The assumption that the
entrainment layer is thin yields the familiar "jump" relation between (F,)B and the entrainment
rate:

(F,), = -E( , - V,) - fSTdz.

(3.5)

Here we follow Lilly (1968) by keeping the S, term, which represents a possible concentrated
entrainment-layer "source" of V, (e.g., due to radiation). We assume now that the fluxes at the
base of the entrainment layer are entirely due to the convective circulations, and that the "small-
eddy" fluxes are negligible. Then, by comparing (2.10) and (3.5), and using (2.7), we obtain
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ZN

M,,( V- V')B= EUB(VB+ - VB) + (BJdz.
ZN

(3.6)

At this point, we introduce a mixing parameter XE, by analogy with (3.3). To allow for the
effects of the concentrated source, however, we include an additional term:

Z

(3.7)

Here A is a coefficient that will be determined later. According to (3.7), the properties of the
descending air at level B are related to those of the free atmosphere just above the PBL top, as
modified by small-eddy mixing and the effects of any concentrated source within the entrainment
zone. Since there is a sharp gradient of V across the entrainment layer, we expect 0 < ZE << 1.

The mixing parameter XE is closely related to the parameter X discussed by Siems et al.
[1989; see also Albrecht et al. (1985) and Nicholls and Turton (1986)]. We can interpret X as the
value of X associated with the downdraft air at level B. Further discussion is given later in this
Section, and also in Appendix C.

Comparing (3.6) with (3.7), we find that

(-MIXE- EaB)(V 8.- V)+ (-MB + a)fSdz= 0.

(3.8)

In case the source term of (3.8) vanishes, we obtain

,XEMt = Ea-B .

(3.9)

This relationship does not involve V; it must, therefore, apply for all vi. To ensure that (3.9) will
be satisfied even when the source term of (3.8) is not zero, we must choose

(TB / MB.

(3.10)

We can interpret (3.9) as another "continuity equation", analogous to (3.4). Again, we
have tacitly assumed that XE is independent of the species under consideration. This assumption is
consistent with (3.9), since MB, E, and a8 are independent of species. We can use (3.9) to
eliminate Mc, in (3.6), or, alternatively, use (3.10) to eliminate A in (3.7); either way, the result
is:

'Va = XE KS+ + (1 - XE) VBa + ZJf3dz.

(3.11)



According to (3.11), the descending air at level B has the properties of the free atmosphere, except
as modified by mixing (when XE < 1) and by the concentrated source. Caughey et al. (1982) and
Nicholls (1989) have reported observations of cool downdrafts in the upper portions of
stratocumulus cloud sheets. They concluded that the sinking air had been radiatively cooled near
the cloud top. Such effects are represented by the SV, term of (3.11).

Since this term is inversely proportional to E, we conclude that radiative cooling in the
entrainment layer can produce negatively buoyant parcels most effectively if the entrainment rate is
small. This suggests that entrainment driven by radiative cooling near cloud-top tends to be self-
limiting.

According to (3.4), ventilation-layer dilution becomes more effective (in other words, Xv
decreases) as the convective mass flux increases relative to V (1 - as). The ventilation mass flux
times the fractional area covered by the incoming downdrafts is a measure of the rate at which the
updrafts leaving the ventilation layer can be supplied with air that has been charged with surface
properties, and the convective mass flux is a measure of the rate at which this air is removed from
the surface layer. The stronger the convective mass flux becomes, the less effectively ventilation-
layer air can be charged with surface properties before it is carried away into the interior of the
PBL. A similar interpretation can be given for (3.9).

b) Updrafts and downdrafts: The cloud-free case

The next step is to introduce a further simple relation between X and a, variations of
which can be applied to both the ventilation and entrainment layers. First consider the ventilation
layer. Within the ventilation layer there exist parcels with many different virtual dry static energies,

essentially spanning the range between Ss - and s,s. (A few parcels can have virtual dry static
energies which lie outside this range, but we neglect their influence for simplicity.) The various
parcels are produced by mixing, in various proportions, air from the interior of the PBL with air
that has been charged with surface properties. For the ventilation layer, we define X without a
subscript as follows: For each ventilation-layer parcel, Z is the mixing fraction of the air with
surface properties, so that, under dry adiabatic mixing (for which the virtual dry static energy is
approximately conserved), we have

S,(X) = Xs' + (I1 ~"
(3.12)

This definition allows us to specify the properties of a parcel by giving the value of X associated
with it.

We now assume that the parcels emerging from the ventilation layer into the rising branches
of the convective circulations have properties representative of the lightest (warmest in the sense of
virtual dy static energy) parcels available in the ventilation layer. (Note that this assumption does
not restrict us to unstable cases in which the rising parcels are positively buoyant.)

Let the probability Gcnsity function (pdf) for X in the ventilation layer be denoted by

l-v(X). Then Flv(z)dX gives the probability of encountering, in the ventilation layer, a parcel

whose properties correspond to a value of X in the range (Z, +d Z ). According to our
assumption, the average virtual dry static energy of the updraft air emerging from the ventilation
layer is then given by
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f sjX)I7v(X)dX

f Fi,(X)dX
waffnm paiels

(3.13)

We now assume that

as fJrI (X)dx.
wul-hat pamcel

(3.14)

Recall that as is, by definition, the fractional area covered by updrafts at level S. On the other

hand, f fiv(X)dz is the cumulative fraction of all ventilation-layer parcels that must be mixed

wan=- parccUs

together to create a mixture with the properties of the updrafts at level S, assuming that this mixture
is to be generated by choosing first the very lightest parcels, then the second lightest, and so on.
According to our assumption (3.14), these two fractions are equal. To see why this should be so,
imagine that we have the power to physically rearrange the ventilation layer air into any spatial
configuration that we choose. We could then vertically "stack" the air to be incorporated into

updrafts, inside the ventilation layer. The fractional area covered would then be f H[ (Z)dZ,
warmest parce..s

and this would obviously be equal to s.

It follows, of cturse, that the fractional area covered by downdrafts at level S, namely 1 -
YS, must be equal to the remaining fraction of all parcels in the ventilation layer, namely

I - f H7v(X)dX . It does not follow, however, that the convective downdrafts at level S are
wArmest parcea

composed of the densest parcels available in the ventilation layer. This would be true only if the
average properties of all parcels in the ventilation layer were the same as the area-averaged
properties of the air at level S.

By using (3.14) in (3.13), we obtain

f Js,(X)J,,(X)dX.
wirrnest parel

(3.15)

Now use (3.3) with V as, on the left-hand side of (3.15), and (3.12) on the right-hand side.
This leads immediately to

aoV= JXTv(X)dX.

(3.16)
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Finally, use (3.4) to eliminate Xv in (3.16). This leads to

Vas(1- as) = M z XFIv(X)dx.
wtmest paivls

(3.17)

Consider a simple example, motivated by the following idea. Parcels with properties very

close to those of the surface itself make up only a tiny fraction of all the parcels available in the

ventilation layer, so that fIv(X) is very small for values ofX near one, and increases significantly

only as X decreases to values near zero. Consider a "step-function" pdf; suppose that I-v(X) is

zero for ZA < X < 1 , and assumes a constant value 17v for 0 < X < XA (see Fig. 3). Since

J0 -1v(X)dX = 1,

we have 
(3.18)

XA fV = 1.
(3.19)

Note that the case of constant 1iv(X) is included here; it corresponds to /ev = 1. Of course, F^v
cannot be less than one.

Consider first the unstable case, for which s, is greater than ss. Then the lightest parcels

available are those for which x = ZA, and progressively denser parcels are encountered as X

decreases towards zero. Let Z, be the value of Z characteristic of the densest parcels that are
incorporated into the convective updrafts. With these assumptions, and using (3.19), we find that
(3.14) and (3.17) reduce to

and 
(3.20)

ZA

Vas(1- as)= Msf v I XdX .
Za.

(3.21)

respectively. Integrating (3.21), and using (3.19) and (3.20) to eliminate ZA and X,,,,
respectively, we obtain

fVVf7 Mplv

(3.22)

1



This is a useful result. It tells how to obtain as for given values of 11V and Mcs.

The stable case differs, because the lightest parcels are those which consist mainly of air
from the interior of the PBL, i.e. those with X near zero. If we continue to use the model
represented by Fig. 3, we find in place of (3.22) that

V V
Ors Mcs

f7vV-+I
Mcs

(3.23)

To have , 0, we need a s = 0 or sufficiently large fIv.

We now apply a similar analysis to the entrainment layer. We assume that the descending
parcels in the convective circulations at level B are formed from the densest parcels available in the
entrainment layer. (This assumption does not restrict us to unstable cases in which the sinking
parcels are negatively buoyant.) The various parcels are produced by mixing, in various
proportions, air from the interior of the PBL with air that has recently been entrained. For the
entrainment layer, define X without a subscript as follows: for each entrainment-layer parcel, X is
the mixing fraction of the air with free-atmospheric properties. Under dry adiabatic mixing, we
have

s(X)= XsB+ +(1 -X)S*
(3.24)

In such dry adiabatic cases, the entrainment-layer parcels with the lowest virtual dry static energies
are those for which Z is zero. [Cloudy cases with phase changes and radiative cooling are
discussed at the end of this Section.]

Let the pdf forz in the entrainment layer be denoted by 1IE(X). When (3.24) is satisfied,
the average virtual dry static energy of the sinking air emerging from the entrainment layer is

fs(X)LE(X)dx
(sJd) = coldest ptrcclzJ H7(X)dX

coldest purcels

(3.25)

By analogy with (3.14), we assume that

I-a9= fI E(z)dz.
coldest parcels

(3.26)
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Use of (3.26) in (3.25) gives

(sd),(i - cr.) f Js.(X)IE(X)dx.
coldest parce

(3.27)

Now use (3.11) with if -= s,, and S, = 0 on the left-hand side of (3.27), and (3.24) on the right-
hand side. This gives

(1- Cr)ZE fXII (z)dx.
coldest parcels

(3.28)
Finally ,we use (3.9) to eliminate in (3.28). The result is

Ea(1- or) = MB JX-IE(X)dX.
colder parcels

(3.29)

Parcels with properties very close to those of the free atmosphere itself make up only a tiny

fraction of all the parcels available in the entrainment layer at any given time, so that HE(X) is very
small for values of X near one, and increases significantly only as X decreases to values near zero.

Suppose that IE(X) is zero for X: X : 5 1, and assumes a constant value TIE for 0 <_ .
(In principle this is the same "step-function" pdf that we discussed for the ventilation layer and
sketched in Fig. 3, except that the width of the step is not necessarily the same; hence, we use the
notation Xs in discussing the entrainment layer, in place of ZA for the ventilation layer.) Clearly,
we must have

XBfE = 1.
(3.30)

The case of constant 1IE(X) is included here; it corresponds to-tE = 1. Of course, 1/E cannot be
less than one.

The PBL is normally capped by an inversion, so that the densest parcels available are those
for which Z is near zero. A straightforward analysis leads to

1as = 2 fi E E if.+1

Mcs

(3.31)

If the mean virtual dry static energy should happen to decrease upward across the entrainment
layer, the densest parcels available will have ; -. Z,. For such a statically unstable entrainment
layer, we find that

13



aB E217E - - I
MB

(3.32)

Now we combine our results for the ventilation and entrainment layers. First, consider the
clear convective PBL (unstable ventilation layer) capped by an inversion (stable entrainment layer),
and suppose that a and M, are independent of height. This allows us to drop the subscripts S and
B from these two variables. By combining (3.22) and (3.31), we obtain

M,= 2[- iEE + (flEE)2 + 7EEH~V]

(3.32)

This expression always gives M _ 0. It follows from (3.31) that 0 _ a: _- 1.

There are, in addition, three other possible combinations of stable and unstable entrainment
and ventilation layers. Table 1 gives the forms of M, and a for all four possibilities. In each case,

it turns out that M, and a depend only on two parameters, namely fI1vV and iE E. In fact, a

TIrE
depends only on the ratio of these two parameters, 77 . The normalized mass flux,

M , also depends only on q7.

Fig. 4 shows how the normalized mass flux and a vary with q/, for each case. Without

exception, M, > 0 and 0 < ar < 1. From this point of view, the model is quite well behaved. Note
that in all four cases a decreases as 1r increases. This means that strong entrainment is associated
with small o. When the ventilation layer is unstable and the entrainment layer is stable, the
normalized mass flux decreases as 17 increases. The reverse is true when the ventilation layer is
stable and the entrainment layer is unstable. When both layers are unstable, the normalized mass
flux is maximized when 17 = 1. When both layers are stable, the normalized mass flux is
independent of 1i.

b) Updrafts and downdrafts: Extension to the cloudy case

In writing (3.12) and (3.24), we have assumed that the virtual dry static energy is
conserved under dry adiabatic mixing, in both the entrainment and ventilation layers. This
assumption is not valid for the cloud-capped PBL.

First, consider a case for which only moist and/or dry adiabatic processes occur in the
entrainment layer, so that radiative cooling is not an issue. Then we can simply make use of
thermodynamic variables that are conserved under both moist adiabatic and dry adiabatic mixing,
e.g. the moist static energy, h, and the total mixing ratio, r. Mixtures satisfy

h(r) = Xh, + (I -X)h,
(3.33)
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(3.34)

The virtual dry static energy of a mixture at level B can be obtained from

s.(,) = s[h(X),r(z),P,

(3.35)

using straightforward thermodynamic methods (see Appendix C). Then, if HE(Z) is known, we
can proceed in essentially the same way as before. In particular, (3.26) and (3.29) apply without
modification. When s, increases monotonically with X, (3.31) holds as before. It is hard to
imagine a cloudy case in which s, decreases monotonically with X, but if such a thing were to
happen, we could apply (3.32).

An interesting complication arises when a parcel formed by mixing a cloudy parcel and a
clear parcel can be denser, for some values of X, than either of the two parcels from which it is
derived (Squires, 1958; Lilly, 1968; Randall, 1980; Deardorff, 1980; Albrecht et al., 1985;
Nicholls and Turton, 1986; Siems et al., 1989). This opens up the possibility of cloud-top
entrainment instability (CTEI). When conditions are right for CTEI, the densest possible mixtures
consist of parcels containing a finite fraction of free-atmospheric air. The limits of integration in
(3.26) and (3.29) must then be adjusted so as to include the densest available parcels.

Fig. 5 illustrates an example of this situation. The numerical values used to construct this

example are given in the figure caption. These have been chosen so that CTEI is predicted by the

criterion of Randall (1980), with As, - (As,),,, = - 2000 kJ kg-', but not by the criterion of Siems
et al. (1989), with D = 0.3 (see Appendix E for a definition of D). The curve in Fig. 5 shows

s,() - s,, plotted as a function of X. By methods discussed in Appendix C, we can identify the
densest possible mixture and the associated value of X. Following the notation of Siems et al.
(1989), we let X. denote the value of X. for which the virtual dry static energy is minimized. In
this case, Z- = 0.05, i.e. the coldest parcels are almost entirely composed of air with in-cloud
properties. This is in line with earlier analyses (e.g., Albrecht et al., 1985). We choose first these
densest parcels, then the second densest, and continue in this way until some fraction of the
available parcels have been chosen, spanning values of X from %,,. to X,,i , such that

s,(X,J) = s,(X,.). As illustrated in Fig. 5, the population of selected parcels will usually be
asymmetric in X.-space; more will be chosen on the low-Z. side, and fewer on the high-k. side.

Using an assumed form of HE(Z), and for the range of selected parcels, we evaluate the integrals

in (3.26) and (3.29). These effectively determine a. and E / M.. In this way, for a given form

of fk(Z), we can plot or, as a function of E / MB, essentially determining a relation analogous to
those given by (3.31-32). Details are discussed in Appendix C.

The results for the example of Fig. 5 are shown in Fig. 6, with the step-function

distribution of 17E(X), and f E = 1. Also shown in Fig. 6 are the corresponding curves predicted

by (3.31) and (3.32). Since s,(X) is almost monotonically increasing with Z, it is not surprising
that this cloudy example nearly agrees with the predictions of (3.3 1) for stable inversion case.
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Figs. 7 and 8 give a second example, chosen to be subject to CTEI by both the criteria of

Randall (1980), with As, -(Asv), = - 5000 UJ kg-, and the criterion of Siems et al. (1989), with
D = 1.5. The numerical values used are given in the caption for Fig. 7. The liquid water mixing
ratio corresponding to the conditions at level B is 3.2 g kg-', much larger than would be
encountered in coastal stratocumulus clouds. Fig. 7 shows s,(x) - s, as a function of X. The

virtually coldest parcels available are those for which X = 0.30, i.e. such parcels contain a

substantial fraction of free-atmospheric air. The implied relationship between a8 and E / M., is

shown in Fig. 8, again fork1 1 e = 1. As before, the predictions of (3.31) and (3.32) are also shown
in the figure. This unstable cloudy case departs significantly from (3.31), and is intermediate
between (3.31) and (3.32).

When radiative cooling occurs in the entrainment layer, (3.33) must be modified to take
into account the radiatively induced moist static energy decrease that each parcel experiences, as a
function of x. We can write

h(z) = X'+ + (1- X)T + Sh,(x),
(3.36)

where hR(X) represents the effects of radiation on the parcel's moist static energy. Obviously,

there must be some relationship between aR and an integral of hR(x); this will be explained

below. Fig. 9 schematically illustrates three profiles of h(x), for different choices of Nzh(Z) . Of

course, when 3h,(X) is zero, h(X) varies linearly with X. This is the dotted curve in the figure.

The dashed curve illustrates the situation for which 3hR(x) is negative and independent of X, so

that h(X) is simply shifted uniformly to smaller values. The third curve in Fig. 9 illustrates a case

in which 'hR(X) is more strongly negative for smaller values of X. This may be realistic; more
cooling will accrue to parcels that spend more time inside the cloud, but near the cloud edge; and
less to parcels that spend more time outside the cloud. Such parcels should have small values of X,
i.e. properties characteristic of the cloud layer rather than the inversion. The effect is that cooler
parcels are cooled more.

As mentioned above, an integral of 3hR(x) must correspond to the correct area-averaged
radiative cooling. This constraint can be imposed as follows. By analogy with (3.24), we can
write

f h(Z)T7E(x)dX¢oldws parcr~s(h)- fn 17(,)dzr
Colden parcels

(3.37)

Here the limits of integration are understood to be chosen so as to encompass the coldest parcels
available. Substituting from (3.26) and (3.36), we obtain
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f xIQx + 3hR(X)]HE(jX)dX

(hd), = ic

(3.38)

A second expression for (hd)B can be obtained from (3.11), with h -f

ha= XEhB + (1- XE)- - AE

(3.39)

In (3.39), we have replaced the "source integral" of (3.11) by - AR. We now require that the
radiation terms of (3.38) and (3.39) agree. With the use of (3.9), this implies that

a8(1 - o")aR = -M,. J f 8R(x,)I1E(X)dz,
coldet parcels

(3.40)

which is the desired constraint on 5hR(X). If hR(X) is independent of X for the range of X in
question, (3.40) reduces to

BAR = -M .ahR.
(3.41)

For a given distribution of hR(Z), we can work out s,(Z), essentially from (3.36) and
(3.35). We then identify the densest available parcels, in the usual way.

d) Summary

In this Section, we have analyzed the entrainment and ventilation layers, and their coupling
with the interior of the PBL. By requiring consistency among the various fluxes, and applying
"boundary conditions" on the updraft properties at the top of the ventilation layer and the
downdraft properties at the base of the entrainment layer, we obtained (3.4) and (3.9), which
express relationships among mass fluxes, fractional areas, and mixing parameters.

We then assumed that the parcels entering updrafts at the top of the ventilation layer are the
lightest ones available, and that those entering downdrafts at the base of the entrainment layer are
the densest ones available. Using these assumptions, we are able to derive relationships among the
fractional areas and the mass fluxes, when the pdfs for virtual dry static energy in the entrainment
and ventilation layers are known. For the case of "step function" pdfs, these are given by (3.22-
23) and (3.31-32).

Next, for the case in which a and M, are independent of height, we obtained expressions
for r and M, given in Table 1. These can be used to determine a and M, in a numerical model.

Finally, we showed how these results can be generalized for the cloudy PBL.
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Further discussion of the boundary conditions on the scalar variances is given in Appendix

D.

At present, we use the idealized "step function" probability density functions discussed in

this Section. The constant values assigned are fH, = 10 and fEI = 10.

4. Prediction equations for c" and the scalar variances

The "plume" equations derived in Section 2 determine how 0. and the scalar variances
associated with the plumes vary in time.

To derive an expression for d / dt, subtract (2.6) from (2.4) to obtain

2p a + V. [(2a - I)OV]- 2p(L - v)+-d{p[w. a- w,(1- = 0.

(4.1)
Using (2.8) and the identity

p [ w 0 -wd(1 - 0")] = 2M,- pw(1 - 20.),

which can be derived from (2.7) and (2.11), we can rewrite (4.1) as

di - - d dMp--+pV.Vcr+pw--- -Z -p( -v).

(4 .2a)

Using (2.8) again, this can be recast in "flux" form:

" -- 0v--p _) 0+M p +p( - v).

(4.2b)
When the terms on the left-hand-sides of (4.2a - b) are negligible, we obtain

dM
0 = + p(, - v),

(4.2c)

which was derived by Arakawa and Schubert (1974).

We now introduce the conservation equation for the variance of V that is associated with
the convective circulations. As shown in Appendix B, this is
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2] 21 id r 2]-+V* a0I-a(I - - VdJ +- IM(1 - 2,a)(V.- 'Id)

27,, t- ,,[(ju+v)+2r'al-a)]"'.- "Vd + V' d)2,
p 1 dis+2(\'7Z

(4.3)

where

4V = P'{( a) d( j+ a±~[f"'(1 - a)]+ auI- a1)(S,.- SWd)}

(4.4)

We retain, in (4.4),the terms representing small-eddy fluxes, even though, as already mentioned,
we assume that these are negligible except in the ventilation and entrainment layers.

Using conventional Reynolds averaging, we find corresponding to (4.3) that

(.4.5)

Here Ew is the molecular dissipation rate, per unit mass. Comparison of (4.3) with (4.5) reveals a
term-by-term correspondence. In particular,

pw"If'"2 = M,( iV.,- Vd )2,

(4.6)
where

M,, = (1- 2a)a(1 - a)p(w. - wd)

(4.7)

is a mass flux which plays the same role for transport of the second moments as Mc plays for
transport of the first moments. The expression for Mcc given in (4.7) emerges naturally in the
course of the derivation given in Appendix B. It can also be derived by a method analogous to that
used in (2.10). Note that the sign of Mcc is determined by the value of a. Variance is transported
upward for a < 1/2, and downward for or > 1/2. This fact is of some importance, and will be
discussed further later.

The damping factor a(] - a) r-1, which appears in (4.3), can be simplified by noting that
small eddies will be most effective at reducing the differences between the ascending and
descending branches of the plumes when one of the two branches is much narrower than the other,
and least effective when the two branches have the same width. On this basis, we assume that

T -ra( - a) r is independent of a. Then we obtain
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d . O a +- O)(- Vd) 2] dL. [MJ1 - 2a)(V. - Vd)2]

2 I, '9 t V - J [(, + sv+ 2"-TL'j V-- Vd )2+ 2 (V,,- Vld)Z, •

p O

(4.8)

It is also possible to work out a prognostic equation for V,3, following a derivation very

similar to that for ,, as given in Appendix B. We can show, however, that

-_fJ1 (1-2a)(- , ) l 3 (1 ')

(4.9)

which implies that prediction of iV'3 contributes essentially the same information as prediction of a
itself. The triple moment equations are, therefore, redundant. Similarly, any higher moments of V

can be related to V/,
2 by simple functions of o. In this sense, the familiar turbulence closure

problem posed by an infinite succession of independent moments does not occur in the present
model. The reason is that V can take only two values, namely Vu and Vd.

5. Balance equations for the scalar variances

We now explore some implications of the results of the preceding Section, by considering
simplified special cases. Neglecting the local time-change and large-scale advection terms of (4.8),
we find that

[M:( - 2c)V.-Vd)

=-2 p ° ( 4 v) + +2TL]( V. - d)2 +2p(V.,-v d) Z,,

(5.1)

i.e., transport balances the combined effects of dissipation and production. We can further
simplify (5.1) by using (4.2c) to obtain:

dz Cz

(5.2)

where

d--a+ pM [ua + v(l- a)+ =dz

(5.3)
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We can interpret -, which has the units of inverse length, as a measure of the importance of
dissipative processes. The dcr/dz term of (5.3) arises from the transport term of (5.1). The
quantity in square brackets is never negative, so ID 0 unless a increases strongly upward.
Since observations (e.g., Lenschow and Stephens, 1980) suggest that a typically decreases
upward, we expect D > 0.

Several conclusions can be drawn from (5.2-3), by considering the case Z. = 0.

First, if(I - 2 a) / D is small (a near 1/2 and strong dissipation), we get

(5.4)
This is a downgradient diffusion formula, with diffusion coefficient Mc / D.

Next, consider a layer that is well-mixed in several conservative variables Yt1, yf, etc, so
that (5.2) reduces to

Df, + (I - 2a)-d f = 0.

d z
(5.5)

The fluxes are determined in part by the free-atmospheric values of the various Vf's, so we cannot
satisfy (5.5) for all qV by imposing constraints on the fluxes. The only way to satisfy (5.5)
simultaneously for all of the variables is to put

D0,
(5.6)

o' 1/2.
(5.7)

Since, according to (5.7), a is a constant, (5.3) implies that D is the sum of two non-negative
terms. Then (5.6) implies that each term must be zero, so that

M, = constant,
(5.8)

T= 0.
(5.9)

Referring back to (5.1), we find a trivial balance in which gradient production, transport, and
dissipation all vanish. (Recall that the variance transport by triple correlations is zero when a =
112.) Deardorff (1974, his Fig. 13) obtained such a balance for the virtual dry static energy
variance budget in the interior of a numerically simulated convective well mixed layer for which
(5.7) was approximately satisfied.

Deardorff(1966) discussed the countergradient heat flux often observed in the convective
PBL, i.e. the potential temperature flux is often observed to be upward even though the mean
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potential temperature increases upwared. Deardorff considered a balance between gradient
production on the one hand (which is negative in the case of a countergradient potential temperature
flux) and the transport of potential temperature variance by the convection. For the present model,
this means 0, so that (5.2) reduces to

(I -2a) dq =M Md O -

dz Cd

(5.10)

In a convective PBL, the potential temperature is being increased by the convection, so that

d ydz < 0. Observations show that in such situations or = 112 (e.g. Lenschow and Stephens,

1980). Then, since the convective mass flux is positive, (5.10) implies that the potential

temperature increases upward, in agreement with the observations.

Finally, suppose that D is small (weak dissipation). Then (5.2) reduces to

(I - 2a) d -1 M.: d 1
dz d

(5.11)

This balance is characteristic of the temperature and moisture budgets of tropical cumulus layers, in
which a is small and "compensating subsidence" produces the convective effects on the mean
profiles. Arakawa (1969) derived (5.11), for the case of small a; it has also been discussed by
Ooyama (1971) and Arakawa and Schubert (1974), among others. [The "detrainment" term
discussed by Arakawa and Schubert (1974) is also present in (5.2-3); it arises from the gradient of
Mc in (5.3), for the case of outflow in which pi = 0 and v > 0.]

In fact, V actually should be small for the case of deep convection. First of all, a is small
at every level, so do'z is small. For the case of entrainment (P > 0 and v = 0), the middle term
of (5.3) reduces to a times the "fractional entrainment rate" discussed in cumulus parameterization
theories (e.g., Arakawa and Schubert, 1974), so it will also be small because a is small. Finally,
the Tdis term of (5.3) represents the dissipation due to small-eddy mixing, which is confined to the
interiors of the convective clouds. For the case of deep convection, these clouds cover only a tiny
fraction of the large-scale area (again, a is small), so that this term cannot be very large.
Evidently each term contributing to ID is individually small for the case of deep convection.

For the cumulus regime, the conservation equation for V in the entrainment layer can be
approximated by a balance between vertical advection and convective transport, i.e.

dij
dz

(5.12)
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Comparing (5.11) and (5.12), we find that

(5.13)

For tropical cumulus layers with large-scale rising motion, it is observed that M, == p., so that
(5.13) is consistent with observations that show a << 1. Alternatively, we can conclude from

(5.13) that if o < < l, we must have M, =-p O. For the case of large-scale sinking motion, (5.13)
predicts larger values of a, again in qualitative agreement with observations.

The preceding discussion shows that (5.2-3) are consistent with a variety of observed
balances in convective layers. In effect, they provide a physically based interpolation between the"compensating subsidence" and "mixing length" regimes.

We now investigate simple analytic solutions of (5.2) fir ZV = 0. For this purpose, we
rewrite (5.2) as

]DF+s-, -+M dz
dz d

(5.14)

where, for convenience, we have defined

s_ l-2a.
(5.15)

We regard (5.14) as a first-order linear ordinary differential equation for 14, in which the M, term
represents a forcing. If D, s, and the forcing are assigned particular vertical profiles (e.g., linear
or quadratic in z), then (5.14) can be solved by elementary analytical methods.

Two preliminary comments are in order. First, the solution of (5.14) must be well behaved
when s = 0. This compels us to discard the homogeneous solution; only the particular solution is

physically relevant. Second, inspection of (5.14) shows that 1&M must be less than or

comparable to one; larger values would imply ludicrous vertical profiles of t. Recall from (5.3)
that consists of contributions due to the vertical variations of a and Mc, as well as those due to

small-eddy dissipation, as represented by the T term. For values of D~&M on the order of one,

the implied dissipation times T,,, turn out to be extremely long by PBL standards -- on the order of

many hours. This strongly suggests that, to the extent that D&M is different from zero, it is
associated with vertical variations of a and/or Mc, but not with small-eddy dissipation. From this

point on, we assume T,,. - * We also assume that Mc is constant with height.
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Suppose that

a =O+ a'c,
(5.16)

where a0 and a, are constants, and

Z

&
(5.17)

and let

dCW
MCd4-=a,+,,

(5.18)

where a, and b, are constants. With these assumptions, the particular solution of (5.13) turns
out to be of the form

= 7X+ C
(5.19)

and consistency requires

a .= cr( )s- (I - 2-()[( )-fsr)s],

(5.19)

bw = 3 al[(IW)B - (IV)1
(5.20)

Substituting (5.20-21) back into (5.187), we find that

d = {C1(1V)s[(l - aI +a,]-3 + (7I)[-(' - 2Uo) + 3a,41}

(5.21)

This is similar in form to Eq.(46) of Wyngaard and Brost (1984).

Suppose for simplicity that iV' is simply linear with height. Then from (5.21) it follows
that o'1 must be zero; in other words, a must be uniform with height. For this case, (5.21)
reduces to

d4

(5.22)

From (5.22), we can evaluate V. and VB:
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Vs VM 2M Rf 
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(5.23)

(5.24)

We can also use (5.22) to interpret some of the departures from "well mixedness" that have

been observed in nature. For example, suppose that ( W)s >> (1,), and a < 1/2. This could be
the case of dry static energy in a typical clear convective PBL capped by an inversion. Then (5.22)
reduces to

d - (I -2 a)(1,)s
dC M4

(5.25)

According to observations (e.g. Deardorff, 1966), V should increase upward, as predicted by
(5.25).

As a second example, suppose that (I.). is more strongly upward than (1w,s.This can
happen in the case of the moisture flux, with rapir! - -'ainment of very dry upper-level air. For

such a case, (5.22) predicts that V/ deceases upward. An upward decrease of the mean water
vapor mixing ratio is often observea.

Finally, note that for a = 1/2, (5.22) predictq that all conservative variables are well mixed.

This is consistent with our earlier analysis.

These results encourage us to believe that (5.22) can account for the observed variability of

dc~

6. Ventilation and entrainment mass fluxes

We relate the ventilation mass flux to the TKE by

v = psc, _,
(6.1)

where Ce is a transfer coefficient that must be parameterized. In (6.1), the square root of the TKE
is playing the role more conventionally played by the mean wind speed. One way of rationalizing
(6.1) is that turbulentfluxes cannot occur unless TKE exists. The existence of a mean wind favors

the production of TKE, although it is not logically necessary for the existence of TKE. Since -
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is typically an order of magnitude smaller than the mean wind speed, Ce is typically an order of
magnitude larger than the conventional transfer coefficient; a nominal value of Ce is 0.02.

It appears that (6.1) has at least two major advantages over the usual bulk aerodynamic
formula. First, it behaves well in the limiting case of free convection, for which the mean wind
speed vanishes even though the TKE and the surface energy fluxes can be vigorous. Second, Ce
should be relatively well behaved near neutral stability, where the transfer coefficient used in the
conventional bulk formula changes almost discontinuously from small values in the stable regime
to large values in the unstable regime. We expect that, in contrast, Ce increases relatively gradually
as the PBL passes from the stable to the unstable regime, simply because em itself will increase
rapidly. For purposes of this paper, no elaborate parameterization of Ce is attempted; such a
parameterization could be developed through the use of a large-eddy model, which would allow em
to be determined readily. That project is left to the future. For now, we simply use Ce = 0.02.

Our entrainment closure is based on the ideas of Breidenthal and Baker (1985). It is
explained in Appendix E.

7. Outline of an algorithm to solve the model

Although the derivation of the model has been somewhat lengthy, its implementation is
fairly simple, at least for the cloud-free case. When there are no clouds in the PBL, we can
proceed as follows:

1. Initialize all prognostic variables.

2. A "first guess" for V/s and VB can be based on the assumption that the PBL is well

mixed, i.e. that VB = VS= VM. From V, obtain A V.

3. Determine V and E, using the parameterizations discussed in Section 6 and Appendix E,

respectively. In general, this will require use of the values of V. and V.' used above,
because of the dependence of V (through Ce) on the near-surface stability, and the
dependence of E on the "jumps."

4. Use V and E with !v' and - to determine (,,) and

5. Find a and Mc, using the methods of Section 3, with the values of V and E obtained
above.

6. From (5.23-4), obtain revised values of Vs and V. •

7. Iterate Steps 3 - 6 to obtain a simultaneous solution for ips and V I V, E, a, M, (fW)S

and (1)2
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8. Having completed the iteration, it is possible to evaluate the vertical profiles of the mean
fields, the turbulent fluxes, and the updraft and downdraft properties.

9. Using the results of Steps 7 and 8, work out the various terms of the prognostic

equations.

10. Predict new values of the prognostic variables.

11. Return to Step 2.

When clouds are present, solution of the model becomes considerably more complicated.
To see why, first recall that the radiative cooling rate affects the moist static energy flux profile.
The radiation calculation cannot be done until we know what the cloudiness is. The cloudiness
cannot be evaluated until we reach Step 8 of the algorithm outlined above. The added complexity
of the cloudy case arises, then, because the turbulent fluxes are needed within the iteration loop that
precedes Step 8. This means that we need a nested iteration for the cloudy case.

9. Summary and concluding discussion

We have presented what amounts to very simple second-order-closure model that makes
use of an explicit (but highly idealized) description of a turbulent eddy: the "convective
circulation." In adopting this approach, we have necessarily abandoned any pretense that the
second-order closure is so general that it can apply to any type of turbulent boundary layer. On the
other hand, we have benefitted by being able to use mechanistic ideas about the dynamiGs of
individual turbulent elements, which would be difficult or impossible to express in the purely
statistical framework of a conventional second-order-closure model.

"New" elements of the S.O.B. include the use of a prognostic TKE, together with an
explicit PBL depth and parameterized ventilation and entrainment layers; the introduction of explicit
boundary conditions on the updraft-downdraft variables, which led to our expressions for a and
Mc ; the formulation of the conservation equations for the scalar variances in terms of ar. explicit
model of a convective circulation; and the revision of the bulk aerodynamic formula to use the
square root of the TKE in place of the mean wind speed.

The model provides a way to determine a and Mc , as well as the vertical profile of V
inside the PBL. It encompasses the "mixing length","compensating subsidence", and "well
mixed" regimes within a single physically based framework. It can represent clear, partly cloudy,
and overcast boundary layers. It is simple enough to be used as a parameterization within a large-
scale model.

Obviously there are many avenues for further exploration. Alternative forms of

17,(x) and 17.(Z) can be investigated. Vertical variations of r and Mr can be allowed. It may be
possible to extend the model by allowing multiple layers (or in some other way allowing multiple
degrees of freedom in the vertical) within the PBL. In such a multi-layer model, it may be
advantageous to determine the scalar variances prognostically.

In the immediate future, we plan to test the model and explore its ramifications using both
FIRE data and LES results from the model of Moeng (1984, 1986). We also plan to exercise the
model in a prognostic mode.
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APPENDIX A

A Method to Predict the
Vertically Integrated Turbulence Kinetic Energy

As discussed in Section 7, the vertically integrated conservation law for the TKE can be
written as

g- pU-L + EeM -B+S-D.

(A.1)

Here B, S, and D represent production by buoyancy, production by shear, and dissipation,
respectively.

The vertically integrated dissipation rate and the vertically averaged TKE are assumed to be
related by

D = PM(e." )3I2

(A.2)

where Pm is the vertically averaged PBL density, and a, H0.163 is a dimensionless constant.

The buoyancy production integral, B, is of the form

B= icfPs-F.. dp,
fps. p

(A.3)

where K is Poisson's constant. For the cloud-free test cases described in this paper, we have
simply evaluated (A.3) using the trapezoidal rule, with data points at levels S, I, and B. A more
complex approach is needed when clouds are present, and will be described in Part U.

The shear production integral, S, is of the form

S = jp-F. - V dp.

dp
(A.4)

We divide this integral into three parts: shear production in the surface layer, in the interior of the
PBL, and in the entrainment layer. The surface layer shear production is approximately given by

f s- Fv- dv dp = (Fv)s" .'s=J(Fv) -jfs.
ps dp

(A.5)

Here the second equality follows from the assumption that the surface stress in parallel to the
surface wind.
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The interior shear production is given by

(A.6)

Finally, the entrainment layer shear production is approximately given by

d V dp = 1jF,,-~ = EIAVI2."r dp

(A.7)

In (A.6), the factor of 1/2 arises because FV decreases from (FV)B to zero across the entrainment
layer, so that its average value is (FV)B / 2. The second equality comes from applying (3.5) to the
momentum budget of the entrainment layer.
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APPENDIX B

Derivation of the
Scalar Variance Conservation Equation

The convective variance of iV is

q /- 2 a( , ) + ( 1 a ) ( v ,- V ) 2

= a(1-a)( V. - Vd) 2.

(B.1)

Therefore,

= 2a( - )( . -) + ( V. - Vfd )(1- 2a)-.
(B.2)

To obtain an expression for the first term on the right-hand-side of (B.2), we use (2.3) and (2.5) to
rewrite (2.2) and (2.4) in advective form. From the resulting equations we can show that

(7(- a) d ,V. V)+,, V. - Vd)+ .j d w2d +,[A-,,)s+ vIKV .- s'd)

Asa(' a)( V - + P-{ (I - a)-I (f,.a) + a -[f,.d(1 a-)] + a(' a)(SW, SWd)

(B.3)
Use of

wd-I- dV -dW. ,-1= w-(V .- Y,,)

(B.4)
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and (4.2a) in (B.3) gives

o(1- +7. V+-. ( Vd)+[A(' a)+ C](Y(.- ''d)

_ Moa (1-)(V,.- ,)

+ -I (f,.a) + a .[fW(1 - a)] + a(I - a)(S,. - SWd)}

(B.5)

Now multiply (B.5) by 2 (V - iy,), multiply (2.13) by (V. - Vfd) 2(J-2ca), and add the results.
After combining terms, and using (2.10), we obtain (4.1), which is the desired result.
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APPENDIX C

Buoyancy of Mixed Parcels

As discussed by Albrecht et al. (1985), Nicholls and Turton (1986), and Siems et al.
(1989), under some conditions the density of a parcel formed by mixing clear air with cloudy air
can be greater than the density of either of the contributing species. Suppose that we mix air from
level B, which is assumed here to lie inside a cloud, with air from level B+,which is assumed to lie
above the cloud top. The moist static energy, h, and total mixing ratio, r, of the mixture will
satisfy

h() =hBX + hq(l - X),
(C.1)

r(X)= r- + rB(1 -X).

(C.2)

As X is varied, the properties of the mixture will vary according to

dh() h-A-

(C.3)

dr(,) - r r- Ar.

(C.4)

As indicated in Fig. 5, the changes of the virtual dry static energy of a mixed parcel follow two
neirly straight, intersecting lines as X is varied. The line on the left side of the figure represents
the set of saturated states, while that on the right side represents unsaturated states. The lines

intersect where the virtual dry static energy is minimized, at X =Z.. Using moist
thermodynamics, we can show that

[4 .14-d=&v-

(C.5)

[ds-)] =A-h-(1- &)LAr,

(C.6)

where 6 and e are positive thermodynamic coefficients, and (As,),,, is a critical inversion

strength, such that when As,< (iAs,),, it is possible for mixed parcels composed of air from the
inversion and the cloud layer to be cooler than the cloud layer air. Further discussion is given by
Randall (1980), who showed that
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UT+ 8) "Lt q; -  q  
B) '

(C.7)
where y is another positive thermodynamic coefficient, q* is the saturation mixing ratio, and q is
the actual vapor mixing ratio. According to (C.7), (As,), is a measure of the relative humidity in

the inversion. Dry inversion air favors large values of (As), .

From Fig. 5, it is apparent that the intersection of the two line segments is given by

S 4 + X .[ 1 1 , = s , + ( . .[ d
Ox awae W.~trld"

(C.8)

Solving for Z*, and again using moist thermodynamics, we can show that

[1-(l +3e]L8 +(AI' [I- U + 6)E]UB + (S,,i
(C.9)

The form of (C.9) guarantees that 0 X.! 1. When I4 is zero, we have x* = 0, and as B
increases X* approaches one. We can use (C.9) to evaluate ,* analytically.

By substituting (C.9) back into (C.8), we can show that the minimum possible value of S,
is

(Sji= . + [ A,- (A .] [- I+ -(1 ]L +
(+ 35)E]LI, +(& Ci.

(C.10)
From (C.10) we find that the parameterD defined by Siems etal. (1989) can be written as

- DA,)2 "
D ~ AT +(v~ ~] (ASJ 1

[1 -(I+ 3)E]UB
(C. 11)

This result shows that D is positive when As,- (As,), is negative, and gives a simple way of
evaluating D analytically.

Finally, we need a way to deal with the integrals in (3.26) and (3.29). The range ofintegration for the integrals is the "coldest parcels" available for a given choice of oq. How do we
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identify the appropriate range of X ? Fig. C1 shows two values ofZ for which the virtual dry
static energies of the mixed parcels are the same. The value of ; corresponding to a saturated state
is called X , and that corresponding to an unsaturated state is called X2. The parcels with values of
between Z and X2 are the coldest available for some choice of CB. According to (3.26), we have

1-aB= fTIE(z)dX.
cold"t parcels

(C.12)

If HE(Z) takes the constant value fiE for the range of 1 in question, then we can write

I - C8- =17E 2 - X).

(C.13)

A second equation involving ZI and X2 can be obtained by inspection of Fig. CI:

s"S + [As - (AsV)], = ,v+ - [Ah -(1- &-)LAr]( -x 2 ).
(C. 14)

By solving (C.13) and (C.14) simultaneously, we can determine x, and X2 for a given value of
cra. It is then straightforward to evaluate the integral in (3.29).
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APPENDIX D

Boundary Conditions on the Scalar Variances

Because F varies rapidly across the top of the ventilation layer and the base of the
entrainment layer, there is vigorous variance production in these regions, but there is also rapid
variance dissipation by small eddies. The variance budget for the ventilation layer can be
expressed as

2f,s Epdz = 2(F,,)s(ps - -VS) - (PW'VI')s.

(D.1)

The left-hand side of (D. 1) represents dissipation. The first term on the right-hand side represents
gradient production, and the second represents transport into the ventilation layer by triple
correlations.

Similarly, the variance budget for the entrainment layer can be expressed as

2j'_ e,p dz = -(F,) 8 A _V + (pw'tV'V'), - E( '" 2)B+ 2J" V'S', dz.

(D.2)

The left-hand side and the first two terms on the right-hand side of (D.2) are closely analogous to
those of (D. 1). In the gradient production term of (D.2), the minus sign appears because of the
definition of A. The factor of two that appears in the production term of (D. 1) is not present in
the corresponding term of (D.2), because the turbulent flux of Vdrops from (F,)B to zero across
the entrainment layer, so that its average value for the entrainment layer is haf of (FV)B. The
second term of (D.2) represents the transport of variance into the entrainment layer by triple
correlations. The fourth term represents the rate at which scalar variance is provided to the newly
entrained air. The fifth term represents variance production due to fluctuations of SV in the
entrainment layer. There is a close analogy between (D.2) and (3.5).

Now define nondimensional measures of the dissipation rates, denoted by kv and kE,
respectively:

2fJ"ep dz =_kvVa,(] - a,)(41'M- 4d)S

(D.3)

2f" JE,pdz a kEE aB( l- aq)( q,- VPB)2

(D.4)

These definitions are motivated by the idea that the rates of variance dissipation in the ventilation
and entrainment layers should be related to the actual values of the variances at the edges of those
layers. For the ventilation layer, the results of Section 3 imply that

(p w'V')s = Mcs( l- 2 as)( V. - qzd)2s,

(D.5)
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(F,)s = Mcs( V/t - Vdr)s,

(D.6)

iFS- - V¢S = z?,' 1 -as)( V/. - Vd )S.
(D.7)

Using (D.3), (D.5-7), and (3.4) in (D.1), we can show that

as 2 -v 1=
as=kvXV + 2(1 - Z) 1 + -LkvX

2 2

(D.8a)

or, alteratively,

2(1 - a s ) - v( - 2s) = 2(1 - as)
kv2 2

asXv 2sXV

(D.8b)

All reference to V' has dropped out, indicating that kv is independent of species. From (D.8b) it is

apparent that kv is of order Xv2, i.e., kv >>1. This close relationship between Xv and kv is
reasonable, since stronger dissipation (larger kv) and stronger mixing (smaller Xv) must both be
due to more efficient small-scale eddies.

Similarly, for the entrainment layer, we have

(pw'"V'),')B= M,9(1- 2aB)(Vv- Id,)2

(D.9)

(F,)B = Ma(V. - Vdt)B,

(D.10)

I f~a-~ I"*) T.4 Sdz].

(D.11)
Using (D.4), (D.9-11), and (3.9) in (D.2), we can show that

( - VA{ Ek aB(l - a,) + EaUX '[X;' a, + (1 -2 a,)] - Ea,(] - a,)}

+( V.i - Vd)BXE ' aJ S:*Tdz + 2"i'S dz = 0.

(D.12)

We require that (D. 12) hold for all species, including those for which S, is zero. It follows that

k X 2_ + X 2 kE 2

2kB-2E+ 2 l+kEr2'S+ kEX E - 2  E  E X r  r E

(D.13a)
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or, alternatively,

k- + E((12. E'a =
a8 )

(D.13b)

Again, all reference to V has dropped out, indicating that kE is independent of species. From

(D.13b) it is apparent that kE is of order X. 2, i.e., kE >>1.

Since (D. 13) must apply for all species, including those for which SV is not zero, we
conclude that

(V.- Vd) EXE a , dz + 2:JTw'Sdz=O0
(D.14)

From (D. 14), we can determine the rate at which fluctuations of S, in the entrainment layer
generate fluctuations of V there.

Now substitute (D.8b) back into (D.3). The result is

2 E Ep dz = [2(1 - as) - Xv(1 - 2as)v 2V (1 - as)( V, - I,,)S

(D.15)

Similarly, use of (D.13b) in (D.4) gives

2Jep dz = [aB +XE(I- 2a E- (1- ')] E aB( tV.- VI'.)B.

(D.16)

Using (D. 15), we fimd that the ratio of dissipation to production, for the ventilation layer, satisfies

2 ep dz = E..F, -2as)]

2(F,)s(Fs_- Vs) L 2(1-as)
(D.17)

Similarly, using (D.16), we find that the ratio of dissipation to production, for the entrainment
layer, satisfies

2=p/dz+ [ Z,. -2a,)

-(F,,) A V - E(V"-)B + 2J i i* i S, dz La,- E )

(D.18)
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Note from (D.17) and (D.18) that, when Xv and X are small, dissipation and production must
nearly balance in the ventilation and entrainment layers, respectively. Such near balances are
observed, and have been predicted through LES. The entrainment and ventilation layers are
typically characterized by very rapid variance production, which is nearly in balance with equally
rapid variance dissipation.
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APPENDIX E

Entrainment Closure

We adopt an entrainment parameterization following the ideas of Breidenthal and Baker
(1985), Siems er al. (1989), and Breidenthal (1989). The entrainment rate is assumed to satisfy

E= _ bl[I +60(X*- D)]

PB (1 + bRiA)
(E.1)

Here PB is the density at level B, bj and b2 are assumed to be constants, and X* and D are
parameters (defined below) that determine the effects of evaporative cooling on the entrainment
rate. The relevant Richardson number is

RiA = gAs, 5z

cPTB eM

(E.2)

Here S, is the virtual dry static energy.

First consider the cloud-free case for which, as explained later, both x* and D are zero.
Then (E.1) reduces to

E b,
AV f (1 + b2Ri)

(E.3)

We can determine the values of b1 and b2 as follows. When the inversion is strong, Ri4 is large,
and (E.3) reduces to

E b__

PB b2RiA
(E.4)

We require that this reduce to the famous "0.2" formula that has been so widely used (for a review,
see Randall, 1984):

EA, = 0.2 (F) s

(E.5)

In order to derive (E.5) from (E.4), we assume a balance between buoyant production and
dissipation of turbulence kinetic energy, i.e.

S Ps
(E.6)
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where ic is Poisson's constant, and ai - 0.163 (for a discussion see Randall, 1984). From (E.4-6)

we can show that bl / b2 = 6.10.

A second constraint is that, for RiA = 0, (E.4) should be consistent with

E-=0.2 w*,
PB

(E.7)

where w* is the convective velocity scale of Deardorff (1970), which in the present notation is
approximately given by

F -I1/3
W =[IC op)S .

(PP)s
(E.8)

The relation (E.7) was found in a large-eddy simulation by Deardorff (1974). In this no-inversion

limit, (E.4) reduces to

E

PB
(E.9)

We find from (E.7-9) that bj - 0.624. Using our earlier result, we obtain b2 = 0.102.

Following Siems et al. (1989; see also Albrecht et al., 1985, and Nicholls and Turton,
1986), we consider parcels consisting of a mixture of X mass units with the properties of the air
from level B+, just above the PBL top, and (]-,) mass units with the properties of the PBL at level
B, just below the PBL top. Not that if the parcels in question are descending at level B, then x is
equivalent to ZE. Let * be the value of Z for which the density of the mixture is maximized. If no
cloud is present, the density is simply a linear function of X, and Z* = 0. For typical stratocumulus
cases, x* _<0.1, while for trade cumulus cases z* = 0.5.

Let

p(O)- p(Z)p(0) -p(1)

(E.10)

be the normalized density difference between the density of air at level B and that of the densest
possible mixture. The minus sign is used to make D non-negative. For the cloud-free case, D = 0.
For typical stratocumulus cases, D is slightly positive but much less than one, while for typical
trade cumulus cases D can be as large as three. According to Siems et al. (1989), D > 1.3 is
required for cloud-top entrainment instability.
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Table 1 Expressions for a and Mc, for the four possible combinations of unstable and
stable ventilation and entrainment layers, in case both a and Mc are independent of
height.

Expressions for Mc and a Comments

Unstable Mc =-2'IE Can show that 0:5 < I <1and
Ventilation Layer

with + \( )2 0Mc > 0.
Stable +2 FEE)+HEEIYV

Entrainment Layer

2J7EE+Mc

Stable = 2jfiElflvV  Can show that 0!5- < I <1andVentilation Layer = TEJV

with M, > 0.
Stable 1lvV

Entrainment Layer a= xV

Unstable = (fIvV + flE Can show that 0!<_ a !1 1 and
Ventilation Layer M, "E

with 2 M, 0. AsiE / IvV -- oowe
Unstable -j -1 (rIv - i7,E+ f',EiV

Entrainment Layer get Mc --+ IvV, and vice versa.
M,

a MC
2 fEE - M,

Stable M =-2f1vV Can show that 0!5 <a! I and
Ventilation Layer

with + ( . )2Mc > 0.
Unstable +2 IvV)+fIEElvV

Entrainment Layer

I(v

-lvV+-LMc
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FIGURE LEGENDS

Figure 1: Diagram summarizing the relationship of the present model to earlier models used in
boundary-layer and cumulus parameterizations.

Figure 2: Diagram illustrating the assumed structure of the PBL. The interior, which is
represented by two layers, is bounded above by a thin entrainment layer and below
by a thin ventilation layer. Convective circulations occur, with rising branches
occupying fractional area a*. The ascending and descending branches have different
thermodynamic soundings and, therefore, different cloud base levels.

Figure 3: Sketch illustrating the step-function pdf for X in the ventilation layer.

Figure 4: Plots of a and Mc as functions of n. "UVSE" denotes unstable ventilation layer
with stable entrainment layer; "UVUE" denotes unstable ventilation layer with
unstable entrainment layer; "SVSE" denotes unstable ventilation layer with unstable
entrainment layer; and finally "SVUE" denotes unstable ventilation layer with
unstable entrainment layer.

Figure 5: A plot of s,() - s.B as a function of X, for a case in which CTEI is predicted by the

criterion of Randall (1980), with As,-(s,,) .' = - 5.4 kJ kg-1, but not by the
criterion of Siems et al. (1989), with D = 0.32 and X* = 0.12. We have assumed PB

= 950 mb, ZB = 597 m, h8 = 315.0 kJ kg-1, ra = 9.53 g kg', hB+ = 299.3 kJ kg-1,

and re. = 1.0 g kg-. The liquid water mixing ratio corresponding to the mean

conditions at level B is 0.33 g kg'.

Figure 6: The solid line shows a B as a function of E / MB for the data of Fig. 5. For
comparison, the dashed line shows the predictions of (3.31) (for the stable cloud-free
case) and the dotted line shows the predictions of (3.32) (for the unstable cloud-free
case).

Figure 7: As in Fig. 5, but for a case in which cloud-top entrainment instability is predicted to

occur. CTEI is predicted, with As,-(Asj c,,, = - 7.3 kJ kg-, D = 1.96 and Z* =

0.49. We have assumed PB = 850 mb, zB = 1533 m, h8 = 333.2 Id kg-', ra = 14.75

g kg', h+ = 308.7 kJ kg- 1, and rB+ = 1.0 g kg'. The liquid water mixing ratio

corresponding to the mean conditions at level B is 2.84 g kg".

Figure 8: As in Fig. 6, but for the case illustrated in Fig. 7.
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Figure 9: Three profiles of h(Z), for different choices of ShR(Z) . The dotted curve shows the

case for which 3 hR(z) is zero. The dashed curve illustrates the situation for which

8hR(Z) is negative and independent of X. The dotted curve illustrates a case in which

(5hR(z) is more strongly negative for smaller values of X.

Figure C I: Two values of Z for which the virtual dry static energies of the mixed parcels are the
same. The value of Z corresponding to saturation is called Z1, and the value of X
corresponding to subsaturation is called Z2.
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