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Abstract.

The problem of quantization of the electromagnetic field in-
side a resonator filled with a dielectric medium with time-A 4n
dependent characteristics in the presence of ,-heexternal alter-
nating current is studied. The exact propagator. coherent and
Fock's states are obtained for a separate quantized mode of the
field represented by a quantum oscillator with time-dependentt e
frequency linearly coupled via momentum withtAexternal current.
Delta-pulse excitation of the medium is considered asAexample.



l. Introduction.

Time-dependent systems are observed In various physics expe-

riments. Two general types of such systems are: that which is
formed through its own environmental conditions, and that which
is formed when external forces are added. In regard to the second
type. various experiments are being carried out to see how an ap-
plied time-dependent electric, magnetic or other field can alter
the physical properties of materials such as semiconductors and
superconductors. Experiments show that a system becomes time-
dependent when a time-dependent electric cr magnetic field (such
as a.c.D is appiied.

The aim of the present paper is to investigate the behaviour
of a quantized mode of the electromagnetic field inside a resona-
tor filled with a dielectric medium acted on by some external
"pumping" electromagnetic field and external alternating current.
Due to this "pumping" the properties of the internal medium beco-
me time-dependent.

First we study the problem of quantization ofAelectromagne-
tic field in the case of a time-dependent medium and external
current. We show that the dynamics of every mode is the same as
the dynamics of a time-dependent forced harmonic oscillator. There-

aNfore,the rest of the paper is devoted to the problem of findina
exact solutions for the time-dependent forced harmonic oscilla-

tor. This last problem was considered by many authors: see, e.g..
refs.,/1-13/ and especially /14-19/ where quantum systems with the

most general quadratic multidimensional Hamiltonians were studied
in detail. The difference of our study from the previous ones
consists in the unusual coupling with the external force: not
through coordinate but via momentum. Besides. we represent the
known formulas for the propagators and eigenfunctions in another

parametrization than in the previous studies and colculate some g,"i

products of matrix elements which were not given earlier.0

The special case of time-dependences of the frequency and
external force in the form of delta-pulses is considered to il-
lustrate general formulas.

A v -'j t Oude/ I.



2. Field quantization in a time-dependent medium in the
presence of an external current.

The well-known usual scheme of quantization of/,eiec or/agne-
tic field in t- runiform time-independent medium (see, e.a./20/)
results in the replacement of the field variables by a countable
set of generalized canonically conjugate4 coordinate and momentum
operators obeying harmonic oscillator equation of motion. Here we
consider a more general case when dielectric and magnetic permea-
bilities depend on time (but not depend on space variables), and
some time-dependent external current 1Z present. The same Drob-
lem. but without external current, was considerea in 2.I", 3nd the
most general case of nonuniformq and time-dependent medium C al-
so without current) was studied in /22/.

For the sake of simplicity we confine ourselves to the simp-
lest case of the so-called "unidimensional electrodynamics" when
linearly-polarized mutually perpendicular electric and magnetic
fields depend only on the single space variable and time t.
Then Maxwell's equations assume the following form:

aE I aB I aB I aD 41
+ . D=c(tDE. C2.1D

a at Acna t at
introducina the vector potential as usual.

1 aA aA
E = , B = - - , 2.2)c at a

we get the second order equation
I ar A 1 a2A 47r
-2 -[Ct)- ] - =__ - ~ 23)2 t[ t I gt) a 2  r

which coincides with Euler's eauation

a aL a aL PL
.+_ - - -_ = , (2.4)
at acaAati) ag acaA/6) aA

for the Lagrangian density

L -2i + -A. C2.5)

The cannonically conJucated densit, is



aL c(t) aA 1
= = (- D. 2.5)

a(aA/at) 4wc2 at 4rc
so that the Hai..itonian density is given by

aA ,f 2 1 rA 1 1
W =-- L - + i_ J } - jA. (2.7)

at 871 CC Ac t ) C c
We assume the field to occupy an ideal resonator with walls at
the points =0 and g=L. Then the following mode decomposition is
natural:

r,-713/2 l
DC4,t) cn nXCt)sin C2.8)

AVtj) = sin - . C2.9)

After this the field Hamiltonian turns into the Hamiltonian of a
countable set of noninteracting harmonic time-dependent forced
oscillators:

L '2 2+
HCt) f { W(tg)dg = -+ __n + fnt C2.10)

0 n 2 gCt) ct
where

L fSL 1/ r
fn~tL = - 2 [,- sin )2. 1)

To quantiz amiltonian C2.10), we have to treat variables xn
and p as operators satisfying canonical commutation relations.
At least two variants are possible. First, we may consider pn as
the generalized coordinate, and x as a generalized momentum. Se-
condly. we may make the opposite choice: p. as a generalized mo-
mentum. and xn as a generalized coordinate. In both cases we have
the harmonic osciIlator Hamiltonians with. aeneraliv speaking.
variable masses and frequencies. Now let us take into account
that really the magnetic permeability differs from unity to a very

I small value in all cases whentlinear equations (2.1) hold.
Thus from the physical point of view it is sufficient to consider
the function g(t)=const=1. Then we may study either the oscilla-



5-

tor with a constant frequency but with a Lime-dependent mass, or
the oscillator with a constant mass and with a time-dependent
frequency. The second situation seems much more familiar and con-
venient. Therefore our choice is to treat xn as the generalized
coordinate operator. and p. as the generalized momentum operator
satisfying the commutation relations

xn " m ]= ih8 C2.12)

The physical significance of such a choice is that the electric
displacement vector plays the role of the generalized coordinate
while the generalized momentum is related to the vector potential
or the magnetic induction vector (see also refs../23-25,/ in this
connection). -,

Since all modes intHamiltonian (2.10) are uncoupled, we
shall omit hereafter the number of the mode and cofnsider the
following one-mode Hamiltonian:

^=1 2 JCt 'j pH + t)x] + fct)p (2.13)

( c~i-) 2

J(t) = C2.14)
L2 C(t)

This Hamiltonian possesses b-he curious peculiaritv: it contains
coupling with an external time-dependent current C represented by TKc
function f(t) ) not through the coordinate, but through the mo-
mentum. Thereforeobtaining explicit solutions to this not very
usual problem seems rather interesting task.

3. Propagator.

We begin with calculating the exact propagator for the
Schr6dinger equation. i.e. the integral kernel relating the valu-
es of the wave function at the instants of time t' and t

*(xt) = fdx'K(x.t;x't')*Cx'.t'). t>t'. (3.1)

Since AHamiltonian (2.13) is a nonuniform quadratic form of the
coordinate and momentum operator, the propagator also is an expo-



nential of some nonuniform quadratic form ,i2-19,,

KCx.t;x'.t') = exp[aCt.t, x2 + bCt.t')xx' + cCt,t')x ' 2

+ gtt'Dx + hntt'Ux' dCt,t'. I C3.2)

Substituting this expression into the Schr6dinger equation, one

can obtain a system of coupled nonlinear ordinary differential
equations for time-dependent coefficients of the quadratic form,
e.g.

da2- = 2iha2  0 (t)/2th C3. 3)

dt
d b

- = 2Lhab, C3.4?
dt
dc th 2-=- b2  C3.5)
dt 2
dc2 L- = - 2hc2 + - J t'D, C3.5)

dt' 2h
db
- = - 2thcb, C3.7)
dt'
da Lh.

and similar eauations for the coefficients:, iine.: form in
(3.2?. Eqs. C3.3)-C3.8) can be solved with the aid oTAanzatz

_ dq L do
a(tD = - - , c(t' = - C 3.9

2hqCt) dt 2hqCt') dt'
where~new function qCt) obeys the classical_ equaticn for the ,,-

cillator with -1 ime-deoendent freuenc?"
d~q
- + W2(t)(t; = D. (3. 10?
44 2

U

However, certain care is reuired. _ince eq. (' 10) possesses two
independent solutions. -. tha urict ions uCt. a,- ant? ir, (3.9"
are different ir; the aeneral case.

There exists a more direct and convenient method of calcula-
ting the propagator proposed ir /45. and developed in /'17.1S.' It



is based on the concept C:" time-deDendent integrais of motion
Ewhose role for obtaining exact solutions of quantum mechanical
Droblems was stressed in refs.x".2i'. AT intearal of motion is an
Operator sauisfving teequation

at I

Suppose two operators X(t.t') and Prt.t'D satisfying the conditions
XCt.')=x Pt.t')=p are known. Then the kernel K(xtx t can
'e found f-om th ecuations '15-131,

X~t.t')K~x ",'' ):x'K(x,tx't'L. 13.12)

a
K . .' )I(lX ;"xt = th-- x .- '" '-. 13?

Fir quadratic Hamiltonians oDerators , and P are evidently linear
combinations of operators x and p:

P(tt') A Irt.t' )p + A2Ct,t')x + 81 t). (3.14)

X(tt') = ,3(t.t'ip + A4 t.t' x + 82 (t. (3.15)

Substituting these exDression into (3.11) we acet . set of
linear ordinary differential equations

dA - -2  1 (t= 1 - V ,3.16)

dt 2 dt 2

dL3 d 4  2 d62- = - 2t) ,  C3.17)
dt 4 dt . dt (3.17)

with the initial conditions

ACt~tD : A t.t' = i. tA (t.t t At4t 0.
a1 4 . 2 3'C)8 (tLt = 8 Ctt = O

The soiutions cf eas. 1.15)-3.1.) are ac f,iiows:
tj dq1  . dql

t ff x" di

(3. ig)



t -q2 Att%, A4Ct,t'- 2 t T) - do d,dt t dT
di

EC3. 20J
where both functions q, and q2 satisfy the same eauation (3.10)
but with different initial conditions

dq, dq 2q1(t,t) dq1 (t,t) 0 0, q2Ct,t) = 0. - Ct,t 1. (3.21)
dt dt

After this~equat-ons C3.12D and (3.13' immediately determine all
coefficients of the quadratic form (3.2D exceptt*,\the free term
:t~t'" 'which can be found from the Schrdiner eouation

dV:
Lh- = HK. (3. 22
_t

The final result :s as follows:

K(x.t;x',t') = [2nihq2Ct.t'] 2{ q + q - 2xx']-

C3.23)
- [x ± x' [Fl zq1]] hq1 F2 - r f( -ri ( iJ}.X7 + --Fl q1] + ) T

hq2 2 r 2h q 2 , ' 14
2 t

where
t

Now let u: discuss the structure of functions q, and q2
solutions of eq.(3.10). Suppose we look for a complex solution of
this equation in the form 0 qa(t):=(t)exp[[L(t)], T and y' being
real functions. Then we get two equations

77+(2 C t2 ('3. 25)

7M + C2i=. 13.25)

From the last equation we qet

7 i = const (3.27)

Then ftction (t' obeys the nonlinear eauation



_+ =0Ct- ,3C 28D
Suppose *it) is an arbitrary solution of eq.C3.28). 7henjfunctiors

,oM ,Ctt')and q2 Ct t' )can be expressed in terms o:f qft" and

T=~, f 71 T 3. 29)

as f Ollows:

q1ct.t') 0 =T ,D- , t w C3.30)

Usi1ng these expr ess ions, .,we can r ewr i Te 3. 22 inl a mor e svmmet-
rio form:

K~x~t;x',t.') ex xf[~~~~J" L
L27rhisin7CtXtD e 2h L~t

L j~~Ct)X 2  +j t ) ,
- J+ cosVct~tD

*t I I 2hs inzC t,t'
t A rvt 1/2

- 2[lict) it'j xx' 2xfdxfCT)- Si I sn'@r.'}

{(jtDD /2

4. Coherent states.

If we choose,,,complex solution --f' eqJ. 10) satisfying an ad-
ditional condition

q*, - q~q= 2L. (.1

which is equivalent to the choice Q2=1 in relatic2. C3.27>, then wf
can construct a nonhermitian Operator --linear intearal of motion



ACtD : L2h) -
=2 qCt -C' .(t) x + d-rfC7.r) C-r) C 4.2)

t
- i.(2h)-ldeLJ ( t J -t~ -(n + L )ix J dzf(Tr(l] +

tL

- ijie '(t>- '(tD ] ,4.3)

Ct' is arbitrary) satisfying bosonic annihilation-creation opera-

tors commutation relationAALD. A tJ : 1. (4. 4D

Thus we can _-nstru:L an overcomDiete set conerent states
O(x.t) satisfving both the Schrodinger equation and the equation

A(t)0aCx.tD = OkaCx,t), (4.5)

a being an arbitrary complex function. The explicit expression
for these states can be written as a special case of general for-
mulas for coherent states of multidimensional quadratic systems

found in /15.18/'

1 2h r J

- 1- a12 +~j, 1/2-r
2 2L 2 2 (t

... X

-d r e r 1/ TW,.~ d rlTttJ+dfCT lLb afdTfCrT ____

t -r '.L ~ ~ " sinjCtvrD1dfC d eLt

h d4 1jsr I V"CDt, ?"C T) t" TC s D

The expectation values of x and p in these states are

Re[a>e(t)] - r drfC)t r 1n C4.7)
drLt(D~D"



-14

d
<alpla> l- x Ia>. (4.8)

dt
The variances

a = a 2 la> - [<'apla>] 2. a = .al"2.I>- 2

depend neither on a nor on fCt, but are compieteiy determined by

the function qCt] /18/:

- Iq(t) ' 2- r4.gD2 a

h h %

jq~t]) 12 1 + (4. 10)
Their product

h 
2

varies in time; moreover, it is greater than the minimal Dossible

value h2/4 provided i*0. This is explained by the fact that A state
(4.6) is really correlated coherent states /18,27/ with nonzero

correlated coefficient

<xp + ox > , 2 -' 1x><Dr
1/2 2 1/24.12)

xp

Correlated coherent states minimize the Schrodinger-Robertson gen-
veraiized uncertainty relation /182.7/

axapl 1 - r2] > h2/4. (4. 13)

since the substitution of (4.11) and C4.12) into (4.13) trans-
forms this inequality into the identity.

5. Fock's states.

It is well known /28/ that coherent states are generating

functions for Fock's states:



I > = - In>, C5. 1)
n=O CnT).,!

A+AIn> = nln>. r5.2)

On the other hand, on exDonentlai function of a Quadratic

form is the generating function for Hermite's polynomials /29/.

Thus one can obtain the following formula:

-1/2 -Ln(t)
.xln> = 0nCx,t] = [2 n! 0 Cx,t)o

0 Hn [ -hx + fd-rf C]-- 5.3)
[ t dT ( (L5 )1/2 ]I]

0'(x,t) being given by eq.(4.5) with a=O. Functions (5.3j) are

also eigenstates of the operator 0%0, (considered first by

Lewis ,"i,2/)

ECti) = h (A + 1/2 = a + - xp]+2 + ] P
+2Pe[FCt1'e LT(t)[Tt 1 4]+~x]~I~~ 2} 5

where
t

FCtL = fdrf([ + fj?]eL-C(t), C5.5)
th t,

andAfunctions )(t). ?'(t) satisfy eas. E 3.25)-( 3.29) with the

given positive constant E2.

ECt)OnCx.t) = M In + 1.,2] On  n=O,1,2,... C5.5)

,l 12perator ECL) is an integral of motion coincidina with the

usual energy operator in the case of time-independent functions Q

and f C provided the choice 2=-co is made). Therefore, it can be

calledA-generalized energy operator'.
If we define an "uncertainty product" as



AxAp [ <mix2 n> - <mixln>2 ] <mix~n> - <mIxIn>] 0

o[( <mlP In> - mIpln>2  ]-[ <mp 2 In> - mlpin>2  ] / }1,2
01 <m p'n - ,,l n C5. 7)

then the following formulas can be obtained:

12 /2] 5.8

[ AXAD] , n= h [1 27 ][n + 2n +i]C5.8)

77 1/212IAxApn,nn hl *2 ] [Cn + 2(n + 1)] C(5. 1)

AD h (11 2[ n ) ] /5.1i0)

All other products are equal to zero.

5. Mode excitation by delta-impulse.

As an examplewe consider the simplest time dependences of
the effective frequency and "force' in the form of delta-impulses:

2Ct + f _ ,46C t:. W>O. r. 1

fO, It" a,,2 . a-*C, f-m, af-F=const. C5.2D
0, t I a,/2

The dependence (5.1] can be realized approximately in the
case of * very fast ionization of the medium when the dielectric
permeability c = i - 47ne2/mw2 turns into zero due to an instant
growth of the electron concentration ,' here w is th resonance
frequency of the mode) and then quickly restores t _,,initial value
4x due to recombination. Some physical effect: in such a "plasma
window" were discussed6f_ in ref.,/3O.',.

Further calculations are based in part on results of ref.
/31./.,-

(The Hamiltionian of this system is cf the form



fy

p2 TL2

+- + ,L f(tfp. (6.3+2m 2 J

--- ol lowinQ ti.e usuai procedure ,.'S,/ and takinc into conside-
ration the r esults obtained in /2!/ nn nn mntruct the linear

integral ofAotion for the Hamiltonian (5.3).

ACt) s i - x - WcosM]I+ &t),
21/21 p0  X0

t>0, (6.4)
where

po = z/2, xo= h/m2]/2, 8Ct= ~ ( - FW/2]. F = Iimf a.
f- M

0

One can check that integral of motion (6.4) and its hermi-
tian conjugate operator satisfy the commutation relations of bo-
son creation and annihilation operators,

[A.A ] = 1.

The ground state of~quantum oscillator trarsforms to a cor-

related coherent state (4.6) after S-kickinq of[Treauency iIt is
necessary to put q(t) = e Cot - W4A2)sinQ2 t rnformu Ia (-4.2])> with

the variances (4.g), (4.10] equal to

h w2 W
ax= 1 -

2sin - - sin2L

1 ww

- - fcos
2 Ut + - sin2gt

The correlation coefficient (4.12) is nonzero after 6-kicking

and is equal to

r = 1 - i + (049]sin2 2M + (WIC2] + W2Qsin }.

The squeezing cefficient h=mI2 lax lo,] is not equal to
unity and is given by7formula



Tj2 T, 11/2

1 - sin2  s in2S2L

L 2  J
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