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Abstract.

The problem of quantization of the electromagnetic field in-
51de resonator filled with a dielectric med1um with time-
dependent characteristics in the presence of %heAexternal alter-
nating current is studied. The exact propagator. coherent and
Fock’s states are obtained for a separate quantized mode of the
field represented by a quantum oscillator thh t ime-dependent
frequency linearly coupled via momentum w1thAexternal current.
Delta-pulse excitation of the medium is considered as, example




1. Introduction.

Time-dependent systems are observed in various physics expe-
riments. Two general types of such systems are: that which is
formed through its own environmental conditions. and that which
is formed when external forces are added. In regard to the second
type. various experiments are being carried out to see how an ap-
plied time-dependent electric, magnetic or other field can alter
the physical properties of materials such as semiconductors and
superconductors. Experiments show that a system becomes time-
dependent when a time-dependent electric or magnetic field (such
as a.c.J) 1s applied.

The aim of the present paper is to investigate the behaviour
of a quantized mode of the electromagnetic field inside a resona-
tor filled with a dielectric medium acted on by some external
"pumping” electromagnetic field and external alternating current.
Due to this "pumping” the properties of the internal medium beco-
me time-dependent. e

First we study the problem of quantization of electromagne-
tic field in the case of a time-dependent medium and external
current. We show that the dynamics of every mode is the same as

the dvnamics of a time-dependent forced harmonic oscillatcr. There-

Mafore the rest of the paper 1s devoted to the problem of findina
exact solutions for the time-dependent forced harmonic oscilla-
tor. This last problem was considered by many authors: see, e.q..
refs. 71-13 and especially ~14-19/ where gquantum systems with the
most general quadratic multidimensional Hamiltonians were studied
in detail. The difference of our study from the previous ones
consists in the unusual coupling with the external force: not
through coordinate but via momentum. Besides. we represent the
known formulas for the propagators and eigenfunctions in another
parametrization than in the previous studies and calculate some
products of matrix elements which were not given earlier.

The special case of time-dependences of the frequency and
external force 1n the form of delta-pulses 13 considered to 11~
lustrate general formulas. . » A
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2. Fleld quantization 1n a time-dependent medium in the
presence of an external current.
i

The well-known usual scheme of quantization ut“elecyqpmagne—
tic field in the uniform time-independent medium (see, e.g.20/)

results in the roplacement of the field varliables by a bountable
set of generalized canonically conjugated coordinate and momentum
operators obeying harmonic oscillator equation of motion. Here we
consider a more general case when dielectric and magnetic permea-
bilities depend on time (but not depend on space variables). and
some time-dependent external current iz present. The same prob-
lem. but without external current, was considerea 1n ~Zl~, and the
most general case of nonuniform#d and time-dependent medium C al-
so without current) was studied 1n /22-.

For the sake of simplicity we confine curseives o the simp-
lest case of the so-called "unidimensional electrodynamics'. when
linearly-polarized mutually perpendicular electric and magnetic
fields depend only on the single space variable § and time t.
Then Maxwell’s equations assume the following form:

aE 1 @B 1 aB 1 8C 4nm

e at —= — —+— . D=e(L)E. (2.1
€ c Bt pt)aE - @ o C

introducing the vector potential as usual.
1 adA aA
E=- — ., B=-— 2.2)
c o at ag

we get the second order equation

1 8 A 1 8%A 4m
— __[g(tw__ ] - — — = — J§.t 2.3
2 gt at m(t) ag
which c01n01des with culer’s eguation
a dL é 4L aL
+ — -—_— = 2. 4]

dt a(aAsat) d€ a(aArag) aA
for the Lagrangian density

1 (eCt) (@AY aa 12 1
= — — |=— - — + iA. (2.5
8n C at n(t) (0§ 2

The cannonically conjugated densit. i3




aL e(t) aA 1

n-= = 7 — = - — D. (2.8)
d(8A-8t) 4mc© at 4nmc

so that the Hau.ltonian density is given by

aA 1 D? 1 [aA 1? 1
W=0—-L=— + — - - JjA. 2.7
at 8r | e(t) i) (8¢ C

We assume the field to occupy an ideal resonator with walls at
the points &§=0 and §=L. Then the following mode decomposition is

natural:
: n) 32 e nm
€0 =l 1 nx,(t3sin| - g. (2.8)
1172 Pl N
ACL. &) = |— sin|f — §1. (2.9)
8 [Bn] ; n ’ [ L &]

After this the field Hamiltonian turns into the Hamiltonian of a
countable set of noninteracting harmonic time-dependent forced
osclllators:

2
HCL) Twcn £)dE = ) ! i [Cm]z xi } £ (L) } 2.10)
= . = = + = = + Pt (2.
. m L2 [ e L] eCt) noon
where
e ) } - llz‘cg L) si [ ™ g]ds (2.11)
¢ = - i(g.L) sin| — : .
n o mc?n?) L

To quantlzéfﬁamlltonlan (2.10), we have Lo treaif;ariables X
and P, @S operators satisfying canonical commutation relations.
At least two variants are possible. First, we may consider P, as
the generalized coordinate. and X, as a generalized momentum. Se-
condly. we mav make the opposite choice: p_as a generalized mo-
mentum. and x_as a generalized coordinate. In both cases we have
the narmonic oscillater Hamiitonianzs with. generaliy speaking.
variable masses and frequencies. Now let us take into account
that reallv the magnetic permeabilitv differs from unity to a very
@@ small value 1n ail cases whenﬁﬁinear equations (2.1) hold.
Thus from the phvsical point of view it is sufficient to consider
the function w(t)=const=1. Then we mav study either the oscilla-




tor with a constant frequency but with a time-dependent mass. or
the oscillator with a constant mass and with a time-dependent
frequency. The second situation seems much more familiar and con-
venient. Therefore our choice is to treat X, @5 the generalized
coordinate operator, and p  as the generalized momentum operator
satisfying the commutation relations

[ %0 . Py ] = 183, . (2.12)

n

The physical significance of such a choice is that the electric
displacement vector plays the role of the generalized coordinate
while the generalized momentum is related ts the vector potential
or the magnetic inductlion vectcor (see also refs..23-26- in this
connection). N

Since all modes inaHamiltonian (2.10) are uncoupled. we
shall omit hereafter the number of the mode and co¥nsider the
following one-mode Hamiltonian: -

~ 1 ~ ~ ~
H=C [p2 - PR3 ] + FCLID . (2.13)
2
[cnn)2
WPt — (2.14)
Lee(t)

This Hamiltonian possesses &heicurlous pecullaritv: it contains
coupling with an external time-dependent current ( represented by
function f(t) ) not through the coordinate, but through the mo-
mentum. Therefore,qptaining explicit solutions to this not very
usual problem seemsjrather interesting task.

3. Propagator.

We beqin with calculating the exact propagator for the
Schrodinger equation. 1.e. the integral kernel relating the valu-
es of the wave function at the instanis of time L’ and t

¥(x.L) = fdx’K(x.t;x’t’)w(x"t'). o (3.1)

. s _ : .
Since  Hamiltonian (2.13) is a nonuniform quadratic form of the
coordinate and momentum cperator. the propagator also 1s an expo-

The




nentiai of some nonuniform guadratic form ~12-18~

Kix.t:x".,L7) = exp[a(t.t’]xz + bCt.t"dxx” + clt. b Ix’? +
+ gqlt,t7Idx + hCL,L7)x™ + dlL, L) ]. (3.2

Substituting this expression into the Schrodinger squation, one
can obtain a system of coupled nonlinear ordinarv differential
equations for time-dependent coefficients ¢f the guadratic form,

e.q.

da

— = 2tha? + L) 2th . (3.3)
- 2ihab. (3.4
dt

de Lh 2

— = — b2, (3.8
d 2

dc 2 L

— = - 21the? + — P, (3.6)
dt’ 2h

db

— = - 2uRch. (3.7)
dt’

da  th .2 3.8

A .
e o
and similar eguations for the ccefficients 27 linear form In
(3.22. Egs. (3.32-(3.8) can be solved with the aid oannzatz

v dg l dq
alt) = — — | cit’3 = - : (3.3
2hg(t) dt chg(t’) dt’

th
where, new function q(t) obeys the classical squaticn for the <
cillater with 3 7 ime-dependent Traguency

Wb
|

2
d*q
+ Pttty = 0. (3.10
T :
S
However, certain care 15 rGQU{gEd. 3ince eg. (Z.10) poscesses two
independent solutions. =2 thal,functions glil anag qlt’’ in (380

are different in the general cas=.
There exists a more direct and convenient method of calcula-
ting the propagator proposed in 16 and developed in ~17.18-. It




Is based on the concept < time-dependent integrais of motion
(whose role ror cbtaining exact solutions of guantum mechanical
problems was stressed in refs..~1.2-). An integral of motion 1s an
operator £atlsivying the eguatlon

al N

th — = ['.I]. (3.11)

at ) A
Suppose two operators X(t.t'2 and PCL.L17) satisiving the conditions
XCt,L")=x, P(t.L 2=p are known. Then the kernsl Klx.t:x’t’> can

} - - b s . <2
be tound from the eaguations ~168-13.

>

~
KOLLUMIKGx U278 7Y = ¥ KMx, Lix't) (2.12
. 8
r - 1 » i - e o~ 5 ',.',’ «r - ..,’ o~ ~~ -
FLLULTIKIX. LY = th— ©lx.wn R ECH
, ax’
THa . N

For quadratic Hamiltonians operators X and F are evidently linear
combinations of operators x and p:

PCt.t”)

ACLLID + ALL X + 8 (L), (3.14)
KLt

AJCL.L7Dp + A0 L D% + 8,0, (3.19)

Substituting these expression into (3.11) we get a set of
linear ordinarv differential equations

daA dA 48
1o A,. 2 = wzitzal. 1= - FLLIA,. (3. 16)
4 i ~4
[ GL. aw
dA dA dé
3 - A, B wztt)aa. 2 - - FCLIA,. (2.17)
dt dt dt
with the 1nitial conditions
AL = ALY = L ACL L = A(Lt) = 0
8, (.t = 8L,k = 0
The solutions i egs. (3.162-03.12) are ac oliows:
dg t dg
A - AT N S R a i S S f(rﬁa;l dr.




dq, . da,
AL, L73 = —g(t. 7). ALt t7d = =, 3 (t.L7) = - [f(1)—° dr,
dt . dt
3.200
where both functions q, and g, satisfv the same equation E3.10)

but with different initial conditions

dq, dq,
q,(t.ty =1, —t,t) =0, g, lt.t) =0, —(t.0) = 1. (3.21)
dt dt
After this,equations (3.12) and (2.13) immediately, determlne all
coefficlents of the quadratic form (3.2) exceot%&ﬁ\the free term
(L. t72 which can be found from the Schrodinger eguation
dh
th— = HK. (3.22)
4t
The final result s as follows:

' -1/2 i . 5 >
Kix.t;x .t = [Enthqztt.t’)] expy{—— [ QX" + gux’ - Exx’]-
th2

(3.23)

- [XFZ + oy’ [quz - f;qu]] + L q1 - % } f(r]jlf_T)FZ(‘t)},
t

Now let us discuss the structure of,functions g, and g, --
solutions of eq.(3.10). Suppose we look for a complex solution of
this equation i1n the form & q(t)=n{tlexpl1y(t]]. % and ¥ being
real functions. Then we get two equations

n + W?(LIn = Mo, (3.25)

m + 2m=C. (3.26)
From the last eguatizn we get

7y = const = Q (3.27)

ThenAfQ@txon W L) obevs the nonlinear eguation




7+ 0P = Bor’ .,(3.28)
Suppose Wt) is an arbitrary solution of eq.(3.28). Then.functlers
oS qltt.t’) and qzﬁt.t’)can be expressed in terms c¢i m{t] and

ot

) = [ — (3.29)
e 7 (o

as follows:

ntlcosy(t. L) (b’ In(t)siny

q,(t.t") = - : (3.30)

L) Q
1 GABE ) @B sinyCL.L’3
gt t’) = ————— smy(t.L7) = C(z2.2n

[yCt)yCt )11/2

Using these expressions. we can rewrite (3.23) in a more symmet-
ric form:

[yCtyy(t’)1/2 Y12 ! ML) )
Kix.t:x",L") = expy — X -
2rhisinyCt. t’) 2h | Lo

L) z] {
—_— X’ +
LGRS 2hsiny(t.t")

. 172 t d L) 12
2[1(t)7(t’)] xx'- 2x|dTf (1) — —_— siny(t. L7} -
. dt (D)

t 4 CABR
2X" |dtf(ty— — siny(t. ) - (3.32)
g dt (T2

th e {Sinwtt.r) } Td oo d { siny(s,t”) } ] }
mMit)— {——m8m—— sfl(s)— n .
t dr { Gpezn 173} 7. ds | (z(s) 12

t

I

[ cosz(t.t’)[ yCLIx2 + %Et')x'a]—

4. Coherent states.

If we choose  compler solution of eq.(3.10) satisfying an ad-
ditional condition

qg* - q#q = 2u. (4.1
which s equivalent to the choice Q=1 1n relaticn (3.272. then we

can construct a nonhermitian operator --iinear integral of motion
714,18~




ACLY = acznj'l’z[ gltdp - ACt)x + Idrf(r)d[r)]'= (4.2)
N t
- Ltahy‘l’zeLVCtJ[nCtzp - Cp o+ umix - [ dTfCnh -
%
- L&n)eLth)—Lx(t) ] f4.3)
14
(t” 1is arbitrary) SatisfyingAbosonlc annihilation-creation opera-
tore commutaticn relation

[ ACLY, 2*(t3] -1, (4. 4)

Thus w2 can <INsStrucl an overcompiet= szt 20 coherent sitates
Y lx. L) satisrving both the Schrodinger equation and the equation

ACLP,Cx. L) = a(x.t), (4.5)

@ being an arbitrary complex function. The explicit expression
for these states can be written as a speclial case of general for-
mulas for coherent states of multidimensional quadratic systems

found 1n -15.18~

Y 4174 ¥ LM 2 1
Yalx. I = [ — J eXpy - o i O (G

nh o mw
. © 4172
i 1 r g E
- — a%eBY - _ ja)? - [«~2] 2y VBR o - (4.6)
2 2 L he]
t d ret¥®) 212 ey d (siny(t.T)
-1 dtf(T)——l——————— + |— o~ ¥ M) - |—m——| -
t’ dTi » 7(T) h t’ dTi » i(t)
- 4 fsiny(t. o) & d (e t¥t.9)
- — J'drf(t)—  pe— stf(s)—— _—
h t’ dt ¥(T) t’ ds 7(s>
The expectation values of x and p in these states are
2n 1Y@ t d  (siny(t,T)
<ajx|a>=|—— Re[ae-w(t)] - [d‘tf('r)—-— { n - YE ,C4.7)
4 T dr [ (y()y(T)]




d
{alpla> = — <a|x|a>. (4.8
Ip mn

The variances
2 2 > 2
o, = <a|p®|a> - [<a|p|a>] . O = saxTlar - [<a|x|a>]

depend nelther on a nor on f(t}, but are compietely determined by
the function g(tl ~18-:

h h
o= - |q %= — | (4.9)
2 27
h h nz
_ . 2 _ _ . -
AR 7[ 1+ ] (4.10)
Their product
52
05y [ 1+ 7y ] (4.11)

varles In time; moreover, It 1s greater than the minimal pgislble
value R4 provided ##0. This is explalned by the fact that state
(4.6) (s really correlated coherent states 138,27/ with nonzero

correlated coefficient

{Xp + DX>,2 —<X><{p¥ 7)
. — - 4.12)
icxoP? I B

Correlated coherent states minimize the Schrodinger-Robertson genm-
qeralized uncertainty relation 18,27~

6o [ | - ra] > K4, (4.13)
X p

since the substitution of (4.113 and (4.120 1nto (4.13) trans-
forms this inequality into the i1dentitv.

5. Fock’s states.

It 1s well known /283~ that coherent states are generating
functions for Fock’s states:




o a
@ = Z ——— > (5. 1)
A*AIN> = njn>. (5.2)

On the other hand, on exponential function of a guadratic
form is the generating function for Hermite’'s polynomials ~29-/.
Thus one can obtain the following formula:

-172 .
o= gty = 2] ey Ve

¥ 12 t 4 [sinyCi, T2
oH [|— X + | df(T)— - - vl , (5.3
A \ dr [{ y(Wy(T)2

t

w (x.t) being given by eq.(4.6) with @=0. Functions (5.3) are
also elgenstates of the operator €W (considered first by
Lewis ~1.27)

SR AV I S T L P (O
; ERe[FEt)e"w(”[n[g - Lif;c] . nQ]] . |Fm|2} , (5. 4)
where .
Fau = [ defco [%; R n}n]em“, (5.5)
“ :

and,functions n(t), y(t) satisfy egs. (3.25)-(3.28) with the
given positive constant Q.

ECLI$ (x.L) = m{n . 1"’2]‘% . n=0.1.2.... (5.6)

ﬂ%~§perator ECt) 13 an integral of,motion coinciding with the
usual energy operator in the case of time-independent functions Q
and f ( provided the choice Q=w 1s made). Therefore, it can be
calledA ‘generalized energy operator".
If we define an "uncertainty product” as




43
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Axap = {[[ mpxfn> - <mlxn>? ] [ aix®|n> - <m|x|n>? ]] °

e[[ m|pfin> - <m|p|n>® ]*[ mp?In> - <m|p|n>2 ]]1/2 }1/? (5.7

then the following formuias can be obtalned:

(axap], =1 - ;; [+ 12). (5.8)

[AxAp] - h[l - ]w[(n - 2)Cn + 13]1/2 . (5.0

n2.n 2.2
rMm

*2

(&xep), .= B[ - &:nz ]l/z[in . nn]l/a. (5.10)

All other products are equal to zero.
3. Mode excitation by delta-impulse.

As an example,we consider the simplest time dependences of
the effective frequency and "force” in the form of delta-impulses:

WLy = P - Wa(L). WO, (6. 1>
sy - ) L L) < ae
r(b) - {OO |tal al,a . a-)O. f"m. 3("F=C0nst (62)

The dependence (86.1) can be realized approximately in the
case of & verv fast ionization of the medium when the dielectric
permeability € = 1 - 4me?/me® turns into zerc due to an instant
growth of the electron concentration 7 here w 1s thg resonance
frequency of the mode) and then quicklv restores thesinitial value
mdue Lo recombination. Some physical effects in such a "plasma
window" were discussed #WN\ in ref../30..

Further calculations are based in part on results of ref.
/317, =

The Hamiltionian of this system is of the form




r2 o2

A D mx ~

= — - [522 s wacu} + FCLIP. (6.3)
om 2

«—Following the usual procedurs ~12- and taklng 1ntc conside-
ration the %ﬁsults obtained in /21 one can construct the linear
integral ofAmotion for the Hamiltonian (8.3),

~ ”~

ACL) = é‘:ﬁz{‘?— et - aa sint] - L[xszem‘ - WCOSQt]}+ 8CL),

P, Q Xq
t>0, (6. 4)
where
m~1/2
5, = [anR]Y2. x = [n/m@)1? 5(t)=[—;—n] (16F - FW2). F = Linf a.
as0 °
fm

s e
One can checka that,integral of ,motion (6.4) and its hermi-
tian conjugate operator satisfy the commutation relations of bo-
son creation and annihilation operators,

[AA*] = 1.
a
The ground state of,quantum oscillator trag;forms to a cor-
related coherent state (4.8) after d-kicking of,frequency (it 1s

necessary to put gCt) = elgt - (WADsInX 1n, formula (4.2)). with
the variances (4.38). (4.10) equal to

i (1 P - e
C = — + = Sin - — Sin .
*  2ome 92 Q ]
1 w2 W
6 = —| 1 - —cos®® + — sin2t|.
P 2m§2[ ? Q ]

The correlation coefficient (4.12) is nonzero after &-kicking
and !s equal to

r=1- { 1+ [wﬁm‘]sm?am + [wgﬂz]cosaﬂt + [W92§?]51n4!2t}—1.

The squeezing igffficient h=m9[cx/cp]1’2 1s not equal to
unity and is given va'ormula




£5

* {'12 i, - 1/2
" 2 v
1 + - sin“®@® - - sin2tt
P Q
R =
y2 W
1 + —.cos?t + — sin2t
L Qz Q .
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