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ABSTRACT

In this paper we consider the problem of robust estimation of the scale of the

location residuals when the underlying distribution of the data belongs to a contam-
ination neighborhood of a parametric location-scale family. We define the class of

M-estimates of scale with general location, and show that under certain regularity as-

sumptions, these scale estimates converge to their asymptotic functionals uniformly
with respect to the underlying distribution, and with respect to the M-estimate

defining score function X. We establish expressions for the maximum asymptotic

bias of M-estimates of scale over the contamination neighborhood as a function of
the fraction of contamination. Using these expressions we construct asymptotically

min-max bias robust estimates of scale. In particular, we show that a scaled version
of the Madm (median of absolute residuals about the median) is approximately min-
max bias-robust within the class of Huber's proposal 2 joint estimates of location
and scale. We also consider the larger class of M-estimates of scale with general
location, and show that a scaled version of the Shorth (the shortest half of the data)
is approximately min-max bias robust in this class. Finally, we present the results
of a Monte Carlo study showing that the Shorth has attractive finite sample size

mean squared error properties for contaminated Gaussian data.
The August 1991 Technical Report No. 214 form of this paper is a considerably

revised and extended version of the October, 1989 Technical Report N. 184.

KEY WORDS: Bias robustness, M-estimates, scale, location, Madm, Shorth

ror I
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1. INTRODUCTION

A main theoretical approach to robustness has consisted of studying the asymp-
totic behavior of an estimate when the underlying distribution of the data belongs
to some neighborhood (e.g. c-contamination or Levy neighborhood) of a paramet-

ric model. In this context one tries to obtain estimates which optimize some ap-

pealing criterion, e.g., minimize the maximum asymptotic variance over a given

neighborhood. Huber (1964) is the earliest example of this approach, with focus on

M-estimates of location.
The best known part of Huber (1964) is the result that a particular M-estimate

of location, namely the one with psi-function O(x) = min{c, max(x, -c)}, minimizes
the maximum'asymptotic variance over symmetric e-contamination neighborhoods
of a Gaussian model. A considerably less well l'nown part of Huber (1964) is that

concerned with asymptotic bias of location estimates for unrestricted asymmetric
c-contamination neighborhoods of a nominal Gaussian model: among all translation
equivariant estimates, the median minimizes the maximum asymptotic bias over
such neighborhoods. The relevance of this result seems considerable in view of the

needed realism of allowing asymmetric contamination.
Recently there has been a renewed interest in bias-robustness. In particular

Donoho and Liu (1988) have shown that minimum distance estimates have desir-

able bias robustness properties. Martin, Yohai and Zamar (1989) have obtained
asymptotically minimax bias regression estimates, and Martin and Zamar (1989)

have obtained minimax bias estimates of scale for positive random variables.

In this paper we obtain minimax bias robust estimates of scale for contamination
models with a nominal distribution which is symmetric about an unknown location
parameter. More precisely, we assume that

(AO) Fo is a specified distribution function with an even and unimodal density fo.

The distribution F for independent and identically distributed observations X 1 ,.. .,X

belongs to the c-contaminated family

.F= F(x) : F(x) = (1 - )Fo (X- 10) + EH(x), x E R, c fixed in (0,.5)}, (1)

where po is the unknown location parameter, so is the unknown scale parameter and

H is an arbitrary (and unspecified) distribution.
The first step in obtaining a minimax estimate is to derive the maximal asymp-

totic bias BT(c) of an estimate T over the family F,. From BT(c) one may construct
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a maximum bias curve, namely a plot of BT(e) versus c. The maximum bias curve

includes the gross error sensitivity GEST, namely the slope of BT(c) at c = 0, and
also the breakdown-point es., which is the location of the singularity where BT(f)
goes to infinity. While the two-number summary consisting of the GEST and e.
provides considerable information, one naturally would like to have the entire curve
BT(c) if possible. Not only do such curves allow one to check the range of accuracy

of the GEST as a linear approximation, they may also lead to different preference

ordering of competing estimates that one might make on the basis of GEST and c.
(e.g. see Section 5 and also Martin, Yohai and Zamar, 1989, who find min-max bias

robust regression estimates with GEST = oc).

Figure 1 displays the maximum bias curves for three proposed robust estimates
of scale: H95, a Huber proposal 2 estimate of scale, adjusted for 95% efficiency
at the Gaussian model (Huber, 1964); the median of absolute deviations about
the median (Madm); and the "shortest half" of the data (Shorth). Observe that

Eh4,,th = E d. = .5, the largest possible value of e* and ctgs = .17. The breakdown
point of a classical Gaussian maximum likelihood estimate is typically zero. The

GEST lines provide local linear approximations to the maximum bias, which are
reasonable for not too large values of e (just how large the reader can judge for
himself - see the rule of thumb in Hampel et. ai. 1986).

In this section we show that, under certain regularity conditions, the finite sample
value and the asymptotic value of robust M-scale estimates are uniformly close, as

F ranges over the family F,. Moreover, prior results in Martin and Zamar (1989)
indicate that the bias is a significant component of the mean-squared error for rather
small to moderate sample sizes, depending on the value of E.

The remainder of the paper is organized as follows. Section 2 introduces class of

M-estimates of scale with general location. This class includes the well known Huber
(Proposal 2) M-estimates of location and scale, and also the class of scale estimates

called S-estimates, which are associated with so called S-estimates of regression

(Rousseeuw and Yohai, 1984). Section 2 also shows that, under certain regularity
conditions, the finite sample value and the asymptotic value of M-estimates of s-,ale
are uniformly close, as F ranges over the family Y. Moreover, prior r'ults in
Martin and Zamar (1989) indicate that the bias is a significant compor nt of the
mean-squared error for rather small to moderate sample sizes, depending on the
value of f. Section 3 gives a class of generalized bias functions t o deal with the

intrinsic asymmetry of the bias of scale estimates. Section 4 (,nstructs minimax
bias-robust estimates for the class of Huber (Proposal 2) NI-estimates of location
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and scale, and shows that the bias robust estimates are well approximated by the

(Madm). Section 5 constructs minimax bias-robust S-estimates of scale, which are

shown to be min-max in the larger class of M-estimates of scale with general location
introduced in Section 2. Section 5 also shows that these estimates are reasonably well
approximated by the Shorth. Section 6 briefly discusses the difference between bias-

robust Huber estimates ".d S-estimates. Sections 7 and 8 give some encouraging

finite sample results. Finally, Section 9 closes with a brief discussion of the GES

linear approximation to the maximum bias curve. Proofs of lemmas and theorems

are given in Section 10.
Our results on the Shorth complement recent results of Rousseeuw and Leroy

(1988), who propose the Shorth as a robust scale estimate. They derive the influ-

ence function, the finite sample breakdown-point, and a correction factor to achieve

approximate finite sample size unbiasedness at the normal distribution. Another

interesting recent work on the Shorth is that of Grubel (1988), who establishes
asymptotic normality.

2. M-ESTIMATES OF SCALE WITH GENERAL LOCATION

Estimates of scale are conveniently viewed as translation invariant, scale equivari-
ant functionals S(F) defined over a subset F of distribution functions F, which is as-

sumed to include all the empirical distribution functions F, and the e-contamination
family (1). The scale estimate i,, is then obtained by evaluating the functional S(F)

at F,: i,, = S(F ).

Suppose that

(Al) X is even, nondecreasing on [0, oo), bounded, with at most a finite number of

jumps, and that X(oo) = 1.
Let

b(x) = EFoX(X)

and for each t E R, let S(F, t) be the M-estimate of scale of X - t defined by

S(F, t) = sup {s: EFX[(X - t)/s] > b(x)1. (2)

We also assume that

(A2) f < b(y) < 1 - f, for a fixed value of f E (0,0.5).
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In view of (2), (Al) and (A2), there is no loss of generality in the assumption that
X(oo) = 1.

The definition (2) is needed to insure uniqueness and to handle possible discon-
tinuities of F and X. If X (or F) is continuous, then S(F, t) satisfies the equation

EFX[(X - t)/S(F,t)] = b(x). (3)

Since the location parameter go in (1) is unknown, it must be estimated along
with so. Let T(F) be a location and scale equivariant functional, that is,

T[F((x-t)/s)] =sT[F(x)]+t, V tE R , V s>0.

The M-estimate of scale with general location is now defined as

S(F) = S[F, T(F)].

Some particular cases are:

Huber Proposal 2. In this case T(F) and S[F, T(F)] simultaneously satisfy (3), with
t = T(F), and

EFO[(X - T(F))/S(F, T(F))] = 0, (4)

where

(A3) ?k(a) is odd, nondecreasing, bounded, with at most a finite number of jumps.

In particular the Madm is obtained when X is the jump function

(x)J0 if IxIa (5)1 if JxJ > a,

with a = Fo"1 (3/4), and 4' is the "sign" function

-1 if x<O0

0o(x) 0 if x =0 (6)
1 if x>0.

In this case T(F) = F-(1/2) is the median of F.
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S-Estimate of Scale. In this case the location estimate T(F) is a minimizer of S(F, t),
that is,

S(F) = inf S(F, t). (7)
tER

It is not difficult to see that S(F) and T(F) satisfies (3) and (4) with tk(x) = X'(x).

Since X(x) is bounded, b(x) tends to zero as x tends to infinity, that is, V(x) is

redescending. In particular, the Shorth is obtained when X is given by (6). Observe

that the Madm and the Shorth have both the same chi-function (6) but different

centering functionals.

The following lemma shows that under mild assumptions the breakdown point of

the the functional S(F, t) is larger than e. The proof is straightforward and therefore

omitted.

LEMMA 1. Let K > 0 be given and suppose that (AO), (A1) and (A2) hold. Then,
there exist 0 < s, < s2 < oo such that si _ S(Ft) < s2 for all Itl < K and

F E,.

Theorem 1 below shows that, under some regularity conditions which include the

continuity of X, S(F,,) --+ S(F) a.s.[F] as n -- oo, uniformly over .F x C, where C

is a certain class of x-functions. Unfortunately, the case of X-functions of the jump
type given by (5) is not covered by Theorem 1. However, Theorem 6 and the Monte

Carlo results presented in sections 7 and 8 support the finite sample relevance of the
asymptotic minimax-bias theory for this important special case.

The following definitions are needed for stating Theorem 1.

gx(s,t) = EFoX[(X - t)/s] , hx(s,t) = (8/1s)gx(s,t). (8)

THEOREM 1. Suppose that (AO)-(A2) hold. Assume also that X and h,(s, t) are

continuous and that hx(s, t) < 0 for all s > 0, t E R. Let K > 0 be fixed. Then, for

all b > 0,

(a) lim,,, SupFEy. PF {sup,>,, suplt__K IS(F, t) - S(F, t)I > ,} = 0.

(b) If S(F) is given by (6) then lim,...,, sUPFE)- PF {supn>m JS(F) - S(F)I > 6} =

0.

(c) If suPFE- JT(F)J < 0 and

lim sup PF sup IT(F) - T(F) > 6} = 0,M-00 FEY, ,,>m 6



then

Hr sup PF sup IS[F, T(F)] - S[F, T(F)] > b .
rn-o FEX, n_>m J

(d) Let xo > 0 be fixed. The class C is defined as the set of X-functions satisfying all

the previous assumptions and (i) X(x) = 1 V lxi > xo and (ii) there exists ho(s, t)
such that hx(s,t)<ho(s,t)<0, Vs>0, VtER.

Then (a), (b) and (c) hold uniformly on C.

Remark. Suppose that a certain function Xo satisfies (Al) and (A2) and is such

that

hXO (St)= F. 1x0o( - 3- 1 <0, Vs>0,tER and Xo(x)=l, Vjjx>xO.

Then the set

0 L S/si

satisfies the assumptions of Theorem 1.

3. GENERALIZED BIAS

Although the M-estimates of scale with general location introduced in Section
2 are Fisher consistent at the nominal distribution Fo, they are in general asymp-
totically biased for F E 7. Furthermore, the "raw" asymptotic bias B,[S(F)] =

S(F) - so can be of two distinct kinds: When F is an outliers generating distribu-
tion, the bias B,[S(F)] is positive, and when F is an inliers generating distribution,
the bias B,[S(F)] is negative.

As in Martin and Zamar (1989), we consider generalized bias functions which

are scale invariant and flexible. Penalization of positive and negative bias is inde-
pendently chosen, by allowing the user to put positive and negative bias on different
scales. Specifically, we define the generalized bias

B[S(F)I LI[S(F)/so] if 0 < S(F) <_ so (9){ L2[S(F)/so] if so < S(F) < oo

where L, and L2 are continuous, non-negative and monotone, with LI(l) = L 2(1) =

0 and
limLl(t) = lir L 2(t) = 00.
t-O t-00
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We are interested in the maximum generalized bias,

= max B[S(F)I. (10)

ZFrom monotonicity of L1 and L 2, it follows that T(X, T) = max { L IS/so] , L2[S + /so]},
where S- and S+ denote the supremum and the infimum of the functional S(F) as

F ranges over yF.

4. BIAS ROBUST HUBER ESTIMATES

In view of the historical importance and high degree of familiarity of Huber

(Proposal 2) estimates we first focus on obtaining bias robust estimates in this

class. To emphasize the dependence on X and ik we use the notation S(F, X, ik),

S+ (x, ), S+(x, 4), etc.

The first step toward finding the bias robust Huber estimate is deriving the

expressions (16) and (17) for S-(x,TO) and S+(x,Tv,). Claims which are made

below without proof can be easily verified under (AO)-(A3).

The maximum value S+ (X, ?k) of the scale functional S(F, X, 0) is produced by a

point mass contamination at infinity, b,,., and such contamination also produces the

maximum value of the location estimate Tv,(F). The estimating equations in this

limit case are

(1 - f)EFox[(X - t)/sI + e = b(x) (11)

and

(1 - e)EF0 [(X - t)/s] + f = 0. (12)

Let t,,(t) be the unique solution of (11) for fixed t and let rp(s) be the unique

solution of (12) for fixed s > 0. The function m,,(t) = r,[/(t)] is continuous and

non-decreasing . Also, the pair (s*,t*) simultaneously satisfy (11) and (12) if and

only if t" = mx,,(t*) and s" = t,(t*).

The following lemma characterizes the maximum asymptotic bias due to outliers

of the location and scale Huber M-estimates. This lemma also provides an algorithm

for computing these maximum biases. We recall that Huber (1964) has shown that

the maximum asymptotic bias of the median (the minimax-bias estimate of location)

is

to = Fj-'[.5/(1 - c)]. (13)
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LEMMA 2. Suppose that (AO)-(A3) hold. For each n >_ 1 let t, = mx,,p(t,._1), with
to given by (13). Let sn = -Yx(tn) and t" = inf{t > to: mx,¢(t ) = t}. Then, (a)

lirn., tn = t° and lin-o, s,, = -yx(t*) = s*; (b) the maximum asymptotic bias of

the location estimate T(F, X, 4') is t" and the maximum value of the scale functional

S(F,x,?) is S+(x, ') = s'.

The minimum value of the scale functional S(F, x, 0), S-(X, 7P), is produced by

a point mass contamination bo at zero. In this casc the estimating equations are

(I - c)EFx[(X - t)/s + cx(t/s) = b(X) (14)

and

(1 - ,)EF0 [(X - t)/s] + c(-t/s) = 0. (15)

By monotonicity of k, t = 0 for all s > 0. Let g'- be the inverse of g(s,t) with

respect to s, for fixed t. Then, from (14) with t = 0 it follows that

S-(x,4) = go1 [b(x)/(1 - E)] (16)

Optimal Centering

The choice of 0 has an effect on the maximum asymptotic bias of the scale

estimate by virtue of affecting the bias t' of the location estimate. Observe that

since S-(X,?P) doesn't depend on k .(see (16)), the optimal choice of 4 must be

based S+(X,ik) alone.

It follows from Lemma 2 and (11), with t = t*, that

S 4') = gt,'[(b - c)/(1 - f)]. (17)

Since for all 0 < a < 1 the function g t (a) is non-decreasing in t. Therefore, by the

Huber (1964) minimax-bias result, rj(s) ? to = r, (s), for all s > 0 and 4, where

0o is the "sign" function (6). Thus we have the following result:

THEOREM 2. For each fixed X satisfying (Al), the median centering functional

minimizes the maximum asymptotic bias of both location and scale among Huber

estimates with 0 satisfying (A3).
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More generally, it is not difficult to show that Theorem 2 holds for the class of

all M-estimates of scale with centering functional T(F) having the "monotonicity"

property

T(F) < T[(1 -,E)Fo +,Eb.], VF E.Y'. (18)

The Minimax-Bias Huber Estimate of Scale

By Theorem 2 it suffices to consider S+(X, 00) and S-(X,0o) and the function ?P
can be dropped from the notations. It will be shown that under certain conditions
the maximum generalized bias R(X) (see (10)) is minimized by a jump function X".

(see (6)).

For each a > 0, let B(a) = 7(X.) and

b(a) = b(x.) = 2[1 - Fo(a)l. (19)

We begin by showing that given 0 < E < .5, Fo, L, and L2 there exists a* such that

g(a*) < R(x.) , V a > 0. (20)

Let ao = Fo'[(1 + E)/2] and a, = Fo-[(2 - E)/21. ZFrom (19), the corresponding
values of b are bo = b(ao) = 1 - c and b, = b(al) = E. Hence, letting S-(a) = S-(Xa)

and S+(a) = S+(x.), we have

lim S-(a) = lim g- = 1Fot 1 [ Fb'a(.5) = 0. (21)
a oa-ao9 0 1 - = a-aO ao 2(1 - E)j Fa (5=0.(1

and

lim S(a) = lim9 g [, 1~)- E _ limg' [c 1-,E

=lmij1 - b(a)--] 1 Fo;-(1) = +oo (22)= -ai a 1 2(1 - f)] a,

Therefore, by the assumptions on L, and L2, B(a) -- +oo when either a -- ao or
a --+ a,. By continuity of B(a) there exists ao < a* < a, such that

BH(a*) _ B(a) , V ao < a* < a, (23)
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Thus, the jump function X.* is bias robust among all jump functions X". The
following theorem gives conditions under which S(F, X.., V5o) is bias robust among
all Huber estimates of scale.

THEOREM 3. Let s* = S+(a*), where a* is given by (23), and let to be as in (13).

Suppose that in addition to (AO)-(A1), the following conditions hold:
(1) fo(x) > 0, V z E R and fo(sr)/fo(x) is increasing in IxI, V 0 < s < 1.

(2) The function ko(x) = [fo(s*x - to) + fo(s*x + to)]/fo(x) is decreasing in lxi.

(3) S-(a) and S+(a) are both strictly monotone at a = a*.

Then B(a*) :_ 77(X, ) for all pair (X, V) satisfying (Al)-(A3).

It can be shown that the conditions of Theorem 3 hold, for example, when F0 is

the standard normal distribution and c < .35 (see Martin and Zamar, 1987).

Near Optimality of the Madm

Let b" be the value of b(x..) = EFOXa.(x). Since the bias robust estimate of
Theorem 3 is based on X,., using the median for centering, it follows that the bias

robust Huber estimate is the n - [nb*] order statistic of the absolute value of the

residuals about the median (scaled by 1/a*), where ao(f) < a* < ai(f). Since both,

ao(f) and a,(f) tend to Fj'(.75) as f -- , .5, so does a*. Thus, as C --- .5, the bias

robust Huber estimate is the well known Madm, whose breakdown-point is equal to

.5.
It came as a pleasant surprise that for a broad range of f, the maximum bias of the

bias robust estimate is very close to the Madm for the leading case of the nominal

Gaussian distribution and the logarithmic loss function L 2(t) = -Li(t) = log(t).

Table 1 shows the values of a*, b* = b(a*), the minimax bias 9(a*) and the maximum
bias -(Madm) of the Madm for some values of E. The value of a for the Madm is

.674. Therefore in this case there is no appreciable difference between the Madm

and the bias robust estimates. Note in particular that even when we choose f small,

e.g. f = .05, the breakdown-point of the minimax-bias scale estimate is very close

to .5.

5. BIAS ROBUST S-ESTIMATES

One naturally wonders whether greater bias robustness can be obtained by en-
larging the class of estimates over which one search for a minimax solution. In
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a* b(a*) B(a*) -B(MADM)

0.05 0.650 0.516 0.062 0.063
0.10 0.674 0.500 0.135 0.135
0.15 0.673 0.501 0.221 0.221
0.20 0.673 0.501 0.324 0.324
0.30 0.676 0.499 0.609 0.612
0.40 0.695 0.487 1.072 1.166
0.45 0.713 0.476 1.440 1.779

Table 1. Bias-robust Huber proposal 2 estimates of scale when Fo = standard
normal. Logarithmic loss function.

particular one may consider the entire class of M-estimates of scale with general
location. This larger class of course includes joint M-estimates of location and scale
with redescending as well as monotone V; for the location estimate.

As a first step in dealing with this problem, we show that it suffices to restrict
attention to the smaller class of S-estimates of scale.

The following notation is needed for stating Theorem 4. Let S+(X) and S-(X)
denote the maximum and minimum asymptotic values of the S-estimate of scale
based on X (see (7)). Let S+(X, T) and S-(X, T) denote the maximum and minimum
asymptotic values of the M-estimate of scale Sx[F, T(F)] with general location, based
on X and the location estimate T(F).

THEOREM 4. Suppose that (AO)-(A2) hold and let Yx(s) = gx(s, 0), where gx(s, t)
is given by (8). Let T be any location-scale equivariant estimate satisfying the
condition

T[(1 - E)F + eo] = 0.

Then,
(a) S+(x) = 7yx'[(1 - b)l(1 - ,)] < S+(X,T)
(b) S- (X) = -I[b/ (1 - E)l = S- (X,T).

This paves the way for the following main result.
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THEOREM 5. Suppose that (A0)-(A2) hold. Then there exists a jump function X..

such that the S-estimate based on X." has the minimax asymptotic bias over the

class of all M-estimates of scale with general location.

Therefore, the minimax estimate is an S-estimate based on the jump function

Xa
°

Near Optimality of the Shorth

As in Section 4, a* --* F "1 (.75) as E --+ .5. Thus the minimax estimate of scale

with general location tends to the Shorth as c --+ .5. Table 2 shows the values

of a*,b* = b(a*), the minimax bias 9r(a*) and the maximum bias -(Shorth) of

the Shorth for some values of e. These results show that the minimax estimate is

reasonably well approximated by the Shorth in terms of maximum bias, the approx-

imation being less good for larger values of f. One again finds that a breakdown
point reasonably close to .5 is obtained by the minimax estimate for a wide range

of values of c.

f a* b(a*) 1(a*) -B(Shorth)

0.05 0.650 0.516 0.060 0.060
0.10 0.700 0.484 0.127 0.135

0.15 0.716 0.474 0.201 0.220
0.20 0.726 0.468 0.284 0.322

0.30 0.751 0.453 0.495 0.612

0.40 0.763 0.445 0.845 1.166

0.45 0.746 0.456 1.236 1.779

Table 2. Bias-robust M-estimates of scale with general location when F0 =

standard normal. Logarithmic loss function.

It should be remarked that the S-estimate of location associated with the Shorth,

namely the midpoint of the shortest half of the data, has a slow rate of convergence

(Andrews et al., 1972). However, the Shorth estimate of scale has the usual rate of

convergence (Grubel, 1988).
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6. HUBER ESTIMATES VERSUS S-ESTIMATES OF SCALE: MADM
VERSUS SHORTH

The class of Huber estimates of scale considered in Section 3 excludes centering
functionals which are M-estimates of location with redescending 0. These location

estimates are of course allowed in the larger class considered in Section 5. We now
show that the S-estimate of location Tx(F) is in fact an M-estimate of location with

redescending psi-function O(x) = X'(x): Let t* = argmintS(F, t). The monotonicity

of X(x) on [0, oo) and the definition of the S-estimate of scale S(F) (see (7)) implies

that

EFX S--t] - EFX [',t)] = EFX [ ] b(:) , Vt E R.

So, t* minimizes the function 1(t) = EFX [X - t/S(F)] and therefore satisfies the

equation '(t*) = 0, that is, t" satisfies the location M-estimate equation

l'(t) = EFX'[X - t*/S(F)] = 0.

Figures 2a and 2b display the maximum bias curves of the minimax Huber and S-
estimates of scale (for the case of logarithmic loss function) for outliers and inliers,

respectively. The logarithmic bias for the Madm and the Shorth are also shown.

Figure 2 reveals uniformly smaller bias for the minimax S-estimate than for the

minimax Huber estimate.
We notice that in Figure 2a the maximum bias curve for the Shorth is uniformly

smaller than that of the minimax S-estimate, whereas the opposite is true in Figure

2b. This is a consequence of the relative way in which the logarithmic loss function
penalizes positive and negative bias. It is worth noticing that if one is concerned

only about outliers, then the Shorth is the best choice with respect to bias. The
better performance of S-estimates relative to the Huber M-estimates in the case of

outliers is a consequence of the S-estimate of location being an M-estimate with

redescending 4, which suffers no bias for gross outliers.
Also referring back to Figure 1 we would remark that the price paid for using a

high efficiency Huber estimate is in terms of maximum bias and breakdown point.

Table 3 presents mean-squared-error relative efficiencies of the Shorth relative to

Madm for finite sample sizes n = 20,40, 100, computed by Monte Carlo simula-
tion. These results indicate considerably superiority of the Shorth for outliers, and

moderate superiority of Madm for inliers.

14



n=20 n=40 n=100

eps Outliers Infiers Outliers Inliers Outliers Inliers

0.00 1.09 1.09 1.10 1.10 1.18 1.18

0.05 1.11 1.11 1.06 1.12 1.06 1.00
0.10 1.08 1.07 1.00 1.02 1.07 0.90

0.15 1.10 0.98 1.04 0.91 1.12 0.83

0.20 1.10 0.89 1.14 0.82 1.27 0.77

0.25 1.23 0.85 1.27 0.76 1.39 0.75

0.30 1.43 0.83 1.46 0.77 1.61 0.78

0.35 1.62 0.82 1.66 0.77 1.83 0.77

0.40 1.74 0.85 1.86 0.80 2.01 0.78

0.35 1.62 0.82 1.66 0.77 1.83 0.77

0.40 1.74 0.85 1.86 0.80 2.01 0.78

0.45 1.87 0.92 2.00 0.85 2.16 0.82

Table 3. Mean-squared-error relative efficiencies of SHORTH and MADM.

7. FINITE SAMPLE RELEVANCE OF ASYMPTOTIC BIAS ROBUST-

NESS

Unfortunately, the functions Xa are discontinuous and so Theorem 1 cannot be

invoked to claim finite sample relevance for the asymptotic minimax theory. However

we can prove the following result, which is relevant to the finite sample size situation.

THEOREM 6. Let 0 < a < oo. For each A > 0

lim supPF{S-(a)-A < Sx,(F) > S+(a)+A , Vn> m}=.
mn-0 FE.$r,

So S-(a) - A and S+(a) + A are almost sure uniform lower and upper bounds

for the maximum and the minimum values of the S-estimate of scale, S,(F,,), for

m large enough.

The Monte Carlo results summarized on figures 3 and 4 suggest that the required

values of m are moderately small. These figures display the finite sample bias

15



(logarithmic loss) for several contamination models for the Shorth and for the Madm,
as well as the corresponding maximum bias curves. Observe that for both cases, for

outliers and for inliers, the asymptotic maximum bias curves tend to be rather close

to the finite sample bias curves.

8. FINITE SAMPLE COMPARISON WITH OTHER ESTIMATES

A Monte Carlo simulation study was carried out to compare the bias and mean-

squared-error (MSE) performance of the following scale estimates: the minimax-

bias scale estimates, the Madm, the Shorth, the A-estimate of scale discussed by

Lax (1985), and the rejection-plus-standard-deviation (with ot = .01) discussed by

Simonoff (1987). Some results for sample size n = 20 are presented on Figure 5

(MSE) and Figure 6 (bias), for the case F0 = N(0, 1) and logarithmic loss. Each

simulated sample contains exactly c20 outliers generated from the four different

distributions indicated at the tops of the figures. Similar results (not presented here)

were obtained for n = 40, n = 100 and for other type of contaminating distributions.

The main conclusions are: (1) when e < .10 the four estimates perform equally well;

(2) for larger fractions of outliers the Shorth and the Madm usually outperform

the other two estimates, with the Shorth being somewhat better; and (3) when the

outliers are large and well separated from the rest of the data, e.g., generated from

a N(10, 1), the rejection-plus-standard-deviation estimate performs better than the

other three estimates.

9. THE GES APPROXIMATION

Hampel et al. (1986) established that based on the gross-error sensitivity, the

Madm is the most bias robust M-estimate of scale for vanishingly small fractions of

contamination c. In fact the Shorth has the same influence function and hence the

same gross-error-sensitivity as the Madm, namely 0.787 (see Leroy and Rousseeuw,

1988). However, this leaves unanswered the question of optimality for each f E

(0, .5), and our results show that the Shorth is a better estimate than the Madm

from the global (i.e. e > 0) point of view.

On the other hand, it must be noted that the gross-error-sensitivity approxi-

mation is remarkably good for e < .05, with the approximation being better the

more bias-robustness the estimate possesses. This provides substantial reconfirma-

tion of the utility of the influence curve and the gross-error-sensitivity as a measure

of maximal bias.

16



At the same time one should be aware that the gross-error-sensitivity linear

approximation may be less accurate for problems with nuisance parameters. For

example, in the present context, the GES approximation to the maximal bias curve

of the Madm does not reflects the impact of the bias of estimation of the nuisance

location parameter. Since the maximum asymptotic bias of the Shorth is unaffected

by the asymptotic bias of the location estimate, the GES approximation is better

in this case.

10. PROOFS OF LEMMAS AND THEOREMS

The following lemma is needed to prove Theorem 1.

LEMMA 3. Let 0 < s, < s2 < oo be as in Lemma 1. Suppose that (A-0)-(A-2) hold

and also assume that X and h,(s, t) are continuous and h. (s, t) < 0, V s > 0, t E R.

Then, for all K > 0, we have:
(a) <[(x - t)/s is uniformly continuous on (X,s,t) E Rx[si,s 2]x[-K, K].

(b) S(F, t) is uniformly continuous on t E R, uniformly on F E ,.

(c) x[(x - t)/S(F,t)] is uniformly continuous on (x,t) E Rx[-K,K], uniformly on

FEF.

Proof. Let 6 > 0 be fixed and let B = [S8, S2] x [-K, K]. Since X(x) is continuous,
even, monotone on [0, oo) and bounded, it is uniformly continuous. Let A, > 0 be

such that Ix - x'I < A, implies IX(x) - X(x')I < 6. Also, since limljl.oo X(x) = 1,
there exists x0 > 0 such that Ix[ > xo and Ix'I > xo imply Ix(x) - X(x')I < 6. Let

x, > 0 be such that if IxI > xi, then [(x-t)/sj > xo for all (s, t) E B. So X[(x-t)/s]

is uniformly continuous on {x: lxj > x1} x B. If Ix_ < x, then, 1--t E-e :5 xI[L _

I + [l- III and (a) follows. To prove (b) notice that the assumptions on hx(s,t)

imply that min(s,t)E B Ih(s,t)I > 0, and so 60 = 6(1 - F)min(s,t)EB Ih,(s,t)I > 0. By

(a) there exists A > 0 such that it - t'I < A, ItI _ K, It'i < K imply

IE[S(F, t) - ] -E xS(F, ) -6 I 4

and so, using the Mean Value Theorem and EFX[(X-t)/s] _ (1 -()EF X[(X -t)/s],

VFE F,,

I >t -, b s( t)

17



> 6(1 -C) min Ih,(s,t)l- b > 3o .(at)EB 4 - 4

Thus, S(F, t) :> S(F, t') - 6 and (b) holds. Finally, (c) follows directly from (a) and

(b) 0

Proof of Theorem 1. Let 6 > 0 be fixed. It can be shown, as in the proof of Lemma

3 (b), that there exists 0 < 60 < 1 such that

EFX S( - - b(x) 6o, V Itl < K, V F E Y.'. (24)

For all -y 0, let B,,(t,v) = { -EX [s(~., 6 ] _b(x) > 3'}. By Lemma 3 (c) there
exist

-K = tl < t2 < ... < tm = K such that

j=M

n B,,(t,o) 2 fn B.(tj,60/2), (25)
Itl<K 11

for all n. By (25) and Berstein inequality, for each j = 1,..., m and for all F E F',

[ -El > 6 < e- ,.(26)
PF{B'(t,,6o/2)} <PF x[ 't ] -EFX[

By (25) and (26),

PF{ inf [S(F, t)- S(F, t)I > -b PF{fnItI<KBn(tO)}

> 1 - PF {Bn(t;, 6o/2)} > 1 - me - 0n62/12,

for all F E F,. Analogously, we can show that

PF {sup[S(F,,, t) - S(F, t)] <6} > 1- me -n6 /'1, VFE-F'.
-fltl<K

Therefore,

PF sup IS(F, t) - S(F, t)l >  2b ! V F E F
n=1 1

18



and (a) follows by the Borel-Cantelli lemma. To prove (b) first notice that, since

b(X) < (1 - f), there exists K, > 0 such that for all ItI > K1,

EFX [;X;7:) EF X - t) -:: (1 - E)EFpxX Xt) > b(X),I t],o0) ( SX -t( S1- )

where s, is as in Lemma 1. Notice that by the Dominated Convergence Theorem

lim EFOX[(X - t)/s 1 ] = 1.

Hence, S(F,t) > S(F,0), V It[ > K1, V F E F, and so S(F) = inftERS(F,t) =

infl4t<K, S(F, t). On the other hand, let K3 and 6 > 0 be such that (1- )PFo(IXI

K 3) > b(X) + 61. Observe now that

lim inf x( I(Ix1 < K3) = I(IxI < K 3 ), V x E R,K2-oo It[>K2 "1+6

where I(I'I < K 3 ) = 1 if Ilxi < K3 and equal to zero otherwise. Hence, by the

Dominated Convergence Theorem

lim EF0  inf X I(JXI < K3) = (1 - f)PF0(IXI < K3 ) > b(X) + 6b.
K2 -.oo Itl>K2 (s, + b

Therefore, there exist K2 > K, such that

EF inf .X [ X (1 - c)EF, Jfinf X Xt 1 I(IXI < K 3
4

I It!>K 2  1S(F, 0) + b - t>K2  S(F,0) + 6 _

Sb(X) + bi. (27)

Let 62 = min{6o,6}/12. By (a), (27) and Berstein inequality,

PF S(&) = ,inf 5(F, t) >_PF ,infS(, t>>SF 0
1tl<_K2> 2I

PF inf X r i - tn > b(x) IS(F,0) - S(F,0)1 < 6 >

FIt,>K2 n IS(F,0) + bJ

I P - F inf X ' :7t < b(X)} - Pp{IS(F.,0) - S(F,0)I )6 > I - 2e- 2.
n t>K S(FO) + b
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Therefore,

PF{IS(Ff)-S(F)I < 6} > PF- sup IS(Fnt)-S(Ft)I<6}+

PF{S(Fn)# 1tinf S(Ft)} 1-e-"', VFEF"t Itl<15K2 j

for some -y > 0 and (b) follows. Since

PF {IS1F., T(F)] - S[F,T(F)] > 6) 5 PF {up IS(F.,t) - S(F, t)l > +

PF IIS[F, T(F ) - S[F, T(F)] > ,

(c) follows from (a) and Lemma 3 (c).
Finally, (d) follows by noticing that, under the given assumptions, all the statements

made in the proof of (a), (b) and (c) hold uniformly for all X in C 0

Proof of Lemma 2. Since the median minimizes the maximum asymptotic bias
among location equivariant estimates (Huber, 1964), and since to and tj are the max-

imum asymptotic biases of the median and a location equivariant estimate, to < tj.
Thus, tj = m(to) < m(tt) = t 2 and in general, t,, < t,,+,. Let to" = lim , . Since

too= lim,_" t,+j = mC = m(lim,...t,) = m(t"), we have to" > to. On
the other hand, if t satisfies t = m(t) > to then t = m(t) > t, for all n. Therefore
t > to" and so to" < to. The second part of (a) follows directly from the continuity

of -y(t). To prove (b) observe that to is a lower bound for the maximum bias of the

Huber estimate of location. This lower bound is achieved if the estimate is computed
by the recursion formula t,, = m(t,,), starting from the median 0

For each b E (,E, 1 - f), let Cb be the class of X-functions satisfying (Al) and
b()) = b. Also let C be the class of functions satisfying (Al) and (A2), that is,

C = U,<b<._,Cb. The following lemma is needed to prove Theorem 3.

Lemma 4: Fix b E (f, 1 - f) and let a = Fj"1[1 - (b/2)]. Under the assumptions
of Theorem 3 we have: (a) S-(X,) > S-(X) for all X E Cb; and (b) gx(s*, to) >
g, (s, to) for all y E Cb 0

Proof. Part (a) follows directly from (16) and Lemma A3 in Martin and Zamar
1989). To prove (b), notice that for all x E Cb we havefa X(x)fo(x)dx = 2f:[1 -
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X(x)]fo(x)dz. Thus, s* f", X(x)[fo(s'x-to)+fo(s'x+to)]dx = s" fa X(x)fo(x)ko(x)dx >

s*ko(a) f2'x(x)fo(x)dx = 2s*ko(a) f:[1-(x)fo(x)dx = s'ko(a)[f-.a[1 -X(x)]fo(x)dx+

f:[I - x(x)Ifo(x)dx] > s" f_- [1 - X(x)]ko(x)dx + s" f:[I - X(x)]ko(x)fo(x)dx and
(b) follows 0

Proof of Theorem 3. First of all notice that since S+(a) and S-(a) are increasing at

a* and L1 and L 2 are strictly monotone, we have LI[S+(a)] = L 2 [S-(a)] = -B(a').

Let X E C be fixed and set b = b(X). Let a = F0-'11 - (b/2)] so that b(xa) = b. If

g,(s*,to) > (b-c)/(1-e) then S+(X) > s*. SoB(x) > L 2[S+(x) > L 2(s*) =-B(a*).

On the other hand, suppose that gx(s*, to) < (b - e)/(1 - e), that is S+(X) < s*.

Since X E Cb, by Lemma 4 (b) we have gx.(s, to) < gx(s*,to) < (b - c)/(1 -E).

Hence S+(a) < s*, too. In view of the optimality of X,* among jump functions we
have "B(a) -> B(a*) and so L,[S-(a)] > L[S-(a*)]. For the particular b in question,
by Lemma 4 (a), S-(X.) > S-(X). Therefore, 77(X) LI[S-(X) L> S >(a)
LI[S-(a*)] = -B(a'), and the theorem follows 10

Proof of Theorem 4. Let F, = (1 - c)F + f&., t, = T(Fo,) and s.. = Sx(Fco).

First notice that

h-'[(b-,E)/(1 -,E)] = sup Sx(F,0) = Sx(Fo,, 0), (28)
FE.F,

where S×(FO) is the S-scale functional based on X and the true location 0. By

definition of the S-estimate of scale, for all F E F,, Sx(F) = inft Sx(F,t) <
inft Sx(F,,, t) = Sx(F,,, 0), and so S+(X) < Sx(Fo , 0). Assume first that s < oo
and so too < oo. By monotonicity of gx(s,t), b = EF0 X[(X - t)/s-] = (1 -

e)g,(s., t.) + c > (1 -E)gx(s,,,0) + c = EF .X(X/soo). Therefore,

S, (F.o,0) <5 s.o < S+ (x) (29)

Observe that, if s,,,= oo, then (29) trivially holds. Now, (28) and (29) imply

that S+(X) < -y [(b - ,)/(1 - e)] < S+(xT) and (a) follows by taking T(F) =
argrrinSx(F, t).

To prove (b) write -y'[(b/(1- e)J = infFEySx(FO) = Sx(F ,O), where R =
(1 - ()F + fbo. For all F E F', t E R and s > 0, EFX[(X -t)/s] > (1 -,E)EF 0 x[(X -

t)/s] (1 -E)EF0 x(X/s) = EF,.x(X/s). Therefore, for all M-estimate of scale based

on the given X and for all T satisfying the assumptions of this theorem we have,

S- (,T) = -yj[(b/(I - c)] 0
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Proof of Theorem 5. Follows directly from Theorem 4 and Theorem 2 in Martin
and Zamar (1989) 0

Proof of Theorem 6. Let 0 < a < oo. It suffices to show that, for each A > 0

urn PF sup Sx.(F) > (a)+ A = 0, (30)
m-o FE. an>xa (

and

lirn sup PF {inf So(F,) <S-(a) - A} = 0. (31)M-00o FE-', fn<mI

For each 6 > 0 the approximating (even) function ps(x) is defined as

0 if O<x<a-6

6 () 1 - [(a - x)/b] if a -_<x<a (32)
1 if x >a

Notice that ;5(z) is continuous and that ;5s(x) > X,(x) for all x. For each t E R

and all F, let

36 (F, t) = sup Is: EF6[(X - t)/s] > b(X)} • (33)

Clearly, for all t and all F (including the empirical c.d.f. Fn) we have 3!,. (F, t) <

3s( F, t) and so

S×°(F) !5 -3s(F) = i nf 35 (F, t). (34)
t

It is not difficult to verify that, for all given A > 0 there exists 6o > 0 such that

= sup 3so(F) < S+(a) + (A/2). (35)

By Theorem 1,

lim SUPPF sup -9 (F)> so>S+(a) + (A/2)=0. (36)
r--oo FE ', ln>rn

Now (30) follows from (33), (34) and (35). Finally, (31) can be proved in a similar
way, using the approximating function

0 if 0 < x <a

PS(x)= (x - a)/6 if a < x < a + 6 (37)
if x>a+6,
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and the approximating scale functional

S6(F,t) = inf {s: EFP6[(X -t)/s] < b(x.)} 0 (38)
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