i -
. — A ™

AD-A245 664 1ONPAGE

Form Approved
OPM No. 0704-0188

»

Headquaren
Managsment an

1. AGENCY

3. REPORT TYPE AND DATES COVERED
Final: 25 April 1991 to 01 Jun 1993

Pubiic reporting | | | Il i G N8, inciuding the tme for fing instructions, searching existing data sources gathering and maintaining the data
needed, and rev | ! ; 1ate or any other aspect of this collection of information, including suggestions for reducing this burden. 1o Washington
| ' 10 R 4l I | s Highway, Suite 1204, Arfington, VA 222024302, and to the Office of information and Reguiatory Affairs, Oftice of

4_TITLE AND SUBTITLE

Release 1.2.3 (Host & Target), 91042W1.11141

intermetrics, Inc., UTS Ada Compiler, Version 302.03, IBM 3083 under UTS 580

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bidg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-456.1191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Deparntment of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION COD=

13, ABSTRACT (Maximum 200 words)
1.11.

DTIC

L B ECTE

FEBQ 51992

Intermetrics, Inc., UTS Ada Compiler, Version 302.03, IBM 3083 under UTS 580 Release 1.2.3 (Host & Target), ACVC

2-02718

9
T T

14. SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

15. NUMBER OF PAGES

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECUﬁTﬁf CLASSIFICATION 20 LIMITT’ION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550

Standard Form 298, (Rev 2-89)
Prescribed by ANS! Std. 239-128

—

]



AVF Control Number: AVF VSR 456.1191
16-November-1951
90-11-16~INT

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910425W1.11141
Intermetrics, Inc.

UTS Ada Compiler, Version 302.03
IBM 3083 => IBM 3083

Prepared By:
Ada validation Facility
ASD/SCEL
Wright Patterson AFB OH 45433-6503




Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 25 April, 1991.

Compiler Name and Version: UTS Ada Compiler, Version 302.03
Host Computer System: IBM 3083 under UTS 580 Release 1.2.3
Target Ccemputer System: IBM 3083 under UTS 580 Release 1.2.3

Customer Agreement Number: 90-11-16-INT

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910425W1.11141 is awarded to Intermetrics, Inc. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

e L Wi

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Institute~tor Defense Analyses

Alexandria VA 22311 . Accession For
e - - p;
{ NT1S cRA&I rd
| pric 1an O
R rouneed O
/ ! I 1o
AY , - o
Ad3 Joint Program Office .
Dr. John Solomond, Director i r*:'-:\1+§,”}Q‘_~—' _
Department of Defense R
Vashington DC 20301 LAf“ﬂHAimiﬁvt? Vodes
i Avell andler
1et b Jpeetal
I ] "
: ]
g ‘ o
| A l ¥




DECZARATION OF CONFORMANCZ

Customer: Intermetrics, Inc., Carmbridge, MA

Ada Validation Tacility: ASD/SCEL Wright-Patterson AFB, OH 45433-6503
ACVC Version: 1.1

Ada Implementation

Compiler Name and Version: UTS Ada Compiler, Version 302.03
Host Computer System: IBM 3083, UTS 580 Release 1.2.3
Target Computer System: same

Customer's Declaration

I, the undersigned, representing Intermetrics, Inc., declare that
Intermetrics, Inc. has no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A in the implementation listed
in this declaration. I declare that Intermetrics, Inc. is the owner
of record of the above implementation and the certificates shall be
awarded in Intermetrics' corporate name.

%wx& M Date: %ﬁé/

Dennis Struble, Deputy Genéral Manager,
Development Systems Group, Intermetrics, Inc.




CHAPTER 1

e
M
SWN

CHAPTER 2

[SS NSO 8]
PR
w N

CHAPTER 3

www
s e e
w o+

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES . . .

ACVC TEST CLASSES
DEFINITION OF TERMS . .
IMPLEMENTATION DEPENLENCIES
WITHDRAWN TESTS
INAPPLICABLE TESTS .

TEST MODIFICATIONS .
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION . .

MACRO PARAMETEES
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD




CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90) against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This vValidation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has nc
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22151

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1




INTRODUCTION

1.2 REFERENCES

{Ada83] Reference Manual for the Ada Programming Language,
ANSI MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

(UG89] &Ada Compiler Validation Capability User’'s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link

time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
alsc provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of ctne
Ada Standard. The procedure CHECK FILE is used to check the ccntents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked oy a set cr
executcble tests. If these units are not operating correctly, validatiorn
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Cllass
B tests are not executable. Each test in chis class is compiied anc :the
resulting compilation listing is examinec tc veriiv "nat 1ii vioiatioas or
the Ada Standard are detected. Some >f the class £ :23ts Zcnmais 123al das
code which must not be flagged illegai oy :zhe compli2:. TIhis Jernail. .=
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition tc these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2




INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
{AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs intoc executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which nrovides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also <or all or part of cthe data
necessary for the execution of the program; axecutes
user-written or user-designated programs; performs
user—designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3




INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiiei to
the Ada programming language and of issuing 2 certificate
for this implementation.

A test found to be incorrect and not used in confcrmicy
testing. A test may be incorrect because it has an invalia
test objective, fails tc meet ‘ts test =cbjeccive @ or
contains erroneous or illegal use 2f :the Ade Srogramming
language.

1-4




2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO.

E28005C
C35508N
C45346A
B49008A
B83025D
C94021A
CB7004A
BD1BO6A
CD2A41A
CD4022A
CD4051D
CD7006E
BD8004C
CE2117B
CE3118A
CE3812A

B28006C
C€35702a
Cc45612Aa
A74006A
C83026A
C97116A
CC1223A
AD1B08A
CD2A41E
CD4022D
CD5111A
AD7201A
CD9005A
CE2119B
CE3411B
CE3814A

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test cbjectives which are irrelevant

for a given Ada implementation. Reasons for a test’s inapplicability may

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

C34006D
C35702B
C45612B
C74308A
B83026B
€98003B
BC1226A
BD2A02A
CD2A87A
CD4024B
CD7004C
AD7201E
CD9005B
CE2205B
CE3412B
CE3902B

C355081
B41308B
c45612C
B83022B
C83041A
BA2011A
CC1226B
CD2A21E
CD2B15C
CD4024cC
ED7005D
CD7204B
CDAZ01E
CE2405A
CE3607B

The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 14 MARCH 1991.

C35508J3
C43004A
C45651a
B83022H
B85001L
CB7001A
BC3009B
CD2A23E
BD3006A
CD4024D
CD7005E
AD7206A
CE21071
CE3111C
CE3607C

C35508M
C45114a
c46022A
B83025B
C860C1F
CB7001B
BD1B02B
CD2A32A
BD4008A
CD4031A
AD7006A
BD8002A
CE2117A
CE3116A
CE3607D

be supported by documents issued by the ISC and the AJPC known as Ada
Commentaries and commonly referenced in the format AI-ddddd.

For this
implementation, the following tests were determined to be inapplicable for

the reasons indicated; references to Ada Commentaries are included as

appropriate.

2-1




IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..Z {15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER; for
this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C454128 €45502B C455C3B 455048 C45504E
C45611B C45613B C4561 18 C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D

CD7101E

The following 20 tests check for the predefined type LONG INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C Cc45412C
€45502C C45503C C45504c¢C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type LONG FLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that if

MACHINE OVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type. then the proper
exception is raised; for this implementation, MACHINE CVERFLCWS ig
FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations fcr
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C46013B, C46031B, C46033B, and C46034B contain length clauses that
specify values for small that are not powers of two or five; this
implementation does not support such values for small.

[y}
1
[ 9]




IMPLEMENTATION DEPENDENCIES

D55A03E..H (4 tests) use 31 levels of loop nesting which exceeds the
capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before the separate compilation of its body (and any of its subunits);
this implementation requires that the body and subunits of a generic
unit be in the same compilation as the specification if instantia*tions
precede them. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type. The representation which this implementation
uses for floating point types is the smallest available; therefore, when
this test attempts to use a representation of other than 32 or 64 bits,
the length clause is rejected.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001A, BD8003A, BDBOO4A..B (2 tests), and AD801lA use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and crecord types with discrimirants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mcde File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IC
CE2102E CREATE OUT FILE SEQUENTIAL IC
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT I0
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL I0

CE2102Q RESET OUT FILE SEQUENTIAL IO




IMPLEMENTATION DEPENDENCIES

CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN_FILE DIRECT IO
CE2102U RESET IN _FILE DIRECT IO
CE2102v OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN_FILE TEXT IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE —_ TEXT IO
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUT FILE TEXT 10

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3111B and CE3115A associate multiple internal text files with the same
external file and attempt to read from one file what was written to the
other, which is assumed to be immediately available; this implementation
buffers output. (See section 2.3.)

CE3304A checks that SET_LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT’LAST; for this implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 6 tests.

The following tests were split into two ¢or mcre tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

BAl1101C BC3205D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit’s body; as allowed by

AI-257, this implementation requires that the bodies of a generic unit be

2-4




IMPLEMENTATION DEPENDENCIES

in the same compilation if instantiations of that unit precede the bodies.
The instantiations were rejected at compile time.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file
is unbuffered and may be immediately read by another file that shares the
same external file. This implementation raises END ERROR on the attempts
to read at lines 87 and 101, respectively.

2-5




CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in thi: validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for sales or technical information about this Ada
implementation system, see:

Mike Ryer
Intermetrics, Inc.
733 Concord Ave.
Cambridge MA 02138

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [ProS0].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1




PROCESSING INFORMATION

a) Total Number of Applicable rests 3757
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 119
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 320

g) Total Number of Tests for ACVC 1.11 4170

All I,/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
the magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. Results were transferred to
via RSCS to a Sun 4 for printing.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option | Switch Effect
LIB Ada program likrary name
LISTING Name of listing file

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2




APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN LEN 255
$BIG_ID1 (1..v-1 => 'A", V=>"1")
$BIG_ID2 (L..v-1 => "A", V=> '2")
$BIG_ID3 (1..v/2 => 'A’) & '3" &
(1..v-1-v/2 => 'A’)
$BIG_ID4 (1..v/2 => 'A’) & "4’ &
(1..v-1-v/2 => 'A’)
$BIG _INT LIT (1..v-3 => ’0") & "298" |
$BIG_REAL LIT (1..v-5 => '0’) & "690.0"
SBIG-STRINGl T™ro& (1..V/2 = A7) & T
$BIG_STRINGZ g (1..V=1-v/2 => "A'Y & "1 & 0
SBLANKS (1..v=20 => " ")

$MAX LEN INT BASED LITERAL
"2:" & (1..V=5 = '0") & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V=7 => '0’) & "F.E:"



MACRO PARAMETERS

SMAX STRING LITERAL g (1..V-2 => 'A’) & "M

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro value
$ACC_SIZE 32
$SALIGNMENT 4
$COUNT_LAST 2_147_483 647
$DEFAULT MEM SIZE 2**3]

$DEFAULT _STOR UNIT 8

$DEFAULT SYS NAME uTS

$DELTA DOC 2.0%%(-31)

$ENTRY_ADDRESS SYSTEM.MAKE ADDRESS(16440%)
$ENTRY_ADDRESS1 SYSTEM.MAKE ADDRESS(16#80#)
$ENTRY ADDRESS2 SYSTEM.MAKE ADDRESS(16#100#)
SFIELD LAST 2 147 483 647

$FILE_TERMINATOR TEST WITHDRAWN

$FIXED NAME NO_SUCH FIXED TYPE

$FLOAT NAME NO_SUCH FLOAT TYPE
$FORM_STRING e

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACIT."

$GREATER THAN DURATION
90 000.0

SGREATER THAN DURATION BASE LAST
10_000_000.0

$SGREATER THAN FLOAT BASE LAST
1.0E+63

$GREATER THAN FLOAT SAFE LARGE
16%0.FFFFFFFFFFFFEL4E+63




MACRO PARAMETERS

SGREATER THAN SHORT FLOAT SAFE LARGE

$HIGH PRIORITY

16#0.FFFFF94#E+63
127

$ILLEGAL EXTERNAL FILE NAMEl

MISSING/DIRECTORY,/FILENAME

SILLEGAL EXTERNAL FILE NAME2

STILL/NO/DIRECTORY,/FILENAME

$INAPPROPRIATE LINE LENGTH

-1

$INAPPROPRIATE PAGE LENGTH

$INCLUDE PRAGMAL
$INCLUDE_PRAGMA2
SINTEGER FIRST
$INTEGER LAST
SINTEGER LAST PLUS 1
$INTERFACE LANGUAGE

$LESS_THAN DURATION

-1
"PRAGMA INCLUDE ("A28006D1.TST")"
"PRAGMA INCLUDE ("B28006F1.TST")"
-2147483648

2147483647

2 147 483 648

AIE_ASSEMBLER

-90_000.0

$LESS_THAN DURATION BASE FIRST

$LINE_TERMINATOR

SLOW_PRIORITY

-10_000_000.0
ASCII.LF

-127

$MACHINE CODE STATEMENT

SMACHINE CODE_TYPE
$MANTISSA DOC

SMAX DIGITS

SMAX INT
$MAX INT PLUS 1

$MIN_INT

NULL;
NO_SUCH TYPE
31

15
2147483647
2147483648
-2147483648




MACRO PARAMETERS

SNAME

$NAME LIST

$NAME SPECIFICATIONL
SNAME SPECIFICATION2
SNAME_SPECIFICATION3
$NEG_BASED INT
SNEW MEM SIZE
$NEW_STOR_UNIT
SNEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE _SIZE
$TICK

SVARIABLE ADDRESS
SVARIABLE ADDRESS1
SVARIABLE ADDRESS2

$YOUR_PRAGMA

NO_SUCH_INTEGER TYPE

UTS, MVS, CMS, PRIMES0 , SPERRY1100,
MIL_STD 1750A

sacve/testing/1l/tst tmp/X2120A
sacve/testing/l/tst tmp/X2120B
s/acvc/testing/1/tst tmp/X3119A
164FFFFFFFE#

TEST_WITHDRAWN

8

TEST_WITHDRAWN

TEST_WITHDRAWN

TEST_WITHDRAWN

TEST WITHDRAWN

96

1024

1.0E-3

SYSTEM.MAKE ADDRESS(16#0020%)
SYSTEM.MAKE ADDRESS(16400244%)
SYSTEM.MAKE ADDRESS(16#0028#)

TEST_WITHDRAWN




APPENDIX B

COMPILATION SYSTEM OPTIONS

COMPILER OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.




-~ AIECOMP

type YES_NO_TYPE
subtype

OPTIMIZE_RANGE is

type FLAG_TYPE
type PHASE

SRC_INT, LISTER, BL_LISTER, DI_LISTER,

procedure AIECOMP(

SOURCE
LIB

LISTING
STATS
OPTIMIZE
LIST

ASM
NUM_INSTRS
OPTIONS_FILE
SHOW_OPTIONS
VERSION
STARTWITH
STOPAFTER

DUMP_DIANA_AFTER :

DUMP_BILL_AFTER
TBOPT
SEMOPT
GENOPT
STOOPT
EXPOPT
FLOWOPT
CGOPT
FLOWCGOPT
SRC_INTOPT
LISTOPT
ALLOPT
DEBUG

)i

SOURCE
LIB

LISTING
STATS
OPTIMIZE
LIST

ASM
NUM_INSTRS
OPTIONS_FILE
SHOW_OPTIONS
VERSTION
STARTWITH
STOPAFTER

DUMP_DIANA_AFTER :
: Dumps the BILL of the compilation
: Options passed thru to tree build

DUMP_BILL_AFTER
TBOPT

COMPILER OPTIONS

: AIE Compiler Driver

INTEGER range 0 .. 10;
(YES, NO, ON_MESSAGE) ;
(TB, SEM, GEN, STO, EXP, FLOW, CG, FLOW_CG,

ECHO, NONE);

: in STRING = "M
: in STRING := "ADALIB";
: in STRING = ML
: in YES_NO_TYPE := NO;
: in OPTIMIZE RANGE := 10;
: in FLAG_TYPE := ON_MESSAGE;
: in YES_NO_TYPE - NO;
: in YES_NO_TYPE - NO;
: in STRING - "N,
: in YES_NO_TYPE = NO;
: in STRING = "None";
: in PHASE := TB;
: in PHASE = CG;

in PHASE := NONE;
: in PHASE := NONE;
: in STRING cm "M,
: in STRING = MV,
: in STRING g MM,
: in STRING = MM
: in STRING cm MM
: in STRING s MM,
: in STRING r= "M,
: in STRING cm MM
: in STRING = MM
: in STRING = "N,
: in STRING = "M,
. in YES_NO_TYPE = NO

: Ada source file

: Ada program library

: Name of listing file

: Requests compilation statistics (yes or no)

: Controls code optimization (10 is all)

: Controls generation of listing

: Requests assembly language listing (yes or no)

: Requests the number of instructions generated (yes or no
: File to read for additional phase options

: Show the options passed to each phase

: The default version of the compiler is determined from t
: The phase to begin the compilation with

: The last phase in the compilation

Dumps the DIANA of the compilation




SEMOPT
GENOPT
STOOPT
EXPOPT
FLOWOPT
CGOPT
FLOWCGOPT
SRC_INTOPT
LISTOPT
ALLOPT
DEBUG

: Options
: Options
: Options
: Options
: Options
: Options
: Options
: Options
: Options
: Options
: Controls debugging output of the aiecomp executable

passed
passed
passed
passed
passed
passed
passed
passed
passed

thru
thru
thru
thru
thru
thru
thru
thru
thru

to
to
to
to
to
to
to
to
to

semantics

gen inst

storage

expand

flow

codegen

the combined flow-cg
the source intersperser
the lister

which will be passed to ALL executables




COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.




-— AIEBUILD :

LINKER OPTIONS

AIE Program Builder

type YES_NO_TYPE is (YES, NO);

type PHASE is (PB_CONV, LD, MKDEMAND);
procedure AIEBUILD(

UNIT in STRING;

LIB : in STRING = "ADALIB";

LISTING in STRING = "N,

EXEC in STRING = "M,

SHAREABLE in YES_NO_TYPE := YES;

XREF in YES _NO_ “TYPE := NO;

SYMTAB in YES NO _TYPE := NO;

SHOW_LINKS : in YES_ NO TYPE := YES;

SHOW_OPTIONS : in YES_| NO TYPE := NO;

STATS : in YES NO "TYPE := NO;

DEMAND : in YES_ NO TYPE := NO;

MAP : in YES NO TYPE := NO;

VERSION : in STRING := "None";

ARCHIVE_LIST : in STRING = "M,

RTS_VERSION : in STRING = "4.0";

STARTWITH in PHASE := PB_CONV;

STOPAFTER in PHASE := LD;

PBCONVOPT : in STRING = "M,

LDOPT : in STRING = "y

DEBUG : in YES_NO_TYPE := NO

)i

UNIT : Name of Ada main

LIB : Ada program library

LISTING : Name of listing file

EXEC : Where to put the resultant executable

SHAREABLE :Make the text read-only and shareable by multiple users

XREF :Produce a cross reference listing

SYMTAB :Correspondence between Ada names, link names, and addresses

SHOW_LINKS :List the catalog links of program library

SHOW _OPTIONS :Show the options passed to each of the builder phases

STATS : Requests building statistics (yes or no)

DEMAND : Make the executable demand-paged (I2 UTS only)

MAP : Produce a link map

VERSION : Version of the Program Builder

ARCHIVE LIST : Name of file containing a list of archives

RTS_VERSION : Version of the RTS to use

STARTWITH : Phase to begin linking with

STOPAFTER : Phase to end linking with

PBCONVOPT : Options passed thru to pb_conv

LDOPT : Options passed thru to 1d

DEBUG : Controls dcbugging output of the aiebuild executable




APPENDIX C

AFPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation—-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STAND/RD, which
are not a part of Appendix F, are:

package STANDARD is

tyée INTEGER is range -2147483648 .. 2147483647;
type FLOAT is digits 15 range -15#0.FFFFFFFFFFFFFF#E63 ..
1640 .FFFFFFFFFFFFFF4EGS;
type SHORT FLOAT is digits 6 range -16#0.FFFFFF#E63 .. 16#0.FFFFFF#E63;

type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;

end STANDARD;

§
A




Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this
implementation. Appendix F from the LRM states:
The Ada language allows for certain machine-dependencies in a controlled
manner. No machine-dependent syntaz or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes. certain
machine-dependent conventions as mentioned 'n Chapter 13. and certain
allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an appendiz
(called Appendiz F) that describes all implementation-dependent
characteristics. The Appendix F for a given implementation must list in
particular:

1. The form. allowed places, and effect of every implementation-
dependent pragma.

55

The name and the type of every implementation-dependent attribute.
3. The specification of the package SYSTEM (see 13.7).

The list of all restrictions on representution clauses (see 15.1).

-~

The conventions used for any implementation-generated name
denoting implementation-dependent components (see 13.).

L

6. The interpretation of expressions that appear im address clauses,
imcluding those for interrupts (see 13.5).

7. Any restriction on unchecked conversions (see 13.10.2).

Any implementation-dependent characteristics of the input-output
packages (see 14).

o

In addition. the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.




F.1 Pragmas

This section describes the form, allowed places. and effect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, PAGE, PRIORITY, FLABORATE

Pragmas LIST, PAGE., PRIORITY and ELABORATE are supported exactly
in the form, in the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form: Pragma SUPPRESS ( identifier )
where the identifier is that of the check that can be omitted. This is as
specified in LRM B(14), except that suppressicn of checks for a particular
name is not supported. The name clause (ON=2>name). if given. causes
the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINT_ERROR.
STORAGE_ERROR, or PROGRAM_ERROR may be raised, are
supported:

ACCESS_CHECK
DISCRIMINANT_CHECK
INDEX_CHECK
LENGTH_CHECK
RANGE_CHECK
STORAGE_CHECK
ELABORATION_CHECK

The checks which correspond to situations in which the exception
NUMERIC_ERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISION_CHECK and OVERFLOW_CHECIK
are not supported.

Allowed Places: As specified in LRM B(14) : SUPPRESS.

Effect: Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of suppressing the specified check as
described in the LRM. A pragma SUPPRESS specifving an unsupported
check is ignored.

1.2 Pragma SUPPRESS_ALL
Form: Pragma SUPPRESS_ALL




Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESS_ALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F.1./ Pragma INLINE
Form: Pragma INLINE ( SubprogramNameCommalList )
Allowed Places: As specified in LRM B(4) : INLINE.

Effect: If the subprogram body is available, and the subprogram is not recursive.
the code is expanded in-line at every call site and is subject to all
optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference. as for non-
inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers. as
global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

[.1.5 Pragma INTERFACE

Form: Pragma INTERFACE ( languagze_name. subprogram_name )
where the language_name must be an enumeration value of the tiype
SYSTEM.Supported_Language_Name (see Package SYSTEM
below).

Allowed Place: As specified in LRM B(5) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada bodv_stub may be provided for a subprogram for
which INTERFACE has been specified.

se: Use with a subprogram being provided via another progranmining
language and for which no body will be given in any Ada program. <o




also the LINK_NAME pragma.

F.1.6 Pragma LINK_NAME
Form: Pragma LINK_LNAME ( subprogram_name, link_name )
Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram_name the name link_name as
its entry point name.

Svntax: The value of link_name must be a character string literal.

Use: To allow Ada programs. with help from INTERFACE pragma. to
reference non-Ada subprograms. Also allows non-Ada programs to call
specified Ada subprograms.

F.1.7 Pragma CONTROLLED
Form: Pragma CONTROLLED ( AccessTypeName )
Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is is ever performed, this pragma currently
has no effect.

F.1.8 Pragma PACK

Form: Pragma PACIK ( tvpe_simple_name )

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units us
provided for by their own representation and/or packing.
Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes. depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records

and arrays, in some cases. to be passed by value instead of by reference.

Size reduction usually implies an increased cost of accessing components.
The decrease in storage size may be offset by increase in size of accessing
code und by slowing of accessing operations.




F.1.9 Pragmas SYSTEM_NAME, STORAGE_UNIT,
MEMORY_SIZE, SHARED

These pragmas are not supported and are ignored.

F.1.10 Pragma OPTIMIZE

Pragma OPTIMIZE is ignored; optimization is always enabled.




F.2 Implementation-dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for
certain language-defined. implementation-dependent attributes:

Type

Type

Tyvpe

INTEGLE?.
INTEGER'SIZE
INTEGER'FIRST
INTEGER’LAST

SHORT_FLOAT.
SHORT_FLOAT'SIZE
SHORT_FLOAT DIGITS
SHORT_FLOAT'MANTISSA
SHORT_FLOAT'EMAX
SHORT_FLOAT’EPSILON
SHORT_FLOAT'SMALL
SHORT_FLOAT'LARGE

SHORT_FLOAT"MACHINE_ROUNDS
SHORT_FLOAT'MACHINE_RADIX

SHORT_FLOAT'MACHINE_MANTISSA

SHORT_FLOAT MACHINE_EMAX
SHORT_FLOAT"MACHINE_EMIN

SHORT_FLOAT'MACHINE_OVERFLOWS

SHORT_FLOAT 'SAFE_EMAX
SHORT_FLOAT’SAFE_SMALL
SHORT_FLOAT'SAFE_LARGE

FLOAT.

FLOAT'SIZE

FLOAT'DIGITS

FLOAT MANTISSA
FLOAT'EMAX
FLOAT'EPSILON
FLOAT'SMALL
FLOAT'LARGE

FLOAT MACHINE_ROUNDS
FLOAT MACHINE_RADIX
FLOAT MACHINE_MANTISSA
FLOAT MACHINE_EMAX
FLOAT MACHINE_EMIN
FLOAT MACHINE_OVERFLOWN

= 32 -- bits.
= - (2**31)
= (2**31-1)

[
1 o W

2.0**(-20)
2.0**(-85)
2.0**84
= false
=16

I

I

= 16#0.800000#E-63
= 16#0.FFFFF8#E63

= 64 -- bits.
=15

= 51

= 204

= 2.0**(-50)
= 2.0**(-205)
= (1.0-2**(-51))*2.0**201
= false

16

14

b3

-64

= [alse

I

l



FLOAT'SAFE_EMAX
FLOAT'SAFE_SMALL
FLOAT'SAFE_LARGE

Type DURATION.
DURATION'DELTA
DURATIONFIRST
DURATION'LAST
DURATION’SMALL

Type PRIORITY.
PRIORITY FIRST
PRIORITY'LAST

= 252
= 16#0.80000000000000#E-63
= 16#0.FFFFFFFFFFFFEO#E63

2.0**(-14) -- seconds
- 86,400

86,400

2.0**(-14)

i

-127
127

I




F.3 Package SYSTEM

package SYSTEM s

type ADDRESS 1s private, .- "="_ "/=" defined implicitl!y
type NAME s (UTS MVS, CMS. Prime30, Sperrv!1100, MIL_STD_1750A}.

SYSTEM_NAME constant NAME = UTS -- Target dependent
STORAGE_UNIT constant = §.
MEMORY _SIZE constant = 2%**31,

-- In storage units

System-Dependent Named Numbers

MIN_INT constant = [NTEGER'POS( INTEGER'FIRST),

MAN_INT constant = I[INTEGER'POS(INTEGER'LAST),

MAX_DIGITS constant = 15,

MAX_MANTISSA constant = 31,

FINE_DELTA constant = 2 0**(-31]).

TICK constant = 1 OE-3, -- CLOCK function has msec resolution

Other System-Dependent Declarations

subtype PRIORITY s INTEGER range -127 127

Implementation-dependent add:itions to package SYSTEM

NULL_ADDRESS constant ADDRESS.
Same bit pattern as "null”™ access value
This 1s the value of 'ADDRESS for named numbers
The "ADDRESS of any object which >ccupires storage
1s NOT equa! to this value

ADDRESS_SIZE constant = 32
Number of bits 1n ADDRESS objects,
= ADDRESS "SIZE but static

ADDRESS _SEGMENT_SI1ZE constant = 2°%**?24

Number of storage units 1n address segment

type ADDRESS_OFFSET 1s new INTECER,
-- Used for address arithmetic
tvpe ADDRESS_SEGMENT :s new INTEGER,
Alwavs zerdo on targets with
unsegmented address space

csubtvpe NORMALIZED_ADDRESS_OFFSET ¢
ADDRESS _OFFSET range 0 ADDRESS _SEGMENT_SIZE - 1
Range of address offsets returned by OFFSET_OF

funct:on “+"{addr ADDRESS sffset ADDRESS_OFFSET ! return \DDRESS
fupnct:n "7 ey ADDRESS _OFFSET yddr ADDRESS  retu:r- A\IDRESS
| EFFECTS
|




Add an offset to an address May cross segment boundaries on
targets where objects may span segments On other targets

-
-

-- ] CONSTRAINT_ERROR will be raised when

--| OFFSET_OF(addr) + offset not i1n NORMALIZED_ADDRESS_OFFSET

function "-"(left, raight ADDRESS) return ADDRESS_OFFSET,
- | EFFECTS

.
-- ] Subtract two addresses returning an >{f{set This
--| offset may exceed the segment size on targets where
--| objects may span segments On other targets

-- ] CONSTRAINT_ERROR wil!l be raised :{ SEGMENT_OF({left) ;=
--| SEGMENT_OF({right)

function "-"(addr ADDRESS . «ifset ADDRESS _OFFSET) return

ADDRESS .
- | EFFECTS

-
--] Subtract an offset from an address returning an address
-- ) May crnss segment boundar:es on targets where
--] objects may span segments
--] On other targets CONSTRAINT_ERROR wiil be raised when
--] OFFSET_OF(addr) - offsecrt not 1n NORMALIZED_ADDRESS_OFFSET
function OFFSET_OF {addr ADDRESS) return NORMALIZED_ADDRESS_OFFSET.
Extract offset part of ADDRESS
Always 1n range O seg_si1ze - 1

function SEGMENT_OF [addr ADDRESS ) return ADDRESS_SEGMENT

function MAKE_ADDRESS foffset ADDRESS _OFFSET.
segment ADDRESS_SEGMENT = 0) retura ADDRESS

EFFECTS

-
-
--] Builds an address given an offset and a segment

-] Offsets may be > segment size on targets where objects may
| span segments,in which case 1t s equivalent to

| "MAKE_ADDRESS (0. segment) - offset”

| On other targets, CONSTRAINT_ERROR w:ll be rairsed when

[ oftset not i1n NORMALIZED_ADDRESS_OFFSET

type Supported_Language_Name 15 ( -- Target dependent
The following are "foreign” languages
ASSEMBLER
AJE_ASSEMBLER -- NOT a1 "fureign” language - uses AIE RTS

Most/least accurate built-1n integer and float tvpes

subtvpe LONGEST_INTEGER s STANDARD INTEGER.
subtvpe SHORTEST_INTEGER 1s STANDARD INTEGER,

subtvpe LONGEST_FLOAT s STANDARD FLOAT
subtvpe SHORTEST_FLOAT :1s STANDARD SHORT_FLOAT.

Lrivate

tvpe ADDRLESS s access INTEGEPR
Note The decignate: *vpe here [NTEGER) s

n




ADDRESS 1s made an access ‘:type
simply to guarantee 1t has the same si1ze uas
access values, which are single addresses

Allocators of type ADDRESS are NOT meaningful

irrelevant

NULL _ADDRESS constant ADDRESS = null,

end SYSTEM




F.4 Representation Clauses
This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses
to those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that i1s not accepted [by the compiler] then the
program 1s ilegal.” (LRM 13.1(10)).

Those restrictions which are defined by the LRM are not listed. A description
of the effect of the representation clause is also included where appropriate.

a. Length clauses:

o Size specification: T'SIZE.

The size specification may be applied to a type T or first-named subtype
T which is an access type. a scalar type, an array type or a record type.

Al-00536/07 has alterered the meaning of a size specification. In
particular. the statement from the LRM 13.2.a that the expression in
the length clause specifies an upper bound for the number of bits to be
allocated to objects of the tvpe is incorrect. Instead. the expression
specifies the exact size for the type. Objects of the type may be larger
than the specified size for padding. Note that the specified size is not
used when the type is used as a component of a record tvpe and a
component clause specifving a different size is given.

If the length clause can not be satistied by the type. an error message
will be generated.

The supported values of the size expression are explained for the types
as follows. If the value of the size expression is not supported. an error
message will be generated.

access tvpe: the only size supported is 32.

integer. fixed point. or enumeration tvpe: minimum size supparted is 1.
the maximum size that is supported is 32. the size of the largest
predefined integer type. Biased representation is not supported.

floating point type: the sizes supported are 32 and 64. Note that the size
must satisfy the DIGITS requirement. No support is provided
for shortened mantissa and/or exponent lengths.

record tvpe: if the size of the unpacked tvpe is greater than the specified
size of the length clause. an implicit pragma pack wiil be
assumed on the record tvpe. If the size of the implicit pragma
packed record tyvpe is =till zreater than the specified size of the

['-11




length clause, an error will be generated. (See also Pragma
Pack F.1.8 and Record Representation Clauses F.4.¢).

array type: if the size of the unpacked array type is greater than the size
clause expression, an implicit pragma pack will be assumed on
the array type. If the size of an implicit pragma packed array
tyvpe is still greater than the size expression clause, an error will
be generated.

o Specification of collection size: T'STORAGE_SIZE.

The effect of the specification of collection size is that a contiguous area
of the required size will be allocated for the collection. If an attempt to
allocate an object within the collection requires more space than
currently exists in the collection, STORAGE_ERROR will be raised.
Note that this space includes the header information.

 Specification of storage for a task activation: T'STORAGE_SIZE.

The value specified by the length clause will be the total size of the
stacks allocated for the task. rounded up to a multiple of 8192 (two
‘pages’ or stack chunks). The primary and secondary stacks will each be
allocated one half of the (rounded-up) size.

¢ Specification of small {or a fixed point type : T'SMALL

The value of T'SMALL is restricted to composite powers of 2 and 5 (e.g.
2,5, 10).

Enumeration Representation Clauses:

Values must be in the range of MIN_INT .. MAX_INT.

Record-representation-clause:

An alignment clause forces each record of the given type to be allocated at a
starting address that is a multiple of the value of the given expression.
Allowed alignment values are 1 (SU aligned), 2 (half-word aligned) and 4
(full-word aligned).

The range of bits specified has the following restrictions: if the starting bit is
0. there is no limit on the value for the ending bit; if the starting bit is
greater than O. then the ending bit must be less than or equal to 31.

Record components. including those generated implicitly by the compiler,
whose locations are not given by the representation-clause. are laid out by
the compiler following all the components whose locations are given by the
representation-clause. Such romponents of the invariant part of the record
are allocated to follow the nser-specified components of the invariant ;ur.

E-12




and such components in any given variant part are allocated to follow the
user-specified components of that variant part.

The actual size of the record object (including its use as a component of a
record or array type) will always be a multiple of storage units (e.g 8,16,24.
etc. bits) with padding added to the end of the record. if necessary. User-
specified ranges must contain at least the minimal number of bits required
to represent a (bit-packed) object of the corresponding type: e.g. to represent
an integer type with a range of 0..15. at least 4 bits must be specified in the
record representation specification range.

Address clauses:

Address clauses are allowed for objects (variable or constant) and for
subprograms to which a pragma INTERFACE applies. Address ciavses are
not allowed for packages or tasks. The interpretation of the value of an
address clause is described in ['.6.




F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent ~>mponents.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are. indeed. such components.
Hence. there is no convention (or possibility) of naming them and, therefore, no
way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point’ to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such
components.

F-14




F.6 Address Clauses

This section describes the interpretation of expressions that appear in address
clauses, including those for interrupts.

The address specified by the simple_expression of an address clause.
for simple_name use at simple_expression :

may be a call on SYSTEM.MAKE_ADDRESS, for example,
for ABC use at SYSTEM.MAKE_ADDRESS( 16#FF# ) ;

Values in the range 0..System.Memory_Size-1 will be interpreted as addresses as
written.




F.7 Unchecked Conversions
This section describes any restrictions on unchecked conversions.

The source and target must both be of a staticly sized type (other than a
discriminated record type) and both types must have the same static size.

=16




F.8 Input-Output

This section describes implementation-dependent characteristics of the input-
output packages.

(a) Declaration of type Direct_10.Count? {14.2.5]
0..Integer’last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(¢) Disposition of unclosed IN_FILE files at program termination? [14.1(7)]
Files are closed.

(d) Disposition of unclosed OUT_FILE files at program termination? [14.1(7)|
Files are closed.

(e) Disposition of unclosed INOUT_FILE files at program termination? [14.1(7)]
Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)]
UTS filenames

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]
The image of an integer specifying the UTS file protection on
CREATE.

(h) Where are I/O exceptions raised bevond what is described in Chapter 14?7
[14.1(11)]
None raised.
(1) Are alternate specifications (such as abbreviations) allowed for file names? If

so, what is the form of these alternatives? [14.2.1(21)]
No.

(j) When is DATA_ERROR not raised for sequential or direct input of an
inappropriate ELEMENT_TYPE? [14.2.2(4), 14.2.4(4)]
When it can be assigned without CONSTRAINT_ERROR to a
variable of ELEMENT_TYPE.

(k) What are the standard input and standard output files? [14.3(5)]
UTS standard input and output

(1) What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCILLF (line feed);
page terminator is ASCILFF (form feed)

(m) Value of Text_[O.Count'last? [14.3(8)]
¢ integer last

(n) Value of Text_IO.Field'last? [14.3.7(2)]
integer'last

-1




(o) Effect of instantiating ENUMERATION_IO for an integer type? [14.3.9(15))
The instantiated Put will work properly, but the instantiated Get
will raise Data_Error

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential I/O can be instantiated for an
unconstrained array type or for an unconstrained record type
lacking default values for its discriminants.

(q) Specification of package Low_Level_[0? [14.6]
Low_Level_IO is not provided.




F.9 Tasking

This section describes implementation-dependent characteristics of the tasking
run-time packages.

Even though a main program completes and terminates (its dependent tasks. if
any, having terminated), the elaboration of the program as a whole continues
until each task dependent upon a library unit package has either terminated or
reached an open terminate alternative. See LRM 9.4(13).

[-19




F.10 Other Matters

This section describes other implementation-dependent characterisiics of the
system.

a. Package Machine_Code
Will not be provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see AI-00257/02).

F-20




F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number of
distinct packages actively "used."”

(¢) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.




