APPLICATIONS
of
WAVELETS
to
SIGNAL PROCESSING

This document has been approved for public release and sale; its distribution is unlimited.

20–22 March 1991
AFIT Auditorium
AFIT Science & Research Center
Wright-Patterson Air Force Base, Ohio
AFIT/AFOSR Symposium on Applications of Wavelets to Signal Processing, Volume II, Tutorial Notes

Title and Subtitle
AFIT/AFOSR Symposium on Applications of Wavelets to Signal Processing, Volume II, Tutorial Notes

Author(s)
G. Warhola, M. Oxley, S. Rogers, M. Kabrisky, and B. Suter

Performing Organization Name(s) and Address(es)
Department of Mathematics and Statistics and Department of Electrical and Computer Engineering

Sponsoring/Monitoring Agency Name(s) and Address(es)
Air Force Office of Scientific Research
Bolling AFB, DC 20332-6448

Abstract
The Air Force Institute of Technology (AFIT) hosted the Symposium on Applications of Wavelets to Signal Processing during 20-22 March 1991 at the AFIT Science and Research Center, Wright-Patterson AFB, OH. This was the first major academic meeting of its kind held at AFIT. The symposium was sponsored by the Air Force Office of Scientific Research (AFOSR), Bolling AFB, DC. It focused on applications of wavelets to problems in image and speech processing, communications, and graphics and opened with a one-day short course, "A Tutorial on Wavelets." The symposium was attended by more than 220 researchers worldwide. They represented 15 foreign countries, 34 US universities, 28 private industrial firms, 15 DoD organizations, and six non-DoD US government organizations. Professor Alexander Grossmann was sponsored by the AFOSR Window on Science program. Volumes I and II contain, respectively, a synopsis of the symposium and the complete set of tutorial notes.

Subject Terms
Wavelets, Signal Processing, Time-Frequency

Security Classification
- Report: UNCLASS
- This Page: UNCLASS
- Abstract: UNCLASS

Distribution/Availability Statement
Approved for public release; distribution unlimited

Report Date
30 April 1991 Final 3 Oct 90 to 30 Apr 91

Funding Numbers

Price Code
UL

Number of Pages
230

Limitation of Abstract
UL
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1. Agency Use Only (Leave blank).</td>
<td></td>
</tr>
<tr>
<td>Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.</td>
<td></td>
</tr>
<tr>
<td>Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).</td>
<td></td>
</tr>
<tr>
<td>Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.</td>
<td></td>
</tr>
<tr>
<td>Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:</td>
<td></td>
</tr>
<tr>
<td>C - Contract</td>
<td>PR - Project</td>
</tr>
<tr>
<td>G - Grant</td>
<td>TA - Task</td>
</tr>
<tr>
<td>PE - Program</td>
<td>WU - Work Unit</td>
</tr>
<tr>
<td>Element Accession No.</td>
<td></td>
</tr>
<tr>
<td>Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).</td>
<td></td>
</tr>
<tr>
<td>Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.</td>
<td></td>
</tr>
<tr>
<td>Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.</td>
<td></td>
</tr>
<tr>
<td>Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.</td>
<td></td>
</tr>
<tr>
<td>Block 10. Sponsoring/Monitoring Agency Report Number. (If known)</td>
<td></td>
</tr>
<tr>
<td>Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with..., Trans. of..., To be published in... When a report is revised, include a statement whether the new report supersedes or supplements the older report.</td>
<td></td>
</tr>
<tr>
<td>Block 12a. Distribution/Availibility Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).</td>
<td></td>
</tr>
<tr>
<td>DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."</td>
<td></td>
</tr>
<tr>
<td>DOE - See authorities.</td>
<td></td>
</tr>
<tr>
<td>NTIS - Leave blank.</td>
<td></td>
</tr>
<tr>
<td>Block 12b. Distribution Code.</td>
<td></td>
</tr>
<tr>
<td>DOD - Leave blank.</td>
<td></td>
</tr>
<tr>
<td>DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.</td>
<td></td>
</tr>
<tr>
<td>NASA - Leave blank.</td>
<td></td>
</tr>
<tr>
<td>NTIS - Leave blank.</td>
<td></td>
</tr>
<tr>
<td>Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.</td>
<td></td>
</tr>
<tr>
<td>Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.</td>
<td></td>
</tr>
<tr>
<td>Block 15. Number of Pages. Enter the total number of pages.</td>
<td></td>
</tr>
<tr>
<td>Block 16. Price Code. Enter appropriate price code (NTIS only).</td>
<td></td>
</tr>
<tr>
<td>Blocks 17. - 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.</td>
<td></td>
</tr>
<tr>
<td>Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.</td>
<td></td>
</tr>
</tbody>
</table>
Final report for the period 3 October 1990 to 30 April 1991

AFOSR-616-91-0024

Gregory T. Warhola, Captain, USAF *
Mark E. Oxley, Ph.D. *
Steven K. Rogers, Major, USAF **
Matthew Kabrisky, Ph.D. **
Bruce W. Suter, Ph.D. **

* Department of Mathematics and Statistics (AFIT/ENC)
** Department of Electrical and Computer Engineering (AFIT/ENG)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

30 April 1991

Approved for public release; distribution unlimited
Errata

“A Tutorial on Wavelets”

p71. change v to u so that it reads

$$v = (u, e)e.$$

p152. delete the comma following V_{-1}.

p199. change $+$ to $-$ between $\delta_{n,2l}$ and $\delta_{n,2l+1}$ and between $C_{m-1,2l}$ and $C_{m-1,2l+1}$ in the last two lines on the page.

p209. change the boldface R to $[0,1]$ so that it reads

“... between $G \in L^2([0,1])$ and ...”
A Tutorial on Wavelets

presented by
AFIT Faculty

sponsored by
AFOSR
These notes were prepared by

G. Warhola
M. Oxley
S. Rogers
M. Kabrisky
B. Suter
SCHEDULE

0830-1000 Part I
Introduction to Wavelets in Signal Analysis

1000-1030 Break

1030-1200 Part II
Introduction to Wavelet Bases and Frames

1200-1330 Lunch

1330-1430 Part III
AFIT Applications of Wavelets

1430-1500 Break

1500-1700 Part IV
Multiresolution Analysis and Orthonormal Bases
PART I

Introduction to Wavelets in Signal Analysis

* History

** Weyl-Heisenberg Wavelet Transforms

** Affine Wavelet Transforms

** Basic Properties

** Examples

* Mathematical Necessities
PROBLEMS IN SIGNAL PROCESSING

* Compression
* Recognition
 ** Is it there?
 ** Who's talking?
* Boundary Detection
 ** Transitions in Speech
 ** Edges in Images
* Inverse Problems
 ** Source Reconstruction
 ** Parameter ID
Fourier series and transforms are nice, but not good enough!

* Miraculous Cancellations at "Dead Spots"
* Data Dropouts \(\Rightarrow\) Recompute all coefficients
* Timing of a frequency's predominant contribution not apparent
* Reconstruction dependent upon phase
TIME-FREQUENCY DISTRIBUTIONS

Track the time-evolution of "frequency"
N. G. De Bruijn:

“What the composer really does, ..., is something entirely different from describing either f or $\mathcal{F}f$. Instead, he constructs a function of two variables. The variables are the time and the frequency, the function describes the intensity of the sound. He describes the function by a complicated set of dots on score paper. ... certainly vertical lines denote constant time, and horizontal lines denote constant frequency.”
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1903</td>
<td>Runge</td>
<td>[R1]</td>
</tr>
<tr>
<td>1932</td>
<td>Wigner</td>
<td>[W1]</td>
</tr>
<tr>
<td>1946</td>
<td>Gabor</td>
<td>[G1]</td>
</tr>
<tr>
<td>1948</td>
<td>Ville</td>
<td>[V1]</td>
</tr>
<tr>
<td>1952</td>
<td>Duffin & Schaeffer</td>
<td>[DS]</td>
</tr>
<tr>
<td>1964</td>
<td>Calderon</td>
<td>[C1]</td>
</tr>
<tr>
<td>1966</td>
<td>Cohen</td>
<td>[C2]</td>
</tr>
<tr>
<td>1967</td>
<td>De Bruijn</td>
<td>[DB]</td>
</tr>
<tr>
<td>1980</td>
<td>Coifman & Rochberg</td>
<td>[CR]</td>
</tr>
<tr>
<td></td>
<td>Bastiaans</td>
<td>[B2]</td>
</tr>
<tr>
<td>1981</td>
<td>Balian</td>
<td>[B1]</td>
</tr>
<tr>
<td></td>
<td>Jannsen</td>
<td>[J1,2]</td>
</tr>
<tr>
<td>1982</td>
<td>Morlet, et al</td>
<td>[M1]</td>
</tr>
<tr>
<td>1984</td>
<td>Grossmann & Morlet</td>
<td>[GM]</td>
</tr>
<tr>
<td></td>
<td>Jannsen</td>
<td>[J3]</td>
</tr>
</tbody>
</table>
HISTORY (cont’d)

1985 Meyer [Me1]
 Low [L1]
 Frazier & Jawerth [FJ1]
1986 Daubechies, et al [DGM]
 Lemarié & Meyer [LM]
1987 Battle [B5]
1988-89 Cohen [C3]
 Daubechies [Db1,2]
 Frazier & Jawerth [FJ2]
 Heil & Walnut [HW]
 Lemarié [L2]
 Mallat [Ma1-3]
 Meyer [Me3]
1990 Meyer [Me4]
 Resnikoff & Burrus [RB]
 Daubechies [Db3]
NOTATION

\[R \] - the real numbers
\[C \] - the complex numbers
\[Z \] - the integer numbers
\[i \] - the imaginary unit, \(i = \sqrt{-1} \).
\[L^2(\mathbb{R}) = \{ \text{square-integrable complex-valued functions defined on } \mathbb{R} \} \]
\[= \{ x : \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \} \]

Similarly,

\[L^2([0, 1]) = \{ x : \int_{0}^{1} |x(t)|^2 dt < \infty \} \]

"Finite-energy" continuous-time signals
\(l^2(\mathbb{Z}) = \{ \text{square-summable complex-valued functions defined on } \mathbb{Z} \} \)

\[\{ \alpha = (\ldots, a_{-1}, a_0, a_1, \ldots) : \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \} \]

"Finite-energy" discrete-time signals
Let "∈" denote membership in a set, family, class, etc.

e.g.

\[x \in L^2(\mathbb{R}) \iff \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \]

where

"\iff" means "if and only if"
WEYL-HEISENBERG WAVELET TRANSFORMS

Recall the Fourier Transform, \(\hat{x} \), for \(x \in L^2(\mathbb{R}) \):

\[
\mathcal{F}\{x\}(f) := \hat{x}(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt
\]

Inversion Formula:

\[
F^{-1}\{\hat{x}\}(t) = x(t) = \int_{-\infty}^{\infty} \hat{x}(f) e^{i2\pi ft} df
\]
The "usual" inner product, $\langle \cdot , \cdot \rangle$, defined on $L^2(\mathbb{R})$ is given by

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t) \overline{y(t)} dt$$

where the "overbar" implies complex conjugation.

The "induced norm," $\| \cdot \|$, is given by

$$\|x\| = \langle x, x \rangle^{1/2}$$

$$= \left(\int_{-\infty}^{\infty} |x(t)|^2 dt \right)^{1/2}$$
Then,

\[\hat{x}(f) = \langle x, E_f \rangle = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \]

where \(E_f(t) = e^{i2\pi ft} \). Also,

\[x(t) = \langle \hat{x}, \xi_t \rangle = \int_{-\infty}^{\infty} \hat{x}(f) e^{i2\pi ft} df \]

where \(\xi_t(f) = e^{-i2\pi ft} \). Note that

\[E_f(t) = \xi_t(f) \]
"Building blocks" for the Fourier Transform are complex sinusoids of continuous frequency, \(f \), which satisfy

\[
\langle E_f, E_{f_0} \rangle = \delta(f - f_0),
\]

a Dirac \(\delta \) - distribution.
Plancherel - "signal energy = spectrum energy"

\[||x||^2 = ||\hat{x}||^2 \]

\[\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{x}(f)|^2 df \]

Parserval - preservation of "geometry"

\[\langle x, y \rangle = \langle \hat{x}, \hat{y} \rangle \]

\[\int_{-\infty}^{\infty} x(t)y(t)dt = \int_{-\infty}^{\infty} \hat{x}(f)\hat{y}(f)df \]
For \(x \in L^2([0, 1]) \), a Fourier Series representation is

\[
x(t) = \sum_{n \in \mathbb{Z}} c_n E_n(t),
\]

a 1-periodic function of \(t \in \mathbb{R} \), i.e. \(x(t) = x(t + k) \ \forall \ k \in \mathbb{Z} \), where

\[
c_n = \int_0^1 x(t) \overline{E_n(t)} \, dt
\]

\[
\doteq \langle x, E_n \rangle
\]

\(\langle \cdot, \cdot \rangle \) in the context of the function space considered, \(L^2([0, 1]) \) here.
“Building blocks” for Fourier Series are complex exponentials of discrete (integer values of) frequency, n, which satisfy

$$\langle E_n, E_m \rangle = \delta_{nm},$$

the Kronecker δ - function.
Fourier Coefficients

\[c_m = \int_0^1 x(t) e^{-i2\pi mt} dt \]

as a Fourier Transform

\[c_m = \int_{-\infty}^{\infty} \chi_{[0,1]}(t) x(t) e^{-i2\pi mt} dt \]

where

\[\chi_{[0,1]}(t) = \begin{cases} 1, & t \in [0, 1) \\ 0, & \text{else} \end{cases} \]

In a loose sense, \(c_m \) is a measure of the amount of frequency \(m \) present in \(x \) as viewed through the "window" \(\chi_{[0,1]} \).
Move the window to the interval \([n, n + 1)\) and define

\[
c_{mn} = \int_{-\infty}^{\infty} \chi_{[n,n+1)}(t) x(t) e^{-i2\pi mt} dt \quad \forall m, n \in \mathbb{Z}
\]

to measure the frequency \(m\) in the interval \([n, n + 1)\).
Gabor - 1946 [G1] Gaussian Window, g,

$$c_{mn} = \int_{-\infty}^{\infty} g(t - nt_0) x(t) e^{-i2\pi mf_0 t} dt \quad \forall m, n \in \mathbb{Z}$$

with

$$\frac{1}{f_0 t_0} = 1$$

gives numerically unstable reconstruction!

Require $\frac{1}{f_0 t_0} > 1$ for stability (Nyquist, Balian-Low).
Generalize to a continuous frequency, p, and shift, q
$p, q \in \mathbb{R}$, where g is some "window".

Windowed ("Short Time") Fourier Transform

$$WF_g\{x\}(p, q) = \int_{-\infty}^{\infty} x(t) \overline{g(t - q)} e^{-i2\pi pt} dt$$

"Weyl-Heisenberg Wavelet Transform"
Define
\[g^{(p,q)}(t) = g(t - q) e^{i2\pi pt} \]
then
\[\hat{g}^{(p,q)}(f) = \hat{g}(f - p) e^{-i2\pi qf}. \]
(Note the windows, \(g \) and \(\hat{g} \) in time and frequency domains, resp.)
\[
WF_g\{x\}(p, q) = \langle x, g^{(p,q)} \rangle \\
= \int_{-\infty}^{\infty} x(t) \overline{g^{(p,q)}(t)} \, dt
\]
Suppose \(\|g\|^2 = 1 = \|\hat{g}\|^2 \); then, \(|g(\cdot)|^2\) and \(|\hat{g}(\cdot)|^2\) are (probability)
density functions, e.g.,
\[
g(t) = \pi^{-1/4} e^{-t^2/2}
\]
If mean time and mean frequency are zero w.r.t. the densities, i.e.,
\[
\int_{-\infty}^{\infty} t |g(t)|^2 \, dt = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} f |\hat{g}(f)|^2 \, df = 0
\]
then
\(g(p,q)\) is "centered" around frequency \(p\), time \(q\).
\(g(p,q) \) is "centered" around frequency \(p \), for each time \(q \), i.e.

\[
\int_{-\infty}^{\infty} f \left| \widehat{g(p,q)}(f) \right|^2 df = p \quad \text{for all time } q
\]

\[
\int_{-\infty}^{\infty} t \left| g^{(p,q)}(t) \right|^2 dt = q \quad \text{for all frequencies } p.
\]

\(\mathcal{WF}_g \{ x \}(p,q) \) measures frequency \(p \)-content of \(x \) in window \(g \) centered at time \(q \).
Resolution of Identity

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |W\mathcal{F}_g\{x\}(p, q)|^2 \, dp \, dq = ||x||^2 ||g||^2 \]

\[||W\mathcal{F}_g\{x\}||^2 = ||x||^2 ||g||^2 \]

Compare with Plancherel

\[\int_{-\infty}^{\infty} |\mathcal{F}\{x\}(f)|^2 \, df = ||x||^2 \]

\[||\hat{x}||^2 = ||x||^2 \]
Inversion Integral

\[x(t) = \frac{1}{\|g\|^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{WF}_g \{x\}(p, q) g^{(p, q)}(t) dp \, dq \]

\[= \frac{1}{\|g\|^2} \langle \mathcal{WF}_g \{x\}, \overline{g^{(p, q)}} \rangle \]
Weyl-Heisenberg Building Blocks

\[g^{(p,q)}(t) = g(t - q) e^{i2\pi pt} \]

Include the Window!

W-H ⇒ Translate and Modulate
Folklore

Fourier Inversion of W-H

\[x(t) g(t - q) = \int_{-\infty}^{\infty} \mathcal{W}F_g\{x\}(p, q) e^{i2\pi pt} dp \]

"Overlap and Add" to "recover" \(x \).
Second Moments

\[\sigma_p^2 = \int_{-\infty}^{\infty} f^2 |\hat{g}(f)|^2 \, df \]
\[\sigma_q^2 = \int_{-\infty}^{\infty} t^2 |g(t)|^2 \, dt \]

Standard Deviations of \(g^{(p,q)} \) are resolution limits satisfying

\[\sigma_p \sigma_q \geq \frac{1}{4\pi} \]

"Uncertainty Principle"
Resolution Limitation of W-H

Fixed-width window, g, limits precision of event/frequency determination.
Overcome poor time resolution of high frequencies with the
AFFINE WAVELET TRANSFORM.

\[W_h \{x\}(a, b) = \int_{-\infty}^{\infty} x(t) \overline{h^{(a,b)}(t)} \, dt \]

where

\[h^{(a,b)}(t) = \frac{1}{\sqrt{a}} h\left(\frac{t - b}{a}\right) \]

for some "Mother (Analyzing) Wavelet" \(h \).
• $W_h\{x\}$ correlates x with Dilations and Translations of h.
• "Analyzing wavelets" $h(a,b)$ all have same shape.
• Compare with W-H.
Let

\[h_a(t) = \frac{1}{\sqrt{a}} \frac{h(t)}{a} \]

\[\hat{h}_a(f) = \sqrt{a} \hat{h}(af) \]

then

\[W_h \{ x \} (a, b) = \int_{-\infty}^{\infty} x(t) \frac{h_a(t - b)}{a} dt. \]
Let

\[\gamma_a(t) = h_a(-t) \]
\[\hat{\gamma}_a(f) = \hat{h}_a(-f) \]
\[= \sqrt{a} \hat{h}(-af) . \]

Then

\[W_h\{x\}(a, b) = \int_{-\infty}^{\infty} x(t) \overline{\gamma_a(b - t)} \, dt \]
\[= (x \ast \overline{\gamma_a})(b) . \]
Have

\[W_h\{x\}(a, b) = (x * \overline{\gamma_a})(b) \]

which implies

\[W_h\{x\}(a, b) = \mathcal{F}^{-1} \left\{ \hat{x}(\cdot) \overline{\gamma_a(-\cdot)} \right\}(b) \]

\[= \mathcal{F}^{-1} \left\{ \hat{x}(\cdot) \sqrt{a} \hat{h}(a\cdot) \right\}(b) \]

\[W_h\{x\}(a, b) = \sqrt{a} \int_{-\infty}^{\infty} \hat{x}(f) \hat{h}(af) e^{i2\pi fb} df . \]

Fourier Transform:

\[\hat{W_h\{x\}}(a, f) = \sqrt{a} \hat{x}(f) \hat{h}(af) \]
Mostly work with real mother wavelets, \(h \), so that

\[
\hat{h}(f) = \hat{h}(-f)
\]

\[
\hat{h}(-f) \hat{h}(f) = \left| \hat{h}(f) \right|^2.
\]

Easy to get wavelet inversion integral from the Inverse Fourier Transform
Inversion Integral

Given \(h \) real,

\[
\hat{W}_h \{ x \}(a, f) = \sqrt{a} \hat{x}(f) \hat{h}(-af)
\]

then

\[
\int_0^\infty \hat{W}_h \{ x \}(a, f) \hat{h}(af) a^{-3/2} \, da = \hat{x}(f) \int_0^\infty \frac{\hat{h}(af)^2}{a} \, da = \hat{x}(f) C_h
\]

where

\[
C_h = \int_0^\infty \frac{\hat{h}(\xi)^2}{\xi} \, d\xi < \infty
\]

is necessarily assumed (more on this, later).
Inverse Fourier Transform:

\[C_h x(t) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \tilde{W}_h\{x\}(a, f) \sqrt{a} \hat{h}(af) a^{-2} da \ e^{i2\pi ft} df \]

\[= \int_{0}^{\infty} \mathcal{F}^{-1} \left\{ \tilde{W}_h\{x\}(a, \cdot) h_a(\cdot) \right\}(t) a^{-2} da \]

\[= \int_{0}^{\infty} (W_h\{x\} \ast h_a)(t) a^{-2} da \]

\[C_h x(t) = \int_{-\infty}^{\infty} \int_{0}^{\infty} W_h\{x\}(a, b) \frac{1}{\sqrt{a}} h\left(\frac{t - b}{a}\right) a^{-2} da \ db \]

a weighted sum of wavelet "building blocks".
As an inner product

\[W_h \{x\}(a, b) = \left(\int_{-\infty}^{\infty} x(t) \frac{1}{\sqrt{a}} h\left(\frac{t - b}{a} \right) \, dt \right)^2 \]

\[= \langle x, h(a, b) \rangle. \]
Admissibility Condition

\[C_h = \int_0^\infty \frac{|\hat{h}(f)|^2}{f} df < \infty \]

implies \(\hat{h}(0) = 0 \) "sufficiently fast".

That is, for \(h \) to be a mother wavelet for an affine wavelet transform, \(h \) must satisfy the condition

\[\int_{-\infty}^{\infty} h(t) dt = 0. \]

Observe, \(\hat{h} \) is a bandpass filter.
Fig. 10. (a) Graph of a wavelet $\psi(x)$. (b) Graph of $\psi_{s_1}(x)$ for $s_1 > 1$. (c) Graph of $\psi_{s_2}(x)$ for $s_2 < 1$. The curves (a'), (b'), and (c') are, respectively, the Fourier transform of the function shown in (a), (b), and (c). They have the same rms bandwidth on a logarithmic scale.
Resolution Properties

Take mother wavelet, \(h \), normalized
\[
\| h \|^2 = 1 = \| \hat{h} \|^2
\]
so that \(|h|^2, |\hat{h}|^2 \) are density functions.

Center frequency, \(f_0 \) of passband in \(\hat{h} \) defined by
\[
\int_0^\infty (f - f_0) |\hat{h}(f)|^2 df = 0
\]

Second Moment (mean-squared bandwidth) about \(f_0 \):
\[
\sigma_f^2 = \int_0^\infty (f - f_0)^2 |\hat{h}(f)|^2 df
\]

Second Moment about time origin:
\[
\sigma_t^2 = \int_0^\infty t^2 |h(t)|^2 dt
\]
Wavelet \(h_a(t - b) = \frac{1}{\sqrt{a}} h\left(\frac{t-b}{a}\right) \); \(\hat{h}_a(f) = \sqrt{a} \hat{h}(a.f) \)

Passband centered at \(f_0/a \) with mean-squared bandwidth \((\sigma_f/a)^2\)

Energy in wavelet centered at \(t = b \) with standard deviation \(a \sigma_t \).

\[a \downarrow 0 \quad \Rightarrow \quad \text{"zoom in" on details} \]
Elementary Example

\[x(t) = e^{-kt^2}, \quad k > 0, \] analyzed w.r.t. mother wavelet

\[h(t) = \frac{d}{dt} e^{-\pi t^2} \]

\[W_h\{x\}(a, b) = \mathcal{F}^{-1}\left\{ \hat{x}(\cdot) \sqrt{a} \hat{h}(-a(\cdot)) \right\}(b) \]

\[= \frac{2ka^{3/2}b}{(1 + \frac{k\alpha^2}{\pi})^{3/2}} \exp\left\{ -\frac{kb^2}{1 + \frac{k\alpha^2}{\pi}} \right\} \]

Note:

\[a^{-3/2} W_h\{x\}(a, b) \underset{\text{as } a \downarrow 0}{\longrightarrow} -\frac{d}{dt} x(t) \big|_{t=b} \]
Tuteur's Biomedical Application
of Affine Wavelets [T1]

Nature of biomedical signals: short time duration cyclic signals whose exact shape is unknown. Moreover, shape and location of identifying characteristics change from cycle to cycle.

Averaging is ineffective.
Example. ECG waveform of child with cardiac defect – Ventricular Late Potential (VLP)

Pulse period of ECG waveform ≈ 1.05 seconds.

Duration of VLP signal ≈ 0.1 seconds.

$$\frac{\text{Peak VLP Amplitude}}{\text{Peak ECG Amplitude}} \approx 0.05.$$
Mother "wavelet" chosen

\[h(t) = e^{-t^2/2+imt} \]

\[\hat{h}(f) = \sqrt{2\pi} e^{-(2\pi f - m)^2/2} \]

Not strictly a wavelet, since \(\hat{h}(0) \neq 0 \). But for \(m \) large enough, \(\hat{h}(0) \approx 0 \).

Tuteur chose \(m = \pi \sqrt{2/\ln 2} \approx 5.336 \), for which \(\hat{h}(0) = 1.64 \times 10^{-6} \).
Fig. 3 Wavelet transforms of the clipped "abnormal" ECG for dilation parameter $a = 1/11, 1/16, 1/22$. Note the bulge to the right of the middle QRS peak indicating the presence of the VLP.
(Very) Elementary Properties of $W_h \{ x \} (a, b)$

Linearity:

$$W_h \{ ax + \beta y \} = a W_h \{ x \} + \beta W_h \{ y \}, \forall a, \beta \in \mathbb{C}$$

Scaling:

$$W_h \{ x(\cdot)/\lambda \} (a, b) = \sqrt{\lambda} W_h \{ x(\cdot) \} (a/\lambda, b/\lambda), \forall \lambda \in \mathbb{R} \setminus \{0\}$$

Time Shift:

$$W_h \{ x(\cdot - t_0) \} (a, b) = W_h \{ x(\cdot) \} (a, b - t_0), \forall t_0 \in \mathbb{R}$$
Time Differentiation: \(x'(t) = \frac{d}{dt} x(t) \)

\[
W_h \{x\}'(a, b) = \frac{\partial}{\partial b} W_h \{x\}(a, b)
\]

Convolution:

\[
W_h \{x \ast y\}(a, b) = [x \ast W_h \{y\}(a, \cdot)](b)
= [W_h \{x\}(a, \cdot) \ast y](b)
\]
PART II

Introduction to Wavelet Bases and Frames

* Weyl-Heisenberg
* Affine
BASIC CONCEPTS of a HILBERT SPACE

Inner product Space – a linear space, X, and a function $\langle \cdot, \cdot \rangle$ called an inner product defined on pairs of points (vectors) in X having the properties for each $u, v, w \in X$:

1. $\langle u, v \rangle = \langle v, u \rangle$
2. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle \quad \forall$ scalars α
3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
4. $\langle u, u \rangle > 0 \quad \forall u \neq 0$

Extends the notion of dot product for finite-dimensional vectors.
Norm, $\| \cdot \|$, induced by the inner product $\langle \cdot , \cdot \rangle$:

$$\| u \|^2 = \langle u, u \rangle \quad \forall u \in X$$

Extends the notion of length, or size, for finite-dimensional vectors.

A sequence $\{u_n\}_{n=1}^{\infty}$ of vectors (points, functions, sequences, random variables, etc.) in an inner product space, X, is said to converge to the limit vector u, and we write $u_n \rightarrow u$ if

$$\lim_{n \rightarrow \infty} \| u_n - u \| = 0 ;$$

equivalently if,

$$\lim_{n \rightarrow \infty} \langle u_n - u, u_n - u \rangle = 0 .$$
If the limit u is in the space, X, for all convergent sequences, $\{u_n\}_{n=1}^{\infty}$, we say X is complete.

A complete inner product space is called a Hilbert Space.
Example

\[x(t) = \begin{cases}
0, & t = 0 \\
1, & 0 < t \leq 1/2 \\
0, & 1/2 < t \leq 1
\end{cases} \]

\[\hat{x}(k) = \int_0^1 x(t) e^{-i2\pi kt} dt \]

\[x_n(t) = \sum_{k=-n}^{n} \hat{x}(k) e^{i2\pi kt} \]

\[x_n(t) \not\rightarrow x(t) \text{ at } t = 0, \frac{1}{2}, 1; \text{ but } x_n \rightarrow x \text{ in the Hilbert Space } L^2([0, 1]) \text{ since} \]

\[\lim_{n \to \infty} \|x - x_n\|^2 = \lim_{n \to \infty} \int_0^1 |x(t) - x_n(t)|^2 dt = 0. \]
Geometry

Angle $\theta \in (-\pi, \pi]$ between vectors

$$\langle u, v \rangle = \|u\| \|v\| \cos \theta$$

If $\langle u, v \rangle = 0$, we say u and v are orthogonal and write $u \perp v$.

If $\langle u, u \rangle = 1$, i.e., if $\|u\| = 1$, u is normalized (a unit vector).

A set $S = \{ \ldots, u_{-1}, u_0, u_1, \ldots \}$ (which may be finite) is said to be orthonormal provided for all i, j

$$\langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{else} \end{cases}$$

Ex. $\{ e^{i2\pi nt} \}_{n \in \mathbb{Z}}$ is an orthonormal set in $L^2([0, 1])$.
A linear manifold, \mathcal{M}, in a Hilbert Space, \mathcal{H}, is a subset of \mathcal{H} which is also a linear space. (\mathcal{M} must contain the origin)

Simplest linear manifold: The line, ℓ generated by v_0 given by

$$\ell = \{\alpha v_0 : \forall \text{ scalars } \alpha\}$$
The orthogonal projection of a vector $u \in \mathcal{H}$ onto the linear manifold, ℓ, (the line generated by v_0) is the vector $v \in \ell$ given by

$$v = \langle v, e \rangle e$$

where

$$e = \frac{v_0}{\|v_0\|}$$

is a unit vector. Given v, can always write an orthogonal decomposition of u

$$u = v + w$$

where

$$w \perp v.$$

Hence the name "orthogonal projection".
For any manifold $\mathcal{M} \subset \mathcal{H}$, for which \mathcal{M} is also a Hilbert Space, we may write any vector $u \in \mathcal{H}$ as

$$u = v + w$$

where $v \in \mathcal{M}$ and $w \in \mathcal{M}^\perp$. We call \mathcal{M}^\perp the orthogonal complement of \mathcal{M} in \mathcal{H}. It is defined by

$$\mathcal{M}^\perp \doteq \{ f \in \mathcal{H} : \langle f, m \rangle = 0 \ \forall \ m \in \mathcal{M} \}$$

This is the “Classical Projection Theorem”
Orthonormal Bases

An orthonormal set \(\{e_n\}_{n \in \mathbb{Z}} \subset \mathcal{H} \) having the property that

\[
\langle e_n, v \rangle = 0 \quad \text{for all } n \in \mathbb{Z} \quad \Rightarrow \quad v = 0
\]

is an orthonormal basis for \(\mathcal{H} \). Given such an orthonormal basis, any \(x \in \mathcal{H} \) may be written as a generalized Fourier series

\[
x = \sum_{n \in \mathbb{Z}} c_n \, e_n
\]

where

\[
c_n = \langle x, e_n \rangle
\]

are generalized Fourier coefficients and the series converges in norm.
Orthogonal bases are linearly independent sets; i.e., for any integers M and N,

$$\sum_{i=M}^{N} a_k e_k = 0 \iff 0 = b_0$$

but the converse is not true.

Ex. 1. Two non-orthogonal, non-collinear, coplanar vectors in \mathbb{R}^2 are linearly independent.

Ex. 2. $\{e^{2\pi i t}, \cos(2\pi t)\}$ is a linearly independent non-orthogonal set in $L^2([0,1])$.
With an orthonormal basis, we have Parseval’s Identity:

\[
\langle x, y \rangle = \sum_{n \in \mathbb{Z}} \langle x, e_n \rangle \overline{\langle e_n, y \rangle}
\]

\[
= \sum_{n \in \mathbb{Z}} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}
\]

Setting \(y = x \) yields Plancherel’s Identity

\[
\|x\|^2 = \langle x, x \rangle = \sum_{n \in \mathbb{Z}} |\langle x, e_n \rangle|^2.
\]

When \(x \in L^2(\mathbb{R}) \) (finite energy, continuous time signals), this says that the generalized Fourier coefficients form a finite energy sequence

\[(\cdots, \langle x, e_{-1} \rangle, \langle x, e_0 \rangle, \langle x, e_1 \rangle, \cdots) \in l^2(\mathbb{Z})\]
A Hilbert space which possesses a countable orthonormal basis is said to be **separable**.

All separable Hilbert spaces are essentially (i.e., equivalent to) $l^2(\mathbb{Z})$!!!
FRAMES

Weyl-Heisenberg

Affine
WAVELET BASES AND FRAMES

Recall the continuous W-H Wavelet (Windowed Fourier) Transform:

\[
WF_g \{ x \}(p, q) = \int_{-\infty}^{\infty} x(t) g(t - q) e^{-i2\pi pt} dt; \quad p, q \in \mathbb{R}
\]

\[
= \langle x, g^{(p,q)} \rangle
\]

where

\[
g^{(p,q)}(t) = g(t - q) e^{i2\pi pt}
\]
For computations, we discretize p and q.

Choose $p_0 > 0$, $q_0 > 0$ and define

$$g_{m,n}(t) = g^{(m, n)}(t) ; \quad m, n \in \mathbb{Z}$$

$$= g(t - nq_0) e^{i2\pi mp_0 t}$$
Analogous to Fourier coefficients, $c_n = \langle x, E_n \rangle$, the Weyl-Heisenberg Wavelet coefficients are

$$c_{mn} = \langle x, g_{mn} \rangle$$

$$= W\mathcal{F}_g \{ x \}(mp_0, nq_0)$$
Questions

1. Given the coefficients, \(c_{mn} \), can we reconstruct the original signal \(x \)?

2. (a) To what extent (if at all) does
\[
\sum_{m,n \in \mathbb{Z}} \langle x, g_{mn} \rangle g_{mn}
\]
represent \(x \);

2. (b) i.e., can we ever treat \(\{g_{mn}\}_{m,n \in \mathbb{Z}} \) as an orthonormal basis of \(L^2(\mathbb{R}) \)?

3. Are there restrictions on how finely we must sample the \((p, q)\) plane?
Answers

1. Sometimes
2. (a) Sometimes, to within computable error.
2. (b) Yes
3. Yes
Answers are given by the notion of "Frames." [DS], [HW], [Db3].

A sequence, \(\{\phi_n\}_{n \in \mathbb{Z}} \), in a Hilbert space, \(\mathcal{H} \) is called a frame if we can find two positive numbers \(A \) and \(B \) (\(B \geq A > 0 \)) such that, for all vectors \(x \in \mathcal{H} \) we have

\[
A \|x\|^2 \leq \sum_{n \in \mathbb{Z}} |\langle x, \phi_n \rangle|^2 \leq B \|x\|^2
\]
Constants A and B are called **frame bounds**.

If $A = B$, the frame is **tight**.

If B/A is "close to 1" the frame is **snug** with "snugness", S, given by

$$S = \left(\frac{B}{A} - 1 \right)^{-1}.$$

If upon deletion of an arbitrary single element, the sequence ceases to be a frame, the frame is **exact**.
Analyze the frame definition when $\mathcal{H} = L^2(\mathbb{R})$.

$$A \| x \|^2 \leq \sum_{n \in \mathbb{Z}} | \langle x, \phi_n \rangle |^2 \leq B \| x \|^2$$

For each $x \in \mathcal{H}$, $\{ \langle x, \phi_n \rangle \}_{n \in \mathbb{Z}}$ is a sequence with “energy” given by the sum above. The energy is bounded by the energy in x and non-zero for all non-zero vectors $x \in \mathcal{H}$. Compare with Plancherel for orthonormal bases.
Only $x = 0$ is orthogonal to every member of a frame since
\[x \perp \phi_n \Rightarrow \langle x, \phi_n \rangle = 0 \]
\[\Rightarrow A \|x\| \leq 0 \]
\[\Rightarrow \|x\| = 0 \]
since $A > 0$.
An orthonormal basis is a tight, exact, frame with frame constants $A = B = 1$.

The frame definition reduces to Plancherel's Identity.
Examples of Frames [HW]

Let \(\{ e_n \}_{n=1}^{\infty} \) be an orthonormal basis for \(\mathcal{H} \).

Ex.1 \(\{ e_1, e_1, e_2, e_2, e_3, e_3, \ldots \} \) is a tight inexact frame with \(A = B = 2 \), not an orthonormal basis, but contains one.

Ex.2 \(\{ e_1, e_2/2, e_3/3, \ldots \} \) is a complete orthogonal sequence, but not a frame. There is no non-zero lower bound, \(A \); for, if \(x = e_M \), we have

\[
A \|e_M\|^2 \leq \frac{1}{M^2} \sum_{n \in \mathbb{Z}} |\langle e_n, e_M \rangle|^2
\]

\[
A \leq \frac{1}{M^2} \quad \text{for all integers } M.
\]
Ex.3 \(\{ e_1, e_2/\sqrt{2}, e_2/\sqrt{2}, e_3/\sqrt{3}, e_3/\sqrt{3}, e_3/\sqrt{3}, \ldots \} \) is a tight inexact frame with \(A = B = 1 \) and no non-redundant subsequence is a frame.

Ex.4 \(\{ 2e_1, e_2, e_3, \ldots \} \) is a non-tight exact frame for which \(A = 1, B = 4 \).
Example in \mathbb{R}^2 [Db3]

\[u_1 = e_1 \]
\[u_2 = -\frac{1}{2} e_1 + \frac{\sqrt{3}}{2} e_2 \]
\[u_3 = -\frac{1}{2} e_1 - \frac{\sqrt{3}}{2} e_2 \]

where

\[e_1 = (0, 1), \quad e_2 = (1, 0) \]

Then any $v \in \mathbb{R}^2$ satisfies

\[\sum_{k=1}^{3} |\langle v, u_k \rangle|^2 = \frac{3}{2} \|v\|^2 \]

and

\[v = \frac{2}{3} \sum_{k=1}^{3} \langle v, u_k \rangle u_k \]
The frame in Daubechies’ example is tight with $A = B = \frac{3}{2}$, not exact. In tight frames, the frame constants $A = B$ indicates rate of redundancy of the frame.

A tight frame of normalized vectors with $A = B = 1$ is an orthonormal basis.
Frames and Bases [HW]

A sequence \(\{\phi_n\}_{n \in \mathbb{Z}} \) in a Hilbert space, \(\mathcal{H} \), is a basis for \(\mathcal{H} \) if for every \(x \in \mathcal{H} \) there are unique scalars \(c_n \) so that \(x \) can be represented by

\[
x = \sum_{n \in \mathbb{Z}} c_n \phi_n.
\]

The basis is bounded if \(0 < \inf_n \|\phi_n\| \leq \sup_n \|\phi_n\| < \infty \).

It is an unconditional basis if every permutation of the above series converges.
In a Hilbert space, \mathcal{H}, each bounded unconditional basis is equivalent to an orthonormal basis; i.e., there is an isomorphism $T : \mathcal{H} \rightarrow \mathcal{H}$ such that $\phi_n = T e_n$ for all n.

A sequence in a Hilbert space, \mathcal{H}, is an exact frame for \mathcal{H} if and only if it is a bounded unconditional basis for \mathcal{H}.

Hence, exact frames are equivalent to orthonormal bases.
Frame Operator on $L^2(\mathbb{R})$

Given a frame $\{\phi_n\}_{n \in \mathbb{Z}}$ for $L^2(\mathbb{R})$, define the frame operator $T : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$Tx = \sum_{k \in \mathbb{Z}} \langle x, \phi_k \rangle \phi_k$$

T is bounded and invertible.
Any "signal" \(x \in L^2(\mathbb{R}) \) may be written

\[
x = \sum_{n \in \mathbb{Z}} (x, \phi_n) \tilde{\phi}_n
\]

where

\[
\tilde{\phi}_n = T^{-1} \phi_n.
\]

The family \(\{\tilde{\phi}_n\}_{n \in \mathbb{Z}} \) is another frame called the dual frame having frame bounds \(B^{-1}, A^{-1} \) such that \(0 < B^{-1} \leq A^{-1} < \infty \).
To construct x exactly from its frame coefficients, (x, ϕ_n), one has to be able to compute $T^{-1}\phi_n$. To do so, write the identity

$$T = \left(\frac{2}{A+B}\right)^{-1} \left\{ I - \left[I - \frac{2T}{A+B} \right] \right\}$$

where I is the Identity operator, i.e., $Ix = x, \forall x \in \mathcal{H}$. Then,

$$T^{-1} = \frac{2}{A+B} \left\{ I - \mathcal{O} \right\}^{-1}$$

where

$$\mathcal{O} = I - \frac{2T}{A+B}.$$
Can show
\[\|O\| \leq \frac{B/A - 1}{B/A + 1} < 1 \]
so that a "geometric series" expansion applies:
\[T^{-1} = \frac{2}{A + B} \sum_{k=0}^{\infty} O^k. \]

Hence,
\[\tilde{\phi}_j = T^{-1} \phi_j = \frac{2}{A + B} \sum_{k=0}^{\infty} \left[I - \frac{2T}{A + B} \right]^k \phi_j \]
with faster convergence when \(B/A \) is closer to 1.
Keep only the first term \((k = 0)\) in the series,

\[
\tilde{\phi}_j = \frac{2}{A+B} \phi_j + O\left(\frac{B}{A} - 1\right)
\]

so that

\[
x \approx \frac{2}{A+B} \sum_{n \in \mathbb{Z}} \langle x, \phi_n \rangle \phi_n
\]

with error that vanishes as snugness, \(S = \left(\frac{B}{A} - 1\right)^{-1}\), increases.
For tight frames, have \(A = B \), and the frame operator is \(T = AI \), so that
\[
x = \frac{1}{A} \sum_{n \in \mathbb{Z}} \langle x, \phi_n \rangle \phi_n.
\]

If the elements \(\{ \phi_n \}_{n \in \mathbb{Z}} \) of a tight frame having \(A = B = 1 \) have unit norm, \(\| \phi_n \| = 1, \forall n \in \mathbb{Z} \), the frame is an orthonormal basis for \(L^2(\mathbb{R}) \) so that
\[
x = \sum_{n \in \mathbb{Z}} \langle x, \phi_n \rangle \phi_n.
\]
Weyl-Heisenberg Frames

The frame operator is

$$T x = \sum_{m,n \in \mathbb{Z}} \langle x, g_{mn} \rangle g_{mn}$$

where we have used the earlier definition

$$g_{mn}(t) = g(t - nq_0) e^{i2\pi mp_0 t}$$

Then,

$$x(t) = \sum_{m,n \in \mathbb{Z}} \langle x, g_{mn} \rangle \tilde{g}_{mn}(t)$$
In the W-H case, don't have a double-infinity of dual basis elements, \tilde{g}_{mn}, to compute, since

$$\tilde{g}_{mn}(t) = \tilde{g}_{00}(t - nq_0) e^{-i2\pi mp_0 t}$$

where

$$\tilde{g}_{00} = T^{-1}g .$$

Use the rapidly converging series to compute only \tilde{g}_{00}.
Affine Frames

Recall the continuous Affine Wavelet Transform

\[
W_h \{ x \} (a, b) = \int_{-\infty}^{\infty} x(t) \overline{h(a, b)(t)} dt
\]

\[
= \langle x, h(a, b) \rangle
\]

\[
h(a, b)(t) = \frac{1}{\sqrt{a}} h\left(\frac{t - b}{a} \right)
\]

where

for a mother wavelet, \(h \).
For computations, discretize a and b. Choose a dilation step $a_0 > 1$, and choose

$$a = a_0^m \quad \forall \quad m \in \mathbb{Z}.$$

Adapt the translation b to the varying dilations a_0^m via

$$b = n \, a_0^m \, b_0$$

for a chosen translation step, $b_0 > 0$, and define

$$h_{mn}(t) \doteq h^{(a_0^m, n b_0 a_0^m)}(t)$$

$$= a_0^{-m/2} h \left(a_0^{-m} t - n b_0\right)$$
The affine wavelet coefficients are then
\[(x, h_{m,n}) = W_k \{ x \} (\alpha_0^m, n \beta_0 a_0^m). \]
When \(\{ h_{m,n} \}_{m,n \in \mathbb{Z}} \) constitutes a frame for \(L^2(\mathbb{R}) \), then
\[x = \sum_{m,n \in \mathbb{Z}} \langle x, h_{m,n} \rangle h_{m,n}, \]
\[\approx 2 \sum_{m,n \in \mathbb{Z}} \frac{\langle x, h_{m,n} \rangle}{A + B} h_{m,n}. \]
The affine wavelet frame operator is

\[T x = \sum_{m,n} \langle x, h_{mn} \rangle h_{mn} \]

and

\[\tilde{h}_{mn} = T^{-1} h_{mn} , \]

computable from the rapidly converging (for \(B/A \) close to 1) geometric series for \(T^{-1} \).
Contrary to W-H frames, affine frames require computation of a single infinity of dual basis functions, \(\tilde{h}_{mn} : \)

\[
\tilde{h}_{mn}(t) = a_0^{-m/2} \tilde{h}_{0n}(a_0^{-m}t)
\]

where

\[
\tilde{h}_{0n}(t) = T^{-1} h_{0n}.
\]

Again, the rapidly converging series for \(T^{-1} \) reduces the amount of computation required in practice for snug frames.
W-H Wavelet Lattice

[Db3]
Lattice Spacings

W-H Critical Product, \(p_0 q_0 = 1 \), above which \(\{g_{mn}\}_{m,n \in \mathbb{Z}} \) is not a frame; i.e.,

\[
\text{must have } \frac{1}{p_0 q_0} \geq 1.
\]

At the critical value, only slowly-decaying or non-smooth windows, \(g \), can generate a frame according to the celebrated Balian-Low Theorem [B1,L1].
Balian-Low

Theorem. Given \(g \in L^2(\mathbb{R}), p_0 > 0 \). If the associated
\[
g_{mn}(t) = g(t - nq_0) e^{i2\pi p_0 mt}
\]
constitute a frame with \(p_0 q_0 = 1 \), then either
(a) \(\dot{g} \notin L^2(\mathbb{R}) \) where \(\dot{g}(t) = t \, g(t) \)

or
(b) \(g' \notin L^2(\mathbb{R}) \) where \(g'(t) = \frac{d}{dt} g(t) \).
Affine wavelets lattices have no \textit{a priori} limitations on lattice spacings, other than
\[a_0 > 1 \]
\[b_0 > 0 \]
Some choices lead to snugger frames than others, however. See Daubechies [Db3] for more on this and estimation (computation) of frame bounds.
Weyl-Heisenberg Localization

[Db3]
Related Time-Frequency Distributions

- Cohen
- Cross Wigner
- Cross Ambiguity
- Gabor Representation
Cohen's Distribution [CM]

\[C_{f,g}(t, \omega; \Phi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{2\pi i (\xi t - \omega \xi)} \Phi(\xi, \tau) f(u + \frac{\tau}{2}) g(u - \frac{\tau}{2}) \, du \, d\tau \, d\xi \]

where \(\Phi(\xi, \tau) \) is some kernel function.
Cross Wigner Distribution [CM]

\[W_{f,g}(a, b) = \int_{-\infty}^{\infty} e^{-i2\pi bx} f(a + \frac{x}{2}) \overline{g(a - \frac{x}{2})} \, dx \]
Cross Ambiguity Function

\[A_{f,g}(\nu, \tau) = \int_{-\infty}^{\infty} e^{-i2\pi \nu t} f(t + \frac{\tau}{2}) \overline{g(t - \frac{\tau}{2})} dt \]
Gabor Representation [J1],[DGM]

\[f(t) = \sum_{m,n \in \mathbb{Z}} c_{m,n} e^{-i2\pi m \beta (t-n\alpha)} g(t - n\alpha) \]
Why bother with frames?

- Physical processes modelled by non-orthogonal "building blocks"
- Redundancy in frames \Rightarrow oversampling
 - Cancellation of roundoff errors
PART III

AFIT Applications of Wavelets
* Biological Connections
* Speech: One Dimensional Signal Processing
* Images: Two Dimensional Signal Processing
MECHANICAL COMPONENTS OF THE EAR

Figure 52-1. The tympanic membrane, the ossicular system of the middle ear, and the inner ear.

Figure 52-2. The cochlea. (From Goss, C. M. [ed.]: Gray's Anatomy of the Human Body. Philadelphia, Lea & Febiger.)

Figure 52-3. A section through one of the turns of the cochlea. (Drawn by Sylvia Colard Keene. From Fawcett: A Textbook of Histology, 11th Ed. Philadelphia, W. B. Saunders Company, 1986.)

Figures from Textbook of Medical Physiology, 8th Ed. by Guyton.
TUNING CHARACTERISTICS OF THE EAR

Figure 52-5. "Traveling waves" along the basilar membrane for high, medium, and low frequency sounds.

Figure 52-4. Movement of fluid in the cochlea following forward thrust of the stapes.

Figure 52-6. A. Amplitude pattern of vibration of the basilar membrane for a medium frequency sound. B. Amplitude patterns for sounds of all frequencies between 200 and 8000 per second, showing the points of maximum amplitude (the resonance points) on the basilar membrane for the different frequencies.
CORTICAL STRUCTURE IN BRAIN

CEREBELLAR CONNECTIONS

Figure from König, W.J.S. Functional Neuroanatomy. Blakiston Company, 1942.
VISUAL IMPULSE RESPONSE OF MAMMALIAN VISION

Ln Z Image Transform from the retina to the visual cortex
The new 16 x 16 multiplexed electrode. The electrodes are 250 microns square. At the left is gate line driver; the on-board multiplexer for the 16 column output lines is in the lower left corner.
FIGURE 35 Eye movements during examination of a photograph by a normal subject. (A) Photograph given to subject for examination. (B) Recording of the eye movements during the examination of the photograph. (After Yerbus, 1961.)

RELATIONSHIP OF EYE SCAN PATTERN TO GABOR FILTERED IMAGE
MÜLLER-LYER ILLUSION SHOWN TO BE A CONSEQUENCE OF LOW PASS FOURIER FILTERING

Figure 50. Müller-Lyer Illusions: (a) Standard Müller-Lyer Illusion; (b) Müller-Lyer Illusion with Fins Only; (c) Müller-Lyer Illusion with Unequal Size Fins Going in the Same Direction; (d) Original Illusions; (e) MTF Filtered Magnitude Spectra; (f) MTF Filtered Illusions; (g) MTF (5 by 5) Filtered Illusions; (h) Low-Pass (5 by 5) Filtered Illusions. (Section 12.3.1)

Figures from Ginsburg, A.P. "Visual information processing based on Spatial Filters Constrained by Biological Data," AMRL-TR 78-129.
MÜLLER-LYER ILLUSION SHOWN TO BE A
CONSEQUENCE OF GABOR FILTERING
SPEECH: ONE DIMENSIONAL SIGNAL

PROCESSING

* Problem Definition
* Speech Coding (Audio Tape)
* Speech Recognition
NATURE OF THE SPEECH SIGNAL

PROCESSED BY WINDOWED FOURIER TRANSFORM

SPEECH WAVEFORM

SPECTRUM
SPEECH RECOGNITION DETAILS

WINDOWING PARAMETERS

Amplitude in bits

Window #1: 256 samples
0 ms

Window #2: 256 samples
5.3 ms

Window #3: 256 samples
10.6 ms

256 Samples → FFT → 128 Frequency Amplitudes
INTRINSIC VARIABILITY IN SPEECH SIGNAL

VARIABILITY OF HUMAN SPEECH, illustrated here by means of sound spectrograms, is one of the principal difficulties encountered in building an automated system for speech recognition. Spectrograms of distinct but acoustically similar words may be more alike than spectrograms of the same word pronounced under various conditions by different speakers. Automatic speech recognition must be able to attend only to relevant spectral differences (when they exist) and must disregard apparent differences that are linguistically irrelevant. The sound spectrogram represents a series of amplitude spectra over time. Time varies along the horizontal axis and frequency varies along the vertical axis. The darker the mark on the graph, the greater the amplitude of the waveform at that frequency and time.
TIME WARping OF SPEECH SIGNAL

COMPARISON STAGE of word recognition is carried out by compressing and stretching stored templates according to an optimization process called dynamic programming. For each stored template, dynamic programming seeks to associate every frame of the input word with some frame of the template in such a way that a distance measure of overall fit between the input and the template is minimized. The nonuniform time alignment of the stored template with the spoken word allows for variations in the rate of speech and in the relative lengths of the vowels and consonants in a word. Here matching the templates (black) to the input (color) without dynamic programming yields a misidentification, indicated by the distance scores, that is corrected when the compression and expansion procedure is applied. Dynamic programming is often done with the aid of a computer but should not be confused with computer programming.
IMAGES: TWO DIMENSIONAL SIGNAL PROCESSING

* Image Segmentation
* Object Recognition
VLSI SEGMENTATION EXAMPLE: ORIGINAL
Photo Micrograph of Silicon Chip
VLSI SEGMENTATION EXAMPLE: GABOR
Combination of Six Rotations
IMAGE RECOGNITION EXAMPLES

* Face Recognition
* Target Recognition
* Contact Recognition
Implementation of Wavelet Technology

Input Image

Window at (5,1)

Gabor Filters (weights)

Correlation Values for (x=5, y=1)

Correlation Values for (x=n, y=m)

C_{xy} = \sum W_{ij} \cdot G_{Fij}

Neural Network Classifier

Predicted C (x, y, f_x, f_y)

Output

Mean Squared Error
CONTACT RECOGNITION EXAMPLE
(without preprocessing via Gabor, couldn't find pads)
PART IV

Multiresolution Analysis and Orthonormal Bases

* Spline Bases
* Daubechies’ Compactly Supported Bases
MULTIRESOLUTION ANALYSIS
AND ORTHONORMAL BASES [Ma1-3; Db1,2]

Orthonormal Bases are nice!

- No redundancy
- No coupling \Rightarrow Diagonal Matrices
- "Nice" decomposition of spaces
- Energy conserved (Plancherel)
- Geometry preserved (Parseval)

... at the expense of

- wider support
- more computational precision required
Multiresolution Analysis

- Construct orthonormal (ON) bases
 - spline bases
 - compactly supported orthonormal (CSON) bases
- Use ON bases
Multiresolution Analysis on $L^2(\mathbb{R})$

The idea:

- Write $x \in L^2(\mathbb{R})$ as sequence of successive approximations
- Each approximation, a smoothing
- Successive approximations more concentrated
- "Zoom in" on details at different resolutions
A multiresolution analysis on $L^2(\mathbb{R})$ consists of

1. A family of embedded closed linear manifolds (subspaces)
 $V_m \subset L^2(\mathbb{R}), \quad m \in \mathbb{Z}$,

 $\cdots \subset V_2 \subset V_1 \subset V_0 \subset V_{-1}, \subset V_{-2} \subset \cdots$

 satisfying,

2. $\bigcap_{m \in \mathbb{Z}} V_m = \{0\}$, $\bigcup_{m \in \mathbb{Z}} V_m = L^2(\mathbb{R})$

and
3. $f(\cdot) \in V_m \iff f(2\cdot) \in V_{m-1}$, and for which

4. there is a function, $\phi \in V_0$, so that for each $m \in \mathbb{Z}$ the set
 $\{\phi_{m,n}\}_{n \in \mathbb{Z}}$, where,
 $$\phi_{m,n}(t) = 2^{-m/2} \phi(2^{-m}t - n); \quad n \in \mathbb{Z}$$
 constitutes an unconditional basis for V_m.
Property 4 means

(a) \(V_m = \text{lin span} \{\phi_{m,n}\}_{n \in \mathbb{Z}} \)

and

(b) there are finite constants \(B \geq A > 0 \) so that for all sequences \((c_n)_{n \in \mathbb{Z}} \in l^2(\mathbb{Z}) \)

\[
A \sum_n |c_n|^2 \leq \left\| \sum_n c_n \phi_{m,n} \right\|^2 \leq B \sum_n |c_n|^2.
\]
Property 1

Whatever can be "seen" at a coarse resolution can be seen at a finer resolution; can also see more at finer resolutions.

Property 2

In the limits, coarser resolutions see nothing and finer resolutions see it all.
Property 3
Scaling, self-similar, aspect of affine wavelets.

Property 4
Unconditional basis equivalent to orthonormal basis.
Translations of a fixed dilation are "building blocks" for the respective resolution levels.
As a consequence,

\[f(\cdot) \in V_m \implies f(\cdot - 2^m n) \in V_m \quad \forall \ n \in \mathbb{Z} \]
Property 4 can be satisfied by requiring translates of ϕ to be an ON basis for V_0, meaning that any $x \in V_0$ may be written

$$x(t) = \sum_{n \in \mathbb{Z}} c_n \phi(t - n)$$

$$= \sum_{n \in \mathbb{Z}} c_n \phi_{0,n}(t)$$

where

$$c_n = \langle x, \phi_{0,n} \rangle .$$

(We can make such a set $\{\phi_{0,n}\}_{n \in \mathbb{Z}}$.)
For \(f \in L^2(\mathbb{R}) \), let \(P_m f \) be the orthogonal projection of \(f \) onto \(V_m \).

\[
P_m f = \sum_{n \in \mathbb{Z}} \langle f, \phi_{m,n} \rangle \phi_{m,n}
\]

Properties 1 and 2 \(\implies \lim_{m \to -\infty} P_m f = f \quad \forall \ f \in L^2(\mathbb{R}) \)
$P_{m-1}f$: approximation to f based on $(m - 1)^{st}$ resolution level

Since $V_m \subset V_{m-1}$, we can consider $P_m P_{m-1}f$ and can easily show $P_m P_{m-1}f = P_m f$, approximation at next coarsest level.
Each embedded subspace \(V_k \) is also a Hilbert space. Consideration of
\[
Q_m f = P_{m-1} f - P_m f
\]
is the information difference between successive approximations.

By the Classical Projection Theorem (CPT),
\[
Q_m f \perp V_m
\]
i.e.,
\[
Q_m f \in W_m
\]
where \(W_m \) is the orthogonal complement of \(V_m \) in \(V_{m-1} \)
(not \(L^2(\mathbb{R}) \) !!!):
\[
W_m = \{ f \in V_{m-1} : \langle f, v \rangle = 0 \ \forall \ v \in V_m \}
By CPT, we have a unique representation of any $P_{m-1} f \in V_{m-1}$:

$$P_{m-1} f = P_m f + Q_m f \quad \forall f \in L^2(\mathbb{R}).$$

This implies that V_{m-1} is a direct sum:

$$V_{m-1} = V_m \oplus W_m$$

Definition. A linear space X is the direct sum of two linear manifolds \mathcal{M}_1 and \mathcal{M}_2 if any $x \in X$ is represented by $x = m_1 + m_2$ for unique vectors $m_1 \in \mathcal{M}_1$, $m_2 \in \mathcal{M}_2$.
Theorem: If \mathcal{M} is a subspace in a Hilbert space, \mathcal{H}, then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$. Furthermore, $\mathcal{M}^\perp\perp = \mathcal{M}$.

In our case, we have

$$V_m^\perp = W_m$$

$$W_m^\perp = V_m$$
Furthermore, the orthogonal complements, \(\{W_m\}_{m \in \mathbb{Z}} \), are mutually orthogonal

\[W_m \perp W_n \quad \text{if} \quad n \neq m \]

where (definition) two inner product spaces \(\mathcal{A} \) and \(\mathcal{B} \) are orthogonal if

\[\langle a, b \rangle = 0 \quad \forall \ a \in \mathcal{A}, b \in \mathcal{B} \, . \]
Having such a mutually orthogonal family of subspaces \(\{W_m\}_{m \in \mathbb{Z}} \) we may write

\[
\bigoplus_{m \in \mathbb{Z}} W_m = L^2(\mathbb{R})
\]

meaning any \(f \in L^2(\mathbb{R}) \) may be written as

\[
f = \sum_{m \in \mathbb{Z}} f_m
\]

with

\[
\|f\|^2 = \sum_{m \in \mathbb{Z}} \|f_m\|^2
\]

where

\[f_m \in W_m \text{ for each } m \in \mathbb{Z}.
\]
WANTED:

For each \(m \in \mathbb{Z} \), an orthogonal basis \(\{\psi_{m,n}\}_{n \in \mathbb{Z}} \) for \(W_m \)

The set \(\{\psi_{m,n}\}_{m,n \in \mathbb{Z}} \) is then automatically an ON basis for \(L^2(\mathbb{R}) \)

These are our wavelets!
Construction of ON Wavelets

Given a Multiresolution analysis of $L^2(\mathbb{R})$:

1. Construct a orthonormal basis for V_0 via filters M and H.
2. Construct wavelets via filter operations (G) on this basis.
Construction of ON basis for V_0

By Property 4, there is a function $g \in V_0$ ("generator") for which

$$\text{lin span } \{g_{0,n}\}_{n \in \mathbb{Z}} = V_0.$$

This implies any $v \in V_0$ may be written as

$$v(t) = \sum_{n \in \mathbb{Z}} \alpha_n g(t - n)$$

$$\hat{v}(f) = M(f) \hat{g}(f)$$

where the filter M is given by

$$M(f) = \sum_{n \in \mathbb{Z}} \alpha_n e^{-i2\pi nf}$$
Observe, \(M(f) = M(f + 1) \) is "1-periodic". A function \(\phi \in V_0 \) yielding an ON basis \(\{\phi_0,n\}_{n \in \mathbb{Z}} \) for \(V_0 \) follows from the Poisson summation formula

\[
\sum_{n \in \mathbb{Z}} x(n) = \sum_{n \in \mathbb{Z}} \hat{x}(n).
\]

This implies \(\phi \) must satisfy

\[
\sum_{k \in \mathbb{Z}} |\hat{\phi}(k + f)|^2 = 1, \quad \forall \ f \in \mathbb{R}
\]

The result is

\[
\hat{\phi}(f) = M(f) \hat{g}(f)
\]

with

\[
M(f) = \left(\sum_{k \in \mathbb{Z}} |\hat{g}(f + k)|^2 \right)^{-1/2}
\]
Now,
\[\phi \in V_0 \iff \phi(\cdot/2) \in V_1 \]
and
\[V_1 \subset V_0 . \]
Hence,
\[\frac{1}{2} \phi(t/2) = \sum_{k \in \mathbb{Z}} h_k \phi(t - k) \]
\[\hat{\phi}(2f) = H(f) \hat{\phi}(f) . \]
See that \(\phi(\frac{t}{2}) \) is a filtered version of \(\phi(t) \), where
the filter, H, given by

$$H(f) = \sum_{k \in \mathbb{Z}} h_k e^{-i2\pi kf}$$

is a 1-periodic function of f. Hence, $v(\cdot/2) \in V_m$ is a filtered version of $v(\cdot) \in V_{m-1}$.
Necessarily (can show that)

\[|\hat{\phi}(0)| = 1 \]

i.e.,

\[\left| \int_{-\infty}^{\infty} \phi(t) dt \right| = 1 \]

and

\[|H(f)|^2 + \left| H(f + \frac{1}{2}) \right|^2 = 1 \]

subject to

\[|H(0)| = 1 \]
Sufficient Conditions on H

Theorem. Let the filter, H, be defined by

$$H(f) = \sum_{k \in \mathbb{Z}} h_k e^{-i2\pi f k}.$$

If

(i) $|h_k| < C(1 + h^2)^{-1}$, for some $C > 0$ ("regularity" condition)
(ii) $|H(0)| = 1$
(iii) $|H(f)|^2 + |H(f + 1/2)|^2 = 1 \quad \forall f \in \mathbb{R}$
(iv) $|H(f)| \neq 0 \quad \forall f \in [-1/4, 1/4]$

○
○
○
then,

\[\hat{\phi}(f) = \prod_{k=1}^{\infty} H(2^{-k}f) \]

is the Fourier transform of \(\phi(t) \) such that \(\{\phi_{0,n}\}_{n \in \mathbb{Z}} \) is an orthonormal basis of a subspace \(V_0 \) of \(L^2(\mathbb{R}) \). The corresponding subspaces, \(V_m \), form a multiresolution approximation of \(L^2(\mathbb{R}) \).
2. Construction of ON basis for W_0

Want $\psi \in W_0$ such that

$$\{\psi_{0,n}\}_{n \in \mathbb{Z}}$$

is an ON basis for W_0,

so that

$$\{\psi_{m,n}\}_{n \in \mathbb{Z}}$$

is an ON basis for each W_m.

With $L^2(\mathbb{R}) = \bigoplus_{m \in \mathbb{Z}} W_m$ and $\{W_m\}_{m \in \mathbb{Z}}$ mutually orthogonal, the family $\{\psi_{m,n}\}_{m,n \in \mathbb{Z}}$ will constitute an (affine) wavelet ON basis for $L^2(\mathbb{R})$.
Recall, $W_1 \oplus V_1 = V_0$ so that $W_1 \subset V_0$. We want $\psi \in W_0$ such that $\psi(\cdot/2) \in W_1 \subset V_0$. So write

$$\frac{1}{2} \psi \left(\frac{t}{2}\right) = \sum_{k \in \mathbb{Z}} g_k \phi(t - k)$$

$$\hat{\psi}(2f) = G(f) \hat{\phi}(f)$$

where

$$G(f) = \sum_{k \in \mathbb{Z}} g_k e^{-i2\pi fk}$$

is a 1-periodic filter.
Sufficient conditions on G for the construction of ψ as a filtered version of ϕ are that the matrix

$$U = \begin{bmatrix} H(f) & G(f) \\ H\left(f + \frac{1}{2}\right) & G\left(f + \frac{1}{2}\right) \end{bmatrix}$$

be unitary; i.e., $U^T U = I$. One possible choice for G is

$$G(f) = e^{-i2\pi f} H\left(f + \frac{1}{2}\right).$$

Then,

$$\frac{1}{2} \psi \left(\frac{t}{2}\right) = \mathcal{F}^{-1}\{G(\cdot) \hat{\phi}(\cdot)\}(t)$$

defines the mother wavelet.
Spline Wavelets

Let B_d be a basic spline of degree d defined by a d-fold convolution of characteristic functions

$$B_d(t) = \left[(\chi_{[0,1]}^*)^d \chi_{[0,1]} \right](t)$$

where

$$\chi_{[0,1]}(t) = \begin{cases} 1, & 0 \leq t < 1 \\ 0, & \text{else} \end{cases}$$
\[\widehat{B}_d(f) = \widehat{B}_0^{(d+1)}(f) \]
\[= e^{-i(d+1)\pi f} \text{sinc}^{(d+1)}(f) \]

where
\[
\text{sinc}(f) = \begin{cases}
\frac{\sin(\pi f)}{\pi f}, & f \neq 0 \\
1, & f = 0
\end{cases}.
\]

These splines are piecewise-polynomial functions on intervals
\([n, n+1]\) for \(n = 0, 1, 2, \ldots, d\) having \(d - 1\) continuous derivatives.
Integer translates of \(B_d\) satisfy requirements for a multiresolution approximation; but they are not orthonormal.
Basic Splines

Degrees 0 through 5
Take $g = B_d$ in the multiresolution algorithm to get an orthonormal basis for V_0. Get

$$M^{-2}(f) = \sum_{k \in \mathbb{Z}} |\text{sinc}(f + k)|^2(d+1)$$

$$\hat{\phi}(f) = M(f) \hat{g}(f)$$

$$\hat{f}(f) = e^{-i(d+1)\pi f} S_d(f)$$

where

$$S_d^{-2}(f) = f_{d+1} \sum_{k \in \mathbb{Z}} (k + f)^{-2(d+1)}$$

Notice that $\hat{\phi}$ has zeros of order $d+1$ at non-zero integers; $\hat{\phi}(0) = 1$.
\[H(f) = \frac{\phi(2f)}{\phi(f)} = \frac{M(2f)}{M(f)} \left[e^{-i\pi f} \cos(\pi f) \right]^{d+1}. \]

Take

\[G(f) = e^{-i2\pi f} H \left(f + \frac{1}{2} \right) \]

and get the Battle-Lemarié bases [B5,L6].
Battle-Lemarié Bases

- Orthonormal Basis for $L^2(\mathbb{R})$
- Piecewise Polynomials (Spline)
- Compact Representation
- Class C^k
- Non-compact Support
- Exponential decay
- Symmetric
Multiresolution Analysis
Decomposition and Reconstruction

Successive $P_j f$: approximate, “blurred" versions of f.
Successive $Q_j f$: information difference between successive blurred versions.

$$Q_{m+1} f = P_m f - P_{m+1} f$$

where

$$[P_m f](x) = \sum_l c_{m,l} \phi_{m,l}(x)$$

and

$$[Q_m f](x) = \sum_l d_{m,l} \psi_{m,l}(x)$$
Get the coefficients:

\[c_{m,l} = \langle P_{m,l} f, \phi_{m,l} \rangle \]

\[c_{m,l} = \langle P_{m-1,l} f, \phi_{m,l} \rangle - \langle Q_m f, \phi_{m,l} \rangle \]

\[\phi_{m,l} \in V_m, \text{ and } Q_m f \in W_m \perp V_m. \]

Therefore,

\[c_{m,l} = \sum_{n} c_{m-1,n} \langle \phi_{m-1,n}, \phi_{m,l} \rangle. \]

Similarly,

\[d_{m,l} = \sum_{n} c_{m-1,n} \langle \phi_{m-1,n}, \psi_{m,l} \rangle. \]
Discrete Filters

\[\langle \phi_{m-1,n}, \phi_{m,l} \rangle = 2^{-(m-1)/2} 2^{-m/2} \int_{-\infty}^{\infty} \phi \left(2^{-(m-1)}t - n \right) \phi \left(2^{-m}t - l \right) dt \]

Let \(\frac{u}{2} = 2^{-m}t - l \). Then,

\[\langle \phi_{m-1,n}, \phi_{m,l} \rangle = 2^{-1/2} \int_{-\infty}^{\infty} \phi \left(\frac{u}{2} \right) \phi \left(u - [n - 2l] \right) du \]

Define

\[h(n) \triangleq 2^{-1/2} \int_{-\infty}^{\infty} \phi \left(\frac{t}{2} \right) \phi (t - n) dt \]

then

\[\langle \phi_{m-1,n}, \phi_{m,l} \rangle = h(n - 2l) \]

independent of the level \(m \) !!!
Hence,

\[c_{m,l} = \sum_{n} c_{m-1,n} h(n - 2l) \]

gives the \(m^{\text{th}} \) level coefficients from a discrete filter operation on \((m - 1)^{\text{st}} \) level.

\(\rightarrow \) Recursion
Similarly,

\[\langle \phi_{m-1,n}, \psi_{m,l} \rangle = g(n - 2l) \quad \forall m \in \mathbb{Z} \]

where

\[g(n) = 2^{-1/2} \int_{-\infty}^{\infty} \psi \left(\frac{t}{2} \right) \phi(t - n) \, dt \]

so that

\[d_{m,l} = \sum_{n} c_{m-1,n} g(n - 2l) \]

\[\Rightarrow \quad \text{Wavelet coefficients from discrete filter operation on scaling function coefficients at finer resolution level.} \]
Conversely, if for a fixed $m \in \mathbb{Z}$, we know \(\{c_{m,n}\}_{n \in \mathbb{Z}} \) and \(\{d_{m,n}\}_{n \in \mathbb{Z}} \), we can reconstruct the finer, \((m - 1)^{th}\) resolution level,

\[
P_{m-1}f = P_m f + Q_m f = \sum_{n} c_{m,n} \phi_{m,n} + \sum_{n} d_{m,n} \psi_{m,n}.
\]

Since \(c_{m-1,k} = \langle P_{m-1} f, \phi_{m-1,k} \rangle \), we get

\[
c_{m-1,k} = \sum_{n} c_{m,n} \langle \phi_{m,n}, \phi_{m-1,k} \rangle + \sum_{n} d_{m,n} \langle \psi_{m,n}, \phi_{m-1,k} \rangle + \sum_{n} d_{m,n} \langle \psi_{m,n}, g(k - 2n) \rangle.
\]
Haar System

\[
\int_{-\infty}^{\infty} \phi \left(\frac{u}{2} \right) \phi (u - [n - 2l]) \, du = \begin{cases}
1, & \text{if } n = 2l \text{ or } n = 2l + 1 \\
0, & \text{else}
\end{cases}
= \delta_{n,2l} + \delta_{n,2l+1}
\]

\[
c_{m,l} = \sum_n c_{m-1,n} \left[2^{-1/2} (\delta_{n,2l} + \delta_{n,2l+1}) \right] = \frac{1}{\sqrt{2}} (c_{m-1,2l} + c_{m-1,2l+1})
\]
Haar System (cont'd)

\[
\int_{-\infty}^{\infty} \psi \left(\frac{u}{2} \right) \phi (u - [n - 2l]) \, du = \begin{cases}
1, & \text{if } n = 2l \\
-1, & \text{if } n = 2l + 1 \\
0, & \text{else .}
\end{cases}
\]

\[
d_{m,l} = \sum_{n} c_{m-1,n} \left[2^{-1/2} (\delta_{n,2l} + \delta_{n,2l+1}) \right] = \frac{1}{\sqrt{2}} (c_{m-1,2l} + c_{m-1,2l+1})
\]
\[Q^{-6f} \]
Quadrature Mirror Filters

\[G(f) = e^{-j2\pi f H(f + \frac{1}{2})} \]

\[g(t) = \int_{-\infty}^{\infty} e^{-j2\pi f t} \frac{H(f + \frac{1}{2})}{H(f + 1) - H(f)} df \]

Choose \(f \) then

\[\int_{-\infty}^{\infty} e^{-j2\pi f (t-t') df} \]
Let $u = f + \frac{1}{2}$. Then

$$g(t) = e^{i\pi(1-t)} \int_{-\infty}^{\infty} \frac{H(u)}{e^{i2\pi u(1-t)}} du$$

$$= e^{i\pi(1-t)}h(1-t).$$

Evaluate g at integers

$$g(n) = (-1)^{(1-n)}h(1-n), \quad \forall \ n \in \mathbb{Z}.$$

This defines a Quadrature Mirror Filter (QMF).

Note the correspondence between $G \in L^2(\mathbb{R})$ and $g \in l^2(\mathbb{Z})$ by

$$g(n) = \mathcal{F}^{-1}\{G\}(n).$$
Daubechies’ Compactly Supported
Orthonormal (CSON) Wavelets [Db1]

Multiresolution Analysis computation of orthonormal wavelets having

- Compact support
- Arbitrarily high degree of regularity
- Linear increase of support width with regularity
- Non-compact representation
- Asymmetric

based on construction of a discrete filter (sequence); graphical construction of the wavelets.
Recall the filter

\[H(f) = \sum_{n \in \mathbb{Z}} h(n) e^{-i2\pi fn} \]

such that

\[\hat{\phi}(2f) = H(f) \hat{\phi}(f) \]

to get \(\phi(\frac{t}{2}) \in V_1 \) from \(\phi(t) \in V_0 \).

Control \(h(n) \) to build CSON wavelets.
Sufficient Conditions on h

Regularity
$$\sum_{n} |h(n)||n|^\varepsilon < \infty \text{ for some } \varepsilon > 0$$

Orthogonality
$$\sum_{n} h(n - 2k)h(n - 2l) = \delta_{kl}$$

Normalization
$$\sum_{n} h(n) = \sqrt{2}$$
Sufficient Conditions on H

H divisible by trigonometric polynomial:

$$H(f) = \left[\frac{1}{2} \left(1 + e^{i2\pi f} \right) \right]^N \left[\sum_n z(n) e^{i2\pi nf} \right]$$

where

$$\sum_n |z(n)| |n|^\varepsilon < \infty, \text{ some } \varepsilon > 0$$

$$\sup_{f \in \mathbb{R}} \left| \sum_n z(n) e^{i2\pi nf} \right| < 2^{N-1}$$
Define

\[\hat{\phi}(f) = \prod_{k=1}^{\infty} H(2^{-k}f) \]
\[g(n) = (-1)^n h(-n + 1) \]
\[\psi(t) = \sqrt{2} \sum_n g(n) \phi(2t - n) \]

Then, \(\{\phi_{m,n}\}_{m,n \in \mathbb{Z}} \) defines a multiresolution analysis in \(L^2(\mathbb{R}) \) and \(\{\psi_{m,n}\}_{m,n \in \mathbb{Z}} \) is the associated orthonormal wavelet basis.
Rather than perform Fourier inversion of infinite product to obtain $\phi(t)$, use a graphical, recursive, construction

$$\phi(t) = \lim_{k \to \infty} \eta_k(t)$$

where

$$\eta_k(t) = \sqrt{2} \sum_{n \in \mathbb{Z}} h(n) \eta_{k-1}(2t - n)$$

$$\eta_0(t) = \chi_{[-1/2,1/2]}(t) .$$

If h is a finite sequence (FIR) the iteration of characteristic functions yields ϕ with finite support!!!
With $h(n) = 0$ for $n < 0$ or $n > 2N - 1$, get compact supports, given by

$$\text{supp}(\phi_N) = [0, 2N - 1]$$
$$\text{supp}(\psi_N) = [-(N - 1), N].$$

Observe linear increase of support width in N. Coefficients $h(n)$ for $N = 2, 3, \ldots, 10$ are computed numerically and given in [Db1] ($N = 1$ corresponds to the Haar basis.)
Table 1. The coefficients $h_n(n = 0, \cdots, 2N - 1)$ for $N = 2, 3, \cdots, 10$.

<table>
<thead>
<tr>
<th>$N = 2$</th>
<th>n</th>
<th>$h_n(n)$</th>
<th>$N = 3$</th>
<th>n</th>
<th>$h_n(n)$</th>
<th>$N = 4$</th>
<th>n</th>
<th>$h_n(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.482962913145</td>
<td>0</td>
<td>0</td>
<td>.054415842243</td>
<td>0</td>
<td>0</td>
<td>.013981027917</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.836516303738</td>
<td>1</td>
<td>1</td>
<td>.312871590914</td>
<td>1</td>
<td>1</td>
<td>.008746094047</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.224143868042</td>
<td>2</td>
<td>2</td>
<td>.675630736297</td>
<td>2</td>
<td>2</td>
<td>-.004870352993</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-.129409522551</td>
<td>3</td>
<td>3</td>
<td>.585354683654</td>
<td>3</td>
<td>3</td>
<td>-.000391740373</td>
</tr>
<tr>
<td>$N = 3$</td>
<td>0</td>
<td>.323670552950</td>
<td>4</td>
<td>4</td>
<td>-.135011020010</td>
<td>4</td>
<td>4</td>
<td>-.187034811719</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.806891509311</td>
<td>5</td>
<td>5</td>
<td>-.324015542962</td>
<td>5</td>
<td>5</td>
<td>.000675449406</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.459877502118</td>
<td>6</td>
<td>6</td>
<td>.000472484574</td>
<td>6</td>
<td>6</td>
<td>-.000117476784</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-.135011020010</td>
<td>7</td>
<td>7</td>
<td>.128747426620</td>
<td>7</td>
<td>7</td>
<td>.000117476784</td>
</tr>
<tr>
<td>$N = 4$</td>
<td>0</td>
<td>.230377813309</td>
<td>10</td>
<td>10</td>
<td>.013981027917</td>
<td>10</td>
<td>10</td>
<td>.000117476784</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>.714846570553</td>
<td>11</td>
<td>11</td>
<td>-.008746094047</td>
<td>11</td>
<td>11</td>
<td>-.000117476784</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.630880767930</td>
<td>12</td>
<td>12</td>
<td>.004870352993</td>
<td>12</td>
<td>12</td>
<td>.000675449406</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-.027983769417</td>
<td>13</td>
<td>13</td>
<td>-.000391740373</td>
<td>13</td>
<td>13</td>
<td>-.000117476784</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-.127034811719</td>
<td>14</td>
<td>14</td>
<td>.000675449406</td>
<td>14</td>
<td>14</td>
<td>-.000117476784</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>.030841381836</td>
<td>15</td>
<td>15</td>
<td>.000117476784</td>
<td>15</td>
<td>15</td>
<td>.000117476784</td>
</tr>
</tbody>
</table>

excerpt from [Db1]
Regularity

We say

\[x \in C^\alpha \iff \int_{-\infty}^{\infty} |\hat{x}(f)|(1 + |f|)^{1+\alpha} df < \infty \]

for \(\alpha > 0, \alpha \neq 1, 2, 3, \ldots \)

Note: if \(\alpha = k = 1, 2, 3, \ldots \), one gets the usual differentiability of \(x \); i.e., \(x \in C^k \)

- Regularity grows like \(\lambda N \), for some \(\lambda > 0 \).
- Regularity and support width are linearly related.
REFERENCES

(S2) Stromberg, J. "A modified Haar system and higher order spline systems on Rn as unconditional bases for Hardy spaces," Conference in harmonic analysis in honor of Antoni Zygmund II: W. Beckner et. al. (Eds.), Wadworth, Belmont, California (1981) 475-493.

