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Abstract

Paralex is a programming environment for developing and executing parallel applications
in distributed systems. The user is spared complexities of distributed programming including
remote execution, data representation, communication, synchronization and fault tolerance as
they are handled automatically by the system. Once an application starts execution in a dis-
tributed system, it may be interacted with at two levels: by Paralex itself to achieve automatic
fault tolerance and dynamic load balancing; or by the user in association with performance tun-
ing and debugging. In this paper, we describe the set of monitors and control mechanisms that
constitute the Paralex run-time system and their use for implementing dynamic load balancing
and debugging.
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1 Introduction

Distributed systems comprising powerful workstations and high-speed communication networks
represent valuable computational resources. The amount of raw computing power that is present
in a typical modern distributed system may be comparable to an expensive, special-purpose super
computer. Thus, it is tempting to try to harness the massive parallelism available in these systems
for single, compute-intensive applications.

Distributed systems differ from special-purpose parallel computers in that they (i) exhibit total
asynchrony with respect to computation and communication, (ii) communicate over relatively low-
bandwidth, high-latency networks, (iii) lack architectural and linguistic homogeneity, (iv) exhibit
increased probability of communication and processor failures, and (v) fall under multiple ad-
ministrative domains. As a consequence, developing parallel programs in such systems requires
expertise in fault-tolerant distributed computing. We claim that current software technology for
parallel programming in distributed systems is comparable to assembly language programming for
traditional sequential systems - the user must resort to low-level primitives to accomplish data
encoding/decoding, communication, remote execution, synchronization, failure detection and re-
covery. It is clear that effective use of distributed systems for parallel computing requires automated
support in handling these complexities.

A number of projects are under way to harness the power of distributed systems and support
network-based parallel computing [2, 3, 8, 9, 14, 12]. The Paralex programming environment is
an instance of such a system. Paralex takes graphical descriptions of parallel computations and
automatically produces fault-tolerant distributed programs to carry them out. The system is a
complete programming environment in that it includes a graphics editor, compiler, executor, run-
time support and debugger. The intended application domain is scientific computing since it is
best suited to exploit the potential parallelism of distributed systems.

In this paper we concentrate on the run-time system of Paralex in support of dynamic load balanc-
ing and debugging. We view both objectives as instances of interacting/controlling a distributed
program. In the case of dynamic load balancing, the control is realized by the system based on
the global network state, while the debugging interaction is realized by the user based on the state
of the computation. A collection of sensors in the form of daemon processes and stubs inserted
in the application perform the state monitoring function. The mechanism to exercise control for
load balancing relies on passive replication originally introduced for fault tolerance. The control
mechanism for debugging, on the other hand, exploits the semantics of the Paralex computational
model to implement simple-yet-effective primitives.

The rest of the paper is organized as follows. The next section gives an overview of the Paralex
programming paradigm and the environment to support it. In Section 3 we briefly outline the
fault tolerance scheme of Paralex as it relates to load balancing. Both the decision procedures
and the mechanisms to realize dynamic load balancing are described in Section 4. In Section 5 we
discuss the general considerations in designing the Paralex debugger whose details are described in
Section 6. Section 7 presents the status of the system and concludes the paper.
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2 Overview of Paralex

Paralex is a programming environment for developing parallel applications and executing them
on a distributed system, typically a network of workstations. Programs are specified in a graphi-
cal notation and Paralex automatically handles distribution, communication, data representation,
architectural heterogeneity and fault tolerance. It consists of the following logical components:
A graphics editor for program specification, a compiler, an executor, a debugger and a run-time
support environment. These components are integrated within a single programming environment
that makes extensive use of graphics. ':ere we give a brief overview of Paralex. Details can be
found in [5].

The programming paradigm supported by Paralex can be classified as static data flow [1]. A
Paralex program is composed of nodes and links. Nodes correspond to computations (functions.
procedures, programs) and the links indicate the flow of (typed) data. Thus, Paralex programs can
be thought of as directed graphs (and indeed are visualized as such on the screen) representing the
data flow relations plus a collection of ordinary code fragments to indicate the computations. The
current prototype limits the structure of the data flow graph to be acyclic.

The semantics associated with this graphical syntax obeys the so-called "strict enabling rule" of
data-driven computations in the sense that when all of the incoming links at a node contain values,
the computation associated with the node starts execution transforming the input data to output.
The computation to be performed by the node must satisfy the "functional" paradigm - mapping
input values to output values without any side effects. The actual specification of the computation
may be done using whatever appropriate notation is available including conventional sequential
programming languages, executable binary code or library functions for the relevant architectures.

Unlike classical data flow, the nodes of a Paralex program carry out significant computations. This
so-called large-grain data flow model [7] is a consequence of the underlying distributed system
architecture where we seek to keep the communication overhead via a high-latency, low-bandwidth

network to reasonable levels.

There are many situations where the single output value produced by a node needs to be communi-
cated to multiple destinations as input so as to create parallel computation structures. In Paralex,
this is accomplished simply by drawing multiple links originating from a node towards the various
destinations. To economize on network bandwidth, Paralex introduces the notion of filter nodes
that allow data values to be extracted on a per-destination basis before they are transmitted to
the next node. Conceptually, filters are defined and manipulated just as regular nodes and their
"computations" are specified through sequential programs. In practice, however, all of the data
filtering computations are executed in the context of the single process that produced the data
rather than as separate processes to minimize the system overhead.

Note that Paralex does not require a parallel or distributed programming language to specify
the node computations. The graphical structure superimposed on the sequential computation of
the nodes effectively defines a "distributed programming language." In this language, the only
form of remote communication is through passage of parameters for function invocation and the
only form of synchronization is through function termination. While the resulting language may
be rather restrictive, it is consistent with our objectives of being able to program distributed
applications using only sequential programming constructs. This in turn facilitates reusability of
existing sequential programs as building blocks for distributed parallel programs. We also note that
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Figure 1: The Paralex Graphics Editor and Node Property Panel.

this programming paradigm is in the spirit of that proposed by Steele (181 where a severely-restricted
programming paradigm is advocated even for environments that support arbitrary asynchrony.

Paralex programs are composed through an X-windows based graphics editor using nodes, filters
and links as building blocks. Computations for the nodes and filters are specified through property
panels. Figure 1 illustrates a Paralex program for parallel sorting along with the property panel and
code for the highlighted node. Note that the code defining the computation is completely ordinary
sequential C and contains nothing having to do with remote communication or fault tolerance.
Filters are defined in a completely analogous manner and are visualized as small circles attached to
the parent node. Property panels serve to define the name of the node, name of the file containing
the code, an abstract interface for the node specified as a function header using ANSI C syntax and
the fault tolerance level of the node. The distributed system on which Paralex computations may
execute is described through a site file consisting of host and their attributes. The node property
panel includes fields that may contain queries naming the attributes of the site file so as to constrain
the set of hosts where the node may execute.

The program can be compiled once it is fully specified through the data flow graph and the com-
putations to be carried out by the nodes. The first pass of the Paralex compiler is a precompiler to
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generate all of the necessary stubs to wrap around the node computations to achieve data repre-
sentation independence, remote communication and replica management for those nodes with fault
tolerance needs. Paralex checks type consistency across node boundaries and automatically gener-
ates all of the necessary code to do data encoding/decoding using a common data representation
across different architectures. Currently, Paralex generates all of the stub code as ordinary C. As
the next step, the C compiler is invoked to turn each node into an executable module.

The compiler must address two aspects of heterogeneity in a distributed system: data representation
and instruction sets. Paralex uses the ISIS toolkit [10, 11] as the infrastructure to realize a universal
data representation. All data that is passed from one node to another during the computation are
encapsulated as ISIS messages. Heterogeneity with respect to instruction sets is handled by invoking
remote compilations on the machines of interest and storing multiple executables for the nodes.

3 Fault Tolerance

As part of program definition, Paralex permits the user to specify a fault tolerance level for each
node of the computation graph. Paralex will generate all of the necessary code such that when a
node with fault tolerance k is invoked, it will be executed on k + 1 distinct hosts such that the
computation will succeed despite up to k failures. The failures that are tolerated are of the benign
type for processors (i.e., all processes running on the processor simply halt) and communication
components (i.e., messages may be lost). There is no attempt to guard against more malicious
processor failures nor against failures of non-replicated components such as the network. This is
consistent with the objectives of Paralex - parallel computing in a distributed system - where
genuine hardware failures are probably very rare but events such as workstations being turned on
and off, rebooted or disconnected from the network are much more likely.

Paralex uses passive replication as the basic fault tolerance technique. Given the application domain
(parallel scientific computing) and the hardware platform (networks of workstations), Paralex has
to favor efficient use of computational resources over speedy recovery times in its choice of a fault
tolerance mechanism. Passive replication not only satisfies this objective, it provides a uniform
mechanism for dynamic load balancing through late binding of computations to hosts as discussed
in the next section.

Paralex uses the ISIS coordinator-cohort toolkit to implement passive replication. Each node of the
computation that requires fault tolerance is instantiated as a process group consisting of replicas
for the node. One of the group members is called the coordinator in that it will actively compute.
The remaining members are cohorts and remain inactive other than receiving brcadcasts addressed
to the group. When ISIS detects the failure of the coordinator, it automatically promotes one of
the cohorts to the role of coordinator.

Data flow from one node of a Paralex program to another results in a broadcast from the coordinator
at the source group to the destination process group. Only the coordinator of the destination node
will compute with the data value while the cohorts simply buffer it in input queues associated
with the link. When the coordinator completes computing, it broadcasts the results to the process
groups at next level and signals the cohorts (through another intra-group broadcast) so that they
can discard the buffered data item corresponding to the input for the current invocation. Given
that Paralex nodes implement pure functions and thus have no internal state, recovery from a
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failure is trivial. The cohort that is nominated the new coordinator simply starts computing with
the data at the head of its input queues.

4 Balancing Load Dynamically

Before a Paralex program can be executed, each of the nodes (and their replicas, in case fault
tolerance is required) must be associated with a host of the distributed system. Intuitively, the
goals of the mapping problem are to improve performance by maximizing parallel execution and
minimizing remote communication, to distribute the load evenly across the network, and to satisfy
the fault tolerance and heterogeneity requirements. Since an optimal solution to this problem is
computationally intractable, Paralex bases its mapping decisions on simple heuristics described
in [4]. The units of our mapping decision are chains defined as sequences of nodes that have to
be executed sequentially due to data dependence constraints. The initial mapping decisions, as
well as modifications during execution, try to keep all nodes of a chain mapped to the same host.
Since, by definition, nodes along a chain have to execute sequentially, this choice minimizes remote
communication without sacrificing parallelism.

To achieve failure independence, each member of a process group representing a replicated node
must be mapped to a different host of the distributed system. Thus, the computation associated
with the node can be carried out by any host where there is a replica. To the extent that nodes are
replicated for fault tolerance reasons, this mechanism also allows us to dynamically shift the load
imposed by Paralex computations from one host to another.

As part of stub generation, Paralex produces the appropriate ISIS calls so as to establish a coor-
dinator for each process group just before the computation proper commences. The default choice
for the coordinator will be as determined by the mapping algorithms at load time. This choice.
however, can be modified later on by the Paralex run-time system based on changes observed in
the load distribution on the network. By delaying the establishment of a coordinator to just before
computation, we effectively achieve dynamic binding of nodes to hosts, to the extent permitted by
having replicas around.

The run-time system in support of dynamic load balancing consists of a collection of daemon
processes (one per host of the distributed system) and a controller process running on the host
from which the program was launched. The daemon processes are created as part of system
initialization and periodically monitor the local load as measured by the length of the runnable
process queue of the local operating system. Note that this measure includes all load present at
the host, including those not due to Paralex. The instantaneous measurements are filtered to
remove high frequency components and extract long-term trends by exponential smoothing. If
two consecutive load measures differ by more than some threshold, the daemon process broadcasts
the new value to an ISIS process group called Paralox-Monitor. Each instance of the Paralex
controller (corresponding to different Paralex programs being executed on the same distributed
system) that whishes to collect dynamic load information joins this process group and listens for
load messages. After some time, the controller will have built a table of load values for each host
in the system. It is also possible for the controller to obtain a load value by explicitly asking one
of the daemons.

In addition to collecting load information, the controller also tracks the state of the Paralex com-
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putation. The code wrapped around each node includes ISIS primitives to send the controller an
informative message just before it starts computing. The controller uses this information for both
dynamic load balancing and debugging as discussed in Section 6.

Coordinator modification decisions for dynamic load balancing purposes are exercised at chain
boundaries. When the controller becomes aware of the imminent execution of a node, it examines
the program graph to determine if any of the node's successors begins a new chain. For each
such node, the controller evaluates the most recent network load measures to decide if the current
coordinator choice is still valid. If not, the controller broadcasts to the process group representing
the first node of a chain the identity of the new coordinator. Since the computation and the load
balancing decisions proceed asynchronously, the controller tries to anticipate near future executions
by looking one node ahead. If there is a modification of the coordinator for a chain, this information
is passed along to all other nodes of the chain by piggy-backing it on the data messages. In this
manner, the controller need only inform the head of a chain.

The actual decision to modify a coordinator choice is made by the controller based on a "residual
power" metric. For each host that contains a replica of the chain, the controller computes the
ratio of the host's raw power (taken as its SPECmark rating) and the actual load of the host plus
one. The preferred host for executing the chain is taken as the host with the largest residual power
metric. Note that the progress of the program is not dependent on the continued functioning
of the controller. In case the controller fails, the program proceeds with the default mapping
that was established at load time, perhaps with degraded performance. Thus, the controller is
not a fault tolerance bottleneck and serves only to improve performance by revising the mapping
decisions based on dynamic load. Since all communication between the program and the controller
is asynchronous, it is also not a performance bottleneck.

Perhaps the most dramatic effects of our dynamic load balancing scheme are observed when the
computation graph is executed not just once, but repetitively on different input data. This so-called
"pipelined operation" offers further performance gains by overlapping the execution of different
iterations. Whereas before, the nodes of a chain executed strictly sequentially, now they may all
be active simultaneously working on different instances of the input.

At first sight, it may appear that our mapping strategy of keeping all nodes of a chain on the same
host is a poor choice for pipelined execution. Without the dynamic load balancing mechanisms, it
will indeed be the case where all nodes of a chain may be active on the same host with no possibility
of true overlapped execution. In case of replicated chains, the dynamic load balancing mechanisms
outlined above will effectively spread the computational work among various hosts and achieve
improved overlap.

The example depicted in Figure 2 consists of a chain with four nodes, A, B, C and D, replicated on
three hosts X, Y and Z. For simplicity sake, assume that the hosts are uniform in raw computing
power and that there is no external load on the network. When the computation graph is activated
with input corresponding to iteration i, assume host X is selected as the coordinator among the
three hosts which all have identical residual power metrics. Now, while node A is active computing
with input i, the controller will favor hosts Y and Z over X since they have larger residual powers.
When node A terminates execution and the graph is invoked again for iteration i + 1, the new
instance of node A will be started on one of Y or Z as the coordinator. For argument sake, assume
host Y is selected. Proceeding in this manner, each new iteration of the graph will result in a new
host being activated as long as there are replicas of the chain. Obviously, eventually hosts wili
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Figure 2: Pipelined Execution of a Replicated Chain.

have to be reused as shown in the Figure where host X has both nodes A and D active working on
iterations i + 3 and i, respectively. Note that at any time, only one of the replicas per process group

is active. This has to be maintained to guarantee the desired fault tolerance. The net effect of
the load balancing mechanism is to spread the computation corresponding to four iterations of the
graph over the three hosts that contain replicas. We obtain this without having had to introduce
any new mechanisms beyond those already in place for fault tolerance and dynamic load balancing.

5 Distributed Debugging

Debugging concurrent programs is in general a difficult problem, where tools developed for sequen-
tial debugging often do not give satisfactory results [17][15]. The main reasons for this are the
following:

* Global Nondeterminism: Behavior of a program depends not only on the values of its inputs
but also on the interaction with other processes.

* Probe Effect: The debugger itself might interfere with the program and change its behav-
ior [13].

When concurrent execution takes place in a distributed system, the debugging task becomes even
more difficult. Additional issues that need to be addressed include random communication delays.
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lack of instantaneous global state information [16], processor failures and lost messages.

Our strategy in Paralex has been to select the programming abstractions and the automated support
mechanisms in such a manner that most of the above concerns become non-issues. The data flow
paradigm with the strict enabling semantics is sufficient to guarantee deterministic executions even
in a distributed system. Limiting the interaction of computations to function invocation renders the
correctness of Paralex programs immune to communication delays and relative execution speeds.
For the same reasons, the presence of probes for monitoring and controlling the program cannot
inteffere with the execution.

As for the complexities of programming and debugging applications to run in a heterogeneous
distributed system despite failures, our approach has been to provide automated support so that
the programmer need not confront them manually. The idea is to put the programmer to work on
the application and not on the support layer. Having abstracted away the problems by automatically
generating the code for heterogeneity, distribution and fault tolerance, we have also eliminated the
need to debug these functions. Here we make the implicit assumption that Paralex itself and the
ISIS support functions it uses are implemented correctly. We feel, however, that this is no different
from basing the correctness of a sequential program on the correctness of the compiler used and
the run-time support library functions invoked.

Given this black-box model of computation, we identify two distinct phases in developing a de-
bugged Paralex application:

1. The code corresponding to each node is produced and debugged in isolation, using appropriate
sequential programming aids and debugging tools.

2. A Paralex program is written by organizing the nodes in a data flow graph and the correctness
of the global data interactions becomes subject of investigation.

As described in the next section, the role of the Paralex debugger is to support this second phase.

6 Debugging in Paralex

The debugging environment is fully integrated with the rest of Paralex - it shares the graphical
interface with the development mode and uses the same graphical style of interactions. When a
Paralex program is compiled with the debug option set, code generation for fault tolerance support
and dynamic load balancing are suppressed. Thus, the execution to be debugged will be non-fault
tolerant and not necessarily best performing. As the correctness of the application is independent
of these aspects, the debugger need not address them.

The debugging features of Paralex consist of two elements: monitoring and controlling. The mon-
itoring element provides visual feedback to the programmer about the state of the execution using
the same graphical display from which the program was developed. The states of each node are
distinguished as being waiting for data, ezecuting and stopped. When executing, the name of the
host on which the node is running is also displayed. It is also possible to trace the flow of data
through selected links of the graph. By associating a trace filter with a link, only data values of
interest can be displayed on the screen or written to a file as the program executes. Trace filters
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are specified as sequential programs in a manner similar to data filters for nodes. At program
termination, Paralex produces a file of elapsed real time statistics for each node of the graph to be
used for performance tuning purposes.

Controlling program execution is accomplished through the following debugger primitives:

Breakpoint Insert A breakpoint can be associated with one or more nodes. When the execution
for a particular iteration reaches the set of nodes in the breakpoint list, they become stopped
allowing the user to interactively examine and modify the data appearing as input to the
nodes.

Step Simulates a "single-step" execution of the program where a "step" is interpreted as the set
of stopped nodes. For each step requested, the stopped nodes are allowed to execute but
automatic breakpoints are inserted at their immediate successors.

Restart Restore the initial state and restart the computation from scratch.

Go Allows all of the enabled nodes to execute. Used to start the initial execution or to continue
it after a breakpoint.

Implementation of the Paralex debugger requires no new mechanisms or abstractions. The same
controller process used for dynamic load balancing serves also as the debugger run-time support.
Recall that each node of the computation sends the controller a message containing the name of
the host on which it is about to begin computing. The controller uses this information to update
the graphical display with the various states of the nodes.

When a Paralex program is compiled with the debugging option set, each node is modified to include
a new link from a fictitious node, simulated by the controller. Neither the links nor this node are
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visible to the user. Having added a new link to each node, however, causes the computation to be
delayed until there is an input present on the new link. The user-visible functional interface to the
nodes remains unchanged and the input received from the controller is discarded by the stub code
at each node. We refer to these valueless messages sent by the controller as enabling tokens. Using
this simple mechanism, we are able to exercise complete control over the distributed computation
from the debugging host.

Figure 3 illustrates a program graph fragment along with the new links from the controller acting
as the fictitious node. The black circles along the links indicate the enabling tokens. The exam-
ple depicted corresponds to the state where the user has specified the breakpoint {(C, 4), (D, 2)}
indicating that the computation is to be stopped just before node C starts iteration 4 and node D
starts iteration 2. The actual number of tokens sent to nodes A and B is irrelevant as long as it
exceeds 3. Nodes that are common descendants of C and D will receive only one token. Otherwise.
nodes will receive the same number of tokens as their ancestor in the breakpoint list. It may not
be possible to set breakpoints at arbitrarily different iterations due to buffer limitations for links
at common ancestors. For example, the situation depicted in Figure 3 would have two data values
(corresponding to iterations 2 and 3) being buffered along the link from B to D. The Step function
is implemented by sending one additional token to each of the stopped nodes.

7 Status and Conclusions

A prototype of Paralex has been developed running on a network of Unix workstations based on
.1680xO, Sparc, Mips and Vax architectures. The prototype includes the graphics editor, compiler,
executor and the associated run-time support. The user interface is based in the Open Look intrin-
sics. As of this writing, the dynamic load balancing and debugging support have been implemented
as described in this paper but are not integrated into the programming environment.

We have used the prototype to program parallel solutions to several important problems drawn
from signal processing and thermodynamics application domains. This experience confirms our
thesis that significant parallel programs not only can be developed rapidly by non-experts, but
can also achieve acceptable performance with respect to speedup [6]. After all, the automatic
support Paralex provides for rendering parallel programming painless would be of little value if
the resulting program failed to match performances possible by hand coding. We feel that a slight
loss in performance due an increased level of abstraction is completely acceptable considering the
conceptual economy it provides to the programmer. The situation is not unlike that of sequential
programming at a high-level language supported by a compiler as opposed to programming at the
machine language level.

The effectiveness of the dynamic load balancing and debugging schemes we have described remain
to be verified. Once they are integrated into the rest of the system, we will conduct experiments
using the applications already developed. Dynamic load balancing requires careful evaluation since
the external load presented to the system must be both repeatable and realistic. Evaluating the
debugger is even more difficult since many of the criteria are subjective. We feel, however, that the
programming paradigm plus the level of automatic support Paralex is able to provide to applica-
tions make debugging simple and effective. The programmer need only concentrate on the logical
structure of the application and ignore the difficult parts of programming distributed parallel pro-
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grams - heterogeneity, distribution and fault tolerance - since they are handled automatically
by the system.
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