ﬁ’

- o e e . »

Netherlands
organization for
applied scientific
research

TNO-report

report no. Gopy no.
FEL-91-B166 8

AD-A245 410
IR

Nothing from this 1Ssue may be reproduced
ang’/or published by prnt photopnnt,
microlilm or any other means without
previous wntten consent from TNO
Submutting the report for inspec! onto
parties directly interested 1s permitted

In case this report was drafted under

instructicn, the nghts and obhigations

of contracting parties are subject to either

the "Standard Conditions for Research

Instructions given to TNO' or the retevant
C

g luded bet the contracting
parties on account of the research object
involved
£TNO

fOriginal comaing color
platess All DTIC reproduct~
fons will be in black and
white?

92 2 03

This docunent has been approved
qu public relcase and salo; s
distribution is unlimiled,

92-02818
[N

; ‘ TNO Physics and Electronics
! Laboratory

P O Box 96864

2509 JG The Hague

QOude Waalsdorperweg 63
The Hague, The Netherands

Fax +31 703280961
Phone +31 70 326 42 21
title

‘Voxel Data Processing on a Transputer Network

author(s):

Ir. W. Huiskamp B CLECTE

o
E"

A

FEB 0 4 19921

date h ﬂ

June 1991

TIDCK RAPPORTENCENTRALE
Frederikkazerne, Geb. 140
van den Burchlaan 31
Telefoon: 070-3166394/6395
Telefax : (31) 070-3166%92

Postbus 90701 g
2509 LS Den Haag Jgg
classification
titie » unclassified
abstract » unclassified
report text » unclassified
160
o, of coples : 30
no. of pages + 118 (excl. RDP & dictribution list)
appendices -

All information which is dlassified according to
Dutch regulations shall be treated by the reciplent in
the same way as classified information of
corresponding value In his own country. No part of
this information will be disclosed to any party.

[
'ﬁggl

e e e MQTM«MW o

e =

R LRIV
P

Pk s M«»T

e i e o e e

- AP o

SN

-,

s oo e o s b

k

TNO report
Page
2
report no. FEL-91-B-166
title Voxel Data Processing on a Transputer Network
author(s) Ir. W. Huiskamp
institute TNO Physics and Electronics Laboratory
date June 1991
NDRO no.
no. n pow ‘91 708
Research supervised by: Ir, P.L.J. van Lieshout
Ressarch carrled out by : Ir. W. Huiskamp
ABSTRACT (UNCLASSIFIED)

N\

With the growing availability of 3D scanning devices like Computer Tomographs (CT) or Confocal Laser
Scanning Microscopes (CLSM) the need for high performance volume data (voxel) processing and display
systems increased enormously. The recent development of a fast CLSM by IMW-TNO required a
visualisation tool of matching performance, FEL-TNO was involv 4 in the CLSM project because of its
expertise in the area of fast visualization techniques using parallel processing. The FEL-TNO task in the
project was to develop an experimental system that demonstrates the potential of parallel processing for
volume rendering applications. This report describes the development, implementation and evaluation of the

prototype 3D image processing system..
- introduction on volume data processing;

- introduction on Transputers and parallel processing;

- design of the Transputer based voxel processing/system;

- detailed description of the software;
- performance evaluation and scalability |
- future developments.

Accesion For {

NTIS CRA&I N
DTIC 14B ti
Unannow ed .
Justification

T P L L

By

Avalidundy Lo

SHEE N
Avall ¢ .00

Dist 3, lal

Ay

Dist ibution

> e vaoe]

H

et

B T U BTy T

. ——_— A e et 4

.

e m—— e

i,

.Y A —— L e %

TNO report
Page
3
rapport ho. FEL-91-B-166
titel Voxel Data Processing on a Transputer Network
auteur(s) Ir. W. Huiskamp
instituut Fysisch en Elektronisch Laboratorium TNO
datum juni 1991
hdo-opdr.no.
no. In lwp '91 : 708
Onderzook uitgevosrd oy, & Ir. P.L..J. van Lieshout
Onderzoek uitgevoerd door ¢ Ir. W. Huiskamp

SAMENVATTING (ONGERUBRICEERD)

Nu het aantal beschikbare scanners voor volume data (voxels) toeneemt is ook de behoefte aan krachtige
verwerkings- en visualisatie systemen voor dit type data sterk gestegen. Voorbeelden van 3D scanners zijn
Computer Tomografen (CT) en Confocaal Laser Scanning Microscopen (CLSM). De recente ontwikkeling

van ecn

snelle CLSM door het IMW-TNO instituut maakte een interactief visualisatie systeem noodzakelijk.

FEL-TNO heeft een experimenteel systeem ontworpen waarmee de mogelijkheden van parallelle verwerking
voor volume visualisatic worden aangetoond. De bij FEL-TNO aanwezige ervaring op het gebied van
parallelle visualisatie technieken was de reden voor de samenwerking met IMW-TNO in het CLSM project,
Dit rapport beschrijft de ontwikkeling, implementatic en eveluatic van het prototype. De volgende
onderwerpen komen aan de orde :

inleiding volume data verwerking;

inleiding Transputers en parallel processing;

ontwerp van een voxel processing systeem met Transputers;
implementatie van parallelle voxel visualisatie;
implementatie van parailelle beeldverwerking;
gedetailleerde software beschrijving;

verwerkingssnelheid en schaalbaarheid;

verdere ontwikkeling,

|

—
J

- -

T TNO report

Page

.
' ' INTRODUCTION AND EXECUTIVE SUMMARY i ;

In this report the development, evaluation and implementation of an experimental parallel
processing system for the processing of three dimensional datasets (voxel-images) is described.

This type of system has applications in many areas :
-) Biomedical research for diagnostic purposes, surgery simulation, radiotherapy planning or
anatomy study.

P h S A e

-) Materials research of geological samples or integrated circuits.
-} Computer vision, where RADAR or LASER range scanners record 3D data that is used for :
object recognition.
Chapter 1 gives an introduction on the subject of volume rendering and its applications. Sensors
that provide suitable volume data are for cxample Computer Tomographs (CT), Confocal LASER
Scanning Microscopes (CLSM) and LASER range finders. The drawback of voxel data rendering
is that traditional computer systems need minutes or hours of processing time to compute a new
image. The recent development of a fast CLSM by IMW-TNO required a visualisation tool of
' ' matching performance. FEL-TNO was involved in the CLSM project because of its expertise in)
the area of fast visualization employing parallel processing techniques. A list of the defined
system requirements is given in the final paragraph of the first chapter. The main requirement is
w interactive rendering performance (i.e. a result within 1 sec.) for a voxel dataset of 2
Meg -Byte
Chape.r 2 describes the basic mathematical operations that must be performed to render a view on
we > sume data from an arbitrary angle. The algorithms that are used to implement the different
renc *ring options (e.g. front view, integration) are included also,
Chap er 3 gives an introduction on the terminology used in the field of parallel processing. The
main features that make the Transputer a suitable node for parallel processing are discussed. The
final paragraph presents possibilities to implement a parallel version of the voxel rendering

algorithm. The choice for a distribution of voxel data slices accross the processor network is

PR T

explained.

Chapter 4 discusses the parallel implementation of image processing algorithms into the voxel
processor architecture. These operations are mainly intended as a preprocessing step for the voxel
data (e.g. noise filtering).

Chapter 5 gives details of the developed pipeline architecture. Three main modules are discussed :
-} The Controller, that provides the user interface to the host computer (a PC-AT).

P

T

et s o |

R VZE Y RPIN

ad

Yy

L I,

1 TNO report

oty i~

Page

-) The Subcube Processors, where the actual rendering operations are executed. This code is
running on many nodes in parallel.
-) The Graphics system that controls a display unit where the rendered images are shown. This
module also functions as the interface to the 3D sensor (e.g. the CLSM).
The functionality of the units and the interface between them is defined.
Chapter 6 gives a detailed description of the software (OCCAM) that was written for the Voxel
processor. This section is intended as software documentation for maintenance and development
purposes.
Chapter 7 discusses performance and scalability issues. The required response time of less than
one second can be achieved with 16 processors in the network. Higher rendering- and image
processing performance is possible when more processors are added, This will require a (minor)
change of topology into a tree structure. A typical result is that scalability is easier to achieve
when the voxel dataset is large. This effect is explained by the overhead involved in starting up
communication and computation in the processor network.,
The last two chapters discuss future developments and conclusions. The potential of parallel
processing for volume rendering applications has been clearly demonstrated by this project. The
development of the prototype into a product will require a further improvement of rendering
algorithmns and the addition of more functionality. The system could be used as an accellerator
attached to a (SUN) workstation, An X-window user interface via the workstation or dedicated
Transputer hardware can be provided if desired. An important feature of the system is the
flexibility to changes in resolution, performance and rendering algorithms. The voxel processor
system is certainly not limited to CLSM images only, other sources of daiu are equally suitable
(e.g. CT scans). The system will therefore be brought to the attention of potential uscrs in other
areas than Confocal Microscopy also.

- v

e e,

€ 2 ———— . . }

-k v —

o e - L i AN A Ly IS - - e -

) TNO report

ABSTRACT

SAMENVATTING

INTRODUCTION AND EXSCUTIVE SUMMARY

CONTENTS
1 PROBLEM DEFINITION
1.1 Inwroduction
12 History
1.3 The Voxel data
14 System requirements
\ 2 VOXEL VISUALISATION
21 The 3D Transformation
22 The 3D projection
2.3 Supporting systems
3 PARALLEL PROCESSING
3.1 Computer Developments
32 Transputers
33 Problem decomposition
4 IMAGE PROCESSING
4.1 Introduction
42 Parallel image processing
4.3 Implementation
5 SYSTEM ARCHITECTURE
5.1 Introduction
52 The Controlier
53 The Subcube Processor

R M AL st e 4o bk S SOV N Y AN N e e

Page

10
12

16
16
19
22

23
23

26

32
32
33
34

b mm Ao A————

_— i em—

it o TNO report

- Page
7

54 The Graphics System 36
55 Communication protoccle 37
5.5.1 Controller to PE communication 38
552 PE to PE communication 40

. 553 Controller to TFG communication 41

- 5.6 Configuration files 4“4
5.7 Implementation Remarks 47
6 SOFTWARE DESCRIPTION 48
6.1 Introduction 48
6.2 The EXE Controller 49
6.2.1 The SC Controller 51
6.2.2 The SC Autopilot 82
6.3 The Subcube Nodes 86
6.3.1 The SC Node 86
6.4 The Graphics System 104
6.5 The network configuration 107
7 PERFORMANCE 199
8 FUTURE ACTIVITIES 113
9 CONCLUSIONS 116
10 REFERENCES 117

- o e

P

- -

——n—

o pi gy S e SR

- TNO report

e,

[——

PROBLEM DEFINITION

1.1 Introduction

The TNO Physics and Electronics Laboratory (TNO-FEL) in the Hague is part of TNO Defence
Research. The activities of TNO-FEL focus primarily on operational research, information
processing, communication and sensor systems, To support the fast data-processing usually
required in sensor system applications, research was started on parallel processing. This research
has now resulted in two major application areas : real-time computer generated imagery and 3D
image analysis, processing and visualization. In this report the development, evaluation and
implementation of an experimental parallel processing system for the processing of three
dimensional voxel-images is described. This type of system has applications in many areas :

-) Biomedical research, the traditional use was fer diagnostic purposes only, but in recent years
surgery simulation, radiotherapy planning and anatomy study have also become important.

' ' In some systems the visualization system has been combined with numerically controlled
molding machines to construct models of the voxel data for use as implants or to practise
surgery on.

<) Materials researchers apply CT and CLSM scanners to investigate natural or artificial
material like geological samples or integrated circuits,

-) A new application area is computer vision. RADAR or LASER range scanners are used to
record 3D data. This data is preprocessed and used for object recognition to control
industrial production or to guide an autonomous mobile system (a robot).

The topics covered in this report are :

=) voxel data visualization.

-) parallel processing and Transputers,

) distribution and communication concepts.

-) implementation of parallel voxel visualization algorithms,

-) parallel implementation of statistical computations, image enhancement and image analysis
operations.

-} performance evaluation, scalability.

S Lt om———— <1 e

Page

e s, P

e

——— o ———

- At

ﬁ_.._.._._......_m Ta st e e mae T meemer s e g e v e m v seeeme—————

— - - et s i e o it

4 P TNO report

Page

12 History

The invention of the X-ray system by Wilhelm Rontgen in 1895 marked the start of electronic
imaging for medical diagnostics. During the next 70 years the technology was significantly
improved, providing better images with lower radiation levels. The X-ray images however
represent only a 'shadow image' of the three dimensional object : rays are sent through the sample
, and are absorbed differently, depending on the encountered material, This means that the three
1 dimensional structure of the object is lost in the resulting image and that a radiologist needs many

years of experience before being able to interpret the image correctly. In recent years, new X-ray
systems have been developed which are free of the superpositioning of the contributions of all the
material in the sample. This system is called Computer Tomograpy. A Tomograph collects data of
a cross-section (Tomogram) of the sample with a rotating X-ray. This data can not be directly
interpreted as an image, it needs extensive processing first (like Fourier Transforms), The result
of this processing step is the X-ray image of the sample cross-section. The whole process can be
repeated for many different cross-sections of the object, resulting in a 3D dataset. The radiologist
can now 'scan' through a stack of cross-sections and draw conclusions about the position and
! 1 shape of objects within the dataset. It is however still necessary to extract 3D information from a
series of 2D images. This can be very difficult for some objects. Furthermore, it would be useful
to be able to look at the data from angles other than the one it was recorded in. The reason for this
is that some data may be hard to interpret from the given direction. A more recent type of sensor
(ca. 1975) that provides 2D cross-sections cf a 3D} object is an NMR scanner (Nuclear Magnetic
Resonancz), which is particularly suited to show soft tissue, 1i’.. skin, }ood vessels etc. This
sensor also needs extensive pre-processing before the basic 2D data is available, and again the 2D
data can be combined to build up a 3D dataset. Another source of volume data is provided by the
Confocal LASER scanning microscopes (CLSM). This type of microscope differs from the
conventional microscopes by the extreme depth discrimination,
With the growing availability of 3D scanning devices, the need for high performance image
processing and display systems has also increased. The main purpose of these systems is the
visualization of the (unknown) object in such a way that its spatial structure can be understood.
An additional demand is that the system is fast enough to be used interactively.

s aan——— e o

e s tre s M it s | Soev | ebeone e nn

Vs irrspire s s e B

TNO report

e n . —— - =

e e N

Page

1.3 The Voxel Data

In 2D image processing the samples that form an image are known as picture element or 'pixels'.
Since in our case the 2D images are cross-sections of a 3D dataset the basic samples are called
volume elements or 'voxels' (Fig. 1.1). Volume images are normally represented as a series of
parallel two dimensional slices (Fig. 1.2). These slices can be obtained from a range of possible
sensor systems, examples are Computer Tomography (CT), Nuclear Magnetic Resonance (NMR)
or Confocal LASER Scanning Microscopy (CLSM). The department for Electro-O, -al Systems
of TNO Institute of Environmental Sciences (IMW-TNO) has recently developed a new type of
CLSM [1]. The main feature of this system the ability to record images in near real-time. This
made it important to have a visualization system that matches the CLSM's speed. The operation of
a CLSM is based on the illumination of an object by a LASER beam. The reflected beam is
projected on a spatial filter (e.g. a pinhole), so that only light coming from the focal point of the
LASER is measured (Fig. 1.3), TNO-FEL was involved in the CLSM project because of its
expertise in the area of fast visualization techniques using parallel processing.

Voxe! representations are not only very suitable for applications with 3D empirical data. It can
also be used with synthetic data, for example solid modelling or fluid dynamics simulations.
Before volume rendering became feasible, experts had to interpret the slices to deduce the 3D
information. Until recently, computer assisted techniques to visualize the volumes interactively
were based on displaying contours only, because of the processing time involved, These contours
often had to be traced manually from the actual data. Full use of the 3D data could only be made
through off-line computing. Because of the large number of voxels :uvolved, a considerable
processing capacity is required. Several architectures based on dedicated hardware have been
proposed to increase performance [2), {3]. Such a dedicated systermn however has the disadvantage
of inflexibility to any change in rendering options or object sizes (also the cost is high).

10

o sl AR s

.

-

Al

- - e P —— S — - ~ R

. ———————— —————————————

o TNO report b~
Page
11
1 f
i,
!
: sice " ;
: ice H
| £ ?
= X
£ :
b
-
!
, 7AY §
voxel /
Al
i
AX
Fig. 1.1 Voxel definition,
7/ Id
s 7/
’ /s
e
H
'] F }
i ?
i
Y =
/s
/z ‘
X
Fig. 1.2 Voxel data se:
& —""‘O \\\ :
spiter "\
rxd S |
N\
Laser P S~
- 1!
Sao e : .
i T o :m !
; AR . [
A A Lers Y
e :
Y4
DETECTOR
Fig. 1.3 CLSM operation principle
i

Ao e Westa——— o

T e e

— ortn——

- o

- ——————— o —

Yy

- s v

ot - - = - - P X L T

14

Page
12

System requirements

The following list of requirements for the voxel-processor was defined after literaturs study and
discussions with the CLSM developers from IWM-TNO:

a)
b)

c)
d)

e)

8

Voxel data-set rendering from an arbitrary angle.

Provide an interactive rendering speed (< 1 sec.) for a voxel set of 128*128*128 (or any
other set of 2 Mega voxels). Each voxel is represented by a greyvalue between 0..255, ie. a
single byte.

Use a parallel projection method, no perspective distortion is required for this prototype.
Voxels are expected to be cubic. This means that the resolution of the scanner is identical in
x, y and z direction. In practice, scanners do not allways have this property. The problem is
usually solved by resampling (interpolating) the voxel image.

Selection of a 'Volume-Of-Interest’ within the available voxel data. Through this option
uninteresting or disturbing parts of the voxel-image may be 'peeled away'.

Selection of a cutting plane through the object; voxels in front of this plane will not be
visualised. This option will create a cross-section or "Z-cut' through the object after rotation
(Fig. 1.4).

Allow the selection of a threshold; voxels with a value below this threshold will become
transparent.

[« Z-CUT VALUE
1
DISPLAY'

Fig. 14 Voxel data cross-section

e o N—

PPN

B RN

O T

U e AN A e o - - - - [y

B

Page
13

h) Provide a set of basic image processing operations that can be applied on the voxel data
before visualization. The operations must include noise reduction and cdge detection
methods.

i) Support editing and sslection of different colour look-up tables. This feature enables the use
of pseudo-colours or grey-scale transforms for cestain intensity values, thereby increasing
the visibility of interesting areas,

Several ways of rendering the transformed data on the screen are possible, the currently required

options are :

a) front view
Display the object's intensity, as seen from the selected orientation (Fig. 1.5).

b) depth shading
Display the object's 'distance’ from the screen at each location, resulting in a realistic depth
illusion (Fig. 1.6).

c) integrate function
Display the object's density at each screen location (Fig. 1.7).

d) layer view
Display an intensity related to the layer from which the visible voxel originated (Fig. 1.8).

e o —— ot — ——

b et —

= oo e

p oo -

DISPLAY

Fig. 1.5 Front view

ot e vy Db s et ot e~

N e e s

-

o raerrarn.

-

TNO report

DISPLAY

Fig. 1.6 Depth shading

e ane ety e

DISPLAY

Fig. 1.7 Integrate function

-

A e

TNO report

2 e i s s bt 5 o

Page

DISPLAY

Fig. 1.8 Layer view

Some additional system design requirements were defined also :

2)

The necessary computing power will be provided without the use of dedicated hardware.
This will be achieved by processing the data in parallel on a network of Transputers.
Previous work by others had shown that Transputers can be used effectively for medical
imaging applications [4].

The system will use a PC-AT as a host computer, so it does not need to be completely
standalone.

Voxel-data sizes depend largely on the sensor type, in CT scans for example it is possibie to
get resolutions of 512*512*128 with 12 bits per voxel. The developed system should be
modular in its construction, both on a hardware and on a software level, 5o that it can deal
with varying size- and performance- demands. This implies that system should be flexible to
any change in rendering options or object sizes.

The system should have a scalable performance, this implies that its cost/performance ratio
is flexible,

15

|
f

M e e o,y > e A

e

W ety w‘;f?waﬂlqﬁi

o . -
T e .+ N

|
|

:ﬁF.:;M

R

e R
s

TNO report

2 VOXEL VISUALISATION

2.1 The 3D Transformation

The Voxel data is represented by a cube in 3D space (Fig. 1.2). Displaying this data under
different angles on a 2D screen involves a 3D transformation of the object space to the display
space (i.e. the observer coordinate system), this is represented in fig, 2.1, The carthesian
coordinates of the object space are chosen to correspond to the x, y and 2 indices of the voxel data
set. This implies that the voxels are considered to be cubic. The transformation from the object
space to the display space (fig. 2.2) consists of a vector-matrix multiplication on each voxel

coordinate 1€, & vector).

OBJECT SPACE IMAGE SPACE

Fig.2.1 Object space to display space transform

¥y.0 yd

EX.O

Fig.22 Object and display coordinate systems

- don cnaa

o it

.

—— — . -

WS i AW, A s

TNO report

w2

. BN ¢ D iR o IR

r o e W

Page
17

The rotation result of a two dimensional vector about an angle ‘a’ is illustrated in fig. 2.3. The new
coordinates (x', y') of point (x, y) are given by :

x'=x*cosa-y*sina

y' =x*sin a + y*cos a
An equivalent set of relations can be derived for rotations in a three dimensional space.

i

N A

a

e ==

X X X —

Fig. 2.3 Rotation over 'a' about origin

The object transformation matrix is formed from a combination of the matrices for rotations about
the X-, Y-, and Z- axis :

R =R,*Ry*Ry =

€Y*cZ) (sX*sY*cZ-cX*sZ) (cX*sY*cZ 4 sX*sZ)
=| (cY*sZ) (sX*sY*sZ+cX*cZ) (cY*sY*SZ-sX*cZ)
-sY (sX*cY) (cX*cY)

('c¢' for cos, 's' for sin)

(X, Y, Z are rotation angles about x-, y-, z- axis).

Since vector-matrix muitiplication is a linear operation and all voxel coordinates have to be
transformed, it is not necessary to perform this multiplication for each coordinate. We may
instead use three simple additions to step from one transformed coordinate to the next (Fig. 2.4).
This method offers a copsiderable reduction in computational load :

SRR

K =34
1
J

[O——

PP

- ot

s e,

~ %

v

. AR

s e e v

TNO report

H A AL AN S A e e LA s em ey o, 0t W i e 2w A e o, e e e e w

S e s

Page
18

<) Vector-matrix transform (9 multiplications and 6 additions) requires about 20 us per
coordinate.

-} Incremental transform (3 additions) costs less than 1 us per transformed coordinate.

The incremental steps along the E_o_x, E_o_y or E_o_z axis of the voxel data (object space)

correspond to incremental steps in the display space (E_d_x, E_d_y, E_d_z). A unit step in x axis

direction will result in the addition of the corresponding transformed (1,0,0) unit vector to the

previously computed coordinate.

Y
T--
1

'

[

[}
] ' 4
Aecnea wmptv mpanepie momnd .-
P ,,.’r: T peh|
[} ' ‘ - -
i ——4‘ -a
1
[]] i
] ' ' 1
—-—v>- ——>‘ -—-
Car iy gl """‘*,
AR el g
. 1. IR
v
ad 1t 1 v !
P4l i3, 1. 2
v -
R I .
,7 [id 1,
t‘l ’Ll ’l[’
- -

UNIT STEPS IN OBJECT SPACE

UNIT STEPS IN DiSPLAY SPACE

Fig. 24 Incremental object transform

e o————

. A~ et

TNO report

— v - Prapev

22

Page

The 3D projection

The second important part of the visualization process is the projection of the transformed 3D
data onto a 2D surface (the screen). The projection operation involves several tasks :

1)

2)

3)

Perspective correction,

The perspective correction is not required for this system, given the fact that a parallel

projection was prefered. The advantage is that measurement of voxel distances can then be

made from the screen. The disadvantage is that the image on the screen will skow some
perspective distortions. Addition of this operation would involve the division of the
transformed x and y voxel coordinates by its z coordinate to obtain the correct perspective

projection of all voxels on the operator display. The prototype uses the uncorrected x and y

values for this projection.

Clipping of data that is not visible from the given eyepoint. In this implementation there will

be no need for clipping, because 'zooming' is not supported and the screen size is chosen

sufficiently large for the resulting image to fit on it for all voxel-data orientations. However
clipping must be used when larger voxel-data sets are employed without increasing the

screen resolution. The computational cost consists of two comparisons for the x and y

coordinates of each transformed voxel against the given screen dimensions.

The hidden surface elimination : ‘distant' voxels are obscured by 'closer’ voxels if they are

projected onto the same location on the screen (Fig. 2.5). There are several methods to

achieve this goal :

=) The Z-buffer algorithm compares the z-value (the distance to the viewpoint) of a new
voxel projection with the z-value of the voxel that was previously projected onto the
given screen location. The Z-values for each screen pixel must be stored and updated
whenever a pixel value changes. This method is often used because the dataset can be
traversed in a random order.

-) The Painters algorithm avoids depth comparisons per pixel by traversing the voxel-data
in a back-to-front direction. When generating the screen this way, new pixels can
simply overwrite any old value. This method is faster than the Z-buffer algorithm and it
uses less memory but the disadvantage is the need for depth sorted data.

The second method is selected for the voxel processor since it is the most efficient method,

given the fact that voxel data is automatically stored in its geometrical order at the time of

recording.

19

b o

-

l TNO report

PR

Page

Va

Fig. 2.5 Hidden surface elimination

4) The actual rendering mode of the voxel data is an integrated part of the 3D projection. The

possible modes are implemented as follows :

a)

b)

)

d

Front view,

The original grey value of a voxel is mapped on the screen projection of the
transformed coordinates.

Depth shading

The Z-value of the transformed coordinate is mapped on the screen. This implies that
the actual Z-value must be scaled down to prevent it from becoming larger than 255,
which is the maximum allowed grey vaiue.

Integrate function

The value on the screen represents a count of the number of voxels that projected on
that specific screen location. This value must first be initialised to zero and it must be
clipped to a maximum of 255 during the computation.

Layer view

The screen value represents the layer number (i.e. the z coordinate) from which the
projected vorel originated.

: The projection process will perform two additional tests on the voxels before they are used
for the rendering operation :

1

2)

The Z-value is tested against the cutting plane, voxels in front of this plane are not
visualised.

Voxels with a grey value below the user selected threshold are not considered for
further processing.

20

e e s .

e P A A R

e

Page
21

The center of the vorcl data set will be positioned in the center of the projection screen for all
possible orientations. This is achieved by giving a certair offset to the transformed origin of the
voxel data. The relative position of the transformed voxel data set in display space is shown in
Fig. 2.6. Data set dimensions are (DX*DY*DZ) and the resulting occupied display space is a
cube with dimensions (ID¥ID*ID). The resulting image is computed as the projection of the
transformed voxel set on the frontal face of the (ID*ID*ID) cube.

Fig. 2.6 Voxel position in display space

- I

o ————a

Py

P

23

Supporting systems

Next to the main tasks that were described in the previous sections, some additional support must
be added to the voxel processor to construct a fully functional system :

1)

2

A controller process that provides :

~)
-)
-)

Interface to the host-PC to supply keyboard, screen and file i/o.
Menu based user interface to control the voxel processor.

Debug and error reporting.

A means to display the resulting images in grey values or pseudo-colors, The resolution of
this display unit is chosen to conform to CCIR TV standards (512 * 780 pixels) for the

following reasons :

?)
)

-)

The CLSM uses this format.

Commercially available hardware can be used to both ‘grab' new data from the CLSM
and display results from the voxel processor.

Normal VCR systems can record the results from the system for play-back at a later
time.

The dimensions of the voxel data set have a direct relation with the resolution AD*ID) of the
graphics upit when displaying without clipping or scaling is required. Fig. 2.7 shows this relation,
a calculation proves that a 256*256*32 transformed voxel set can be displayed from any angle
onto the 512*780 screen.

Fig. 2.7

1) ¢

)
!
]
]
!
!
Dz -

/
’

DX
1D=VDX?+ pY% 02’

Image dimensions

e

FE

- e

TNO report

v Gr———

Page

3 PARALLEL PROCESSING

31 Computer Developments

Computer applications tend to need increasing amounts of processing capacities, Single processor
systems are reaching the limits of performance improvements, It is obvious that using more
processors running in paralle] could (theoretically) provide unlimited power. Most existing multi-
processor systems use a common communications channe] (the bus) for interconnections. With a
growing number of processors the bus capacity becomes a bottle-neck for system performance.
Communication bandwidth of the network must be increased also when processors are added.
Providing processors with direct connections for all data exchange will supply this increased
bandwidth.

Several classes of multi-processor systems have been defined [5] :

-) Single Instruction Multiple Data (SIMD). Each processor in the network will execute the
same instruction (synchronously) on different data. Array processors fall in this class.
Examples are image processing applications where each processor performs the same filter
operation on a different part of the image.

<) Multiple Instruction Multiple Data (MIMD). Processors can all be running different
programs, sending results to others when they are finished, Examples are pipelined systems
or multi-user applications.

Many existing sequential programs could benefit from being able to perform more than one action
at a time. It is however generally not trivial to implement a parallel program on a processor
network. Problems arising are :

-) Decomposing the problem in a number of processes running in parallel,

-} Allocate processes to processors and select the network topology.

=) Load-balancing the processors.

-) Distributing data across the processors.

-) Efficient inter-processor communication,

-} Synchronization between processors.

-) Debugging the software.

23

o e 4

— o aan

P —

TNO report

SRty SR

g sn - ’, - A X r meea

 ————— A ————

Page

3.2 Transputers

The INMOS T800 Transputer is a computer-on-a-chip, containing a 32 bit RISC ALU, a 64 bit
Floating-Point Unit, memory and four high-speed (1.5 MByte/s) input/output links for point-to-
point communication (Fig. 3.1, [6]). The Transputer was designed for efficient parallel processing
: it is a high performance component (10 MIPS, 1.5 MFLOPS), with an on-chip process scheduler
and low-overhead communication facilities. A network of Transputers may be constructed by
connecting them via links (Fig. 3.2). Each Transputer in a network has (private) local memory to
store program and data. Transputers may be programmed in high level languages like PASCAL,
FORTRAN or C. These languages must have facilities added to implement the special features of
the Transputer (processes running in parallel, communication etc,), OCCAM is a language that
was developed by INMOS to describe parallel processing and communication via channels {7]. In
fact the Transputer may be considered a hardware implementation of OCCAM. Transputer
versions without the floating-point unit are also available : the T424 (32 bit) and the T222 (16
bit).

Fioating Point Uny
vee — o
GND — L %
CapPlus — N ot
CapMinus — 1 Processor
Reset \JJ'LV
Anslyse—®1 System
Errorin—® Services
Error 4— Link LinkSpecial
BootFromROM —¥ Sarvices LInkOSpecial
CIockln—; Link123Special
ProcSpeed — Lnk, Linking
Select0:2 interface
Tiners LinkOutd
lnl!:ﬂ* [€4—- Linkiny
ace |—p
4 Koytes LinkQutt
of Link Linkin?
On-chip ru-v 32 Interface LinkOut2
RAM
32 Unk Linking
ProcCiockOut g— A A N4 Interface ¥ LinkOutd
notMemS0-4 @ l4— EventReq
notMemwWrB0-3 Extemal »ra'z—y_ Event EventAck
notMemRd @-f M
notMemR{ € y 'u:;ory
MemWait—p{ Interiace MemAD2.31
MemConfig—9 < 32 > MemnotRID1
MemReq MemnotWrD0
MemGranted &1

Fig.3.1 T800 Block Diagram.

[

- i s —— —tr

—t

s e w v e o . A R . - R

TNO report

Fig.32 Transputer networks

Transputer networks belong to the MIMD class of paralle]l processing systems, all nodes in a
network are basically independent units, communicating and synchronising only when necessary.
An MIMD network is the most flexible solution to parallel processing, since part of the network
may actually be operating as SIMD.

At TNO-FEL, research has concentrated on the Transputer as the computational element in
parallel processing applications, because of its useful features, high performance and software
support. This explains the reason for TNO-FEL to apply a system of these programmable (low
cost) processors operating in parallel for the implementation of the voxel processor prototype.

DI AR S —

- e e - s

[PV

- e

—rn b

S . s

TNO report

33

Page

Problem decomposition

The difficulty with parallel processing is to find an effective way of decomposing the problem in

a number of processes that can run concutrently. There are two basic approaches to this problem :
A) Data parallelism ; split up tic data in independent parts. Each processor in the network will

B)

essentially perform the same operation on a different part of the data set. This option implies
that the original (sequential) algorithms may be used and that it is rather straightforward to
add more processors to the system. Load-balancing is in general easy, as a consequence of
using the same code on all processors.

Algorithmic parallelism : split the algorithm in several parts and assign these parts to
different processors. This option will often force you to re-design the algorithm, since
automatic extraction of parallelism in program code is (at this moment) hardly possible.
Adding more processors and keeping a good load-balance is not trivial, when using t'«'s type
of parallelism. In general, we found that this approach is only effective if the problem is
computation-bound rather than data-bound.

The data parallelism option was chosen in our system, since voxel-visualisation is a data-bound

problem, the actual algorithms involved are not that computationally intensive. A second reason is
that this solution provides better scalability. Data parallelism may be accomplished in (3D) image
processing by splitting up the computations in display-space or in data-space :

-)

Display space parallelism implies that each processor is assigned to a certain area of the
resulting image (e.g. & number of scanlines). Since views of the rotated voxel-image will be
generated, this solution implies that each processor must have access to the complete voxel-
image. Complete access is possible when a voxel-image copy is stored in each processor
(large memory requirement) or alternatively, processors could request voxel-data elements
from a central store, when needed (communication overhead). Load-balancing may be a
problem, since the most computation intensive parts in the display-space will shift according
to the rotation angle. Ray-tracing is a typical example where parallel processing in display
space is often used. The load-balancing problem can be tackled by implementing a processor
farm. In this construction a controller process 'farms out' a new piece of work (i.c. a part of
the display) to each processor in the network as soon as it has finished work on a previous
part. The controller does not need to know which processor will actually perform the job.
Data space parallelism is based on access of a limited part of the original voxel-image. This
implies that each node is assigned to a section of the voxel-image, which is stored locally. A
node will produce the contribution of the local data to the result. The actual result will be
available after combining (merging) all the contributions.

26

o e it W

N

-

PR . I A - o &Mwwr

Page §
27

The advantages of the second method over the previous one are :

L %

: -) Less memory requirement.

! <) Fastaccess to the (local) voxel-data,

g <) Good load-balancing, all contributions will need the same computation time, when the
voxel-data sizes are equal.

Disadvantages are : '
-) The overhead of the merging operation)
-) Some data is calculated by the nodes that is not needed in the final result,

Typically, a large number of views will be generated from a single (large) dataset. Therefore, the

e ——— < ———

lower communication need of the second method was the reason to choose data-space parallelism

in the voxel-processor system. Each Transputer is holding a data-segment which is a unique part

of the complete voxel set, This data-segment could be formed in several ways :

<) A segment consists of & cross-section through a number of 2D slices (Fig. 3.3).

=) A number of complete slices could be assigned to each processor (Fig. 3.4).

The slice based distribution method is selected for implementation, the reasons are :

=) Using slices will give maximum values for data-segment sizes in two directions. This
implies that all voxel processing (visnalization, merging, displaving stc,), which is executing
in program 'loops', will have maximum runs in these two directions. In general it is more j
efficient on computers to keep 'loops' running as long as possible.

) Image processing operations are also planned to be part of the system and these algorithms
are generally based on 2D images. The slices are interpreted as 2D images, since voxel
objects normally have a higher resolution in X and Y than in Z direction,

=) Voxel data is recorded on a slice basis, this makes it the most natural way to process it.

Eyo
A

A

>Ex o

Fig.3.3 Block distribution.

e s o s s e

TNO report

A AR 8 3, ARy oK A

o lh men e rwamae o

Page

Evo
ly\ Ex.0

7

> Ex0 Ex.d

Fig. 34 Slice distribution.

The merging process combines partial results from all segments. Each partial result is added to
the temporary result on a 'back-to-front' basis, This implies that the partial result (sub image)
contributed from a single segment can be readily added to the partial result of its direct neighbour
when neighbouring processors have geometrically neighbouring slice data (Fig. 3.5). The
geometric order of the data set must be preserved in the network architecture, The merging
process could not be performed locally in the network if this order is not supported. It would then
become necessary to transmit all partial results to a central point where the merging could be
performed in the correct + der. In our architecture this geometric order is given. In order to
combine the two partial results in a correct way, the merger needs som. additional data : the
subcube's priority. The priority is based on the z-value of the subcube's transformed origin. The
lowest priority is for the sub-cube with the largest distance from the viewer. The partial results of
this subcube will be obscured by any sub-cube result of a higher priority. Figure 2.5 and 3.5
illustrate this process.

SUB-IMAGE

RESULT-IMAGE
Fig.3.5 Merging operation.

T S r———— o g SO

e e 3

M AN, R0 B el 5 0 S

)
H
{
H
¥

v e et

[

- ————

pro.

N 8 N e ¥ e Vs ke TArey v Ak e a s x v n e - [,

'y TNO report

Page

4 IMAGE PROCESSING

4.1 Introduction

. The original voxel images from scanning devices tend to be noisy in many cases, so noise filters
are often needed. Some of these operations have been implemented in a prototype image
! processing system designed for the CLSM by IMW-TNO [8]. When voxel images are recorded s
! with the voxel processor system's build-in framegrabber, some preprocessing (i.e. averaging) can)
be done on this board before sending the slices to the processing elements. Further image analysis
operations (edge detectors etc.) are also required as an integral part of the voxel processor to

provide a useful system.
4.2 Parallel image processing

Most low level image processing operations are well suited for arrays of SIMD machines, while
higher level operations can be implemented more effectively on MIMD systems. Research into
the use of Transputers for image processing has shown that processing speed can be increased
J very linearlv for non real-time applications [9], [10]. The limited Link bandwidth will however
present a serious problem for the distribution of input images and the collecting of partial results
for real-time applications. In this case, it will become necessary to implement a hardware bus
system for the data i/o. This problem has been identified and is being tackled by several computer
manufacturers at the moment. The aim of our project is to develop a flexible and modular
architecture, suited for both visualization and processing of 3D datasets, Dedicated hardware for
image processing will have better performance than programmable systems, but it lacks the
flexibility to meet changing demands. The image processing operations were therefore fully
software implemented on Transputers. Parallelism for image procussing can be achieved in two
ways : data-parallelism and algorithmic parallelism. Since data-parallelism has been chosen for
the visualization, it is obvious that each Transputer will also perform the image processing on its ;
local data.

[,

[l

Page

4.3 Implementation

For many (2D) image processing operations, a new pixel intensity (g) is computed based on a
weighted sum (h) of its own original value (f) and the values of its nearest neighbours ;

n-l ot
gxyl= X X h(pq).f(x+p,y+q)
p=0 =0

This operation presents a problem when the pixel data is distributed across several processors :

the neighbour values may be located on a different Transputer, There are two basic solutions :

-) Communicate pixel values between neighbours, (the data swapping may be done in parali-l
for many Transputers). This method puts additional demands on the network topology and
requires some communication facilities.

-) Provide data overlap between neighbours. In this case each node needs additional memory.
The amount of extra memory depends on the dimensijons of the convolution matrix h and the
size of the slices.

A second problem arises on the picture edges, since these pixels have no neighbours. Simple

solutions are to assign zero values to the non-existing nejghbours or to wrap-around to the other
side of the image.

The remarks given above are valid for 2D images distributed across a Transputer network. In our
application we deal with 3D datasets, with a distribution based on 2D slices. The image
processing operations must therefore also be extended to 3D. This implies that ‘neighbour pixels'
may now be located in different slices. It is however in many cases possible to use normal 2D
operations within a single slice. This is caused by the relatively low correlation between voxels in
adjacent slices : most scanners have a much higher resolution in x,y direction than along their z-

axis. This lower axial correlation in the data was one of the reasons to choose slices as a basis for
data-parallelism,

Presently, our system uses overlapping data-slices between neighbour Transputers because of
simplicity. In future versions (when the size of the filters exceeds 3*3*3 or when the datasets

become larger), data communication will be implemented. The selected network topology is
suited for this method.

30

-

PN

—— o ——

o

Local 3D image processing algorithms are based on their 2D counterparts [11] and operate on a
(3*3*3) space). Currently implemented operations are :

?)

)

Mean filter.

The mean value of the (3*3*3) neighbourhood of a voxel is assigned to it.

Laplace filter,

The maximum value of ¢iree orthogonal 2D Laplace convolutions is assigned to the voxel at
the center of the Laplace transform, The result is the detection of high spatial frequencies in
x, y and z direction.

Sobel and Roberts edge detectors.

The edge detection filters are applied analogous to the Laplace filtering method, The result
may either replace the center voxel or it can be added to the old value, thereby providing
edge enhancement,

Median filter.

This filter provides strong suppression of random noise, The median grey value of a (3*3*3)
area is assigned to the center voxel.,

Minimum and Maximum filters.

These algorithms are useful for automatic threshold operations. A local threshold, relative to
local maximum and minimum voxel values can eliminate the effect of object illumination,

Apart from these local filters, the system also provides global operations. Global image
processing operations include :

-)

Histogram computation

Each processor computes the histogram for the local data that is within the volume-of-
interest and sends it back to the host, where the partial results are merged. The host can plot
the result and wse it as a base for the histogram equalization table. The histogram data will be
transmitted to all nodes, where it can be used by image processing functions like automatic
thresholding or edge detection.

Grey-scale trunsforms

A conversion table is supplied to all processors to exchange the original voxel values against
new ones. This operation may be used for example to filter out certain grey values or to
provide a gamma correction. The conversion table may be edited manually or generated
automatically from the histogram, providing the possibility of histogram equalization.

|
|
|

[

e,
H

s

- ——

g

A RN N v s e s

TNO report

Page
32

5 SYSTEM ARCHITECTURE

5.1 Introduction

This chapter gives a brief description of the modules in the system. Implementation details are
given in the specific chapters dedicated to each module. Figure 5.1 shows the schematic
representation of the voxel processor architecture, Ellipses are used to represent modules running
in parallel. Parallelism was achieved in several ways, the most important step is dividing the
object data into a number of (equally sized) sub-cubes, where each sub-cube has been assigned to
one Transputer. Several processes may be running within each Transputer also, the reason for this
is to make optimal use of the Transputers ability to do computations and perform communication
at the same time, Apart from the sub-cube processors two more Transputers have been used to
implement the Control and the Display module.

PEs
PE
PE
PE
P
PE
PE
PEs
=
-

Fig.5.1 System Architecture.

SN

[

Page
33

52 The Controller

The Controller (Fig. 5.2) is the user-interface between the host computer, a PC-AT, and the
Transputer network that will perform the voxel visualisation. The Controller is in fact a 'software
state machine', Each state corresponds to a certain menu on the screen and a certain interpretation
of the received user commands (keystrokes). The network is a full 'slave’ that can only respond to
commands from the Controller. Examples of possible Controller commands to the subcube
processors are :

-) Store voxel data slice.

-) Render a view on voxel data set

Examples of possible Controller commands directed at the Graphics subsystem are :

=) Receive and display a slice of voxel data.

=) Receive and display a resulting image.

-) Receive and display text strings.

-} Receive and activate a new color table.

All results coming from the network must first pass the Controller before being displayed or
stored on disk. Examples of possible results send to the Controller are :

=) Rendered image.

<) Computed histogram data.

=) Stored voxel data slices.

-) Error message.

[

[

—— . o

P N

——— 17—t

Page

t0.TFG from.TFG toNet from.Net

Controller

1

Auto-
pilot

1

to/from ios keyboard screen

to/from filer
Fig. 5.2 Controller

5.3 The Subcube Processor

All commands to this Processing Element unit (P, are exclusively send by the Controller, There
are three main processes active inside a subcube module (Fig. 5.3), each of these processes is
assigned to a specific function :

1) The Distributor, transfers commands and data across the network. All subcube proce: sors
are connected together in a tree or pipeline structure. This implies that each subcube
processor must forward commands and data from one of its neighbours to its other
neighbours. Except for global commands, like ‘render an image', there are also commands
meant for a specific node, like 'load a certain slice’. The Distributor can detect whether a
command is global or intended for the local Transformation process and it will forward it
accordingly. The Distributor is running in a continuous loop, ready to process incoming
commands as soon as the previous command has been handled.

PPN, WRRRE et

34

e o v P 2 o _ S

s s e

Y S o A

U——

v

TNO report

o e cm——

2

3)

Page

The Transformation process performs the object transformation, the 3D projection and the
rendering, The module will completely generate the partial result for the assigned sub-cube
and supply additional data that the mergers need to compute the final result. The sub-cube
data (the voxels) are loaded only once for each new object and will not be changed during
the transformations. The sub-cube Trar<puter will begin processing its data after receiving a
command, which includes the transformed unit vectors and the selected type of rendering
(e.g. front view, depth shade etc.). Beside performing the voxel-image transformation, this
module is also used for the 3D image processing operations. For this end, memory is
reserved to store both the original voxel-image and a processed version,

The Merger process receives 2D partial results from the local Transformation process and
from its direct neighbour. These partial results will be merged into a new partial result which
is transferred to the next Merger. When all partial results have been combined in this way,
the last Merger will transfer the complete resulting image to the Controller process where it
will be stored and displayed.

Distr.to.Next Next.to.Merger

1 -

Distr. — Sub.proc. - Merger

T Distr.to.Proc Proc.to.Mergerl

Distr.in Merger.out

Fig.5.3 The Subcube processor

e e e - e

TNO report

T e

54 The Graphics System

Page

This unit (Fig. 54) is used for controlling a framebuffer in order to display the resulting images.
A second function of this TFG board (Transputer Frame Grabber) is the acquisition of slice-data.
The graphics board is in fact a framegrabber, capable of digitizing analogue video, Each recorded
slice is the result of a number of (digitally) integrated video frames. This integration is used to
reduce the noise level. The voxel data-set will be temporarily stored in the processor nodes, after
which it may be viewed first before transferring the data to disk, The Graphics system is build as
a 'server’ that is continuously expecting input from the Controller. The input consists of a
command tag, possibly followed by data. Examples of possible commands were given in the

TFG Hardware

m—
Video.in

section on the Controller.
D/A Video A/D |||
<“:""CLUT<L‘: mem. <= M
Video.out N AN 7
{1 i
\\/I \V/
Command Frame-
interpr. grabber
grab

TFGin TFG.out
Fig. 54 Graphics system

TFG Software

36

-

o ok

A

o 20 B

(-

[N

it GRS N pearmpevontis VAP R o Y P —

TNO report

.- . N . P P -
o E B — o

Page
37

5.5 Communication protocols

A complete list of all possible communication between the different modules is given below. The
protocols are defined using identification tags and parameter lists. The tags have been defined as
BYTE values in the libraries 'voxtag.tst' (for the network) and 'tfgtag.tst’ (for the framegrabber).
There are four types of communication defined which are identified by a 'main tag':
-} command
Commands have the following general structure :
out ! command; sub.command[; parameters[; data]}
Sub.commands indicate the type of command to be executed (e.g. pe.render) for which
additional parameters and data are possibly supplied.
In several cases a command will result in data being returned from the network (e.g. a
rendered view) which must be received before continueing with a new command,
-) message
The general structure is :
out ! message; [8]BYTE ID.string;
langth::NenathIRVTE ctring
No response is expected for this communication. This communication type is used to
transmit error- or debug- messages from a network processor to the operator display. The
source of the message is given by the identifier 'ID.string'.
-) data
Data communication has the following structure :
out ! data; sub.data; [size] TYPE data
No response is expected.
-) quit
The 'quit' tag is the only component of this communication, it is echoed by the receiver to
indicate that the receiving party has finished executing and will stop transmitting. This
command will be send to all running processes in the network to guarantee an ordered shut-
down of the whole system.

o TNO report

Page

5.5.1 Controller to PE communication

The PE's expect only two main tags from the Controller :

)
|)

commands

quit

Communication coming the PE's consists of ;

)
<)
-)

messages
data
quit

The possible commands are separated into several groups :

-)

Loading slice data into the network :
-) to.net | command; pe.load.slice; INT slice.nr;
[SCDY][SCDX]BYTE slice
response : none

The 'INT slice.nr' indicates the number of the slice that will be send, its value is within
[0..DZ>. Each PE node will use this number to decide if it has to load the slice locally or
alternatively forward it to the next PE. Slice is an array of SCDY*SCDX bytes that
represents the data of a slice. It is transmitted as SCDY arrays of SCDX bytes each, thus
breaking up the large array in smaller portions to reduce intermediate storage requirements
(speed is not a factor here, since this is limited by disk i/o anyhow).

Receiving slice data back from the network :

-) to.net | command; pe.send.slice; INT slice.nr

response : data; slice.data;
[SCDY)[SCDX]BYTE slice

This command is used to store the result of processed voxel data back to disk. Each PE that
receives the command will either forward the command to the next PE or send the requested
slice, if available.

Commands to manipulate stored voxel data sets :
Two stored voxel data sets are present in the PE's, one is used as the 'source’ and the other as
the ‘destination’ for 3D image processing operations. All rendering operations use the
‘destination’ voxel data as input. Newly loaded voxel data set are stored as 'source’,
=) to.net ! command; pe.reload.orig

fesponse : none

The 'source’ data is copied to the 'destination’ array, thus enabling the visualisation of
the 'source’ data,

e s o gy APE e

38

4

[——

e

TNO report

L re——— 4 i et

-)

-)

Page
39

to.net | command; pe.result.as.orig

response : none

The ‘destination’ data is copied to the ‘source’ array, thus enabling a new image
processing operation on the present 'destination’' data.

Commands to compute a view of the voxel data :

2

to.net ! command; pe.render; BYTE render.mode;

[31{3]REAL32 transform.vectors;

[3][2)INT transform.sizes;

INT z.cut.value; INT threshold.value
tesponse : command; merge.image;

BYTE render.mode;

BOOL forward.merge;

{ID]J[ID)BYTE image
The transform.vectors array consists of the transformed unit vectors. The ‘volume-of-
interest' in the voxel data set is determined by start- and end values of voxel indices in
X, y and 2 direction. These values are stored in the transform.sizes array. The remaining
parameters (z.cut.value and threshold.value) are used ’y the rendering process to
discard certain voxels. The response from the network has a number of additional
parameters next to the actual data (the image). This is caused by the fact that the
transmitted data is being processed by the 'mergers', which needed those parameters.

Commands to compute statistical data from the voxel data :

-)

to.net | command; pe.histogram;
[3][2]INT transform.sizes;
INT threshold.value
response : command; merge.histogram;
[256]INT histogram
Again, the response reflects the fact that the mergers are involved in the communication
of the histogram data,

3D image processing operations

The meaning of these operations is clearly indicated by their tags.

<)

2)

to.net ! command; pe.laplace
response : none

to.net ! command; pe.sobel
response : none

T

- ——— g e, s . H

TNO report

Page

1.
- o s

-) to.net ! command; pe.mean
Tesponse : none ’
-) toaet!command; pe.median ’

Tesponse : none .
) Command to apply grey scale transforms to the voxel data set

=) to.net ! command; pe.grey.transform; ! “
[3][2]INT transform.sizes; d i
[256]INT grey.table
Tesponse : none
All voxel data values (within the volume-of interest) are exchanged against the value
that is found in the corresponding entry of 'grey.table',

The 'quit’ tag will close down the application :
-} to.net! quit
response : quit

552 PE to PE communication :
PE's are connected together and exchange information using all defined main tags :
-} commands
All PE commands are results of Controller actions, no commands are transmitted on a PE's
initiative. Most of the possible commands have been listed in the ‘controller to PE interface',
they are interpreted by the ‘distributer’ and forwarded to the next PE. The remaining
commands are related to the merging of ‘partial results'. These commands are transmitted
and received by the 'merger’ process. Ultimately such a command/data packet will arrive at
the Controller.
-) merger.out | command; merge.histogram;
[256]INT histogram.data
response ; none
-) merger.out | command; merge.image;
BYTE render.mode; :;
BOOL forward.merge;
[SCID)[SCID]BYTE subcube.image

response : none

o e mes e e mememie o [

NO report

Page
41

-) data
Data packets are exchanged between PE's to transmit stored data from one PE to the next
and ultimately to the Controller. Possible data packets are :
-) out! data; slice.da:a; [SCDY][SCDX]BYTE slice
Tesponse : none
-) messages
Any module within 2 PE may generate a message. Messages will be forwarded in the
direction of the Controller by any receiving process within a PE,
-) quit
This tag must also originate from the Controller, it is forwarded from one PE to the next and
it must also be echoed back to a sending PE.

553 Controller to TFG communication :

The TFG expects only two main tags from the Controller ;
-) commands

<) quit

Communication from the TFG consists of :

-) messages
-) data
-) quit

The possible commands are separated into several groups :
-) Display a slice on the screen :
<) to.tfg ! command; tfg.load.slice;
[SCDY][SCDX]BYTE slice
Tesponse : none
The command is mainly used to display slices during the loading of a voxel data set
from disk into the network.
<) Send a slice image from the screen :
=) to.tfg ! command; tfg.send.slice
response : data; slice.data;
{SCDY][SCDX]BYTE slice
When the TFG has grabbed a new image, this command is used to load the slice into
the voxel data set.

PR SN MT

f‘ﬂ i

i

e EMT

TNO report

s

Page
42

S S W SE WV i W Adis ¥R

-) Send an image from the screen :
-) to.tfg ! command; tfg.send.image
resronse : data; image.data; [ID][ID]BYTE image
The image visible on the display is send, including text, grey scales etc. The image
could be used for storage on disk.

-) Send an image to the screen : ‘ :
-) to.tfg ! command; tfg.load.image;
INT start.y; INT nr,lines
[or.lines][ID)BYTE image
response : none
The transmitted image is displayed on the screen. The image is either read from disk or
it may be the result of a rendering operation. The actual number of image lines is a
variable (‘nr.lines’), to prevent text or status lines visible in the display from being
overwritten, The starting location in vertical direction for the first line is given by
'start.y".
<) Initialise the screen :
-) to.tfg | command; tfg.mem.preset; INT color
Tesponse : none
The command initialises the display to the value 'solor'. This command is mostly used
to clear the screen (i.e. color set to 0).
) Plot operations on the screen :
-) totfg ! command; tfg.load.histogram;
[256)INT table
response : nong
This procedure is used to load and plot the contents of an array (e.g. a histogram or a
color look-up table). The data is scaled to a maximum of 255 before plotting.
) to.tfg ! command; tfg.slice.border
response : none
When the TFG is used to grab a slice of data, it is helpful to draw a square on the
screen to indicate the borders of this slice, since the slice is only a section of the screen.

The dimension of the square is DY by DX pixels with its center corresponding to the
center of the screen.

TNO report

Page
43

to.tfg ! command; tfg.load.string;
INT x.pos; INT y.pos;
INT background.color;
INT foreground.color;
length::[length]BYTE string
Tesponse : none
This command is used to display text on the screen. The x.pos and y.pos values indicate
the upper right corner of the text. All characters have a size of 16*16 pixels.
to.tfg ! command; tfg.logo
Tesponse : none
The result is a TNO logo on the TFG screen.
to.tfg ! command; tfg.draw line;
INT x.start; INT y.start;
INT x.end; INT y.end
response : none
A white line is drawn on the TFG screen connecting the given coordinates. The
command is used to draw the reference coordinate system on the screen.
to.tfg ! command; tfg.grey.ref.bar
Tesponse : none
A reference grey scale is drawn it the lower left comer of the screen. This grey scale is
useful to display the contents of the color look-up tables.
to.tfg ! command; tfg.test.pattern
response : none
The result is a test pattern on the TFG screen. The pattern has a grid to adjust the
geometry of the monitor and grey- and color bars to adjust intensity and color.

Commands to control the frame grabber

-)

to.tfg | command; tfg.continuous.grab

response : none

The frame grabber switches to 'transparant’ mode, this means the current video input
signal is shown directly on the display.

to.tfg ! command; tfg.snapshot.grab

response : none

A snapshot (frozen image) is taken from the current video input signal. This image may
now be used as slice data.

[R P R

g A s

E——

A s s e it o,

e e et

- e

- e

s

TNO report

P S TS

Page

-) Commands to manipulate the color look-up tables.
The TFG stores four local color look-up tables. At any time only one table is active in the
conversion of greyvalues to pseudo-colors.
-} to.tfg ! command; tfg.select.lut;
INT active.lut.nr

response : none
The valid range for active lut.or is [0..3), this value selects one of the stored tables. The

table will be used immediately to convert the data in the frame memory (BYTES) to
RGB values on the screen.
-) to.tfg ! command; tfg.load.lut;
INT lut.nr;
[3][256]INT color tables

1esponse : none
This command is used to load new data in one of the local color tables of the TFG, The

lut.nr values indicates which table is selected, the three arrays that follow it represent
the table contents for red, green and blue. Table entries are limited to the [0..63> range
(i.e. 6 bits of RGB resolution).

The application will finish execution after receiving a 'quit’ tag :
<) to.tfg ! quit
response : quit

5.6 Configuration files

The system is very flexible in the dimensions of the objects that are to be transformed. The voxel
object dimensions are an important factor for the software, since many internal data structures are
dependant of them. Only four dimensions must be provided within the configuration file
‘vox_cnst.tsr' to select a different object size. These values are :

-) The dimensions of the voxel object

) The size of the resulting image

Several other values are automatically derived from these values. This is illustrated in listing 5.1.
In the current version, a change of these library values does require a recompilation. It is possible
to adapt the software to provide a run-time selectable object size.

Some restrictions must be considered for the object sizes :

AN

-

TNO report

Page
45

<) The total amount of available memory for a Subcube node must not be exceeded (currently 2

MByte).

) The projection of the transformed object must fit within the size of the resulting image, since

no clipping has been provided sofar.

-) Some optimisations have been implemented in the current version of the voxel-processor

that require the object dimensions to be a power of ¢wo. This can be changed easily without

a significant performance penalty.

Listing :5.1
List of File : voxcnst.tsr
File Last Modified : 22-11-90

{{{ VAL's for voxel object (128*128*128)

~-- Object dimensions in x, y and z

VAL DX
VAL DY
VAL D2

Is
Is
Is

-- Resulting image dimension

VAL &)

I8

128
128
128

256

~-= All remaining system constants are derived from the values given above

-- Object dimension

VAL DX1

VAL DY1

VAL D21

~-= Numbar of voxels in object
VAL VOL

~- Object center

VAL H.DX

VAL H.DY

VAL H.D2

== Resulting image

VAL Ip1

-- Result image center
VAL H.XID

VAL H.ID.REAL

-~ Subcube object dimensions in x,
VAL sCpX

VAL SCDY

VAL SCDZ

VAL SCDX1

VAL SCDY1

VAL SCpzl

Is
Is
13

IS8

I8
1s
I8

Is

I8
I8

Yy
Is
I3
Is
Is
18
Is

and z

~~ Number of voxels in Subcube object

(bX~-1)
(D¥-1)
(D2-1)

((DX * DY) * D3)

(DX/2)
(DY¥/2)
(D2/2)

(1D/2)
(REAL32 ROUND H.ID)

DX
DY

(DZ / NR.OF.NODES)
(ScDx~1)

(scpy-1)

(SCpz~-1)

s er e es ss aa

s os e se e+ as

“e e es we es se er s se ee oo

[er

§ o TNO report

VAL SCVoL Is {(SCDX * SCDY) * SCDZ)
-= Subcube result image dimensions
VAL SCID I8 I

== Number of bytes in a sector on disk

. e

VAL SECSIZ Is 512
VAL SECT.IN,.SC.PLANE 1s ((Scpx * scpY) / SECSIZ)
VAL NO.OF.SECTS.IN.SC is (SCVOL / SECSIZ) H
VAL NO.OF .SECTS.IN.OBJ Is (VOL / SECSIZ) :

Yh

Changing the number of subcube processors is easy, because of the modular set-up. This results

in a flexible cost/performance ratio. The software is identical for all Transputers, parameters are

used to compute which actual slices are to be stored and processed on a specific node. Several

parameters are used to control the configuration of the system. These parameters are stored in the

library 'vox_confisr' (Listing 5.2), they control :

<) The number of subcube processors used in the system

-) The processor topology

Changing these parameters does require a recompilation of the system software (since the data is

distibuted differently) and of the network configuration code (PROGRAM vox_net.tsr'). The

table 'LAST' is used to enable an easier transfer from a pipeline to a tree topology. The BOOL's

found in the table indicate that a processor node is at the end of a pipe of processors and should

not attemp to forward any messages.

The restrictions in the number of nodes are :

-) The total amount of available memory for a Subcube node must not be exceeded (currently 2
MByte).

=) There must is a minimum of one 'slice' per node, this implies that a maximum of 'DZ'
subcube nodes can be used for any object.

o Attt

[

PO

—— -

TNO report

Page
47

Listing : 5.2
List of File : voxconf.tsr
File Last Modified : 22-11-90

{{{ VAL's f£for 16 processor configuration
-=- Total number of subcube processors

VAL INT NR.OF.NODES I8 16
-- Table to indicate that subcube processors is at the end of the processor

pipeline
VAL [NR. OF .NODES] BOOL LAST.ARRAY 1s
(FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE] :

I

5.7 Implementation Remarks

-) The Voxel processor is built up entirely with of-the-shelf hardware, Each MTM-2 processor

board [12] offers two T800's with 2 MByte of memory each, so two PE's are loacted on the

' board. Other boards used, are the Display System TFG [13] with an on-board framegrabber,
a T800 and 1 MByte of video-ram and a TPM-4 processor board [14] with 4 MByte memory
for the controller, Physically the system consists of a 19" cabinet with 10 single euro-sized
boards installed. The host system in the Voxel-processor is an IBM-AT.

-) New or improved rendering operations can be added easily, since the system has been set up
very modular. The main restriction is the fact that, in the current implementation, a sub-cube
processor has no direct access to (voxel) data located in other PE's,

-) A communication layer is integrated into the system. This layer provides data and command
transport to all processes, and it is also capable of sending (debug) messages from any

process to the operator screen.

.

TNO report

Page
48

6 SOFTWARE DESCRIPTION

6.1 Introduction

The Voxelprocessor software is written in OCCAM 2 [7], developed under the MULTITOOL 5.0
system running on a PC-AT. This development system uses a 'Folding Editor' [15] to write the
code. The folding editor is in our opinion a very useful tcol during development and presents a
clear overview of the code on the console screen. The main advantage of a folding editor is that it
supports a 'top-down' view of the software, At each level, the user only sees the main structure of
the program, with details folded away. The contents of a fold can be described in the fold header.
A closed fold is represented by "... Closed Fold Header". A fold lister program is available for
documentation purposes. This tool generates listings of the source code with folds opened or
closed under user control. These listings will be used here to describe the basic operation of the
software, without going into every detail. The top-down approach of the folding editor will be
used here for the description of the software : the general structure of the programs will be
explained first, with details temporarily hidden in folds. Only the most important parts will be
explained, different cases of the same basic operation will not be treated each time over.

The top level of the Voxel-processor software is shown in listing 6.1, it consists of three parts :

1) The Libraries. .
Constants, variables or procedures that are (or could be) used in several processes of this
application were developed as Library code. Examples are message communication tags,
that must be known both to the transmitting- and to the receiving process. The configuration
details are also stored in a Library, for example : the size of the voxel-dataset and the
number of processors in the network.

2) The EXE code
This part of the software runs on the ‘root’ Transputer, that is the processor with access to the
Host PC-AT computer. The EXE runs under control of the Transputer Development Systexﬁ
(TDS), also known as '"MULTITOOL 5.0". The EXE code is used to control the operation of

the Voxel-processor.

|
|

J

Aot TR st ssh 4&‘&%&5“1*“*&

TNO report

3) The PROGRAM code.
This is the code that runs on the rest of the Transputer network. It consists of three parts :
-) The code for the SubCube processors.
-} The code for the Framegrabber/Display processor.
-) The Network configuration description.
Listing : 6.1
List of File : "voxel.tsr"
File Last Modified : 22-11-90
-~-- Libraries :
..F voxconf.tsx --- number of processors in the network
..F voxcnst.tsx --- dimensions of the Voxel dataset
.F voxproc.tsr --- rendering procedures for Network processors
..F tfgtag.tsr --- communication tags Controller <-> Framegrabber
..F voxtag.tsr --- communication tags Controller <-> Network
..F menuio.tsr --- menu display and parameter i/o procedures
..F dewrite,tsx --- procedures to display debug messages
~=-=- System :
«++ EXE vox_cntrx.tsx --- code running on the root processor
PROGRAM vox_net.tsr -~- code running on the network processors
6.2 The EXE Controller

The EXE Controller is the origin of all commands to the system and it is the destination of all

computed results. The operator communicates with the "user-interface’ part, which interprets and

execoies his commands. The user-interface consists of a menu system, that shows all possible

commands and the presently active paramerer settings. The operator may move through the menu
options by pressing function keys, arrrow keys or characters. The selected menu entry is indicated
by a high-lighted bar. Operations can be started by pressing the ‘return’ key on an menu entry. The
Controller 15 the only process that has access to the keyboard, screen and disks of the host
computer (the PC-AT). After loading the sub-cube processors with voxeldata from the disk or via
the framegrabber, the object may be rotated and viewed interactively under the command of the
Controller. The resulting images are received by the Controller and send to the Framebuffer board
for display. The results can also be stored on disk, and read in again at a later time.

PN

TNO report

JUDVPRUSINE Y

Page

Listing : 6.2
List of File : "vox_cntr.tsr"
File Last Modified : 22-11-90

.. link channel numbers
{{{ channels
CHAN OF ANY from.auto.pilot :

CHAN OF ANY from.tfg, to.tfg :
PLACE to.tfg AT linkoutl :
PLACE from.tfg AT linkinl :

CHAN OF ANY from.net, to.net :
PLACE to.net AT linkout2 :
PLACE from.net AT linkin2 :
}3}

SC T8 auto.pilot
SC T8 control.tsr ~-- user interface (tfqg)
-- manual & autopilot control
PAR
auto.pilot (keyboard, from.auto.pilot)
controller (from.auto.pilot, screen,
from,filer, to.filer, from.ios, to.ios,
from.ret, to.net, from.tfg, to.tfg)

Listing 6.2 shows the toplevel structure of the EXE Controller. The function of the channels to the
host (keyboard, screen, to/from.filer and to/from.ic) should be clear, to/from.net are used for
sending commands and data to the Transputer network. To/from.tfg are used for sending images
to the Framebuffer for display and to receive images that were grabbed from the camera. In this
implementation, an Autopilot has been included. Its function will be explained later, If desired, a
Controller EXE without the Autopilot could be build by simply removing the SC auto.pilot and
replacing the from.auto.pilot channel with the keyboard channel.

50

f w“w-ﬁdr

TNO report

Page
51

6.2.1 The SC Controller
. The basic structure of the SC Controller is shown in listing 6.3.
Listing : 6.3

' List of File : "control.tsr"
File Last Modified : 22-11-90

PROC controller (CHAN OF INT keyboaxrd,
CHAN OF ANY screen,
from.filer, to.filer,
from.ios, to.ios,
from.net, to.net, from.tfg, to.tfg)

header.tsr -~ Declarations
menu.tsr ~~ Menu related stuff
... net.tsr -~ Receive data/mess from network

PROC rotate routine -- Subcube transform parametexrs
... PROC init.,unit.vect
... PROC init.rotate.param

text.tsr ~- Text markers
... displ.tsx ~- Display parameters on screen
' s ... lutio.tsr ~-- Init/Load/Save LUT tables
... dimagio.tsr -~ Load/Save images
objectio.tsx -~ Load/Save Object

SEQ
init variables
... Sshow banner
running := TRUE
WHILE running
... declarations
SEQ
menu () ~-~= draw menu's
PRI ALT
from.net ? tag
receive.mess (tag) --- action on network message
keyboard ? ch
... F key.tsx --- action on keyboard command

The Controller starts with some initialisations of variables, it then sends a banner to the PC
display and shows a Logo on the Framegrabber screen. From that moment on, the Controller runs
in a loop, displaying the menu structure (‘menu’ procedure) and awaiting user commands to be
executed (... key.tst" fold). Alternatively the Controller can also receive messages from the:
network ("... net.tsr” fold). The messages could either be results from an ongoing computation or
possibly error messages. The Controller consists of several basic building blocks :

ey

XTI mmsv%

e

TNO report

Page |
52

-) The menu system.
"... menu.tsr” fold, (6.2.1.1).
t -} The network communication part.
"... nettsr" fold, (6.2.1.2).
-) The action on keyboard input fold.
"... key.tsr" fold, (6.2.1.3).
The disk interface routines, consisting of :

-) Voxel dataset load and store.
"... objectio.tsr" fold, (6.2.1.4).

-} Result images load and store.
"... imageio.tst" fold, (6.2.1.5).

-) Look-up table load and store.
"... lutio.tsr” fold, (6.2.1.6).

-) Rotated unit vectors calculation
"... rotate.tsr" fold, (6.2.1.7).

! ‘ -) Parameter display on Framegrabber screen.

“... display.tsr" fold, (6.2.1.8).

The detailed operation of the Controller will be described through these building blocks.

e e s b

[T Y P R

e e e e

TNO report

Page
53

6.2.1.1 Menu system

The menu system is the backbone of the Controller, all operations are guided through it. The
menu system is in fact a 'software state machine', Its state is represented by the variable 'state’,
Each state corresponds to a certain menu on the screen (displayed by the ‘menu ()' procedure) and
a certain interpretation of the received user commands (performed by the "... key.tsr" fold). All
possible states have been given names, corresponding to an integer value.

These names and values are :

{{{ state names

VAL MAIN.state IS8 1
VAL RENDER.state Is 2
VAL OPTIONS.state 1s 3 :
VAL COLOR.state IS 4
VAL GRABBER.state 1s 5 :
VAL OBJECT.state Is 6 :
VAL INTER.ROT.state IS 21
VAL INTER.CUT.state IS 22 :
VAL INTER.SLC.state IS 23 :
VAL EDIT,.state Is 45
VAL MAN,.GR.state I8 51 :
VAL ADTO.GR.state IS 52 :
VAL EDGE.state 18 60 :
VAL NOISE.state is 61 :
VAL GREY.SCL.state IS 64 :
11}

Each state also has a menu list assigned to it. This list will be displayed on the operator screen
when the state becomes active. The entries in the list show the possible user commands that can
be selected in this state. MENU.TABLE' is used to declare all entries (i.e. text) of all the menu's.
The menu's must have a standard size of max. 10 entries per menu, and a max. of 30 characters
per entry. This entry data is stered in the 'menu.table’ variable during run time, so that it's contents
may be changed (when parameter values in the menu's are changed).

> Mo Frrnncn e

o At b 2o —

o m——— ot s

TNO report

Page
54

The contents of the MENU.TABLE is pastly shown here :

VAL MENU,.TABLE IS {{{ main
i Load Object "
" Save Object "
" Load Image "
" Save Result "
" Dos Shell "
" Quit "

rotate
options
coloxr
... grabber
... Object

other menu's

] §]

The 'MENU.DATA' constant array is used to store several parameters of each menu list :

-) The size of the menu, the number of entries (depth) and its width.

-) The upper left corner position of the menu border when it is displayed on the screen.

-) The selected item in the menu and the previously selected item, used to show the selccted

entry in inverse video.

The meaning of the parameters is clearly illustrated in the figure below :

X

width

selected =>
deselected > - depth

] wm,“.....‘r

ot ———— <" 8 ————

B e —

TNO report

Page
55

For MAIN.state, the values are as follows :

MENU.DATA [MAIN.state} s [0, 3, 17, 6, 0, 1}

The fields of the 'MENU.DATA' and 'menu.data’ array are accessed using the following
definitions :

VAL MENU.X Is
VAL MENU.Y IS
VAL MENU.WIDTH Is
VAL MENU.DEPTH Is
VAL MENU.SELECT Is
VAL MENU.DESELECT IS

Ut WM O

The 'menu.data’ variable array holds the menu parameter data during run time, so that it may be
changed.

The menu structure on the screen can be seen as a 'tree’ of menu's, since some menu entries will
result in new (sub-) menu's being opened on selection. The presently active menu tree is siored in
the ‘menu.tree’ variable array as a sequence of state numbers. The menu tres is used each time the
menu structure has to be redrawn. The present depth of the tree is stored in ‘menu.tree.depth’. This
value is changed when a (sub-) window is added to or removed from the tree.

Whenever the menu tree is redrawn on the screen, this can be done in tree defined modes :
REDRAW, ADD or UPDATE. The different modes have been implemented to improve the speed
of the redraw action if possible. The differences are :
-) REDRAV/
A complete redraw of the menu tree, starting from an empty screen. This mode is chosen
when a 'function’ or ‘arrow' key is used to switch between menu's.
-} ADD
This mode is selected to add a new (sub-) window to the menu screen. The windows that are
present on the screen are overwritten if they are ovérlapped by the newly added one.
-) UPDATE
This mode only changes the selection pointer in the presently active menu. It is probably the
most often used redrawing mode.

e

TNO raport

Page
56

The menu redraw mode is passed ¢t 'PROC menu ()' via the ‘'ment.adapt’ variable. This variable is

set to one of the above options depending on the last keyboard action.
Listing 6.4 shows how 'PROC meru ()’ responds when the REDRAW option is active, as
mentioned, the other two modes will perform only parts of this complete redraw.

Listing : 6.4

{{{ PROC menu
PROC menu ()

{{{ PROC top.level ()

PROC top.level ()

~=-~ redraw menu (different modes)

--- draw main menu names at top of the screen

... VAL top.line

... VAL bottom.line

SEQ

screen ! tt.goto;

0;

0

write.full.string(screen, top.line)
{{{ top level menu names
write.full.string(screen, "|| MAIN || RENDER |

23]

| OTTIONS || COLOR

| GRABBER || OBJECT ||*c*n")

write.full.string(screen, bottom.line)

}H
IF

menu.adapt = REDRAW

{{{ redraw complete menu tree

SEQ
top.level ()

screen ! tt.clcar.eos

--- show all menu's in the menu tree
SEQ menu.count=0 FOR menu.tree.depth
{{{ show the menu

INT X, ¥ :

menu.active
active,data
menu.select
menu.width

menu.depth

SEQ

IS
Is
IS
Is
Is

~==- goto upper
X := active.data [MENU.X]

Y := active.data [MENU.Y]

screen ! tt.goto; X; Y

{{{ display top menu border
write.full,string(screen, "*#C9") -—

menu.tree [menu.count])
menu.data [menu.active)
active.data ([MENU,.SELECT)
active.data [MENU.WIDTH)
active.data [MENU.DEPTH]

left corner of the menu

-=-~ clear the rest of the screen

e se es ee ve

+a

RPN

i TNO report
1
| _ [
, i
Page ‘]
57 i
, !
write.full.string(screen, 4 '
[DOUBLE.LINE FROM 0 FOR menu.width]) S
write.full.string(screen, "*#BB") ——= 7"
Y=Y+ 1
11}
--- show all entries of the menu i
SEQ entry=0 FOR menu.depth)
{{{ left border, menu entry, right border '
SEQ
acreen ! tt.goto; X; ¥
write.full.string(screen, "*4BA") --- "
--- entry selection
IF
entry = menu.select
«+. Write menu entry in inverse video
TRUE
.. write menu entry normal
write.full.string(screen, "*§BA") ~~- "" "
Y =Y +1
1} L _
bottom menu border -l = = "
¥}
I3
menu,adapt = ADD
add new menu : menu.tree [menu.tree.depth-1l]
menu,.adapt = UPDATE
... update select pointer menu : menu.tree {menu.tree.depth-1]
6.2.12 Network communication
Listing 6.5 shows the contents of the 'net.tsr' file. This file consists of two procedures that the
Controller uses to receive data or messages from the network. The 'PROC receive.mess ('
procedure runs in the main loop of the Controller and is ready to receive messages at any time.
These messages will only occur when the system is in debug mode and the network processors
send efror- or progress messages to the screen, When a message is received, it causes the display
of a spocial window at the bottom of the screen. The message has a standard protocol. consisting
of a source identification string (ID.String) and a text string containing the actual information.
The ID.string is displayed in the window border, swhile the message itself is written inside the
window. The procedure waits for a keystroke to give the operator time to read the message, and
continues normal execution after removing the message window. J
S —
LS N

At armonons

TNO report

Page
58

The second pracedure, 'PROC receive ()', is activated by the Controller when it expects certain
’ data from the network in response to given commands. The procedure will check the actual
received data type against the expected type. If the "received.t'y'pe" is equal to the "expected.type”
| then the variable "ok" is set "TRUE". Any expected data may be preceded by one or more
(unexpected) messages. Error messages are displayed whenever unexpected or unknown tags are
received. The listing shows only the main structure of the procedure since it is basically identical
for all possible types. The protocols for the received network data have been described in chapter

5.5.

Listing : 6.5

List of File : "net.tsr --- Receive data/mess from network"
File Last Modified : 4-11-1990

!

VAL
VAL
VAL
VAL
VAL
VAL
h

o

VAL expected types for PROC receive
These are the possible data types that the
controller can expect to receive from the network.

receive.message IS O (BYTE) :
receive.merge 1s 1 (BYTE) :
receive.image IS 2 (BYTE) :
receive.slice 18 3 (BYTE) :
receive.histogram IS 4 (BYTE) :
receive,quit Is 5 (BYTE) :

PROC receive.mess ()

PROC receive.mess (BYTE tag)
--- This unit will only receive messages from the network.

--~ Any other received data type will cause an exror report.
IF

tag = message

{{{ process one message

{{{ VAR's
INT any, %, y ¢
INT length :
[8)BYTE ID.atring :
[80]BYTE string :
13}
SEQ

-- short.beep()

{{{ draw message window

screen ! tt.goto;
++. top boxder
... middle

... bottom

0; 19; tt.clear.eos

———" E MESSAGE FROM j
——e It
——— " Strike Any Key..

= vt dan o ,-»r

Lo
1‘,:

TNO report

Page
59

11}
{{{ show sender id
from.net ? ID.string
screen ! tt.goto; 42; 19 -~ correct position in window border
write.full.string (screen, ID.string)
11}
{({{ dinit x, ¥y
x = 2
y = 20
screen ! tt.goto; x; y
3}
{{{ receive and show message string
from.net ? length::string
write,full.string(screen, ([string FROM 0 FOR length])
}}
{{{ wait for any key to continue
keyboard ? any
screen ! tt.goto; 0; 19; tt.clear.eos
1)}

1}

tag = command

{{{ erroxr

SEQ
screen ! tt.goto; 0; 0; tt.clear.eos
write,full.string(screen,

"ERROR - Message expected, Command tag from networxk")

wait.any (keyboard, screen)

133

tag = quit
«e. €rrox
TRUE

ce erroxr

i

{{{ PROC receive ()

PROC receive (CHAN OF ANY to.contr, VAL BYTE expected.type, BOOL ok)
~-- This unit will receive messages, or data from the network.
===~ It will check the actual received data type against the expected
===~ type. If (received.type = expected.type) then ok := TRUE.
--~ Any expected data may be preceded by one or more messages.

BYTE tag :
SEQ
ok := FALSE

to.contr ? tag --- receive
{{{ process possible preceding messages

WHILE (tag = message) AND (NOT (expected.type = receive.message))
SEQ

+++ Pprocess one (unexpected) message
to.contx ? tag ~-- receive more

¢ A A o A

|

s 1 s v e SO, el

© e —————— ——

W~

TNO report

13}
{{{ process expected data
Iir
tag = message
{{{ process message
IrF
(expected.type = receive.message)
... o0k, receive message
TRUE
{{{ error --- this can not happen !!
SEQ
screen ! tt.goto; 0; 0; tt.clear.eos
write.full.string (screen,
"ERROR - Unexpected message tag from network ")
wait.any (keyboard, screen)
1}
1}
tag = command
{{{ process command

SEQ
to.contr ? tag
iF
tag = merge.image
{{{ receiva merged image
IF
(expected.tyre = receive.merge)
... ok, receive image
TRUE
««. "ERROR - Unexpected sub.tag from network "
}}}
tag = merge.histogram
{{{ <receive histogram
IF
(expected.type = receive.histogram)
... ok, receive histogram
TRUE
... "ERROR - Unexpected sub.tag from network"
11}
TRUE
«.+. "ERROR - Unknown command sub.tag from network"
11}
tag = data
{{{ process data
SEQ
to.contr ? tag
IF

tag = image.data
{{{ receive image
irF
(expected.type = receive.image)
.++ Ok, receive image

e

s

LT e

nr mms——. —Tn————————— b

.o

P TNO report

Page

L1

va

TRUE
«+. T"ERROR - Unexpected sub.tag from network"
1
tag = slice.data
{{{ receive slice
IF
(expected.type = receive.slice)
.+« Ok, receive slice
TRUE
.+. "ERROR - Unexpected sub.tag from network"
11}
TRUE
«.. "ERROR - Unknown data sub.tag from network"
11}
tag = quit
{{{ process quit
IF
(expected.type = receive.quit)
... ok, quit
TRUE
... "ERROR - Unexpected Quit tag from network"
|20
TRUE
"ERROR ~ Unknown main tag from network"

' 1A%

23]

6.2.1.3 Keyboard action

Listing 6.6 shows the ... key.tst' fold. Incoming characters are checked in a CASE structure.
Function keys (F2..F6) cause a direct change of state. With these keys the user may switch from
any (sub) menu to any other menu. The exact operation can be found in the fold '... ch = Function
key' (Listing 6.6.1), with the first case (ch = F2) written out. If the received character is not a
function key, the CASE construct in '... key.tsr' will fall through to the '... ch = State specific
key'. Listing 6.7 shows the contents of this fold.

TNO report

Page
62

Listing : 6.6
List of File : 'key.tsr'
File Last Modified : 22-11-90

{{{ VAL declarations
... Function keys
... Other keys
Other values

11}
IF

... ch = Function key
ch = State specific key

The result of pressing the F2 key is a switch to 'state = MAIN.state' and the according settings of
certain variables for the correct update of the menu structure on the screen. A special key (#) has
been reserved to bring the Controller in a debug mode, where intermediate results will be
displayed on the user screen.

Listing: 6.6.1
List of Fold : 'ch = Function key'

ch = F2
{{{ MAIN,state
SEQ
state := MAIN.state
menu.tree[0] := MAIN.menu
menu.tree.depth := 1
menu.adapt := REDRAW
1)}
ch = F3
RENDER. state
ch = F4
OPTIONS,state
ch = F5
.. COLOR,state
ch = Fé6
GRABBER. state
ch = F7
OBJECT.state
ch = DEBUG.MODE
... debug.mode On/Off

The "... ch = State specific key' fold starts with some abbreviations to the active menu : the

number of entries, the presently high-lighted entry etc. This is useful, to enable quick access to the
data.

et i . e i

——

3 L ———

TNO report

The process then jumps to a unique branch for each possible state of the menu state machine. The

received characters will be interpreted differently depending on the currently active state.

Listing : 6.7

List of Fold : "ch = State specific key"

TRUE
{{{ menu abbreviations
menu.active IS menu.tree [menu.tree.depth - 1]
active.data IS menu.data [menu.active]
menu.depth IS active.data [MENU.DEPTH]}

menu.select IS active.data [MENU.SELECT])

menu.degselect IS active.data [MENU.DESELECT]

}3}

{{{F state case

ir
state
state
state
state
state
state
state
state
state
state
state
stééé
state
state
TROE

s

13}

= MAIN.state
interpret keys and execute actions

= RENDER.state

= OPTIONS.state

= COLOR.state

= GRABBER.state

= OBJECT.state

= INTER.ROT.state

= INTER.CUT.state

= INTER.SLC.state

= EDIT.state

= MAN.GR.state

= GREY.SCL.state

= EDGE.state

= NOISE.state

erxor

e se se e

TNO report

Page

The '... interpret keys and execute actions’ branch is selected when the 'MAIN.state’ is active.

Listing 6.8 shows the contents of this fold. As described earlier, the received characters will be

interpreted according to the possible commands in the MENU state’, The basic structure of this

fold is not only used for MAIN.state', but for all other states also. The other states will therefore
not be described explicitly. The possible keys for each state can be ordered in a number of
categories :

1) Amow Left or Right : switch to the neighbour state as indicated on the scieen layout. The
result is identical to pressing the corresponding function key.

2) Armrow Up or Down : move the high-lighted bar to the previous/next menu entry. The high-
light moves from top to bottom at the last or first entry, if necessary. Using the arrows keys
does not activate the selected entry.

3) Character keys are used to get a direct and faster selection of an entry. This is an alternative
to using the up/down arrow. The first character of an entry is normaly used for this selection.

4) Pressing the return’ key activates the high-lighted menu entry.

5) Keys that are not trapped in the CASE structure, will be considered ‘illegal' and cause a

‘beep’ on the console.

Listing 6.8

{{{ interpret keys and execute actions
IF
{{{ switch menu
ch = ft.left
({{
SEQ
state := OBJECT.state
menu.active := OBJECT.menu
menu.adapt := REDRAW
11}
ch = ft.right
({{
SEQ
state := RENDER,state
menu.active :» RENDER.menu
menu.adapt := REDRAW
1}}
1)
{{{ switch selected item
ch = ft.up

(i
SEQ

v m——

P e b it e u}

S e —— s

" ot s ——— r—— —

N L
i S —————— S

TNO report

Page
65

menu.deselect := menu.select
menu.select := menu.Select - 1
IF
menu.select = MINUS.ONE
menu.select := menu.depth - 1
TRUE
SKIP
menu.adapt := UPDATE
1}
ch = ft.down
{{{
SEQ
menu.deselect := menu.select
menu. select := (menu.select + 1) \ menu.depth
menu.adapt := UPDATE
11}
(ch = KEY.L) OR (ch = KEY.1l)
{{{ Load Object high-lighted
SEQ
menu,deselect := menu.select
menu. select := 0
menu, adapt := UPDATE
11}
(ch = KEY.S) OR (ch = KEY.s)
‘ ... Save Object high-lighted
. (ch = KEY,.I) OR (ch = KEY.i)
... Load Image high-lighted
(ch = KEY.R) OR (ch = KEY.r)
... Save Result high-lighted
(ch = KEY.D) OR (ch = KEY.d)
... DOS Shell high-lighted
(ch = KEY.Q) OR (ch = KEY.q)
... Quit high-lighted
11}
{{{ select item
(ch = return) AND (menu.select = 0)
... Load Object action
{(ch = return) AND (menu.select = 1)
... Save Object action
(ch = return) AND (menu.select = 2)
... Load Image action
(ch = return) AND (menu.select = 3)
Save Result action
(ch = return) AND (menu.select = 4)
... DOS Shell action
(ch = return) AND (menu.select = 5)
«o. Quit action

b1}

{{{ ILLEGAL CHOICE
TRUE

ot b

Rl

TNO report

Page

SEQ
menu.adapt := UPDATE
short.beep (screen)
h
11}

The result of pressing the 'return’ key on the 'Load Object’ menu entry is described in listing 6.9.
All actions requiring user supplied parameters, like filenames, angles or colour tables, will open a
special window at the bottom of the screen. The size and position of this window is controlled by
the constants X, Y, WIDTH and HEIGHT, which are defined at the start of the '... Load Object
action' fold. These constants might be different for other actions, depending on the number of
expected user parameters. The procedure 'draw.window ()' will perform the actual drawing of the
window borders, using the already mentioned constants. Several procedures have been defined to
perform user i/o of parameters within the borders of the window.

These procedures are :

-) getfilename.
This procedure will take a given prompt, display it and wait for a user supplied file name.
Depending on the type of file i/o (read or write), it will check for the existence of the
requested file or alternatively create a new file with this name. The procedure will display
error messages within the window borders if necessary, and exit with the 'Error’ variable set
to a non-zero value after a certain number of consecutive errors. If all goes well, the user
supplied filename will be assigned to the string variable 'File.name' and its length will be
found in 'File.name.len'

-) getstring
This procedure is identical in function to the previous one, but it will just read in an
unchequed string.

-) get.int
This procedure is identical in function to the first one, with the difference that it is meant to
read integer values, The integer values will be chequed against a minimum and maximum
value that is supplied as a procedure parameter.

=) get.bool
This procedure is again identical to 'get.integer’, but intended to read in Boolean values ('Y,
'v','N' or 'n’).

B e L ———

L uua——

s,

TNO report

Page

The screen area occupied by the window can be erased again by the ‘clear.window' procedure,
which uses the same parameters as 'draw.window'. A faster method however is to directly access
the 'screen’ channel and clear the area below the cursor with :

screen ! tt.goto; X;; Y; tt.clear.eos
Two procedures have been added to activate and disable the cursor on the PC screen, these are
‘cursor.on’ and 'cursor.off'. During normal menu control, the cursor will be turned off, the current
position on the screen is indicated by the high-lighted bar. For user i/o however the cursor should
be visible in the parameter window again. The two procedures use the 'to/from.ios’ channels,
which provide direct access to the PC's interrupt mechanism. Through 'INT 10' it becomes
possible to change the cursor size to zero, thus making it invisible. The window and parameter
input procedures are located in the ... LIB menu.io’ fold.
After entering a valid file name (Brror = 0), the ... Load Object action' fold will continue by
reading the requested voxel dataset from disk and loading it in the Transputer network. As
mentioned before, the data will be read in on a slice by slice basis, displaying each slice on the
framegrabber screen and sending it to the correct Processor Element (PE). This combination of
actions is performed by the 'load.object’ procedure (6.2.1.4). After successfully loading a new
object (Error = 0), several variables will need to be reinitialised and the operator will be requested
to supply a name for the voxel dataset. The initialisation procedures will be described in
following paragraphs. The user supplied name is embedded in a header string that is continuously
displayed at the top of the framegrabber screen. This header string is build by 'create.top.line2 ().

Listing 6.9
List of Fold : 'Load Object action’

{{{
INT Error :

{63)BYTE File.name : == Chosen filename

INT File.name.len : -=- Length of filename
VAL X IS 0 :
VAL Y Is 18 :

VAL WIDTH IS 77 :
VAL HEIGHT IS 3 :
1}
SEQ
draw.window (screen, X, Y, WIDTH, HEIGHT)
cursoxr.on (from.ios, to.ios)
get.filename (keyboard, screen, from.filer, to.filer,
(X+1), (Y+1), WIDTH,

67

R P

rn e

s e e /r

l

S R o cmt———, —

“

TNO report

Y RPN P et bt Bt P O -~

Page
68

" Enter Object Filename : ", tkf.open.rxead,
File.name.len, File.name, Erxox)

IF
Error = 0
{{{ load object
SEQ
~-- Clear screen to prepare for object slices
to.tfg ! command; tfg.mem.preset; 0
load.object ((X+1), (¥+2), WIDTH,
File.name.len, File.name, Errox)
IF
Error = 0
{{{ 4init parameters & read descriptor
SEQ
init.unit.vect ()
init.rotate.param ()
init.menu.tables ()
get.string (keyboard, screen,
(X+1), (Y¥Y+3), WIDTH,
" pDescriptor string : ",
descriptor.len,
descriptor.string)
create.top.line.2 (descriptor.len,
descriptor.string)
11}
TRUE
SKIP
1}
TRUE
SKIP

cursor.off (from.ics, to.ios)
screen ! tt.goto; X; ¥Y; tt.clear.eos

6.2.14 Voxel dataset load and store
The voxel dataset has a size of DX*DY*DZ voxels, this data is distributed across
NR.OF.NODES processing elements (subcube processors). The voxel dataset is represented as
DZ slices of size DX*DY. Each subcube is assigned a number of slices (SCDZ). The dataset sizes
on the subcube processors are named SCDX, SCDY and SCDZ. 1t will be clear that the following
relations exist :

SCDX =DX

SCDY =DY

SCDZ = DZ / NR.OF “{ODES

-

TNO report

P R a o vCra

Loading voxel data into or out of the network is done on a slice by slice basis. Data is read from
(or written to) disk in blocks, until one slice is complete, this slice is temporarily stored in the
[ID}[IDJBYTE image array. The slice will then be transmitted to (or has been received from) the
appropriate Subcube processor. Voxel data is stored on disk as DZ slices of DY lines with DX
bytes per line. Data is stored on disk in blocks of 512 bytes, so this block will contain data of
more than one line if DX < 512.

Two procedures are used for I/O operations on voxeldata : Load.object () and Save.Object (.
These are located in the file 'Objectio.tsr', see listing 6.10.

Reading voxel data from disk is performed by the 'Load.object ()' procedure. Each slice is read
from the disk and transmitted to the network as DY*DX Bytes, preceded by the slice number. The
slice number ('slice.nr’) is an integer between 0 and (DZ-1). The distributors in the network will
automatically decide which slices are located at a specific node and forward the slice data
accordingly. This implies that the controller does not need $o address a specific node when
sending slices to the network, the slice.nr is sufficient. When one slice of the voxel data has been
processed, the Object.load procedure will move to the next by incrementing the slice.nr counter.
Each slice will be displayed during the object loading phase and a load percentage will be
ccmputed and displayed on the user console.

When the operator wishes to save a previously 'grabbed’ object to disk, then this data must be
requested from the subcube processors where it is located. This data is again read in from the
network on a slice by slice basis. The controller does not need to address a specific node when
requesting slices from the network, the slice.nr is sufficient. The distributors in the network will
automatically decide which slice is located at a specific node and forward the send.slice.data
command accordingly. When a node has received the command to send a slice, it will do so by
sending this slice via the merger towards the controller on a line by line basis. The slice is
temporarily loeded in the [IDJID)BYTE image array and converted to [S12]BYTE blocks that
can be stored on disk. The described operation is performed by the Save.object procedure. The
presently processed slice is being displayed on the Framegrabber board and the loading
percentage is supplied on the operator console,

Both procedures perform extensive checking during disk access to prevent the system from
hanging-up, should anything go wrong. This includes checking filename and filesize.

T

TNO report

Page
70

Listing : 6.10
List of File : "objectio.tsr"
File last modified : 22-11-90

PROC load.okject (VAL INT X, Y, WIDTH,
INT File.name.len, [63]BYTE File.name, INT Error)

--- Load new Object from disk into voxel processor
INT result :
SEQ
Error := 0
open.tkf.file (from.filer, to.filer, tkf.open.rxead,
File.name.len, File.name, result)

IF
result=f£fi, ok
{{{ Read slices and load network
declarations
SEQ

{{{ load object

... init loading percentage
slice.nr := 0

WHILE (slice.nr < D2) AND (Error = Q)

INT y :
SEQ
{{{ read slice
y := 0
WHILE (y < DY) AND (Exror = 0)
SEQ

{{{ read block
read.tkf.block (from.filex, to.filer,
length, block, result)
193}
IFr
result=£fi,ok
... 8tore block temporarily in image[] (]
result=£fi.eof
... Error
TRUE
Errox
11}
IF
(Erroxr = 0)
SEQ
{{{ send slice to screen
{{{ send slice
to.tfg ! command; tfg.load.slice
SEQ y=0 FOR DY
to.tfg ! [image{y] FROM J FOR DX)
31}

R s sy ey S

[IARVARN

TNO teport

S ———

Page
7

{{{ send top line

create.top.line.l (slice.nr)

to.tfg ! command; tfg.load.string;
X.TOP.1; Y.TOP.1l; 0O; 255;
(SIZE top.line.l)::top.line.l

11}
}}}
{{{ send slice to subcube
to.net ! command; pe.load.slice; slice.nr
SEQ y=0 FOR DY
to.net ! [image [y] FROM 0 FOR DX]
11}
TRUE
SKIP

slice.nr := slice.nr + 1

1}

close.tkf.file (from.filer, to.filer, result)
IF
result=£fi, ok
SKIP
TRUE
.+, Error
)
TRUE
... Error

PROC save.object (VAL INT X, Y, WIDTH,
INT File.name,len, [63)BYTE File.name, INT Error)

--- Save Object from voxel processor onto disk
INT result :
INT id.len, type, content :
[63]1BYTE id :
SEQ
Erroxr := 0
make.id (from.filer, to.filer,
[File.name FROM 0 FOR File.name.len]),
id.len, id,
type, content, result)

iF
result=£i,ok
{{{ open for write
SEQ

open.tkf.file (from.filer, to.filer,
tkf.open.write, id.len, id, result)
IF
result=£i,ok
{{{ Read slices from network and write blocks

J

I P st R -T

TNO report

Page
72

... declarations
SEQ
{{{ save object
... 1init loading percentage

slice.nr := 0
WHILE (slice.nr < DZ) AND (Error = 0)
BOOL slice.received.ok :
SEQ
{{{ receive slice from network
to.net ! command; pe.send.slice; slice.nr
receive (from.net,
receive.slice, slice.received.ok)

1}

IF
slice.received.ok
{{{ store slice
INT y :
SEQ
... send slice to screen
... send top line
y := 0
WHILE (Erroxr = 0) AND (y < DY)
INT idx :
VAL LINES.PER.SECTOR IS (512/DX)
SEQ
{{{ £ill data block with slice
idx := 0
SEQ i=0 FOR LINES.PER.SECTOR
SEQ
[block FROM idx FOR DX] :=
[image([y] FROM 0 FOR DX]
y =y +1
idx := idx + DX
1}
{{{ write block to disk
write.tkf.block (from.filer,to.filer,
512, block, result)
11}
IF
result=£i,ok
... next block
TRUE
.. Error
1)
TRUE

«.. Error

slice.nr := slice.nr + 1

8%

g e

[y

_I

T v e MT

TNO report

Page

close.tkf.file (from.filer, to.filer, result)

IF
result=£fi,ok
SKIP
TRUE
Error
)
TRUE
Error
1))
TRUE
Exrrxoxr
6.2.1.5 Result images load and store

Images resulting from visualization may be stored on disk and can be retrieved for display at a
later moment. These operations are performed by two procedures shown in listing 6.11, called
‘imageio.tsr’. Basically, these operations are identical to those that were used for loading and
storing voxeldata. The Controller allways has the latest image stored in the [IDJ[ID]BYTE image
array. When loading an image from disk it will be read in chunks of 512 bytes which are then
copied to the correct position in the image array. Error checking is performed at all relevant
positions and a loading percentage is computed during operation,

& nmra e hod amOvinirin o

73

b TNO report

Page
74

Listing : 6.11
List of File : 'imageio.tsr'
File last modified : 22-11-90

PROC load.imag (VAL INT X, Y, WIDTH,
INT File.name.len, [63]BYTE File.name, INT Error)
INT result :
SEQ
Error := 0
open.tkf.file (from.filexr, to.filer, tkf.open.read,
File.name.len, File.name, result)
IF
result=£i.ok
{{{ xead blocks
declarations
SEQ
init
WHILE (result=fi.ok) AND (y < ID)
SEQ
{{{ xead block
read.tkf.block (from.filer,to.filer,
length, block, result)
1)
IF
result=£fi.ok
{{{ store block in image[){]
INT idx :
SEQ
idx := 0
SEQ i=0 FOR (LINES.PER,SECTOR)
SEQ
image[y] := [block FROM idx FOR ID]
y =y +1
IF
(y \ LOAD.STEP) = 0
.+« vwrite load percentage
TRUE
SKIP
idx := idx + ID
1}
result=£fi,eof
Exror ‘
TRUE :
+«+. Error
close.tkf.file (from.filer, to.filer, result)
IF
result=fi.ok
SKIP
TRUE

n et ot TR 5N s i ¢ T

H

an

‘TNO report
Page
’ 15
.. Error
1}}
TRUE
Error
PROC save.imag (VAL INT X, Y, WIDTH,
INT File.name.len, [63)BYTE File.name, INT Exror)
INT result :
INT id.len, type, content :
[63)BYTE id :
SEQ
Erxor := 0
make.id (from.filer, to.filer,
[File.name FROM 0 FOR File.name.len],
id.len, id,
type, content, result)
IF
result=£fi.ok
{{{ open for write
SEQ
open.tkf.file (from.filer, to.filex,
tkf.open.write, id.len, id, result)
IF
result=£i.ok
{{{ write blocks
declarations
SEQ
... init
WHILE (result=fi.ok) AND (y < ID)
INT idx :
SEQ
{{{ £ill block from image{][]
idx = 0
SEQ i=0 FOR (LINES.PER.SECTOR)
SEQ
[block FROM idx FOR ID] := imagely)
y twy + 1
idx := idx + ID
)
{{{ write block to disk
write.tkf.block (from.filer,to.filer,
512, block, result)
h
IF
result=fi,ok
... hext block
TRUE
«.+ Errox
close.tkf.file (from.filer, to.filer, result)
IF

L
|

T A oA R

PR

e e ot et

o A i ——— S g

TNO report

result=£fi.ok
SKIP
TRUE
Error
, 1))
! TRUE
Error

1
TRUE

Errox

6.2.1.6 Look-up table load and store

the Framegrabber LUT after initialisation.

error messages need to be displayed.

b e e Aneg w ety v - ar

The other two procedures read or write the contents of one LUT from or to disk. The LUT
contents consists of three tables (Red, Green and Blue) of 256 entries each, Values from [0..63]
are valid for each entry. The data is stored on disk as one file of 3*256 bytes. Some simple data
manipulation is needed to convert the LUT contents, which is of integer type, to blocks of bytes.
All possible file i/o errors are trapped and reported with error messages. The "PROC load.lut ("
and "PROC save.lut ()" are supplied with the selected filenames and the selected LUT. These
parameters must have been checked first. Since these procedures are called from within the menu
system, there user i/o takes place through the parameter window at the bottom of the screen. It is
therefore necessary to supply some window parameters (X, Y, WIDTH) to the procedures, should

Page
76

Listing 6.12 shows three procedures that are used to initialise and to store or load the contents of
the Color Look-Up tables (LUT's). These LUT's are actually used in the Framegrabber board, but
the manipulations on their contents is performed on & local copy in the Controller. This implies
| that thc LUT's content must be transmitted to the Framegrabber after any changes.
The 'PROC init.lut (' simply sets the contents of the four possible LUT's to certain defined
values: a grey scale, an inverse grey scale and two pseudo-color scales. This data is transmitted to

N e '—T

P U

TNOreport

v M .—"«T

Rt R TR TGOV P

Page
77

Listing 6.12
List of File : "lutio.tsu:\ - Init/Load/Save LUT tables"
File Last Modified : 18-12-90

N

{{{ PROC init.lut () , ;
PROC init.lut () .

~-=-= default lut values (equal to GDS values)

INT table.nr, R, G, B:

SEQ \
.. table 0 -~- grey .scale
table 1 --- inverse grey scale
... table 2 -~- color scale
{{{ table 3 -~-- R, G, B and combined color scales

table.nr := 3

~

SEQ
0 - 15 grey scale
16 - 32 red scale ’
32 - 47 green scale .
48 - 63 blue scale .
e 64 - 79 yellow scale '
. 80 - 95 cyan scale

e 96 - 111 magenta scale .
ees 112 =~ 127 red & green scale with thizd blue
128 - 143 green & blue scale with third red

... 144 - 159 blue & redscale with third gré§n
160 -~ 175 red & green scale with two-thirts blue
176 - 191 green & blue scale with two-thixds red

192 =~ 207 blue & red scale with two-thirds green
208 <~ 223 red & green scale with full blue
224 - 239 green & blue scale with full red
240 - 255 blue & red scale with full green

)
h

{{{ PROC load.lut
PROC load.lut (VAL INT X, Y, WIDTH,
INT File.name.len, [63]BYTE File.name,
VAL INT selected.lut.nr, INT Error)
INT result :
SEQ
Erxoxr := 0
open.tkf.file (from.filer, to.filer, tkf.open.read,
File.name.len, File.name, xesult)

iF
result=£i.ok
{{{ read blocks
INT count, length:

b ——————— e A pan

TNO report

Page
78

[512)BYTE block : ~=- minirum blocksize must be 512

SEQ
count := 0
WHILE (result=fi.ok) AND (count < 3)
SEQ
-- 1read block
read.tkf.block (from.filer,to.filex,
length, block, result)
IF
result=£fi.ok
... 8tore R and G or B block
result=£fi.eof
... Error
TRUE
«.. Error
close.tkf.file (from.filer, to.filer, result)
IF
result=£i.ok
SKIP
TRUE
... Error
1}
TRUE
{{{ Exrxor
SEQ
error.message (keyboard, screen,
X, ¥, WIDTH,
" ERROR : Can not open File. Strike any key...")
Error := =2
1)}

11

{{{ PROC save.lut
PROC save.lut (VAL INT X, ¥, WIDTH,
INT File.name.len, {63]BYTE File.name,
VAL INT selected.lut.nr, INT Errorx)
INT result :
INT id.len, type, content :
{63])BYTE id :
SEQ
Error := 0
make.id (from.filer, to.filer,
[File.name FROM 0 FOR File.name.len],
id.len, id,
type, content, result)

IF
result=£i.ok
{{{ open for write
SEQ

open.tkf.file (from.filer, to.filer,

s o

—— ————a h n o PR SO Y oY P __‘!M'M-&r“
H
4
i

TNO report
re—

Page ‘ L
9

tkf.open.write, id.len, id, result)
IF
result=£fi.ok
{{{ wxrite blocks
INT count :
[256]BYTE block :
SEQ
... write R and G or B blocks
close.tkf.file (from.filer,to.filexr, result)

IF
result=£fi.ok
SKIP
TRUE
Errox
13}
TRUE
... Error
1)}
TRUE
{{{ Error
SEQ
error.message (keyboard, screen,
X,Y,WIDTH,

" ERROR : Can not create File. Strike any key...")
Error := -2

)
by

6.2.1.7 Rotated unit vectors calculation

As explained in Chapter 2.1, we need to calculate unit steps in display space via transformation of
unit vectors in object space. This operation is performed in the "PROC rotate (). This procedure
takes three user supplied rotation angles (in degrees) as input and applies the corresponding
rotation matrix to the unit vectors in object space. The unit vector values are global variables

called 'unit.step.??', where '7?' denotes all possible combinations of x, y and z.

o et . it e AN S

[

TNO report

Listing ; 6.13
List of Fold : "rotate.tst"

{{{ PROC rotate ()
PROC rotate (INT X.rot.degr, Y.rot.degxr, Z.rot.degr)

VAL DR180
REAL32
REAL32
REAL32
REAL32

SEQ

1)}

{{{ Calculate angles

IS
X.rot.rad, Y.rot.
Sin.X.rot, Cos.X.
Sin.Y.rot, Cos.Y.
Sin.2.rot, Cos.Z.

Page
80

180.0 (REAL32) :
rad, Z.rot.rad :
rot
rot
rot

e s e

in Radians

X.rot.rad := ((REAL32 ROUND X.rot.degr) * PI) / DR180
Y.rot.rad := ((REAL32 ROUND Y.rot.degr) * PI) / DR180
Z.rot.rad := ((REAL32 ROUND Z.rxot.degr) * PI) / DR180

11}

{{{ Calculate rotation factors

Sin.X.rot :=
Cos.X.rot :=
Sin.Y.rot :
Cos.Y.rot :

Sin.Z.rot
Cos.Z.xot
13}

SIN
cos
SIN
Ccos
SIN
cos

(X.xot.rad)
(X.rot.rad)
(Y.xot.rad)
{(Y.rot.rad)
{(z.rot.rad)
(Z2.xrot.xad)

{{{ Calculate unit.steps
= (Cos.Y.rot * Cos.Z.rot)

unit.step.xx
unit.step.xy
unit.step.xz
unit.step.yx
unit.step.yy
unit.step.yz
unit.step.zx

unit.step.zy

unit.step.zz

'

.
b

(Cos.Y.xrot
=-Sin.Y.rot

((Sin.X.rot
{(Cos.X.xot

((Sin.X.rot
(Cos.X.rot

(Sin.X.xot

((Cos.X.xot
(Sin.X.rot

((Cos.X.xot
(Sin.X.xot

(Cos.X.rot

* Sin.Z.rot)

* Sin.Y.rot) * Cos.Z.rot)
* Sin.2.xot)
* Sin.Y.rot) * Sin.Z.rot) +
* Cos.Z.rot)
* Cos.Y.rot)

* Sin.Y.xrot) * Cos.Z.rot) +
* Sin.Z.rot)
* Sin.Y.rot) * Sin.2,rot)
* Cos.Z.rot)

* Cos.Y.rot)

[RESEE “T

. —— S —a———

e no———

e p———— ——

PN

] S e, N . T
TNO report

o s
Page i
81 §

6.2.1.8 Parameter display on Framegrabber screen 4 ,

Two procedures are shown in listing 6.14 that are used to display several rendering parameters on
the Framegrabber screen. The rendering parameters (mode, angles, threshold, z-cut value and i

grey scale) are presented by "PROC display.rot.param" and the rotated object coordinate system
is drawn on the screen by "PROC display.coord.system” for reference purposes. The first .
procedure operates by converting the rotation parameters to text strings, which are then

transmitted to the Framegrabber via a defined protocol. The coordinate system is represented by K
drawing scaled and projected versions of the transformed unit vectors on the screen via a defined

‘draw.line’' protocol. The axes are identified by printing an x, y or z next to them. These characters

are printed in upper- or lower case depending on the sign of the unit vector's z direction.

Listing : 6.14
List of File : "displ.tsr”
File Last Modified : 18-12-90

{{{ PROC display.rot.param
PROC display.rot.param ()
SEQ
to.tfg ! command; tfg.load.string;
X.TOP.2; Y.TOP.2; 0; 255; (SIZE top.line.2)::top.line.2

create.bottom.line.l (X.rot.degr, Y.rot.degr, 2.rot.degr,
z.cut.value, threshold.value)
to.tfg ! command; tfg.load.string;
X.BOT.1; Y.BOT.1; 0; 255;
(SIZE bottom.line,1)::bottom.line.l

to.tfg ! command; tfg.grey.ref.bar

create.bottom.line.2 (render.mode)
to.tfg ! command; tfg.load.string;
X.BOT.2; Y.BOT.2; 0; 255; 16::bottom.line.2

11}

{{{ PROC display.coord.system
PROC display.coord.system ()
INT %, ¥y :
VAL X.CENTRE IS 70 :
VAL Y.CENTRE IS 100 :
VAL SCALER 1S 30.0(REAL32)
SEQ
{{{ wunit.step.x
x := X,.CENTRE + {(INT TRUNC (unit.step.xx * SCALER))

[

Page

y := Y.CENTRE + (INT TRUNC (unit.step.xy * SCALER))

to.tfg ! command; tfg.draw.line; X.CENTRE; Y.CENTRE; x; ¥y

IF
»x > X.CENTRE
x = x + 16
TRUE
X 1= x - 32
IF
y > Y.CENTRE
SKIP
TRUE
y =y - 16
IF

unit.step.xz < 0.0 (REAL32)

to.tfg ! command; tfg.load.string; x; y; 0; 200; 1l::"x"
TRUE

to.tfg ! command; tfg.load.string; x; y; 0; 255; 1l::"X"

1}
unit.step.y
unit.step.z

11}

6.2.2 The SC Autopilot

The autopilot program was written to present automatic (and continueing) demonstzations of the

Voxelprocessor system. It generates sequences of keystrokes, that are interpreted by the

Controller process as if they were entered from the keyboard. To provide this possibility, the

Autopilot process is running in parallel with the Controller process on the root processor. The

Autopilot re-routes the keyboard channel from the Host computer (the PC) to the Controller EXE.

The Autopilot process can be running in two modes :

<) Inactive mode. In this case all keyboard strokes coming from the operator are simply
forwarded to the Controller. This is the normal situation were the operator is in control of the
Voxelprocessor. The incoming keys are checked for the occurence of certain characters,
which have a special meaning. These characters are used to switch the Autopilot from
Inactive- to Active mode and back.

) Active mode. In this case, the program generates keystrokes to control an automatic demo.

All operator keystrokes are blocked, except for certain keys that are used to switch back to
the Inactive mode.

82

ey

TNO report

Page
83

The overall sticture of the Controller running in parallel with the Autopilot is given again in the

following listing :

Listing : 6.15
List of File : 'vox_cntr.tsr'
File Last Modified : 22-11-90

link channel numbers
{{{ channels
CHAN OF ANY from.auto.pilot :

CHAN OF ANY from.tfg, to.tfg :
PLACE to.tfg AT linkoutl :
PLACE from.tfg AT linkinl :

CHAN OF ANY from.net, to.net :
PLACE co.net AT 1linkout2 :
2LACE from.net AT linkin2 :
)

SC T8 auto.pilot

SC T8 control.tsx
-- manual & autopilot control
PAR

auto.pilot (keyboard, fron.auto.pilot)
controller (from.auto.pilot, screen,
from.filer, to.filer, from.ios, to.ios,

-=-- uger interface (tfg)

from.net, to.net, from.tfg, to.tfq)

The following listing (6.16) describes the structure of the Autopilot in more detail. The process is
running in an endless ALT loop, checking incoming keyboard characters for special command
keys. The keys are handled in the "... send user key's OR switch to auto pilot” fold (Listing 6.17).
The Autopilot will switch to Active mode if the F9 key is detected. The mode is represented by
the BOO LSAN variable autopilot.on. Depending on this mode, normal keystrokes will either be
forwarded or blocked. The F10 key will switch the Autopilot back to inactive mode. Since the
Autopilot is running in para’lel with the Controller, it is necessary to explicitly stop the Autopilot
if the user wishes to quit the application. This is possible by using the ‘@' key. The second branch
of the ALT construct, the "... run autopilot" fold (Listing 6.18), will only run when the Autopilot
is in its active mode. Depending on the Voxelprocessor configuration (represented by DX, DY
etc.) a different demo is shown. As may be seen from the "... ct scan" fold (Listing 6.19), the

e e st st i

e A o —————]

'
e o

TNO report

Page

actual demo is broken up into sections, known as demo.steps. The purpose of these steps is to

enable the operator to stop the demo. The keyboard channel is checked for input after each step. A !
demo.step consists of sending a sequence of keystrokes to the controller, seperated by time

delays. At the end of a demo.step, the demo.step counter is either incremented to show the next

step, or it is set back to an earlier value when the last stage has been reached (thus generating an

endless loop).

Listing : 6.16
List of File : "autpilot.tsr”
File Last Modified : 22-11-90

PROC auto.pilot (CHAN OF INT keyboard,
CHAN OF ANY from.auto.pilot)
#USE
.. Function key definitions
Other keys
... declarations
SEQ
running := TRUE
auto.pilot.on := FALSE
WHILE running
INT ch
PRI ALT
keyboard 7 ch
send user key's OR switch to auto pilot
auto.pilot.on & SKIP
run on auto pilot

Listing : 6.17
List of Fold : "... send user key's OR switch to auto pilot"

IF
ch = (INT '@')
... quit
ch = F9
start auto-pilot (Full Demo) '
ch = F10
step auto-pilot
auto.pilot.on
SKIP -~ eat key
TRUE =-- auto-pilot is inactive
from.auto.pilot ! ch

R iadinses SRR

e — o A

[P ———

— e s

TNO report

Listing : 6.18

List of Fold : "... run on auto pilot"

PROC's to send keystrokes
PROC's to delay a while
IF
(DX = 128) AND (DZ = 128)
ct scan demo (128* 128 * 128)
(DX = 256) AND (D2 = 32)
ic scan demo (256 * 256 * 32)
TRUE
auto.pilot.on := FALSE

Listing 6.19
List nf Fold : "... ct scan demo (128 * 128 *128)"

-- break up the demo into steps,
-- this way the usexr can stop at each step.
IF
demo.step = 0
show menu's
demo.step = 1
load image file
demo.step = 2
frame grabber demo
demo.step = 3
load voxel cobject
demo.step = 4
... rotate data set
demo.step = 5
interactive rotation
demo.stepr = 6
... more interactive rotation
democ.step = 7
... and more interactive rotation
demo.step = 8
... change rendering mode & loop to demo.step 4
TRUE
SKIP

Page
85

——rn—

e w sy o ———— vy —— ¥

e ot oo

et 3 A

|

- o —— ¢ P

i
4
““ TNO report
j

Page

The present implementation of the Autopilot can casily be added to or removed from any
keyboard driven application. The Autopilot program has also been used in several of our
Computer Graphics applications. The main disadvantage of this implementation is that all
keyboard strokes (i.e. the sequence of automaticallv executed commands) are hardcoded in the
program. This implies that every change in the demo needs a re-compilation. A better option
would be to read the keys (i.e. commands) from a file. The file could be based on ASCI
characters written with an editor or alternatively, tb¢ file could be generated by a logging action
during normal operation. This would provide a form of 'script’ file. Presently, there is no need for

these improvements, but it will be considered for a future version.

6.3 The Subcube Nodes

6.3.1 The SC Node

Listing 6.20 shows the structure of the code running on all PE's. The four channels have the

following functions :

-) distr.in:
Input of commands and data by the 'distributer' from either the Controller (only for the PE
connected directly to the Controller) or from the previous PE in the pipeline.

-) distr.to.next :
The commands and data are forwarded by the 'distributer’ via this channel to the next PE in
the pipeline.

-) next.to.merger:
Data, messages or quit tags from the next PE in the pipeline are received via this channel.
The channel is internally connected to the ‘merger’ process.

-) merger.out :
Data (i.e. merger results), messages and quit tags from this PE are send to the previous PE in
the pipeline. The final destination of this data is the 'Controller’.

86

o s s g

FR R S_._.n}

e o e i v

P

D e

TNO report

Page

There are three processes running in parallel inside each PE : the 'distributer’, the 'merger’ and the
'subprocessor’ (Fig. 5.3). The first two processes are not required for the PE at the end of the
pipeline. The value 'LAST' is used to accomplish these different structures; ‘LAST' is derived
from the ' NODE.NR'. The 'NODE.NR ' is an identification, this value is used for example to select
the slices that are to be processed on the PE. The actual code of the processes running in a node is
located in the library ‘voxproc.tst'.

Listing : 6.20
List of File : node.tsr
File Last Modified : 22-11-90

PROC node (VAL INT NODE.NR,
CHAN OF ANY distr.in, distr.to.next,
merger.out, next.to.merger)
{{{ #USE
#USE voxconf
#USE voxproc
I
{{{ VAL's £for processor node
-- Node is last element of pipeline if LAST = TRUE
VAL BOOL IAST 18 LAST.ARRAY [NODE.NR] :
1}

CHAN OF ANY distr.to.proc, proc.to.merger :

IF

LAST
{{{ no distributor or merger needed
sub.processor (NODE.NR, distr.in, merger.out)
11}

TRUE
{({ distributor and merger
PRI PAR

PAR

distributor (NODE.NR, distr.in,
distr.to.proc, distr.to.next)
mexger (NODE.NR, proc.to.merger,
next.to.merger, merger,out)
sub.processor (NODE.NR,
distr.to.proc, proc.to.merger)

b1}

ey

.

e o o s it

TNO report

Page
88

6.3.1.1 Distributer

The following listings will explain in more detail the function of the three processes within the
PE's. Listing 6.21 shows the code of the 'distributer'. This process is continuously reading and
interpreting tags from the distr.in channel.

Listing : 6.21
List of File : distr.tsr
File Last Modified : 22-11-90

PROC distributor { VAL INT NODE.NR,
CHAN OF ANY distr.in, distr.to.proc,
distr.to.next)

#USE
{{{ DEBUG data
VAL ID.string IS "distr " : ~~- 8 BYTES
VAL debug IS TRUE :
VAL debug IS FALSE :

}}}
{{{ VAL's for processor node
-- Absolute number of firat local slice

VAL FIRST.SLICE IS (NODE.NR * SCD2Z)
~- Absolute number of last local slice
VAL LAST.SLICE IS (FIRST.SLICE + SCDzl)

}1}
BOOL running :
SEQ
d.write.string (distr.to.proc, debug, ID.string,
"distr. activated")
running := TRUE
WHILE running --~ Main Loop
BYTE tag :
SEQ
distr.in ? tag
IF
tag = command
transfer command

tag = quit
{{{ quit
running := FALSE
3}

TRUE
{{{ ERROR

e.write.string(distr.to.proc, ID.string,
"ERROR : illegal main tag received")
11}

NS, &

RSO T

o mn e r——— e ——v;

it - ‘1
H

s i et o —

[

TNO report

d.write.string{distr.to.proc, debug, ID.string,
"distr. killed")
{{{ quit
PaRr
{{{ send to next
distr.to.next ! quit
11}
{{{ send to sub.processor
distr.to.proc ! quit
11}
13}

Listing 6.22 shows the code of the "... transfer command' fold. Depending on the received tag
either some sub tags or data is expected. Received commands and data are interpreted and
forwarded to the (local) sub.processor and to the next PE, this is demonstrated for the 'pe.render’
tag. That same structure is repeated for all commands, except for pe.load.slice and pe.send.slice.
Slice data (i.e. voxel data) is uniquely assigned to one PE. When a new slice is transmitted to the
network by the controller, each receiving PE will check wether it should store the slice locally or
forward it. The slice number, together with the NODE.NR, is used to make this decision. This

operation is shown in the “...load.slice’ fold.

Listing : 6.22
List of Fold : transfer command

SEQ
distr.in ? tag
IF
tag = pe.render
{{{ rendexr
VAR rotation parameters
SEQ
{{{ xreceive
distr.in ? render.mode;
transform,vectors;
transform,sizes;
z.cut.value; threshold.value
13}
PAR
{{{ send on to next
distr.to.next ! command; pe.rendex;
render.mode;
transform.vectors;
transform.sizes;
z.cut.value;

ron s ———— ey

| SO, (.‘

!
1 90 !
i
i

TNO report

Page

1

{{{{ send on to sub.processor

distr.to.proc ! command; pe.render; i
render.mode; !
transform.vectors;
transform.sizes;
z.cut.value;
threshold.value

threshold.value } I

}}}
1}
tag = pe.histogram
... histogram
tag = pe.sobel
+.. Sobel
tag = pe.laplace
... pe.laplace
tag = pe.mean

... Mmean
tag = pe.median
... median

tag = pe.grey.transform
... grey.transform
tag = pe.load.slice
{{{ load slice
INT slice.nr :
[SCDX)BYTE slice.line :
SEQ
distr.in ? slice.nr
IF
(slice.nr > LAST.SLICE)
{{{ send on to next
SEQ
--- This can not happen
--- for LAST nodes
distr.to.next ! command;
pe.load.slice;
slice.nxr
SEQ y=0 FOR SCDY
SEQ
distr.in ? slice.line
distr.to.next ! slicz.line

1

TRUE
{{{ send on to sub.processor
SEQ
distr.to.proc ! command;
pe.load.slice;
slice.nx

SEQ y=0 FOR SCDY
SEQ

B P .T

|
|
i
|

TNO report

1

Page
91

distr.in ? slice.line
distr.to.proc ! slice.line i

1} | l
1}
tag = pe.send.slice
... 8end.slice
TRUE
ERROR
6.3.1.2 Sub.processor

Listing 6.23 shows the code of the 'sub.processor'. This process is also continuously reading and
mterpreting tags from its input channel. Depending on the received tag either some sub tags or
data is expected and processed accordingly.

Listing : 6.23
List of File : pe.tsr
File Last Modified : 22-11-90

PROC sub.processor (VAL INT NODE.NR,
CHAN OF ANY sub.processor.in,

sub.processor.out)
.+« #USE
... transf.tsr -~ procedures to perform rendering
DEBUG data
VAL's for processor node

... VAR's
{{{ PROC's
... PROC mean ()
... PROC median ()
.+. PROC laplace ()
... PROC sobel ()

.. PROC histogram ()
... PROC grey.transform ()

.». PROC subimage.init () -- clear resulting image array
«». PROC voxel.limit () ~- limit voxel index to local range
11}
SEQ .
d.write.string(sub.processor.out, debug, 1D.string, "pe activated")

.. init
running := TRUE
WHILE running

BYTE tag :

SEQ

sub.processor.in ? tag

TNO report

Page

IF
tag = command
process command
tag = message
message
tag = quit
running := FALSE
TRUE
ERROR

d.write.string(sub.processor.out, debug, ID.string, "pe killed")

{{{ quit
sub,.processor.out ! quit
1

The "... process command’ fold is the most important part of the previous listing. All rendering and
image processing operations are identified and activated from within this fold, which is shown in
listing 6.24. The response to a histogram command is given as an example :

-} receive more parameters, e.g. 'threshold'.

-) convert the global indices for the volume-of-interest (running from [0..DZ> for the z index)
to local indices (running from [0..SCDZ>). This implies that a PE remains inactive whenever
the global indices fall outside the range assigned to this specific PE. The described operation
is performed by the 'PROC voxel.limit'. The limits for the local ranges are derived from the
NODE.NR.

-} compute the histogram (or any other selected function).

<) transmit the (partial) result to the 'merger'.

The other functions, like the image processing operations, are not discussed any further here.

They are straightforward implementations of well known algorithms.

92

\
o s o4 gt —

TNO report

Listing : 6.24

List of Fold : process command

SEQ

sub.processor.in ? tag

IF

1}

tag = pe.render

render view on voxels

tag = pe.histogram

!
SEQ

histogram

{{{ receive

sub.processor.in ? transform.sizes; threshold.value

h

{{{ initialisations
voxel.limit ()

13}

{{{ process
histogram ()

1})

{{{ send result

sub.processox.out

11}

)
tag =
{{{
SEQ

pe.sobel
sobel

sobel ()
subimage.init ()

1}
tag =

taé.-
tag =
tag =
tag =
tag

TRUE

pe.laplace
laplace

pe.mean
mean

pe.median
median

pe.grey.transform
grey.transform

pe.load.slice
load slice

pe.send.slice
send slice

ERROR

! command; merge.histogram;
sub.histogram.data

Page
93

P e T

|
|

—t

|
|
;
i

et ———

TNO report

i

Page

The fold '... render view on voxels' performs the actual voxel visualisation process. It is the most
important part of the visualisation software and it will be discussed in some detail now (listing

6.25).

2
SR

The actual transformation from object-space to display space is performed with fixed-point
REALS. These fixed-point numbers are represented with 32 bit INT's (16 bit integer, 16 bit
fraction). The computed transformed normal vectors (REAL32) are converted to this new format.
The advantage of this format is that the computed coordinate can easily be used as an integer
index into the resulting subcube images by taking the upper 16 bits.

The transformation process must traverse the local voxel data in a 'back-to-front’ ordering, i.e. the
voxel that has the largest distance to the observer after the transformation is processed first. For
the x-axis (and the other two axis also) this ordering is implemented by accessing the voxel data
from [0..SCDX> or from <SCDX..0]. The voxel traversing routine will use a 'starting value'
(idx.start.x) and an 'index step' (idx.step.x). The normal or inversed index steps ('1' or 1) are
matched by normal or inverted unit.steps for all axes, The choice of the step direction depends
directly on the sign of the transformed unit vector's z-component, since this component indicates
the direction from which the view on the voxei data is to be computed.

The computed transformed voxel coordinates are used for direct access of the resulting image (see
Fig. 2.6). In order to achieve that the center of the transformed voxel data is at the center of the
resulting image, it is sufficient to select an appropiate starting value (start.x, start.y, start.z) for the
incremental coordinates. These starting values are also corrected for the offset of the local voxei
data set within the projection screen.

The actual visualisation process can start when the mentioned initialisations have been made. A
different algorithm is selected depending on the render mode. The render algorithms are largely
equivalent, but have been coded seperately to achieve a maximum performance.

-

e o S—

TNO report

Page
95

Listing : 6.25

List Of Fold : render view on voxels

... VAR's
... PROC send ()} -- send subcube image to merger
SEQ

{{{ receive
sub.processor.in ? render.mode;
trinsform.vectors; transform.sizes;
z.cut.value; threshold.value
11}
{{{ initialisations
... voxel.limit ()
{{{ x direction & start.coordinates & unit.step.x
-~ initialise loop variables (voxel indices) and unit
-- vectors to provide a 'back-to-front' transform order
IF
(unit.step.xz >= 0.0 (REAL32))
{{{ step forward through voxel data in x direction
REAL32 start.coordinate :
SEQ
forward.x := TRUE
{{{ 4idx.start & idx.end & idx.run
-- ok
1}
{{{ 4idx.step
idx.step.x := 1
11}
{{{ set start.x, start.y and start.z
start.coordinate :=
REAL32 ROUND (voxel.start.x - H.DX)
start.x.r := start.coordinate * unit.step.xx
start.y.r := start.coordinate * unit.step.xy
start.z.r := start.coordinate * unit.step.xz
13}
{{{ unit.vector.x
-=-- ok
11}

1)
TRUE

{{{ step backwards through voxel data

INT temp :

REAL32 start.coordinatu :

SEQ
forward.x := FALSE
{{{ swap idx.start & idx.end
temp ;= jidx.start.x
idx.start.x := idx.end.x
idx.end.x := temp

v — o R ——

v

b TNO report

1}

}

Page

11
{{{ invert idx.step
idx.step.x := -1
11}
{{{ set start.x, start.y and start.z
start.coordinate :=

REAL32 ROUND (voxel.end.x - 19.DX)
start.x.xr := start.coordinate * unit.step.xx
start.y.r := start.coordinate * unit.step.xy
start.z.r := start.coordinate * unit.step.xz
1}
{{{ dinvert unit.vector.x
unit.step.xx := -unit.step.xx
unit.step.xy = -unit.step.xy
unit.step.xz := -unit.step.xz
)
3

y direction & start.cooxdinates & unit.step.y

z direction & start.coordinates & unit.step.z

adapt start.coordinates to result.image cooxd.system
convert transform values tc fixed.point REAL
start.coordinates

unit.vector.x

unit.vector.y

unit.vector.z

--=- f£lip z.cut.value

z.cut.value := (ID - 1) - z.cut.value
~~~ gscaled to fixed-point value
z.cut.i := z,cut.value * scaler

3}
188!
IF

process voxel data

render.mode = VIEW

.. Vview

render.mode = INTEGRATE

.. integrate

render.mode = LAYER

.. layer

render.mode = Z,SHADE

.. 2z shade

TRUE
... ERROR
1))
{{{ subimage initialisation

subimage.init ()

123
1}

[ T, T

B U -n’

o Sa———————




- o e ———a e . -~ - - —a«-—-';u\m-,-«uur

. o TNO report

Page
97

[NOUSIERIp SRR Y

The render algorithm for the 'front view' mode is presented in listing 6.26. The other rendering

P

modes differ only at the deepest level, where the actual subimage value is computed. Only this
part will be described explicitly for the other modes.
The basic rendering algorithm consists of three nested 'loops’ that traverse the voxel data set along

the z-, y-, and x-axes. For each step the transformed coordinaie (xxi, xyi, xzi) is computed in an
incremental way. The index values used to access the voxel data (idx.x, idx.y and idx.z) are also
updated for everv new step. The ‘back-to-front' ordering has been provided by the values of the
index steps (idx.step.x, idx.step.y, idx.step.z) and the transformed unit vectors (unit.step.xxi etc.).
The idx.run.x, idx.run.y and idx.run.z values are used to restrict the number of processed voxel to
the volume-of-irterest. Abbreviations are used whenever possible te provide a more efficient
access to the voxel data. One of these measures involves the use of four neighbouring voxels as
one INT32 variable ('dummy'). These four voxels are tested for '0' and if TRUE, a jump of four
voxels is made in the x direction. If one or more voxels are not zero, all of them will be
individualy processed. This processing must be executed in the right back-to-front order,
indicated by the pre-computed BOOL 'forward.x'.

Listing : 6.26
Liat of Fold : 'view'

SEQ
IF
z.cut.value = ID1
NO z.cut needed
TRUE
{{{ with z.cut
SEQ

{{{ dinit idx.z

idx.z = idx.start.z

1}

{{{ init zx, zy, zz

zxi := start.xi

zyi := start.yi

zzi := gtart.zi

h . i

SEQ z.count=(0 FOR idx.run.z !
{{{ abbreviations
subcube.data.slice IS subcube.data [idx.z]) :
1}
SEQ

{{{ Ainit idx.y
idx.y := idx.start.y



o it RO ..T

H 4 - TNO report |
- | ,
' i
i Page l [
9% %
]
1 ! 1 ; l
; {{{ init yx, yy, yz
yxi := zxi ,
yyi := zyi
N yzi := zzi
11} !
{{{ SEQ y.count ;
b SEQ y.count=0 FOR idx.run.y
{{{ abbreviations
short IS subcube.data.slice [idx.y] :
{SCDX >> 2]INT short.i RETYPES short :
11}
SEQ
{{{ init idx.x
idx.x := idx.start.x
11}
{{{ init xx, xy, :.
xxi = yxi
xyl := yyi
\ xzi = yzi
11}

{{{ SEQ x.count
. xxi.16, xyi.l16 RETYPES

{{{ durmy

' y INT dummy :
[4)BYTE dummy.byte RETYPES dummy :
dummy .0 1S dummy.byte[0]
durmmy. 1 IS dummy.byte{l] :
dummy . 2 IS dummy.byte([2] :
durmy. 3 IS dummy.byte[3] :
1}

gsubcube.image IS subcube.image
SEQ x.count=0 FOR idx.run.x
SEQ
dummy := short.i [idx.x]
{{{ increment idx.x
ddx.x := idx.x + idx.step.x

}1}
IF
dureny = 0
{{{ skip 4 bytes
SEQ
{{{ increment xx, xy, xz
xxi = xxi + unit.step.4.xxi \
xyli = xyi + unit,.step.4.xyi |
xzi = xzi + unit.step.4.xzi :
11}
3}
forward.x
{{{ process data forward
SEQ




e TNO report

A bt T o e

Page

«.. dummy.0
.. dummy.l
«e. dummy.2

dummy . 3

{{{ increment xx, Xy, Xz

xxi := xxi + unit.step.xxi
xyi := xyi + unit.step.xyi
xzi := xzi + unit.step.xzi

1

3}
TRUE

{{{ process data backward
SEQ

«s. dummy.3

«+. dummy.2

«v. Cummy.l

dummy . 0

... increment xx, Xy, Xz

11}

11}

{{{ increment idx.y
idx.y := idx.y + idx.step.y
11}
{{{ dincrement yx, vy, ¥z
yxi := yxi + unit.step.yxi
yyi := yyi + unit.step.yyi
yzi := yzi + unit.step.yzi
1}

}}}

{{{ increment idx.z

idx.z := idx.z + idx.step.z

11}

{{{ increment zx, 2y, zz

zxi := zxi + unit.step.zxi

zyi := zyi + unit.step.zyi

zzi = zzi + unit.step.zzi

11}
}}}
{{{ send result
send ()
1))
1)}

Finally the actual processing per voxel (for all implemented rendering modes) is described in
listing 6.27. A new value is computed for the subcube.image result, following a check of the.
voxel value and the z-distance. The indices into the subcube.image are the integer parts of the
transformed fixed-point voxel coordinates (xy.i and xx.i).

(R N ur

!
!




e

TNO report

Listing 6.27

{{{ process voxel [idx.z]{idx.y][idx.x]
IF

Page
100

--- VIEW

(dummy.0 > threshold.value) AND (xzi < z.cut.i)
subcube.image [INT xyi.16.1] [INT xxi.16.1) := dummy.0

TRUE
SKIP
h

{{{ process voxel [idx.z][idx.y]{idx.x]
IF

-= INTEGRATE

(dummy.0 > threshold.value) AND (xzi < z.cut.i)
density IS subcube.image [INT xyi.16.1)[INT xxi.16.1] :

IF
(density < 255 (BYTE))

density := BYTE ((INT density) + 1)

TRUE
density := 255 (BYTE)
TRUE
SKIP
)

{1 process voxel [idx.z)[idx.y]{[idx.x]
17

-= LAYER

(du my.N > threshold.value) AND (xzi < z.cut.i)
sucube.image [INT xyi.16.1) [INT xxi.16.,1]) ;=

ayer.value
FE VA
$ KIP
}})

{{{ process voxel [idx.z)[idx.y][idx.x)
IF

-= 7 SHADE

(dummy.0 > threshold.value) AND (xzi < z.cut.i)
subcube.image [INT xyi.16.1) [INT xxi.16.1] :=

BYTE ((INT xzi.1l6.1) >> 1)
TRUE
SKIP

1}

= ———

B e

L A, AR



A amn 8

el e e

TNO report

6.3.1.3 Merger

Page
101

The third and last process within a PE is the 'merger’. This module will combine partial results

from the local sub.processor with partial results from the next PE in the pipeline and trac .

-he

merged result to the previous PE (eventually arriving at the Controller). A second function of the

merger is to simply forward data and messages from other processes towards the Controller. This
structure is indicated by the two input channels (in.0' and 'in.1") and the one output channel (out").
The two, basically identical, channels are handled by an ALT contruct, since it is not determined
which input will receive data first. The merging process is executed by the 'PROC respond (),

enabeling tke use of only one piece of code for both inputs.

A BOOL parameter is used to inform this procedure which channel received input first. This input

must be a 'tag', that is also supplied as a parameter.

Listing : 6.28
List of File : merger.tsr
File Last Modified : 22-11-90

PROC mexger (VAL INT NODE.NR,
CHAN OF ANY in.0,

in.l, out)

--- Subcube result with lowest slice nr.

--- is expected via in.0

«.. #USE

... DEBUG data

... VAL's for processor node
... declarations

... PROC respond ()

SEQ

d.write.string{out, debug,

ID.string,

"mergexr activated" )

{{{ init
nr.otr.quits := 0
running := TRUE
1}
WHILE running
BYTE tag :
ALT
in.0 ? tag
--- result slices in
respond (in.0, in.l,
in.1l ? tag
--- result slices in
respond (in.1l, in.oQ,

d.write.string(out, debug,
out ! quit

normal.order
out, TRUE, tag)

inverse.oxder
out, FALSE, tag)

ID.string, "merger killed" )

nw'z,m Yot gl

PSRN

ey

S ——— A ——r——



————— e

-

we———— s b —— O o orn e e

s TNO report

Page
102

When PROC respond () is invoked, it will interpret the tag that arrived on its input.0. If this tag
indicates the arrival of a message or data, then the expected packet will be received and forwarded
towards the Controller. Channel 'input.1’ will not be considered in this case. Listing 6.29 sitows
this case for 'slice.data’ If however the tag indicates a 'merge command', then data from channel
‘input.0’ wili be merged with data from ‘input.1’ (see listing 6.30, the fold ... merge image’).

Two cases are distinguished :

-)

For the view, layer and z-shade modes, a partial result will completely obscure another
partial result depending on the priority. Input.0 is always given the highest priority. This
means that data arriving on input.0 normally obscures data coming in from the other
channel. The merging priority is however also depending on the view direction onto the
voxel data. This factor is presented via the BOOL variable 'forward.merge’. The merging
order (i.e. the obscuration direction) is a function of this BOOL and of the input channel
priority. The obscuration function is implemented efficiently via the 'Block move'
instructions of the Transputer : one image will simply overwrite the other for all pixels that
are non-zero.

Partial results must bs added up for the 'integrate’ mode and for histogram computation, In
this case priority is not important. The merging can not use ‘block moves', but must apply
basic additions per entry. Some performance improvement is achieved via writing out loop

code.

The result of the merging operation will be transmitted towards the Controller on chanmnel 'output',
As mentioned, this data may first pass other PE's for more merging operations. It is therefore
necessary to include some merging parameters in the transmitted data (e.g. render mode and

priority).

Listing 6.29
List of Fold : respond ()

PROC respond (CHAN OF ANY input.0, input.l, output,

VAL BOOL normal.oxder,
VAL BYTE tagq)

--- This PROC will process a tag received via input.0
--- For the mexging operation, the normal.order is :
—~— subcube result of lower slices enters on input.d
~—— subcube result of higher slices enters on input.1

IF

tag = command
{{{ process merge command

it g

bt iy n.,;T

B .



TNO report

el e VS, b 4

R I

BYTE tag :
SEQ
input.0 ? tag
IF
tag = merge.image
... merge image
tag = merge.histogram
... merge histogram
TRUE
... ERROR
1}
tag = data
{{{ process data
BYTE tag
SEQ
input.0 ? tag
IF
tag = slice.data
... receive and forward slice
TRUE
«es ERROR
11}
tag = message
' ... message

tag = quit
{{{ quit
SEQ

nr.of.quits := nr.of.quits + 1
running := NOT (nr.of.quits = 2)
11}
TRUE
..+ ERROR

Listing : 6.30
List of Fold : merge image

... declarations
SEQ
-~-= synchronise inputs, input.0 has
--- already received two tags
PAR
input.0 ? render.mode,0; forward.merge.O
input.l ? dummy.tag; dummy.tag;
render.mode.l; forward.merge.l

-~-- receive & merge results
SEQ
output ! command; merge.image;
render.mode.0; forward.mexge.0

e

PR R S v o 5 &

g

103

4wk u\wtﬁ’&.\‘ - e




Page
104

-~~~ The merger needs the merge.oxder and
--- the slice.oxder
IF
(forward.merge.0 AND normal.oxrdexr) OR
((NOT forward.merge.0) AND
{NOT normal.order))
result.l obscures result.0

TROE
result.0 obscures result.l

6.4 The Graphics System

The Framegrabbber software provides access to a video-memory of 512*1024 Bytes. Data written
in this memory is directly displayed on a monitor, using a color look-up table for the conversion
into RGB values. Alternatively, the video memory can be filled by digitizing an analogue video
input signal (c.g. from a camera), This digitized data can be accessed by the software and may be
used for further processing. Given the fact that the framegrabber software plays only a supporting
role in the voxel processor, it will not be discussed in great detail here, Only the general structure
will be explained.

Listing 6.31 shows the main part of the framegrabber code. First some initialisations are

performed :

-)  The timing of the video controller hardware is set to CCIR values and the generation of an
image is enabled. As a result of the CCIR norm, only a 512*760 section of the total video-
memory will be visible on the screen. These procedures are rather ‘close' to the TFG
hardware and are largely based on manufacturer software.

-)  The contents of the color look-up tables is initialised. This data may be overwritten later
under command of the Controller.

-)  The video-memory contents is cleared, resulting in a blanked screen,

After initialisiog the hardware the two main modules, running in paralle], are activated :

-)  The PROC framegrabber ()

This procedure, provided by the board manufacturer, may be accessed across the channel
‘grab'. Sending commands over this channel enables or disables the acquisition of digitized
images. The framegrabber will either continuously display the input data or 'freeze’ the last
frame. The video memory is not available for software accesses (¢.g. to load a new image) if
the framegrabber is active, this is indicated by the BOOL 'display.available'.

T

M et e 54 o s .

ii



TNO report

P T PPN
P e e

ﬁgw'/muﬂm—'

Page
105

-)  The'... command interpreter' fold
The program is running in an endless loop within this fold, waiting for new commands from
the Controller. Commands may trigger a framegrabbing action or may act upon the video-
memory directly (e.g. to draw a line).

Listing : 6.31
List of File : tfg.tsr
File last Modified : 22-11-90

PROC tfg.graph (CHAN OF ANY tfg.in, tfg.out, net.loader)
... DEBUG data
... #USE
... declarations
.+. procedures
SEQ
d.write.string(tfg.out, debug, ID.string,
"grabber is activated" )
«+. init tfg
PRI PAR
frame.grabber ( grab )
command interpreter

d.write.string(t£fg.out, debug, ID.string,
"grabber killed" )

tfg.out ! quit

.

The told '... command interpreter’ is shown in more detail ir. _isting € 32, It's main purpose is to

receive and execute the tfg commands that were explained before. Most of these commands

involve very straighforward access to the video-memory, for example :

-)  copying a received image to the memory, resu'ting in the display of that image (or slice)

<)  sending (part of) the video-memory coritents to the Contoller for further processing, used to
grab new voxel slices.

~) filling an area of the memory with a constant value, to clear or initialise the screen

Some functions require additional processing like drawing a line between two coordinates. These

functions are well known graphics operations (e.g. the Bresenham algorithm) and a.e not

explained here.

ok e A A ko AN R R s ¥ N

P

A tioren, M~.T

e e S poaproo—




Suras

B

— — - "

TNO report

Page
106

Other operations are :

-)  draw apolygon

-y draw acircle

-)  draw a character from a bitmap table

-)  fill an area enclosed by a polygon with a color

-)  draw atest screen or display a company logo

-)  convert an array of data into a plot of this data on the screen, ¢.g. a histogr.

The remaining operations are used to access the color look-up tables by changing a single entry or

loading a completely new contents.

Listing : 6.32
List of Fold : command interpreter

{{{ command interpreter
declarations
SEQ
running := TRUE
~-- Wait until SC frame.grabber is initialized
display.available := FALSE
WHILE running
BYTE tag :
SEQ
tfg.in ? tag
IF
tag = command
.+« process command

tag = quit
.. quit
TRUE
++ ERROR

1}

1

i o 3t e - o ‘-.T

oo

t

|

’

|
§




TNO report

sy

_lw
|

Page
107

6.5 The network configuration

Listing 6.33 gives an overview of the network configuration file. There are three types of

programs running in the network nodes :

-)  The code for the framegrabber/display unit ‘

-} The code for a subprocessor node

)  The code for the subprocessor that is directly connected to the EXE controller. This code is
internally identical to a normal subprocessor node, but is has a separate dummy channel
(‘net.Joader') to provide a connection with the framegrabber node. This channel is necessary
to provide a boot path for the Transputer Development system from the framegrabber to the
Subprocessors.

The listing shows a very straightforward implementation of a pipeline with 16 subprocessors

(shown in Fig. 5.1), connected by two pairs of channels (command.pipe and merge.pipe). The

number of processors is a constant that can easily be changed. This does however require a

change in the libraries and a recompilation of the SC's also.

Listing : 6.33
Li:t of File : vox_net.tsr
File Jast Modified ; 22-11-90

{{{ PROGRAM vox net.tsr

SC T8 tfg.tsr --- Framzgrabber /Display
+e» SC T8 node.tsr -~=- Sub Processor Node
... SC T8 exenode.tsr ~=-- Sub Processcr Node

--- connected to EXE
... link channel numbers
{{{ channels
CHAN OF ANY tfg.in, tfg.out, net.loader :
CHAN OF ANY to.net, from.net :
[20]CHAN OF ANY command.pipe, merge.pipe :
11}

PLACED PAR
VAL node.nr IS 0 :
PROCESSOR node.nr T8 {

{{{ node 0 i
PLACE to.net AT linkinO : !
PLACE from.net AT linkout0 :

PLACE command.pipe [node.nx] AT linkout2 :
PLACE merge.pipe [node.nx] AT linkin2 :
PLACE net.loader AT linkoutl :

e e T e .




wn et S - o
- - s B gt

TNO repont

Page
108

exe.node (node.nr, to.net, command.pipe [node.ntr],
from.net, mexrge.pipe [node.nx],
net .loader )

13}

PLACED PAR node.nx = 1 FOR 15
PROCESSOR node.nr T8

{{{ node nr

PLACE command.pipe {node.nr-1] AT linkin0 =

PLACE merge.pipe {node.nx~1] AT linkout0

PLACE command.pipe [node.nx] AT linkout2

PLACE merge.pipe [node.nr) AT linkin2

node (node.nr, command.pipe [node.nr-1},
command.pipe [node.nx],
nmerge.pipe {node.nzr-1],
merge.pipe {node.nr) )

o o o=

11}

PROCESSOR 100 T8
{{{ tfg
PLACE tfg.in AT linkin0
PLACE tfg.out AT linkout0
PLACE net.loader AT linkin2 :
tfg.graph (tfg.in, tfg.out, net.loader)

Y

PO oo ———— =

W«Msn—/ﬂvft

L e o o o A

N ve—————— e A

- s ot A a——




TNO report

7 PERFORMANCE

Typical rendering speeds on a 16 Transputer system are 1 sec. for 2 Mbyte (128*128*128) voxel-
images. In the table below a comparison is made for different typss of operations and different
numbers of processors (timing in seconds).

Nodes 2 4 8 16

view 37 24 14 09
integrate 42 27 16 10
layer 36 23 13 09
shade 45 28 1.6 1.0
mean 319 165 94 59
median 95.7 525 283 155
edges 650 332 173 88
convolution 1038 526 270 170
histogram 28 15 10 05

The visualization operations have a communication overhead for the transmission of the resulting
images to the controller of about 0.3 sec. This overhead is constant for any number of processors,
so it explains the non-linear performance increase from 2 to 16 processors. It is obvious that a
further increase in the number of processors would not be very useful for the given problem size :
there should always be a good balance between communication- and computational demand. The
voxel processor system could however achieve the same speed (about 1 sec. per image) on much
larger data sizes using more Transputers. As stated before, CT images are of a larger size
(typically 512¥512*256) and our system could become a very effective visualization machine for
this type of data also.

The 3D image processing operations would still benefit from adding more Transputers, even for
the given data size, since these problems are still computational bound with 16 processors.
However, for a certain number of processors we would also find a reduced efficiency here.

PP




TNO report

s o n -

P

Some resulting images of the voxel processor are shown here as (screen) photographs ;
a) Integrated Circuit scanned with the CLSM, resolution 256*256*32.
-) Front view, (Photo 7.1)
-) Layer view with z-cut (Photo 7.2)
b) CLSM scan of a biological object (pollen), resolution 256*%256%32.
-) Front view with grey-scale transform to increase visibility (Photo 7.3)
¢) CT scan of a baby head, provided by Philips Medical Systems. Resolution 128*128*128.
-) Front with z-cut (Photo 7.4)
-) Integrate mode with threshold (Photo 7.5)

TNO/ FFL

X 49° ¥y j3ae° 2z .4y C o T O
_SHOSRYSEEE MODY UIEM

Photo 7.1 Front view

v o M——— i




[P e .

SR

TNO report

Photo 7.2 Layer view with z-cut

Photo 7.3 Front view with grey-scale transform to increase visibility

TNO ./ FE],

Page
i




P C—

—

e £ ——r—— bt * o - . .u@-\ww,ur

TNO report

Page
112

TNO/FEL

j

D

o

X

X . 219° y.@g° Z 0° C .1
 EASATELNS MODE

Photo 7.4 Front with z-cut

ct scawn TNO/FEL

z

N

Y x

.
K=270 ° = o P C =9 =88
s s e Mo 22 1nTEGR

Photo 7.5 Integrate mode with threshold

L R A P (YT




——

TNO report

Page

113

FUTURE ACTIVITIES

The CLSM is developed into a commercial product by TRACOR Northern (USA). Researchers in
confocal microscopy and other areas have attended presentations of the voxel processor prototype
and showed an interest in the technology. The development of the prototype into a product will
require a further improvement of rendering algorithms and added functionality :

a)

b)

c)

d

Addition of more 3D image-processing algorithms. An important feature will be the
computer assisted image segmentation (region growing) to select interesting areas in the
voxel-image. This option will need communication between neighbour nodes. Region
growing is a difficult task that has not been generally solved for 2D data. An implementation
on 3D data will require much research.

Implementation of 3D geometrical measurements. For medical- and biological- imaging
geometrical data is very important. Surface computations, distances and volume
measurements have to be applied to the objects in the voxel-space.

Implementation of improved rendering algorithms, including perspective projection and
shaded views.

Increase system performance by further code improvement and architecture optimization.
For larger voxel-data sizes a system with 32 or more Transputers could be used. In this
larger system the architecture will be changed to a tree structure. The advantage of a tree
over a pipeline is the shorter average length of the communication path between the PE's and
the Controller. The tree architecture would not require a large effort to program, since the
basic structure of the software could still be used. Figure 8.1 shows an eight processor
version for the network, with one slice assigned to each node. The Distributer, Subprocessor
and Merger processes of the pipeline version may be used here without change. The
difference lies in the addition of an extra Distributer/Merger pair. Every Distributer will
select which slices must be processed locally and which must be forwarded. The Decision
depends solely on the Node.Nr, as is indicated in Fig. 8.1. The Mergers will combine the
partial results correctly if the provided data is in the right geometrical order.

S Pt o .T

s e b 5 s




TNO report

Page
114

_A'!—'\ :[—'L :m
Distr.in >3 4 5 6T 7
N | -
N { e { e
>0 > 1 > 2
b} N e
Merger.out T
0 1 2 3
(I L e ¢

Fig. 8.1: Tree Architecture with slice distribution scheme

e) In the present system, Transputer links are used for all inter-processor communication. The
link bandwidth of 1.5 MByte/s may become a bottle-neck in a future version, when slice
data has to be exchanged between neighbours, A possible solution would be to use dual-port
memory connected to buses for data transfer between nodes. In this case the links could
supply all necessary synchronization between nodes. It would be preferable if such a data-
exchange bus conforms to an industry standard.

f) Investigate (voxel) data-compression, determine effects on data transport times and
implications on transform algorithms.

g) Feasibility study on stereoscopic display facilities. This option is interesting for several
applicatious in ~iedical- and biological research. Basically the voxel processor would have
to create two iniages of the same object from slighly different angles. Both images would be
presented on a single display to an operator that must wear a special type of spectacles.

h) Integration of the voxel processor with the CLSM (or any other sensor) requires the full
control the scanner operation from within the system.,

st i u..ﬂ..a[

4 L e Mt s o —




TNO report

i)

Page
115

The present version of the voxelprocessor is implemented as a dedicated system, running
code that is only suitable for Transputers. This OCCAM code does supply the highest
possible performance, but it is not easily portable. An option that is worth considering is the
implementation of the software on a system running under the HELIOS Operating System.
HELIOS is a recent development that is quickly becoming an industry standard OS for
Transputers. It provides a UNIX like 'look and feel'. Programming under HELIOS is in 'C’
which has a far higher exceptance level (notably in the USA) than OCCAM. Another
advantage of 'C' is the possibility to integrate existing code from other image processing
packages into the system. HELIOS can use PC's and SUN workstations as a host computer,
An excellent graphics output and a menu controlled user-interface can be provided via calls
to the HELIOS supported X-window library. The graphics output is either directed to a
dedicated Transputer board or to the SUN system. HELIOS also supports fileservers running
on Transputer based hardware (e.g. harddisks, tapestreamers). The use of this hardware
would remove the i/o interface bottleneck to the host computer. The performance loss of
perhaps 50 % over OCCAM code may be well worth paying, considering the advantages of
HELIOS for non real-time applications.

e ——— <

Pommrces s .,v.«--_T

e - e A —




TNO report

Page
116

CONCLUSIONS

The potential of parallel processing for volume rendering applications has been clearly
demonstrated by this project. Transpuiers have proved to be a very powerful tool, both for

research and applications. The development of the system software was greatly simplified by the
clear representation and support of parallelism that OCCAM offers [16]. The following

conclusion can be drawn from the results of this project :

-)

-)

The interactive performance with all the required prototype functionality can be delivered by
a 16 Transputer system.
System scalability is good if the size of the dataset is not to small. In practise, a 1 sec.
response time will be achievable even for large voxel datasets. Higher performance rates at a
lower cost will soon be possible with the new generation of Transputers (T9000 series).
The voxel processor is a high-performance, low-cost and small-sized system. The developed
software is highly modular and easily adaptable.
The prototype is a general putpose software framework for 3D image processing. Image
processing in 3D is however only considered useful in combination with a visualization tool.
Several alternative hardware configurations of the system are possible :

-) Standalone version.

-) System hosted by a PC-AT.

<) Accelerator connected to a (SUN) Workstation.
The hardware is commercially available from several vendors.
Transputers are general purpose processors and the voxel processor hardwar. may also be
used for other (computational intensive) applications. This may require a software
configurable topology which is also commercially available.
The voxel processor system is not limited to CLSM images only, other sources of data are
equally suitable (e.g. CT scans). The system will be brought to the attention of potential
users in these other areas. An important feature of the system is the flexibilty to changes in
resolution, performance and rendering algorithms (very linear cost/performance function). It
will therefore be very well possible to adapt the system to differes: epnlireticu fields.
The development of the prototype into a product will require a further improvement of
rendering algorithms and the addition of more functionality. Any further developments must
be targeted at a specific application.

Ve s o o bt A ra—————_ ..—-4,}

e

o b o BT S




- TNO report

Page
117

10 REFERENCES

{1} A.Draaijer, P.M. Foupt.
A Standard Video-rate Confocal Laser Scanning Reflection and Fluorescence Microscope.
Scanning Vol. 10, 1989.

[2] S.M. Goldwasser and R. A. Reynolds.
Real-Time Display and Manipulation of 3D Medical Objects : The Voxel Processor
Architecture. Computer Vision, Graphics and Image Processing 39. 1-27 (1987).

[3] A.Kaufman and R, Bakalash.
Memory and Processing Architectute for 3-D Voxel-Based Imagery. IEEE Computer
Graphics & Applications. November 1988.

[4] A.C.Tan,R. Richards, A.D. Linney.
3-D Medical Graphics - Using the T800 Transputer. Proceedings of the 8th technical
meeting of the OCCAM User Group. March 1988.

{51 B.Furht.
A Contribution to Classification and Evaluation of Structures for Parallel Computers.
Microprocessing and Microprogramming 25, 1989.

{6) The Transputer Databook. INMOS publication, 1989.

[71 C.A.R.Hoare (Ed).
OCCAM 2 Reference Manual, Prentice Hall, 1988,

[8] W.M. ter Kuile, P. Zandveld, A. Draayer.
Beeldverwerking voor confocaal LASER scan microscoop.
TNO-MT rapport R89/300, September 1989.

[9]1 J.G.Harp, K.J. Palmer, H.C. Webber.
Image Processing on the Reconfigurable Transputer Processor. Proceedings of the 7th
technical meeting of the OCCAM User Group. September 1987,

[10] R.S. Cok.

A medium grained parallel computer for image processing. Proceedings of the 8th technical
meeting of the OCCAM User Group. March 1988,

{11] A. Rosenfeld and A.C. Kak.

Digital Picture Processing. New York, Academic press, 1976,

[12] MTM-2 Multi Transputer Module, Technical documentation, version 1.3. PARSYTEC

GmbH, July 1987.

< e,

e




TNO report

e ——— M ~ stV . 7 N

Page
118

[13] TFG Transputer Frame Grabber, Technical documentation, version 1.1. PARSYTEC GmbH,
June 1988.

[14] TPM-4 Transputer Processor module, Technical documentation, version 1.0. PARSYTEC ‘
GmbH, July 1987.

{15] MULTITOOL 5.0 Manual, PARSYTEC publication, 1989.

(16] W. Huiskamp, P.L.J, van Lieshout et al.
Visualization of 3D Empirical Data : The Voxel Processor. Proceedings of the 10th technical
meeting of the OCCAM User Group. April 1989.

\/\ R
1R

Ir. P.L.J. van Lieshout Ir. W. Huiskamp
(group leader) (author/ project leader)

B e e




an e g

v g hame e s e i S o b A e o . - e s o e = e e m——— e

UNCLASSIFIED

I
REPORT DOCUMENTATION PAGE (MOD-NL)
1. DEFENSE REPORT NUMBER (MOD-NL)2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT
NUMBER
1D91-2620 FEL-91-B166
4.  PROJECT/TASK/WORK UNIT NO. 5. CONTRACT NUMBER 6. REPORT DATE
20449 - JUNE 1991
NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES COVERED
119 (INCL. RDP, 16 FINAL REPORT

EXCL. DISTRIBUTION LIST)

10.

TITLE AND SUBTITLE
VOXEL DATA PROCESSING ON A TRANSPUTER NETWORK

e

1.

AUTHOR(S)
IR, W. HUISKAMP

12.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TNO PHYSICS AND ELECTRONICS LABORATORY, P.O. BOX 96864, 2509 JG THE HAGUE
QOUDE WAALSDORPERWEG 63, THE HAGUE, THE NETHERLANDS

13.

SPONSORING/MONITORING AGENCY NAME(S)
TNO DIVISION OF NATIONAL DEFENSE RESEARCH, THE NETHERLANDS

SUPPLEMENTARY NOTES

4 1a.

5.

ABSTRACT (MAXIMUM 200 WORDS, 1044 POSITIONS)

WITH THE GROWING AVAILABILITY OF 3D SCANNING DEVICES LIKE COMPUTER TOMOGRAPHS (CT) OR CONFOCAL
LASER SCANNING MICROSCOPES (CLSM) THE NEED FOR HIGH PERFORMANCE VOLUME DATA (VOXEL)
PROCESSING AND DISPLAY SYSTEMS INCREASED ENORMOUSLY. THE RECENT DEVELOPMENT OF A FAST CLSM BY
IMW-TNO REQUIRED A VISUALISATION TOOL OF MATCHING PERFORMANCE. FEL-TNO WAS INVOLVED IN THE CLSM
PROJECT BECAUSE OF ITS EXPERTISE IN THE AREA OF FAST VISUALIZATION TECHNIQUES USING PARALLEL
PROCESSING. THE FEL-TNO TASK IN THE PROJECT WAS TO DEVELOP AN EXPERIMENTAL SYSTEM THAT
DEMONSITRATES THE POTENTIAL OF PARALLEL PROCESSING FOR VOLUME RENDERING APPLICATIONS. THIS REPORT
DESCRIBES THE DEVELOPMENT, IMPLEMENTATION AND EVALUATION OF THE PROTOTYPE 3D IMAGE PROCESSING
SYSTEM, TOPICS OF THE REPORT ARE :

- INTRODUCTION ON VOLUME DATA PROCESSING;

- INTRODUCTION ON TRANSPUTERS AND PARALLEL PROCESSING;

- DESIGN OF THE TRANSPUTER BASED VOXEL PROCESSING SYSTEM;

- IMPLEMENTATION OF PARALLEL VOXEL VISUALIZATION;

- IMPLEMENTATION OF PARALLEL IMAGE PROCESSING ALGORITHMS;

- DETAILED DESCRIPTION OF THE SOFTWARE;

- PERFORMANCE EVALUATION AND SCALABILITY

- FUIURE DEVELOPMENTS.
et

16. DESCRIPTORS IDENTIFIERS
PARALLEL PROCESSING, [MAGE GENERATION,
DATA AND DISPLAY SYSTEM AMAGE PROCESSING-

[y YOLUME RENDERING _

S G o Hhms | <K RANspUTERS,

17a. SECURITY CLASSIFICATION 17b. SECURITY CLASSIFICATION 17¢. SECURITY CLASSIFICATION
(OF REPORT) (OF PAGE) (OF ABSTRACT)
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

18. DISTRIBUTION/AVAILABILITY STATEMENT 17d. SECURITY CLASSIFICATION

(OF TITLES)

UNLIMITED AVAILABILITY UNCLASSIFIED

UNCLASSIFIED

N Pt ok o0 1




