
Netherlands TNO Physics and Electronics .
organization for Laboratory
applied scientific m
research P o Box 96864

2509 JG The Hague
Oude Waatsdorperweg 63ITNO-report The Hague, The Netherlands
Fax +31 70 328 09 61
Phone +31 70 326 42 21

report no. copi no.
FEL-91-BI66 8 Voxel Data Processing on a Transputer Network

AD-A245 410

Nothing from this issue may be reproduced ato~)
undor published by print photopnnt, at

microfilm or any other means without
previous written consent from TNOIrW.HikmAl"I- E T
Submitting the reprfr nec on to
parties directly interested is permitted FEB 0 419920
:n cane this report was drafted tinder
nstructiosi, the rights end obligatios

of contracting parties ure subject to either date0
the'Standard Conditions for Research
Instructions given to TNO or the relevant June 1991

agreement coucluded between the contracting
parties en account of the research object
involved TDECK RAPPOflTENCENTRALE
iTNO Frederikkazerne, Geb. 140

van den Burchlaan 31
Telefoon: 070-3166394/6395
Telefax :(31) 070-3166202
Postbus 90701 TC
2509 LS Den Haag r~r

foriginal contains color3
pilates; All. DTIO roproduct- classiflcation
ions vill be Iii bla3ck and bugl unclassified

vht*abstract unclassified

report text :unclassified

92 2 01 160
no. of copies :30

____________________no. of pages : 1l8(excl. RDP& d~ribution lst)
Ths document ha3 been approved
fol: putbic reka3e and sale; its appendices -

disttsibu~tiosi is unlimited.

All Information which Is classfied accoring to
Dutch regulations shall be treated by the recipient In92-028 18 the same way as classified infornmion of
corresponding value In his own country. No part of11111 lII II I~I II II I) II~this Irdoratlon will be dsciosed to any party.

TNOreport

Page
2

report no. : FEL-91-B-166

title Voxel Data Processing on a Transputer Network

author(s) : Ir. W. Huiskamp

Institute TNO Physics and Electronics Laboratory

date : June 1991

NDRO no.

no. In pow '91 708

Research supervised by:, Ir. P.L.J. van Lieshout

Research carried out by: Ir. W. Huiskamp

ABSTRACT (UNCLASSIFIED)

With the growing availability of 3D scanning devices like Computer Tomographs (CT) or Confocal Laser

Scanning Microscopes (CLSM) the need for high performance volume data (voxel) processing and display

systems increased enormously. The recent development of a fast CLSM by IMW-TNO required a

visualisation tool of matching performance. FEL.TNO was involv in the CLSM project because of its

expertise in the area of fast visualization techniques using parallel processing. The FEL-TNO task in the

project was to develop an experimental system that demonstrates the potential of parallel processing for

volume rendering applications. This report describes the development, implementation and evaluation of the

prototype 3D image processing system. ics of the report are:

- introduction on volume data processing;

introduction on Transputers and parallel proces g; Accesion For

. design of the Transputer based voxel processin system; NTIS CRA& -
DTIC 1AR C.implementation of parallel voxel visualization- Unannou;.d

implementation of parallel image processin algorithms; Juslitication.........'

- detailed description of the software; /By
- performance evaluation and scalability Dit ibition !

- future developments. Avay(... ,
Avii, v ,C (0,

Dis

TNO report

Page

3

rapport no. FEL-91-B-166 *
t Voxel Data Processing on a Transputer Network

auteur(s) Ir. W. Huiskanp,
Instituut Fysisch en Elektronisch Laboratorium INO

datum junil1991

hdo-opdr.no.

no. In Iwp'91 708

Onderzoek ultgevoerd oilv. Ir. P.L.J. van Lieshout

Onderzoek ultgevoerd door It. W. Huiskamp

SAMBNVATrING (ONGERUBRICEERD)

Nu bet aantal beschikbare scanners voor volume data (voxels) toeneemt is oak de behoefte aan krachtige

verwerkings- en visualisatie systemen voor dit type data sterk gestegen. Voorbeelden van 3D scanners zijn

Computer Tomografen (CT) en Confocaal Laser Scanning Micros-,open (CLSM). De recente ontwikkeling

van cen snelle CLSM door bet IMfW-TNO instituut maakte een interactief visualisatie systeem. noodzakelijk.

FEL-TNQ heeft een experimenteel systeem. ontworpen waarmee de mogelijkheden van parallelle verwerking
voor volume visualisatie warden aangetoond. De bij FEL-TNO sanwezige ervaring op, bet gebied van

U parallelle visuallsatie technieken was de, reden voor de samenwerking met IMW-TNO in bet CLSM project.
Dit rapport beschrijft de ontwikkeling, implementatie en evaluatie van bet prototype. De volgende
onderwe.rpen komen aan de orde:

-) inleiding volume data ve-werking;

-) inleiding Transputers en parallel processing;

-) ontwerp van cen voxel processing systeem met Transputers;

-) implementatie van parallelle voxel visualisatie;

-) implemnentatie van parallelle beeidverwerking;

-) gedetailleerde software beschrijving;

-) verwerkingssnelheid en schaalbaarheid;,
-) verdere ontwikkeling.

TNO report

4 II I

Page
4

INTRODUCTION AN] EXECUTIVE SUMMARY

In this report the development, evaluation and implementation of an experimental parallel

processing system for the processing of three dimensional datasets (voxel-images) is described.

This type of system has applications in many areas:

-) Biomedical research for diagnostic purposes, surgery simulation, radiotherapy planning or

anatomy study.

-) Materials research of geological samples or integrated circuits.

-) Computer vision, where RADAR or LASER range scanners record 3D data that is used for

object recognition.

Chapter 1 gives an introduction on the subject of volume rendering and its applications. Sensors

that provide suitable volume data are for example Computer Tomographs (CT), Confocal LASER
Scanning Microscopes (CLSM) and LASER range finders. The drawback of voxel data rendering

is that traditional computer systems need minutes or hours of processing time to compute a new

image. The recent development of a fast CLSM by IMW-TNO required a visualisation tool of

matching performance. FEL-TNO was involved in the CLSM project because of its expertise in
the area of fast visualization employing parallel processing techniques. A list of the defined
system requirements is given in the final paragraph of the first chapter. The main requirement is
,-, interactive rendering performance (i.e. a result within 1 sec.) for a voxel dataset of 2

Meg -Byte

Chapt..r 2 describes the basic mathematical operations that must be performed to render a view on
'a - !ume data from an arbitrary angle. The algorithms that are used to implement the different

renc. ring options (e.g. front view, integration) are included also.

Chap *r 3 gives an introduction on the terminology used in the field of parallel processing. The
main features that make the Transputer a suitable node for parallel processing are discussed. The
final paragraph presents possibilities to implement a parallel version of the voxel rendering

algorithm. The choice for a distribution of voxel data slices accross the processor network is

explained.

Chapter 4 discusses the parallel implementation of image processing algorithms into the voxel
processor architecture. These operations are mainly intended as a preprocessing step for the voxel

data (e.g. noise filtering).

Chapter 5 gives details of the developed pipeline architecture. Three main modules are discussed:

-) The Controller, that provides the user interface to the host computer (a PC-AT).

TNO report

Page
5

-) The Subcube Processors, where the actual rendering operations are executed. This code is

running on many nodes in parallel.

-) The Graphics system that controls a display unit where the rendered images are shown. This

module also functions as the interface to the 3D sensor (e.g. the CLSM).

The functionality of the units and the interface between them is defined.

Chapter 6 gives a detailed description of the software (OCCAM) that was written for the Voxel

processor. This section is intended as software documentation for maintenance and development

purposes.

Chapter 7 discusses performance and scalability issues. The required response time of less than

one second can be achieved with 16 processors in the network. Higher rendering- and image

processing performance is possible when more processors are added. This will require a (minor)

change of topology into a tree structure. A typical result is that scalability is easier to achieve

when the voxel dataset is large. This effect is explained by the overhead involved in starting up

communication and computation in the processor network.

The last two chapters discuss future developments and conclasions. The potential of parallel

processing for volume rendering applications has been clearly demonstrated by this project. The

development of the prototype into a product will require a further improvement of rendering

algorithms and the addition of more functionality. The system could be used as an accellerator

attached to a (SUN) workstation. An X-window user interface via the workstation or dedicated

Transputer hardware can be provided if desired. An important feature of the system is the
flexibility to changes in resolution, performance and rendering algorithms. The voxel procesmr

system is certainly not limited to CLSM images only, other sources of data are equally suitable

(e.g. Cr scans). The system will therefore b, brought to the attention of potential users in other
areas than Confocal Microscopy also.

i

TNO report

Page
6

ABSTRACT 2

SAMENVATrING 3

INTRODUCTION AND EX)r.JTIVE SUMMARY 4

CONTENTS 6

1 PROBLEM DEFINITION 8

1.1 Incroduction 8
1.2 History 9

1.3 The Voxel data 10
1.4 System requirements 12

2 VOXEL VISUALISATION 16
2.1 The 3D Transformation 16
2.2 The 3D projection 19
2.3 Supporting systems 22

3 PARALLEL PROCESSING 23
3.1 Computer Developments 23
3.2 Transputers 24
3.3 Problem decomposition 26

4 IMAGE PROCESSING 29

4.1 Introduction 29

4.2 Parallel image processing 29
4.3 Implementation 30

5 SYSTEM ARCHITECTURE 32
5.1 Introduction 32
5.2 The Controller 33

5.3 The Subcube Processor 34

TNO report

7

5.4 The Graphics System 36

5.5 Communication protocol, 37

5.5.1 Controller to PE communication 38

5.5.2 PE to PE communication 40

5.5.3 Controller to TFG communication 41

5.6 Configuration files 44

5.7 Implementation Remarks 47

6 SOFTWARE DESCRIPTION 48

6.1 Introduction 48

6.2 The EXE Controller 49

6.2.1 The SC Controller 51

6.2.2 The SC Autopilot 82

6.3 The Subcube Nodes 86

6.3.1 The SC Node 86

6.4 The Graphics System 104

6.5 The network configuration 107

7 PERFORMANCE 109

8 FUTURE ACTVITIES 113

9 CONCLUSIONS 116

10 REFERENCES 117

17 TNO report

Page
8

I PROBLEM DEFINITION

1.1 Introduction

The TNO Physics and Electronics Laboratory (TNO-FEL) in the Hague is part of TNO Defence

Research. The activities of TNO-FEL focus primarily on operational research, information

processing, communication and sensor systems. To support the fast data-processing usually

required in sensor system applications, research was started on parallel processing. This research

has now resulted in two major application areas : real-time computer generated imagery and 3D
image analysis, processing and visualization. In this report the development, evaluation and

implementation of an experimental parallel processing system for the processing of three
dimensional voxel-images is described. This type of system has applications in many areas:

-) Biomedical research, the traditional use was fcr diagnostic purposes only, but in recent years

surgery simulation, radiotherapy planning and anatomy study have also become important.

In some systems the visualization system has been combined with numerically controlled

molding machines to construct models of the voxel data for use as implants or to practise

surgery on.
-) Materials researchers apply CT and CLSM scanners to investigate natural or artificial

material like geological samples or integrated circuits.
-) A new application area is computer vision. RADAR or LASER range scanners are used to

record 3D data. This data is preprocessed and used for object recognition to control

industrial production or to guide an autonomous mobile system (a robot).

The topics covered in this report are:
-) voxel data visualization.

-) parallel procesing and Transputers.

-) distribution and communication concepts.
-) implementation of parallel voxel visualization algorithms.

-) parallel implementation of statistical computations, image enhancement and image analysis
operations.

-) performance evaluation, scalability.

K

TNO report

Page
9

1.2 History

The invention of the X-ray system by Wilhelm Rontgen in 1895 marked the start of electronic

imaging for medical diagnostics. During the next 70 years the technology was significantly
improved, providing better images with lower radiation levels. The X-ray images however

represent only a 'shadow image' of the three dimensional object : rays are sent through the sample
and are absorbed differently, depending on the encountered material. This means that the three

dimensional structure of the object is lost in the resulting image and that a radiologist needs many

years of experience before being able to interpret the image correctly. In recent years, new X-ray

systems have been developed which are free of the superpositioning of the contributions of all the

material in the sample. This system is called Computer Tomograpy. A Tomograph collects data of

a cross-section (Tomogram) of the sample with a rotating X-ray. This data can not be directly

interpreted as an image, it needs extensive processing first (like Fourier Transforms). The result

of this processing step is the X-ray image of the sample cross-section. The whole process can be

repeated for many different cross-sections of the object, resulting in a 3D dataset. The radiologist

can now 'scan' through a stack of cross-sections and draw conclusions about the position and

shape of objects within the dataset. It is however still necessary to extract 3D information from a

series of 2D images. This can be very difficult for some objects. Furthermore, it would be useful

to be able to look at the data from angles other than the one it was recorded in. The reason for this
is that some data may be hard to interpret from the given direction. A more recent type of sensor

(ca. 1975) that provides 2D cross-sections of a 3D object is an NMR scanner (Nuclear Magnetic
Resonance), which is particularly suited to show soft tissue, I!!- skin, iKood vessels etc. This

sensor also needs extensive pre-processing before the basic 2D data is available, and again the 2D
data can be combined to build up a 3D dataset. Another source of volume data is provided by the

Confocal LASER scanning microscopes (CLSM). This type of microscope differs from the

conventional microscopes by the extreme depth discrimination.

With the growing availability of 3D scanning devices, the need for high performance image

processing and display systems has also increased. The main purpose of these systems is the

visualization of the (unknown) object in such a way that its spatial structure can be understood.

An additional demand is that the system is fast enough to be used interactively.

f TNO report

Page
10

1.3 The Voxel Data

In 2D image processing the samples that form an image are known as picture element or 'pixels'.

Since in our case the 2D images are cross-sections of a 3D dataset the basic samples are called

volume elements or 'voxels' (Fig. 1.1). Volume images are normally represented as a series of

parallel two dimensional slices (Fig. 1.2). These slices can be obtained from a range of possible

sensor systems, examples are Computer Tomography (C), Nuclear Magnetic Resonance (NMR)

or Confocal LASER Scanning Microscopy (CLSM). The department for Electro-O, 'al Systems

of TNO Institute of Environmental Sciences (IMW-TNO) has recently developed a new type of

CLSM [1]. The main feature of this system the ability to record images in near real-time. This

made it important to have a visualization system that matches the CLSM's speed. The operation of

a CLSM is based on the illumination of an object by a LASER beam. The reflected beam is

projected on a spatial filter (e.g. a pinhole), so that only light coming from the focal point of the

LASER is measured (Fig. 1.3). TNO-FEL was involved in the CLSM project because of its

expertise in the area of fast visualization techniques using parallel processing.

Voxe! representations are not only very suitable for applications with 3D empirical data. It can

also be used with synthetic data, for example solid modelling or fluid dynamics simulations.

Before volume rendering became feasible, experts had to interpret the slices to deduce the 3D

information. Until recently, computer assisted techniques to visualize the volumes interactively

were based on displaying contours only, because of the processing time involved. These contours

often had to be traced manually from the actual data. Full use of the 3D data could only be made

through off-line computing. Because of the large number of voxels 4xvolved, a considerable

processing capacity is required. Several architectures based on dedicated hardware have been

proposed to increase performance [2], [3]. Such a dedicated system however has the disadvantage

of inflexibility to any change in rendering options or object sizes (also the cost is high).

ii

TNO report P

Slice jL .z

voxel I'A

Fig. 1.1 Voxci definition.

Y

Fig. 1.2 Voxel data se ,A

seem

Witter

DETECTOR
Fig. 1.3 CUSM operation principle

i, F TNO report..

Page K
12

|t

1.4 System requirements

The following list of requirements for the voxel-processor was defined after literaturte study and

discussions with the CLSM developers from IWM-TNO:

a) Voxel data-set rendoring from an arbitrary angle.

b) Provide an interactive rendering speed (< 1 sec.) for a voxel set of 128*128*128 (or any

other set of 2 Mega voxels). Each voxel is represented by a greyvalue between 0..255, i.e. a

single byte.

c) Use a parallel projection method, no perspective distortion is required for this prototype.

d) Voxels are expected to be cubic. This means that the resolution of the scanner is identical in

x, y and z direction. In practice, scanners do not allways have this property. The problem is

usually solved by resampling (interpolating) the voxel image.

e) Selection of a 'Volume-Of-Interest' within the available voxel data. Through this option

uninteresting or disturbing parts of the voxel-image may be 'peeled away'.

f) Selection of a cutting plane through the object; voxels in front of this plane will not be

visualised. This option will create a cross-section or 'Zcut' through the object after rotation

(Fig. 1.4).
g) Allow the selection of a threshold; voxels with a value below this threshold will become

transparent.

Z-CUT VALUE

DISPLAY'
Fig. 1.4 Voxel data cross-section

I-

$ • m =• = =•

TNO report

Page
13

h) Provide a set of basic image processing operations that can be applied on the voxel data

before visualization. The operations must include noise reduction and edge detection

methods.

!) Support editing and selection of different colour look-up tables. This feature enables the use

of pseudo-colours or grey-scale transforms for cedain intensity values, thereby increasing

the visibility of interesting areas.

Several ways of rendering the transformed data on the screen are possible, the currently required

options are:

a) front view

Display the object's intensity, as seen from the selec.ed orientation (Fig. 1.5).

b) depth shading

Display the object's 'distance' from the screen at each location, resulting in a realistic depth

illusion (Fig. 1.6).

c) integrate function

Display the object's density at each screen location (Fig. 1.7).

d) layer view

Display an intensity related to the layer from which the visible voxel originated (Fig. 1.8).

DISPLAY
Fig. 1.5 Front view

TNO report

Page
14

DISPLAY

Fig, 1.6 Depth shading

DISPLAY

Fig. 1.7 Integrate function

!1

TNO report

Page
15

DISPLAY
Fig. 1L8 Layer view

Some additional system design requirements were defined also:

-) The necessary computing power will be provided without the use of dedicated hardware.

This will be achieved by processing the data in parallel on a network of Transputers.

Previous work by others had shown that Transputers can be used effectively for medical
imaging applications [4].

-he system will use a PC-AT as a host computer, so it does not need to be completely
standalone.

Voxel-data sizes depend largely on the sensor type, in CT scans for example it is possible to

get resolutions of 512*512*128 with 12 bits per voxel. The developed system should be

modular in its construction, both on a hardware and on a software level, so that it can deal

with varying size- and performance- demands. This implies that system should be flexible to

any change in rendering options or object sizes.

-) The system should have a scalable performance, this implies that its cost/performance ratio

is flexible.

.(..~

TNO report

Page
16

2 VOXEL VISUALISATION

2.1 The 3D Transformation

The Voxel data is represented by a cube in 3D space (Fig. 1.2). Displaying this data under

different angles on a 2D screen involves a 3D transformation of the object space to the display

space (i.e. the observer coordinate system), this is represented in fig. 2.1. The carthesian

coordinates of the object space are chosen to correspond to the x, y and z indices of the voxel data

set. This implies that the voxels are considered to be cubic. The transformation from the object

space to the display space (fig. 2.2) consists of a vector-matrix multiplication on each voxel

coordinate i.e, a vector).

Slice OBJECT SPACE IMAGE SPACE

c:; --,'-Observer

Fig. 2.1 Object space to display space transform

Eyd EY~0

Eyo

E2.0

Ez.d

V -EdF.p Ex.o s x.d
Fig. 2.2 Object and display coor(Iiate systems

TNO report

Page

17

The rotation result of a two dimensional vector about an angle 'a' is illustrated in fig. 2.3. The new

coordinates (x', y') of point (x, y) are given by:

x'= x*cos a - y*sin a

y'= x*sin a + y*cos a

An equivalent set of relations can be derived for rotations in a three dimensional space.

Y --.--- I- -

X X X

Fig. 2.3 Rotation over 'a' about origin

The object transformation matrix is formed from a combination of the matrices for rotations about

the X-, Y-, and Z- axis:

R Rz*Ry*Rx =

(cY*cZ) (sX*sY*cZ-cX*sZ) (cX*sY*cZ + sX*sZ)
= (cY*sZ) (sX*sY*sZ+CX*cZ) (cY*sY*sZ - sX*cZ)

-sY (sX*cy) (cX*cY)

('c' for cos, 's' for sin)

(X, Y, Z are rotation angles about x-, y-, z- axis).

Since vector-matrix multiplication is a linear operation and all voxel coordinates have to be

transformed, it is not necessary to perform this multiplication for each coordinate. We may

instead use three simple additions to step from one transformed coordinate to the next (Fig. 2.4).

This method offers a considerable reduction in computational load:

TNO report

Page
18

-) Vector-matrix transform (9 multiplications and 6 additions) requires about 20 us per

coordinate.

-) Incremental transform (3 additions) costs less than 1 us per transformed coordinate.

The incremental steps along the Eo._x, E]_o_y or Eo_z axis of the voxel data (object space)

correspond to incremental steps in the display space (Ecdx, E.dy, Edz). A unit step in x axis

direction will result in the addition of the corresponding transformed (1,0,0) unit vector to the
previously computed coordinate.

I u-Jo!

UNIT STrEPS IN OBJECT SPACE

UNIT STEPS IN DiSPLAY SPACE
Fig. 2.4 Incremental object tranform

TNO report

Page
19

22 The 3D projection

The second important part of the visualization process is the projection of the transformed 3D

data onto a 2D surface (the screen). The projection operation involves several tasks:

1) Perspective correction.

The perspective correction is not required for this system, given the fact that a parallel

projection was prefered. The advantage is that measurement of voxel distances can then be
made from the screen. The disadvantage is that the image on the screen will show some

perspective distortions. Addition of this operation would involve the division of the

transformed x and y voxel coordinates by its z coordinate to obtain the correct perspective
projection of all voxels on the operator display. The prototype uses the uncorrected x and y

values for this projection.
2) Clipping of data that is not visible from the given eyepoint. In this implementation there will

be no need for clipping, because 'zooming' is not supported and the screen size is chosen
sufficiently large for the resulting image to fit on it for all voxel-data orientations. However

clipping must be used when larger voxel-data sets are employed without increasing the
screen resolution. The computational cost consists of two comparisons for the x and y
coordinates of each transformed voxel against the given screen dimensions.

3) The hidden surface elimination : 'distant' voxels are obscured by 'closer' voxels if they are
projected onto the same location on the screen (Fig. 2.5). There are several methods to

achieve this goal:
-) The Z-buffer algorithm compares the z-value (the distance to the viewpoint) of a new

voxel projection with the z-value of the voxel that was previously projected onto the
given screen location. The Z-values for each screen pixel must be stored and updated

whenever a pixel value changes. This method is often used because the dataset can be
traversed in a random order.

-) The Painters algorithm avoids depth comparisons per pixel by traversing the voxel-data
in a back-to-front direction. When generating the screen this way, new pixels can
simply overwrite any old value. This method is faster than the Z-buffer algorithm and it
uses less memory but the disadvantage is the need for depth sorted data.

The second method is selected for the voxel processor since it is the most efficient method,
given the fact that voxel data is automatically stored in its geometrical order at the time of
recording.

TNO report

Page

20

i

Fig. 2.5 Hidden surface elimination

4) The actual rendering mode of the voxel data is an integrated part of the 3D projection, The

possible modes are implemented as follows:

a) Front view.

The original grey value of a voxel is mapped on the screen projection of the

transformed coordinates.

b) Depth shading

The Z-value of the transformed coordinate is mapped on the screen. This implies that

the actual Z-value must be scaled down to prevent it from becoming larger than 255,
which is the maximum allowed grey value.

c) Integrate function

The value on the screen represents a count of the number of voxels that projected on
that specific screen location. This value must first be initialised to zero and it must be

clipped to a maximum of 255 during the computation.
d) Layer view

The screen value represents the layer number (i.e. the z coordinate) from which the

projected vo:.el originated.
The projection process will perform two additional tests on the voxels before they are used

for the rendering operation :
1) The Z-value is tested against the cutting plane, voxels in front of this plane are not

visualised.

2) Voxels with a grey value below the user selected threshold are not considered for

further processing.

-

TNO report

Page
21

Mhe center of the vocl data set will be positioned in the center of the projection screen for all

possible orientations. This is achieved by giving a certain offset to the transformed origin of the
voxel data. The relative position of the transformed voxel data set in display space is shown in

Fig. 2.6. Data set dimensionb are (DX*DY*DZ) and the resulting occupied display space is a
cube with dimensions (ID*ID*ID). The resulting image is computed as the projection of the

transformed voxel set on the frontal face of the (ID*ID*ID) cube.

ID

Fig. 2.6 Voxel position in display space

TNO reporti i iii ni

Page
22

2.3 Supporting systems

Next to the main tasks that were described in the previous sections, some additional support must

be added to the voxel processor to construct a fully functional system:

1) A controller process that provides:

.) Interface to the host-PC to supply keyboard, screen and file i/o.

-) Menu based user interface to control the voxel processor.

-) Debug and error reporting.

2) A means to display the resulting images in grey values or pseudo-colors. The resolution of

this display unit is chosen to conform to CCIR TV standards (512 * 780 pixels) for the

following reasons:

-) The CLSM uses this format.

-) Commercially available hardware can be used to both 'grab' new data from the CLSM

and display results from the voxel processor.

-) Normal VCR systems can record the results from the system for play-back at a later

time.

The dimensions of the voxel data set have a direct relation with the resolution (ID*ID) of the

graphics upit when displaying without clipping or scaling is required. Fig. 2.7 shows this relation,

a calculation proves that a 256*256*32 transformed voxel set can be displayed from any angle

onto the 512*780 screen.

D
DY

T

oz ---

ID=VDX * 'DY+ DZ2

Fig. 2.7 Image dimensions

TNO report

Page
23

3 PARALLEL PROCESSING

3.1 Computer Developments

Computer applications tend to need increasing amounts of processing capacities. Single processor

systems are reaching the limits of performance improvements. It is obvious that using more

processors running in parallel could (theoretically) provide unlimited power. Most existing multi-

processor systems use a common communications channel (the bus) for interconnections. With a

growing number of processors the bus capacity becomes a bottle-neck for system performance.

Communication bandwidth of the network must be increased also when processors are added.

Providing processors with direct connections for all data exchange will supply this increased

bandwidth.

Several classes of multi-processor systems have been defined [5]:

-) Single Instruction Multiple Data (SIMD). Each processor in the network will execute the

same instruction (synchronously) on different data. Array processors fall in this class.

Examples are image processing applications where each processor performs the same filter

operation on a different part of the image.

-) Multiple Instruction Multiple Data (MIMD). Processors can all be running different

programs, sending results to others when they are finished. Examples are pipelined systems

or multi-user applications.

Many existing sequential programs could benefit from being able to perform more than one action

at a time. It is however generally not trivial to implement a parallel program on a processor

network. Problems arising are:

-) Decomposing the problem in a number of processes running in parallel.

-) Allocate processes to processors and select the network topology.

-) Load-balancing the processors.

-) Distributing data across the processors.

-) Efficient inter-processor communication.
-) Synchronization between processors.

-) Debugging the software.

TNO report

24

3.2 Transputers

The INMOS T800 Transputer is a computer-on-a-chip, containing a 32 bit RISC ALU, a 64 bit

Floating-Point Unit, memory and four high-speed (1.5 M[Byte/s) input/output links for point-to-

point communication (Fig. 3.1, [6]). The Transputer was designed for efficient parallel processing

it is a high performance component (10 MIPS, 1.5 MFLOPS), with an on-chip process scheduler

and low-overhead communication facilities. A network of Transputers may be constructed by
connecting them via links (Fig. 3.2). Each Transputer in a network has (private) local memory to

store program and data. Transputers may be programmed in high level languages like PASCAL,

FORTRAN or C. These languages must have facilities added to implement the special features of

the Transputer (processes running in parallel, communication etc.). OCCAM is a language that

was developed by NMOS to describe parallel processing and communication via channels [7]. In

fact the Transputer may be considered a hardware implementation of OCCAM. Transputer

versions without the floating-point unit are also available :the T424 (32 bit) and the T222 (16

bit).

Fl17oatng Point unit
vcc
GN0O

capPIus- 32 NI
cDPMlnu - Procossor

Reset-
Analyse system

Errorlh ServicsUkp,&

BootFromTROM services kOSpecll
Clochin, SCMC l3SpeclaI

Proc~peed LinkInOSelecta.2 [jjj]Interface LinkOuo

LinkInI

4 KbytesL kOt

On-chip 3 kc Llrrkl2
RAM

32 L* LInkinSl
PrOcclocklr 4 Inerlace LlnkOul3

rMernWrI1103 Exe- a 'jjjjJg
notMemRd 4 ExenlF Lvysnt EvshlAck
notMOmR!t-A Memory

MomWaltZ* Interface MemAO2.31
Mormconflo- 2> Me mnoIRIDI

MernReq M MmrotrO
Usm~rmsnted;:

Fig. 3.1 T800 Block Diagram

TNO report

Page
25

Fig. 3.2 Transputer networks

Transputer networks belong to the MIMI class of parallel processing systems, all nodes in a

network are basically independent units, communicating and synchronising only when necessary.

An MIMD network is the most flexible solution to parallel processing, since part of the network

may actually be operating as SIMD.

At TNO-FEL, research has concentrated on the Transputer as the computational element in

parallel processing applications, because of its useful features, high performance and software

support. This explains the reason for TNO-FEL to apply a system of these programmable (low
cost) processors operating in parallel for the implementation of the voxel processor prototype.

II

TNO report

Page
26

3.3 Problem decomposition

The difficulty with parallel processing is to find an effective way of decomposing the problem in

a number of processes that can run concurrently. There are two basic approaches to this problem:

A) Data parallelism : split up th, data in independent parts. Each processor in the network will

essentially perform the sam,- operation on a different part of the data set. This option implies

that the original (sequential) algorithms may be used and that it is rather straightforward to

add more processors to the system. Load-balancing is in general easy, as a consequence of

using the same code on all processors.

B) Algorithmic parallelism : split the algorithm in several parts and assign these parts to

different processors. This option will often force you to re-design the algorithm, since

automatic extraction of parallelism in program code is (at this moment) hardly possible.

Adding more processors and keeping a good load-balance is not trivial, when using t7':- type

of parallelism. In general, we found that this approach is only effective if the problem is

computation-bound rather than data-bound.

The data parallelism option was chosen in our system, since voxel-visualisation is a data-bound

problem, the actual algorithms involved are not that computationally intensive. A second reason is

that this solution provides better scalability. Data parallelism may be accomplished in (3D) image

processing by splitting up the computations in display-space or in data-space :

-) Display space parallelism implies that each processor is assigned to a certain area of the

resulting image (e.g. a number of scanlines). Since views of the rotated voxel-image will be

generated, this solution implies that each processor must have access to the complete voxel-

image. Complete access is possible when a voxel-image copy is stored in each processor

(large memory requirement) or alternatively, processors could request voxel-data elements

from a central store, when needed (communication overhead). Load-balancing may be a

problem, since the most computation intensive parts in the display-space will shift according

to the rotation angle. Ray-tracing is a typical example where parallel processing in display

space is often used. The load-balancing problem can be tackled by implementing a processor

farm. In this construction a controller process 'farms out' a new piece of work (i.e. a part of

the display) to each processor in the network as soon as it has finished work on a previous

part. The controller does not need to know which processor will actually perform the job.

-) Data space parallelism is based on access of a limited part of the original voxel-image. This

implies that each node is assigned to a section of the voxel-image, which is stored locally. A

node will produce the contribution of the local data to the result. The actual result will be

available after combining (merging) all the contributions.

TNO report

Page
27

The advantages of the second method over the previous one are:
-) Less memory requirement.

-) Fast access to the (local) voxel-data.

-) Good load-balancing, all contributions will need the same computation time, wh.n the

voxel-data sizes are equal.

Disadvantages are:

-) The overhead of the merging operation

-) Some data is calculated by the nodes that is not needed in the final result.

Typically, a large number of views will be generated from a single (large) dataset. Therefore, the

lower communication need of the second method was the reason to choose data-space parallelism
in the voxel-processor system. Each Transputer is holding a data-segment which is a unique part

of the complete voxel set. This data-segment could be formA in several ways:

-) A segment consists of a cross-section through a number of 2D slices (Fig. 3.3).

-) A number of complete slices could be assigned to each processor (Fig. 3.4).

The slice based distribution method is selected for implementation, the reasons are:

-) Using slices will give maximum values for data-segment sizes in two directions. This
imni e that all yvol proc sJ n (vioalizato"n mCrging, displaying efc.), which is executing

in program 'loops', will have maximum runs in these two directions. In general it is more
efficient on computers to keep 'loops' running as long as possible.

-) Image processing operations are also planned to be part of the system and these algorithms

are generally based on 2D images. The slices are interpreted as 2D images, since voxel

objects normally have a higher resolution in X and Y than in Z direction.
-) Voxel data is recorded on a slice basis, this makes it the most natural way to process it.

E -o Y~ Exo

Ez..o0
'Ez_d

Exo Ex-d
Fig. 3.3 Block distribution.

TNO repo t

Page
28

E yo E Ey.0 EXo

l.0

'"x0 Eo d Ex d

Fig. 3.4 Slice distribution.

The merging process combines partial results from all segments. Each partial result is added to

the temporary result on a 'back-to-front' basis. This implies that the partial result (sub image)

contributed from a single segment can be readily added to the partial result of its direct neighbour

when neighbouring processors have geometrically neighbouring slice data (Fig. 3.5). The

geometric order of the data set must be preserved in the network architecture. The merging

process could not be performed locally in the network if this order is not supported. It would then

become necessary to transmit all partial results to a central point where the merging could be

performed in the correct , Jer. In our architecture this geometric order is given. In order to

combine the two partial results in a correct way, the merger needs som,, additional data : the

subcube's priority. The priority is based on the z-value of the subcube's transformed origin. The

lowest priority is for the sub-cube with the largest distance from the viewer. The partial results of

this subcube will be obscured by any sub-cube result of a higher priority. Figure 2.5 and 3.5

illustrate this process.

Z SUB-IMAGEI ".

I i
"" RESULT-IMAGE

Fig. 3.5 Merging operation.

TNO report

Page J
29

tI

4 IMAGE PROCESSING

4.1 Introduction

The original voxel images from scanning devices tend to be noisy in many cases, so noise filters

are often needed. Some of these operations have been implemented in a prototype image

processing system designed for the CLSM by IMW-TWO [8]. When voxel images are recorded

with the voxel processor system's build-in framegrabber, some preprocessing (i.e. averaging) can
be done on this board before sending the slices to the processing elements. Further image analysis

operations (edge detectors etc.) are also required as an integral part of the voxel processor to
provide a useful system.

4.2 Parallel image processing

Most low level image processing operations are well suited for arrays of SIMD machines, while

higher level operations can be implemented more effectively on MIMD systems. Research into

the use of Transputers for image processing has shown that processing speed can be increased

very linearly for non real-time applications [9], [10]. The limited Link bandwidth will however

present a serious problem for the distribution of input images and the collecting of partial results

for real-time applications. In this case, it will become necessary to implement a hardware bus

system for the data i/o. This problem has been identified and is being tackled by several computer

manufacturers at the moment. The aim of our project is to develop a flexible and modular

architecture, suited for both visualization and processing of 3D datasets. Dedicated hardware for

image processing will have better performance than programmable systems, but it lacks the

flexibility to meet changing demands. The image processing operations were therefore fully

software implemented on Transputers. Parallelism for image procossing can be achieved in two

ways : data-parallelism and algorithmic parallelism. Since data-parallelism has been chosen for

the visualization, it is obvious that each Transputer will also perform the image processing on its

local data.

-1t

- TNO repot

Page
30

4.3 Implementation

For many (2D) image processing operations, a new pixel intensity (g) is computed based on a
weighted sum (h) of its own original value (f) and the values of its nearest neighbours:

n-I n-I
y h(p,q). f(x+p,y+q)

p=o qo

This operation presents a problem when the pixel data is distributed across several processors:

the neighbour values may be located on a different Transputer. There are two basic solutions:
-) Communicate pixel values between neighbours, (the data swapping may be done in parahlO

for many Transputers). This method puts additional demands on the network topology and

requires some communication facilities.

-) Provide data overlap between neighbours. In this case each node needs additional memory.
The amount of extra memory depends on the dimensions of the convolution matrix h and the

size of the slices.

A second problem arises on the picture edges, since these pixels have no neighbours. Simple

solutions are to assign zero values to the non-existing neighbours or to wrap-around to the other

side of the image.

The remarks given above are valid for 2D images distributed across a Transputer network. In our
application we deal with 3D datasets, with a distribution based on 2D slices. The image
processing operations must therefore also be extended to 3D. This implies that 'neighbour pixels'
may now be located in different slices. It is however in many cases possible to use normal 2D
operations within a single slice. This is caused by the relatively low correlation between voxels in
adjacent slices : most scanners have a much higher resolution in x,y direction than along their z-
axis. This lower axial correlation in the data was one of the reasons to choose slices as a basis for

data-parallelism.

Presently, our system uses overlapping data-slices between neighbour Transputers because of
simplicity. In ftiture ',ersions (when the size of the filters exceeds 3*3*3 or when the datasets

become larger), data communication will be implemented. The selected network topology is

suited for this method.

1; Pag31

Local 3D image processing algorithms are based on their 2D counterparts [11] and operate on a
(3*3*3) space). Currently implemented operations are:

-) Mean filter.

The mean value of the (3*3*3) neighbourhood of a voxel is assigned to it.

-) Laplace filter.

The maximum value of %.ree orthogonal 2D Laplace convolutions is assigned to the voxel at

the center of the Laplace transform. The result is the detection of high spatial frequencies in

x, y and z direction.

-) Sobel and Robeits edge detectors.

The edge detection filters are applied analogous to the Laplace filtering method. The result

may either replace the center voxel or it can be added to the old value, thereby providing

edge enhancement.

-) Median filter.

This filter provides strong suppression of random noise. The median grey value of a (3*3*3)

area is assigned to the center voxel.

-) Minimum and Maximum filters.

These algorithms are useful for automatic threshold operations. A local threshold, relative to

local maximum and minimum voxel values can eliminate the effect of object illumination.

Apart from these local filters, the system also provides global operations. Global image

processing operations include:

-) Histogram computation

Each processor computes the histogram for the local data that is within the volume-of-

interest and sends it back to the host, where the partial results are merged. The host can plot

the result and . e it as a base for the histogram equalization table. The histogram data will be

transmitted to all nodes, where it can be used by image processing functions like automatic

thresholding or edge detection.

-) Grey-scale transforms

A conversion table is supplied to all processors to exchange the original voxel values against

new ones. This operation may be used for example to filter out certain grey values or to

provide a gamma correction. The conversion table may be edited manually or generated

automatically from the histogram, providing the possibility of histogram equalization.

*iLNO report K

page
32

5 SYSTEM ARCHlTECTURE

5.1 Introduction

This chapter gives a brief description of the modules in the system. Implementation details are
given in the specific chapters dedicated to each module. Figure 5.1 shows the schematic
representation of the voxel processor architecture. Ellipses are used to represent modules running
in parallel. Parallelism was achieved in several ways, the most important step is dividing the
object data into a number of (equally sized) sub-cubes, where each sub-cube has been assigned to
one Transputer. Several processes may be running within each Transputer also, the reason for this
is to make optimal use of the Transputers ability to do computations and perform communication
at the same time. Apart from the sub-cube processors two more Transputers have been used to
implement the Control and the Display module.

Fig. 5.1 System Architecture.

TNO report

Page33

5.2 The Controller

The Controller (Fig. 5.2) is the user-interface between the host computer, a PC-AT, and the

Transputer network that will perform the voxel visualisation. The Controller is in fact a 'software

state machine'. Each state corresponds to a certain menu on the screen and a certain interpretation

of the received user commands (keystrokes). The network is a full 'slave' that can only respond to

commands from the Controller. Examples of possible Controller commands to the subcube

processors are :

-) Store voxel data slice.

-) Render a view on voxel data set

Examples of possible Controller commands directed at the Graphics subsystem are:

-) Receive and display a slice of voxel data.

-) Receive and display a resulting image.

-) Receive and display text strings.

-) Receive and activate a new color table.

All results coming from the network must first pass the Controller before being displayed or

stored on disk. Examples of possible results send to the Controller are:

-) Rendered image.

-) Computed histogram data.

-) Stored voxel data slices.

-) Error message.

jTNO report

Page

34

to.TFG from.TFG to.Net from.Net

Controller

I I Auto-
pilot

to/from ios keyboard screen

to/from filer
Fig. 5.2 Controller

5.3 The Subcube Processor

All commands to this Processing Element unit (PL., are exclusively send by the Controller. There

are three main processes active inside a subcube module (Fig. 5.3), each of these processes is

assigned to a specific function:

1) The Distributor, transfers commands and data across the network. All subcube procei sors

are connected together in a tree or pipeline structure. This implies that each subcube

processor must forward commands and data from one of its neighbours to its other

neighbours. Except for global commands, like 'render an image', there are also commands

meant for a specific node, like 'load a certain slice'. The Distributor can detect whether a

command is global or intended for the local Transformation process and it will forward it

accordingly. The Distributor is running in a continuous loop, ready to process incoming

commands as soon as the previous command has been handled.

TNO report

Page
35

2) The Transformation process performs the object transformation, the 3D projection and the

rendering. The module will completely generate the partial result for the assigned sub-cube

and supply additional data that the mergers need to compute the final result. The sub-cube

data (the voxels) are loaded only once for each new object and will not be changed during

the transformations. The sub-cube Trar-,uter will begin processing its data after receiving a

command, which includes the transformed unit vectors and the selected type of rendering

(e.g. front view, depth shade etc.). Beside performing the voxel-image transformation, this

module is also used for the 3D image processing operations. For this end, memory is

reserved to store both the original voxel-image and a processed version.

3) The Merger process receives 2D partial results from the local Transformation process and

from its direct neighbour. These partial results will be merged into a new partial result which

is transferred to the next Merger. When all partial results have been combined in this way,

the last Merger will transfer the complete resulting image to the Controller process where it

will be stored and displayed.

Distr.to.Next Next.to.Merger

Distr. Sub.proc. Merger

Distr.to.Proc Proc.to.Merger

Distrin Merger.out

Fig. 5.3 The Subcube processor

TNO report

Page

36

5.4 The Graphics System

This unit (Fig. 5.4) is used for controlling a framebuffer in order to display the resulting images.
A second function of this TFG board (1ransputer Frame Grabber) is the acquisition of slice-data.
The graphics board is in fact a framegrabber, capable of digitizing analogue video. Each recorded

slice is the result of a number of (digitally) integrated video frames. This integration is used to
reduce the noise level. The voxel data-set will be temporarily stored in the processor nodes, after
which it may be viewed first before transferring the data to disk. The Graphics system is build as
a 'server' that is continuously expecting input from the Controller. The input consists of a
command tag, possibly followed by data. Examples of possible commands were given in the

section on the Controller.

TFG Hardware

D/A Video A/D
CLUTI - mem.

Video.out A 7 Video.in

Command Frame-
interpr. grabber

grab TFG Software

TFG.in TFG.out
Fig. 5.4 Graphics system

TNO report

Page
37

5.5 Communication protocols

A complete list of all possible communication between the different modules is given below. The

protocols are defined using identification tags and parameter lists. The tags have been defined as

BYTE values in the libraries 'voxtag.tsr' (for the network) and 'tfgtag.tsr' (for the framegrabber).

There are four types of communication defined which are identified by a 'main tag':

-) command

Commands have the following general structure:

out 1 command; sub.command[; parameters[; data]]

Sub.commands indicate the type of command to be executed (e.g. pe.render) for which

additional parameters and data are possibly supplied.

In several cases a command will result in data being returned from the network (e.g. a

rendered view) which must be received before continueing with a new command.

-) message

The general structure is:

out ! message; [8]BYTE ID.string;
eInath..r ngth]RVTP. etring

No response is expected for this communication. This communication type is used to

transmit error- or debug- messages from a network processor to the operator display. The

source of the message is given by the identifier 'ID.string'.

-) data

Data communication has the following structure:

out ! data; sub.data; [size]TYPE data

No response is expected.

-) quit

The 'quit' tag is the only component of this communication, it is echoed by the receiver to

indicate that the receiving party has finished executing and will stop transmitting. This

command will be send to all running processes in the network to guarantee an ordered shut-

down of the whole system.

TNO report

Page
38

5.5.1 Controller to PE communication

The PE's expect only two main tags from the Controller:

-) commands

-) quit

Communication coming the PE's consists of:

-) messages

-) data

-) quit

The possible commands are separated into several groups :

-) Loading slice data into the network:

-) to.net I command; pe.load.slice; INT slice.nr;

[SCDY][SCDX]BYTE slice

response : none

The 'INT slice.nr' indicates the number of the slice that will be send, its value is within

[O..DZ>. Each PE node will use this number to decide if it has to load the slice locally or

alternatively forward it to the next PE. Slice is an array of SCDY*SCDX bytes that

represents the data of a slice. It is transmitted as SCDY arrays of SCDX bytes each, thus

breaking up the large array in smaller portions to reduce intermediate storage requirements

(speed is not a factor here, since this is limited by disk i/o anyhow).

-) Receiving slice data back from the network:

-) to.net I command; pe.send.slice; INT slice.nr

response : data; slice.data;

[SCDY][SCDX]BYTE slice

This command is used to store the result of processed voxel data back to disk. Each PE that

receives the command will either forward the command to the next PE or send the requested

slice, if available.

-) Commands to manipulate stored voxel data sets:

Two stored voxel data sets are present in the PB's, one is used as the 'source' and the other as

the 'destination' for 3D image processing operations. All rendering operations use the

'destination' voxel data as input. Newly loaded voxel data set are stored as 'source'.

-) to.net I command; pe.reload.orig

response : none

The 'source' data is copied to the 'destination' array, thus enabling the visualisation of

the 'source' data.

TNO report

Page
39

-) to.net ! command; pexesult.as.orig

response: none

The 'destination' data is copied to the 'source' array, thus enabling a new image

processing operation on the present 'destination' data.

-) Commands to compute a view of the voxel data:

-) to.net ! command; pe.render; BYTE render.mode;

[3][3]REAL32 transform.vectors;

[3][2]INT transform.sizes;

INT z.cut.value; INT threshold.value

response: command; merge.image;

BYTE render.mode;

BOOL forward.merge;

[ID][ID]BYTE image

The transform.vectors array consists of the transformed unit vectors. The 'volume-of-

interest! in the voxel data set is determined by start- and end values of voxel indices in

x, y and z direction. These values are stored in the transform.sizes array. The remaining

parameters (z.cut.value and threshold.value) are used 'y the rendering process to

discard certain voxels. The response from the network has a number of additional

parameters next to the actual data (the image). This is caused by the fact that the

transmitted data is being processed by the 'mergers', which needed those parameters.

-) Commands to compute statistical data from the voxel data:

-) to.net 1 command; pe.histogram;

[3][2]INT transform.sizes;

INT threshold.value

response : command; merge.histogram;

[256]INT histogram

Again, the response reflects the fact that the mergers are involved in the communication

of the histogram data.

-) 3D image processing operations

The meaning of these operations is clearly indicated by their tags.

-) to.net ! command; pe.laplace

response : none

-) to.net 1 command; pe.sobel

response : none

TNO report

Page

40

-) to.net! command; pemean

response : none

-) to.net! command; pemedian

response : none

-) Command to apply grey scale transforms to the voxel data set

-) to.net I command; pe.grey.transform;

[3][2]INT transform.sizes;

[256]INT grey.table

response: none

All voxel data values (within the volume-of interest) are exchanged against the value

that is found in the corresponding entry of 'grey.table'.

The 'quit' tag will close down the application:

-) to.net I quit

response: quit

5.5.2 PE to PE communication :
PE's are connected together and exchange information using all defined main tags:

-) commands

All PE commands are results of Controller actions, no commands are transmitted on a PE's
initiative. Most of the possible commands have been listed in the 'controller to PE interface',

they are interpreted by the 'distributer' and forwarded to the next PE. The remaining

commands are related to the merging of 'partial results'. These commands are transmitted

and received by the 'merger' process. Ultimately such a command/data packet will arrive at

the Controller.

-) merger.out I command; merge.histogram;

[256]INT histogram.data

response: none

-) merger.out I command; merge.inage;

BYTE render.mode;

BOOL forward.merge;

[SCID][SCID]BYTE subcube.image

response : none

MNO report Pg

41

data

Data packets are exchanged between PE's to transmit stored data from one PE to the next

and ultimately to the Controller. Possible data packets are:

-) out! data; slice.data; [SCDY][SCDX]BYTE slice

response: none

-)messages

Any module within a PE may generate a message. Messages will be forwarded in the

direction of the Controller by any receiving process within a PE.

quit
This tag must also originate from the Controller, it is forwarded from one PE to the next and

it must also be echoed back to a sending PE.

5.5.3 Controller to TFG communication:

The TFG expects only two main tags from the Controller:

-) commands

-)quit

Communication from the TFG consists of

-) messages

*)data

-) quit

The possible commands are separated into several groups:

SDisplay a slice on the screen:

-) to.tfg! command; tfg.loadslice;

CSCDY][SCDXIBYTE slice

response: none

The command is mainly used to display slices during the loading of a voxel data set

from disk into the network.
Send a slice image from the screen:

-) to.tfg command; tfg.send.slice

response data slice.data;

[SCDY][SCDX]BYTE slice
When the TFG has grabbed a new image, this command is used to load the slice into

the voxel data set.

TNO report

Page
42

-) Send an image from the screen:

-) to.tfg ! command; tfg.send.irnage

response: data; image.data; [ID] [ID]BYTE image

The image visible on the display is send, including text, grey scales etc. The image

could be used for storage on disk.

-) Send an image to the screen:

-) to.tfg ! command; tfg.load.image;

INT start.y; INT nr.lines

[nr.lines][ID]BYTE image

response: none

The transmitted image is displayed on the screen. The image is either read from disk or

it may be the result of a rendering operation. The actual number of image lines is a

variable (nr.lines'), to prevent text or status lines visible in the display from being

overwritten. The starting location in vertical direction for the first line is given by
.start.y'.

-) Initialise the screen:

-) to.tfg I command; tfg.mem.preset; INT color

response : none

The command initialises the display to the value 'color'. This command is mostly used

to clear the screen (i.e. color set to 0).

-) Plot operations on the screen:

-) to.tfg ! command; tfg.load.histogram;

[256]INT table

response : none

This procedure is used to load and plot the contents of an array (e.g. a histogram or a

color look-up table). The data is scaled to a maximum of 255 before plotting.

-) to.tfg I command; tfg.slice.border

response: none

When the TFG is used to grab a slice of data, it is helpful to draw a square on the

screen to indicate the borders of this slice, since the slice is only a section of the screen.

The dimension of the square is DY by DX pixels with its center corresponding to the

center of the screen.

I

f I-

TNO report
r!

Pagef
43

-) to.tfg! command; tfg.load.string;

INT x.pos; INT y.pos;

INT background.color;

INT foreground.color;

length::length]BYTE string

response: none

This command is used to display text on the screen. The x.pos and y.pos values indicate

the upper right corner of the text. All characters have a size of 16* 16 pixels.

-) to.tfg ! command; tfg.logo

response: none

The result is a TNO logo on the TFG screen.

-) to.tfg ! command; tfg.draw.line;

INT x.start; INT y.start;

NT x.end; INT y.end

response : none

A white line is drawn on the TFG screen connecting the given coordinates. The

command is used to draw the reference coordinate system on the screen.

-) to.tfg ! command; tfg.grey.ref.bar

response: none

A reference grey scale is drawn it the lower left corner of the screen. This grey scale is

useful to display the contents of the color look-up tables.

-) to.tfg ! command; tfg.test.pattem

response : none

The result is a test pattern on the TFG screen. The pattern has a grid to adjust the
geometry of the monitor and grey- and color bars to adjust intensity and color.

Commands to control the frame grabber

-) to.tfg 1 command; tfg.continuous.grab

response : none

The frame grabber switches to 'transparant' mode, this means the current video input

signal is shown directly on the display.

-) to.tfg I command; tfg.snapshot.grab

response : none

A snapshot (frozen image) is taken from the current video input signal. This image may

now be used as slice da.

ii

TNO report

Page
44

-) Commands to manipulate the color look-up tables.

The TFG stores four local color look-up tables. At any time only one table is active in the

conversion of greyvalues to pseudo-colors.

-) to.tfg ! command; tfg.select.lut;

INT active.lut.nr

response: none

The valid range for active lut.nr is [0..3], this value selects one of the stored tables. The

table will be used immediately to convert the data in the frame memory (BYTES) to

RGB values on the screen.

-) to.tfg ! command; tfg.load.lut;

INT lut.nr;

[3][256]INT color tables

response: none

This command is used to load new data in one of the local color tables of the TFG. The

lut.nr values indicates which table is selected, the three arrays that follow it represent

the table contents for red, green and blue. Table entries are limited to the [O..63> range

(i.e. 6 bits of ROB resolution).

The application will finish execution after receiving a 'quit' tag:

-) to.tfg ! quit

response : quit

5.6 Configuration files

The system is very flexible in the dimensions of the objects that are to be transformed. The voxel

object dimensions are an important factor for the software, since many internal data structures are

dependant of them. Only four dimensions must be provided within the configuration file

'vox..cnst.tsr' to select a different object size. These values are:

-) The dimensions of the voxel object

-) The size of the resulting image

Several other values are automatically derived from these values. This is illustrated in listing 5.1.

In the current version, a change of these library values does require a recompilation. It is possible

to adapt the software to provide a run-time selectable object size.

Some restrictions must be considered for the object sizes:

TNO report

Page

45

-) The total amount of available memory for a Subcube node must not be exceeded (currently 2

MByte).

-) The projection of the transformed object must fit within the size of the resulting image, since

no clipping has been provided sofar.

-) Some optimisations have been implemented in the current version of the voxel-processor

that require the object dimensions to be a power of t-w;-o. This can be changed easily without

a significant performance penalty.

Listing :5.1

List of File : voxcnst.tsr

File Last Modified : 22-11-90

{(VAL's for voxel object (128*128*128)

-- Object dimensions in x, y and z
VAL DX IS 128
VAL DY IS 128

VAL DZ Is 128

-- Resulting image dimension
VAL ID IS 256

-- All remaining system constants are derived from the values given above

-- Object dimension
VAL DX1 IS (DX-1)

VAL DY1 IS (DY-1)
VAL DZ1 IS (DZ-l)
-- NumbAr of voxels in object
VAL VOL IS ((DX *DY) * DZ)

-- Object center
VAL H.DX IS (DX/2)
VAL H.DY IS (DY/2)
VAL H.DZ IS (DZ/2)
-- Resulting image
VAL IDI IS
-- Result image center
VAL H.ID IS (ID/2)
VAL H.ID.REAL IS (REAL32 ROUND H.ID)
-- Subcube object dimensions in x, y and z

VAL SCDX IS DX
VAL SCDY IS DY

VAL SCDZ IS (DZ / NR.OF.NODES)
VAL SCDX1 IS (SCDX-l)
VAL SCDYl IS (SCDY-l)
VAL SCDZ1 IS (SCDZ-l)
-- Number of voxels in Subcube object

-- I

TNO report

Page
46

VAL SCVOL IS ((SCDX * SCDY) * SCDZ)
-- Subcube result image dimensions

VAL SCID IS ID

-- Number of bytes in a sector on disk

VAL SECSIZ Is 512
VAL SECT.IN.SC.PLANE Is ((SCDX * SCDY) / SECSIZ)

VAL NO.OF.SECTS.IN.SC IS (SCVOL / SECSIZ)
VAL NO.OF.SECTS.IN.OBJ IS (VOL / SECSIZ)

Changing the number of subcube processors is easy, because of the modular set-up. This results

in a flexible cost/performance ratio. The software is identical for all Transputers, parameters are

used to compute which actual slices are to be stored and processed on a specific node. Several

parameters are used to control the configuration of the system. These parameters are stored in the

library 'vox-conf.tsr (Listing 5.2), they control :

-) The number of subcube processors used in the system

-) The processor topology

Changing these parameters does require a recompilation of the system software (since the data is

distibuted differently) and of the network configuration code ('PROGRAM voxnet.tsr). The

table 'LAST' is used to enable an easier transfer from a pipeline to a tree topology. The BOOL's

found in the table indicate that a processor node is at the end of a pipe of processors and should

not attemp to forward any messages.

The restrictions in the number of nodes are:

-) The total amount of available memory for a Subcube node must not be exceeded (currently 2

MByte).

-) There must is a minimum of one 'slice' per node, this implies that a maximum of'DZ'

subcube nodes can be used for any object.

IV

TNO report

Page
47

Listing: 5.2

List of File : voxconf.tsr

File Last Modified : 22-11-90

{{ VAL's for 16 processor configuration

* -- Total number of subcube processors

VAL INT NR.OF.NODES IS 16
S-- Table to indicate that subcube processors is at the end of the processor

pipeline
VAL[NR.OF.NODES]BOOL LAST.ARRAY IS

FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE I

1)
5.7 Implementation Remarks

-) The Voxel processor is built up entirely with of-the-shelf hardware. Each MTM-2 processor

board [12] offers two T800's with 2 MByte of memory each, so two PE's are loacted on the

board. Other boards used, are the Display System TFG [13] with an on-board framegrabber,

a T800 and I MByte of video-ram and a TPM-4 processor board (14] with 4 MByte memory

for the controller. Physically the system consists of a 19" cabinet with 10 single euro-sized

boards installed. The host system in the Voxel-processor is an IBM-AT.

-) New or improved rendering operations can be added easily, since the system has been set up

very modular. The main restriction is the fact that, in the current implementation, a sub-cube

processor has no direct access to (voxel) data located in other PE's.
-) A communication layer is integrated into the system. This layer provides data and command

transport to all processes, and it is also capable of sending (debug) messages from any

process to the operator screen.

TNO report

Page
48

6 SOFTWARE DESCRIPTION

6.1 Introduction

The Voxelprocessor software is written in OCCAM 2 [7], developed under the MULT1'OOL 5.0

system running on a PC-AT. This development system uses a 'Folding Editor' [15] to write the

code. The folding editor is in our opinion a very useful tool during development and presents a

clear overview of the code on the console screen. The main advantage of a folding editor is that it

supports a 'top-down' view of the software. At each level, the user only sees the main structure of

the program, with details folded away. The contents of a fold can be described in the fold header.

A closed fold is represented by "... Closed Fold Header". A fold lister program is available for

documentation purposes. This tool generates listings of the source code with folds opened or

closed under user control. These listings will be used here to describe the basic operation of the

software, without going into every detail. The top-down approach of the folding editor will be

used here for the description of the software : the general structure of the programs will be

explained first, with details temporarily hidden in folds. Only the most important parts will be

explained, different cases of the same basic operation will not be treated each time over.

The top level of the Voxel-processor software is shown in listing 6.1, it consists of three parts:

1) The Libraries.

Constants, variables or procedures that are (or could be) used in several processes of this

application were developed as Library code. Examples are message communication tags,

that must be known both to the transmitting- and to the receiving process. The configuration

details are also stored in a Library, for example : the size of the voxel-dataset and the

number of processors in the network.

2) The EXE code

This part of the software runs on the 'root' Transputer, that is the processor with access to the

Host PC-AT computer. The EXE runs under control of the Transputer Development System

(TDS), also known as 'MULTITOOL 5.0'. The EXE code is used to control the operation of

the Voxel-processor.

TNO report

Page
49

3) The PROGRAM code.

This is the code that runs on the rest of the Transputer network. It consists of three parts:

-) The code for the SubCube processors.

-) The code for the Framegrabber/Display processor.

-) The Network configuration description.

Listing : 6.1

List of File: "voxel.tsr"

File Last Modified: 22-11-90

--- Libraries :
.F voxconf.tsr --- number of processors in the network
.F voxcnst.tsr --- dimensions of the Voxel dataset
.F voxproc.tsr --- rendering procedures for Network processors
.F tfgtag.tsr --- communication tags Controller <-> Framegrabber
.F voxtag.tsr --- communication tags Controller <-> Network

. menuio.tsr --- menu display and parameter i/o procedures
.F dewrite.tsr --- procedures to display debug messages

--- System
... EXE voxcntr.tsr --- code running on the root processor
... PROGRAM voxnet.tsr --- code running on the network processors

6.2 The EXE Controller

The EXE Controller is the origin of all commands to the system and it is the destination of all

computed results. The operator communicates with the 'user-interface' part, which interprets and

exevies his commands. The user-interface consists of a menu system, that shows all possible

commands and the presently active parameter settings. The operator may move through the menu
options by pressing function keys, arrrow keys or characters. The selected menu entry is indicated
by a high-lighted bar. Operations can be started by pressing the 'return' key on an menu entry. The

Controller is the only process that has access to the.keyboard, screen and disks of the host

computer (the PC-AT). After loading the sub-cube processors with voxeldata from the disk or via

the framegrabber, the object may be rotated and viewed interactively under the command of the

Controller. The resulting images are received by the Controller and send to the Framebuffer board

for display. The results can also be stored on disk, and read in again at a later time.

TNO report m
page

50

Listing: 6.2
List of File: "vox -cntr.tsr'

File Last Modified : 22-11-90

link channel numbers
{(channels

CHAN OF ANY from.auto.pilot

CHAN OF ANY from.tfg, to.tfg
PLACE to.tfg AT linkouti
PLACE from.tfg AT linkinl

CHAN OF ANY from.net, to.net
PLACE to.not AT linkout:2
PLACE from.net AT linkin2

... SC T8 auto.pilot

... SC T8 control.tsr -- user interface (tfg)
-- manual & autopilot control

PAR
auto.pilot (keyboard, from.auto.pilot)
controller (from.auto.pilot, screen,

from.filer, to.filer, from.ios, to.ios,
from.ret, to.net, from.tfg, to.tfg)

Listing 6.2 shows the toplevel structure of the EXE Controller. The function of the channels to the

host (keyboard, screen, to/from.filer and to/from.iL:\) should be clear, to/from.net are used for

sending commands and data to the Transputer network. To/from.tfg are used for sending images

to the Frainebuffer for display and to receive images that were grabbed from the camera. In this

implementation, an Autopilot has been included. Its function will be explained later. If desired, a

Controller EXE without the Autopilot could be build by simply removing the SC auto.pilot and

replacing the from. auto.pilot channel with the keyboard channel.

TNO reporI

Page
51

6.2.1 The SC Controller

The basic structure of the SC Controller is shown in listing 6.3.

Listing: 6.3

List of File: "control.tsr"

File Last Modified : 22-11-90

PROC controller (CHAN OF INT keyboard,
CHAN OF ANY screen,

from.filer, to.filer,
from.ios, to.ios,
from.net, to.net, from.tfg, to.tfg)

.. header.tsr -- Declarations

... menu.tsr -- Menu related stuff

.. net.tsr -- Receive data/mess from network

.. PROC rotate routine -- Suboube transform parameters

.. PROC init.unit.vect

.. PROC init.rotate.param

.. text.tsr -- Text markers

.. displ.tsr -- Display parameters on screen
... lutio.tsr -- Init/Load/Save LUT tables

... imagio.tsr -- Load/Save images

.. objectio.tsr -- Load/Save Object
SEQ

... init variables

... show banner
running :- TRUE
WHILE running

... declarations
SEQ

menu () --- draw menu's
PRI ALT

from.net ? tag
receive.mess (tag) --- action on network message

keyboard ? ch
... F key.tsr --- action on keyboard command

The Controller start with some initialisations of variables, it then sends a banner to the PC
display and shows a Logo on the Framegrabber screen. From that moment on, the Controller runs

in a loop, displaying the menu structure ('menu' procedure) and awaiting user commands to be

executed ("... key.tsr" fold). Alternatively the Controller can also receive messages from the.

network ("... net.tsr" fold). The messages could either be results from an ongoing computation or

possibly error messages. The Controller consists of several basic building blocks:

TNO report

Page
52

-) The menu system.

menu.tsr" fold, (6.2.1.1).

-) The network communication part.

net.tsr" fold, (6.2.1.2).

-) The action on keyboard input fold.

... key.tsr" fold, (6.2.1.3).

The disk interface routines, consisting of:

-) Voxel dataset load and store.

"... objectio.tsr" fold, (6.2.1.4).

-) Result images load and store.

"... imageio.tsr" fold, (6.2.1.5).

-) Look-up table load and store.

"... lutio.tsr" fold, (6.2.1.6).

-) Rotated unit vectors calculation

"... rotate.tsr" fold, (6.2.1.7).

-) Parameter display on Framegrabber screen.

"... display.tsr" fold, (6.2.1,8).

The detailed operation of the Controller will be described through these building blocks.

TNO report t '
Page53

6.2.1.1 Menu system

Ile menu system is the backbone of the Controller, all operations are guided through it. The

menu system is in fact a 'software state machine. Its state is represented by the variable 'state'.

Each state corresponds to a certain menu on the screen (displayed by the 'menu O' procedure) and
a certain interpretation of the received user commands (performed by the "... key.tsr" fold). All

possible states have been given names, corresponding to an integer value.

These names and values are:

{{{ state names
VAL MAIN.state IS 1
VAL RENDER. state IS 2
VAL OPTIONS.state IS 3
VAL COLOR.state IS 4
VAL GRABBER.state IS 5
VAL OBJECT.state IS 6
VAL INTER.ROT.state IS 21
VAL ITER.CUT.state IS 22
VAL INTER.SLC.state IS 23
VAL EDIT.state IS 45
VAL MAN.GR.state IS 51
VAL AUTO.GR.state IS 52
VAL EDGE.state IS 60
VAL NOISE.state IS 61
VAL GREY.SCL.state IS 64

Each state also has a menu list assigned to it. This list will be displayed on the operator screen

when the state becomes active. The entries in the list show the possible user commands that can

be selected in this state. IMENU.TABLE' is used to declare all entries (i.e. text) of all the menu's.

The menu's must have a standard size of max. 10 entries per menu, and a max. of 30 characters

per entry. This entry data is stored in the 'menu.table' variable during run time, so that it's contents

may be changed (when parameter values in the menu's are changed).

TNO report

Page

54

The contents of the MENU.TABLE is partly shown here:

VAL MENU.TABLE IS {{(main
I[" Load Object

" Save Object

" Load Image ",

" Save Result

Dos Shell
Quit

I, tI]3,

... rotate

... options

.. color
... grabber

... object

other menu's

3 :

The 'MENU.DATA' constant array is used to store several parameters of each menu list:

-) The size of the menu, the number of entries (depth) and its width.

-) The upper left comer position of the menu border when it is displayed on the screen.

-) The selected item in the menu and the previously selected item, used to show the seLcted

entry in inverse video.

The meaning of the parameters is clearly illustrated in the figure below:

x

y
width

selected =>
deselected -> depth

TNO report Page

Page

55

I, *ti
For MAIN.state, the values are as follows:

MENU.DATA [MAIN.state] IS [0, 3, 17, 6, 0, i]

The fields of the 'MENU.DATA' and 'menu.data array are accessed using the following

definitions:

VAL MENU.X IS 0
VAL MENU.Y IS 1
VAL MENU.WIDTH IS 2
VAL MENU.DEPTH IS 3
VAL MENU.SELECT IS 4
VAL MENU.DESELECT IS 5

The 'menu.data' variable array holds the menu parameter data during run time, so that it may be

changed.

The menu structure on the screen can be seen as a 'tree' of menu's, since some menu entries will

result in new (sub-) menu's being opened on selection. The presently active menu tree is stored in
the 'menu.tree' variable array as a sequence of state numbers. The menu tree is used each time the

menu structure has to be redrawn. The present depth of the tree is stored in 'menu.tree.depth'. This
value is changed when a (sub-) window is added to or removed from the tree.

Whenever the menu tree is redrawn on the screen, this can be done in tree defined modes

REDRAW, ADD or UPDATE, The different modes have been implemented to improve the speed

of the redraw action if possible. The differences are:

-) REDRAW

A complete redraw of the menu tree, starting from an empty screen. This mode is chosen
when a 'function' or 'arrow' key is used to switch between menu's.

-) ADD

This mode is selected to add a new (sub-) window to the menu screen. The windows that are

present on the screen are overwritten if they are overlapped by the newly added one.

-) UPDATE

This mode only changes the selection pointer in the presently active menu. It is probably the

most often used redrawing mode.

TNO rpoI

Page
56

The menu redraw mode is passed t, 'PROC menu ()'via the'menu.adapt' variable. This variable is

set to one of the above options depending on the last keyboard action.
Listing 6.4 shows how 'PROC menu 0' responds when the REDRAW option is active, as

mentioned, the other two modes will perform only parts of this complete redraw.

Listing: 6.4

{{(PROC menu -- redraw menu (different modes)
PROC menu ()

(((PROC top.level (
PROC top.level ()

-- draw main menu names at top of the screen
... VAL top.line
... VAL bottom.line
SEQ

screen !tt.goto; U; 0
write, full. string (screen, top. line)
(({ top level menu names
write.full.string(screen, "H MAIN 11 RENDER

IOZTIONS 11 COLOR
IGRABBER 11 OBJECT II*c*n")

write, full, string (screen, bottom. line)

IF
nenu.adapt - REDRAW

({(redraw complete menu tree
SEQ
top.level (
bcreen ! tt.cl,;ar.eos -- clear the rest of the screen
--show all menu's in the menu tree

SEQ menu.count-O FOR menu.tree.depth
(((show the menu
INT X, Y:
menu.active IS menu.tree [mena.count]
active.data IS menu.data [menu.active]
menu.select IS active.data (MENU.SELECT]
menu.width IS active.data (MENU.WIDTH]
menu.depth IS active.data. CMENU.DEPTH]
SEQ

--goto upper left corner of the menu
X :-active.data EMENU.X]
Y :-active.data CMENU.Y]
screen ! tt.goto; X; Y
({{ display top menu border
write-full.string (screen, "*#C9") --

Ii

TNO report

Page
57

write, full. string (screen,
[DOUBLE.LINE FROM 0 FOR menu.width I)

write.full.string(screen, "*#BB")
Y := Y + 1

--- show all entries of the menu
SEQ entry-O FOR menu.depth

{{(left border, menu entry, right border
SEQ
-creen ! tt.goto; X; Y
write.full.string(screen, "*#BA") ---
--- entry selection
IF
entry = menu.select

... write menu entry in inverse video
TRUE

... write menu entry normal
write.full.strinj (screen, "*#BA")
Y :- Y + 1

... bottom menu border L- "

menu.adapt - ADD
... add new menu : menu.tree [menu.tree.depth-l]

menu.adapt - UPDATE
... update select pointer menu : menu.tree Imenu.tree.depth-l]

6.2.1.2 Network communication

Listing 6.5 shows the contents of the 'net.tsr' file. This file consists of two procedures that the

Controller uses to receive data or messages from the network. The 'PROC receive.mess 0'
procedure runs in the main loop of the Controller and is ready to receive messages at any time.

These messages will only occur when the system is in debug mode and the network processors

send eror- or progress messages to the screen. When a message is received, it causes the display

of a sp.,cial window at the bottom of the screen. The message has a standard protocol. consisting

of a source identification string (ID.String) and a text string containing the actual information.

The ID.string is displayed in the window border, while the message itself is written inside the

window. The procedure waits for a keystroke to give the operator time to read the message, and

continues normal execution after removing the message window.

TNO report

Page
58

The second prccedure, 'PROC receive 0', is activated by the Controller when it expects certain

data from the network in response to given commands. The procedure will check the actual

received data type against the expected type. If the "received.type" is equal to the "expected.type"

then the variable "ok" is set "TRUE". Any expected data may be preceded by one or more

(unexpected) messages. Error messages are displayed whenever unexpected or unknown tags are

received. The listing shows only the main structure of the procedure since it is basically identical

for all possible types. The protocols for the received network data have been described in chapter

5.5.

Listing: 6.5

List of File : "net.tsr --- Receive data/mess from network"

File Last Modified : 4-11-1990

{({ VAL expected types for PROC receive
--- These are the possible data types that the
--- controller can expect to receive from the network.
VAL receive.message IS 0 (BYTE)
VAL receive.merge IS 1 (BYTE)
VAL receive.image Is 2 (BYTE)
VAL receive.slice IS 3 (BYTE)
VAL receive.histogram IS 4 (BYTE)
VAL receive.quit IS 5 (BYTE)

{({ PROC receive.mess ()
PROC receive.mess (BYTE tag)

--- This unit will only receive messages from the network.
--- Any other received data type will cause an error report.
IF
tag - message

{{ process one message
{{ VAR's
INT any, x, y
INT length :
[8]BYTE ID.string
(80]BYTE string

SEQ
-- short.beep()
{ draw message window
screen ! tt.goto; 0; 19; tt.clear.eos
... top border " MESSAGE FROM

... middle --

bottom Strike Any Key...

TNO repot L

I Page59

1))

{({ show sender id
from.net ? ID.string
screen ! tt.goto; 42; 19 -- correct position in window border
write.full.string (screen, ID.string)

{{{ init x, y
x :=2
y :- 20
screen ! tt.goto; x; y

{{{ receive and show message string
from.net ? length::string
write.full.string(screen, (string FROM 0 FOR length])

{{{ wait for any key to continue
keyboard ? any
screen ! tt.goto; 0; 19; tt.clear.eos

1)))

tag - command
{{{ error
SEQ

screen ! tt.goto; 0; 0; tt.clear.eos
write.full.string(screen,

"ERROR - Message expected, Command tag from network")
wait.any (keyboard, screen)

tag - quit

... error

TRUE
... error

{{{ PROC receive)
PROC receive (CHAN OF ANY to.contr, VAL BYTE expected.type, BOOL ok)

--- This unit will receive messages, or data from the network.
--- It will check the actual received data type against the expected
--- type. If (received.type - expected.type) then ok :- TRUE.
--- Any expected data may be preceded by one or more messages.
BYTE tag
SEQ
ok :- FALSE
to.contr ? tag --- receive
({(process possible preceding messages
WHILE (tag - message) AND (NOT (expected.type - receive.message))

SEQ
... process one (unexpected) message

to.contr ? tag --- receive more

TNO repot

Page

60

{{process expected data
IF
tag = message

{{{ process message
IF

(expected.type - receive.message)
... ok, receive message

TRUE
f{{ error --- this can not happen !
SEQ

screen ! tt.goto; 0; 0; tt.clear.eos
write.full.string (screen,

"ERROR - Unexpected message tag from network ")
wait.any (keyboard, screen)

tag - command
{({ process command
SEQ
to.contr ? tag
IF
tag - merge.image

({{ receive merged image
IF

(expected.tye = receive.merge)
... ok, receive image

TRUE
... "ERROR - Unexpected sub.tag from network

tag - merge.histogram
(((receive histogram
IF

(expected.type - receive.histogram)
... ok, receive histogram

TRUE
... "ERROR - Unexpected sub.tag from network"

TRUE

... "ERROR - Unknown command sub.tag from network"

tag - data
{{(process data
SEQ
to.contr ? tag
IF
tag - image.data

{{{ receive image
IF

(expected.type - receive.image)
... ok, receive image

TNO report

Page I
~~1

TRUE
... "ERROR- Unexpected sub.tag from network"

)1
tag = slice.data

{{{ receive slice

(expected.type - receive.slice)
... ok, receive slice

TRUE
... "ERROR - Unexpected sub.tag from network"

TRUE
... 'ERROR -Unknown data sub.tag from network"

tag - quit
{{ process quit

d IF

(expected.type - receive.quit)
... ok, quit

TRUE
"ERROR - Unexpected Quit tag from network"

TRUE
"ERROR - Unknown main tag from network"

6.2.1.3 Keyboard action
Listing 6.6 shows the '... key.tsr' fold. Incoming characters are checked in a CASE structure.

Function keys (F2...F6) cause a direct change of state. With these keys the user may switch from

any (sub) menu to any other menu. The exact operation can be found in the fold '... ch = Function

key' (Listing 6.6.1), with the first case (ch = F2) written out. If the received character is not a
function key, the CASE construct in '... key.tsr' will fall through to the '... ch = State specific

key'. Listing 6.7 shows the contents of this fold.

TNO report

Pagei 62

Listing: 6.6

List of File: Ikey.tsr

File Last Modified : 22-11-90

({(VAL declarations
... Function keys
... Other keys
... Other values
1)
IF
... ch = Function key
... ch = State specific key

The result of pressing the F2 key is a switch to 'state = MAIN.state' and the according settings of

certain variables for the correct update of the menu structure on the screen. A special key (#) has

been reserved to bring the Controller in a debug mode, where intermediate results will be

displayed on the user screen.

Listing: 6.6.1

List of Fold : 'ch - Function key'

ch - F2
{({ MAIN.state
SEQ
state :- MAIN.state
menu.tree[O] :- MAIN.menu
menu.tree.depth := 1
menu.adapt :- REDRAW

ch = F3
... RENDER. state

ch - F4
... OPTIONS.state

ch = F5
... COLOR.state

ch - F6
... GRABBER.state

ch - F7
... OBJECT.state

ch = DEBUG.MODE
... debug.mode On/Off

The '... ch = State specific key' fold starts with some abbreviations to the active menu : the

number of entries, the presently high-lighted entry etc. This is useful, to enable quick access to the

data.

TNO repofl

Page :

The process then jumps to a unique branch for each possible state of the menu state machine. The

received characters will be interpreted differently depending on the currently active state.

Listing: 6.7

List of Fold: "ch = State specific key"

TRUE

{{{ menu abbreviations
menu.active IS menu.tree [menu.tree.depth -1]

active.data IS menu.data [menu.active]
menu.depth IS active.data [!MENU.DEPTH]
menu.select IS active.data [MENU.SELECT]
menu.deselect is active.data [MENU.DESELEcT]

{{F state case
IF,
state = MAIN. state

... interpret keys and execute actions
state = RENDER.state

state =OPTIONS.state

state -COLOR.state

state - GRABBER.state

state - OBJECT.state

state =INTER.ROT.state

state -INTER.CUT.state

state - INTER.SLC.state

state - EDIT.state

stat - MAN.GR.state

state - GREY.SCL.state

state - EDGE.state

stat e - NOISE.state

TRUE
... error

TNO report

Page

64

The '... interpret keys and execute actions' branch is selected when the 'MAIN.state' is active.

Listing 6.8 shows the contents of this fold. As described earlier, the received characters will be

interpreted according to the possible commands in the 'MENU.state'. The basic structure of this

fold is not only used for 'MAIN.state', but for all other states also. The other states will therefore

not be described explicitly. The possible keys for each state can be ordered in a number of

categories:

1) Arrow Left or Right : switch to the neighbour state as indicated on the screen layout. The

result is identical to pressing the corresponding function key.

2) Arrow Up or Down : move the high-lighted bar to the previous/next menu entry. The high-

light moves from top to bottom at the last or first entry, if necessary. Using the arrows keys

does not activate the selected entry.

3) Character keys are used to get a direct and faster selection of an entry. This is an alternative

to using the up/down arrow. The first character of an entry is normaly used for this selection.

4) Pressing the 'return' key activates the high-lighted menu entry.

5) Keys that are not trapped in the CASE structure, will be considered 'illegal' and cause a

'beep' on the console.

Listing 6.8

{({ interpret keys and execute actions
IF.

{{{ switch menu
ch - ft.left

SEQ

state :- OBJECT.state

menu.active :- OBJECT.menu
menu.adapt :- REDRAW

ch - ft.right

SEQ
state :- RENDER.state

menu.active : RENDER.menu
menu.adapt :- REDRAW

(switch selected item
ch = ft.up

SEQ

TNO repo t

65

menu.deselect menu.select

menu.select := menu.select I
IF
menu.select - MINUS.ONE

menu.select :- menu.depth - 1
TRUE
SKIP

menu.adapt UPDATE
}))

ch = ft.down

SEQ
menu.deselect : menu.select
menu.select := (menu.select + 1) \ menu.depth
menu.adapt UPDATE

(ch - KEY.L) OR (ch - KEY.l)

{{{ Load Object high-lighted
SEQ
menu.deselect := menu.select
menu.select 0
menu.adapt :- UPDATE

)))
(ch EY.S) OR (ch - KEY.s)
. Save Object high-lighted

(ch - KEY.I) OR (ch - KEY.i)

... Load Image high-lighted
(ch - KEY.R) OR (ch - KEY.r)

... Save Result high-lighted

(ch - KEY.D) OR (ch = KEY.d)

... DOS Shell high-lighted

(ch - KEY.Q) OR (ch = KEY.q)

... Quit high-lighted

({{ select item
(ch - return) AND (menu.select = 0)

.. Load Object action

(ch - return) AND (menu.select - 1)
... Save Object action

(ch - return) AND (menu.select - 2)
.. Load Image action

(ch - return) AND (menu.select - 3)
... Save Result action

(ch - return) AND (menu.select - 4)
... DOS Shell action

(ch - return) AND (menu.select - 5)
... Quit action

{((ILLEGAL CHOICE

TRUE

TNO report

Page
66

SEQ
menu.adapt : UPDATE
short .beep (screen)

The result of pressing the 'return' key on the 'Load Object' menu entry is described in listing 6.9.

All actions requiring user supplied parameters, like filenames, angles or colour tables, will open a

special window at the bottom of the screen. The size and position of this window is controlled by

the constants X, Y, WIDTH and HEIGHT, which are defined at the start of the '... Load Object

action' fold. These constants might be different for other actions, depending on the number of

expected user parameters. The procedure 'draw.window 0' will perform the actual drawing of the

window borders, using the already mentioned constants. Several procedures have been defined to

perform user i/o of parameters within the borders of the window.

These procedures are:

-) get.filename.

This procedure will take a given prompt, display it and wait for a user supplied file name.

Depending on the type of file i/o (read or write), it will check for the existence of the

requested file or alternatively create a new file with this name. The procedure will display

error messages within the window borders if necessary, and exit with the 'Error' variable set

to a non-zero value after a certain number of consecutive errors. If all goes well, the user

supplied filename will be assigned to the string variable 'File.name' and its length will be

found in 'File.name.len'

-) get.string

This procedure is identical in function to the previous one, but it will just read in an

unchequed string.

-) get.int

This procedure is identical in function to the first one, with the difference that it is meant to

read integer values. The integer values will be chequed against a minimum and maximum

value that is supplied as a procedure parameter.

-) get.bool

This procedure is again identical to 'get.integer', but intended to read in Boolean values (Y',

'y', 'N' or 'V).

TNO report

! {
Page

67

The screen area occupied by the window can be erased again by the 'clear.window' procedure,

which uses the same parameters as 'draw.window'. A faster method however is to directly access
the 'screen' channel and clear the area below the cursor with:

screen I tt.goto; X; Y; tt.clear.eos

Two plocedures have been added to activate and disable the cursor on the PC screen, these are
'cursor.on' and 'cursor.off During normal menu control, the cursor will be turned off, the current
position on the screen is indicated by the high-lighted bar. For user i/o however the cursor should

be visible in the parameter window again. The two procedures use the 'to/from.ios' channels,

which provide direct access to the PC's interrupt mechanism. Through 'INT 10' it becomes

possible to change the cursor size to zero, thus making it invisible. The window and parameter

input procedures are located in the '... LEB menu.io' fold.

After entering a valid file name (Error = 0), the '... Load Object action' fold will continue by
reading the requested voxel dataset from disk and loading it in the Transputer network. As

mentioned before, the data will be read in on a slice by slice basis, displaying each slice on the

framegrabber screen and sending it to the correct Processor Element (PE). This combination of

actions is performed by the 'load.object' procedure (6.2.1.4). After successfully loading a new

object (Error = 0), several variables will need to be reinitialised and the operator will be requested

to supply a name for the voxel dataset. The initialisation procedures will be described in

following paragraphs. The user supplied name is embedded in a header string that is continuously

displayed at the top of the framegrabber screen. This header string is build by 'create.top.line2 0'.

Listing 6.9

List of Fold: 'Load Object action'

INT Error
[63)BYTE File.name -- Chosen filename
INT File.name.len -- Length of filename

VAL X IS 0 :
VAL Y IS 18 :
VAL WIDTH IS 77
VAL HEIGHT IS 3
}1)
SEQ
draw.window (screen, X, Y, WIDTH, HEIGHT)
cursor.on (from.ios, to.ios)
get.filename C keyboard, screen, from.filer, to.filer,

(X+1), (Y+1), WIDTH,

TNO report

Page
68

"Enter Object Filename : ,tkf.open.read,

IF File.name.len, File.name, Error)

Error =0
{{{ load object
SEQ

-- Clear screen to prepare for object slices

to.tfg ! command; tfg.mem.preset; 0

load.object ((X+1), (Y+2), WIDTH,

File.naxne.len, File.name, Error
IF
Error - 0
(((init parameters & read descriptor
SEQ

init.unit.vect (
init.rotate.param (
mnit .menu .tables (

get.string (keyboard, screen,
(X+1), (Y+3), WIDTH,

1Descriptor string
descriptor. len,
descriptor.string)

create .top. line.2 (descriptor. len,
descriptor. string)

TRUE
SKIP

TRUE
SKIP

cursor.off (from.ios, to.ios)
screen !tt.goto; X; Y; tt.clear.eos

6.2.1.4 Voxel dataset load and store

The voxel dataset has a size of DX*DY*DZ voxels, this data is distributed across

NR.OF.NODES processing elements (subcube processors). The voxel dataset is represented as

DZ slices of size DX*DY. Each subcube is assigned a number of slices (SCDZ). The dataset sizes

on the subcube processors are named SCDX, SCDY and SCDZ. It will be clear that the following

relations exist:

SCDX = DX

SCDY = DY

SCDZ = DZ / NR.OF UODES

TNO report

Page

69

Loading voxel data into or out of the network is done on a slice by slice basis. Data is read from

(or written to) disk in blocks, until one slice is complete, this slice is temporarily stored in the

[ID][ID)BYTE image array. The slice will then be transmitted to (or has been received from) the

appropriate Subcube processor. Voxel data is stored on disk as DZ slices of DY lines with DX

bytes per line. Data is stored on disk in blocks of 512 bytes, so this block will contain data of

more than one line if DX < 512.

Two procedures are used for I/O operations on voxeldata : Load.object 0 and Save.Object 0.

These are located in the file 'Objectio.tsr', see listing 6.10.

Reading voxel data from disk is performed by the 'Load.object 0' procedure. Each slice is read

from the disk and transmitted to the network as DY*DX Bytes, preceded by the slice number. The

slice number ('slice.nr') is an integer between 0 and (DZ-1). The distributors in the network will

automatically decide which slices are located at a specific node and forward the slice data

accordingly. This implies that the controller does not need to address a specific node when

sending slices to the network, the slice.nr is sufficient. When one slice of the voxel data has been

processed, the Object.load procedure will move to the next by incrementing the slice.nr counter.

Each slice will be displayed during the object loading phase and a load percentage will be

ccmputed and displayed on the user console.

When the operator wishes to save a previously 'grabbed' object to disk, then this data must be

requested from the subcube processors where it is located. This data is again read in from the

network on a slice by slice basis. The controller does not need to address a specific node when

requesting slices from the network, the slice.nr is sufficient. The distributors in the network will

automatically decide which slice is located at a specific node and forward the send.slice.data

command accordingly. When a node has received the command to send a slice, it will do so by

sending this slice via the merger towards the controller on a line by line basis. The slice is

temporarily lo ded in the [ID][ID]BYTE image array and converted to [512]BYTE blocks that

can be stored on disk. The described operation is performed by the Save.object procedure. The

presently processed slice is being displayed on the Framegrabber board and the loading

percentage is supplied on the operator console.

Both procedures perform extensive checking during disk access to prevent the system from

hanging-up, should anything go wrong. This includes checking filename and filesize.

TNO report

Page
70

Listing: 6.10

List of File : "objectio.tsr"

File last modified : 22-11-90

PROC load.oLject (VAL INT X, Y, WIDTH,
INT File.nane.len, [63]BYTE File.name, INT Error)

Load new Object from disk into voxel processor
INT result
SEQ

Error :- 0
open.tkf.file (from.filer, to.filer, tkf.open.read,

File.name.len, File.name, result)
IF
result-fi .ok

{{(Read slices and load network
... declarations
SEQ

{{load object
... it loading percentage

slice.nr := 0
WHILE (slice.nr < DZ) AND (Error - 0)

INT y
SEQ

(((read slice
y :- 0
WHILE (y < DY) A~ND (Error - 0)
SEQ

({(read block
read.tkf.block (from.filer, to.filer,

length, block, result)

IF

result-fi .ok
-"store block temporarily in image[(](]

remult-f i.eof

*** Error
TRUE

... Error

IF
(Error - 0)

SEQ
{(send slice to screen
({send slice

to.tfg ! command; tfg.load.slice
SEQ y-O FOR DY
to.tfg I(image~y] FROM 3 FOR DXI

TNO report

page
71

{{send top line
create.top.line.l slice.nr)

to.tfg !command; tfg.load.string;
X.TOP.l; Y.TOP.l; 0; 255;

1) (SIZE top.line.l) ::top.line.l

({send slice to subcube
to.net !command; pe.load.slice; slice.nr
SEQ y-O FOR DY
to.net I(image [y] FROM 0 FOR DX

TRUE
SKIP

slice.nr :- slice.nr + I

close.tkf.file (from.filer, to.filer, result)
IF
resultof i.ok

SKIP
TRUE

... Error

TRUE
.. Error

PROC save.object (VAL INT X, Y, WIDTH,
INT File.name.len, (63]BYTE File.name, INT Error)

-- Save Object from voxel processor onto disk
INT result:
INT id.len, type, content
[63]EYTE id
SEQ
Error :- 0

make.id (from.filer, to.filer,
[File.nane FROM 0 FOR File.name.lenJ,
id.len, id,

type, content, result)
IF

result-f i.ok
{{(open for write
SEQ
open.tkf.file (from.filer, to.filer,

tkf.open.write, id.len, id, result)
IF
result-fi .ok

((Read slices from network and write blocks

TNO report

Page
72

... declarations

SEQ
{{{ save object
... init loading percentage

slice.nr :- 0

WHILE (slice.nr < DZ) AND (Error - 0)
BOOL slice.received.ok
SEQ

{{{ receive slice from network
to.net ! command; pe.send.slice; slice.nr
receive (from.net,

receive.slice, slice.received.ok)

IF
slice.received.ok

{((store slice
INT y
SEQ

... send slice to screen

... send top line

y :- 0
WHILE (Error - 0) AND (y < DY)

INT idx :
VAL LINES.PER.SECTOR IS (512/DX)
SEQ

({{ fill data block with slice
idx :- 0

SEQ i-O FOR LINES.PER.SECTOR
SEQ

[block FROM idx FOR DX] :-
[image[y] FROM 0 FOR DX]

y :-y + 1
idx :- idx + DX

({{ write block to disk
write.tkf.block (from. filer,to.filer,

512, block, result)

IF

result-fi.ok
... next block

TRUE
... Error

TRUE
... Error

slice.nr :- slice.nr + 1

SKI

TRUE Ero

TRUE
Error

TRUE
... Error

6.2.1.5 Result images load and store

Images resulting from visualization may be stored on disk and can be retrieved for display at a

later moment. These operations are performed by two procedures shown in listing 6.11, called

'imageio.tsr'. Basically, these operations are identical to those that were used for loading and

storing voxeldata. The Controller aliways has the latest image stored in the [IDJEIDIBYTE image
array. When loading an image from disk it will be read in chunks of 512 bytes which are then

copied to the correct position in the image array. Error checking is performed at all relevant

positions and a loading percentage is computed during operation.

TNO report Page

i '
• 74

Listing: 6.11

List of File : 'imageio.tsr

File last modified: 22-11-90

PROC load.imag (VAL INT X, Y, WIDTH,
INT File.name.len, [63]BYTE File.name, INT Error)

INT result
SEQ
Error :- 0
open.tkf.file (from.filer, to.filer, tkf.open.read,

File.name.len, File.name, result)
IF

result-fi.ok
{{{ read blocks
... declarations
SEQ
... init
WHILE (result-fi.ok) AND (y < ID)

SEQ
(({ read block
read.tkf.block (from. filer, to.filer,

length, block, result)

IF
result-f i.ok

{({ store block in image[)(]
INT idx
SEQ

idx :- 0
SEQ i-0 FOR (LINES.PER.SECTOR)

SEQ
image y] -- [block FROM idx FOR ID]
y :- y +
IF

(y \ LOAD.STEP) - 0

... write load percentage
TRUE
SKIP

idx :- idx + ID
)l)

result-fi .eof
... Error

TRUE
... Error

close.tkf.file (from.filer, to.filer, result)
IF
result-fi .ok

SKIP
TRUE

1

TNO report

Page
75

TR . Error

TRUE

... Error

PROC save.imag (VAL INT X, Y, WIDTH,

INT File.name.len, [63]BYTE File.name, INT Error)
INT result
INT id.len, type, content
[63]BYTE id
SEQ

Error :- 0
make.id (from.filer, to.filer,

[File.name FROM 0 FOR File.name.len],
id.len, id,

type, content, result)
IF

result=fi.ok
{{{ open for write
SEQ
open.tkf.file (from.filer, to.filer,

tkf.open.write, id.len, id, result)
IF
result-fi

.ok

{({ write blocks
... declarations
SEQ

... init
WHILE (result-fi.ok) AND (y < ID)

INT idx
SEQ

{{{ fill block from image[][]
idx :- 0
SEQ i-0 FOR (LINES.PER.SECTOR)
SEQ

[block FROM idx FOR ID] :- image[y]
y :-y+l
idx : idx + ID

{{{ write block to disk
write.tkf.block (fromfiler,to.filer,

512, block, result)

IF
result-fi ok

... next block
TRUE

,.., Error

close.tkf.file (from.filer, to.filer, result)
IF

TNO repDrt

Page
i 76

resultfi .ok
SKIP

TRUE
... Error

TRUE
... Error1}1

TRUE
... Error

6.2.1.6 Look-up table load and store

Listing 6.12 shows three procedures that are used to initialise and to store or load the contents of

the Color Look-Up tables (LUTs). These LUTs are actually used in the Framegrabber board, but

the manipulations on their contents is performed on a local copy in the Controller. This implieq

that the LUT's content must be transmitted to the Framegrabber after any changes.

The 'PROC init.lut 0' simply sets the contents of the four possible LUTs to certain defined

values: a grey scale, an inverse grey scale and two pseudo-color scales. This data is transmitted to

the Framegrabber LUT after initialisation.

The other two procedures read or write the contents of one LUT from or to disk. The LUT

contents consists of three tables (Red, Green and Blue) of 256 entries each. Values from [0..63]

are valid for each entry. The data is stored on disk as one file of 3*256 bytes. Some simple data

manipulation is needed to convert the LUT contents, which is of integer type, to blocks of bytes.

All possible file i/o errors are trapped and reported with error messages. The "PROC load.lut 0"

and "PROC save.lut 0" are supplied with the selected filenames and the selected LUT. These

parameters must have been checked first. Since these procedures are called from within the menu

system, there user i/o takes place through the parameter window at the bottom of the screen. It is

therefore necessary to supply some window parameters (X, Y, WIDTH) to the procedures, should

error messages need to be displayed.

TNO report

Page
77

Listing 6.12

List of File: "lutio.ts - Init/Load/Save LUT tables"

File Last Modified: 18-12-90

{{ PROC init.lut ()
PROC init.lut ()

--- default lut values'(equal to GDS values)
INT table.nr, R, G, B:

SEQ
... table 0 --- greyscale

table 1 --- invere grey scale
... table 2 --- color scale

{{{ table 3 --- R, G, B aid combined color scales
table.nr :- 3
SEQ

0 - 15 grey scale
... 16 - 32 red scale

32 - 47 green scale

.. 48 - 63 blue scale

.. 64 - 79 yellow scale

.. 80 - 95 cyan scale
... 96 - 111 magenta scale

.. 112 - 127 red & green scale with thiid blue
... 128 - 143 green & blue scale with thi'I red

... 144 - 159 blue & redscale with third gr an

.. 160 - 175 red & green scale with two-thir'ls blue
... 176 - 191 green & blue scale with two-thira" red
... 192 - 207 blue & red scale with two-thirds green
... 208 - 223 red & green scale with full blue
... 224 - 239 green & blue scale with full red
... 240 - 255 blue & red scale with full green

{{{ PROC load.lut
PROC load.lut(VAL INT X, Y, WIDTH,

INT File.name.len, [63]BYTE File.name,
VAL INT selectel.lut.nr, INT Error)

INT result
SEQ
Error :- 0
open.tkf.file (from.filer, to.filer, tkf.open.read,

File.name.len, File.name, result)
IF

result-fi.ok
({(read blocks
INT count, length:

TNOreport

Page
78

[512]BYTE block --- minimum blocksize must be 512
SEQ
count :- 0
WHILE (result-fi.ok) AND (count < 3)

SEQ
-- read block

read.tkf.block (from.filer,to.filer,
length, block, result)

IF
result-fi.ok

... store R and G or B block

result-fi.eof

... Error

TRUE
... Error

close.tkf.file (from.filer, to.filer, result)
IF

result-fi.ok
SKIP

TRUE
... Error

TRUE
{{{ Error
SEQ
error.message (keyboard, screen,

X, Y, WIDTH,
ERROR : Can not open File. Strike any key..."

Error :- -2

{{{ PROC save.lut
PROC save.lut (VAL INT X, Y, WIDTH,

INT File.name.len, [63]BYTE File.name,
VAL INT selected.lut.nr, INT Error)

INT result :
INT id.len, type, content
[63]BYTE id

SEQ
Error :- 0
make.id (from.filer, to.filer,

(File.name FROM 0 FOR File.name.len],
id.len, id,
type, content, result)

IF
result-fi.ok

{{(open for write
SEQ
open.tkf.file (from.filer, to.filer,

TNO report

Page
79

tkf.open.write, id.len, id, result)
IF
result=fi .ok

{{{ write blocks
INT count :

[256]BYTE block
SEQ

... write R and G or B blocks

close.tkf.file (from.filer,to.filer, result)
IF
result=fi .ok

SKIP
TRUE

... Error
)))

TRUE
Error

TRUE
{{ Error
SEQ
ertor.message (keyboard, screen,

X, Y, WIDTH,
" ERROR : Can not create File. Strike any key...")

* Error :- -2

))))

6.2.1.7 Rotated unit vectors calculation

As explained in Chapter 2.1, we need to calculate unit steps in display space via transformation of

unit vectors in object space. This operation is performed in the "PROC rotate 0". This procedure

takes three user supplied rotation angles (in degrees) as input and applies the corresponding

rotation matrix to the unit vectors in object space. The unit vector values are global variables

called 'unit.step.??', where '??' denotes all possible combinations of x, y and z.

TNO report

Page
80

Listing: 6.13

List of Fold: 'rotate.tsr

{{{ PROC rotate C
PROC rotate (INT X.rot.degr, Y.rot.degr, z.rot.degr)
VAL DR180 IS 180.0 (RE.AL32)
REAL32 X.rot.rad, Y.rot.rad, Z.rot.rad
REAL32 Sin.X.rot, Cos.X.rot:

R~EAL32 Sin.Y.rot, Cos.Y.rot:
REAL32 Sin.Z.rot, Cos.Z.rot:
SEQ

{{{ Calculate angles in Radians
X.rot.rad := (R(EAL32 ROUND X.mot.degr) * PI) /DR180
Y.rot.rad (R(EAL32 ROUND Y.rot.degr) * PI)/ DR180
Z.rot.rad :- ((EAL32 ROUND Z.rot.degr) * PI) /DR180

{({ Calculate rotation factors

Sin.X.rot SIN (X.rot.rad)
Cos.X.rot :-COS (X.rot.rad)
Sin.Y.rot :-SIN (Y.rot.rad)
Cos.Y.rot :-COS (Y.rot.rad)
Sin.Z.rot :-SI (Z.rot.rad)

Cos.Z.rot :-COS (Z.rot.rad)

(f(Calculate unit-steps
unit.step.xx :-(Cos.Y.rot * Cos.Z.rot)
unit.step.xy :-(Cos.Y.rot * Sin.Z.rot)
unit.step.xz :--Sin.Y.rot

unit.step.yx ((Sin.X.rot * Sin.Y.rot) * Cos.Z.rot)-

(Cos.X.rot * Sin.Z.rot)

unit.step.yy :((Sin.X.rot * Sin.Y.rot) * Sin.Z.rot) +
(Cos.X.rot * Cos.Z.rot)

unit.step.yz :-(Sin.X.rot *Cos.Y.rot)

unit.step.zx :((Cos.X.rot * Sin.Y.rot) * Cos.Z.rot) +
(Sin.X.rot * Sin.Z.rot)

unit.step.zy :-((Cos.X.rot * Sin.Y.rot) * Sin.Z.rot)-
(Sin.X.rot * Cos.Z.rot)

unit.step.zz :-(Cos.X.rot *Cos.Y.rot)

TNO report

Page
81

6.2.1.8 Parameter display on Framegrabber screen

Two procedures are shown in listing 6.14 that are used to display several rendering parameters on

the Framegrabber screen. The rendering parameters (mode, angles, threshold, z-cut value and

grey scale) are presented by "PROC display.rot.param" and the rotated object coordinate system

is drawn on the screen by "PROC display.coord.system" for reference purposes. The first

procedure operates by converting the rotation parameters to text strings, which are then

transmitted to the Framegrabber via a defined protocol. The coordinate system is represented by

drawing scaled and projected versions of the transformed unit vectors on the screen via a defined

'draw.line' protocol. The axes are identified by printing an x, y or z next to them. These characters

are printed in upper- or lower case depending on the sign of the unit vector's z direction.

Listing: 6.14

List of File: "displ.tsr"

File Last Modified: 18-12-90

({{ PROC display.rot.param
PROC display.rot.param ()

SEQ
to.tfg ! command; tfg.load.string;

X.TOP.2; Y.TOP.2; 0; 255; (SIZE top.1ine.2)::top.1ine.2

create.bottom.line.1 (X.rot.degr, Y.rot.degr, Z.rot.degr,
z.cut.value, threshold.value

to.tfg command; tfg.load.string;
X.BOT.1; Y.BOT.1; 0; 255;
(SIZE bottom. line.1) ::bottom.line.1

to.tfg command; tfg.grey.ref.bar

create.bottom.line.2 (render.mode
to.tfg ! command; tfg.load.string;

X.BOT.2; Y.BOT.2; 0; 255; 16::bottom.line.2

{{(PROC display.coord.system
PROC display.coord.system ()

INT x, y :

VAL X.CENTRE IS 70
VAL Y.CENTRE IS 100
VAL SCALER IS 30.0(REAL32)
SEQ

({{ unit.step.x

x :- X.CENTRE + (INT TRUNC (unit.step.xx * SCALER)

TNO report

Page

82

y :- Y.CENTRE + (INT TRUNC (unit.step.xy " SCALER))

to.tfg ! command; tfg.draw.line; X.CENTRE; Y.CENTRE; x; y

IF
x > X.CENTRE

x x + 16

TRUE
x :=x - 32

IF
y > Y.CENTRE

SKIP
TRUE

y :- y - 16

IF

unit.step.xz < 0.0 (REAL32)
to.tfg command; tfg.load.string; x; y; 0; 200; 1::"x"

TRUE
to.tfg command; tfg.load.string; x; y; 0; 255; 1::"X"

.))

... unit.step.y
.. unit. step. z

6.2.2 The SC Autopilot

The autopilot program was written to present automatic (and continueing) demonslxations of the

Voxelprocessor system. It generates sequences of keystrokes, that are interpreted by the

Controller process as if they were entered from the keyboard. To provide this possibility, the

Autopilot process is running in parallel with the Controller process on the root processor. The

Autopilot re-routes the keyboard channel from the Host computer (the PC) to the Controller EXE.

The Autopilot process can be running in two modes :

-) Inactive mode. In this case all keyboard strokes coming from the operator are simply

forwarded to the Controller. Ihis is the normal situation were the operator is in control of the

Voxelprocessor. The incoming keys are checked for the occurence of certain characters,

which have a special meaning. These characters are used to switch the Autopilot from

Inactive- to Active mode and back.

-) Active mode. In this case, the program generates keystrokes to control an automatic demo.

All operator keystrokes are blocked, except for certain keys that are used to switch back to

the Inactive mode.

TNO report

Page
83

The overall structure of the Controller running in parallel with the Autopilot is given again in the

following listing:

Listing: 6.15

List of File: 'vox entr.tsr'

File Last Modified : 22-11-90

... link channel numbers
{{(channels
CHAN OF ANY from.auto.pilot

CHAN OF ANY from.tfg, to.tfg
PLACE to.tfg AT linkoutl
PLACE from.tfg AT linkinl

CHAN OF ANY from.net, to.net
PLACE zo.net AT linkout2
2LACE from.net AT linkin2

... SC TS auto.pilot

... SC T8 control.tsr -- user interface (tfg)
-- manual & autopilot contrl
PAR

auto.pilot (keyboard, from. auto.pilot)
controller (from.auto.pilot, screen,

from.filer, to.filer, from.ios, to.ios,
from.net, to.net, from.tfg, to.tfg)

The following listing (6.16) describes the structure of the Autopilot in more detail. The process is

running in an endless ALT loop, checking incoming keyboard characters for special command

keys. Th keys are handled in the "... send user key's OR switch to auto pilot" fold (Listing 6.17).

The Autopilot will switch to Active mode if the F9 key is detected. The mode is represented by

the BOO f.2AN variable autopilot.on. Depending on this mode, normal keystrokes will either be

forwarded or blocked. 'The FIO key will switch the Autopilot back to inactive mode. Since the

Autopilot is running in para2lel w th the Controller, it is necessary to explicitly stop the Autopilot

if the user wishes to quit the application. This is possible by using the '@'key. The second bfanch

of the ALT construct, the "... run autopilot" fold (Listing 6.18), will only run when the Autopilot

is in its active mode. Depending on the Voxelprocessor configuration (represented by DX, DY

etc.) a different demo is shown. As may be seen from the "... ct scan" fold (Listing 6.19), the

TNO report Pg

Page

84 j

actual demo is broken up into sections, known as demo.steps. The purpose of these steps is to

enable the operator to stop the demo. The keyboard channel is checked for input after each step. A

demo.step consists of sending a sequence of keystrokes to the controller, seperated by time

delays. At the end of a demo.step, the demo.step counter is either incremented to show the next

step, or it is set back to an earlier value when the last stage has been reached (thus generating an

endless loop).

Listing: 6.16

List of File : "autpilot.tsr"

File Last Modified : 22-11-90

PROC auto.pilot (CHAN OF INT keyboard,
CHAN OF ANY from.auto.pilot)

... #USE

Function key definitions
Other keys

... declarations

SEQ
running :- TRUE
auto.pilot.on :- FALSE
WHILE running

INT ch
PRI ALT
keyboard 7 ch

... send user key's OR switch to auto pilot
auto.pilot.on & SKIP

... run on auto pilot

Listing : 6.17

List of Fold: "... send user key's OR switch to auto pilot"

IF
ch = (INT '@')

... quit

ch - F9

... start auto-pilot (Full Demo)

ch = FlO
step auto-pilot

auto.pilot.on

SKIP -- eat key
TRUE -- auto-pilot is inactive

from.auto.pilot ! ch

TNO report

Page
85

I

Listing: 6.18

List of Fold: "... run on auto pilot"

... PROC's to send keystrokes
iF...PROC's to delay a while

, IF

(DX - 128) AND (DZ - 128)
... ct scan demo (128* 128 * 128)

(DX = 256) AND (DZ - 32)
... ic scan demo (256 * 256 * 32)

TRUE
auto.pilot.on :- FALSE

Listing 6.19

List of Fold:"... ct scan demo (128 * 128 *128)"

-- break up the demo into steps,
-- this way the user can stop at each step.
IF
demo.step - 0

... show menu's
demo.step - 1

.. load image file
demo.step - 2

.. frame grabber demo
demo.step = 3

.. load voxel object
demo.step - 4

... rotate data set

demo.step = 5
... interactive rotation

demo.step - 6

•. more interactive rotation
demo.step = 7

d . and more interactive rotation
demo.step = 8

.. change rendering mode & loop to demo.step 4
TRUE

SKIP

TNO report

I
Page

86

The present implementation of the Autopilot can easily be added to or removed from any

keyboard driven application. The Autopilot program has also been used in several of our

Computer Graphics applications. The main disadvantage of this implementation is that all

keyboard strokes (i.e. the sequence of automatically executed commands) are hardcoded in the

program. This implies that every change in the demo needs a re-compilation. A better option

would be to read the keys (i.e. commands) from a file. The file could be based on ASCII

characters written with an editor or alternatively, tb file could be generated by a logging action

during normal operation. This would provide a form of 'script' file. Presently, there is no need for

these improvements, but it will be considered for a future version.

6.3 The Subcube Nodes

6.3.1 The SC Node

Listing 6.20 shows the structure of the code running on all PE's. The four channels have the

following functions:

-) distr.in:

Input of commands and data by the 'distributer' from either the Controller (only for the PE

connected directly to the Controller) or from the previous PE in the pipeline.

-) distr.to.next :

The commands and data are forwarded by the 'distributer' via this channel to the next PE in

the pipeline.

-) next.to.merger:

Data, messages or quit tags from the next PE in the pipeline are received via this channel.

The channel is internally connected to the 'merger' process.

-) merger.out :

Data (i.e. merger results), messages and quit tags from this PE are send to the previous PE in

the pipeline. The final destination of this data is the 'Controller'.

TNO report

Page
87

Theie are three processes running in parallel inside each PE: the 'distributer', the 'merger' and the

subprocessor' (Fig. 5.3). The first two processes are not required for the PE at the end of the

pipeline. The value 'LAST' is used to accomplish these different structures; 'LAST' is derived

from the 'NODE.NR'. The NODE.NR' is an identification, this value is used for example to select

the slices that are to be processed on the PE. The actual code of the processes running in a node is

located in the library 'voxproc.tsr'.

Listing: 6.20

List of File : node.tsr

File Last Modified : 22-11-90

PROC node (VAL INT NODE.NR,
CHAN OF ANY distr.in, distr.to.next,

merger.out, next.to.merger
{#{ fUSE
fUSE voxconf

#USE voxproc

{ { VAL's for processor node

-- Node is last element of pipeline if LAST - TRUE

VAL BOOL L-AST IS LAST.ARRAY [NODE.NR]
}})

CHAN OF ANY distr.to.proc, proc.to.merger
IF
LAST

{{{ no distributor or merger needed
sub.processor (NODE.NR, distr.in, merger.out)
))}

TRUE
{((distributor and merger
PRI PAR
PAR

distributor (NODE.NR, distr.in,
distr.to.proc, distr.to.next

merger (NODE.NR, proc.to.merger,
next.to.merger, merger.out)

sub.processor (NODE.NR,
distr.to.proc, proc.to.merger)

TNO report [

Page
88

6.3.1.1 Distributer

The following listings will explain in more detail the function of the three processes within the

PE's. Listing 6.21 shows the code of the 'distributer'. This process is continuously reading and

interpreting tags from the distr.in channel.

Listing: 6.21

List of File : distr.tsr

File Last Modified : 22-11-90

PROC distributor (VAL INT NODE.NR,
CHAN OF ANY distr.in, distr.to.proc,
distr.to.next

... #USE
{{{ DEBUG data
VAL ID.string IS "distr " . .8 BYTES
VAL debug IS TRUE
VAL debug IS FALSE

({{ VAL's for processor node
-- Absolute number of first local slice
VAL FIRST.SLICE IS (NODE.NR * SCDZ)
-- Absolute number of last local slice
VAL LAST.SLICE IS (FIRST.SLICE + SCDZ1)

BOOL running
SEQ

d.write.string (distr.to.proc, debug, ID.string,

"distr. activated"
running :- TRUE
WHILE running --- Main Loop

BYTE tag
SEQ
distr.in ? tag

IF
tag command

... transfer command
tag - quit

{((quit
running :- FALSE

TRUE
{ ((ERROR
e.write.string(distr.to.proc, ID.string,

"ERROR : illegal main tag received"

TNO reprt

Page
89

d. write. string (dist r. to. proc, debug, ID.string,

"distr. killed"

distr.to.next !quit

({(send to sub.processor
distr.to.proc ! quit

Listing 6.22 shows the code of the '... transfer command' fold. Depending on the received tag

etesoesub tgordata is expected. Received commands and data are interpreted and

forwrde tothe (local) sub.processor and to the next PE, this is demonstrated for the 'perender'

tgThtsame structure is repeated for all commands, except for pe.load.slice and pe.send.slice.

Siedata (i.e. voxel data) is uniquely assigned to one PE. When a new slice is transmidtted to the

ntokby the controller, each receiving PE will check wether it should store the slice locally or

forward it. The slice number, together with the NODE.NR, is used to make this decision. This
operation is shown in the '...load.slice' fold.

Listing: 6.22

List of Fold: transfer command

SEQ
distr.in ? tag

tag - pe.render
(((render
... VAR rotation parameters
SEQ

((I receive
distr.in ? render.mode;

transformn.vectors;
transform, sizes;
z .cut .value; threshold.value

PAR
(((send on to next
distr.to.next Icommand; pe.render;

render .mode;

tranaform.vectors;
transform.sizes;
z.ckt.value;

TNO report

Page

1)) threshold.value

({{ send on to sub.processor
distr.to.proc Icommand; pe.render;

render .mode;
transform. vectors;
transform. sizes;
z.cut .value;
threshold. value

tag - pe.histogram
..histogram

tag = pe.sobel
... sobel

tag - pe.laplace
..pe.laplace

tag -pe.mean
... mean

tag - pe.median
... median

tag - pe.grey.transform
..grey.transform

tag - pe.load.slice
{((load slice

INT slice.nr:

[SCDX]BYTE slice.line
SEQ

distr.in ? slice.r
IF

(slice.nr > LAST.SLICE)

(((send on to next
SEQ

--This can not happen

--for LAST nodes
distr.to.next ! command;

pe. load. slics;
slice .nr

SEQ y-O FOR SCDY
SEQ

distr.in ? slice.line
distr.to.next ! slice-line

TRUE

J{{ send on to sub.processor
SEQ

distr.to.proc ! command;
pe. load, slice;
slice. nr

SEQ y-O FOR SCDY
SEQ

TNO repot

Page

distr.in ? slice.line 9
distr.to.proc I slice.line

tag = pe.send.slice
... send.slice

TRUE
... ERROR

6.3.1.2 Sub.processor

Listing 6.23 shows the code of the 'sub.processor. This process is also continuously reading and

interpreting tags from its input channel. Depending on the received tag either some sub tags or

data is expected and processed accordingly.

Listing: 6.23

List of File : pe.tsr

File Last Modified: 22-11-90

PROC sub.processor (VAL INT NODE.NR,
CHAN OF ANY sub.processor.in,

sub.processor.out)
... #USE
... transf.tsr -- procedures to perform rendering
... DEBUG data

... VAL's for processor node

... VAR's
{({ PROC's
... PROC mean ()
... PROC median ()
. PROC laplace ()

... PROC sobel ()

PROC histogram ()
.. PROC grey.transform ()

PROC subimage.init () -- clear resulting image array
.. PROC voxel.limit () -- limit voxel index to local range

SEQ
d.write.string(sub.processor.out, debug, ID.string, "pe activated"
... init

running := TRUE
WHILE running

BYTE tag
SEQ

sub.pro-essor.in ? tag

TNO report

Page

92

IF
tag = command

... process command
tag = message

message
tag - quit

running := FALSE
TRUE

... ERROR

d.write.string(sub.processor.out, debug, ID.string, "pe killed"
{{{ quit
sub.processor.out ! quit

The '... process command' fold is the most important part of the previous listing. All rendering and

image processing operations are identified and activated from within this fold, which is shown in

listing 6.24. The response to a histogram command is given as an example:

-) receive more parameters, e.g. 'threshold'.

-) convert the global indices for the volume-of-interest (running from [O..DZ> for the z index)

to local indices (running from [O..SCDZ>). This implies that a PE remains inactive whenever

the global indices fall outside the range assigned to this specific PE. The described operation

is performed by the 'PROC voxel.limit'. The limits for the local ranges are derived from the

NODE.NR.

-) compute the histogram (or any other selected function).

-) transmit the (partial) result to the 'merger'.

The other functions, like the image processing operations, are not discussed any further here.

They are straightforward implementations of well known algorithms.

"NO report"

Page93

I
Listing: 6.24

List of Fold : process command

SEQ

sub.processor.in ? tag
IF

tag - pe.render
... render view on voxels

tag - pe.histogram
{({ histogram
SEQ

{{{ receive
sub.processor.in ? transform.sizes; threshold.value

{{{ initialisations
voxel.limit ()

{{{ process
histogram ()

{{{ send result
sub.processor.out command; merge.histogram;

sub.histogram.data

tag - pe.sobel
{({ sobel
SEQ

sobel ()
subimage.init ()

tag - pe.laplace
.. laplace

tag - pe.mean
... mean

tag - pe.median
.. median

tag = pe.grey.transform
grey.transform

tag - pe.load.slice
... load slice

tag - pe.send.slice
.. send slice

TRUE
... ERROR

TNO report P

Page

94

The fold '... render view on voxels' performs the actual voxel visualisation process. It is the most

important part of the visualisation software and it will be discussed in some detail now (listing

6.25).

The actual transformation from object-space to display space is performed with fixed-point

REALS. These fixed-point numbers are represented with 32 bit INTs (16 bit integer, 16 bit

fraction). The computed transformed normal vectors (REAL32) are converted to this new format.

The advantage of this format is that the computed coordinate can easily be used as an integer

index into the resulting subcube images by taking the upper 16 bits.

The transformation process must traverse the local voxel data in a 'back-to-front' ordering, i.e. the

voxel that has the largest distance to the observer after the transformation is processed first. For

the x-axis (and the other two axis also) this ordering is implemented by accessing the voxel data

from [O..SCDX> or from <SCDX.,O]. The voxel traversing routine will use a 'starting value'

(idx.start.x) and an 'index step' (idx.step.x). The normal or inversed index steps ('1' or '-1') are

matched by normal or inverted unit.steps for all axes. The choice of the step direction depends

directly on the sign of the transformed unit vector's z-component, since this component indicates

the direction from which the view on the voxel data is to be computed.

The computed transformed voxel coordinates are used for direct access of the resulting image (see

Fig. 2,6). In order to achieve that the center of the transformed voxel data is at the center of the

resulting image, it is sufficient to select an appropiate starting value (start.x, start.y, start.z) for the

incremental coordinates. These starting values are also corrected for the offset of the local voxel

data set within the projection screen.

The actual visualisation process can start when the mentioned initialisations have been made. A

different algorithm is selected depending on the render mode. The render algorithms are largely

equivalent, but have been coded seperately to achieve a maximum performance.

-~ TNO report

Page

95
Listing: 6.25
List Of Fold : render view on voxels

.. VAR's

.. PROC send (-- send subcube image to merger
SEQ

{{{ receive
sub.processor.in ? render.mode;

tr~nsform.vectors; transform. sizes;
z .cut .value; threshold.value

{ initialisations
..voxel.limit ()

x direction & start.coordinates & unit.step.x
-initialise loop variables (voxel indices) and unit
-vectors to provide a 'back-to-front' transform order

IF
(unit.step.xz >= 0.0 (1REAL32))

({{ step forward through voxel data in x direction
REAL32 start.coordinate
SEQ

forward.x :- TRUE
{{idx.start & 4dx.end & idx.run

-- ok

{{idx.step
idx.step.x := 1

({ set start.x, start.y and start.z
start, coordinate ;
REAL32 ROUND (voxel.start.x -H.DX)

start.x.r start.coordinate *unit.step.x
start.y.r :-start.coordinate *unit.step.xy
start.z.r :start.coordinate *unit.step.xz

(((unit.vector.x
--ok

TRUE
(((step backwards through voxel data
INT temp:
REAL32 start.coordinate
SEQ

forward.x :- FALSE
{((swap idx.start & idx.end
temp :~idx.start.x
idx.start.x :~idx.end.x

idx.end.x :-temp

TNO report

P-age
96f

{{ invert idx.step

id) se1}:=-

{{ set start.x, start.y and start.z
start.coordinate :

FZAL32 ROUND~ (voxel.end.x - 1.DX)
start.x.r :start.coordinate * unit.step.xx
start.y.r :=start.coordinate * unit.step.xy
start.z.r :=start.coordinate * unit.step.xz

({f invert unit.vector.x
unit.step.xx :=-unit.step.xx

unit.step.xz -unit.step.xz

y dir~eion -usta t~corites uitstpz

z direction & start.coordinates & unit.step.z

.. adapt start.coordinates to result.image coord.system
{{ convert transform values to fixed.point REAL
.. start. coordinates

unit .vector.x
.. unit .vector.y

unit.vector.z

--flip z.cut.value
z.cut.value :- (ID - 1) - z.cut.value

--scaled to fixed-point value
Z.cut.i z.cut.value *scaler

({ process voxel data
IF

render.mode - VIEW
.. view

render.mode - INTEGRATE

.. integrate
render.mode - LAYER

... layer
render.mode - Z.SHADE

*** z shade
TRUE

ERROR

{{ subimage initialisation
subimage - mit (

- TNO report

Page
97

The render algorithm for the 'front view' mode is presented in listing 6.26. The other rendering

modes differ only at the deepest level, where the actual subimage value is computed. Only this

part will be described explicitly for the other modes.

The basic rendering algorithm consists of three nested 'loops' that traverse the voxel data set along

the z-, y-, and x-axes. For each step the transformed coordinaie (xxi, xyi, xzi) is computed in an

incremental way. The index values used to access the voxel data (idx.x, idx.y and idx.z) are also

updated for every new step. The 'back-to-front' ordering has been provided by the values of the

index steps (idx.step.x, idx.step.y, idx.step.z) and the transformed unit vectors (unit.step.xxi etc.).

The idx.run.x, idx.run.y and idx.run.z values are used to restrict the number of processed voxel to

the volume-of-irterest. Abbreviations are used whenever possible to provide a more efficient

access to tne voxel data. One of these measures involves the use of four neighbouring voxels as

one INT32 variable ('dummy'). These four voxels are tested for '0' and if TRUE, a jump of four

voxels is made in the x direction. If one or more voxels are not zero, all of them will be

individualy processed. This processing must be executed in the right back-to-front order,

indicated by the pre-computed BOOL 'forward.x'.

Listing: 6.26

List of Fold : 'view'

SEQ
IF
z.cut.value - IDI

... NO z.cut needed
TRUE

({{ with z.cut
SEQ

{({ init idx.z
idx.z :- idx.start.z

{{{ init zx, zy, zz
zxi : start.xi
zyi :- start.yi
zzi : start.zi
}}}
SEQ z.count-0 FOR idx.run.z

({ abbreviations
subcube.data.slice IS subcube.data [idx.z]

SEQ
{{{init idx.y
idx.y :- idx.start.y

-- TNO report

page

yxi :zxiREYSsor

SEQ y.count-O FOR idx.run.y
{{{ abbreviations
short IS subcube.data.slice (idx.y]
(SCDX >>2]INT short.i EYSshr:

SEQ
{(ntidx.x
id~ =idx.start.x

intxx, xy,
xxi x
xyi :-yyi
xzi :-yzi

{{SEQ x.count
.. xxi.16, xyi.16 RETYPES

(((dummy
INT dummy
14]BYTE dummy.byte RETYPES dummy:
dummy.O IS dummy.byte[O]
dummy.1 IS durmiy.byte(l1]
dummy.2 IS dummy.byte[2]
dummy.3 IS dummy.byte[3]

subcube. image IS subcube. image
SEQ x.count-O FOR idx.run.x

SEQ
dummy :- short.i [idx.x]
J{{ increment idx.x
idx.x :- idx.x + idx.stap.x

IF
dummy -0

({(skip 4 bytes
SEQ

{({ increment xx, xy, xz
xxi :-xxi + unit.step.4.xxi
xyi xyi + unit.step.4.xyi
xzi :-xzi + unit.step.4.xzi

forward. x
({{ process data forward
SEQ

- 0Nreport

Page

99

... dummy.0

... dummy.1

... dummy.2

... dummy.3
{{{ increment xx, xy, xz
xxi := xxi + unit.step.xxi
xyi :- xyi + unit.step.xyi
xzi : xzi + unit.step.xzi
)}

TRUE
{{(process data backward
SEQ

... dummy.3

... dunmy.2

... dunny.1

... dummy.0

... increment xx, xy, xz

{{{ increment idx.y
idx.y :- idx.y + idx.step.y

{{{ increment yx, yy, yz
yxi :- yxi + unit.step.yxi
yyi :- yyi + unit.step.yyi
yzi : yzi + unit.step.yzi

{{{ increment idx.z
id-.z :- idx.z + idx.step.z

{{{ increment zx, zy, zz
zxi :- zxi + unit.step.zxi
zyi :- zyi + unit.step.zyi
zzi :- zzi + unit.step.zzi
}}}

{{{ send result
send ()

Finally the actual processing per voxel (for all implemented rendering modes) is described in

listing 6.27. A new value is computed for the subeube.image result, following a check of the

voxel value and the z-distance. The indices into the subcube.image are the integer parts of the

transformed fixed-point voxel coordinates (xy.i and xx.i).

TNO report

Page

100

Listing 6.27

{{process voxel [idx.z](idx.yJ[idx.xJ - VIEW
IF

(dummy.0 > threshold.value) AND (xzi < z.cut.i)
subcube.image [INT xyi.16.1] [INT xxi.16.1J :- dwnmy.O

TRUE
SKIP

({process voxel [idx.z][idx.y][idx.x] -- INTEGRATE

IF
(dummy.O > threshold.value) AND (xzi < z.cut.i)
density IS subcube.image (INT xyi.16.1lHINT xxi.16.l]
IF

(density < 255 (BYTE))
density BYTE ((INT density) + 1)

TRUE
density :-255 (BYTE)

TRUE
SKIP

(Iprocess voxel [idx.zJ [idx.y] [idx.x] -- LAYER

(du nmy.'0 > threshold.value) AND (xzi < z.cut.i)
sii~cube.image [INT xyi.16.1](INT xxi.16.lJ

ayer .value

'KIP

{{process voxel [idx.z](idx.y][idx.x] -- Z SHADE
IF

(dummy.O > threshold.value) AND (xzi < z.cut.i)
subcube.image [INT xyi.16.l] [INT xxi.16.1]:

BYTE ((INT xzi.16.1) >> 1)
TRUE

SKIP

TNO report

Page101

6.3.1.3 Merger 1
The third and last process within a PE is the 'merger'. This module will combine partial results

from the local sub.processor with partial results from the next PE in the pipeline and traE, : "e

merged result to the previous PE (eventually arriving at the Controller). A second function of the

merger is to simply forward data and messages from other processes towards the Controller. This

structure is indicated by the two input channels ('in.0' and 'in. 1) and the one output channel (out').

The two, basically identical, channels are handled by an ALT contruct, since it is not determined

which input will receive data first. The merging process is executed by the 'PROC respond 0',

enabeling the use of only one piece of code for both inputs.

A BOOL parameter is used to inform this procedure which channel received input first. This input

must be a 'tag', that is also supplied as a parameter.

Listing: 6.28

List of File : merger.tsr

File Last Modified: 22-11-90

PROC merger (VAL INT NODE.NR,
CHAN OF ANY in.0, in.l, out)

--- Subcube result with lowest slice nr.
--- is expected via in.0
... #USE
... DEBUG data

VAL's for processor node
... declarations
... PROC respond ()
SEQ

d.write.string (out, debug, ID.string,
"merger activated"{ {{ init

nr.ot.quits :- 0
running :- TRUE
)D)
WHILE running

BYTE tag
ALT

in.0 ? tag
--- result slices in normal.order
respond (in.0, in.l, out, TRUE, tag)

in.1 ? tag
--- result slices in inverse.order
respond (in.l, in.0, out, FALSE, tag)

d.write.string(out, debug, ID.string, "merger killed"
out I quit

TNO repot

Page I
102

When PROC respond 0 is invoked, it will interpret the tag that arrived on its input.0. If this tag

iudicates the arrival of a message or data, then the expected packet will be received and forwarded

towards the Controller. Channel 'input.l' will not be considered in this case. Listing 6.29 sihows

this case for 'slice.data' If however the tag indicates a 'merge command', then data from channel

'input.0' will be merged with data from 'input.l' (see listing 6.30, the fold '... merge image').

Two cases are distinguished:

-) For the view, layer and z-shade modes, a partial result will completely obscure another

partial result depending on the priority. Input.0 is always given the highest priority. This

means that data arriving on input.0 normally obscures data coming in from the other

channel. The merging priority is however also depending on the view direction onto the

voxel data. This factor is presented via the BOOL variable 'forward.merge'. The merging

order (i.e. the obscuration direction) is a function of this BOOL and of the input channel

priority. The obscuration function is implemented efficiently via the 'Block move!

instructions of the Transputer : one image will simply overwrite the other for all pixels that

are non-zero.

-) Partial results must bt added up for the 'integrate' mode and for histogram computation, In

this case priority is not important. The merging can not use 'block moves', but must apply

basic additions per entry. Some performance improvement is achieved via writing out loop

code.

The result of the merging operation will be transmitted towards the Controller on channel 'output'.

As mentioned, this data may first pass other PE's for more merging operations. It is therefore

necessary to include some merging parameters in the transmitted data (e.g. render mode and

priority).

Listing 6.29

List of Fold : respond 0

PROC respond (CHAN OF ANY input.0, input.l, output,
VAL BOOL normal.order,
VAL BYTE tag)

--- This PROC will process a tag received via input.0
--- For the merging operation, the normal.order is :
--- subcube result of lower slices enters on input.0
--- subeube result of higher slices enters on input.1
IF
tag command

{ process merge command

TNO report Pg

103

BYTE tag:

SEQ
input.O ? tag
IF

tag =merge.image

merge image
tag -merge.histogram

merge histogram
TRUE

.. ERROR

tag = data
if(process data
BYTE tag

SEQ
input.O ? tag
IF
tag - slice.data

... receive and forward slice
TRUE

... ERROR

tag message

*** message
tag -quit

(((quit
SEQ

nr.of.quits :- nr.of.quits + 1
running :- NOT (nr.of.quits -2)

TRUE
... ERROR

Listing: 6.30

List of Fold: merge image

... declarations
SEQ

.. synchronise inputs, input.O has
-- already received two tags

PAR
input.O ? render.mode.0; forward.mergp0
input.1 ? dummy.tag; dwnmy.tag;

render .mode. 1; forward.merge.l

-- receive & merge results
SEQ

output Icommand; merge. image;
render.mode.0; forward.merge.O

J- -J

TNOrepot

Page
104

--- The merger needs the merge.order and
--- the slice.order
IF

(forward.merge.0 AND normal.order) OR
((NOT forward.merge.0) AND
(NOT normal.order))

... result.1 obscures result.0
TRUE

... result.0 obscures result.1

6.4 The Graphics System

The Frarnegrabbber software provides access to a video-memory of 512*1024 Bytes. Data written

in this memory is directly displayed on a monitor, using a color look-up table for the conversion

into RGB values. Alternatively, the video memory can be filled by digitizing an analogue video

input signal (e.g. from a camera). This digitized data can be accessed by the software and may be

used for further processing. Given the fact that the framegrabber software plays only a supporting

role in the voxel processor, it will not be discussed in great detail here. Only the general structure

will be explained.

Listing 6.31 shows the main part of the framegrabber code. First some initialisations are

performed:

-) The timing of the video controller hardware is set to CCIR values and the generation of an

image is enabled. As a result of the CCIR norm, only a 512*760 section of the total video-

memory will be visible on the screen. These procedures are rather 'close' to the TFG

hardware and are largely based on manufacturer software.

-) The contents of the color look-up tables is initialised. This data may be overwritten later

under command of the Controller.

-) The video-memory contents is cleared, resulting in a blanked screen.

After initialising the hardware the two main modules, running in parallel, are activated:

-) The PROC framegrabber 0

This procedure, provided by the board manufacturer, may be accessed across the channel

'grab'. Sending commands over this channel enables or disables the acquisition of digitized

images. The framegrabber will either continuously display the input data or 'freeze' the last

frame. The video memory is not available for software accesses (e.g. to load a new image) if

the framegrabber is active, this is indicated by the BOOL 'display.available'.

TNO report " .I

Page
105

The '... command interpreter' fold

The program is running in an endless loop within this fold, waiting for new commands from

the Controller. Commands may trigger a framegrabbing action or may act upon the video-

memory directly (e.g. to draw a line).

Listing: 6.31

List of File : tfg.tsr

File last Modified : 22-11-90

PROC tfg.graph (CHAN OF ANY tfg.in, tfg.out, net.loader)
... DEBUG data
... fUSE
... declarations
... procedures
SEQ
d.write.string(tfg.out, debug, ID.string,

"grabber is activated"
... init tfg
PRI PAR

frame.grabber (grab
... command interpreter

d.write.string(tfg.out, debug, ID.string,
"grabber killed"

tfg.out ! quit

The told '... command interpreter' is shown in more detail i. -;sting f 32. It's main purpose is to

receive and execute the tfg commands that were explained before. Most of these commands

involve very straighforward access to the video-memory, for example:

-) copying a received image to the memory, resulting in the display of that image (or slice)

*) sending (part of) the video-memory coitents to the Cont'jller for further processing, used to

grab new voxel slices.

-) filiiig an area of the memory with a constant value, to clear or initialise the screen

Some functions require additional processing like drawing a line between two coordinates. These

functions are well known graphics operations (e.g, the Bresenham algorithm) and bLe not

explained here.

TNO report >

Page
106

Other operations are:

-) draw a polygon

-) draw a circle

-) draw a character from a bitmap table

-) fill an area enclosed by a polygon with a color

-) draw a test screen or display a company logo

-) convert an array of data into a plot of this data on the screen, e.g. a histogr

The remaining operations are used to access the color look-up tables by changing a single entry or

loading a completely new contents.

Listing: 6.32

List of Fold : command interpreter

((f command interpreter
... declarations
SEQ
running :- TRUE
--- Wait until SC frame.grabber is initialized
display.available :- FALSE
WHILE running
BYTE tag
SEQ
tfg.in ? tag
IF

tag - command
.*. process command

tag - quit
... quit

TRUE
... ERROR

TNO report

Page
107

6.5 The network configuration

Listing 6.33 gives an overview of the network configuration file. There are three types of

programs running in the network nodes:

-)The code for the framegrabber/display unit

-) Te code for a subprocessor node

-)The code for the subprocessor that is directly connected to the EXE controller. This code is

internally identical to a normal subprocessor node, but is has a separate dummy channel

('net.loader') to provide a connection with the framegrabber node. This channel is necessary

to provide a boot path for the Transputer Development system from the framegrabber to the

Subprocessors.

The listing shows a very straightforward implementation of a pipeline with 16 subprocessors

(shown in Fig. 5.1), connected by two pairs of channels (command.pipe and merge.pipe). The
number of processors is a constant that can easily be changed. This does however require a

change in the libraries and a recompilation of the SCs also.

Listing: 6.33
Lilt of File: voxnet.tsr

File last Modified :22-11-90

f((PROGRAM vox-net.tar
SC T8 tfg.tsr -- Framigrabber /Display

.. SC TB node.tsr -- Sub Processor Node
... SC TB exenode.tar -- Sub Processo~r Node

--connected to EXE
... link channel numrbers

({{ channels
CH.AN OF ANY tfg.in, tfg.out, net.loatler
CHAN OF ANY to.net, from.net:
[20]CHAN OF ANY command.pipe, merge.pipe

PLACED PAIR
VAL node.nr IS 0
PROCESSOR node.nr Tr8

{((node 0
PLACE to.net AT linkinO
PLACE from.net AT linkoutO
PLACE command.pipe (node.nrl AT linkout2
PLACE merge.pipe [node.nr] AT linkin2
PLACE net.loader AT linkoutl

TNO report

page
108

exe.node (node-nr, to-net, COnMiand.Pipe [node.nxJ,
from.net, merge-pipe Enode.nr),

net.loader

PLACED PAR node.nr -1 FOR 15

PROCESSOR node.nr T8

{{(node nr
PLACE commnand-pipe [node.nr-1] AT linicinO

PLACE merge.pipe (node.nr-1] AT linkcout0

PLACE cormnand.pipe [node.flr] AT linkcout
2 :

PLACE merge.pipe Inode.nri AT linkin2z

node (node .nr, cormnand.pipe Enode.nr-1,

command.pipe Inode.nr],

merge.pipe Enode.nr-1J'

merge.pipe (node.nrl

PROCESSOR 100 TB

M{ tfg
PLACE tfg.in AT linkinO

PLACE tfg.out AT linkoutO0

PLACE net.loader AT linkin2

tfg.graph (tfg.in, tfg.out, net .loader)

ii

7 PERFORMANCE

Typical rendering speeds on a 16 Transputer system are 1 sec. for 2 Mbyte (128*128*128) voxel-

images. In the table below a comparison is made for different types of operations and different
numbers of processors (timing in seconds).

Nodes 2 4 8 16

view 3.7 2.4 1.4 0.9
integrate 4.2 2.7 1.6 1.0
layer 3.6 2.3 1.3 0.9
shade 4.5 2.8 1.6 1.0

mean 31.9 16.5 9.4 5.9
median 95.7 52.5 28.3 15.5
edges 65.0 33.2 17.3 8.8
convolution 103.8 52.6 27.0 17.0
histogram 2.8 1.5 1.0 0.5

The visualization operations have a communication overhead for the transmission of the resulting

images to the controller of about 0.3 sec. This overhead is constant for any mnber of processors,

so it explains the non-linear performance increase from 2 to 16 processors. It is obvious that a

further increase in the number of processors would not be very useful for the given problem size :

there should always be a good balance between communication- and computational demand. The

voxel processor system could however achieve the same speed (about 1 sec. per image) on much

larger data sizes usig more Transputers. As stated before, CT images are of a larger size

(typically 512*512*256) and our system could become a very effective visualization machine for

this type of data also.

Te 3D image processing operations would still benefit from adding more Transputers, even for

the given data size, since these problems are still computational bound with 16 processors.
However, for a certain number of processors we would also find a reduced efficiency here.

TNO report

Page110

Some resulting images of the voxel processor are shown here as (screen) photographs:

a) Integrated Circuit scanned with the CLSM, resolution 256*256*32.

-) Front view, (Photo 7.1)

-) Layer view with z-cut (Photo 7.2)

b) CLSM scan of a biological object (pollen), resolution 256*256*32.

-) Front view with grey-scale transform to increase visibility (Photo 7.3)

c) CT scan of a baby head, provided by Philips Medical Systems. Resolution 128*128*128.

-) Front with z-cut (Photo 7.4)

-) Integrate mode with threshold (Photo 7.5)

Photo 7.1 Front view

TNO report

page

Photo 7.2 Layer view with z-cut

Photo 7.3 Front view with grey-scale transform to increase visibility

- ~ TNO report

Page
112

Photo 7.4 Front with z-cut

Photo 7.5 Integrae mode with threshold

TNO report

Page
113

8 FUTURE ACrTVIIES

The CLSM is developed into a commercial product by TRACOR Northern (USA). Researchers in

confocal microscopy and other areas have attended presentations of the voxel processor prototype

and showed an interest in the technology. The development of the prototype into a product will

require a further improvement of rendering algorithms and added functionality :

a) Addition of more 3D image-processing algorithms. An important feature will be the

computer assisted image segmentation (region growing) to select interesting areas in the

voxel-image. This option will need communication between neighbour nodes. Region

growing is a difficult task that has not been generally solved for 2D data. An implementation

on 3D data will require much research.

b) Implementation of 3D geometrical measurements. For medical- and biological- imaging

geometrical data is very important. Surface computations, distances and volume

measurements have to be applied to the objects in the voxel-space.

c) Implementation of improved rendering algorithms, including perspective projection and

shaded views.

d) Increase system performance by further code improvement and architecture optimization.

For larger voxel-data sizes a system with 32 or more Transputers could be used. In this

larger system the architecture will be changed to a tree structure. The advantage of a tree

over a pipeline is the shorter average length of the communication path between the PE's and

the Controller. The tree architecture would not require a large effort to program, since the

basic structure of the software could still be used. Figure 8.1 shows an eight processor

version for the network, with one slice assigned to each node. The Distributer, Subprocessor

and Merger processes of the pipeline version may be used here without change. The

difference lies in the addition of an extra Distributer/Merger pair. Every Distributer will

select which slices must be processed locally and which must be forwarded. The Decision

depends solely on the Node.Nr, as is indicated in Fig. 8.1. The Mergers will combine the

partial results correctly if the provided data is in the right geometrical order.

TNO report

Page
114

> 4 > 5 > 6

Distr.in > 3 4 65 6. 7

Merger.out

Fig. 8.1: Tree Architecture with slice distribution scheme

e) In the present system, Transputer links are used for all inter-processor communication. The

link bandwidth of 1.5 MByte/s may become a bottle-neck in a future version, when slice

data has to be exchanged between neighbours. A possible solution would be to use dual-port

memory connected to buses for data transfer between nodes. In this case the links could

supply all necessary synchronization between nodes. It would be preferable if such a data-

exchange bus conforms to an industry standard.

f) Investigate (voxel) data-compression, determine effects on data transport times and

implications on transform algorithms.

g) Feasibility study on stereoscopic display facilities. This option is interesting for several

applications in .viedical- and biological research. Basically the voxel processor would have.

to create two inLges of the same object from slighly different angles. Both images would be

presented on a single display to an operator that must wear a special type of spectacles.

h) Integration of the voxel processoi with the CLSM (or any other sensor) requires the full

control the scanner operation from within the system.

- TNOreport

Page

115

i) The present version of the voxelprocessor is implemented as a dedicated system, running

code that is only suitable for Transputers. This OCCAM code does supply the highest

possible performance, but it is not easily portable. An option that is worth considering is the

implementation of the software on a system running under the HELIOS Operating System.

HELIOS is a recent development that is quickly becoming an industry standard OS for

Transputers. It provides a UNIX like 'look and feel'. Programming under HELIOS is in 'C'

which has a far higher exceptance level (notably in the USA) than OCCAM. Another

advantage of 'C' is the possibility to integrate existing code from other image processing

packages into the system. HELIOS can use PC's and SUN workstations as a host computer.

An excellent graphics output and a menu controlled user-interface can be provided via calls

to the HELIOS supported X-window library. The graphics output is either directed to a

dedicated Transputer board or to the SUN system. HELIOS also supports fileservers running

on Transputer based hardware (e.g. harddisks, tapestreamers). The use of this hardware

would remove the i/o interface bottleneck to the host computer. The performance loss of

perhaps 50 % over OCCAM code may be well worth paying, considering the advantages of

HELIOS for non real-time applications.

TNO report

Page
116

9 CONCLUSIONS

The potential of parallel processing for volume rendering applications has been clearly

demonstrated by this project. Transpuzers have proved to be a very powerful tool, bath for

research and applications. The development of the system software was greatly simplified by the

clear representation and support of parallelism that OCCAM offers [16]. The following

conclusion can be drawn from the results of this project :

-) The interactive performance with all the required prototype functionality can be delivered by

a 16 Transputer system.

-)System scalability is good if the size of the dataset is not to small. In practise, a 1 sec.

response time will be achievable even for large voxel datasets. Higher performance rates at a

lower cost will soon be possible with the new generation of Transputers (T9000 series).

-) The voxel processor is a high-performance, low-cost and small-sized system. The developed

software is highly modular and easily adaptable.

-)The prototype is a general pu,.pose software framework for 3D image processing. Image

processing in 3D is however only considered useful in combination with a visualization tool.

-) Several alternative hardware configurations of the system are possible:

-)Standalone version.

-)System hosted by a PC-AT.

-)Accelerator connected to a (SUN) Workstation.

The hardware is commercially available from several vendors.

-)Transputers are general purpose processors and the voxel processor hardwarf. may also be

used for other (computational intensive) applications. This may require a software

configurable topology which is also commercially available.

-) The voxel processor system is not limited to CLSM images only, other sources of data are

equally suitable (e.g. CT scans). The system will be brought to the attention of potential

users in these other areas. An important feature of the system is the flexibilty to changes in

resolution, performance and rendering algorithms (very linear cost/performance function). It

will therefore be very well possible to adapt the system to differen. 'Plir-aU'ii fields.

-) The development of the prototype into a product will require a further improvement of

rendering algorithms and the addition of more functionality. Any further developments must

be targeted at a specific application.

TNO report

Page
117

10 REFERENCES

[1] A. Draaijer, P.M. IToupt.

A Standard Video-rate Confocal Laser Scanning Reflection and Fluorescence Microscope.

Scanning Vol. 10, 1989.

[2] S. M. Goldwasser and R. A. Reynolds.

Real-Time Display and Manipulation of 3D Medical Objects : The Voxel Proces;or

Architecture. Computer Vision, Graphics and Image Processing 39. 1-27 (1987).

[3] A. Kaufman and R. Bakalash.

Memory and Processing Architecture for 3-D Voxel-Based Imagery. IEEE Computer

Graphics & Applications. November 1988.

[4] A. C. Tan, R. Richards, A.D. Linney.

3-D Medical Graphics - Using the T800 Transputer. Proceedings of the 8th technical

meeting of the OCCAM User Group. March 1988.

[5] B. Furht.

A Contribution to Classification and Evaluation of Structures for Parallel Computers.

Microprocessing and Microprogramming 25, 1989.

[6] The Transputer Databook. INMOS publication, 1989.

[7] C.A.R. Hoare (Ed).

OCCAM 2 Reference Manual, Prentice Hall, 1988.

[8] W.M. ter Kuile, P. Zandveld, A. Draayer.

Beeldverwerking voor confocaal LASER scan microscoop.

TNO-MT rapport R89/300, September 1989.

[9] J.G. Harp, K.J. Palmer, H.C. Webber.

Image Processing on the Reconfiguraole Transputer Processor. Proceedings of the 7th

technical meeting of the OCCAM User Group. September 1987.

[10] R.S. Cok.

A medium grained parallel computer for image processing. Proceedings of the 8th technical

meeting of the OCCAM User Group. March 1988.

[11] A. Rosenfeld and A.C. Kak.

Digital Picture Processing. New York, Academic press, 1976.

[12] MTM-2 Multi Transputer Module, Technical documentation, version 1.3. PARSYTEC

GmbH, July 1987.

T

- TNO report

Page
118

[13] TFG Transputer Frame Grabber, Technical documentation, version 1.1. PARSYTEC GmbH,

June 1988.

[14] TPM-4 Transputer Processor module, Technical documentation, version 1.0. PARSYTEC

GmbH, July 1987.

[15] MULTITOOL 5.0 Manual, PARSYTEC publication, 1989.

[16] W. Huiskamp, P.L.J, van Lieshout et al.'

Visualization of 3D Empirical Data: The Voxel Processor. Proceedings of the 10th technical

meeting of the OCCAM User Group. April 1989.

Ir. P.L.J. van Lieshout Ir. W. Huiskamp
(group leader) (author/project leader)

UNCLASSIFIED

REPORT DOCUMENTATION PAGE (MOD-NL)

1. DEFENSE REPORT NUMBER (MOD.NL)2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT
NUMBER

TD91-2620 FEL-91-B166

4. PROJECT/TASK/WORK UNIT NO. 5. CONTRACT NUMBER 6. REPORT DATE
20449 JUNE 1991

7. NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES COVERED
119 (INCL. RDP, 16 FINAL REPORT

EXCL. DISTRIBUTION LIST)

10. TITLE AND SUBTITLE
VOXEL DATA PROCESSING ON A TRANSPUTER NETWORK

11. AUTHOR(S)
IR. W. HUISKAMP

12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TNO PHYSICS AND ELECTRONICS LABORATORY, P.O. BOX 96864, 2509 JG THE HAGUE
OUDE WAALSDORPERWEG 63, THE HAGUE, THE NETHERLANDS

13. SPONSORING/MONITORING AGENCY NAME(S)
TNO DIVISION OF NATIONAL DEFENSE RESEARCH, THE NETHERLANDS

14. SUPPLEMENTARY NOTES

15. ABSTRACT (MAXIMUM 200 WORDS, 1044 POSITIONS)
WITH THE GROWING AVAILABILITY OF 3D SCANNING DEVICES LIKE COMPUTER TOMOGRAPHS (CT) ORCONFOCAL
LASER SCANNING MICROSCOPES (CLSM) THE NEED FOR HIGH PERFORMANCE VOLUME DATA (VOXEL)
PROCESSING AND DISPLAY SYSTEMS INCREASED ENORMOUSLY. THE RECENT DEVELOPMENT OF A FAST CLSM BY
IMW-TNO REQUIRED A VISUALISATION TOOL OF MATCHING PERFORMANCE. FEL-TNO WAS INVOLVED IN THE CLSM
PROJECT BECAUSE OF ITS EXPERTISE IN THE AREA OF FAST VISUALIZATION TECHNIQUES USING PARALLEL
PROCESSING. THE FEL-TNO TASK IN THE PROJECT WAS TO DEVELOP AN EXPERIMENTAL SYSTEM THAT
DEMONSTRATES THE POTENTIAL OF PARALLEL PROCESSING FOR VOLUME RENDERING APPLICATIONS. THIS REPORT
DESCRIBES THE DEVELOPMENT, IMPLEMENTATION AND EVALUATION OF THE PROTOTYPE 3D IMAGE PROCESSING
SYSTEM. TOPICS OF THE REPORT ARE:

INTRODUCTION ON VOLUME DATA PROCESSING;
INTRODUCTION ON TRANSPUTERS AND PARALLEL PROCESSING;
DESIGN OF THE TRANSPUTER BASED VOXEL PROCESSING SYSTEM:
IMPLEMENTATION OF PARALLEL VOXEL VISUAUZATION;
IMPLEMENTATION OF PARALLEL IMAGE PROCESSING ALGORITHMS;
DETAILED DESCRIPTION OF THE SOFTWARE;
PERFORMANCE EVALUATION AND SCALABIULIY

,- FUTURE DEVELOPMENTS.

16. DESCRIPTORS IDENTIFIERS
ZARALLEL PROCESSING, LAAGE GENERATION,
DATA AND DISPLAY SYSTEMS JIAGE PROCESSING-
a ,OLUME RENDERING.,

t-14 LRANSPUTERS,

17a. SECURITY CLASSIFICATION 17b. SECURITY CLASSIFICATION 17C. SECURITY CLASSIFICATI'ON
(OF REPORT) (OF PAGE) (OF ABSTRACT)
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

18. DISTRIBUTION/AVAILABILITY STATEMENT 17d. SECURITY CLASSIFICATION
(OF TITLES)

UNLIMITED AVAILABILITY UNCLASSIFIED

UNCLASSIFIED

