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TURBULENCE MODELING NEAR THE FREE SURFACE
IN AN OPEN CHANNEL FLOW

T.F. Swean, Jr.,! RI. Leighton* R.A. Handler,* J.D. Swearingen*
Center For Advanced Space Sensing
Naval Research Laboratory
Washington, D.C. 20375-5000

Abstract

" The velocity data from a direct numerical simu-
lation of low Reynolds number turbulence in an open
channel have been used to compute the terms in the
budget equations for the turbulence kinetic energy.
the dissipation of turbulence kinetic energy and the
Reynolds stresses. The budget data show that the dis-
sipation rates of the horizontal components of the tur-
bulence are reduced near the surface while the dissipa-
tion of the vertical component remains approximately
constant. The data also show that the pressure-strain
term is the dominant producing term for the spanwise
component of energy in the near surface region. A
model for this behavior valid for flows exhibiting ho-
mogeneity in the spanwise and streamwise directions
18 proposed and tested against the data. In general
the model 18 found to work well but wider testing is
necessary. . A

Nomenclatyre 7
g .
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A
aij = Reynolds stress anisotropy ’
Aa, A A = functions of a;;
Ga,ba, etc. = terms in Eqs. (5)
Co = model constant-
g = gravitational constant
h = channel height
k = turbulence kinetic energy
r = v/u,, viscous length scale
r = fluctuating pressure
p{e) = defined in Eqs (8a,b)
Rey = U,h/v. Reynolds number
R* = u,h/v, wall Reynolds number
Sy, = mean strain rate
t = pv/u3, viscous timescale
U = instantaneous velocity vector
U, = instantaneous velocity component
u = fluctuating velocity component
u, = +/Te/p, friction velocity
u* = {"y/u,
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z; = coordinate direction
z7 = zau, [V
v =l-z;
5 = Kronecker’s delta
€ = sotropic dissipation function
(9) = averaged quantity
v = kinematic viscosity
¢f3,_a = decomposed pressure strain, Eq. ($i
P = density
r = shear stress
191 = instantaneous vorticity vector
Q = instantaneous vorticity component
o2, etc. = terms in kgs. (6.7)
Subscripts
1 = 1,2,3. coordinate directions
8 = value at free surface
w = value at wall
1. Introduction

The turbulent flow below a gas-liquid interface
piays an important role in diverse areas ranging from
environmental flows and industrial mixing processes
to the remote sensing of ship wakes. The near-
boundary influences upon transfer and diffusion at the
interface are of primary concern in environmental and
industrial applications, whereas remote sensing issues
ultimately involve any surface motions that may be
detectable. For example, the two most common and
persistent features seen in synthetic-aperture-radar
images of ship wakes are bright “narrow vees” and
long dark “scars”., which may be a result of surface
Bragg wave generation or modification through inter-
actions with near surface turbulence. Common to all
of these problems is the need for a better understand-
ing of the structure of turbulence below a free surface

For several decades it has been realized that the
presence of a free surface influences the evolution of
mean velocity and turbulence but the mechanisms
have not been completely described. Early observa-
tions of Nikuradse! showed the flow in straight open
channels to be three-dimensional and that the max-
imum of the streamwise mean velocity occurs below
rather than coincident with the free surface. More
recently, the studies of Ueda? and Komori et al.3 for
open channel flows showed that the eddy viscoeity 15
significantly attenuated by the presence of the free
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surface. In the latter paper it is also shown that in
a region near the free surface the surface-normal ve-
locity fluctuations are diminished while the fluctua-
tions in the plane of the surface are increased. the
largest increase in the pear-surface region is in the
spanwise component. This paper also indicates that
the viscous dissipation, ¢, has vanishingly small nor-
mal gradient near the free surface. A similar redistri-
bution of the turbulence intensities was observed by
Thomas and Hancock.* In their work a moving wall
experiment was devised such that the wall moved at
the velocity of the adjacent turbulent fluid so that no
velocity gradients and shear stresses were present at
the wall, conditions similar to those at an uncontami-
nated, waveless free surface. Damping of the velocity
fluctuations in the wall-normal direction accompanied
by an increase in the streamwise fluctuations was ob-
served. The spanwise fluctuations were only slightly
increased. In recent experimental studies by Ramberg
et al.® and Swean et al.®7 single-point hot-film mea-
surements of the velocity correlations were obtained
near the free surface in a jet low. These measure-
ments also showed the existence of a thin layer near
the free surface wherein the redistribution of turbu-
lence energy occurred rapidly with most of the verti-
cal component transferring into the spanwise compo-
nent, an observation similar to that of Komori et al.
referenced above.

All of the above experiments experienced prob-
lems in acquiring data very near the surface. The hot-
film studies suffer fromn the effects of probe contam-
ination and blockage brought about by the intrusive
sensor near the boundary. Laser doppler velocimetry
methods have problems due to reflection and refrac-
tion at the free surface. As a result of the experimen-
tal problems associated with obtaining reliable mea-
surements near an air-water interface, the situation is
that considerably less is known about the character-
istics of turbulence near a free surface as opposed to
flow near to solid walls.

Due to the interest and relevance of the prob-
lem, a direct numerical simulation of turbulent open
channel flow has been performed by Leighton et al 2
This paper is an analysis of time-averaged data from
Leighton’s calculation with the goal of evaluating and
improving turbulence models for use in practical cal-
culations of the near-surface flow. In the next section
a brief description of the calculation is given.

> Direct Numerical Simulati

The incompressible 3D Navier-Stokes equations
were solved for initial and boundary conditions ap-
proximating a turbulent open-channel flow of wa-
ter at Re, = 2340 based on the channel depth. A.
and the mean steady velocity at the free surface,

U, = Us(z3 = h). The governing equations were re-
cast in the manner suggested by Orzag and Patera®
and implemented by Kim, Moin and Moser!? for
closed channel flow. The final equation system. in
which the pressure has been eliminated, consists of a
4*h order equation for the vertical velocity,

av: v\ (8 B
(W‘Es‘h)"”(E*éz‘g)‘“"“”

8 8 8
—a—z; (E(an)a-#éz—a(UXn)l), (1)

and a 279 order equation for the vertical vorticity,

k) v3 1]
(a? - E;) = g Ux

—52-1-(0 x ), (2)

where all variables are non-dimensionalized by A and
U, and bold-face type indicates vector quantities with
1 = (V x U). Following solution of Eqs. (1.2).
the streamwise and spanwise velocity components
{U'1, U3) are recovered from the incompressibility con-
dition and the definition of vorticity.

The equations are solved after they are Fourier
transformed in the streamwise (z,) and spanwise (z3)
directions and Chebyshev transformed in the vertical
direction (z;). The calculations were performed on
a 48 x 65 x 64 grid in zy,z5,z3 respectively, which
allows the resolution of all essential turbulent scales
without resort to subgrid models. With the geome-
try scaled by the channel height, the vertical, stream-
wise and transverse dimensions of the channel are 1.
47 and 37/2, respectively. In wall units the domain
is 1348 x 1684€ x 632£°, where £* = h/R* with
R* = 134. For comparison purposes a companion cal-
culation was performed for a closed channel flow For
reasons of economy this calculation was at half the
wall-normal resolution of the open channel case and
was at a lower Reynolds number, R* = 125 Nev.
ertheless the qualitative behavior of the data for all
aspects examined was identical to that reported by
Mansour. Moin and Kim (henceforth MKM).!! As
such these closed channel data can serve in certain
instances to compare qualjtatively the different be-
havior in the open and closed channel simulations

The boundary conditions are periodic on all de-
pendent variables in the streamwise and spanwise di-
rections. No slip conditions are used at the chan-
nel bottom while the free surface is approximated as
a rigid free slip surface with vanishing shear. The
shear-free rigid lid condition is an approximation to
the exact free surface condition which is valid at low
Froude number (U,(gh)~®) for a surface free of any
contaminants. Leighton et al.® have estimated the
surface displacement & postersori from the results of
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Fig. 1 Mean velocity profile across the channel.

the simulation and using the channel height. A =
(.04m, from the experiments of Komon et al 3 For
these conditions the rms surface deflections could be
expected to be approximately 1.6 x 10~4m (0.004h)
and negligible as observed in the laboratory experi-
ments. For later reference the boundary values of the
dependent and derived variables at the wall (z, = 0)
and free surface (2, = 1) are:

L’1=U3=L’3=Qz=§)—L—2=0;x2::0. (3)
(92‘2
and
oty _aUs _ Q2 _ 8%U, o
(—9—27-322—1/2-322— az% =0z.=1 (4

The derivative conditions on U, arise from continuity
considerations at the respective boundaries.

The computer code used in the simulation was
designed and developed to run on the CRAY X-
MP/24 at the Naval Research Laboratory. Approxi-
mately 10~% seconds per timestep per grid point were
required for the simulation. After the wall shear stress
achieved a statistically steady behavior, 42 realiza-
tions of the instantaneous velocity data were saved
during a time interval of approximately 4000t* where
" = v/ul. Statistics were obtained by averaging in
the streamwise and spanwise directions and in time.

3. Dj . { Resul
The mean velocity normalized by u, is shown
in Fig. 1. Also shown by the dashed lines are the
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Fig. 2 Profiles of turbulence kinetic energy and
Reynolds stress acroes the channel.

wall laws u* = zJ and u* = 25lnz} +55 A
best fit of the present data for the logrithmic region
is u* = 241nzJ + 5.6. The lower slope is consis-
tent with the value of 2.43 found by Nezu and Rodi!?
for open channel flows over a Reynolds number range
439 < R* < 6139. The intercept is near the up-
pet bound (5.29 + 0.47) found in their experiments
and is probably a low Reynolds number effect.!i The
notable difference between the velocity data in Fig |
and closed channel behavior is the absence of a clearly
defined wake region in the outer flow. rather the log
law is maintained until very close to the free surface
when the velocity adjusts to the vanishing gradiert
condition.

Figure 2 shows the normalized turbulence kinetic
energy k£ = 4(u} + u + u3) and the Reynolds shear
stress. uju;, which has been further scaled for plot-
ting by a factor as shown. According to the boundary
conditions given by Eqs. (3.4) the velocity compo-
nents and pressure can be expanded about the free
surface as,

up = a) + ay? + 0(°)
uz = byy + day® + O(y*)
u3 = a3 + cay’ + O(y®)
P =ap + ey’ + O(y°)

where y is defined with the origin at the free surface
Use of these expansions and averaging results in k =
3(a? + ad) + O(y?) near the surface and 9k/dy = -
at the surface which is evident in the figure.
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Fig. 3 Profiles of normal stresses acroes the channel
and comparison with data of Komori et al ?

Figure 3 shows the three components of k from
the simulation. The symbols are the experimen-
tal results of Komori et al.® which were taken at
Rep = 3100. There is qualitative agreement between
the experimental and numerical results. Both exhibit
an increase in the horizontal components as the free
surface is approached and the increase is greatest for
the spanwise component. The computed local mini-
mum of the spanwise component occurs further from
the free surface than in the streamwise component
which is also consistent with the experiments. This
behavior is more easily recognizable in Fig. 4 which
contains the distributiona of the three components of
the turbulence kinetic energy made non-dimensional
by the local value of k. Also shown in this figure
are the data from the closed channel calculation ref-
erenced in the previous section and, as noted, these
data are presented for qualitative comparison only.
For the closed channel calculation the z; = 1 bound-
ary corresponds to the channel centerline. Figure 4
shows that near the free surface, z; > 0.7, most of
the energy from the vertical component is transferred
to the spanwise component with only a small increase
in the horizontal component. This contrasts with the
behaviors of the various components of turbulence en-
ergy in the closed channel simulation where the rel-
ative interchange of energy appears to be primarily
from the streamwise component to the vertical in the
region near the channel centerline. In order to un-
derstand this behavior, the budget equations of the
individual velocity correlations have been examined.
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Fig. 4 Profiles of normal stresses normalised by the
local value of turbulence kinetic energy. Dashed lines
are from a closed channel simulation.

For the flow under consideration, which is statis-
tically steady and homogeneous in the spanwise and
streamwise directions, the transport equations for the
one-point velocity correlations are,

Du..uZ

Dy =0=P,+1; +T7,; +®;; + D), —¢,,. (6)

The symbols on the right-hand side of Eq. (6) denote
the rates of production, pressure diffusion. turbulent
transport. pressure strain, viscous diffusion and dis-
sipation. respectively. The explicit representations of
these terms are:

'
yE T 6 "’“"6:,'
nl! = —l (_—L Al )
p\O 3z,
T, = -a;:m
1 du Ou
¢IJ pp (az' + 61’,)'
d*uu;
= p—2"21
Dy 6:,6::,,'
Ou, au,
(.J =2v -az—kgz—:

The equation obtained by taking half the trace of
Eq. (6) 1s the equation for the turbulence kinetic en-
ergy. k. The equation for the trace of the dissipation
rate tensor. € = (€)1 +€a3+¢€33)/2, is given by Hanjali¢
and Launder!? as,
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Fig. 5 Distribution of the terms in the budget of -u_f
in the upper half of the channel.
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The first four terms are production terms ( P} to P4),
while terms five through eight are pressure transport

(d.), turbulent transport (T,), viscous diffusion (D,)
and dissipation (Y'), respectively.

The terms in the budget equations for the three
normal stresses and the dissipation rate are shown in
Figs. 5-8. All terms in Eqs. (6,7) have been normal-
ized by u!/v and the budgets are displaved only for
the upper half of the channe] nearest the free surface.
Since the production of turbulence is much lower than
in the high shear region close to the solid wall, the in-
dividual terms in the equations are typically an order
of magnitude lower than their corresponding values
near the wall. The near-wall data are available in
Leighton et al.® and are very similar to the data of
MKM. it

Figure 5 shows that away from the surface all
terms in the u? budget have the same relative im-
portance except D)), the viscous diffusion. Moving
toward the surface. the production rate vanishes with
the mean velocity gradient. At the wall, the viscous

60.0 80.0 100.0 120.0
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Fig. 6 Distribution of the terms in the budget of 52
in the upper half of the channel.

terms balance the turbulence transport and the pres-
sure strain. the latter having become a slight positive
contributor to the budget very near the wall. The
u} balance in Fig. 6 is relatively more complex than
that for u?. For this component the magnitude of the
budget terms near the free surface are only reduced in
about one-half from their values near the solid wal!
Near the free surface. the asymtotic behavior of the
various terms can be determined by using Eqs. (51 as

Tp2 = =38y + -

M2y = ~2a,b; - 6(c,b; +a,dz )y’ +
®22 = 23,53 + 2(c,bz + 3apd)y’ + -
Day = 2bybq + 2485d5y% + - -

€22 = 26305 + 12bydoy? + - -

It is seen that at the free surface ¢5, balances D;» and
the two pressure-velocity terms cancel. Note that the
pressure strain has rapidly become a consuming term
in the near-surface region whereas it had been a ma-
jor producer in the budget equation in the outer flow
This is_in contrast to the behavior shown in Fig +
for the uj component. In this case &35 increases near
the surface and at the surface is considerably more
of a source for u} than is ®;; in the u? budget. This
largely explains why the transverse component of tur-
bulence kinetic in Fig. 4 is increased relatively mor-
0 than the streamwise component as u2 approaches
zero at the free surface. In the next section a mod-!
for this behavior is proposed.
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Fig. 7 Distribution of the terms in the budget of }Tg
in the upper half of the channel.

A curious feature contained in Figs. 5 and 7 is
the behavior of ¢;; as the surface is approached. Mov-
ing toward the free surface the dissipation rates ex-
hibit a sharp drop in magnitude in the upper 5-10% of
the channel. The ¢34 on the other hand shows a very
slight increase in magnitude and could well be approx-
imated as constant in this region. This behavior 1s
contra.y to standard modeling assumptions near the
free surface. Hoseain and Rodil* and later Naot and
Rodi!5 have assumed that in most respects other than
the vanishing of the surface-normal velocity compo-
nent, the frae surface behaves like a symmetry plane.
The exception is the presumed behavior of the dis-
sipation rate for turbulence kinetic energy which is
expected to increase near the surface. This is based
on the assumption that the macro-length scale of the
turbulence (L & &!3/¢) is reduced by the presence of
the boundary. This scale does not become zero since
it reflects the fluctuating motion 1n all three direc-
tions and the horizontal extent of the eddies is not
restricted.

The terms in the budget equation for the dissi-
pation rate are shown in Figure 8. In the upper por-
tion of the channel the first three production terms
in Eq. (7) are small and have been lumped together
as shown. Until very near the free surface the pro-
duction by turbulence. P}, largely balances the dis-
sipation term. Very near the surface the dominant
terms are the viscous diffusion and the dissipation.
each exhibiting very large gradients of opposite sign
near the boundary. Reconsidering Figs. 5 and 7. ut
1s seen that 1n these cases also the rapid variation in

P!+ P+ P}
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Fig. 8 Distribution of the terms in the budget of the
turbulence kinetic energy dissipation rate in the upper
half of the channel.

the dissipation term appears to be at least partially
offset by the variation in the diffusion term. It should
be remembered that ¢, (or ¢€) is not the actual dis-
sipation of turbulent energy for inhomogeneous flows
although it does approximate the total dissipation for
high Reynolds number. The particular terms D,, and
¢.. have arisen from the combination of the actuai
dissipation rate with the rate of work by the viscous
shear stresses of the turbulence.!® In flows far from
solid walls the viscous diffusion is generally neglected
and as such the modeled dissipation rate implicitly
model= the work term. Figure 9 shows the balance of
turbulence kinetic energy obtained from the trace of
Eq. (6). The viscous terms have been added and to-
gether they balance the transport terms at the wall It
is seen that the total viscous term varies only slightiy
near the boundary and might be easier to model. Fu-
ture work will re-process the velocity data to deter.
mine the actual dissipation term separately from the
work term.

e -Straj t

The above data show that the pressure-strain
term is a key contributor to the redistribution of nor-
mal stresses near the boundaries. Leighton et al*®
have decomposed the fluctuating pressure into a ‘slow’
pressure. p'!) a ‘fast’ pressure. p'?). and a Stoke<
pressure. p'?). in the manner suggested by MKM "
These components satisfy the equations:
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Fig. 9 Distribution of the terms in the budget of tur-
bulence kinetic energy in the upper half of the chan-
nel.

8u, Ou;  Ou, Ou
T = __',__1_____-4)
P (3:, 0z, 0z, dz,
80, du, (8a)
T2p(2) = gL 2
4 812 621
v =0,
with boundary conditions.
L
022 =0 Iy = 0.1
(D)
%% 20 =01 (86)
022
(o) 2
dp 13u7::2=0'1'

S T Bol 3.7
8z, Rey 0z}

The pressure data from the solution of Egs. (8a-b)
have been used to decompose the pressure-strain term
into

. = 2p3ui

T

= QE‘-” + ‘bE?) +

Figure 10 shows this splitting in the upper portion of
the channel for each of the components. The Stokes
term is only of consequence very near the solid wall
and is not plotted. It is seen that the slow or return
terms are dominant in the region plotted. Only in
the @33 component is the fast term the larger of the
two and for the &, term the fast component is nearly
zero over the whole domain shown.
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Fig 10 Distribution of the rapid and return contri-
butions to the pressure-strain rate for each diagonal
component.

The distributions of $,; shown in Fig. 10 differ
markedly at the free surface relative to their behav-
lor at a solid wall.l! Most importantly they do not
vanish 1. any component. Clearly some sort of sur-
face proximity effect is needed in order to model the
rapid vanations exhibited. Generally the total term
1s modeled,

¢, =0 +0) +,), + 07 (9

Wow 9w

where @, 1s some variant of Rotta’s'” model.

1
' = —Cea,;,

5 (101

and the rapid term includes at least the isotropization
of production term. (Pi; — £ P;éi;). Typical of these
models and one that is borrowed from in the current
study, 15 that due to Launder, Reece and Roiy '8

2 _ (Ca+8) 9
Q') =7 11 (P|J~§Pk6u)
(30C; - 2) 8(Ch + 8) 9 ’
_2‘—-—'——55 kSu - —-%l—-—(Bu -_ Epké‘J)' {11
where, ) )
B = g _ =90
v T, T MG

and C, = 0.4. The wall terms are usually modeled
1n a form analagous to Eqs. (10,11) but with different
coefficients and including a damping function The
Launder. Reece and Rodi form is,

2
o1 + 97, = (0.125¢a;; + 0.015(P, - B"”E’




15 A —

0.0 0.2 0.4 0.6 0 10

Fig. 11 Distribution of the second and third invanants
of the Reynolds stress anisotropy tensor across the
channel.

This particular damping function is singular at a free
surface since k does not vanish. A virtual origin could
be used and has been employed by Naot and Rodi!®
An alternative is to use a term_based on the surface-
normal velocity such as f, ~ (u3) Sk/exs. which does
not become singular and is more appealing on phys-
ical grounds. However. the approach taken in this
study is to make use of the properties of the sec-
ond and third invanants, A; and A3 of the stress
anisotropy tensor. a,,.

Az = a4, ; Az = aya;ear, (12)

As pointed out by Lumley!® if one component of
velocity vanishes, then the difference, A; — A3, be-
comes the constant value 8/9 irrespective of the be-
havior of the other two velocity components. In this
case the function A = | — 9(A; — A3)/8 = 0 in the
regions where the turbulence becomes locally two-
dimensional. At the free surface the pressure-strain
rates do not vanish so it is necessary to modify this
approach. Tigure 11 shows the variation of 4, and
A3 computed from the simulation data. Near both
boundaries Ay ~ A3 — 8/9 as a22 — —2/3 Near the
free surface 1t is observed that A3 becomes negative.
This is very close to the z7 location where aa3 becomes
positive (see Fig. 4). For flows in which the non-zero
velocity components remain uncorrelated as the third
component vanishes. t..e vanishing of A3 corresponds
exactly to the vanishing of one of the remaining re-
maining a,; Equation {12) shows that for such a flow
A3z reaches a minimum of —2/9 when a;; = a33 Itis
plausible to assume that in the absence of boundaries

the horizontal components will tend to approach this
state at a free surface. The available experimental
data as well as the current simulation data support
this conjecture. If this is the case then the vanish-
ing of A3 can be used as a detector for free surface
proximity effects.

A model based on Lumley's suggestion and used
as the basis of the current model is that due to Laun-
der and Shima.?® In their model | is given by
Eq. (10) with the coefficient,

C) = 2.584A4,2%{1 — exp((0.0067k/ve)2)}. (13

The rapid term is given by the first term in Eq (11
with the coefficient, 8{C5+8)/11, replaced with (", =
) 7545 The Launder and Shima model also contains<
additional explicit expressions for the wall terms in
Eq (9) that are not repeated here since they are nnt
used

In the current work an effort has been made
to construct a model with a minimum of parame-
ters. In Eq (13). both the coefficient, A. and the
term 1n braces containing the Reynolds number act
to damp the pressure-strain rate near a solid wall
Equations (8a.b) are only dependent upon viscosity
thru the boundary condition on the equation for p*
and MKM have shown that for low Reynolds flows of
the tvpe under study here, Qf:) is small even near the
wall. The term in braces has thus been omitted in
the current study. Exploratory calculations retaining
the term. and usiog the statistics from the simulaticr,
have shown that thc term has little effect on mode]
performance and in fact the pressure-strain rate data
are better correlated with its omission. Although th-
concern here has not been model performance near
the solid wall. this study has also retained the third
teem in Eq. (11) since its inclusion substantially 1m-
proves the behavior in the ®;, component near the
wall. The basic form of the current model then he.
comes.

¢, = ~Cidea,, . C; = 13428 14
2 C;+8 2
o= a3~ 2P, - 2ps,)
s
B(C3 + 8) 2
-~ (Bi, ~ 3Peéy,))

The numerical value in the definition of (7} above has
been adjusted from its former value to account for
the factor of approximately 1/2 that the retention of
the exponential term of the original model would have
contributed in the outer flow. The form adopted {:r
the free surface region is,

d), = —~Ci(A - A')e(2.2a,; + 9.8(0ua0ss — 42/311
11F -
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Fig. 12 Comparison of the modeled pressure-strain
rate with the data from the simulation

where C is given by Eq. (14) and A’ =1 - 9/8( A, -
|Aa]) . As discussed earlier this term will only be-
come active when the anisotropy in one of the hori-
zontal components vanishes while the vertical veloc-
ity is damped near the free surface. The constants
2.2 and 9.8 have been determined so as match the
overall level of the data in the surface region. The
274 order term has been shown by Speziale et al 2!
to occur in a formal expansion for ®,, and 1t is used
in the current formulation to achieve more closely the
separation in ®33 and ¥, observed in the simulation.
Near the free surface the anisotropy in the uz com-
ponent of velocity is relatively small compared to a;;
30 o first order in anisotropy the model predicts that
®;; > ®33. The second order term 1s small in both
components but has a much greater relative effect on
the uz component.

Figure 12 shows the model performance when
computed with the simulation data which are rep-
resented by the symbols. The lines are computations
with Eqs. (14-16). The incorrect near-surface asym-
totic behavior is mostly due to the sharp variation
in ¢ discussed in the previous section. Incorporat-
ing the proper asymtotic behavior near the free sur-
face will be a topic for further research. Near the
solid wall the current model performs reasonably well
and markedly better than the original Launder. Reece
and Rodi model which was analyzed by MKM !! The
asymtotic behavior near the wall is not correct and
this must be examined as well. Without the inclusion
of the term containing B,; in Eq. (15) the change in
sign in the near wall region for ®,; is not achieved but

rather the modeled distribution is uniformly positive
until vanishing at the wall.
_Concluding I

The simulation data show that there is a prefer-
ential redistribution of turbulence energy to the span-
wise component of energy as the normal component
18 damped at the free surface. This is in accordance
with the still-limited experimental observations. The
budget equations show that the pressure-strain rate
term, particularly the return term, is a key contrib-
utor to this behavior. The budgets also show that
the isotropic part of the dissipation of turbulence en-
ery decreases rapidly very near the free surface which
18 contrary to current modeling asumptions which
assume 1t to increase to account for reduced levels
of eddy viscosity observed near the free surface A
model for the near-surface pressure-strain term has
been proposed and shown to correlate the simulation
data fairly well. In its current form the model is lim-
ited to flows in which the correlation of the horizontal
velocity components is small while the vertical com-
ponent vanishes. Much wider testing is necessary to
determine when this condition exists. Future efforts
will consider this point along with questions raised re-
garding the dissipation of turbulence at the surface
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