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The matenals contained in this report were presented to Dr. Richard G. Brandt, the
sponsoring Scientific Officer, as part of an October 9, 1991 site visit to our laboratory in the
Physics Department at Texas A&M University. The information is largely pictorial in form,
and is divided into four sections. Comments pertinent to the individual figures may be found
in each of Sections II-IV.

Section I begins with a reprint entitled The Image Potential in Scanning Tunneling
Microscopy of Semiconductor Surfaces which was published in the Journal of Vacuum
Science and Technology as part of the proceedings for PCSI-18. A comprehensive and more
extensive account of this work is presented in an accompanying article entitled /nternal Image
Potential in Semiconductors: Effect on Scanning Tunneling Microscopy which was recently
submitted to Physical Review. These papers are the product of our collaboration with the
theoretical group of Dr. Roland Allen.

Section II traces the development of our efforts to design and assemble a versatile ultra
high vacuum apparatus for muiti-technique surface analysis, tunneling microscopy, and in-situ
sample preparation. Aspects of the design process facilitated by access to advanced computer-
based software packages are highlighted. Particular examples include three-dimensional
visualization of the complete in-vacuo sample transfer and manipulation scheme, as well as
finite-element modeling of structural modes relevint to the optimization of system rigidity for
vibration isolation.

Test data demonstrating operation of the Perkin-Elmer 15-155 Cylindrical Mirror
Analyzer installed in our UHV system for Auger Electron Spectroscopy are presented in
Section IIL.

Section IV documents some preliminary imaging and spectroscopic data obtained using a
Scanning Tunneling Microscope (STM) delivered to us in late April by Omicron
Vakuumphysik . This instrument has been specially modified to facilitate implementation of
Ballistic Electron Emission Microscopy (BEEM). Photographs detailing the flange-mounted
STM stage, both alone and in relation to the remainder of the UHV system, may be found in
Section I.

The individuals responsible for carrying out our ONR sponsored program during this
past year, and whose efforts have led to the results reported here, are listed on the following

page.
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The image potential in scanning tunneling microscopy of semiconductor

surfaces

Z.-H. Huang, M. Weimer, andR.E. Allen
Depariment of Physics, Texas A&M University, College Station, Texas 77843

(Received January 29, 1991; accepted April 17, 1991)

A semiclassical screening theory for semiconductors is used to treat the image potential
throughout a one-dimensional metal-vacuum-semiconductor junction in the absence of surface
states. The image interaction due to induced surface charge at the semiconductor-vacuum
interface produces an effective band bending in the semiconductor interior, whose influence on
electron tunneling through the junction is investigated. In particular, we examine the effect of this
extra potential on STM measurements of the apparent tunneling barrier at unpinned
semiconductor surfaces, and consider n-type, H-terminated Si(111) as a specific example. In the
instance where tip-induced band bending may be neglected, we find the role of the image potential
in metal-vacuum semiconductor tunneling to be qualitatively similar to its role in metal-vacuum-
metal tunneling: The experimentally determined barrier height—obtained from the logarithmic
derivative of the tunneling current with respect to tip-sample separation—deviates little from the
electron affinity of the semiconductor, while the theoretical barrier height exhibits a stronger
dependence on the vacuum gap width. The origin of this behavior appears to lie in the fact that
while the image interaction in the semiconductor may be long range, the image induced tunneling

barrnier is not.

An extra electron placed in a polarizable medium always
induces a redistribution of charge. Near a surface or inter-
face, the collective response of other electrons to this exter-
nal perturbation is a net accumulation of charge at the inter-
face. The image potential describes the interaction of the
extra electron with that induced surface charge.

It has been a matter of some interest whether or not the
scanning tunneling microscope (STM), with its precisely
controllable vacuum gap, might provide a unique experi-
mental opportunity to study the role of image interactions in
electron tunneling. The question has been thoroughly ad-
dressed both theoretically and experimentally for the case of
metal-vacuum-metal (MVM) tunneling.'”” In the simplest
approximation, one models the STM as two planar, parallel,
electrodes, separated by a distance s, and calculates the clas-
sical correction to the tunneling potential using the multiple-
image method.'? The resulting barrier height is only slightly
affected at large separations, but is significantly reduced
when s is the order of a few angstroms. Similar conclusions
may be drawn from more sophisticated density-functional
calculations.>* The quantity determined in STM measure-
ments, however, is an apparent barrier height, ®,, defined
by’

¢, =[(-1/4)dIn1/ds)" (H

Here [ is the tunnel current, s is the vacuum gap width, and
A=1025eV-"? A-' Experimental results*’ indicate the
logarithm of 7 vs s is nearly linear over a wide range, so that
&, is essentially independent of gap width, and has a value
close to the average work function of tip and sample elec-
trodes. As Binnig ef al.* and Coombs er al.® explain, it ap-
pears that &, is insensitive to the image interaction because
of a cancellation, between the distance dependent barrier
height and the rate of change of this barrier height with in-
creasing gap separation, that is specific to the form of the
image potential,
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If one replaces the metal sample electrode with a nonde-
generate semiconductor, the classical image force in the
vacuum is slightly reduced due to the semiconductor’s finite
polarizability, but this does not qualitatively alter the form
of the potential in this region. A more important distinction,
however, is that a long range potential also extends into the
semiconductor interior, and this results in an effective band
bending which becomes significant for electrons near the
semiconductor-vacuum interface.®® This band bending con-
tributes to the overall tunneling barrier experienced by elec-
trons originating from the bottom of the conduction band in
n-type material. It has previously been noted'® thar the
space charge induced by the presence of a metal tip near an
unpinned semiconductor surface is highly sensitive to the
distance between tip and sample, and that varying this dis-
tance has a profound effect on both the tunneling probability
and the experimentally inferred barrier height. We may in-
quire, then, whether the effective band bending associated
with image interactions in a metal-vacuum-semiconductor
{MYVS) junction is similarly sensitive to the gap spacing, and
therefore presents a distinctive siznature of the image inter-
action which is unavailable ir MVM tunneling. It is the pur-
pose of this paper to addre .; that question.

In what follows, we dcrive a semiclassical expression for
the image potential exgerienced by a single electron travers-
ing an ideal, nondegenerate MVS junction without surface
states. This potential is used to calculate a tunneling trans-
mission probability by solving a one electron Schrodinger
equation in .he effective mass approximation. An apparent
barrier height @, is then extracted with the aid of Eq. (1) for
the specific case of an n-type hydrogen-terminated Si(111)-
Au -ystem when the applied bias has been chosen to elimi-
naie tip-induced band bending.

Expressions for the classical image potential in an ideal
metal-insulator-semiconductor (MIS) junction similar to
that shown in Fig. | have been previously derived.*® It is
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FiG. 1. Energy diagram for an 1deal semiconductor-vacuum-metal junction,
when the applied bias ¥ has been chosen to eliminate any electric field
ansing from the difference in metal and semiconductor work functions,
® — (y + ¢,). Here y is the semiconductor electron affinity, and &, the
offset of the Fermi level from the bottom of the conduction band.

well-known, however, that this potential diverges at the in-
terfaces. The unphysical divergences may be circumvented
using a Thomas—Fermi theory of dielectric screening.'':'?
The Thomas-Fermi dielectric function in a bulk metal is
€.,(k) =1+ y.,/k? wherey,, is the corresponding Thom-
as-Fermi wave vector. For a point charge ¢, located at posi-
tion r,,, the electrostatic potential inside the metal, é,, (r,r, ),
satisfies the equation

(vz—rfn)¢m(rvro) = —47Tq05(|'——l'0). (2)

Within the same approximation, the screening response of a
ulk semiconductor to a point charge may be modeled using
the dielectric function given by Inkson,'!

€(k)=1+[(e, - 1)/(1 + €k /)], (3)

where €, is the static dielectric constant and y, an effective
Thomas-Fermi wave vector. It is easily shown that the elec-
trostatic potential inside the semiconductor, 4, r,r, ), then
satisfies the equation''

(VI—yHe,(rr)
= — (Yi/€,)u(rr,) — 4m(g,/€,)8(r — 1), (4)

where u(r,r,) is the vacuum potential, ¢,/|r — r,|. Equa-
tions (2) and (4) are just coordinate space representations
of the fundamental linear relationship, ¢, (k)
=u(k)/¢,,, (k).

In turning to the junction shown in Fig. 1, we assume the
dielectric functions defined for bulk media are unaffected by
the presence of any interfaces, so that Egs. (2) and (4) re-
main valid throughout their respective medium. The semi-
classical solution to the electrostatic potential inside the met-
al. #.,. is then given by Eq. (2), subject to boundary
conditions at the metal-vacuum interface. In order to deter-
mine the semiclassical expression for é,, however, we must
specify the vacuum potential, u, in addition to boundary
conditions at the semiconductor-vacuum interface. In evalu-
ating u, we need to consider the contribution of all charge
external to the semiconductor half space, in addition to any
charge placed inside the medium. As a lowest order approxi-
mation, we add to « the vacuum potential from the external
image charges which generate the correct classical solution
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inside the semiconductor, and then determine &, from Eq.
(4). With this choice for u, the resulting semiclassical poten-
tial, &, naturally approaches the classical solution at dis-
tances greater than a few Thomas-Fermi wavelengths from
the interface. To obtain the semiclassical image potenual,
one simply evaluates the semiclassical electrostatic potential
at the position of the point charge. excluding the field pro-
duced by the charge itself.

Defining the quantities

k

a,,,(k)=—(—k—,——,l7. 158)
Tyt
a((k)zﬁ' {5b)
e
(k) et (6a)
= , a
T 1 +a,, (k)
1 —a, (k)
(k)= —20 (6b)
7. | +a (k)

we show in the Appendix that the semiclassical image poten-
tial felt by a point charge ¢, in the vacuum region, 0 < =, <5,
is

¢pl.(zo)=q0J‘ (Bt + Cie “™)dk, (7
0
where
‘Fl'/fs _ ‘ek(x-r;,: -&—em';'
Bi:—nme"“’] 4 :Z‘ (3)
e- —r]\v’"
FU € _ek(r-z,,1+ e—&u—.:_
Ci =n.~ L€ - ke (9)
et -,
and
ek(;—zﬂ) _ — kts — z,)
(=e-p it (10)

with

B=1(e,—1)/(e +1). (11)
The corresponding potential energy, V... (Z,), is then giv-
enby ¢,@.(2,)/2.

The image potential for g, in the semiconductor (z, <0)
is similarly found to be

@. (2 =.qﬂf {F;eu‘+A2exp[(k2+;f:)"320]}dk.
€, Jo

where
— ks _
Fi=-2% "2 _i e (13
1 —Be
and

A =Qa /(1 +a) g, e "¥ W wF}+(e - 1)
< [nne ™ —n exp[ (kT + ¥z ]

1 -7n.n.e ™ BEY
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Finally for ¢, in the metal (2, >5) we have
Fnlz) =4q. l exp[thk® — ) “(s —z,) | D dk.
) (15)
with
N, —ne . .
DT ! ! Hexp[(k‘-—;fm)(s—zo)]. (16)

) 1l —n.n,e -

It is easily verified that the expressions above reproduce
the classical image potential in the limits y, ., — x. If we
consider instead the limit of very large gap spacing, s— =,
we recover the semiclassical result of Newns'® for an isolat-
ed vacuum-metal interface, and an analogous result for the
semiconductor-vacuum interface. In the limit of a vanishing
vacuum gap. s — 0. our junction reduces to a semiconductor~
metal contact. In this case, the results derived above differ in
detail from those quoted by Inkson'' because of our differ-
ent ansarz for uir.r,). In effect, Inkson treats the semicon-
ductor-metal interface by constructing u from the solution
for a classical dielectric in contact with a Thomas-Fermi
metal. Qur starting point for the same problem would be the
solution to a classical dielectric 1n contact with a classical
metal. If we introduce a vacuum gap between the two media,
the distinction between these approaches becomes unimpor-
tant for separations s which are large compared with a
Thomas—Fermi screening length in the metal.

The effective one-electron potential in the junction is ob-
tained by adding the semiclassical image potential to the
band diagram shown in Fig. 1. To clearly separate the image
interaction from other factors which might influence the de-
termination of an apparent barrier height,'’ we presume the
applied bias ¥ has been chosen to eliminate the electric field
between tip and sample in the absence of image corrections.
Selecting the bottom of the semiconductor conduction band
as our energy reference, the one-electron potential is then
given by lg, ¢, in the semiconductor, ig,¢, + y in the vacu-
um, ana {¢o¢,, + Y — (® + E¢) in the metal. This func-
tion, though finite, is discontinuous at the semiconductor-
vacuum and vacuum-metal boundaries. It is unreasonable to
expect our semiclassical treatment to be entirely accurate
within a screening length of the interfaces for a variety of
reasons. First, the treatment assumes bulk values for the
screening parameters. Second, the correct behavior of the
image potential across an interface can only be deduced by
taking full account of many-body effects.'’ Finally, there is
no a priori relationship between the effective band bending
we calculate 1n the immediate vicinity of the interfaces, and
the one-electron potential we use to model band structure,
which guarantees that the contribution from the surface di-
pole layer, together with exchange and correlation effects,
will produce a smoothly varying total potential across the
interface. Since we believe the effective one-electron poten-
tial should be continuous when all these effects are self-con-
sistently accounted for, we have supplemented our picture
by employing a third-order polynomial to smoothly join the
potential and its derivative at points a distance y, ' from
either side of the boundaries. We then use this interpolation
to represent the tunneling potential within the interfacial
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F1G. 2. Effective one-electron potential energy as a function of position
Solid line: 1ncluding the semiclassical image potential with interpolation
Dotted line: including the classical image interaction. Dashed line: neglect-
ing image effects. Here y =4.3eV, & =51eV.and £, =53 eV

layer. An example of this interpolated potential is presented
in Fig. 2. where we contrast our results with the classical
calculation, for a junction consisting of a n-type hydrogen-
terminated Si(111) surface and gold tip electrode. with
ym=1T7A 'y, =116A "' ande =119+

The method used in computing the tunneling current 1s
the same as that described in Ref. 10. Briefly. the potential is
substituted into a one-dimensional, effective mass Schro-
dinger equation. which is solved numerically to evaluate a
transmission probability. Finite temperature supply func-
tions are then employed to determine the current density. '’
The apparent barrier as a function of gap spacing is calculat-
ed via Eq. (1), and our results illustrated in Fig. 3. The
theoretical barrier height, defined by the maximum of the
potential in the vacuum region, is also shown for compari-
son. As one sees from the figure, the image interaction re-
duces the theoretical barrier height with decreasing gap
spacing, but the effect is significant only for s less than 10 A.
The apparent barrier height defined in Eq. (1), on the other
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s X)
F1G. 3. Apparent (dotted line) and theoretical (solid line) barner height vs

electrode separation s for T = 300 K. The results are virtually independent
of doping 1n the nondegenerate regime.
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FIG. 4. Differential current density distnbution vs normal energy at several
tip-sample separatons.

hand, never varies appreciabiy, and differs little from the
electron affinity of the semiconductor. This is essentially
equivalent to the resuit for a MVM tunneling junction.

The similarity in apparent barrier height as a function of
gap spacing in MVS and MVM junctions suggests that the
influence of image interactions on electron tunneling in the
semiconductor is not significant. This appears contrary to
expectations based on the long-range nature of the image
force in a dielectric medium. Specifically, since tunneling
electrons in a nondegenerate, n-type semiconductor origi-
nate from the bottom of the conduction band (see, for exam-
ple, the calculated differential current density distributions
shown in Fig. 4), one would argue that the tunneling current
should be sensitive to vanations in the precise form of this
long-range potential with electrode separation. However,
there is an interesting point whose importance is overlooked
in prior classical treatments of this problem,®® but which is
crucial to the discussion here: Near a semiconductor surface,
the image potential is dominated by induced charge at the
semiconductor-vacuum interface. The sign of this charge de-
pends only on the discontinuity in polarizability at the inter-
face and results in a repulsive force. At distances in the semi-
conductor intenor which are large compared to the
electrode spacing, however, the vacuum-metal interface also
contributes to the induced charge determining the long-
range potential. Since the polarizability of the metal exceeds
that of the semiconductor, the net force is now attractive.
Because the image force must vanish far from the semicon-
ductor surface, at distances between these two extremes the
tmage potential, and therefore the effective band bending,
must change sign. Consequently, the induced tunneling bar-
rier only extends to the point where the image potential
passes through zero, and is thus of finite range. The effect of
the remaining long-range attractive part of the image poten-
t1al on electron tunneling may be seen in the resonance struc-
ture displayed by the differential current densities shown in
Fig. 4. In the particular case considered here, the zero cross-
ing is given by .2, /s = 3.59. For all of our calculations, we
have truncated the effective one-dimensional potential on
the semiconductor side of the junction at a distance which is
large compared with z, .and presumed that Debye-Huckel
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screening due to free carriers is insignificant on this length
scale.

In conclusion, we have examined a model STM junction
in which the only contribution to the tunneling barrier in the
semiconductor is from the image potential. In this case the
apparent barrier height is insensitive to electrode separation.
The finite range of the image induced barrier in the semicon-
ductor provides a natural explanation for this. As seen in
Fig. 2, the total area contributed by the tunneling barrier in
the semiconductor is typically small compared with that
contributed by the vacuum gap. Furthermore, the small ef-
fective mass for electron tunneling along the (111) axes in
silicon enhances the transparency of any barrier in this direc-
tion.'°

Despite fundamental differences in the long-range screen-
ing properties of metals and semiconductors which suggest a
more prominent roie for the image potential in metal-vacu-
um-semiconductor versus metal-vacuum-metal tunneling, it
appears that the experimentally determined barner height in
STM measurements will be equally insensitive to image ef-
fects in both instances. The physical origin of this insensit-
vity is different in the two cases, however, and, for the semi-
conductor, may be traced to the shcrt-range nature of the
tunneling barrier induced by the long-range image force ina
dielectric medium near a metal electrode.

We thank J. Kramar for previding part of the computer
codes on which this calculation is based, and A. Baratoff for
helpful discussions. This work was supported by the Office
of Naval Research through Grant Nos. NOOO14-89-J-3029
and N00O14-91-J-1126, and by the Robert A. Welch Foun-
dation.

APPENDIX

We first consider the case where a point charge g, 15
placed in the vacuum regton of the junction shown in Fig. 1.
The electrostatic potential in each of the three regions is
determined by the equations

[(V2 = y1)b,(r0,) = — (Vi/€,)ulrr,),
z <0 (semiconductor)
{ Vi, (rry) = —4mg,8(r — 1), (AL
0<z<s (vacuum)
(V2= 928, (1) =0,

\ z>s (metal)

where r, = (0,0.2,) is the position of ¢,. The general solu-
tion to these equations subject to the boundary condition
that both ¢, and &, vanish at =, may be expressed in cylin-
drical coordinates as follows:

%

é.(rr,) = q—"f Fid, (kple*'* - "k +
€, Jo €

)<J. A, kpy exp[(k? + ¥ Pz)dk. (AD)
0

LY 3

&, (rr,) =qu’ Jy(kp)(e
0

+ Bie** + Cle *"ydk, TAD
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and

é.(rr,) =g, D J,(kp) exp[ — (k* +¥i)' “z]dk.
4))
(A4)

The first term in Eq. (A2) is the particular solution
u(r.r,)/€,, where we have approximated u using the well-
known classical expression®® given in Eq. (10). The second
term is a homogeneous solution arnising from short range
screening in the semiconductor. Equation (A3) for &, con-
1ains a particular solution due to the point charge g,, as well
as a homogeneous solution. The coefficients 4 ;, B, Ci,
and D are determined by four boundary conditions at the
interfaces, namely

‘ﬁ, :;u=¢ =0 (AS)

az\-‘*') 432 ez

d‘ ::;:¢m =50 (A7)
and

aé | ;

% | =a¢”l : (A8)

9z i dz .-,

In imposing continuity of the electrostatic potential and its
denivative at these boundaries, we make the physical as-
sumption that all interfacial charge is distributed over a fi-
nite width. Since we exclude an abrupt surface charge, the
factor € which normally accompanies the classical continu-
ity equation for dé/dz no longer appears 1n our boundary
conditions for the semiclassical solution.

The image potential is obtained from &, by settingr =r,
and excluding the self-energy term. The resulting expression
is given by Egs. (7)~(11).

When ¢, is in the semiconductor, the regional differential
equations become

[(V: =)o, (rr,) = — (i/€)u(rr)
— 4rgy8(r — 1),
z <0 (semiconductor);
4 Vi (rr,) =0,
0« z<s (vacuum),
(VP ~ i, trr,) =0,
L z>s (metal)

(A9)

The solutions in these three regions are

= r -z € — 1
8. (rty) :‘iﬁf Jotkpre* * 2 dk + q,
€, Jo €

B

x ,. Jo(kpy exp[(k*+y)' iz~ 2, ]dk

0

+ﬁf FiJ, (kp)etidk + &
€, Jo €,

~

‘,xJ 4.J,(kp) exp[ (k* + )" “z]dk,
4}
(A10)

«ﬁ‘(r.r.))zq‘,j J,(kpyiBie + Cie “ydk, (AL

0
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and

&, (1)) =qOJ D J,(kpyexp[ — (k¥ = 1) *z)dk.
0
(A12)

Additional inhomogeneous terms now arise in Eq. (A10)
from the presence of the point charge in the semiconduc-
tor.'" The classical expression®® is again used to represent
the vacuum potential u and the resulting image potential is
given by Eqgs. (12)-(14).

Finally, when ¢, is in the metal. we have

(V2 —33)d.(rry) = — (vi/€ ulrr, ),
z <0 (semiconductor);
V¢, (r.r,) =0,
O<z<s (vacuum):
(VP ¥2)d, (rrg) = — 4mg,6(r —r1,),
z>5 {(metal),

whose general solutions are

.(r1y) =q—“f FTU, (kp)ebidk - 2
€. Jo €,

“f AT, hp) exp[ (kF + 7! 2] dk,
0

(Al
é.(rry) = ¢, J: Jo tkp) (BT ~ CTe %), (ALS)
and
d,,(rry) =q, J;x Jy (kp)

xexp[ — (k* + ¥ )"z —z, |dk
+ 4 L D7J, (kp)
xexp| — (k° + i)' z]dk. (Al6)

Here we have assumed the vacuum potential u vanishes in
the semiconductor. as it must in the classical case where the
metal completely screens the point charge. Similar deriva-
tions then result in Egs. (15) and (16},
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Internal Image Potential in Semiconductors:
Effect on Scanning Tunneling Microscopy

Z.-H. Huang. M. Weimer, and R. E. Allen
Department of Physics, Texas A&M University
College Station, TX 77843-4242

Abstract

The tunneling of electrons from a semiconductor surface to a metal tip, across a vacuum gap, is
influenced by two image interactions: an attractive image potential in the vacuum region, which
lowers the apparent tunneling barrier, and a repulsive image potental in the semiconductor interior,
which raises it for conduction band electrons. We report on detailed calculations of tunneling
currents and apparent barrier heights for a model metal-vacuum-semiconductor junction which
utilizes semiclassical dielectric functions to compute the image potential in all three regions. The
effect of image forces is found to be small compared to that of either the vacuum barrier or tip-
induced band bending. In particular, the image-induced barrier in the semiconductor has only a
minor ir.fluence on either the apparent barrier height or the shape of current-voltage characteristics,
both of which are routinely measured in STM experiments. This finding is explained by a
qualitative WKB analysis and several simple arguments.
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I. Introduction

Electron tunneling through a junction is often reated by considering independent electrons moving
in an effective potential. The simplest model potential for a metal-vacuum-metal (MVYM) junction is
the rectangular barrier, but it is well known that image forces modify this potential significantly.
Calculadons based on classical electrostatics, for example, reveal that the image interaction reduces
the effective vacuum barrier by lowering its maximum height and slightly narrowing its width (1-3]
More realistic quantum mechanical calculatons employing the density 1unctional formalism indicate
that the lowest order correction to this classical picture is simply a displacement of the effective
image plane by several tenths of an angstrom, along with a smooth matching of the vacuum
potential outside the surface to the minimum of the conduction band in the me*~! interior (4.5 The

resulting vacuum barrier height now depends on the gap spacing s, and is well approximated by ()

a
(D(S)=¢O—S—S , (1)

where @, represents the average work function of the metal electrodes, s, accounts for the shift in
image plane positions, and &~ 10eV A.

The scanning tunneling microscope (STM), with which one can precisely adjust s, and hence
continuously vary the vacuum barrier, is a potentially valuable tool for investigating this effect. By
modulating the distance between tip and sample at a frequency outside the microscope’s feedback
bandwidth, and detecting a synchronous ac tunnel current, one can infer an apparent barrier height
n according to

®, =[(-1/A)dInl/ ds]’, )

where A =1.025 eV-1/2A-1, The utility of (2) stems both from the fact that it is an experimentally
accessible quantity, and that in a Wentzel-Kramers-Brillouin (WKB) approximation for the
rectangular barrier it yields the correct barrier height. Early experiments on metals, however,
revealed no discernible reduction in @4 by image forces at separations of more than a few
angstroms. This insensitivity, it was argued (6] is due not to the absence of image effects, but,
rather, to the particular form of the potential in (1), for which a WKB analysis shows that the first
order term in an expansion of @4 in powers of s-1 vanishes. Other lines of reasoning similarly
supported the conclusion that the apparent barrier height (2) is unlikely to be a sensitive probe of
the image potential in MVM tunneling at large distances 8] Nevertheless, the question of image
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effects and their relevance to STM experiruents continues to hold great interest. Subsequent

investigators have addressed a number of fundamental issues, including the role of non-planar

212 . - . . .
geometry (9-12] the precise nature of the effective vacuum barrier at short distances (7.13.14]

s

, and
the influence of the dynamic image interaction in ime-dependent tunneling

If we replace one of the metal electrodes by a semiconductor to form a metal-vacuum-
semiconductor (MVS) junction, then the image correction to the vacuum potential at Jarge distances

will be similar to that of the MVM junction when scaled to reflect the dielectric behavior of the

[16]

semiconductor *®). A qualitatively new phenomenon now appears, however, in that tunneling

electrons experience an additional image force in the semiconductor interior due to the finite
polarizability of that medium. In a classical multiple-image analysis of the planar MVS or SVS§

junction, this "internal” image potental is given by the expression [17.18]

V.(2)= A i(ﬁﬁ')‘(mﬁ_ == F ] 3)

167¢, =5 (n+Ds-z

for an extra point charge g located at z < 0, with z = 0 the position of the semiconductor-vacuum
interface, and z =s the position of the vacuum-metal interface. Here, &5 is the static dielectric
permittivity of the semiconductor and

B= (€, —E,)

(g, +€,)
with a corresponding expression for . For an MVS junction, 3°= 1. The internal image
potential (3) leads to an effective increase in the semiconductor band gap near an ideal
semiconductor-vacuum interface, since electrons in the conduction band are repelled from the

(1, Image-induced features of this

surface whereas electrons in the valence band are attracted
kind have, in fact, recently been proposed as an explanation for the thickness-dependent energy
shifts observed in both XPS and AES spectra of thin SiO2 films on silico. substrates (191 The
situation is exactly reversed at an ideal semiconductor-metal interface where the band gap is
effectively decreased, a phenomenon already anticipated from the quantum many-body point of

view [ZO].

To explicitly show the functional dependence on gap spacing, equation (3) may be written in scaled
form (18] a5
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where S=z/s and Us is a dimensionless function independent of 5. In an MVS junction, V(z)
changes sign at a position z, = s&,([3) because the contribution from polarization charge at the
metal-vacuum interface eventually dominates that of the semiconductor-vacuum interface deep in
the semiconductor interior. Thus, a conduction band electron approaching the surface will
experience an image interaction which is at first attractive, and then repulsive, with

U: < 0’5 < éo(ﬁ)

U,=0.5=&,(B)
U: >O’§> éo(ﬁ)

(6)

The image induced tunneling barrier in the semiconductor is then strongly dependent on electrode
separation. It is appealing, therefore, to examine the possibility of detecting this additonal barrier
using the scanning tunneling microscope.

The classical expression for the image potential is inconvenient to use in tunneling calculations
implementing transfer marrix methods, since it diverges at the interfaces, where unphysical bound
states may be introduced. A semiclassical theory for the MVS junction which removes these
divergences, but nevertheless requires an interpolation for the total effective potential in the near
interfacial region, has recently been discussed (21 Initial calculations based on this theory showed
that, for the special case of vanishing electric field between tip and sample, the contribution to P4
from the image induced barrier in the semiconductor is small. The insensitivity of @4 to this
additional correction, it was argued, could be ascribed to the short-range nature of the induced
barrier in the semiconductor, which therefore appears nearly transparent. It is the purpose of this
paper to re-examine the question of observing such image effects in an MVS junction under more
general circumstances.

To do so, we first review briefly the phenomenology of apparent barrier heights in tunneling
experiments at unpinned semiconductor surfaces. At zero applied bias there will, in general, be a
space charge induced in the semiconductor by the difference between tip and sample work
functions, A® = @-(y+¢,), as shown in Fig 1(a) for n-type material in depletion. This space
charge may be eliminated only by applying an appropriate bias voltage, Vrg = -A®, to recover the
flat-band condition illustrated in Fig. 1(b). Tip-induced band bending of the kind indicated in Fig.



1(a) will dramatically affect STM measurements of @4, for reasons which are easy to appreciate
(22) The surface potential V;is a monotonically decreasing function of s, with a maximum at s =
0. Since the depletion width W is typically much longer than s, only those carriers with a
thermally activated kinetic energy greater than Vy will surmount the diffusion barrier to arrive at the
semiconductor-vacuum interface. Increasing the separation between tip and sample exponentially
suppresses tunneling through the vacuum barrier as before, but now also exponentially enhances
the number of electrons reaching the semiconductor surface. Because of these two competing
factors, the observed variation in current density is less than expected; this is then interpreted as a
smaller barrier height in Eq. (2). If the image-induced potential (5) is superimposed on the space
charge potential of Fig 1(a), it too will change with gap spacing. Since the energy scale
characterizing the carrier distribution is &7, we may now ask whether inclusion of the
semiconductor image potential further perturbs the carrier distribution, and thus the logarithmic
derivative of the tunneling current, in any measurable way.

In what follows, we first present key elements of the semiclassical image potential theory, and
describe our method of calculation, in Section II. Predictions for the apparent barrier height and
tunneling current-voltage characteristics, including image effects, are presented in Section III for
the particular case of a planar, n-type hydrogen-passivated Si (111)/Au junction. We devote
Section IV to a qualitative discussion of these results within the framework of a WKB analysis,
which permits us to generalize our findings beyond the specific materials we have chosen to study
in detail. Section V summarizes our conclusions.

II. Description of the Calculation

Our calculations are carried out under the assumption that the system consists of independent
electrons moving in an effective one-dimensional potential. The bulk metal is treated as a free-
electron Fermi gas characterized by Fermi energy Ef and work function @. The semiconductor is
modeled in a one-band effective-mass approximation including anisotropy. When assembled into
an MVS junction, the semiconductor-vacuum and vacuum-metal interfaces perturb these bulk
effective potentials; the corrections we specifically consider here are introduced by the multiple-
image interaction and tip-induced space charges. Modifications due to surface states or collective
surface excitations are ignored.

The expressions for the classical image potental in an ideal metal-insulator-semiconductor (MIS)
junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal
interfaces (17181 These unphysical divergences may be circumvented by employing an effective
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Thomas-Fermi theory of dielectric screening (23241 1 derive a semiclassical expression for the
image potential experienced by a tunneling electron. Specifically, the Thomas-Fermi dielectric
function in a bulk metal is given by (£,(k)/ €,) =1+ Y2 /k*). where Ym 1s the corresponding
Thomas-Fermi wave vector. Within the same approximation, the screening response of an
intrinsic bulk semiconductor may be modeled by the dielectric function (23!

(g,/¢€,)—1

, 7
L+ (€, /€,)(k* | 7?) )

(e, (k)] e)=1+

where (e4/€,) is the long-wavelength static dielectric constant and ¥s an effective Thomas-Fermi
wave vector which depends on the total valence charge density. It can then be shown (211 that the
resulting semiclassical expression for the image potential experienced by a point charge ¢ located at
position z < 0 in the semiconductor is

- q2 *| s & s 2 23172
V‘(Z)—_8n'£,J‘0 {ﬁe +Atexp[(k +7?) z]}dk. (8)
where
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coincides with the classical solution {1718 and
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represents an additional response arising from short-range screening in the semiconductor. Here,
we define, in addition to 3 in (4) above,
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When ¢ is located in the vacuum region 0 < z < s, the corresponding expression for the

semiclassical image potential becomes

q2 = v v -k
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Finally, for ¢ in the metal (z > 5 ) one finds
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representing the effect of short-range screening. It is easily verified that the formulae for V; (z),
Vy (z), and Vp, (2) given above reproduce the expected classical results in the limits % ,, — <=, and
that V,, (2), in particular, vanishes.

An effective one-electron potential is obtained throughout the junction by adding the appropriate
regional solution for the semiclassical image potential to the band diagram shown in Fig. 1. We
first consider the case illustrated in Fig. 1(b) when the applied bias VFg has been chosen to
eliminate any electric field between tip and sample in the absence of image corrections. Selecting
the bottom of the semiconductor conduction band as an energy reference, the one-electron potential
is then given by V; (z) in the semiconductor, Vy (z) + ¥ in the vacuum gap, and Vi (z) + ¥ - (@
+ Ef) in the metal. This function, though finite, is still discontinuous at the semiconductor-
vacuum and vacuum-metal boundaries. There are a number of reasons for -his discontinuity,
which originates from inadequacies in the semiclassical treatment at distances within a screening
length of the interfaces. First, the treatment assumes bulk values for the screening parameters in
each medium. Second, the correct behavior of the total effective potential (or self energy)
experienced by an electron moving from inside a polarizable medium to the region immediately
outside it, can only be deduced by taking full account of many-body effects (4.51, Finally, there is
no a priori relationship beiween the effective band bending produced by image effects in the
immediate vicinity of an interface, and the one-electron potential used to model band structure,
which guarantees that the contribution from surface dipole layers, together with exchange and
correlaton effects, will produce a smoothly varying total potential across the interfaces. Since the
true one-electron potential is presumably continuous when all of these effects are self-consistently
accounted for, we supplement the semiclassical picture by employing a third-order polynomial to
smoothly join the calculated potential and its derivative at points a distance ¥s.m~ | on either side of
the semiconductor-vacuum and vacuum-metal boundarics. This interpolation is then used to
represent the tunneling potential in the near-interfacial regions. An example of this interpolated
potential is presented in Fig. 2(a) for a junction consisting of a n-type hydrogen-terminated Si(111)
surface and a gold tip electrode (with }'m=l.7A“, %=1.16A"1, and £=11.9 (25-27)y where we
contrast our results with the classical calculation.

The more general situation occurs when Vi Vgg, and there is a non-vanishing field in the vacuum
region. In the absence of surface states this field penetrates the semiconductor interior, and the
resultant band bending due to the tip-induced space charge is schematically illustrated in Fig. 1(a)
for n-type material when A® = @ - (y + ¢,) > 0. The surface potential qV4 is a sensitive

function of both gap spacing and bias voltage, and is given in the depletion approximation by (221




qv,(s,V) = Ad){[l w(s/ 5,0 +qV 1 ad]” - s/so}z. @

The resulting electrostatic potential in the semiconductor interior, y1z), has finite range, vanishing
o}
at z = -W, and follows the well-known form [27)

w(z)=V,(1+2/W)?, 22

for -W < z < 0. The depletion width W is a function of both the bulk donor density Ng and the
semiconductor surface potential gV through

W(qV,) =&V, /qN )", (23)

while the length scale s is obtained from the zero-bias, zero-separation depletion width according
(22]
to

5y = (& 1 £,)W(AD). (24)

The total one-electron potential now includes a contribution from y1z) as well as that from V; (z)
for z < 0. As above, we interpolate within the near-interfacial region to obtain a continuous result
as a function of position, and an example calculated for the same hydrogen-terminated Si(111)/Au
junction, at a sample bias of -100 mV with Ny =5x 10 17 cm3, is illustrated in Fig. 2(b), where
the additional long-range effect of Debye screening due to free carriers has been ignored.

To compute a tunneling current density, the appropriate potential is substituted into a one-
dimensional effective-mass Schrodinger equation for electrons originating from the conduction
band of the semiconductor. This equation is then solved numerically to evaluate a transmission
probability D(E,, s), where E, is the energy component normal to the barrier. The net tunneling
current density is then given by the expression

em,

j(s) = [ dE,D(E, .5\ No(E,) - No(E, = qV)] (25)

72
Y m,

where Ng is the one-dimensional supply function for electrons at finite temperature in the
semiconductor and metal, respectively, while Y represents an anisotropy factor for the constant
energy surfaces of the six equivalent Si<100> ellipsoidal pockets at the indirect conduction band




minimum projected along the (111) direction. The resulting effective mass for tunneling in the
(111) direction is m;* = ym; = 0.26my. Further details concerning the calculation of D(E,, 5) may
be found in Ref. [22].

III. Results

The tunneling current density as a function of gap spacing calculated on the basis of Eq. (25),
using the one-electron effective potential of Fig. 2(b), is presented in Fig. 3 for a representative
bias voltage which produces substantial majority carrier depletion in the near surface region of the
semiconductor. For comparison, the results obtained using the potential of Fig. 1(a), neglecting
image effects, are also shown. At each of the doping levels considered, we see roughly an order
of magnitude increase in the overall current density at any reasonable gap separation due to the
inclusion of image forces. The shape of the j - 5 curves on a semi-logarithmic plot deviates at
small s from the straight line predicted for vacuum tunneling because of the influence of tip-
induced space charge on current transport through the junction, as explained previously (22 Wha
we wish to call attention to here is that the j - 5 characteristics for a given doping display a similar
shape whether or not image effects are included.

This observation is more quantitatively expressed in Fig. 4, where an apparent barrier height as a
function of gap spacing is obtained via Eq. (1) from the curves in Fig. 3. We see that the barrier
height displays nearly the same behavior as a function of s (for a given doping) with or without
image forces, but that including image effects results in an overall lowering of the apparent barrier
by a few tenths of an eV. Also presented in Fig. 4 are the doping-independent results for @4

when the applied bias has been chosen to eliminate any tip-induced band bending 21

, as shown in
Fig. 1(b). Itis clear from the figure that the principal influence on @4 arises from tip-induced

space charge, and that the image potential constitutes a relatively small perturbation.

The influence of image forces on the tunneling current-voltage characteristics at constant separation
may be calculated in a manner similar to the j - 5 characteristics presented above, and the results are
shown in Fig. 5, as a function of doping, for s = 5A. To facilitate a comparison between j - V
curves calculated with and without image corrections at fixed doping, and between j - V curves
cbeained for different doping levels, both the current density and applied bias have been scaled to
their respective flat band values. As already noted, the image potential increases the current density
for a given applied bias and electrode separation, but we see here that the overall shape of the j -V
characteristic remains essentially unchanged. This shape is, again, dominated by the tip-induced




space charge. A discussion of the somewhat unusual propertes of the reverse-bias characteristics

may be found in the literature (28,29,

IV. Discussion

Our results for the specific case of a planar, passivated n-type Si (111)/Au junction indicate that the
influence of image effects on the apparent barrier height is small, and may not be experimentally
detectable in practice. The role of tip-induced space charge in determining the apparent barrier
decreases with increasing bias as flat band conditions are approached [22], so that image effects, if
detectable, will be most prominent at bias voltages very near Vg The shape of the tunneling

current-voltage characteristics also appears to be insensitive to image forces.

In what follows, we examine these conclusions from the perspective of a WKB analysis of
tunneling through the compound barrier created either by the space charge in the semiconductor
neglecting image effects, followed by the vacuum gap, or the image potential in the semiconductor
neglecting space charge, and the vacuum gap. In this way we can identify important qualitative
features of the realistic junction problem containing both elements which will give us some insight
into the relevance of specific material parameters to our results, and the circumstances under which
image effects might play a more significant role.

The simplest case arises when the only barrier which need be considered is due to the vacuum gap.
If we denote by DY3C(E,, 5s) the energy-dependent transmission coefficient, then in the WKB
approximation one obtains

InD"™(E,,s)==2(2m, / 1) (x - E,)""s. (26)

The differential current density per unit energy at energy E; is then

(E,,5)/ 9E, = D™ (E,,s)[No(E,) = Ny(E, - qV)], Q7

and the condition for an extremum in this quantity is simply

~(1/kT)+dInD"™(E,.5)/ dE,|, =0 (28)
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This condition, when appropriated generalized, gives Eq. (29) and is relevant to the discussion
following (31). However, in the present case, the extremum in (28) turns out to be a local
minimum, and a maximum is found at the end point E,, = 0. If the differential current density at
this maximum is used to characterize the integrated tunneling current, Eq. (2) yields @4 = x for the
apparent barrier height.

The next situation which is straightforward to analyze arises when we consider the effect of
semiconductor space charge and ignore the vacuum barrier. This corresponds to the problem of
tunneling through an ideal Schottky barrier structure. In this case, a WKB analysis reveals that the

peak of the differential current distribution occurs at an energy (30.31)

E IV, = {cosh[q(fsz, /dam.e,)" /kT]}'z. (29)

In the limit of low doping and long depletion widths, this ratio approaches unity, so that the
. . . . . -V, 1&T .. ..
differential current density is proportional to € * and one recovers the thermionic emission

picture of current transport across a Schottky barrier (29),

The combined effect of the semiconductor space charge and a vacuum barrier is more difficult to
follow through completely, but the qualitative features are apparent in at least one important limit.
As noted in connection with Eq. (21), the semiconductor surface potential is a function of the
vacuum gap width s . If one considers the physically realistic circumstance of s/sp << 1, which
corresponds to electrode separations that are small compared to the sample depletion width, the
energy distribution will be almost completely determined by the semiconductor space charge. A
specific example, based on the more accurate calculations described in Section II, is presented in
Fig. 6, where we see that E,,/V4 is nearly one, independent of s. Thus, for low doping, current
transport is once again well-described by a thermionic emission picture, and one finds from Eq.
(2) that (22!

D2 =y 4 (1/ AXq [ KTV, / Is). (30)

Since the surface potential decreases with increasing separation, s, the second term in (30) is
opposite in sign to the vacuum barrier contribution. The distance dependence of V4 then has a
profound influence on the apparent barrier height through its effect on the tunneling energy
distribution.
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Finally, we turn to the question of image forces and consider the case where we can neglect tip-
induced band bending. A key issue is the extent to which image effects in the semiconductor
interior perturb the energy distribution of tunneling electrons relative to that characteristic of the
vacuum barrier alone. Ignoring image corrections in the vacuum region for simplicity, the
extremum condition of Eq. (28) now becomes,

~(1/kT)+dInD™(E,.5)/ OE,|, ,, +dnD*™"(E,5)/dE| =0, (31)

E,=E.

which includes a contribution from the image-induced barrier in the semiconductor. A useful
estimate of the last term in (31) is provided by considering the limit of infinite separation between
tip and sample. The semiconductor barrier is then a screened coulomb potential due to a single
image charge, as appropriate for the free semiconductor-vacuum interface. Since the proximity of
the metal counter-electrode creates multiple image charges whose net effect limits the range of the
semiconductor barrier, we may reasonably expect this approximation to provide an upper bound to
the image-induced perturbation of the tunneling energy distribution. Employing the well-known
expression for the energy-dependent WKB transmission coefficient through a coulomb barrier (32]
the relative significance of semiconductor and vacuum terms may be assessed via the

L Ea G o]

For typical values of the electron affinity in semiconductors, the last term in parenthesis is of order

dimensionless ratio

(1A/s), while the maximum possible value for the remaining parameters is 0.26. Evaluation for the
specific case of Si(111) gives 0.05 (1A/s) for this ratio. Thus, at gap separations of order ten
angstroms or more, the corrections to the maximum of the energy distribution are expected to be
small for any material, and certainly negligible for silicon. We can inquire further, under the
presumption that the semiconductor barrier will not be negligible under all circumstances, what
may at most be expected for the shift in the location of the energy maximum. As an extreme
circumstance we retain the screened coulomb potential in the semiconductor, while completely
ignoring the vacuum barrier, and find

@ R )]
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For Si (111) at room temperature, (E,/kT) = 0.76, whereas for optimum parameters it will be no
more than a factor of 3 greater.

The above considerations suggest therefore, that, relative to x, a zero-energy WKB analysis is an
appropriate starting point for discussing how image forces influence the apparent barrier height in
this system. That supposition is supported by numerical results obtained from the detailed
formalism presented in Section II. In particular, Fig. 7 displays the differential current density per
unit energy, as a function of gap spacing, calculated for the semiclassical multiple-image interaction
using the one electron potential of Fig. 2(a). As one would expect, these distributions show
resonant transmission for electron energies very near the conduction band minimum, due to the
shallow, long-range attractive portion of the image potential in the semiconductor interior, and,
furthermore, they peak just below (E/T) = 1, as inferred above. Of particular note in Fig. 7 is
that, in marked contrast to the situation for tip induced band bending (Fig. 6), the energy
distribution for tunneling electrons appears to be only weakly dependent on s (at least when the
semiconductor barrier is of finite range), a relevant point outside the scope of our arguments thus
far.

As a consequence of the scaling property (5) for the classical image potential in a semiconductor,

the zero-energy WKB transmission coefficient through this barrier may be parameterized in terms
of the dimensionless integral

1By=,  [U.B.O]"d¢ . (34)

It follows that the contribution of the semiconductor to the apparent barrier height at £, = 0 is given
by

Jdln Dsamcond(E '—'O,S) m' ”2(2”1 )1/2( eZ 12
z - —_ 2 . 3
ds [('B)(m ] n’ kSn'eas )

(]

In relation to the vacuum barrier then, this represents a correction of order

sermicond _ 102 3 112
dinD - (E,-O.s)/&szl(ﬁ) m e . | (36)
AlnD™(E, =0,5)/ Js m, 32re, xs
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Using our estimate above, the last term in parentheses is roughly (1A225)1/2. Now I(B) has a
maximum value of 0.51 at 8 =1 (an MVM junction), and decreases smoothly toward zero in the
limit that 8 vanishes. For any reasonable choice of the semiconductor dielectric constant,
however, /(f3) exceeds 0.4. Thus, in general, our correction term can at most be of order
0.3(1A/s)1/2, and for Si (111) is only a factor of two smaller. Over a physically reasonable range
of gap spacings from 10 - 1 A, for example, the effect of the semiconductor image potental, in this
approximation, will be to increase the apparent barrier height between 5 and 15%.

Because of our reliance on a zero-energy analysis, the above estimate presents an upper limit to the
magnitude of the effect one may reasonably expect. Indeed, our numerical calculations for Si(111)
show that the inclusion of image forces produces a small net decrease in the apparent barrier height
due to a reduction of the vacuum barrier, which is fully consistent with the results for MVM
tunneling.

One may pause to consider at this point whether the situation will be fundamentally altered if we
replace the far metal electrode with a second semiconductor whose polarizability is less than or
equal to that of the first. In this case, the integral (34) diverges (with [£gl — o), since there is no
longer any change in sign for Uy S, §’&) and the image-induced barrier is long range. Reflecting
on (33), however, we are reminded that this barrier will be probed not at £, =0, but rather at £, =
kT. The effective range of the image interaction at this energy is then of order

. _af1-B e’
T _ﬁ(l+ﬁj[l6n'eokTJ ' (37)

which, at T = 300 K, is less than 25 A for optimum . Thus, there is nothing in our arguments

which leads us to suspect circumstances will be dramatically different for semiconductor-vacuum-
semiconductor (SVS) tunneling, unless one can arrange to conduct the experiments at low
temperature.

V. Summary and Conclusions
We have investigated the influence of the image potential on tunneling through a planar metal-
vacuum-semiconductor junction. This problem differs qualitatively from the metal-vacuum-metal

junction because there is now an image potential in the semiconductor interior as well as in the
vacuum region. The classical multiple-image expression for an MVS system has been extended,
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using a Thomas-Fermi like dielectric function in the semiconductor together with the usual
Thomas-Fermi thecry for the metal, to provide expressions which are everywhere finite. The
resulting semiclassical image potentials in semiconductor, vacuum, and metal must still be
smoothly joined, however, by an interpolation through the interfaces. Using these potentials, the
tunneling current at finite temperature was calculated as a function of separation for the particular
case of a n-type hydrogen-passi- ~ted Si(111) - Au system, and an apparent barrier height @4 then
extracted to simulate the results of STM modulation experiments.

To obtain a more general understanding of these detailed calculations, qualitative arguments based
on a WKB picture have also been presented. If the image potential is neglected, @4 is well
described by terms involving, first, the semiconductor's electron affinity, and, second, the effect
of tip-induced band bending. When the contribution of the image potential within the
semiconductor is separately considered, a WKB estimate indicates it will perturb the apparent
barrier height by at most 10% at reasonable tip-sample distances. This crude estimate helps one
understand the principal result of the detailed calculations presented in Figures 3 and 4: Although
the tunneling barrier for an MVS junction differs from that for an MVM junction, the image
potential in the semiconductor makes only a modest contribution to the apparent barrier height.
Furthermore, as our calculations reveal, the dominant effect is a slight lowering of @4, due to the
attractive image potential in the vacuum region in conformity with expectations based on MVM
tunneling, rather than any increase in @4 from the repulsive image potential within ‘e
semiconductor.

One may have thought that the semiconductor's internal image potential, being long-range, would
have a substantial effect on carriers originating from the bulk conduction band edge, and thus
influence not only tunneling currents, but the apparent barrier height as well. Our calculations,
together with the WKB analysis, indicate otherwise. Three qualitative arguments account for this
observaton: First, in the case of flat bands, the potential due to polarization charge at the vacuum-
metal interface competes with that of the semiconductor-vacuum interface to produce a barrier in
the semiconductor interior which is short range; Second, for the more general case which includes
a semiconductor diffusion potential in either depletion or weak inversion, the overwhelming
influence on the carrier distribution arises from the diffusion potential, and not the image potential.
In the case this diffusion potential is tip-induced, we have shown explicitly that @4 is almost
completely dominated by the distance dependence of field penetration in the semiconductor, and
that image effects are of relatively minor importance; Finally, for flat band conditions, most of the
tunneling current is provided by electrons whose energy is of order kT above the band edge. For
these electrons, the image-induced barrier is effectively short range at room temperature, even if

15




one neglects the influence of polarization charge at the metal tip. The same argument applies, in

principle, to the semiconductor-vacuum-semiconductor junction, but whether or not the image

potential will have a significant influence in this system at low temperatures remains an open

question.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure Captions

(a) Schematic energy diagram for an ideal semiconductor-vacuum-metal junction at
zero applied bias V, neglecting image effects. @ is the metal work function, Ef the
metal Fermi energy, y the semiconductor electron affinity, and ¢, the offset from the
Fermi level to the bottom of the semiconductor conduction band. The drawing is not to
scale since the depletion width W is typically much greater than the gap spacing s, and
x exceeds the band gap, £, - E,, .

(b) Flat band situation when the applied bias Vrg has been chosen to eliminate the
electric field arising from a difference in metal and semiconductor work functions,

D-(x+ dn)

(a) Effective one-electron potential energy as a function of position for V = Vg and
s = 10 A. Solid line: including the semiclassical image potential with interpolation.
Dotted line: including the classical image interaction. Dashed line: neglecting image
effects. y = 43 eV, P=5.1¢eV,and Er =5.53 eV. The potentials are independent
of doping.

(b) Effective one-electron potential energy as a function of position at a representative

bias which produces depletion in the semiconductor (Vg =5 x I 017 cm3). All other
parameters as above. Solid line: including the semiclassical image potential with
interpolation. Dashed line: neglecting image effects. Note the offset of the
semiconductor surface potential from the conduction band edge in the bulk.

Tunneling current density j versus electrode separation s as a function of doping for
fixed bias and T = 300 K. Solid line: including the semiclassical image potential as in
Figure 2(b). Dashed line: neglecting image effects.

Apparent barrier height @4 versus electrode separation s as a function of doping. Solid
line: including the semiclassical image potential. Dashed line: neglecting image
effects. The flat band results are essentially independent of doping in the non-
degenerate regime.

Tunneling current density j versus applied bias V as a function of aoping for fixed
separation and T = 300 K. Solid line: including the semiclassical image potential.
Dashed line: neglecting image effects. The current density and applied bias are scaled
to their respective flat band values to facilitate a comparison of the shape of the j - V
characteristics.

Differential tunneling current density distribution versus normal energy E; (scaled to the
semiconductor surface potential) as a function of electrode separation, neglecting image
effects, for V = -100 mV and Ny = 5 x 10/7 cm-3. Inset: tip-induced semiconductor
surface potential versus separation at the same fixed bias.

Differential tunneling current density distribution versus normal energy E, (scaled to
kT) as a function of electrode separation, including the semiclassical image potential in
the absence of tip-induced band bending (V= Vgp).
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Section Il

INSTRUMENTATION



Figure Captions

Figure 1(a-b): UHV STM system in Surface Physics Laboratory at Texas A&M
University. The entire assembly rests atop a specially engineered vibration iselation platform.

Figure 2(a): Orthographic views of main analytical chamber. Flanges are arranged along
the chamber axis in three clusters. From left to right: Surface analytical cluster with provision for
Auger Spectroscopy, LEED, X-ray Photoelectron Spectroscopy, and lon Sputtering; Sample pick-
off from preparation chamber / entry lock with provision for sample storage; STM cluster.
Maximum flexibility is maintained by the orthogonal arrangement of 8" ports in the STM cluster,
permitting bottom, top, or side mounting of an STM flange. Introduction of samples to the main
chamber and movement along the axis of this chamber is via orthogonal, magnetically coupled
linear/rotary transporters.

Figure 2(b): Schedule describing location, orientation, and function of various ports
available on the analytical chamber, as well as sample target positions.

Figure 3(a): Onthographic views of UHV pumping assembly consisting of Perkin-Elmer
220 L/sec D-1 ion pump, titanium sublimation pump with liquid nitrogen cooled cryoshroud, and
custom mounting for SAES nonevaporable getter (NEG) module. Auxiliary flanges for ion gauge
and/or quadrupole mass spectrometer.

Figure 3(b): Small volume sample preparation chamber for directed gas-phase dosing,
electrochemical deposition cells, or filament evaporators. A gate valve separating this side chamber
from the main analytical volume permits dosing with high vapor pressure substances without the
risk of either contaminating analytical instruments or exposing the STM tip. A 30 L/sec Perkin-
Elmer D-I ion pump and Balzer's 60 L/sec turbo-molecular pump, atrached to the entry lock,
provide pumping for this isolated segment.

Figure 4(a): Ambient (vertical) vibration amplitude versus frequency, on laboratory floor
(upper trace) and atop vibration isolation platform (lower trace). Vertical scale: logarithmic, from -
60 db (= 1 pm) to +40 db (= 100 nm), with 10 db per division. Dashed line indicates 0 db (= 1
nm) displacement. Horizontal scale: linear, from 0 Hz to 50 Hz, with 5§ Hz per division and a
frequency resolution of 0.125 Hz. Platform resonance occurs at 1.25 Hz and unity gain crossover
in the transfer function occurs at 1.625 Hz. The I nm displacement crossover frequency is 4.00
Hz. Above 1.625 Hz, the platform successfully filters out vertical seismic disturbances, reaching
an ultimate suppression factor greater than 40 db beyond 10 Hz.

Figure 4(b): Ambient (horizontal) vibration amplitude versus frequency, on laboratory
floor (upper trace) and atop vibration isolation platform (lower trace). Vertical and horizontal
scales as in 4(a). Platform resonance occurs at 1.125 Hz and unity gain crossover in the transfer
function occurs at 1.50 Hz. The 1 nm displacement crossover frequency is 3.00 Hz in this case.
Ultimate suppression above 10 Hz is between 30 db and 40 db, depending on frequency.

Figure 5(a): Finite-element simulation (ALGOR) of normal modes for magnetically
coupled linear/rotary transporters fixed at one end (cantilevered support). Lowest vibrational
resonance occurs at approximately 25 Hz.

Figure 5(b): Finite-element simulation of normal modes for magnetically coupled
linear/rotary transporters fixed at both ends. Lowest vibrational resonance has been shifted to
approximately 87 Hz.




Figure Captions (cont'd)

Figure 6(a-b): Normal modes of center- and transverse-axis magnetically coupled
linear/rotary transporters in rigidized support scheme implemented in Figure 1. Note that lowest
resonant frequency is close to that of ideal fixed-fixed boundary conditions in Figure 5(b) above.

Figure 7(a-b): Close-up view of Omicron STM which shows flange mounting, single-
stage spring suspension with eddy-current damping, coarse two-dimensional sample positioner
(left center), piezo-tripod with exchangeable tip holder (right center), and BEEM current
preamplifier (bottom center). Hidden from view by supports for spring suspension is tunneling
current preamplifier mounted directly behind the piezo scanner.

Figure 8§: View along main axis of analytical chamber, through port 1: Looking past
Cyliindrical Mirror Analyzer (in foreground), infra-red bake out lamps, and sample carousel,
toward STM (in background) with stage at transfer elevation, and pincer-grip wobble stick.
Center-axis transporter, holding tip or sample, is positioned just above STM.

Figure 9(a-b): Cross-section through main chamber at ports 6,7,8 and 9, illustrating
proposed pick-off scheme after sample introduction from entry lock or preparation chamber.
Wobble stick, sample plattens, and carousel are Omicron design. Wobble stick includes pincer
movement for positive grip on platten. Sample plattens are shown mounted on custom rack
attached to the end of a magnetic linear/rotary transporter with 30" stroke. Overhead view port
allows convenient inspection of transfer process and loaded carousel. Wobble stick retraction is
sufficient for plattens to be exchanged from front to back on carousel, thereby permitting a reversal
of their orientation relative to chamber center line once the carousel is rotated. This is crucial as
sample and tip loading must proceed with opposite orientation in the STM. Rotation of carousel is
accomplished by tapping a clutch lever, which is inside a 20) degree cone angle, with wobble stick.
A high conductance, stainless steel mesh screen serves to protect the pumping assembly from any
inadvertently dropped plattens.

Figure 10(a): Cross-section through main chamber at ports 10,11,12 and 13, showing
relative orientation of center-line magnetic linear/rotary transporter and a second pincer-grip wobble
stick during the initial stage of sample or tip transfer to STM. Overhead and side view ports
facilitate inspection of transfer process.

Figure 10(b): Once magnetic transporter has been fully withdrawn. sample or tip may be
loaded onto the STM stage by levelling wobble stick as shown.
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BOUNDARY CONDITIONS:
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B
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Figure 6(a)
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Section Il

AUGER SPECTROSCOPY




Figure Captions

Figure 1:  Auger spectrum from copper test sample. The sample was sequentially cleaned
using trichloroethane, acetone, and then ethanol, in an ultrasonic cleaner. The spectrum was taken
with a Perkin Elmer 15-155 Cylindrical Mirror Analyzer.

Reak Energy Element
1 61 Cu
2 182 cl
3 273 C
4 512 0
5 776 Cu
6 840 Cu
7 849 Cu
8 921 Cu

Figure 2:  Auger spectrum from copper test sample. This part of the sample was etched in
FeCl, to remove oxygen. Compare the ratio of peaks 4 and 8 to the same ratio in figure 1. Also
note }ne ratio of peaks 3 and 8 in each figure. The magnitude of peak 2 in Figure 2 is due to the
residue from the FeCl3.

Reak Energy Element
1 61l Cu
2 181 Cl
3 272 C
4 511 0]
5 773 Cu
6 837 Cu
7 845 Cu
8 917 Cu
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Section IV

TUNNELING MICROSCOPY




Figure Captions

Figure I(a): UHYV test data of a Si(111) 7x7 surface obtained with the instrument
presently at Texas A&M. The sample was biased at 2.0V with a feedback current of 0.06nA. An
atomic step is visible at the top of the image. This data was acquired at the Omicron factory.

Figure 1(b): A grey scale rendition of the same silicon image.

Figure 2(a): Topographic image of highly oriented pyrolytic graphite (HOPG) showing
atomic resolution over a long (100 Angstrom) scan. The image was obtained in air with a platinum
tip cut from wire. The sample bias was 50mV with a feedback current of 1.0nA.

Figure 2(b): Current image taken concurrently with the topographic image of Figure
2(a). The total time to take the data was 114 sec; the feedback time constant was set such that the
atomic corrugation modulated the current.

Figure 3(a): Large area scan (2000 Angstroms by 2000 Angstroms) of the HOPG
surface showing mono-atomic steps. The measured step height is about 3.4 Angstroms, in good
agreement with the accepted value of 3.35 Angstroms.

Figure 3(b): A grey scale rendition of the same HOPG image.

Figure 4: Grey scale image of a tip crash site on HOPG. This distinctive feature
could be imaged for hours and provided an opportunity to practice maneuvering the STM image
frame.

Figure 5(a): A typical grey scale image of the surface of bulk gold. The large, rounded
features such as these are commonly observed. This image was taken with a sample bias of
100mV and a feedback current of 1.0nA.

Figure S(b): Another grey scale image of bulk gold. The data was obtained in air with a
sample bias voltage of 2.5V and a feedback current of 0.05nA, yielding a nominal tunneling
resistance of 50 gigaohms. Large, rounded features are resolved, but finer detatls are obscured
presumably due to larger tip-sample separation than in 5(a).

Figure 6(a-c): Typical current-voltage (I-V) characteristics (left side of each figure) for
junctions formed between a platinum STM tip and various samples: (a) graphite, (b) bulk gold,
and(c) oxidized tungsten. Note that (a) and (b) have qualitatively different behavior near zero bias.
The characteristics for graphite are less linear than the charactenistics for gold. This is consistent
with the greater difference in the work function values between graphite and platinum compared to
gold and platinum. The oxidized tungsten characteristics behave similarly to those of a
semiconductor. The right side of the figures shows the junction conductance, calculated by
numerically differentiating the measured I-V charactenistics. The effect of noise in this coarse data
1s readily apparent.




Figure 1(a)
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Figure 6(a)

Figure 6(b)
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