FUEL EVALUATION FOR SMALL DIESEL ENGINES

INTERIM REPORT
BFLRF No. 274

By
K.D. Beaty
M.G. Ross

Engine, Fuel, and Vehicle Research Division
Southwest Research Institute
San Antonio, Texas

Prepared for
Belvoir Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Under Contract to
U.S. Army Belvoir Research, Development
and Engineering Center
Materials, Fuels and Lubricants Laboratory
Fort Belvoir, Virginia

Contract No. DAAK70-87-C-0043

Approved for public release; distribution unlimited

September 1991

92-02331
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.
Fuel Evaluation for Small Diesel Engines

11 TITLE (Include Security Classification)

Fuel Evaluation for Small Diesel Engines (U)

12. PERSONAL AUTHOR(S)

Beatty, Kevin D. and Roes, Michael G.

13. TYPE OF REPORT

Interim

14. DATE OF REPORT (Year, Month, Day)

1991 September

15. PAGE COUNT

52

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Auxiliary Power Unit, Internal Combustion Engines, Power Generation, Heavy Fuels, Spark-Assisted Diesel

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Southwest Research Institute (SWRI) conducted a project in support of the Auxiliary Powered Environmental Control System (APECS) for the Armored System Modernization Program. The purpose of this project was to develop concepts for an auxiliary power unit (APU) based on a small internal combustion engine that operates on heavy fuels such as diesel, JP-5, and JP-8.

After analyzing a comprehensive engine database, no diesel engines were found in current production that will meet the project targets; therefore, three approaches were identified as potential strategies to meet the project requirements: 1) Increase power output of small existing diesel engine; 2) Convert gasoline engine to spark-assisted diesel operation; 3) Design and develop new engine configurations.

A small, four-stroke diesel engine was located that will fit inside the available package volume with some modifications. A two-stroke gasoline engine was also located that will fit into the available space. Both engines will require major modifications to meet the power and fuel economy requirements on heavy fuels.

From a purely technical standpoint, the most promising approach appears to be the design and development of a lightweight diesel engine. However, the cost of this approach will be much greater than the two approaches described above. Therefore, our recommendation is that an existing diesel or gasoline engine be modified for demonstration purposes. After successful demonstration of the concept, a dedicated, lightweight diesel engine should be designed for this application.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

Unclassified

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Beatty, Kevin D.

22b. TELEPHONE (Include Area Code)

(703) 664-3576

22c. OFFICE SYMBOL

STRBR-VP
EXECUTIVE SUMMARY

Problems and Objectives: Operation of the main vehicle engine on armored tanks during night watch conditions results in very high fuel consumption. The purpose of this project was to develop concepts for an auxiliary power unit (APU) based on a small internal combustion (IC) engine that operates on heavy fuels such as diesel, JP-5, and JP-8. The ultimate goal of the APU is to achieve a substantial fuel savings by eliminating the need to run the main vehicle engine during night watch conditions.

Importance of Project: Small turbine engines are being considered for APUs due to their high power density and light weight. However, in the 75- to 100-hp range, it is well known that diesel engines have the potential to dramatically reduce fuel consumption, compared with turbine engines. This report concludes that a small IC engine can be developed for this application and quantifies the fact that small turbine engines cannot compete with diesel engines for this application when fuel consumption is taken into account.

Technical Approach: A database was used to identify the current diesel engine state-of-the-art in the range of 20- to 250-hp. New engine concepts were developed for achieving the performance and packaging goals. Each of the new concepts was compared with the others in terms of technical risk, development cost, and overall feasibility. Cost comparisons were also made between small turbine engines for this application and the new engine configurations which were recommended.

Accomplishments: This report concludes that there are no diesel engines available to meet the project goals; therefore, three approaches were identified as potential strategies to meet the project requirements:

1. Increase the power output of small existing diesel engine
2. Convert gasoline engine to spark-assisted diesel operation
3. Design and develop new engine configurations

A small, four-stroke diesel engine was located that will fit inside the required package volume with some modifications. This engine could be developed to provide the needed power output with some sacrifice in engine life. A two-stroke gasoline engine was also located that will fit into the available space. This engine will require that the combustion system be converted to spark-assisted diesel operation due to the low compression ratio. This engine will have a moderate life expectancy and higher fuel consumption than the project goals.

From a technical standpoint, the most promising approach appears to be the design and development of a lightweight diesel engine. This engine should come closest to meeting all requirements for this application. However, the cost of this approach will be much greater than the two approaches described above. Therefore, our recommendation is that an existing diesel or gasoline engine be modified to satisfy as many project targets as possible for demonstration
purposes. After successful demonstration of the concept of an IC engine for this application, a dedicated, lightweight diesel engine should be designed for this application.

Military Impact: The use of an internal combustion engine as an auxiliary power unit during night watch conditions will reduce the operating costs and improve the battle readiness of the Army's tanks. Since tanks spend the majority of their time under night watch or silent watch conditions, reduced fuel consumption with the small diesel engine will result in dramatic fuel cost savings. But more importantly, the reduced fuel consumption during night watch conditions will leave substantially more fuel on-board for battle conditions.
FOREWORD/ACKNOWLEDGMENTS

This work was performed by the Engine, Fuel, and Vehicle Research Division (EFVRD) for the Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI), San Antonio, TX, under Contract No. DAAK70-87-C-0043, WD 34 for the period 1 May 1991 through 13 September 1991. Work was funded by the U.S. Army Belvoir Research, Development and Engineering Center (Belvoir RDE Center), Fort Belvoir, VA, with Mr. T. C. Bowen (STRBE-VF) serving as contracting officer’s representative. Project technical monitor was Mr. Samuel J. Cerami (STRBE-FED).

The authors would like to acknowledge the efforts of SwRI’s EFVRD personnel, especially Mr. Ken Swenson, who provided significant help with the diesel engine database, and Mr. Nigel Gale and Mr. Shannon Vinyard for their engineering and editing assistance.
TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. TECHNICAL DISCUSSION 2

A. Today’s State-of-the-Art Diesel 3
 1. Power to Package Volume Ratio 3
 2. Power to Weight Ratio 12
 3. BSFC .. 16
 4. Heat Rejection 22

B. Spark-Assisted Diesel Combustion 24

C. Diesel Concepts for APU’s 27
 1. Increase Power Output of Small Existing Diesel Engine 27
 2. Convert Gasoline Engine to Spark-Assisted Diesel Operation 33
 3. Lightweight Diesel Engine Design and Development 38

D. Cost Comparison .. 39

E. Technology Assessment 40

F. Fuel Combustion Methodology 42
 1. Load Conditions 42
 2. Engine Size 42
 3. Engine Speed 42
 4. Response to Step Loading 43
 5. Starting and Operation Under Military Extreme 43

III. CONCLUSIONS ... 43

IV. RECOMMENDATIONS 44

LIST OF ACRONYMS AND ABBREVIATIONS 45

APPENDIX - Engine Data 47
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Relationship Between Engine Cycle and Volume Specific Power Output</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Relationship Between Cooling Media and Volume Specific Power Output</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Relationship Between Aspiration and Volume Specific Power Output</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Relationship Between Diesel Combustion Systems and Volume Specific Output</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Air Utilization Comparison Between IDI and DI Combustion Systems</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>Relationship Between Engine Configurations and Volume Specific Power Output</td>
<td>11</td>
</tr>
<tr>
<td>7.</td>
<td>Relationship Between Engine Cycle and Weight Specific Power Output</td>
<td>13</td>
</tr>
<tr>
<td>8.</td>
<td>Relationship Between Diesel Combustion Systems and Weight Specific Power Output</td>
<td>15</td>
</tr>
<tr>
<td>9.</td>
<td>Relationship Between Cooling Media and Weight Specific Power Output</td>
<td>17</td>
</tr>
<tr>
<td>10.</td>
<td>Relationship Between Aspiration and Weight Specific Power Output</td>
<td>18</td>
</tr>
<tr>
<td>11.</td>
<td>Comparison of BSFC Levels for DI and IDI Combustion Systems</td>
<td>19</td>
</tr>
<tr>
<td>12.</td>
<td>Trade-off Between Engine Weight and Fuel Consumption for Turbine Engine and IDI and DI Diesel Engines</td>
<td>20</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>14.</td>
<td>Effect of Engine (Piston) Speed on Engine Friction</td>
<td>23</td>
</tr>
<tr>
<td>15.</td>
<td>Typical Cylinder Pressure Diagram for DI Diesel Engine with 16:1 Compression Ratio</td>
<td>25</td>
</tr>
<tr>
<td>16.</td>
<td>Effect of Compression Ratio on Ignition Delay for Typical DI Diesel Engine</td>
<td>26</td>
</tr>
<tr>
<td>17.</td>
<td>Illustration of Combustion "Smoothing" on Low Compression Ratio Diesel with Spark-Assist</td>
<td>28</td>
</tr>
<tr>
<td>18.</td>
<td>Illustration of APU Configuration using the Yanmar Diesel Engine</td>
<td>30</td>
</tr>
<tr>
<td>19.</td>
<td>Rated Speeds for Wide Range of Small Diesel Engines</td>
<td>31</td>
</tr>
<tr>
<td>20.</td>
<td>Average Piston Speeds at Rated Conditions for Wide Range of Small Diesel Engines</td>
<td>32</td>
</tr>
<tr>
<td>21.</td>
<td>Typical BMEP Levels at Rated Conditions for a Wide Range of Small Diesel Engines</td>
<td>34</td>
</tr>
<tr>
<td>22.</td>
<td>Thermal Engine Loading Characteristics for a Wide Range of Small Diesel Engines</td>
<td>35</td>
</tr>
<tr>
<td>23.</td>
<td>Illustration of APU Configuration using the Johnson Outboard Engine</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design Goals</td>
<td>2</td>
</tr>
<tr>
<td>2. Calculation of Allowable Engine Weight and Size</td>
<td>2</td>
</tr>
<tr>
<td>3. Calculated Performance Requirements</td>
<td>3</td>
</tr>
<tr>
<td>4. Yanmar Engine Specifications</td>
<td>29</td>
</tr>
<tr>
<td>5. Johnson Outboard Engine Specifications</td>
<td>36</td>
</tr>
<tr>
<td>6. Estimated Cost Comparisons</td>
<td>40</td>
</tr>
<tr>
<td>7. APU Engine Concept Priorities</td>
<td>41</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A large portion of the fuel consumed in armored vehicle operations is during night watch conditions. In vehicles that use a gas turbine engine for motive power, the problem is aggravated by very poor specific fuel consumption characteristics at light load.

An internal combustion engine operating on the diesel cycle is inherently more efficient than a turbine engine, particularly in the range of power required for the Auxiliary Power Unit (APU) application (75- and 100-bhp). Internal combustion engines, however, present a challenge with respect to power density. Due to the extremely small space available for the APU, the size of the engine is severely limited. This size limitation means that the engine must possess very high specific output in order to meet the power demand. Because of the high specific output, durability also becomes an issue.

During the course of this project, data on existing diesel engines were analyzed, new combustion schemes were investigated, and potential concepts for meeting the project goals were developed.

II. TECHNICAL DISCUSSION

The objective of this project was to develop engine concepts that will produce 75- and 100-horsepower when operated on heavy fuel for auxiliary powered environmental control systems in armored vehicles. The specified performance and design goals for the auxiliary power unit (APU) are shown in TABLE 1.

The weight and size goals shown in TABLE 1 are for the complete auxiliary power unit, including the engine, two generators, a compressor, and heat exchangers. The best available information regarding the size and weight of the compressor, generators, and heat exchangers was subtracted from the total package specifications in order to determine the engine specific goals. The calculation of allowable engine size and packaging volume is shown in TABLE 2, and the resulting goals for the engines are shown in TABLE 3.
After the engine specific performance requirements were established, several tasks were performed to determine the feasibility of meeting these goals with a heavy fuel internal combustion engine. First, a detailed study was performed to determine if any commercial engine was available that would meet the target specifications for this project. Second, the spark-assisted diesel combustion process was considered as a low-cost approach to developing an engine that would meet the target goals. Finally, three potential internal combustion engine options were evaluated (based on 100-hp case) in terms of cost, technical risk, and overall technical feasibility. The costs of these approaches were also compared with small turbine engine packages. Finally, the combustion methodology for the different approaches was addressed.

<table>
<thead>
<tr>
<th>TABLE 1. Design Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Fuel Consumption</td>
</tr>
<tr>
<td>Noise</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Duty Cycles</td>
</tr>
<tr>
<td>Endurance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Calculation of Allowable Engine Weight and Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Generator</td>
</tr>
<tr>
<td>Alternator</td>
</tr>
<tr>
<td>Compressor</td>
</tr>
<tr>
<td>Heat Exchangers</td>
</tr>
<tr>
<td>Engine</td>
</tr>
</tbody>
</table>
The following sections describe the results of each of these tasks.

A. Today's State-of-the-Art Diesel

Specifications were obtained for a wide range of diesel engines ranging from 20 horsepower to approximately 250 horsepower to identify the limitations of today's engine designs. These engine specifications are included in the Appendix. Some of the engine specifications that were investigated are listed below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>75 hp</th>
<th>100 hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Torque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package Volume (L x W x H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Cycle (2 or 4 Stroke)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration (NA, T, TA, etc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight Specific Output (bhp/lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Specific Output (hp/cu ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Specific Fuel Consumption (lb/bhp-hr)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most of these parameters were plotted against rated power output to determine if today's state-of-the-art diesel production engine is capable of meeting the performance targets for this application.

1. Power to Package Volume Ratio

The most important design criteria for the APU application is the power to package volume ratio. The engine must fit into the available space before any other design targets can be considered. Figs. 1, 2, 3, 4, and 6 were plotted with data taken from the Appendix and show the effects of engine cycle, cooling media, aspiration, combustion system, and configuration on volume specific

<table>
<thead>
<tr>
<th>TABLE 3. Calculated Performance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Weight Specific Output (bhp/lb)</td>
</tr>
<tr>
<td>Volume Specific Output (hp/cu ft)</td>
</tr>
<tr>
<td>Brake Specific Fuel Consumption (lb/bhp-hr)</td>
</tr>
</tbody>
</table>
power output. In addition to the specifications obtained from the engine manufacturers, a new prototype spark-assisted diesel engine (square symbol) is also included in these figures. This engine, based on an existing Cuyuna gasoline two-stroke engine, is currently under development at SwRI. This engine is in the early prototype stage and is not representative of production engines. The volume specific output of the Cuyuna engine is limited by the need to package a relatively large expansion chamber required for high power output.

It is interesting to note that Fig. 1 does not show an advantage for two-stroke engines over four-stroke engines in terms of volume specific power output. In fact, this figure indicates that four-stroke engines are capable of developing the same amount of power from a smaller package volume across the complete power range of 20- to 250-horsepower. One explanation for this trend is that the two-stroke engines included in this figure (with the exception of the Cuyuna engine) are uniflow scavenged, which means that they still have the extra package volume associated with a valve train similar to four-stroke engines. Heat rejection also plays a role in limiting two-stroke engine power density since there is half as much time for heat dissipation between combustion events. Finally, the figure points out that no available engines in the 75- to 100-bhp range meet the volume specific targets of 21.4 and 32.8 bhp per cubic foot, respectively.

Fig. 2 points out two important trends. First, the large majority of today’s diesel engines are water cooled. Second, air-cooled diesels are found primarily in the very low power output range where specific power density and unit cost are low. Liquid-cooled engines are increasingly common because they offer improved control over cylinder liner and combustion chamber temperatures, allowing higher specific power to be reliably developed. For this application, high power density is a priority; therefore, a liquid-cooled design should be considered as a requirement.

Fig. 3 shows the relatively minor effect of aspiration on volume specific power density. In general, lower power engines are naturally aspirated, medium power engines begin to use turbocharging without aftercooling, and high power engines use turbocharging with water-to-air
Figure 1. Relationship between engine cycle and volume specific power output.
Diesel Power Density Trends

- 100 HP Target
- 75 HP Target
- State-of-the-Art Line

Legend:
- W: Water Cooled
- A: Air Cooled
- : Cuyuna

Power Density (hp/ft³ Pkg. Vol.)

Rated Diesel Power (bhp)
Figure 3. Relationship between aspiration and volume specific power output
or air-to-air aftercooling. Typically, the naturally aspirated engines develop acceptable power density by operating at a higher rated speed. Lower speeds are more readily achievable at the desired power output when turbocharging is employed. For the purposes of this application, turbocharging with water-to-air aftercooling will probably be necessary to meet the power density goals and reduce exhaust temperature and noise for strategic reasons.

Fig. 4 shows the combustion system types used on the diesel engines discussed in the previous figures. This figure indicates an advantage in power density for indirect injection (IDI) over direct injection (DI) in small diesel engines. The primary reason for increased power density with IDI diesels is improved air utilization.

Fig. 5 compares the Bosch smoke level in the exhaust stream of a typical IDI and DI diesel as a function of air/fuel ratio. At relatively rich air/fuel ratios, the IDI smoke level is much lower than the DI engine. This difference indicates higher air utilization in the IDI engine, which allows it to make more power by running richer.

In addition to increased air utilization, IDI combustion systems require a less sophisticated, less expensive fuel injection system. As a result, small engines tend to use IDI combustion systems more often, while DI combustion systems are found on larger diesel engines where fuel economy is more important than fuel injection system cost. The desired power density can be achieved with larger DI diesels by turbocharging and aftercooling. The topic of indirect versus direct injection will be discussed in more detail later, especially with regard to BSFC and fuel injection equipment.

Fig. 6 illustrates the effect of engine configuration on volume specific output. This figure shows that most engines in the 20- to 250-bhp range tend to have an in-line arrangement of cylinders. However, V-type engines and horizontally opposed engines typically have higher volume specific power density. Therefore, a V-type engine would probably be the most desirable configuration for this application, except that no diesel V-type engines exist in the desired power range.
Diesel Power Density Trends

Figure 4. Relationship between diesel combustion systems and volume specific output
Diesel Power Density Trends

Figure 6. Relationship between engine configurations and volume specific power output
In summary, the power to volume ratio is perhaps the most important target for this application. Careful selection of design considerations such as engine cycle (piston ported two-stroke engine or four-stroke engine), configuration (in-line, V, opposed, etc.), and combustion system (DI or IDI) will play an important role in meeting this goal. As a result of this study, it appears that a liquid-cooled, piston-ported two-stroke engine, IDI diesel engine with a V configuration would come closest to meeting the packaging constraints and power output targets for this project.

2. **Power to Weight Ratio**

The power to weight ratio of the engine is also important for the auxiliary power unit (APU) application. As shown in the Appendix, high power density is a difficult goal for a diesel engine due to relatively low operating speeds and robust construction required to withstand the high compression ratio and firing pressures. Fig. 7 (derived from data in the Appendix) illustrates the shortfall of modern diesel engines from meeting the power to weight ratio targets at 75- and 100-bhp.

One of the most effective methods for increasing the power density of a given engine is to increase its rated speed while maintaining a given BMEP. For most diesel engines, the prospect of increasing the rated speed significantly is limited due to reciprocating component weights and fuel injection system limitations. As a result of these limitations, today's state-of-the-art 75- and 100-bhp diesel engines produce approximately 0.3-bhp/lb, compared with the targets for this application of 0.62- and 0.83-bhp/lb for the 75- and 100-bhp units, respectively.

Fig. 7 also includes data for two prototype engines that have been developed at SwRI. The triangular symbol shows a power to weight ratio of 0.4 at 45-bhp for a Sanshin two-stroke spark-assisted diesel engine. This engine has not been taken into production. The square symbol represents the target of an ongoing project at SwRI for the U. S. Navy to develop a Cuyuna two-cylinder, two-stroke engine to produce 50-bhp on diesel fuel, using a spark-assisted diesel combustion process. This engine is not in production either.
Figure 7. Relationship between engine cycle and weight specific power output
Since the engine speed and compression ratio can only be modified to a limited extent for existing diesel engines, there are two other approaches that should be investigated for reaching the desired power to weight ratio targets. These two approaches include advanced materials and selection of the correct combustion process. High strength to weight materials such as composites could be used for various structural components such as the crankcase, connecting rods, oil pan, intake manifold, and other components that are not exposed to the combustion chamber temperatures.

Using data from the Appendix, Fig. 8 depicts the advantage of using an indirect injection diesel combustion system compared with a direct injection combustion process. The IDI has the capability of providing significant improvements in the power to weight ratio of small diesel engines (i.e., 20- to 150-bhp). There are three primary reasons for the advantage of the IDI in this size range.

First, the IDI combustion chamber injects all of the diesel fuel into a small auxiliary combustion chamber where combustion begins. The peak combustion pressure inside this chamber is very high. As the combustion proceeds, the unburned fuel enters the main chamber at a very high temperature and velocity and mixes thoroughly with the remaining air while it burns. This injection strategy smooths out the combustion process in the main chamber and produces lower peak firing pressures on the piston crown which reduces the structural loading on the engine. This result allows the engine to be lighter in weight.

Second, the mixing of unburned fuel and air produced by the auxiliary chamber increases the air utilization compared with a similar DI diesel. Increased air utilization increases the power output. Thus, the IDI combustion system reduces engine weight by reducing peak firing pressure while simultaneously increasing power output by increasing air utilization. These two effects serve to increase the power to weight ratio noticeably.

Third, IDI engines can operate at higher engine speeds due to their simple fuel injection system requirements.
Figure 8. Relationship between diesel combustion systems and weight specific power output
Using data from the Appendix, Figs. 9 and 10 show the effect of cooling media and aspiration on the power to weight ratio. Fig. 9 shows very few diesel engines that use air-cooling, and very little benefit in terms of power density. Fig. 10 indicates a fairly consistent progression from naturally aspirated engines to turbocharged without aftercooling to turbocharged with water-to-air aftercooling and finally turbocharged with air-to-air aftercooling. This figure suggests the possibility of improving the power density of an existing engine simply by turbocharging and aftercooling. The primary disadvantage to this simplistic approach is increased mechanical loading on the engine.

3. **BSFC**

Using data from the Appendix, Fig. 11 illustrates one of the disadvantages of using an IDI combustion system compared with a DI combustion system. IDI engines have poor BSFC compared to DI engines because of increased heat rejection to the coolant and pumping losses through the auxiliary chamber nozzle. Fig. 11 indicates that the BSFC goal of 0.44 lb/hp-hr can be met with an IDI system for the 75-bhp engine, but the 0.33 goal for the 100-bhp engine will be very difficult to meet, even with the best of today's DI diesels. DI diesels are difficult to scale down below 100 horsepower because of the small quantity of fuel being injected and the short distance the fuel plume can travel before impinging the cylinder wall. If the power to volume and power to weight ratio targets are more important than the BSFC targets for this application, then IDI combustion systems should be considered as the best strategy for compression ignition combustion.

Fig. 12 illustrates the trade-off between engine weight and fuel consumption for the turbine, IDI, and DI cases. Even though the turbine engine is less than half the weight of the diesel engines, its high fuel consumption means that the total weight of the engine and fuel will be much higher for the turbine engine than the diesel engine. If more than two hours of operation at 100-hp are required. The break-even point, in terms of total engine and fuel weight, for the DI and IDI diesels is approximately eight or nine hours of operation at 100hp according to this figure.
Diesel Power Density Trends

Figure 9. Relationship between cooling media and weight specific power output
Diesel Power Density Trends

- N: Naturally Aspirated
- T: Turbocharged (No Aftercooling)
- W: Turbocharged, Water-to-Air Aftercooled
- A: Turbocharged, Air-to-Air Aftercooled

Symbols:
- □: Cuyuna
- △: Sanshin

Plot labels:
- 100 HP Target
- 75 HP Target
- State-of-the-Art Line

Graph axes:
- Power Density (hp/lb)
- Rated Diesel Power (bhp)
Diesel Fuel Consumption Trends

Figure 11. Comparison of bsfc levels for DI and IDI combustion systems
Effect of Fuel Consumption on Total Weight

- Turbine: BSFC = 1.2 lb/hp-hr
- IDI: BSFC = 0.44 lb/hp-hr
- DI: BSFC = 0.36 lb/hp-hr

Break-even Points:
- for Diesels vs. Turbine
- for DI vs. IDI

Estimated 100 hp Dry Engine Weights:
- Turbine: 83 lb
- IDI: 180 lb
- DI: 250 lb

Hours of Operation @ 100 hp
Figure 13. Trade-off between engine package volume and fuel consumption for turbine engine and IDI and DI diesel engines
Fig. 13 shows the same trade-offs expressed in terms of total engine and fuel package volume. These two figures clearly show that the turbine power plant is inferior to the diesel engines in terms of total system packaging. If the additional volume of the air filtration system for the turbine engine is considered, the turbine engine will look even less favorable compared with the diesel engines.

The only other disadvantage of the IDI diesel, aside from the higher fuel consumption, is cooling of the auxiliary chamber nozzle under very high load levels. Since the application being studied will require high power density, special materials (such as ceramics) or special cooling will probably be needed for the nozzle area and piston crown.

Additional difficulties in meeting the BSFC targets for this application deserve mention. In order to meet the power output, power to volume, and power to weight goals simultaneously, the engine will need to be small and operate at high speeds. As a general rule, small engines have lower thermal efficiency than larger engines due to the increased surface area to volume ratio of the combustion chamber. In addition, the friction power losses increase with engine speed (or piston speed) as shown in Fig. 14. Finally, it is difficult to scale fuel injection equipment down effectively, which translates into reduced air/fuel mixing and higher fuel consumption for smaller engines.

4. **Heat Rejection**

In general, the high power density required for this engine application could make the targets more difficult to meet with a two-stroke engine. Two-stroke engines fire twice as often as four-stroke engines at the same speed, leaving less time for heat transfer to take place.

Regardless of the engine cycle chosen, heat rejection at full load conditions will be one of the most difficult challenges for this engine application. The piston will probably be one of the most difficult components to cool. Therefore, advanced engine cooling strategies such as piston cooling with an oil jet could prove to be necessary. Insulated exhaust ports may also be needed to reduce the heat exchanger capacity requirements. If turbocharging is adopted, then the
Figure 14. Effect of engine (piston) speed on engine friction

maximum amount of charge cooling will be needed to control combustion chamber component temperatures.

B. Spark-Assisted Diesel Combustion

The spark-assisted diesel (SPAD) concept has been applied to different engines by SwRI in order to produce lightweight, high-speed diesel engines. The SPAD combustion system is necessary for these applications due to the high peak combustion pressures and rates of pressure rise that would be experienced with a true compression ignition diesel.

In a conventional compression-ignited diesel engine, the temperature and pressure of the combustion air are raised to the level at which the diesel fuel will begin to ignite soon after injection into the combustion chamber. The small delay between injection of the diesel fuel and ignition is called the ignition delay. For a typical direct-injected diesel engine with a compression ratio of 16:1, the ignition delay is very small as long as the cetane number is greater than 40. A typical cylinder pressure diagram is illustrated in Fig. 15. This figure shows the short ignition delay for a 16:1 compression ratio.

However, in order to build a lightweight diesel engine, the peak firing pressures and rates of pressure rise must be reduced in order to lower the structural load on the engine block, cylinder head, and bearings. If the compression ratio is dropped, the expected result would be a reduction in peak firing pressures and rates of pressure rise. However, the reduced temperature and pressure at the time of injection cause an increase in the ignition delay, which actually increases the peak pressure and pressure rise rate due to an increase in the premixed combustion. These trends are illustrated in Fig. 16, which begins with the 16:1 compression ratio described above. The injection timing and rate of injection are assumed to be constant for each compression ratio. This figure shows a more severe combustion condition at a 12:1 compression ratio than at the 16:1 compression ratio. This figure helps illustrate the counterproductive effect of lowering the compression ratio on engine performance and life due to the increased ignition delay.
Figure 15. Typical cylinder pressure diagram for DI diesel engine with 16:1 compression ratio
Figure 16. Effect of compression ratio on ignition delay for typical DI diesel engine
The spark-assisted diesel combustion system helps alleviate the disadvantages of increased ignition delays with the lower compression ratio. This strategy allows the lower compression ratio to be used in order to achieve lower peak firing pressures and rates of pressure rise without suffering from increased ignition delays. The spark-assisted diesel combustion system operates by striking the spark plug very soon after the point of injection. The spark energy ignites the fuel in the immediate vicinity of the plug and begins the combustion process much sooner than if the fuel's ignition delay were allowed to control the beginning of ignition. The effect of the spark-assisted diesel on the cylinder pressure diagram at a 12:1 compression ratio is illustrated in Fig. 17. This figure compares the normal compression ignition diesel combustion with the spark-assisted diesel combustion at 12:1 compression ratio with identical fuel injection events.

C. Diesel Concepts for APU's

Since no production diesel engines are available to meet the targets of this application, a new engine must be designed or developed. Three primary approaches have been identified as possibilities to meet the desired specifications:

1. Increase power output of small existing diesel engine
2. Convert an existing gasoline engine to spark-assisted diesel (SPAD) operation
3. Design and develop a lightweight diesel engine specifically for this application

Each of these approaches is discussed below.

1. **Increase Power Output of Small Existing Diesel Engine**

In order to modify an existing diesel engine for this application, an engine that fits into the available package volume must be chosen. A 21-hp Yanmar diesel engine was chosen for consideration of this approach. Specifications for this engine are shown in TABLE 4.
Figure 17. Illustration of combustion "smoothing" on low compression ratio diesel with spark-assist
TABLE 4. Yanmar Engine Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Yanmar</td>
</tr>
<tr>
<td>Model</td>
<td>3TNA72E</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>72 x 72 mm</td>
</tr>
<tr>
<td>Displacement</td>
<td>880 cc (53.6 cu in)</td>
</tr>
<tr>
<td>Rated Power</td>
<td>21-hp at 3600 RPM</td>
</tr>
<tr>
<td>BMEP</td>
<td>86 psi at 21-hp</td>
</tr>
<tr>
<td>Configuration</td>
<td>In-line, three-cylinder</td>
</tr>
<tr>
<td>Cycle</td>
<td>Four-Stroke</td>
</tr>
<tr>
<td>Induction</td>
<td>Naturally Aspirated</td>
</tr>
<tr>
<td>Combustion</td>
<td>Indirect Injection (IDI)</td>
</tr>
<tr>
<td>L x W x H</td>
<td>18.5 x 17.4 x 19.8 in.</td>
</tr>
<tr>
<td>Dry Weight</td>
<td>187 lb</td>
</tr>
</tbody>
</table>

As indicated by the engine specifications in TABLE 4, the Yanmar is nearly three inches taller than the package volume height shown in TABLE 1 and is heavier than the allowable engine weight calculated in TABLE 2. However, the engine height can be reduced significantly by converting the lubrication system to a dry sump arrangement with a remotely located oil reservoir. The engine can also be tilted about 15 or 20 degrees in order to use the diagonal box dimension to accommodate the engine height. Fig. 18 illustrates a possible packaging arrangement using the Yanmar engine in the allocated space.

Increasing the power output of the Yanmar engine from 21-hp to 75-hp and 100-hp will require supercharging and increasing the rated speed of the engine. It should be possible to increase the rated speed of the Yanmar to 5000 RPM. IDI fuel injection systems are available for four-stroke engines in this speed range, and several IDI engines in this power range are rated from 4000 to 4500 RPM as shown in Fig. 19 (Data derived from Appendix). Potential limitations to increasing the engine’s rated speed from 3600 RPM to 5000 RPM may include valve train dynamics, rod and rod bolt stresses, piston pin stresses, and the bearing systems. Calculations will be required to determine the necessity for component design changes in order to accommodate the increased operating speed. Premium grade components should also help meet the life targets at the higher operating speeds. In fact, piston speed is often used as an indication of engine longevity, and Fig. 20 (taken from Appendix data) shows that the Yanmar’s piston speed at 5000 RPM will still be lower than other production diesel engines.
Figure 18. Illustration of APU configuration using the Yanmar diesel engine
Figure 19. Rated speeds for wide range of small diesel engines
Diesel Piston Speed Trends

- Yanmar @ 75 HP Target
- Yanmar @ 100 HP Target
- Stock Yanmar

D: Direct Injection
I: Indirect Injection
Another possible limitation to meeting the power requirements with the Yanmar engine is the engine structure. Supercharging the Yanmar sufficiently to produce 75- and 100-hp at 5000 RPM will increase the BMEP from 86 psi to 222 psi and 290 psi, respectively. These BMEP levels are very high compared with other production diesel engines as indicated in the Appendix and illustrated in Fig. 21. The increased BMEP will place heavy stresses on the cylinder heads, cylinders, crankshaft, bearings, and crankcase, unless the peak firing pressure is held constant by reducing the compression ratio.

Perhaps more importantly than the structural loads, the thermal loading due to the high power density will require significant engine (data derived from Appendix) modifications. Fig. 22 gives the thermal loading for a wide range of diesel production engines and shows that the horsepower targets will require the Yanmar engine to exceed most commercial engine levels. However, the projected thermal loading values for the Yanmar are representative of other military engines, which are either currently in production, or are being marketed to the military (see Fig. 22). The high thermal loading can be addressed by aggressive piston cooling with oil jets and insulated exhaust port liners. These are both proven technologies that are in production on various engines.

In summary, the Yanmar engine could be modified to produce the required power and fit into the available space. Engine speed should not be a major problem, and mechanical and thermal loading can probably be addressed without excessive cost or technical risk. Although the APU weight goals will not be met, the improved specific fuel consumption compared with a turbine engine reduces the fuel weight required for a given mission duration. Engine life will be the primary unknown, and engine durability tests will be required to determine the exact effects of increasing the speed, power, and BMEP as required.

2. **Convert Gasoline Engine to Spark-Assisted Diesel Operation**

Another possibility for meeting the project targets is to convert an existing gasoline engine to spark-assisted diesel (SPAD) operation. A gasoline engine is chosen for this approach due to its low weight. A two-stroke engine may be chosen due to its small package volume in the absence
Diesel BMEP Trends

- D: Direct Injection
- I: Indirect Injection

BMEP @ Rated Conditions (psi) vs. Rated Diesel Power (bhp)
Diesel Piston Loading Trends

NASCAR Winston Cup Engine (650 hp)

MTU MT883 (1500 hp)

Yanmar @ 75 HP Target

Yanmar @ 100 HP Target

Durability can become a concern above this line due to thermal loading.

Stock Yanmar

Figure 22. Thermal engine loading characteristics for a wide range of small diesel engines
of any valve train. However, the low weight and strength of the gasoline engine eliminates the possibility of running at high compression ratios for compression ignition. Therefore, the spark-assisted diesel combustion process is necessary to operate reliably on diesel fuel.

SwRI has converted two-stroke gasoline engines to the SPAD combustion process with some success, although none of these engines have gone into full production. A 115-hp Johnson outboard engine appears to be a good match for the requirements of this application due to its displacement and overall dimensions. General specifications for the gasoline version of this engine are shown in TABLE 5.

<table>
<thead>
<tr>
<th>TABLE 5. Johnson Outboard Engine Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer: Johnson</td>
</tr>
<tr>
<td>Model: 115-hp</td>
</tr>
<tr>
<td>Displacement: 1632 cc (99.6 cu in)</td>
</tr>
<tr>
<td>Rated Power: 115-hp at 4500 RPM</td>
</tr>
<tr>
<td>BMEP: 101 psi at 115-hp</td>
</tr>
<tr>
<td>Configuration: V-type, four-cylinder</td>
</tr>
<tr>
<td>Cycle: Two-Stroke</td>
</tr>
<tr>
<td>Induction: Piston Ported, Crankcase Scavenged</td>
</tr>
<tr>
<td>Combustion: Carbureted Open Chamber</td>
</tr>
<tr>
<td>L x W x H: 17 x 22 x 24 in.</td>
</tr>
<tr>
<td>Ignition: Spark</td>
</tr>
<tr>
<td>Fuel Delivery: Carbureted</td>
</tr>
</tbody>
</table>

Fig. 23 illustrates a possible packaging arrangement with this engine. This figure illustrates the advantage of a piston-ported, two-stroke, V-type engine with regards to fitting over 1.6L displacement within the package volume compared with the 0.9L four-stroke, in-line engine. Since the two-stroke engine already produces 115-hp at 4500 RPM, it is reasonable to expect to produce 75-hp with the SPAD system without turbocharging. 100-hp will probably require turbocharging for this engine. If the diesel version of this engine is rated at 5000 RPM, the BMEP requirements will be 60 psi and 80 psi for 75- and 100-hp, respectively. Thus, the mechanical loading on the two-stroke engine should not be a major factor.
Figure 23. Illustration of APU configuration using the Johnson outboard engine
The fuel injection equipment will be a significant development requirement for this engine if direct injection is adopted. Although acceptable DI fuel systems exist for four-stroke engines, the two-stroke engine requires approximately half the injection quantity per stroke, twice as often as the four-stroke engine. The expected difficulties with a DI fuel system suggest the application of an IDI combustion system with the two-stroke engine. An added benefit of this combustion system is the improved air utilization due to the limited amount of fuel and air mixing in the two-stroke cylinder.

The turbocharger will help reduce exhaust noise and temperature on the 100-hp model and may be desired for the 75-hp version for strategic purposes. A further advantage of turbocharging is the possibility of scavenging the engine externally and using a wet sump with journal bearings. The roller bearings typically used on outboard engines decrease engine life, perhaps below the targets for this project. The Johnson engine is liquid cooled, and oil could be used for the cooling media if integration with the transmission heat exchangers is acceptable.

3. **Lightweight Diesel Engine Design and Development**

Several new engine and/or compressor designs could be considered for this application. New engine designs consist of more compact V-type engines (i.e., 15-degree V instead of 60- to 90-degree V), integral engines and compressors such as those used in the pipeline industry, and new compressor designs such as the Vairex or other novel compressors. If a new engine design is considered, it should be designed from a "clean sheet" as a lightweight diesel engine, regardless of the configuration or cycle.

Extensive finite element analysis (FEA) should be conducted on all load bearing members of the engine, and special attention should be paid to the heat rejection characteristics of the engine. SwRI designed a lightweight diesel engine during the late 1970’s that showed great promise for meeting similar goals as this project. Unfortunately, funding for the project was discontinued before a prototype could be built and tested.
Volkswagen has recently announced production plans for a 15-degree V passenger car engine. The advantage of such a narrow bank angle is the use of only one cylinder head, and a more compact engine package. This type engine configuration could provide a slight improvement in power to package volume ratio compared with a conventional V engine.

Assuming that a four-cylinder engine would be capable of providing the required power output for the application, a multi-cylinder, V-type engine that used additional cylinders to supply compressed air could reduce the total package volume for the engine and compressor. This proven technology has been successfully used in the gas pipeline and other industries for many years. A feasibility study should be conducted on this approach before launching a demonstration project on this concept.

During the course of this project, the compressor size was identified as a major obstacle facing this project. Numerous manufacturers were contacted, and technical specifications were obtained for their compressors that would supply the air flow and pressure ratios needed. Centrifugal, axial flow, rotary vane, and turbine pumps were investigated, and each was determined to have disadvantages for this application. One pump that may deserve more investigation is the Vairex pump. This pump is a positive displacement blower with variable stroke capabilities.

D. Cost Comparison

Cost information was obtained from a turbine engine manufacturer regarding purchase costs and development costs of a turbine power plant that would meet the size and power requirements of this project. These numbers are compared with projected development and purchase costs for the other three alternatives described in this report in TABLE 6.

*Sundstrand Corporation

39
TABLE 6. Estimated Cost Comparisons

<table>
<thead>
<tr>
<th>Engine Model and Description</th>
<th>Purchase Cost</th>
<th>Development Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sundstrand T-150¹</td>
<td>$60,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Sundstrand T62T-40C¹</td>
<td>$55,000</td>
<td>$1.5M</td>
</tr>
<tr>
<td>(Modified production “Titan” APU. Available mid 1993)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yanmar 3TNA72E</td>
<td>$1688²</td>
<td>$750,000</td>
</tr>
<tr>
<td>(Based on 600 units/yr, 10 year contract)</td>
<td>$10,000³</td>
<td></td>
</tr>
<tr>
<td>Johnson 115-hp</td>
<td>$5,000⁴</td>
<td>$1M</td>
</tr>
<tr>
<td>New Lightweight Diesel</td>
<td>$15,000 - 20,000</td>
<td>$2 - 3M</td>
</tr>
</tbody>
</table>

¹ - Quote supplied to SwRI by Sundstrand dated September 3, 1991
² - Current production 21-hp version
³ - Modified 75/100-hp estimate with premium grade components
⁴ - Current production gasoline 115-hp version
⁵ - Modified spark-assisted diesel estimate

This table illustrates that even if the Army spent $3M to develop a new lightweight diesel engine, the increased development costs compared with the T62T-40C would be offset by lower engine costs, and a cost incentive would exist for the diesel engine if more than 42 engines are purchased.

E. Technology Assessment

From a strictly technological standpoint, the "clean sheet" engine design approach has the most promise for meeting all the project goals simultaneously. However, even with a "clean sheet" design, the BSFC target for the 100-hp engine will be almost impossible to meet while satisfying the other engine specifications.
The second most attractive technical approach would be to increase the power of an existing diesel engine that will fit into the available space. The major challenges for this approach will be engine life and BSFC targets.

Finally, the conversion of an existing gasoline engine to spark-assisted diesel represents a similar cost alternative to increasing the power of a small diesel engine. However, potential difficulties associated with optimizing the spark-assisted diesel combustion system suggest that this approach will have a higher degree of technical risk than the small diesel engine upgrade.

The three approaches discussed above are prioritized in TABLE 7 according to cost, technical risk, and overall feasibility.

<table>
<thead>
<tr>
<th>Relative</th>
<th>Relative</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Cost</td>
<td>Technical Risk</td>
<td>Feasibility</td>
</tr>
<tr>
<td>New Lightweight Diesel Design</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>Small Diesel Upgrade</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Gasoline Conversion to Spark-Assisted Diesel</td>
<td>medium</td>
<td>high</td>
</tr>
</tbody>
</table>

As TABLE 7 illustrates, the new lightweight diesel engine will be the most expensive to develop and will have a certain amount of technical risk. The small diesel engine modification will be the least expensive to develop and have the lowest technical risk. The gasoline engine conversion will also be less expensive to develop than the new lightweight diesel engine, but the challenge of optimizing the SPAD combustion system represents a substantial technical risk. Thus, increasing the power output of the small diesel engine appears to have the best overall feasibility. Even though it has relatively moderate technical risk, the new engine design probably has the lowest overall feasibility due to budget constraints.
F. **Fuel Combustion Methodology**

1. **Load Conditions**

Four-stroke engines should be able to maintain rated conditions for longer periods of time than two-stroke engines without dramatically compromising engine life due to thermal loading. This is because two-stroke engines will have a more difficult time rejecting heat than four-stroke engines. Two-stroke engines can be over-scavenged with an external blower in order to cool the combustion chamber. However, this method requires more power for scavenging, partially negating the benefit of running at high BMEP levels.

2. **Engine Size**

One of the greatest limitations on small diesel engines today is their fuel injection equipment. Acceptable DI fuel injection systems are commercially unavailable for small, high-output diesel engines. Although these systems are available for larger diesel engines, the smaller fuel quantities and higher operating speeds of small diesel engines makes it difficult to apply standard DI fuel system technology. Thus, an IDI combustion system or dramatically improved DI fuel injection system will probably be required for this application.

3. **Engine Speed**

Again, fuel injection systems are one of the limiting factors to increasing diesel engine speed. Fuel injection systems are available for 4500-5000 RPM DI four-stroke diesels, but not for high-speed two-stroke engines. A two-stroke diesel engine running at 5000 RPM will probably require an IDI combustion system. Similarly, a high-speed (i.e., 5000 RPM) four-stroke diesel will probably benefit from an IDI combustion system in terms of power density, but the BSFC will suffer compared with a DI system.
4. **Response to Step Loading**

Both compression ignition and SPAD combustion systems should respond well to step loading. In both cases, the engine will run unthrottled, so air will already be present in the combustion chamber. Increasing load will simply be a matter of adding fuel.

5. **Starting and Operation Under Military Extreme**

The SPAD could have advantages over the IDI or DI combustion systems under extremely cold conditions. The IDI and DI systems will require glow plugs for cold start operation. Hot starting should not be a problem for any of the engines. Turbo modifications may be required for high altitude conditions.

III. CONCLUSIONS

A number of conclusions were developed as a result of this study:

1. No commercially available diesel engine will meet the power and packaging goals without substantial modification and development.

2. A production gas turbine engine will meet the power, reliability, durability and packaging goals with only minor modifications. However, very few small gas turbine engines are available in this power range and each has notoriously poor fuel consumption and high purchase costs.

3. An existing small, production four-stroke diesel engine can be modified to increase the power output to meet most of the goals of this application. The engine weight and fuel consumption will be the most difficult targets to meet with this approach.
4. An existing, production two-stroke gasoline engine can be converted to operate on diesel fuel and meet many of the targets for this application. Difficulties associated with the development of a high-speed, two-stroke diesel combustion system are the primary drawbacks of this approach.

5. A dedicated, lightweight diesel engine can be designed and developed for this application that would include an integrated engine/compressor. This approach is expected to have the greatest potential for meeting all project goals simultaneously. Of course, the cost of this approach will be the highest compared with the previous approaches.

6. The fuel consumption level of the engine chosen for this application has a profound effect on the total weight and package volume required for the engine and fuel.

7. The turbine engine cannot compete with a diesel engine in terms of weight and package volume when the fuel storage volume and weight are taken into account.

8. The following design features are considered to be desirable for this engine application:

(a) Liquid Cooling
(b) Turbocharging with aftercooling
(c) Indirect Injection (IDI) fuel system
(d) V cylinder arrangement

IV. RECOMMENDATIONS

SwRI recommends that an existing diesel or gasoline engine be modified or converted to satisfy as many project goals as possible for demonstration purposes. The successful demonstration of an internal combustion in this application will emphasize the fuel economy improvements compared with a turbine engine.
After successfully demonstrating the concept of an IC engine in this application, a lightweight diesel engine should be designed and developed to meet the maximum number of project targets simultaneously.

LIST OF ACRONYMS AND ABBREVIATIONS

APECS - Auxiliary Powered Environmental Control System
APU - Auxiliary Power Unit
bhp - Brake Horsepower
BMEP - Brake Mean Effective Pressure
BSFC - Brake Specific Fuel Consumption
DI - Direct Injection
IC - Internal Combustion
IDI - Indirect Injection
NA - Naturally Aspirated
PSIG - Pounds Per Square Inch, Gauge
RPM - Revolutions Per Minute
SCFM - Standard Cubic Feet Per Minute
SPAD - Spark-Assisted Diesel
SwRI - Southwest Research Institute
T - Turbocharged
TA - Turbocharged With Aftercooling
APPENDIX

ENGINE DATA
The following tables contain data used to generate the plots for the Auxiliary Power Unit study. The following are calculated values:

- All specific output values: weight, volume, displacement, piston area
- Package volume
- Displacement
- Mean piston speed
- Fuel delivered per injection stroke
- BMEP

For the Cuyuna experimental engine: Power and specific outputs are targets. Dimensions are estimated for typical application and are subject to change:

Explanation of Codes

Combustion System:

- **D** = Direct injection (DI)
- **I** = Indirect injection (IDI)
- **S** = Spark assist (SA), (direct injection)

Aspiration:

- **N** = Naturally aspirated (NA)
- **T** = Turbocharged (no aftercooling)
- **W** = Turbocharged, Water-to-air aftercooled
- **A** = Turbocharged, Air-to-air aftercooled
Application Code

A = Aircraft (Note: VM engine is not yet in production)
C = Commercial
M = Military
E = Experimental

Configuration (of cylinders)

I = Inline
V = Vee
H = Horizontally opposed (single crankshaft, not opposed piston)
O = Opposed piston (two crankshafts)

Note: The configuration of Rolls Royce K 60 was not known when the plots were made. The "O" on the plots is the VM aircraft diesel (supposedly "production-ready," but has not yet been FAA certified). The VM was later classified as "H" to distinguish horizontally opposed engines from opposed piston engines.
<table>
<thead>
<tr>
<th>MAKE</th>
<th>MODEL</th>
<th>POWER RATED</th>
<th>POWER INSTANT</th>
<th>SP.</th>
<th>SP. ENG'G</th>
<th>SP. CONV'NT</th>
<th>DIMENSIONS</th>
<th>COOLING</th>
<th>LUBRICATION</th>
<th>FUEL</th>
<th>MEAN</th>
<th>ENERGY</th>
<th>FUEL SPECIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>DICA 1560</td>
<td>235</td>
<td>2360</td>
<td>0.119</td>
<td>3.92</td>
<td>20.0</td>
<td>3402</td>
<td>54.7</td>
<td>67.4</td>
<td>78.3</td>
<td>4</td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>COMAGNES</td>
<td>KR 01-64/4/1</td>
<td>235</td>
<td>2360</td>
<td>0.120</td>
<td>4.40</td>
<td>16.8</td>
<td>3306</td>
<td>54.7</td>
<td>67.4</td>
<td>78.3</td>
<td>4</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>RENAULT</td>
<td>KG 6.60</td>
<td>235</td>
<td>2360</td>
<td>0.122</td>
<td>6.56</td>
<td>38.7</td>
<td>3306</td>
<td>54.7</td>
<td>67.4</td>
<td>78.3</td>
<td>4</td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>CUMMINS</td>
<td>KTA 19</td>
<td>235</td>
<td>2360</td>
<td>0.136</td>
<td>8.30</td>
<td>38.4</td>
<td>1335</td>
<td>46.0</td>
<td>60.6</td>
<td>77.6</td>
<td>2</td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>VOLVO</td>
<td>TD 790</td>
<td>235</td>
<td>2360</td>
<td>0.186</td>
<td>13.7</td>
<td>35.8</td>
<td>1500</td>
<td>47.2</td>
<td>60.6</td>
<td>78.8</td>
<td>2</td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>CATERPILLAR</td>
<td>3306 CFT</td>
<td>250</td>
<td>2360</td>
<td>0.178</td>
<td>24.0</td>
<td>36.8</td>
<td>1400</td>
<td>36.2</td>
<td>35.4</td>
<td>36.8</td>
<td>8</td>
<td>L</td>
<td>T</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Department of Defense

DEFENSE TECHNICAL INFORMATION CTR
CAMERON STATION 12
ALEXANDRIA VA 22314

Department of the Army

CDR
US ARMY BELVOIR RESEARCH,
DEVELOPMENT AND ENGINEERING CTR
ATTN: STRBE-FL 10
STRBE-BT 2
STRBE-TQ 1
STRBE-FED 10
FORT BELVOIR VA 22060-5606

CDR
US ARMY TANK-AUTOMOTIVE COMMAND
ATTN: AMSTA-RG (DR McCLELLAND) 1
AMSTA-RGD (MR CHEKLICH) 1
AMSTA-RGP (MR HNATCZUK) 1
AMSTA-RGR (DR BRYZIK) 1
AMSTA-MT (MR GAGLIO) 1
AMSTA-MC (MR GLADIEUX) 1
AMSTA-MC (MR POTTER) 1
AMSTA-MV (MR ROBERTS) 1
AMSTA-RS (MR REES) 1
WARREN MI 48397-5000

CDR
US ARMY TANK-AUTOMOTIVE CMD
PROGM EXEC OFF, CLOSE COMBAT
APEO SYSTEMS, ATTN: AMCPEO-CCV-S 1
PM ABRAMS, ATTN: AMCPEM-ABMS 1
PM BFVS, ATTN: AMCPEM-BFVS 1
PM 113 FOV, ATTN: AMCPEM-M113 1
PM M9 ACE, ATTN: AMCPEM-MA 1
PM IMP REC VEH, ATTN: AMCPEM-IRV 1
WARREN MI 48397-5000

Other Organizations

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LEWIS RESEARCH CENTER
CLEVELAND OH 44135

US DEPARTMENT OF ENERGY
ATTN: MR JOHN RUSSELL 1
MAIL CODE CE-151
FORRESTAL BLDG
1000 INDEPENDENCE AVE, SW
WASHINGTON DC 20585

BFLRF No. 274
Page 1 of 1