Rapid Onset of Severe Heat Illness: A Case Report (Reprint)

By
Glenn W. Mitchell

Biomedical Applications Research Division

92-00312

October 1991

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-5292
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

DENNIS F. SHANAHAN
LTC, MC, MFS
Acting Director, Biomedical Applications Research Division

Released for publication:

ROGER W. WILEY, J. D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Aviators flying extended periods in hot environments are known to be at risk for heat-related illness. The risk when wearing chemical individual protective equipment (IPE) is increased even at relatively warm temperatures and light workloads. In this paper, we report the physiological responses of an aviator who had been flying a UH-IH helicopter up to 6 h/d clothed in full IPE on 6 consecutive days prior to the sudden onset of heat illness. His performance during the study was normal, and no clear physiological derangements were noted prior to his symptoms. The rapid evolution of his symptoms after voicing no complaints provides a graphic illustration of the difficult predictability and initial central nervous system effects of this condition.
Rapid Onset of Severe Heat Illness: A Case Report

GLENN W. MITCHELL, M.D., M.P.H.

Aviators flying extended periods in hot environments are known to be at risk for heat-related illness. The risk when wearing chemical protective equipment (CPE) is increased even at relatively warm temperatures and light workloads. In this paper, we report the physiological responses of an aviator who had been flying a UH-1H helicopter up to 6 h/day clothed in full CPE on 6 consecutive days prior to the sudden onset of heat illness. His performance during the study was normal, and no clear physiological derangements were noted prior to his symptoms. The rapid evolution of his symptoms after voicing no complaints provides a graphic illustration of the difficult predictability and initial central nervous system effects of this condition.

In general, efforts to provide predictable limits of an aviator's ability to pilot an aircraft during high thermal stress have been based on physiological responses to that heat. However, a particular individual's onset of performance decrement is not predictable from a determination of rectal temperature alone. Although hypohydration is well known to cause decrements in performance, the existing level of hydration may be difficult to assess under operational conditions. Additional problems of real world variability of environment, workload, and performance requirements make the overall problem of reliably predicting significant decrements in an individual appear impossible to the practicing flight surgeon.

Despite these limitations, a study was undertaken at the U.S. Army Aeromedical Research Laboratory during the summer of 1984 to obtain physiological, psychological, and performance data on rotary wing aviators during an operational scenario. A report of the entire study is available (4). This paper reports the sudden collapse of one of the subjects after the second flight on the last day of his 6-day participation.

METHODS

Subject

A 32-year-old Caucasian male active duty aviator (height 175 cm, weight 79.6 kg, V02 max 43.6 ml/min kg) stationed at the Army Aviation Center, Fort Rucker, AL, volunteered as a subject (S) in the study mentioned above. His rotary wing flight experience was 800 h. He had no prior history of heat illness (syncope, exhaustion or stroke) and had normal physical findings on a thorough history and examination conducted by a flight surgeon immediately preceding participation in the study.

He did not acclimatize beyond his usual 1 h daily physical exercise program in gym clothing. His routine blood chemistries from the beginning of the first day of participation in the study were: sodium 141 mg/dl; potassium 4.3 mg/dl; chloride 103 mg/dl; bicarbonate 33 mg/dl; glucose 72 mg/dl; urea nitrogen 15.2 mg/dl; white blood cell count 4900 cu/mm; hemoglobin 13.7 g/dl; hematocrit 42.3%. All values were within the local hospital laboratory's normal ranges.

Physiologic Data Collection

During flights, the subject's heart rate and rhythm were recorded continuously by an ambulatory electrocardiographic monitor (Hiltman Medical Systems, Columbia, MD). Body temperature was obtained by a rectal probe (Yellow Springs Instruments Inc. model 701B, Yellow Springs, OH) inserted to 10 cm. Body temperature and heart rate were recorded manually by observation at 5 min intervals on a digital output meter (Tektronix Inc. model 414, Beaverton, OR). Cockpit environmental temperatures—dry bulb (Tdb), wet bulb (Twb), and globe (Tg) temperatures—were determined at the same times using a WIGT meter (Reuter-Stokes Canada Ltd. WIGET, Cambridge, Ont., Canada) placed between the pilots' seats at the subject's head level.

Aviation, Space, and Environmental Medicine, August, 1991 779
ACUTE HEAT ILLNESS ONSET—MITCHELL

Net fluid balance was determined by beginning and end-of-test-day uniform and nude body weight measurements on an electronic balance (Sauter model K120, August Sauter, Div. of Metler Instruments, Hightstown, NJ) and by weighing all oral fluid intake and urine output.

Individual Protective Equipment

The U.S. Army's chemical defense ensemble (1984) consists of a two-layer, two-piece overgarment with butyl rubber overboots and gloves and M-24 mask with hood worn over the standard Nomex one-piece flight suit, gloves, and helmet. A prototype microclimate cooling vest was worn under the flight suit. The ensemble (without cooling vest) exhibits a clo value of 2.57 and an index of permeability of 0.29 (3).

Mission Protocol and Test Facility

This study was conducted under simulated field operational conditions during the summer of 1984 at Highfalls Stagefield, Fort Rucker, AL. During daylight hours, the S flew a UH-1H "Huey" helicopter, received pre-mission briefings, and performed pre- and through-flight checks on the aircraft. No rearming or refueling tasks were performed by the S. Full IPE was maintained during the entire period from breakfast to the end of the final daily test period (approximately 12 h). During the remainder of the time, he relaxed in a small field tent while wearing only open overgarments over his flight suit. Breakfast and supper were provided as Meals-Ready-to-Eat (MREs), but midday intake was limited to a flavored electrolyte and glucose solution. Water was allowed ad libitum.

Flight profiles included low level, nap-of-the-Earth (NOE), confined area operations, instrument approaches and other tactical situations such as reconnaissance missions. No gross performance deficits were found on any of the flights during the entire week.

A microclimate air-cooling vest was used during days 3 and 4 of the study. The S experienced no significant increases in rectal temperature during any flights on these days. Significantly, he (unlike other Ss in the study) flew with all aircraft doors closed on all days (except day 5) which increased the level of heat buildup in the cockpit by further reducing convective heat dissipation and evaporation.

RESULTS

Cardiovascular System

S did not exceed a heart rate of 120 bpm (mean 91 ± 11) which is less than that often seen with even moderate exercise. Peak and mean heart rates during each flight are shown in Table 1. No significant correlation was found between heart rate and cockpit temperature except during the two hottest flights without cooling. The rates observed were consistent with previous estimates of the work load of helicopter pilots (160 to 180 W) during flight (9).

Thermoregulation

Peak and mean rectal temperatures and mean cockpit WBGT for each flight during the entire week are also displayed in Table 1. Flights terminated by the flight surgeon for maximum rectal temperature by safety criteria (N = 2) are denoted by the symbol "T," and those terminated for the subject's own complaints (nausea and fatigue) by the symbol "M" (N = 1). Completed flights are noted by the symbol "C," except for days 3, 4 and 5 when the last flight of the day was determined by either equipment problems ("E") or weather ("W"), respectively. Repression of peak rectal temperature by mean cockpit WBGT yielded a correlation coefficient r = 0.89. Detailed data for the day of the clinical episode are shown in Fig. 1.

Fluid Balance

Daily weight changes for this subject and his equipment are displayed in Table II. Body loss is the differ-

<table>
<thead>
<tr>
<th>Day</th>
<th>Flight No.</th>
<th>Duration (h)</th>
<th>Stop Reason</th>
<th>Rectal Temp (°C)</th>
<th>Heart Rate (bpm)</th>
<th>Cockpit WBGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1:23</td>
<td>C</td>
<td>37.0 ± 0.6</td>
<td>100.89</td>
<td>29 ± 20.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0:53</td>
<td>M</td>
<td>37.0 ± 0.6</td>
<td>97.91</td>
<td>20 ± 20.8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1:25</td>
<td>C</td>
<td>36.4 ± 0.8</td>
<td>116 ± 69</td>
<td>31 ± 20.9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1:40</td>
<td>T</td>
<td>39.0 ± 0.1</td>
<td>100 ± 101</td>
<td>21 ± 20.1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1:40</td>
<td>C</td>
<td>37.3 ± 0.1</td>
<td>80 ± 1</td>
<td>20 ± 20.8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1:20</td>
<td>C</td>
<td>37.5 ± 0.2</td>
<td>79 ± 10</td>
<td>20 ± 20.8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1:30</td>
<td>C</td>
<td>37.0 ± 0.0</td>
<td>79 ± 10</td>
<td>20 ± 20.8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1:47</td>
<td>W</td>
<td>37.3 ± 0.3</td>
<td>89 ± 78</td>
<td>31 ± 20.7</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1:20</td>
<td>C</td>
<td>37.3 ± 0.2</td>
<td>82 ± 69</td>
<td>26 ± 20.9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1:24</td>
<td>C</td>
<td>37.3 ± 0.2</td>
<td>66 ± 62</td>
<td>28 ± 20.9</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1:30</td>
<td>C</td>
<td>37.1 ± 0.2</td>
<td>68 ± 60</td>
<td>20 ± 20.0</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0:45</td>
<td>E</td>
<td>37.1 ± 0.2</td>
<td>74 ± 62</td>
<td>25 ± 20.4</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1:30</td>
<td>C</td>
<td>37.3 ± 0.3</td>
<td>92 ± 80</td>
<td>30 ± 20.9</td>
</tr>
</tbody>
</table>

*See text for explanation of symbols
1 Cooling vest in use
ence between successive morning nude weights, and uniform gain is the difference between morning and end-of-flight day total uniform weights. Daily intake and output of fluids are also shown.

Data are shown only for the first 5 d of the test period since the last day was terminated in the early afternoon and did not allow 12- or 24-h weight changes and intake/output determinations. On the last day (about 7 h), S drank 2.93 L of water, produced 0.71 L of urine, had a 1.82-kg gain in uniform weight, and had a net loss of 1.28 kg in body weight.

Clinical Episode

S reached the medical safety termination rectal temperature of 38.5°C at the conclusion of the second flight on the last day. He expressed disappointment that he was unable to complete the entire day. He repeatedly asked to continue flying in the afternoon and denied any recurrence of fatigue or nausea he had earlier in the week. S appeared physically tired, but his behavior was entirely appropriate.

Continuation of the flying day was denied due to the protection of human subjects protocol in effect. His next hour was spent in a small general purpose tent, still in full IPE, taking a computerized psychological test battery as part of the study. This had been done at the termination of every flying day. On exiting the tent, S again expressed his desire to continue flying. The flight medic then began to assist him with undressing and terminal data collection inside an air conditioned command building on-site.

Within approximately 5 min, the medic urgently requested medical assessment of S. S’s mask and hood were off, and he had tears streaming down his cheeks. When asked what was going on, he began to answer with a distinct stutter. S verbalized a few words about “letting us down” and then stopped responding to questions and began staring vacantly at the walls. This abnormal behavior was assumed to be heat-related, and undressing proceeded rapidly. As his upper body clothing was removed, the skin on his arms and chest became mottled. A radial pulse could not be palpated, and S collapsed. He was unresponsive to voice or painful stimulation.

Fortunately, the dressing area also served as the emergency treatment area, and S was placed on the treatment table while the remainder of his clothing was removed. Ice packs were placed on his neck and in his armpits and groin. Water mist was sprayed from a garden-type device, and air was circulated over him by a fan. Temperature data was read and recorded several times during this episode. Given an intravenous access was being established, he began to speak and move his extremities. Within a 10-min period, he became completely oriented with normal vital signs and physiological examination.

The continuing slow rise in rectal temperature...
ACUTE HEAT ILLNESS ONSET—MITCHELL

served during the flight day is illustrated in Fig. 1, as is the rapid rise after the psychological testing period and the equally rapid fall with treatment. Physical examination and routine laboratory values immediately after recovery were normal (sodium 141 mg/dl, potassium 4.0 mg/dl, chloride 102 mg/dl, bicarbonate 32 mg/dl, glucose 107 mg/dl, urea nitrogen 14.2 mg/dl, white blood cell count 5100, hemoglobin 14.1 g/dl, hematocrit 42.6%). CK enzyme values were, unfortunately, not obtained. Urine electrolyte analysis revealed sodium 58 mg/dl, potassium 45 mg/dl, and chloride 24 mg/dl with negative presence of myoglobin immediately after the episode. S had no memory of events from the postflight psychological testing until becoming aware that he was "being assaulted" in the treatment room. Follow-up examinations remained normal. He remained on active flying status without sequelae.

DISCUSSION

The actual pathophysiology of the clinical episode remains unclear (1). The possibility of heat syncope certainly is significant, although it is usually seen earlier in the course of heat exposure in less acclimated persons. Heat stroke did not appear to develop here, although the rapid rise in rectal temperature provides some question that it may have been the onset of this condition. The loss of potentially confirma-tory enzyme levels is frustrating. Heat exhaustion and hypohydration is most probable since his rectal temperature had been elevated several hours beforehand, and there was an observed net weight loss of 1280 g during the period from breakfast to the clinical episode (about 7 h).

The actual diagnosis does not matter for flying safety considerations, however. Rapid onset of severe performance decrements with few, but recognizable, early warning signs is the central focus. This aviator tried to convince the flight surgeon that he could fly again just minutes prior to losing consciousness. Without rectal temperature readings and protocol restrictions, as is the case in real world operations, he might have been medically cleared to continue flying. What then?

The central nervous system signs S exhibited prior to collapse are typical signs of the onset of severe heat illness and are a key to survival for the rest of the aircrew (2). The inappropriate affect, presence of speech changes, and finally inattention or withdrawal are recognizable by alert fellow aircrew members. Each must be aware of the potential signs and must be ready to transfer control of the aircraft as necessary. In case an aircrew member suffering from heat effects has an in-flight physiological emergency, the whole crew must be knowledgeable about effective field treatment for acute heat illness, since medical facilities may not be readily available.

Most clothing and equipment can be removed or at least opened even in flight prior to landing. Chemical cold packs which activate on crushing are small enough to fit in personal flight bags during the summer months or on IPE operations. They are applied easily to areas where arteries are close to the surface (neck, armpits, and groin) and cool the body efficiently (10). Canteen water splashed on exposed skin can be evaporated by running with a jacket or shirt or exposing him to the wind or rotor downwash (4, 6). Shivering should be avoided since it is not used in the body temperature, so treatment needs to be tailored to the situation (7). This treatment regimen can be administered to any aircrew member with active signs of heat illness, although the initial measures alone may be sufficient to alleviate the condition. The bottom line is that all aircrew members need to be aware of this problem, its manifestations, and its immediate treatment if preventive measures fail.

DISCLAIMERS

The views, opinions, and/or findings contained in this report are those of the author and should not be construed as official Department of the Army position, policy, or decision, unless so designated by other official documentation.

Human subjects participated in these studies after giving their informed voluntary consent. Investigators adhered to AR 70-25 and USAMRIID Regulation 70-25 for use of volunteers in research.

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

REFERENCES

Initial distribution

Commander, U.S. Army Natick Research, Development and Evaluation Center
ATTN: STRNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Naval Submarine Medical Research Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 06340

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-ESA-D
Fort Monmouth, NJ 07703

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Harry G. Armstrong Aerospace Medical Research Laboratory
Wright-Patterson
Air Force Base, OH 45433

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300
Headquarters (ATMD)
U.S. Army Training and Doctrine Command
ATTN: ATBO-M
Fort Monroe, VA 23651

Structures, Laboratory Library
USARTL-AVSCOM
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665

Naval Aerospace Medical Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base FL 33608

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

U.S. Air Force Institute of Technology (AFIT/LDEF)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, Nation Guard Bureau
ATTN: NGB-ARS (COL Urbauer)
Room 410, Park Center 4
4501 Ford Avenue
Alexandria, VA 22302-1451

Commander
U.S. Army Aviation Systems Command
ATTN: SGRD-UAX-AI (MAJ Gillette)
4300 Goodfellow Blvd., Building 105
St. Louis, MO 63120

U.S. Army Aviation Systems Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Academy of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

John A. Dellinger,
Southwest Research Institute
P. O. Box 28510
San Antonio, TX 78284

Product Manager
Aviation Life Support Equipment
ATTN: AMCPM-ALSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander
U.S. Army Medical Materiel
 Development Activity
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Aviation Center
 Directorate of Combat Developments
 Building 507
Fort Rucker, AL 36362

U.S. Army Research Institute
 Aviation R&D Activity
 ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
 Fort Rucker, AL 36362

U.S. Army Aircraft Development
 Test Activity
 ATTN: STEBG-MP-P
 Cairns Army Air Field
 Fort Rucker, AL 36362

Commander U.S. Army Medical Research
 and Development Command
 ATTN: SGRID-PLC (COL Sedge)
 Fort Detrick, Frederick, MD 21702

MAJ John Wilson
 TRADOC Aviation LO
 Embassy of the United States
 APO New York 09777

Netherlands Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

British Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

Italian Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

Directorate of Training Development
 Building 502
 Fort Rucker, AL 36362

Chief
 USAHEL/USAAVNC Field Office
 P. O. Box 716
 Fort Rucker, AL 36362-5349

Commander U.S. Army Aviation Center
 and Fort Rucker
 ATTN: ATZQ-CG
 Fort Rucker, AL 36362

Commander/President
 TEXCOM Aviation Board
 Cairns Army Air Field
 Fort Rucker, AL 36362

MAJ Terry Newman
 Canadian Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

German Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

LTC Patrice Cottebrune
 French Army Liaison Office
 USAAVNC (Building 602)
 Fort Rucker, AL 36362-5021

Australian Army Liaison Office
 Building 602
 Fort Rucker, AL 36362

Dr. Garrison Rapmund
 6 Burning Tree Court
 Bethesda, MD 20817

Commandant Royal Air Force
 Institute of Aviation Medicine
 Farnborough Hampshire GU14 6SZ UK