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introduction

During the interior ballistic cycle in conventional tube weapons, processes of
different importance occur. The most important process, the motion of the
projectile, depends on the burning of the propellant and thus the generation of
gas pressure in the gun. The interior ballistician however knows, that beside this
key process a series of further processes must be considered, limiting the
design of a charge. Important points of view are for instance the life-time of gun
tubes, which is coupled to the erosion, or the cook-off of charges. These
examples show that the generation of heat and heat transport processes play an
important role. The heat transport processes of heat conduction, convection and
radiation as well as heat transfer should be considered.

It is the subject of this contract, to explore the heat transport processes in
interior ballistic flows by means of numerical simulation. The numerical simula-
tion for high velocity flows under high pressure and high temperature should be
limited however to pure gas flows behind a projectile. The general subject of the
contract "Viscous Modeling of the Interior Ballistic Cycle" emphasizes the
viscosity of the interior ballistics gas flow to be included. The viscosity of the
flow is taken into consideration by using the full Navier-Stokes equations for
describing a multidimensional (axisymmetric) unsteady and compressible flow.
This kind of mathematical description opens the possibility of calculating the
formation of the boundary layer, which is important for the heat transfer and for
including turbulence as an essential process for the heat convection. Actually,
this kind of simulation considers the complete coupling of the flow between the
core and the transient boundary layer as well as the interaction of the heat
transfer into the tube wall and the wall. This report gives account of the
achieved results of the numerical simulation. The comparisons between laminar
and turbulent flow have been published already at other places, among others in
six periodic reports, and therefore are presented here only in summary. The
investigation of the heat transfer to the tube wall, however, is treated more
comprehensively.

Substantial work on this contract has been performed by the Research Asso-
ciates

Dr. J. Garloff (Apr 87 - March 89) and
Dr. S. Kocaaydin (June 90 - May 91).
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Numerical Techniques

For the numerical solution of the Navier-Stokes equations the DELTA-Code was
available. Originally, this computer code was supposed to provide a numerical
approximation of the solution of the averaged two-phase (gas-solid), multi-
dimensional equations governing viscous interior ballistic flows within conven-
tional guns [1,2]. The numerical method is based on a linearized Alternating
Direction Implicit (AD!) scheme of the Briley-McDonald type [3] and applied to a
moving coordinate system caused by the moving projectile. The implicit finite
difference method is very well suited, since a satisfactory resolution of the
boundary layer makes necessary very small grids in the wall proximity. To keep
the amount of grid points as small as possible a distribution of nonequidistant
grids is used in radial direction with most narrow grids at the wall and increas-
ing grid size in direction to the tube axis. In axial direction equidistant grids
were sufficient. The code was developed at the BRL on a CDC mainframe
computer in UPDATE format. At the time DELTA was transfered to the VAX
computers accessible to the Ernst-Mach-Institut (EMI), only those code modules
for an axisymmetric laminar gas flow for adiabatic walls had been tested. Beside
the main program the graphics package based on DISSPLA also was installed on
the EMI-computer for processing the numerical results. The graphic was
extended substantially to make possible a sufficient monitoring of the computer
runs and a postprocessing.

Turbulence

Computational results for the laminar interior ballistic gas flow showed very thin
boundary layers [4] for the axial flow velocity as well as for the gas temper-
ature. By comparing the experimental results from ballistic simulators [5,6,7] to
the computational results of the laminar flow, differences appeared for the
shape of the velocity boundary layer even for low velocities, The measured
velocity traces pointed to turbulence as the source of the differences.
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in a first step we studied the applicability of two algebraic eddy viscosity
models of turbulence using a two-layer approach since their implementation did
not cause too many modifications in the code. Both the Cebeci-Smith-Mosinskis
model and the Baldwin-Lomax model did not generate realistic turbulent flow
profiles in the boundary layer. However the boundary layer thickness (99 %
criterion) looked similar to the experimental results. Although performing an
extensive parameter analysis we did not get satisfying results when comparing
with the experimental results with the gun simulators of the Imperial College,
London [5,6]. In order to describe adequately the heat transfer it is necessary to
start from realistic boundary layer profiles. The results using the algebraic
turbulence models were published in detail [8-12].

The experience with the algebraic models of turbulence caused us to incorpo-
rate a more advanced turbulence model based on transport equations for turbu-
lent quantities. As next step we modified the widely used k- model taking into
consideration compressibility effects [13]. Special emphasis was laid on the
modeling of pressure-velocity correlations appearing in the equation for internal
energy as well as turbulent kinetic energy k. This model was strictly extended in
order to include real gas effects (Noble-Abel equation of state) and to facilitate
the investigations on heat transfer. Then the k-€ model was implemented in the
DELTA code. Test runs showed that the values of the turbulent kinetic dissi-
pation rate rose too fast in the corner between the projectile base and the tube
wall.

in view of the numerical difficulties with th» k-€ model a one-equation model
was considered as a8 more appropriate cai.didate. This 2quation is a transport
equation for the turbulent kinetic energy. .is dissipation rate is given by means
of a mixing length specified algebraically. By applying this model in DELTA we
achieved reasonable computational resuits in good agreement with the experi-
mental ones. The basic equations as well as the comparison with the experi-
ments are documented in [11,12].
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Heat Transfer

Besides the modeling of turbulent gas flow close to the wall the calculation of
the heet transfer from the hot propellant gases to the tube wall was a further
important goal of this contract. Two ways of solution were traced. First, the
boundary condition at the wall surface was formulated as a heat balance.
Second, a finite volume formulation was chosen such that a volume across the
boundary includes a part of the flow and of the wali. This method is described
in detail by C. S. Kocaaydin in the Appendix of this report whereas the first
method is explained in the following. Both methods required substantial exten-
sions of the DELTA code ar well as of the graphics for postprocessing and
consequently plenty of coding.

In order to calculate the heat transfer to the tube the boundary condition used
so far for an adiabatic wall surface was changed such that the heat exchange
between flow and wall is described. In this case both the heat flux from the hot
gas and the quantitv of radiated heat to the wall are supposed to equal the heat
flux penetrating into the wall:

3T 3T
Te - = -\ =¥
-Ay 35 + €0 [T:o 'r;} N 3E

and on the inner tube Lurface the gas temperature Tg is supposed to equal the
wall temperature Ty,:

The variables A, €, o and r denote the thermal conductivity, the emissivity of the
wall surface, the Stefan-Boltzmann constant and the radial coordinate, respec-
tively. The index g stands for gas, and w for wall. The temperature Tgo means
the maximum gas temperature in a particular cross-section of the tube. In the
wall the two-dimensional heat conduction equation

aT, 3T, 13[ aT,
°..°u3'€=a%(*~3; +E3r (PN 3%

is solved using the same numerical scheme as for the gas flow region. p, ¢, t, 2
denote the density and specific heat of the wall material, time and axial coordi-
nate in the wall, respectively. At the outer tube wall surface the simple engi-
neering condition
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is chosen where we are using a heat transfer number h and an outer ambient
temperature Tamb. A more sophisticated condition, at least for a single shot
weapon, is not necessary because the heat usually does not reach the outer
surface during the ballistic cycle because of the wall thickness. Two additional
boundary conditions are needed in axial direction for the heat conduction equ-
ation. At the projectile base, we set

Tu = Tlmb

across the wall thickness, that is, we assume the projectile moves into a cold
area with ambient temperature. This assumption is not true if there is a gas
leakage around the projectile. At the breech, an adiabatic condition

T,
3z

seems to be adequate.

Numerical Results

In the following numerical results will be presented. In order to avoid an initial
discontinuity in temperature at the wall surface the initial temperature is
assumed to be ambient eveiywhere in the flow area and in the wall. Also, the
initial pressure is ambient. For producing a time-dependent pressure and temper-
ature profile as in a real tube ~veapon, mass and energy are added to the one-
phase flow via source terms. These source terms take into account an empirical
burning law as a function of prassure. The sources move with the flow. A con-
stant time-step of 10 ys was chosen. The computational mesh consists of 97
uniformly spaced grid points in the axial direction and 73 nonuniformly spaced
grid points in the radial direction for the gas flow whereas 73 uniformly spaced
grid points are used in the wall in radial direction.
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Table 1. Parameters of the Test Run

Bore Diameter 20 mm
Tube Length (Breech to Muzzle) 20m

Initial Chamber Length 0.175 m
Projectile Mass 120 g

Ratio of Specific Heats 1.271
Covolume 1.08 + 103 m3/kg
Molar Mass 23.8 g/mole
Barrel Material Steel 4130
Density 7800 kg/m3
Thermal Conductivity 43 W/m/K
Specific heat 460 J/kg/K
Emissivity Factor 0.7

Initial Gas Pressure 0.1 MPa
Initial Gas and Wall Temperature 293 K

Initial Gas Velocity O m/s

Shot Start Pressure 0.1 MPa

The smallest grid size in radial direction is 0.61 um on the gas side and 34.7 ym
in the wall. Other parameters for this test run are summarized in Table 1.
Several Figures referring to the boundary layer, wall temperature distribution,
heat transfer, spatial distribution of flow quantities and projectile motion will be
presented. 5.81 ms after the beginning of the shot cycle the projectile leaves
the muzzle with the velocity of 941 m/s having run a distance of 1.825 m down
the tube. Bore friction is neglected.

Figures 1 to 3 show information on the projectile motion. Pressure as well as
temperature rise and drop versus time are displayed in Figures 4 and 5, respec-
tively. As mentioned before mass and energy is added to the flow in order to
achieve realistic gas and temperature profiles. This is based on a hypothetical
mass of propellant the consumption of which is shown in Figure 6. The spatial
distribution of the axial flow velocity, radial flow velocity and gas pressure are
plotted in Figures 7 to 9, respectively, for the time of muzzie clearance. At this
time the boundary layer in the front part behind the projectile is fully developed
(cf. Fig. 7). The turbulent kinetic energy and the Reynolds struss are shown in
Figures 10 and 11, respectively.
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In Figure 12 the temperature distribution in the gas and in the wall are given for
the same time. The wall surface is the line where the red and green areas meet
each other. The wall temperature is resolved more detailed in Figure 13.
Temperature measurements are taken at fixed locations along the wall. There-
fore, the Figures 14 to 16 show at the positions 100, 200 and 300 mm otf the
breech the temperature curves for the wall surface and for the depths in the
wall of 10, 30, 50, 100 yum. One has to keep in mind that the initial position of
the projectile is 175 mm off the breech. The wall temperature depends on the
heat flux. The heat, transfered from the hot gas to the cool wall along the tube
is integrated over time in Figure 17. The decrease of the transfered heat from
the maximum at about 200 mm is caused by the decrease in heat convection
when approaching to the breech. The convection of heat is supposed to be the
dominant heat transport process to the wall in order to feed the gas layer next
to the wall with heat. This is one of the most interesting results of this heat
transfer study.

Several additional figures illustrate some other features of the viscous flow
solution. Next, the development of the velocity boundary layer (99 % criterion)
is shown in a sequence of plots in Figures 18 to 22. For the time of muzzle
clearance the radial profiles of the axial flow velocity, radial flow velocity and
gas and wall temperature are displayed occuring 0.5, 1.5 and 1.95 m off the
breech. This concludes the presentation of numerical results for the particular
20-mm test example. Of course there exist many other interesting results. The
figures and explanations given here are supposed to represent the most
important attributes of the viscous turbulent interior ballistics one-phase flow
with heat transfer.

As another test example the 22.2 mm experimental gun simulator of the
Imperial College was chosen. The essential parameters of this test rig are given
in Table 2. The gas used is low grade nitrogen. The flow is a pure expansion
flow starting from the initial gas pressure of 1.1 MPa behind the projectile. This
example has been used for an extensive comparison of the particular flow
characteristics between experiment and numerical simulation. Above all the
modeling of the turbulence was verified. Since those resuits have been
published in Refs. 10 to 12 only the heat transfer results are presented in the
following. They are refered to the Figures 32 to 41. The computational mesh
again uses 97 x 73 grid points. Figures 32 to 34 show the projectile motion.

Because of the low initial pressure the achieved maximum velocity is only about
200 m/s.
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Table 2. Parameters of the gun simulator

Bore Diameter 22.2 mm
Tube Length (Breech to Muzzle) 3.56m
Initial Chamber Length 1.3m
Projectile Mass 105 ¢g
Ratio of Specific Heats 1.416
Covolume 0 m3/kg
Molar Mass 28.0 g/mole

Barrel Material and Properties as in Table 1

Initial Gas Pressure 1.1 MPa
Initial Gas and Wall Temperature 293K
Initial Gas Velocity Om/s
Shot Start Pressure 0.1 MPa

The pressure as well as the temperature drop both at the projectile base and
breech according to ‘he expansion are plotted in the Figures 35 and 36. Since
the expansion starts from ambient temperature the gas temperature drops below
the ambient temperature. This means heat is transfered from the wall to the
flow as shown in the Figures 37 to 40 where the wall temperature at the loca-
tions 1.0, 1.2, 1.5 and 2.0 off the breech are shown for the wall surface and
the wall depths of 10, 30, 50 and 100 ym. The integral heat flux (cf. Fig. 41),
therefore, is negative. The computed temperature drops in the wall, however, is
not in agreement with those experimental results published in Ref. [7]. There,
the measured temperature decreases about 4 to 6 °C whereas the computed
temperature decreases about 1 °C or less. The reasons for the difference are
not known at this writing.
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Conclusions

The Navier-Stokes solution is able to predict particular flow features of a one-
phase interior ballistic flow such as boundary layer, turbulence or heat trans-
port. A one-equation model of turbulence seems to be best suited to incorporate
turbulence important to generate the proper amount of heat convection.
Another satisfying result concerns the success in calculating the rise of temper-
ature in the tube wall.

Some of the numerical results need to be verified experimentaily above all in the
high velocity regime. An extension of the study to the application of this mathe-
matical model on two-phase flows with inert and reactive solid particles is
recommended.
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APPENDIZX

INTERIOR BALLISTICS
AND

GUN BARREL HEAT TRANSFER

Development of DELTA-Code _onsidering
Unsteady Heat Conduction
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1. Outline

The purpose of thisresearch project was to develop a gun barrel heat transfer
model in order to predict the thermal boundary layer development and the
heat load to the barrel. This problem was actualley embedded into the deve-~

lopment of a general computer code in order to analyse the overall interior
ballistics cycle in detail.

During the period from June 90 to November 90, the major research activity
was concentrated on the development of a new method to consider the
heat-transfer to the gun wall. The theoretical aspects of this new method
have been documented already in the last report /1/. In this final report, we

are going to summarize the progress achieved in the research project during
the period from December 90 to September 91.

2. Experience with the DELTA program

The development of a gun~-barrel heat transfer model and its implementation
into the DELTA code encountered several difficulties due to the numerical

stability problems. This situation has led to some work, which was initially
not considered.

2.1 Numerical Instability

Due to the central differences and excessive quasi-linearization used within
the discretization methodology of the DELTA code, this program cannot be
considered as robust. Therefore, it is always necessary to adapt carefully
the grid and the time-step for every initial condition. Otherwise, the results
are suffering from some high-frequency oscillations. On the hand, to combine
the DELTA program with a new boundary algorithm has made the stability
range narrower. The computation of thermal boundary layer leads to high
gradients in temperature distribution within the computation domain. So we
have encountered some basic problems during this research period.

As it is well known, the remedy to the instability is some sort of artificial
viscosity. Due to the basic formulation, which is currently applied in the
DELTA code, it is necessary to put explicit and implicit artificial viscosity.
Although the range of explicit viscosity terms are bounded upwards, there
is actually no limit given to the implicit artificial terms. After several tests
have been run with the DELTA code, it was confirmed, that the DELTA code
doesn’t react stable if the coefficient of implicit artificial viscosity is

increased. It is recommended to consider some recent publications on the
role of artificial viscosity /72/.

After arigorous control of the program, it was found that this above mentioned
phenomenonis aresult of anerrorin theimplementation of implicit artificial
viscosity. Let's consider the linearized block implicit scheme used in the
DELTA code. Complete description of the method can be found in /3,4/.
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The general form of the governing nonlinear partial differential equation
is

d
‘a{" = G(r, z, t, y: yr' yz' yrra yrz' y ) (1)

zz

where the independent variables of time, radial and axial coordinates are
denoted by t, r, z, respectively. The vector of dependent variables is

denoted by y. The alternating direction - implicit method (ADI) used in
DELTA is

n I _ (& C C
[1-8D2 ]y'=[1-8D] ¥y vy
[1-8D"]y"=[1-8DS ]y +(y'-yS) . (2)
The operator matrizes D_ and D, have the following structure

D_= D_(D, DR, DRR) ,

r

D,= D, (DZ, D2Z} (3)

z

with the Jacobian matrices

D'c)y‘ DR 6),'. DRR c)y"' DZ éyz' DZZ .,

In the present code, the implicit artificial viscosity terms were added to the
operator matices DRRand DZZ on each side of the equations - see subroutines
SWRINT and SWZINT -. But itis only allowed to use these terms on the left
implicit side.

After this error has been eliminated, the DELTA code has become really
stable. It should be clear, that the use of artificial viscosity leads to non-

physical diffusion. Therefore, these coefficients should be kept as low as
possible.

There is another important question within the context of the stability
problem. Thisis, how the Jacobian matrices should be computed. Itis possible
to compute them analytically or numerically. A definite answer to this
question cannot be given at this moment.

2.2 Reduction of computation time

In order to reduce the computation time, it was decided to use only exact
Jacobi matrices. So the algorithm was completely reconsidered. The compu-
tation of the right-hand-side and of the Jacobians has been recoded. By
storing several intermediate quantities the computation time has been
reduced drastically. On the other hand, due to the higher robustness of the
code after the correction of the artificial viscosity, the time-steps could
also be increased. Some existing subroutines were further developed to
compute the Jacobians analytically even in case of turbulent flow. Unfor-
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3. Development of a new boundary condition to couple the fluid flow and i
heat conduction within the wall

B

In this section, some details of the formulation will be presented. These
are the choice of the grid, numerical aspects and boundary conditions

3.1 Choice of the grid - Stability of heat-transfer

The most important aspect in the implementation of a coupled heat-transfer
model was the question concerning the grid resolution in the gas and the
wall. There were some open questions. The choice of any grid can affect the
results. This uncertainty has been resolved in the following way

F-

Actually, it is well known, that the grid should be fine enough within the
! boundary layer. Here, we are considering how the coupling of fluid and solid
can influence the unsteady heat-transfer.

As we are primarily interested in the unsteady heat transfer, we should
look carefully to the unsteady heat conduction equation, where temperature,
density, specific heat capacity and thermal conductivity are denoted by T,
¢, c and k respectively.

OT _ 4 2°T
ot T Tox '
with thermal diffusivity «, defined as

k
pcC

The heat eguation can be put into a dimensionless form through the choice
of some appropriate reference values.

28 _ %8
ot ~ dnZ !
with T
= L - X . Lo
Mty SR IS W 7

There is an order of magnitude difference in the diffusivity of steel and gas.
So we should also analyse the unsteady thermal contact problem.

ATy - 4, 22T

P

ot toxz
3T, _ %7,
36 %% 3 , x, ¥ o,

If the heat equation should beresolved intwo different media simultanecusly,
the characteristic length of the domain should be chosen, such that the
time~-scale of the dimensionless equations should be the same.

' 'x""z
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This leads to the following criteria

L, _ /&
gl

So the computational domain used to determine the boundary temperature
must be defined in a similar manner. Actually, this fact is also prescribed by
the stability criteria of an explicit integration scheme. This aspect will be
mentioned in the next section.

3.2 Numerical aspects of the formulation

The underlying theory for the formulation of a special boundary condition
to couple the flow-field inside the gun and the heat-transfer in the gun-
barrel has been previously reported /1/. But this numerical implementation
has encountered several difficulties. In order to remove this problems, all
numeriral aspects have been reconsidered during the second half of the last
period. Here we are giving a full description of the method.

3.2.1. Discretisation and integration of the energy equation

To compute the temperature at the gun-wall, the energy equation should
be integrated in a time-accurate manner. The computation domain covers
naturally the gas flow inside the tube and the heat conduction in the
gun-barrel. In order to localize the problem, it will be appropriate to
make some assumptions. As long as the radial heat-transfer is stronger
than the axial processes, we can ignore the axial convective and heat-flux
terms in the energy equation. This assumption is true in case of high
Peclet numbers. Reducing the two-dimensional problem into a radial heat-

transfer problem, we can sweep along radial direction independently at
each axial section.

Let's state the problem once again. We are looking to a radial heat-transfer
problem and seeking only the temperature at a single point, which is the
common boundas -y of two different media. Choosing an explicit scheme to
integrate the energy equation, the computational domain will cover only a
small region around the boundary point.

It should be remembered that an explicit scheme should obey some stability
criteria. In this case the time step has been already prescribed through the
solver for the fluid- dynamics problem. So we have to define the integration
domain around the boundary point carefully. It is well known, that the
stability criteria of an explicit scheme for a diffusion equation is given like

At 1
o &= L
*2

Ax2

PR TT IR
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So we have to consider the gas and wall sides independently. Due to the
different material constants, there is an order of magnitude difference in
the heat diffusion coefficient. This is an essential point for the coupling of
two media. It should be remembered that the diffusion coefficient depends
also on temperature. That's why it is appropriate to use an auxiliary grid
within this boundary algorithm. Otherwise, it is a hopeless task to find an

appropriate grid to fulfill all of the requirements before running the program.

Actually we are going to formulate a three-point explicit scheme for the
integration of the energy equation, which is discretized according to finite-
volume method. Considering the same stability-criteria, we compute the
location of a northern node N in the wall and of a southern node S in the
gas. The boundary node is described by the letter P. The next step is the
computation of all state variables at this new defined points. A simple
interpolation is good enough for our purposes here.

Arpn = V2 At dyqy

Y

e

Arpe = V2 8t xgag

The radial coordinate Fp of the boundary point P is defined by the geometry
of the gun barrel.

r,=r,+* Arpn

rg =rp - Arpg
Due to the difference in material constants, we cannot consider a single
composite-cell at the boundary. Therefore we should define a boundary cell
for each medium. The upper cell U is the boundary cell in the gun-wall. The
lower cell L is just the opposite, boundary cell in the gas. An important
aspect of the chosen finite-volume formulation is that we are going to
make an energy balance for each boundary cell. After computing the tempe-~
rature of cell centers at the new time level, the temperature of the boundary
point will be determined assuming an equilibrium of heat fluxes.

The temperature at each boundary cell T; or T, depends directly on the
boundary temperature T, , but they are not the same. At every time-step,
the state variables at the center of each boundary cell is defined through a
weighted averaging of the adjacent nodes. The weighting factors are given
just through geometric considerations. If we define a cell center for each
boundary cell, so the location can be computed simply as given below.

r =r +71-Arp

u P N '

Arps

-
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According to this definition, it is also a simple arithmetic to define the
weighting factors.

T =

u

(3T, + T)

) N !

)

I Y

T

(3TP + Tg
Let us summarize the discretization of energy equation in radial direction
at each axial section. We are considering now only two cells U and L with
temperatures Ty; and T;. The simplified energy equation is given below,
using the common notation for finite-volume methods.

CX:, [(pT)’"‘ - (pT)"] + [(pTvr F)N - (PTV,.F)S]

<-[ay-as]- [ (e Bl - (v, g ] 0V

The discretized equations for a radial heat-transfer sweep at an axial
section are given below using the same terminology. Temperature T and
density o will be computed at the new time level tP*! . So they are
unknowns in this formulation. All other variables as v, p, cy Wwill be taken
from the latest available time level t™.

Energy balance in the upper boundary cell U:

Assuming the density of the gun wall is constant, the only unknown at the
upper cell is temperature.

cyeVy n+t n
At [Tu -Tu]

=T [(’ lZI:’:N (T -Tp >)FPN° ((q.—)P * qr-d)FP:l '

Energy balance in the lower boundary cell L:

In the gas, the density depends on temperature and pressure. We assume
that the pressure changes can be neglected for a single time-step. So the
density will be a function of temperature. The following state~law for a
Nobel-Abel type gas should be considered.
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This nonlinear equation can be easily solved by a damped Newton method.

Finally we should define the heat-flux at the boundary qp, 80 that the
equations can be integrated explicitly. For this purpose, we assume a local
equilibrium of heat-flux between the wall and gas. Using the same termino-
logy, this means that the heat-flux from the cell center L towards the
boundary point P is equal to the heat-flux from the boundary point P
towards the upper cell center U. It is easy to define the heat-flux in the
solid, because heat conduction is the only heat~tr: nsfer mechanism. On
the other hand, it is very difficult to describe the heat-flux through a fluid
layer at the wall. Considering the following relation according to the local
equilibrium

qp = q

wall qznl '

the heat flux is defined simply using the information on the solid side
Ta-Tp

ArpN

dp =~

3.2.2 Determination of surface temperature

After the equations have been solved for temperature of cell centers at the
new time level, the final step will be to determine the new temperature at
the boundary. We have already assumed that there is an equilibrium of heat-
fluxes within each medium at the boundary. Since we have considered the
unsteadiness of the problem and also taken account of all the convective
terms, this assumption can be justified.

In order to make the details clear, we should look at first to a simple contact
problem. Let's consider the contact of two solid layers ( upper and lower )
having different heat-conductivity kp), and kpg respectively. The thickness
of the layers will be described by Arp, and Arpg. In this case, heat conduc-
tionis the only heat-transfer mechanism. Finally this composite layer should
be held between a temperaturediiference T, and T, . The boundary tempera-
ture between two solid layers cai be computed considering an equilibrium
of heat-flux using the following equation

Arpn | post, ATPS  pnet

oot . _Ken kps L
P Al’pN R Al"p§_~
kpn kps

Actually this relationship cannot be used in case of contact between a solid
and fluid layer. The reason is that the heat-flux on the fluid side is not only
due to the heat-conduction. However we can use the already available infor-
mation on the velocity distribution near to the wall in order to define the
wall heat-flux on the fluid side. This is to say that the method of solution
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is an analogy between the velocity and temperature distribution sometimes
known as the Reynolds-analogy. In case of high-speed flows having a Prandtl

number close to one, this assumed similarity between velocity and tempera-
ture distribution is reasonable.

At this point it is impoertant to note that we are going to use the Reynolds-
analogy only in the boundary cell which we have already discussed. The
velocity gradient at the wall is evaluated on the original grid.

oT
9p = - kpg or |w
n n
I oT c)u! - K (Tg -Tp) ou
= PS = T Kps I
61.1 C)r w us C)r w

So we can define a heat~transfer coefficient Ops-
ap
n n

(Tp =~ Tp )

Xps =

Finally the wall temperature can ' 2= computed similarly.

ArpN | pn+t
et . _Ken o u
P ArpN
e penamad + o
kPN PS

n+1
o
* Ups Ty

3.2.3 Influence of grid-motion on the wall temperature

Up to now, we have considered the heat-transfer within a stationary grid
system. Therefore the wall temperature should be modified concerning the
grid motion. Thisis accomplished through a simple interpolation of the wall
temperature using the old grid and computing the temperature at the new
grid points along the wall. Concerning the wall/base corner point special
care is necessary. Due to the projectile motion, the grid is expanding. The
regions which are entering the computational domain are assumed to be at
the room temperature. But this is not valid for the wall points, except the
wall/base corner point. Due to the strong expansion of the grid, it can
happen that some wall points will be between the old and new projectile
locations. Therefore we have to compute the temperature of the wall/base
corner point belonging to the old grid at the new time level. This value is
used here only for internal purposes during interpolation of wall

temperature. It will be helpful to compare with the details of boundary
conditions in section 3.4 .
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3.3 Discusasion of the new boundsry algorithm.

The presented formulaticr has the aim to consider the unsteady and
convective nature of the heat-transfer problem at the boundary of a fluid
and solid. It has been observed, that a further assumption in order to
simplify the problem can be made. This is that the radial convection and
the pressure work terms can be neglected, if the radial velocity is truly
vanishing. This is not always the case. Even some very small radial velocity
leads to very high radial convection and pressure work, because both of
the state variables temperature and pressure attain very high magnitudes.
Within the context of stability, this phenomenon causes also trouble.
Remember that we are using only a one-step explicit scheme. So it may be
better, to use a fine grid at the boundary and neglect these terms as long
as an explicit scheme is used.

So the simplified energy equation describes the unsteady temperature
distributior in a Coutte-~flow, balancing the heat conduction with the
heat-generation through viscous dissipation. Actually all universal wall-
functions have originated from such models.

3.4 Modification of Boundary Conditions

The definition of boundary conditions is usually considered as the most
important aspect of a numerical simulation program. Therefore, special
attention is required.

In order to make the DELTA code transparent, the subroutines concerning
boundary conditions have been simplified. Concerning the momentum
equation, no-slip condition is used everywhere except the base, where the
velocity is prescribed. At the breech the axial pressure gradient and along
the wall the radial pressure gradient is set to zero. Along the axis the
symmetry condition is well defined.

For the gasdynamical problem in an interior ballistics cycle with a coupled
gun-barrel heat-transfer modelling, the boundary conditions at the base of
the projectile were modified. It has been observed that the thickness of the
thermal boundary-layer is unrealistically big behind the projectile base.
Therefore a correction of pressure and entropy is necessary. The flow at the
base has been assumed as one-dimensional. After every time-step, the
pressire and entropy along the base of the projectile were set equal to
corresponding values-at the axis. It should be mentioned, that the grid is
uniform in the axial direction. That's why the resolution of any viscous
flow phenomena at the base cannot be achieved.

One important detail belongs to the handling of the wall/base corner point.
Actually, there are at least two different states at this singular point. If we
consider, that this point belongs to the wall, its velocity is set to zero.
Concerning the entropy, the situation is some what different. This singular
point is also the edge of the boundary-layer. If we assume that the boundary
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layer has not been developed, then we can define the temperature of this point
through extrapolation from the gas flow. Oz the other hand, if we are going
to compute the heat conduction within the gun-barrel, we should remember
that the heat-flux has not entered into the wall yet. So we should consider
that this singular point is still at room temperature.

4.0 Discussion of numerical reaults and conclusion

The gun-barrel heat-transfer is controlled through convective and viscous
processes within boundary layer. At the beginning of the ballistic cycle, the
wall temperature close to the base of the projectile attains very high values.
This peak is caused through the developing boundary layer. At the edge of
the boundary-layer the viscous dissipation is very high. Beside that the hot
gas of the core-flow touches instantanously the wall/base corner point.

Another important process is the radial convection behind the projectile
base. The axial velocity of the gas behind the projectile is larger than the
projectile velocity. Due to the decelaration of the gas flow behind the
projectile, there is a change of flow direction from axial towards radial. So
the heat load is further increased through radial convection. It should be
remembered this decelaration process is also an adiabatic heating. The flow-
field behind the projectile is a combination of two completely different

phenomena. The adiabatic heating is reacting against the expansion flow
due projectile motion.

Concerning the numerical simulation of interior ballistics, thereis still some
need for the development of an efficient method. The DELTA code is actually
describing the hydrodynamics of the problem. Even for this problem, it will
be appropriate to rewrite the code. Using the same theoretical modelling with
a modern implicit discretisation method, based on upwind finite differences

and considering an efficient code-structure, this task can be fully achieved
in a reasonable short time.
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