AD-A243 S5
I A

NASA AVSCOM
Contractor Report 4342 Technical Report 90-C-028

?2
|

:"\";' ¢4~
Local Synthesis and I

Tooth Contact Analysis

of Face-Milled Spiral
Bevel Gears

Faydor L. Litvin and Yi Zhang

GRANT NAG3-964
JANUARY 1991

-’

"
<
R 5.8
AN

L3 ARNMY ‘
. = AVATHON
- .~ - ) TN . .
AREHR .
ni
Y !

o2 .




NASA
Contractor Report 4342

Local Synthesis and
Tooth Contact Analysis

of Face-Milled Spiral
Bevel Gears

Faydor L. Litvin and Yi Zhang
University of Illinois at Chicago
Chicago, Illinois

Prepared for

Propulsion Directorate
USAARTA-AVSCOM and
NASA Lewis Research Center
under Grant NAG3-964

NASA

National Acronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1991

AVSCOM
Technical Report 90-C-028

; Acewsslica Per

CRTTE Gxaai

T Pat
DO Y ed
Plistilicatlon. _

T AT TR
Sliavt, ty ogdesy
Y R Y .
!

|




TABLE OF CONTENTS

SECTION PAGE
1 LOCAL SYNTHESIS of GEARS(GENERAL CONCEPT) ...................... 1
1.1 Imtroduction . . . . . . . .. .. ... 1
1.2 Basic Linear Equations . . . . . . . . ... ... ... ... ... ... 1

PINION AND GEAR GENERATION ... ... . i 12
2.1 Pinion Generation . . . .. . .. .. ... 12
2.2 Gear Generation . . . . . . . . .. ... 13
2.3 Gear Machine-Tool Settings . . . . . .. .. ... .. .. ... ... ... . ..., 13
GEAR GEOMET RY ... e 16
3.1 GearSurface . . ... . .. ... e 16
3.2 Mean Contact Point and Gear Principal Directions and Curvatures . . . . . . .. .. 20
LOCAL SYNTHESIS OF SPIRAL BEVEL GEARS .. ............................ 23
4.1 Conditions of Synthesis . . . . . . . ... ... ... . 23
4.2 Procedure of Synthesis . . . . . . . ... Lo L 23
PINION MACHINE-TOOL SETTINGS .............. .. i, 28
5.1 Introduction . . . . . . . . . . . . 28
5.2 Head-Cutter Surface . . . . . . .. . ... . .. 28

5.3 Observation of A Common Normal At The Mean Contact Point For Surfaces £,. X, Zr

and X1 . . e 31
5.4 Basic Equations For Determination of Pinion Machine-Tool Settings . . . . . . . . . 33
5.5 Determination of Cutter Point Radius . . . . . . . . ... ... ... ... .. .. .. 37
5.6 Determination of mp, = nlj;,me and Xg1 . . . . . ... 39




6 TOOTH CONTACT ANALYSIS (... s 48

6.1 Imtroduction . . . . . . . . . . . ... 48
6.2 Gear Tooth Surface . . . . . . . . ... .. .. ... 50
6.3 Pinion Tooth Surface . . . . . . . .. .. . ... 51
6.4 Determination of Transmission Errors . . . .. . ... ... ... .. ... 61
6.5 Simulationof Contact . . . . . . . . .. . ... ... 62
7 Vand H Check..... ... i .... 69
7.1 Determinationof Vand Hvalues . . . . . . .. . ... ... .. ... ... ..... 69
7.2 Tooth Contact Analysis for Gears With Shifted Center of Bearing Contact . . . . . . 73
A Generation With Modified Roll .. ........ ... ... .. .. ... ... . ... . ................ 74
Al Introduction . . . . . . . . . . . . e 74
A.2 Taylor Series for The Function of Generating Motion . . . . . . . . ... ... .. .. 74
A.3 Synthesis of Gleason’s Cam . . . . . .. . ... .. ... ... ... ... 78
A4 CamAnalysis . . . . . . . . L e 82
A.> Determination of Coefficients of The Taylor Series . . . . .. .. ... ... ..... 92
A.6 Selection of Cams and Cam Settings . . . . .. .. ... ... ... ... ... .. 95
B Description of Program and Numerical Examples................................. 97
References . ... ..o 100

iv




é;pz; é.‘qp2
Hg,Ve

hm

NOMENCLATURE

Augmented matrix of linear equation system

Distance between the shifted center of bearing contact and

pitch apex

Mean cone distance

Coefficients of basic linear equations

Half-long and short axes of contact ellipse

Gear dedendum

Clearance

Coefficient of the second order of Taylor series of generation motion
Coefficient of the third order of Taylor series of generation motion
Coefficient of the forth order of Taylor series of generation motion
Coefficient of the fifth order of Taylor series of generation motion
Third order parameter of generation motion

Forth order parameter of generation motion

Fifth order parameter of generation motion

Blank offset in generation of gear 7

Principal directions of surface ¥,

Principal directions of surface ¥,

Principal directions of gear surface in system Sp»

Gear horizontal and vertical settings

Mean whole tooth depth

Tilt angle

Swivel angle

Sum of principal curvatures of surface 1 or 2




kO K (i=1,2)

[Lye]

my,(¢1)
M

[M.ur]

O:zr

PW

q

RaG

Ru2

i)

Th

{Op)

Th

71(0F, OF)

7_“2(90»¢p)

Principal curvatures of surface 1 or 2

Matrix of coordinate transformation from system S, to system S,
for free vectors

Derivative of transmission ratio

Mean contact point

Matrix of coordinate transformation from system S, to system S,
for position vectors

Number of teeth of pinion (i = 1) or gear (i = 2)

Unit normal vector of gear cutter surface in system Sp;

Common unit normal at point of contact

Pitch cone apex of gear 7

Root tone apex of gear

Percentage of amount of shift along the pitch line over face width
Point width of gear cutter

Cradle angle for gear 1

Point radius of pinion head cutter

Gear ratio of roll

Gear nominal cutter radius

Gear cutter tip radius

Position vector of gear cutter surface in system S,

Position vector of tooth surface of gear i represented in system S;, 7;
is equivalent to [r;]

Position vector of mean contact point in system Sy

Position vector of pinion cutter center in system S

Position vector of pinion in system S,

Position vector of gear in system S

vi




VY (i=1,2)

(1) (2

tr

1,2)
#d) (1=1,2)
Viz

s

(X, Z4)

XBi

Xgi

(XL,RL)

Ve, Hg

Zn

Ky Kq

ng)’ngp)

Kf,Kh

Yrmni

Coordinate systems originated at point of contact between ¥; and X,
Coordinate system rigidly connected to the cutting machine of gear i
Movable coordinate system rigidly connected to the cradle of cutting
machine for gear ¢

Fixed coordinate system

Coordinate system rigidly connected to gear i

Surface coordinates of gear cutter surface

Surface coordinates of pinion cutter surface

Radial setting of gear ¢

Auxiliary coordinate system identified by subscript x

Cam setting

Sliding velocity of contact point in the motion over surface ¥;
Transfer velocity of contact point in the motion with surface ¥;
Projection of il upon &, and €,

Relative velocity at contact point

Relative velocity in the process for gear generation represented in system Sy.»
Coordinates of center of the arc blade

Sliding base for generation of gear ¢

Machine center to back for generation of gear i

Parameters determining mean contact point

Vertical and horizontal adjustments for the gear drive

Distance of gear root cone apex beyond pitch cone apex

Principal curvatures of surface ¥,

Principal curvatures of surface ¥,

Principal curvatures of surface &,

Machine root angle for generation of gear 7

vii




Vi

ag,af

(A, 6F)

¢F7 d’p

Y6
(65+¢7)

o(12)

~(P2)

m2

Pitch angle of gear ¢

Root angle of gear ¢

Cam guide angle

Cutter blade angles for gear and pinion respectively

Radius of circular arc

Surface coordinates of the surface of revolution generated

by circular arc blade

Direction angle of contact path on surface X;

Unit vectors along long and short axes of contact ellipse
Elastic approach

Gear dedendum angle

Angle of rotation of gear i in the process for generation
Rotation angle in meshing of gear i between the gear (2) and the pinion (1)
Rotation angles of cradle in the process for pinion and gear
generation, respectively

Gear spiral angle

Surface coordinates of gear tooth surface at mean contact point
Angle formed between principal directions €; and €, (in meshing
and generation )

Surface of gear i

Pinion generating surface

Gear generating surface

Angular velocity of surface X; (in meshing and generation )
Angular velocity of the cradle in the process for pinion and
gear generation, respectively

Relative angular velocity in the process for gear generation represented

viii




in system Sy,s

w(F1) Relative angular velocity in the process of pinion generation
(¥ Angular velocity of gear i
o(i7) Relative angular velocity between gear i and gear j

ix




SUMMARY

Computerized simulation of meshing and bearing contact for spiral bevel gears and hypoid gears
[1,2] is a significant achievement that could improve substantially the technology and the quality of
the gears. This report covers a new approach to the synthesis of face-milled spiral bevel gears and
their tooth contact analvsis. The proposed approach is based on the following ideas proposed in (3]
(1) application of the principle of local synthesis that provides optimal conditions of meshing and
contact at the mean contact point M and in the neighborhood of M; (ii) application of relations
between principle directions and curvatures for surfaces being in line contact or in point contact.

The developed local svnthesis of gears provides (i) the required gear ratio at M; (ii) a localized
bearing contact with the desired direction of the tangent to the contact path on gear tooth surface
and the desired length of the major axis of contact ellipse at M; (iii) a predesigned parabolic function
of a controlled level (8-10 arc seconds) for transmission errors; such a function of transmission errors
enables to absorb linear functions of transmission errors caused by misalignment 3] and reduce the
level of vibrations.

The proposed approach does not require either the tilt of the head-cutter for the process of
generation or modified roll for the pinion generation. Improved conditions of meshing and contact
of the gears can be achieved without the above mentioned parameters. The report is complemented
with a computer program for determination of basic machine-tool settings and tooth contact anal-
ysi- for the designed gears. The approach is illustrated with a numerical example.

The contents of the following sections cover the following topics:

(1). Basic ideas of local synthesis of gears and the mathematical concept of this approach
(Chapter 1). The local synthesis discussed in this chapter is applicable for all types of gears and
provides the optimal conditions of meshing and contact at the mean point of tangency of gear tooth

surfaces.

(2). Methods for generation of the pinion and the gear and basic machine-tool settings that are




necessary for gear generation (Chapter 2).

(3). Determination of geometry of gear tooth surface, the gear mean coniact point and .he
principal directions and curvatures at this point (Chapter 3).

(4). Application of basic principles of local synthesis for spiral bevel gears (Chapter 4).

(5). Determination of pinion machine-tool settings considering as given:(1) the gear g >metry,
and (ii) the conditions of meshing and contact at the mean contact point obtained from the local
synthesis (Chapter 5).

(6). Computerized simulation of meshing and contact (Tooth Contact Analysis) for spiral bevel
gears that have been synthesized in the previous chapters (Chapter 6).

(7). Analysis of the shift of bearing contact caused by the misalignment of gears (Chapter 7).

(8). The theory of modified roll (variation of cutting ratio in the process for generation) and
mechanisms used for application of modified roll (Appendix A).

(9). Description of developed computer programs and numerical examples that illustrates the

application of those programs.
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1  Local Synthesis of Gears (General Concept)

1.1 Introduction

The main goals of local synthesis are to provide: (i) contact of gear tooth surfaces ét the mean point
of contact of gear tooth surfaces, and (ii) improved conditions of meshing within the neighborhood
of the mean contact point. The local synthesis is the first stage of the global synthesis with a goal
to provide improved conditions of meshing for the 2ntire area of meshing. The criteria of ¢ ditions
of meshing are the transmission errors and the bearing contact. The principles of local synthesis
that are discussed in this chapter for face-milled spiral bevel gears can be applied for other types

of gears as well.

1.2 Basic Linear Equations

Consider two right-handed trihedrons S,(€%,¢€),.7) and S,(&,,€é,, 7} (Fig. 1.2.1). The common
origin of the trihedrons coincides with the contact point M, the n-axis represents the direction of
the surface unit normal, €; and €, are the unit vectors of the principal directions of surface X, €,
and ¢, represent the principal directions of surface T,, and o{1?) is the angle formed between &;
and €, (measured clockwise from €, to €; and counterclockwise from € to €, ). In reference (4]
three linear equations were deriv-1 that relate the velocity #1) of the contact point over sut’ ‘e X,

with the principal curvatures and directions of contacting surfaces and the transfer components of

velocities. These equations are:

(1) (1)

anvs '+ ajalq = aps
1 1

a12v£ - (1221“(1 - asa (1.2.1)
1 1

aasi'ﬁ ) + azsvfl ) = ass

Here (see the designations in [4] )




11 = Ky = Kf cos? of1?) _ Kn sin? o(12)
Ky — Kn .
a2 = @9 = -f———l SlI‘l2CT(12j
2
a;a = az = —K_,vf,lz) - [J“"’)ﬁé‘,]
axy = K4 — Ky sin? 012) _ x;, cos? ARED (1.2.2)
sy = ' ags = _qu_L(]lZ) - [0(12)715,1]
o 2 .
- - [ = 1 U 2 - i
azn = r (e) ok (1) - 02 D] {(w,m w82 = (3« 71!
N i E - B
- (w ) mq (7 % k)| - (7 — R)
d = @l g,
1 (1) -
z'f] b= o ) " €q

Equations (1.2.1) and (1.2.2) can be applied for two cases where: (i) surfaces £, and ¥, are
in line contact, and (ii) the surfaces are in point contact. The instantaneous line of contact is
tyvpical for the case when the gear tooth surface (¥;) is generated by the tool surface (X,). The
instantaneous point of contact is typical for gears with localized bearing contact.

Line Contact

When the gear tooth surfaces are in line contact, the direction of velocity #" can be varied, and

. . . . 1) .
equations (1.2.1) can not provide a unique solution for the unknowns vt and 1'((, ". This results

in that the rank of the augmented matrix

a)y a1z Gy
L42 aip Qaz2 Qi3 (123)

a;3 Qa23 4aszs

must be less than 2. This requirement yields




2 _

aj, = anaz2
a11az23 = a12a13 (1.2.4)
a12a33 = ai13az3

Equivalent equations are

Using equations (1.2.5) and (1.2.2) we obtain equations that will enable us to determine o'*?’,

ks and Ky for T, considering as given x, and k, for surface X;. The equations are:

2a;3a
tan201?) = z 3 T13723 (1.2.6)
a3s — ajz + (K, — Kg)ass
213023
e 13023 1.2.7
Ky Kh Qa3 sin 2012) ( )
2 2
a3+ a
Ki+Kp = (Ko + Kq) - 13_0_2 (1.2.8)
33
Equation (1.2.6) provides two sclutions : 6312) and 6212) = aglz) + 7 /2 and boun of them can be

used for computations of x4 and &, that are represented by equations (1.2.7) and (1.2.8). Fig.1.2.2

shows the orientation of two couples of unit vectors élj'),é‘,:) (i = 1,2), with respect to unit vector

€,. The magnitude of principal curvature for the direction with collinear vectors E‘!” and (4}12) is the




same (I{(fl) = Nglz)) although the notation for the unit vectors has been changed. Similarly, we can

say that Ki} =Ky
Knowing the angle ¢{*?, and the unit vectors €, and &, the principal directions on surface £,

can be determined with the following equations,

1 ~ - . -
é‘, ) = € = cos o1, ~ sin 0(12)6(1 (1.2.9)
6‘,11) = &, = sina''?)é, + cos 0“2)5,1 (1.2.10)

Point Contact
In the case of instantaneous point of contact, the direction of motion of the contact point over

the surface is definite, equations (1.2.2) for the unknowns can provide a unique solution for the

(1

unknowns v}'’ and v{(,”

and the rank of matrix [A] is 2. This vields that

G g Am (1.2.11)

Equation (1.2.11) yields the following relation

f(KayKg Kp K 0t mi,) =0 (1.2.12)

Our goal is to determine sy, and ¢''?) (the principal curvatures and directions of ¥;) and

provide at the mean contact point (i) a certain direction of the tangent to contact path on surface




¥, , (ii) a desired length of the major axis of instantaneous contact ellipse, and (iii) a parabolic
function of transmission errors. For these purpose we have to derive extra equations in addition to
equation (1.2.12)

Determination of mj,

The derivative m5,(o1) is the second derivative of function o2(©,) that is taken at the mean
contact point: ¢; and ¢, are the angles of rotation of gears 1 and 2. In the case of an 1deal gear

train, function oz(¢; ) is linear and is represented by
N
Q2 = M T\.‘ (1.2.13)

However, due to misalignment between the meshing gears the real function 02(0;) becomes a
piecewise periodic function with the period equal to the cvcle of meshing of a pair of teeth (Fig.
1.2.3). Due to the jump of angular velocity at the junction of cvcles. the acceleration approaches
to an infinitely large value and this can cause large vibration and noise. For this reason it is
necessary to predesign a parabolic function of transmission error that can absorb a linear function
of transmission error and reduce the jump of angular velocity and acceleration ‘3. This goal(the
predesign of a parabolic function) can be achieved with certain relations between the principal
curvatures of contacting surfaces .

Fig. 1.2.4 shows the predesigned transmission function for the gear convex side (Fig. 1.2.4(a))
and gear concave side (Fig. 1.2.3(b)). Both functions-¢.(¢;) and og)(ol)- are in tangency at the
mean contact point and have the same derivative my; | at this pont.

Consider now that the predesigned transmission function is represented as

(0) <o‘)

0y - 0y = Foy - o (1.2.14)




Here: d)(lo) and o(zm are the initial angles of rotation of gears 1 and 2 that provide the tangency
of gear tooth surfaces at the mean contact point M.

Using the Taylor expansion up to the members of second order, we obtain

(0 aF LT Eff?F i {0

Floy -0y ) = 301(01 oy ) 2 b3 (e1—oy)
{0 1 ' - (02 -
= mo(o1 -0 )~ 577131(01 -0, ) (1.2.13)

where m,;(07) is equal to N} /N, at the mean contact point and m5, 1s the to be chosen constant
value: positive for the gear concave side, and negative for the gear convex side. The synthesized

gears rotates with a parabolic function of transmission errors represented by

1 ’ i o
Log(oy) = 5mm(o1 - o) (1.2.16)
where
T RIS
J\vl - (Ol ol )ﬁ ‘\.1

Equation (1.2.16) enables the determination of m5, considering as known the expected values
of transmission errors.

Relation between Directions of Paths of Contact

. L
We recall that velocities 7' and &' are related by the equation 1.

DM GAE (1.2.17)

1)

Directions of velocities %'’ and "' coincide with the tangents to the contact path that form

angles 1, and 7, with the unit vector ¢, (Fig. 1.2.5). Fquations {(1.2.17) vield




u_‘f’) = vf,” + t'ﬁu) v,(lz) = vfl“ + vélz) (1.2.18)

According to Fig. 1.2.5

ol = o tan (1.2.19)

Third equation of system (1.2.1) and equations (1.2.18) and (1.2.19) yield

(12) 12)
tanm = —anvy  + (azz + asxl‘i Jtan 7o 1.2.20)
n = azy _ (12) (1.2.20]
azz + az(vy " — vs tanm)

ey as3
s
ayz + azztanm

(1.2.21)

(1) _ azztanmn

aj3 + azztann),

Prescribing a certain value for 7, (choosing the direction for path of contact on £;), we can

determine tan 7, vi” and 1'51])-

We recall that coefficients as;, asz; and azz do not depend on the
to-be determined principal curvatures x; and &y, and o(}2).

Relations between the Magnitude of Major Axis of Contact Ellipse, Its Orientation and

Principal Curvatures and Directions of Contacting Surfaces

12) ks and &y, of the pinion surface £; with the length of the

Our goal is to relate parameters o'
major axis of the instantaneous contact ellipse. This ellipse is considered at the mean contact point
and the elastic approach é of contacting surfaces is considered as known from the experimental

data. The derivation of the above mentioned relations is based on the following procedure

Step 1: Using equations (1.2.2}), we obtain




a;; + ax = K‘E‘:Z) - I\’w(zl) = Ky
aj; —az =g — ¢ cos 20(12) (1.2.23)

(a1; — az2)? + 4a?, = g2 - 29195 cos 20112) + g2

Step 2: It is known from {4] that

f
P A
Vo g /52 2 5
A= a Kg' - Ky - 1/g9i — 29192c0s 20 + g3 (1.2.25)
Equation (1.2.25) yields
[((11] + Q39 + 4A'2 = (a“ - 022)2 -+ 40?2 (1226)

Step 3: We may consider now a system of three linear equations in unknowns a;;.a;2 and as;

(1) . (1) _
Uy Q11 + Vg a2 = a3

1'.(1”011 + 1,-511)(122 = daj3 (1227)

ai +az = Kx

Step 4: The solution of equation system (1.2.27) for the unknowns a;;.a;2 and az; allows to

(1

. . ) B!
express these unknowns in terms of ay3,a23, Agx.v, and v, )

. Then, using equation {1.2.23) we

can get the following equation for Kg




4A? — (n? + n2)
Ky = -2 1.2.28
T o4 - (n1 cos 2y + nysin 27 ) ( )

Here:

2 2 2
_ ajz —ajtan’

n, =
' (1 tan? m)ass
n, = G13tanm + az3)(ais + azatanmn;)
- (1 + tan?7n;)asa
2
A= f’é— (1.2.29)

The advantage of equation (1.2.28) is that we are able to determine Ky knowing the major axis

2a of the contact ellipse and the elastic approach é.

Step 5: The sought for principal curvatures and directions for the pinion identified with xs.x,

and o('?) can be determined from the following equations

EY = K - kg (1.2.30)

12) 2ayy . 2np - Ky sin2m
g2 — (a11 —azz) g2 — 2ny + Ky cos2m

(1.2.31)

_ 2a12 2np - Ky sin 29, (1.2.32)
sin 20112} sin 2¢0(12) o
I\‘(” + g
Ky = K(Il) =-£ "3 (1.2.33)
2
K _
Ky = K(lll) = '2—2——9‘1‘ (1231)




Step 6: The orientation of unit vector €; and €, is represented with equations (1.2.9) and

1.2.10). The orientation of the contact ellipse with respect to €; is determined with angle a'!’
! g

(Fig. 1.2.6) that is represented with the equations

cos 2a'l! = g1 - g2 cos 2'1?)
= 1
(9% — 29192 cos 20(12) 4+ g2)2
sin2al!) = g2 sin 201

(92 - 2g1g2 cos 20112) + g;‘,’)%

The minor axis of the contact (2b) ellipse is determined with the equations

Local Synthesis Computational Procedure :

(1.2.35)

(1.2.36)

(1.2.37)

(1.2.38)

The following is an overview of the computational procedure that is to-be used for the local

synthesis.

The input data are: r:,,rcq,é',,5,,,1"‘“‘.&“2’.{"“2’ and §. The to-be chosen parameters are:

n2,my, and 2a. The output data are: .k, 01?1 € and €.
Step 1: Choose 7; and determine 7, from equation (1.2.20)

Step 2: Determine v!" and ¢}V from equations (1.2.21) and (1.2.22
otep ¢ 9

10




Step 3: Determine A from equation (1.2.29)

Step 4: Determine K¢ from equation (1.2.28)

(12

Step 5: Determine o!!?), k; and &), by using the set of equations from (1.2.30) to (1.2.34)

Step 6: Determine the orientation of the contact ellipse and its minor axis by using equations

from (1.2.35) to (1.2.37)

1.3 Conclusion

The contact of tooth surfaces is considered for two cases: line contact and point contact. For line
contact, the principal directions and curvatures of one surface can be determined in terms of the
other’s knowing the relative motion between the two . For point contact, we proposed an approach
for local synthesis of spiral bevel gears which enables: (i) to provide a limited level of transmission
errors, (ii) optimal direction for the path of contact on gear surface ¥,,and (iii) the guaranteed
length of the major axis of contact ellipse.

The output data obtained from the procedure of local synthesis are: Kf.x;,.a“?’,Ef and €.
The machine-tool settings for the generation of the gear tooth surfaces must be carefully chosen to

guarantee the above mentioned conditions of local meshing and contact.

11




2 Pinion and Gear Generation

2.1 Pinion Generation

To describe the pinion generation we will use the following coordinate system (Fig.2.1.1): (i) S,n1-
a fixed coordinate system that is rigidly connected to the cutting machine; (ii) 5., -a movable
coordinate system that is rigidly connected to the cradle and performs rotation with the cradle
about the Z,,,- axis; initially, S., coincides witn S,,; (Fig.2.1.1 (b)); angle of determines the
current position of S (Fig2.1.1 (¢)) : (iii) Coordinate systems S, and S, that are rigidly connected
to the cradle and its coordinate system S.;; systems S, and S, are used to describe the installment
of the head-cutter on the cradle. Angle ¢; determines the orientation of S, with respect to §.;;
(iv) Coordinate systemn Sg that is rigidly connected to the head-cutter (not shown in Fig.2.1.1);
the head-cutter in the process for generation performs rotation with the cradle (transfer motion)
and relative motion with respect to the cradle about an axis that passes through O,: (v) Auxiliary
coordinate systems Sq and S, are used to describe the installment of the pinion on the cutting
machine (Fig.2.1.1 and Fig.2.1.2); the pinion axis forms angle 4,,; with axis Xy that is parallel to
Xyi- (vi) A movable coordinate system S; that is rigidly connected to the being generated pinion;
the pinion rotates about the axis X, and ¢; is the current angle of pinion rotation (Fig.2.1.2).

Henceforth, we have to differentiate the parameter of motions that are performed in the process
for generation and the parameters of installment of the head cutter and the pinion on the cutting
machine.

In the process for generation the cradle of the cutting machine with the mounted head-cutter
performs rotation with angular velocity &(F) (Fig.2.1.2). The head-cutter performs rotational
motion with respect to the cradle but this motion is not related with the process for generation
and just provides the desired velocity of cutting. The being generated pinion performs rotational
motion with angular velocity &(!) (Fig.2.1.2) that is related with S(F' .

The parameters of installment of the head-cutter are: (i) the swivel angle j (Fig.2.1.1) and the

12




tilt angle 7 that is the turn angle of S, about ¥} (Fig.2.1.3); S;; = |0:Om,| is the radial setting; ¢
is the cradle angle.
The parameters of installment of the pinion are: E,,;-the shortest machine center distance (Fig.

2.1.1, Fig.2.1.2): root angle 7,,1; sliding base X p;; machine center to back Xg;.

2.2 Gear Generation

While describing the gear generation, we will consider the following coordinate systems: (i) Sz
that is rigidly connected to the cutting machine; (ii) Sc2 that is rigidly connect to the cradle, (iii) Sp2
that is rigidly connected to the head-cutter and Sz, (iv) S42 that is an additional fixed coordinate
systemn rigidly connected to S,.» : and (v) S» that is rigidly connected to the being generated gear.

The cradle performs rotation about the Z,,» axis with angular velocity &) (Fig.2.2.1). The
initial and current positions of coordinate systems S.; and S,; with respect to S,,; are shown in
Fig.2.2.1 (a) and Fig.2.2.1 (b), respectively.

Coordinate system Sg; (it is rigidly connected to Sy, ) is used to describe the installment of
the gear at the cutting machine (Fig.2.2.2(a)). In the general case apices Ozr: and O of the gear
root cone and pitch cone do not coincide. Apex Oap is located on axis Xy, of the cutting machine.
The origin Q42 of S coincides with the apex O3 of the gear pitch core. Axes X4, and X5 form
angle v,,2 which 1s the gear machine root angle.

Coordinate svstem S is rigidly connected to the gear that in the process of generation performs
rotation about Xg» with angular velocity &(?) (Fig.2.2.2(b)). Angle ¢, is the current angle of

rotation of gear 2.

2.3 Gear Machine Tool Settings

Gear Cutting Ratio

Fig.2.3.1 shows the sketch of the gear with noncoinciding apexes of the root and pitch cones.

In the process for generation the pitch line O, P is the instantaneous axis of rotation. It is evident
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that the angular velocity of rotation in relative motion, J'*?)  must lie in the plane that is formed

by vectors &) and &(?) (Fig.2.3.2)

L:.(p2} — ‘;1(1’) _ J(:’) (231)
The cutting gear ratio is:
1302 § To —
[V cos 0G cos{lz — 72
R.c gy = — = ( ) (232)
lwiml  sinly sinT»

Gear Settings
Fig.2.3.3 shows the installment of the head- cutter. We designate the mean jitch cone distance

O, P (Fig.2.3.1, Fig.2.3.3) by A,,. Then we obtain (Fig.2.3.3)

He = A, cosdg — Ry2sinug (2.3.3)

Ve = Ryacosvyg (2.3.4)

Sps = (HE ~1E): (Sez = 1020,z ) (2.3.5)
1 VG

@ = sin (2.3.6)

Here: v'¢ is the spiral angle on the root cone, R,; is the mean radius of the head cutter. The

sliding base 0,20, is
Xpo = Zpsin i, (2.3.7)
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Here: 7,,2 is the same as the gear root cone angle 7. and Zp is the distance between O,p and

O,, which are the apexes of the root cone and the pitch cone, respectively.
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3 Gear Geometry

3.1 Gear Surface

The gear tooth surface is the envelope to the family of generating surfaces. We recall that the

cradle carries the head-cutter that is provided with finishing blades. The blades are rotated about

the axis of the head-cutter and generate two cone surfaces. Fig.3.1.1 shows one of the cones.

The family of a generating surface (the cone surface) is generated in S, while the cradle and

being generated gear perform related rotations, about the Z,,2-axis and X,- axis (Fig.2.2.2).

The derivation of the gear tooth surface is based on the following procedure:

Step 1: We represent the cone surface and its unit normal in system S, (Fig.3.1.1) as follows

(r. — sgsinag)sinfg

7‘p2 =
—s8g cosag
I 1
i Np2 7., OTp2
P2 = = ) p2 =
INp2] 086
1.e.,
—~ cos ag cos ¢
fipg = | - cosag sinfg

sin ag

(r. - sgsinag) cos g 1

(3.1.1)

Fp?
— 1.2
Bog (3.1.2)
(3.1.3)

Here: sg and g are the surface coordinates; ag is the blade angle; r. is the radius of the

head-cutter that is measured at the bottom of the blades. It is evident (Fig.3.1.2) that

PW
Te = Rua & TN
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Here: R, is the nominal radius, PW is the so called point width; the positive sign in (3.1.4)
corresponds to the gear concave side and the negative sign corresponds to the gear convex side.

Equations (3.1.1) and (3.1.3) represent both generating cones with ag > 0 for the gear convex
side and ag < 0 for the gear concave side.

Step 2: The family of generating surfaces that is generated in S, is represented by the following

matrix equation

7—“2(30. HG s ép) = [A{2d2 HAI([T"QHA:{"W{;? MAL‘ZW ]Fpg (31 5)

Here (Fig.2.2.2, Fig.2.2.1):

10 0 0]

0 cos¢s singds O
[A{&b] = (316)
0 -sings cos¢gs O

(0 0 0 1
[ cos Tm2 0 sinqyme —4YB2 SIN Y2 W
0 1 0 0

Maym,) = . -
[ dama] —sinYm2 0 coSYm2 -‘\82 COS Ym2

0 0 0 1
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1 00 5,2cosq21

0 1 0 Sysing

cos¢, —sing, 0 0

sing,, <cos¢, 0 O
(Mpmyes) = | 0 0 10 (3.1.9)

The machine root angle 9,,2 in equation (3.17) is equal to gear root cone angle 7.

Step 3: The derivation of the equation of meshing is based on the equation

fige - TPV = 0 (3.1.10)

The subscript “m2” means that vectors in equation (3.1.10) are represented in coordinate system

P2

— . . . 1) 2)
Swu2 i Tim2 is the unit normal to the generating surface; 7,7;' = 7. o

= V2 7 U

is the relative (sliding)

velocity. Vector #,,, is represented by the matrix equation

~ cos ag cos(fg + @)
fim2 = [Lmap,|fip2 = | — cos agsin(fg + op) (3.1.11)
sin ag

where 'L,,,;,] is the 3 x 3 submatrix [, p, |-

We consider that the axes of rotation of the cradle and the gear intersect each other (Fig.2.2.2(a)),

thus
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where

We assumed that |

following relation

Here

A(bg.0,) =

B(bg.0p) =

‘41 =

Step 4: Equations

17("3) _ (;(p) _ 5(2)) X Ty = Sl Fong (3.1.12)

™ma may ™y

Sip2) — i
wvn.g B COS T2 O (

- sinq,)'T (3.1.13)

RaG

&SP = 1 in equation (3.1.13). Equations from (3.1.10) tu (3.1.13) vield the

A(bc.o,)
Bl6c. o) (3.114)
. . 1 .. . . .
Ty — A1(sin g — ).+ NygylX B, €08 Y2 ~ Ao(singe — )
aG aG
+ 7,2 A1 cOS Y2 (3.1.15)

~Tmge sin ag sin(0g ~ Op) + Np,yylisin gz — )sinag cos(f +~ op)

aG
— COS QG COS Yy, + My, €OS Y2 sinag sin(fg ~ o) (3.1.16)
r.sin(fg = o) = Spasin(ga - o) (3.1.17)
r.cos(fg ~ 0,) = Sracos(g: — 0p) (3.1.18)

(3.1.5) and (3.1.14) considered simultaneously represent the gear surface in

three- parametric form but with related parameters. Since parameter s in equation of meshing
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(3.1.14) is linear, it can be eliminated in equation (3.1.5), and then the gear tooth surfacs will be

represented in two-parametric form, by the vector function 7(6g, ;) .

3.2 Mean Contact Point and Gear Principal Directions and Curvatures

The mean contact point Al is shown in Fig.2.3.1. Usually, A is chosen in the middle of the tooth
surface. The gear tooth surface and the pinion tooth surface must contact each other at M.

The procedure of local synthesis discussed in section 2.1 is directed at providing improved
conditions of meshing and contact at M and in the neighborhood of 1/. The location of point
M is determined with parameters XL and RL (Fig.2.3.1) that are represented by the following

equations

h'm +C

XL = A, cosTy~ (bg ~ ysin T (3.2.1)

hm - <
2

RL A, sinTy - (bg - JeosT (3.2.2)

ll

Here: A4,, is the pitch cone mean distance; h,, is the mean whole depth; b is the gear mean
dedendum: ¢ is the clearance Equations (3.2.1). (3.2.2) and vector equation 72(t¢. o) for the gear
tooth surface allows to determine the surface parameters 6 and ¢}, for the mean contact point

from the equations

Xa(05.07) = NL (3.2.3)

Y2 (65.0,) ~ Z3(86.03) = (RLY (3.2.4)
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Gear Principal Directions and Curvatures

The gear principal directions and curvatures can be expressed in terms of principal curvatures
and directions of the generating surface (see chapter (13) in {4]), that is the cone surface.

Step 1: The cone principal directions are represented in S,, by the equations (see (3.1.1))

anz
an = 9% g cos @ 0)7 (3.2.5)
sp2 T 3,?p2 =1 G G 2.
'aaG'
01,
éyr’))z = g::G_ = [~ sinag cosfg - sinag sin fg - cosag]T (3.2.6)
2
I———asc}

The superscript “p” indicates that the cone surface I, is considered. Unit vector éf{,’,i is directed

along the cone generatrix and unit vector é‘,f,l 1s perpendicular to éf,’,’,l. The unit vectors of cone

principal directions are represented in S,,» by the equations

&l = [~sin(6g+¢,) cos(fg +¢p) OF (3.2.7)
é(q,:rl; = [~sinagcos(c + ¢;) ~ sinag sin(fg + o) ~ cosag!T (3.2.8)

The cone principal curvatures are:

kP = cosag and Kff) =0 (3.2.9)

T, — 8gsinag

Step 2: The determination of principal curvatures and directions for gear tooth surface I, is

based on equations from (1.2.6) to (1.2.8). The superscript “2” in these equations must be changed
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for “p” and superscript “1” for “2”. The second derivative of cutting ratio, my, = my, is zero
because the cutting ratio is constant. The principal curvatures of the gear tooth surface will be
determined as «y and x;. The principal directions on gear tooth surface will be represented in by
€; and €), and they can be determined from equations (1.2.9) and (1.2.10). To represent in S the
principal directions on gear tooth surface £, and its unit normal we use the matrix equation that

describe the coordinate transformation from S,,, to S;. This equation is

52 - L2(12ML(12"12161”2 (3210)

)

~ ~ — - - - A2 {2
Here: d,,2 stands for vectors 7,2, €4,,, and €,,,, and a» stands for 7z, €5, and €p,.
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4 Local Synthesis of Spiral Bevel Gears

4.1 Conditions of Synthesis

The basic principles of local synthesis of gear tooth surfaces discussed in Section 1 will enable us
to determine the principle curvatures and directions of the being synthesized pinion. Thus, we will
be able to determine the required machine-tool settings for the pinion. While solving the problem
of local synthesis, we will consider as known:

(1) The location of the mean contact point M in a fixed coordinate system, and the orientation
of the normal to gear surface I,.

(ii) The principle curvatures and directions on ¥, at M. The local synthesis of gear tooth
surfaces must satisfy the following requirements:

(1) The pinion and gear tooth surfaces must be in contact at M.

(2) The tangent to the contact path on the gear tooth surface must be of the prescribed direction.

(3) Function of gear ratio m;(¢;) in the neighborhood of mean contact point must be a linear
one, be of prescribed value at M and have the prescribed value for the derivative m,,(¢;) at M.
The satisfaction of these requirements provides a parabolic tvpe of function for transmission errors
of the desired value at each cycle of meshing.

(4) The major axis of the instantaneous contact ellipse must be of the desired value (with the

given elastic approach of tooth surfaces).

4.2 Procedure of Synthesis

We will consider in this section the following steps of the computational procedure: (i) representa-
tion of gear mean contact point in a fixed coordinate system S, ; (ii) satisfication of equation of
meshing of the pinion and gear at the mean contact point ; (ii1) representation of principle directions
on gear tooth surface £, in Sy; (iv) observation of the desired derivative m,,(¢;). (v) observation

at the mean contact point of the desired direction of the tangent to the path contact on gear tooth
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surface ; (vi) observation at the mean contact point of the desired length of the major axis of the
contact ellipse; (vi) determination of principal directions and curvatures on pinion tooth surface
Y, at the mean contact point.

Step 1: We set up a fixed coordinate system S, that is rigidly connected to the gear mesh
housing (Fig.4.2.1(a)). In addition to S, we will use coordinate systems S, (Fig.4.2.1(a)) and S,
(Fig.4.2.1(b)) that are rigidly connected to gears 2 and 1, respectively. We designate with ¢, and
#; the angles of rotation of gears being in mesh. We have to emphasize that with this designation
¢;(i = 1,2) we differentiate the angle of gear rotation in meshing from the angle ¢, of gear rotation
in the process of generation.

The orientation of coordinate system S is based on following considerations: (i) The axes of
rotation of the pinion and the gear in a drive of spiral bevel gears intersect each other. Taking into
account the possible gear misalignment, we wiil consider that the pinion-gear axes are crossed at
angle I' and the shortest distance is E. (ii) We will choose that X}, coincides with the pinion axis
and Oy, is located on the shortest distance (Fig.4.2.1(a)). (iii) Considering as given the shaft angle

I, we will define j,— the unit vector of Y} - as follows

- i X 6’1
jh= ——— (4.2.1)
Ith X Qp|

where d), is the unit vector of gear axis that is parallel to plane (X, Y}).

The coordinate transformation from S, to Sy, is based on matrix equation

7_‘"1"
L

V= [ Mpg) Ma2)72(8c. 0p) (4.2.2)

where S4 (Fig.4.2.1) is an auxiliary fixed coordinate system. The unit normal to £, is repre-
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sented in S}, as

Ay = [Lud)[La2)i2(9c, 9) (4.2.3)

Here (Fig. 4.2.1)

0 —cosg, sing, O
[Maa] = , (4.2.4)
0 -sing, -—cos d>'2 0

cosI' 0 sinIT 0

U\I;,d} = (4.2.5)

—sinT 0 cosT O

where I is the shaft angle.
Equations (4.2.3), (4.2.2) and (4.2.3) enable to represent in S the position vector and unit

contact normal at M by

Al pe L (2} . !
rh (06’@[»‘02) ny, (06’01)'@2) (426)

where (6, ¢;) are the surface coordinates for the mean contact point at £» : the angle ¢3 of rotation

of gear 2 will be determined from the equation of meshing (see below).
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Step 2: The equation of meshing of pinion and gear at the mean contact point is

1-2.512) . 1—]-1[12) — f(eav ¢;’0’2) _—

Here (Fig. 4.2.1)

12 - -{2 M = 2

P = (@ -5 x AM] - (E x w)

gV = (-1 o of (&M=1
N

Jﬁf) = Fl[cosl" 0 —sinl)7

2

since at point A the angular velocity ratio is

ot B My

W(l) - JV?

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

Substituting equations (4.2.3), (4.2.8)- (4.2.11) in equation (4.2.7), we can solve equation (4.2.7)

for ¢3. Usually equation (4.2.7) yields two solutions for ¢, but the smaller one, say (¢3)", should

be chosen.

Step 3: We consider as known the principal curvatures and directions on X, at any point of £,

including the mean contact point (see section 3). To represent in S, the principal directions at the

mean contact point, we use the matrix equation

(4.2.12)




where @, is the unit vector of principal directions on £, that is represented in S;. The following
steps of computational procedure are exactly the same that have heen described in section 1.2.
This procedure permit determination of the pinion principal directions and ¢urvatures at the mean

contact point.
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5 Pinion Machine-Tool Settings

5.1 Introduciion

We consider at this stage of investigation as known:

(1) the common position vector 7"'§:) and unit normal ﬁ‘h‘) at the point of contact point M of X,

and %,

(ii) pinion surface principal directions and curvatures at A .

The goal is to determine the settings of the pinion and the head- cutter that will satisfy the
conditions of local synthesis. We consider that the pinion surface and the generating surface are
in line contact. Hencelorth, we will consider two types of the generating surface: (a) a cone
surface, and (b) a surface of revolution. We consider that each side of the pinion tooth is generated

separately and two head-cutters must be applied for the pinion generation.

5.2 Head-Cutter Surface

Cone Surface
The cone surface is generated by straight blades being rotated about the zp-axis (Fig. 5.2.1(a)).

The X equations are represented in coordinate system Sg that is rigidl- connected to the head-

cutter as following:

(Rep + spsinap)cosfp

(Rep + spsinap)sinfp

-
!
Il

(5.2.1)

—Spcosaf

Here: sp and 0 are the surface coordinates; ap ard R, are the blade angle and the radius of the

cone in plane zr = 0. The blade angle af is standardized and is considered as known. Parameter
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arp is considered as negative for the pinion convex side and afg is positive for the pinion concave

side. The point radius R, is considered as unknown and must be determined later.

The unit normal to pinion tooth surface is represented as

sinag

O‘.T

- cosap T

i Np . JTF
np = — and Np = —
NF tolha
ie.,
nF = —icosapcosbp cos apsinfg
The principal dire.tions on the cone surface are:
OrF
~F 09 S ;
€ = —=— = |—sind cosf
1 OTF { F F
1
O0F
org
4 F Oop . . .
€ = 4= = [sinafcosf sin ag sin A
11 o { F F F F
‘("}7517
The corresponding principal curvatures are
(F) cos afp (F:
Kp = and Koy
ey ~ SFSINQF ‘

Surface of Revolution
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We consider that the head-cutter surface £f is generated by a circular arc of radius p by
rotation about the zp-axis that coincides with the zp-axis of the head-cutter (Fig. 5.2.1(b)) and

(Fig.5.2.1(c)). The shape of the blade is represented in S, by the vector equations

O,N =0,C + CN = (X! 4 pcos N)i, + (2! + psin Ak, (5.2.7)

Here: (X((,C), Z(()C)) are algebraic values that represent in S, the location of center C of the arc;
p = |ICN| is the radius of the circular arc and is an algebraic value, p is positive when center C
is on the positive side of the unit normal. ; X is the independent variable that determines the
location of the current point N of the arc. By using the coordinate transformation from S, to Sg

(Fig.5.2.1(c)), we obtain the following equations of the surface of the head-cutter:

[ (X! + peos A)cos bF |

(x} + pcos A)sinffp
Fp = (5.2.8)
ZL) 4 psin A

1

where A and 6 are the surface coordinates (independent variables).

The surface unit normal 7ig is represented by the following equations

NF' 3 877;' 81_"1:‘
4  Ne=_0TF
an F= "% " 3x

‘Then we obtain




ip = —[cos Acos@p  cos Asinfp  sinA]T (5.2.10)

The variable A at the mean contact point M has the same value as the standardized blade angle

! ag. The principal directions on the head-cutter surface are

orF
~F _ 301:‘ _ ind /] T
€ = 8—7_'.1:‘— = [*— smug COsUF 0] (5211)
& = 0 _isinAcos fF sin Asinfp ~cos AT 5.2.12
II BTF l i
e
The principal curvatures are
A 1
W e 25— and ki) == (5.2.13)
Xo' 4 pcosA p
The radius R.,, of the head-cutter in plane (Fig. 5.2.1) can be determined from the equations
Z(")
Rep = X\ 4 py|1 - (Z2-)? (5.2.14)

5.3 Observation of a Common Normal at the Mean Contact Point for Surfaces X,

Y, ,ZfFand I,

We consider that at the mean contact point M four surfaces- £,,%,,ZF and £;- must be in

tangency. The contact of X, and X2 at M has been already provided due to the satisfication of
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their equation of meshing (3.1.10). Our goal is to determine the conditions for the coincidence
at M of the unit normals to £, X, and £,. The tangency of ¥, with the three above mentioned
surfaces will be discussed below.

We will consider the coincidence of the unit normals in coordinate system S,,,. To determine the
orientation of coordinate system S, with respect to S,,;, let us imagine that the set of coordinate
systems Sy, 51 and S, (Fig.4.2.1) with gears 1 and 2 is installed in S,,; with observation of following
conditions (Fig.5.2.2): (i) axis z;, of S, coincides with axis z,, of S,; (ii) coordinate system S,
coincides with S5, and the orientation of S;, with respect to S; is designated with angle ¢;, = (d)'1 )
where ¢, is the to be determined instalment angle. Angle ¢, will be determined from the conditions
of coincidence of the unit normals to £r, X, ¥, and X;. The procedure for derivation is as follows:

Step 1: Consider that the coordinate system S, with the point of tangency of surfaces £, and
L, is installed in S,,,;. We may represent the surface unit normal 7'2) in S,,; by using the following

matrix equation {Fig. 5.2.2).

[cosy; O —siny; ][ 1 0 0 T
(2 (2 0 1 0 0 cosop ~—sindy, | _(M)
ninl) = [Lmlp}[Lph]ngl) = : n(h (531)
siny; 0 cosmy 0 sing), cosady

The unit vector 7'1';12) has been represented by equation (4.2.3).
Step 2: The unit vector to the surface of Lf of the head-cutter that generates the pinion
has been represented in Sf by equation (5.2.3) for a cone and equation (5.2.10) for a surface of

revolution. Axes of coordinate systems Sg and S,,,; have the same orientation and

~(F) (F)
Ny = NF
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Equations (5.3.1), (5.3.2), (5.2.3) and (5.2.10) yield the following equations

n(i;) + sinap siny;
cos fp = — =2 (5.3.3)
COS Y1 COSQF

(2) (2) (2) (2)

) Q1N t+ an . an,, — amn,,
cos @y, = (2)1’2 (22)’2 sin ¢y, = (2)’“2 (22) - (5.3.4)

(nyh) + (nzh ) (nyh) + (nzh )"

Here:

a; = - cosapsinfg ay = cos af sinyj cos O — sinap cos 1, (5.3.5)

The advantage of the proposed approach is that the coincidence of the unit normals to surfaces

Tr,Z2,Z, and I; can be achieved with standard blade angles and without a tilt of the head-cutter.

5.4 Basic Equations for Determination of Pinion Machine-Tool Settings

At this stage of investigation we will consider as known: n(,”,n(lll),éln)ﬂ,élll)ml,ﬁﬂ] and 7M. It is

(1) (1) A1} 41

(F) (F) _(1F e ! -
o *F) Ry, Em1,XpBG, and mp,. Here: k; ',k . € and €[

necessary to determine: x; ', Ky,
are the principal curvatures and unit vectors of principal directions on the pinion surface that are

M) M)

taken at mean contact point M 77(,"1 and ﬁ£n1 are the position vector of M and the contact normal

at M. The subscript “m1” indicates that the vectors are represented in S,,;. Designations K(,F)
and K(,‘;) indicate the principal curvatures of the surface of the pinion head-cutter that are taken

at M. The angle 0'1F) is formed by the unit vectors é‘,l) and E‘IF) of principal directions on ¥; and

L r; Rep is the cutter "point radius” (Fig.5.5.1) that is measured in plane z:p = 0 and is dependent
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on n(,]). E..1 and Xg; are the pinion settings for its generation (Fig.2.1.1 and Fig.2.1.2); mp,,

which is equal to 71~ and mJ,; are the cutting ratio and its derivative.
<p

We recall that the pinion surface curvatures h'(,” and K(Ill) have been determined in the process

of local synthesis. Vectors 6‘,}3,5(111;1, riM) have been determined in system S;. To represent these

vectors in S,,; we have to apply the coordinate transformation from S;, to S,,; similar to equation

(5.3.1).

aml = [LmlpMLph}ah (541)

- . . . . .. {1 1 L.
where dj, represents that principal directions of the pinion surface é‘“l' and e'(”;l, the position vector

1)
Im1

—{m)

. My, - . 1
of mean contact point FL ); d,.) represents the corresponding vectors éjrr)ll’e_(l and 7.

. . . . F F te
Now our goal, as it was mentioned above, is to determine I{(I ),f:(”),o(lp), E.,. Xg1,mF, and

mlpl. We recall that vectors é‘,” and 64111) are known from the local synthesis, and E(IF) and é‘(,‘;)
become known from equations (5.2.4) and (5.2.5) for straight blade, and from equations (5.2.11)

and (5.2.12) for curved blade, after the coincidence of the contact normal to surfaces ¥,, ¥, and

T F is provided. Thus parameter a('¥) can be determined from the equations

: \F) _ M) 1y dF)
Slnﬂ'( =My € clml)

(5.4.2)

(1Fy _ A1) AF)
cosa = €1 €Im1

According to Fig. 5.5.1, since the Z,,,-axis is parallel to Zp-axis, surface parameter s for the

cone surface at mean point can be determined as:

iZml

cosaf

.
SF
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Parameter K(II;) is equal to zero for a cone surface of the head-cutter and it must be chosen

for a head-cutter with a surface of revolution. Then, the number of remaining parameters to-be
determined becomes equal to five and they are: K(]F), E,.,Xgi,mF and m'Fl.

It will be shown below that we can derive only four equations for determination of the unknowns
of the output data. Therefore one more parameter has to be chosen, and this is m’n—the modified
roll. Usually, it is sufficient to choose m'},-l = 0, but the more general case with m',;l # 0 is
considered in this report as well.

The to be derived equations are as follows,

Ay Ty | = 0 (5.44)
a)jazz; = a?z (5.4.5)
a11023 = a20a13 (5.4.6)
a12a33 = a13a23 (5.4.7)

Equation (5.4.4) is the equation of meshing of the pinion and head-cutter that is applied at
the mean contact point. Equations from (5.4.5) to (5.4.7) come from the conditions of existence of
instantaneous line contact between £, and L. The coefficients a;; in equation (5.4.5)-(5.4.7) are

represented as follows,

(F) (1

} 2 - (1
ajy, = K; - Kj cos atFr_

xt sin? g 1F) 54.8
11




a2 = as = 51—;& sin 20(1F) (5.4.9)
a3 = az = —K(IF)‘U(IIF) - &P 7 é‘,F) (5.4.10)
ay; = N(,f) - K(Il) sin? o!1F) - K(I]I) cos? g1F) (5.4.11)
a3 = aszy = -K(Il;‘)v(I}F‘ - [J“F) n 5(17)} (5.4.12)
azz = K(IF) (v}lm)z + H(,f) (1’(,1,”)2 - [fi S F) i’“”l (5.4.13)
L2
[ 3 ) ¢ [ 5 ] ) )

Vectors in cyuation of meshing (5.4.4) can be represented as follows

Sl =lcosy 0 sinyy)T (1w =1) (5.4.14)
~(F) _ 1 .
Wy = R 0 0 1 (5.4.15)
ap

where R,,, which is equal to , 1s the ratio of roll.

mg,

Sy =T - ahy (5.4.16)
e (5.4.17)




r .
<( ) ( ) M) - }/1“1 Sin 71 ‘l
1 (1 .
Vg = Wy X 7_’(m1 = ‘le sinyy — Zml cosy J (5418)

Yy cosm

{F) (F) M) ‘}’mlmFI + EmlrnFl
Ve = “-’"ml X (rml - OFOl) = Xpamp1 + mp1 Xy cosn (54 ‘..0;
0

5.5 Determination of Cutter Point Radius

Step.1: Equations (5.4.3), (5.4.6) and (5.4.7) vield the following expression for K(,F’

(1) (1) . (F), (1) 2 _(1F) (1) .2 _(1F)
K(lp):A, Ky + Ky (Kp "cos®o + Ky, sin“ @ ) (5.5.1)
F 1) . o
r:(”) - ﬁ(, "sin? g1F) M(,],)cos2 o(1F)

Step 2: According to Meusnier’s theorem, the cutter radius R,, at the mean contact point 1s

(Fig.5.5.1)

(5.5.2)

As shown in Fig.5.2.1. the cutter point radius can be determined for a straight blade cutter as

follows,

R(_-p - an - Sin (’F (553)

-
ol

For the arc blade, the location of the center of the arc can be determined in S, by following

equations,
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Xf)"} =R, - pcosag (5.5.4)

2! = R, - psinag (5.5.5)

0

Knowing X! and Z,(,r", we can determine the point radius for the arc blade by equation (5.2.14).
In order to find the position vector of the center of the head cutter, we define the following two

vectors in S,,; as shown in Fig. 5.5.1.

7' = ricosap - (4111” sinagp (5.5.6)
[ cosOp —sinfr 0 0] [ X7 ] [ X! cosbF |
sinfr cosfp 0 0 0 X' sin 8F
o) _ (5.5.7)
0 0 1 0 Z((’r‘ ) Z(‘,r. i
| 0 0 0 1] 1 | i 1 |

where, p{°) is a unit vector directed from the blade tip M, to the cutter center Of, and p'®) is

a position vector directed from OF to the arc center (". Referring to Fig.5.2.2 and Fig.5.5.2, the

.. . ) . .
position vector of the cutter center Of with respect to Oy, r*,f 7' can be determined in system S,
as follows,
For straight blade:
d{Op) M) os A F) <o)
Ty =T — SpEr ~ Rep (5.5.8)
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For arc blade :

JOp) _ AM) (o
Th =Ty1 T PNy — P <) (

33
o
el

j—

. ()
It can be verified that the Z,,; component of 1"‘,l F!

is zero, since equations (5.4.3) and (5.5.5)
are observed. It is worth to mention that 6} and sF are the surface coordinates where the contact

is at mean point. The values of 8% and s} will serve as the initial guess in tooth contact analysis.

5.6 Determination of mp; = ﬁl—. Ep and X
ap

The determination of cutting ratio R, settings E,,; and Xg; is based on application of equations
(5.4.2), (5.4.4) and (5.4.5).

Initial Derivations

It is obvious that equation of meshing (5.4.4) is satisfied at point M if the relative velocity ¥

lies in plane that is tangent to the contacting surfaces at M. Thus, if velocity #'F!) satisfies the
equation,

< F1) (F1)J{Fy . (F1)AF)
l 1"

it means that equation of meshing (5.4.4) is also satisfied. Assuming that vectors of equation

(5.6.1)) are represented in coordinate system S,,;, we obtain
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(Fl)( + o\ FD(F)

Ile YUrr €rrmix
F#FY _ (F1) (F) (F1) (F)
Um1 U ey TV €rrmiy (5.6.2)
(F1) _(F) Fl) (F)

Ur ermiz tVrp €rrmaz
For further derivations we will use the following expressions for a;; and a,;.

F
ke 4 Mty + Mo,

a3

(5.6.3)
(F) (F1
"‘u) (U 4 Moyty + My

i

a23

Here,

(F) (F)
My, = N1 X€rm1y — Pm1Y €1y
(F) (F)
My = —cos 71[nle€]m12 - ~Mm1Z€ny)
(F) (F)
My = N1 XCrrmiy — "mi1Y€rmix

F F
M22 = —CO0fT [nml)’e(]],)nlz - —Tlmlze(”,),uy] (564)

t, = mp; —siny; (5.6.5)

Using equations (5.6.2), (5.6.3) and (5.4.16), we obtain

F1 F1 -
v§ ) (ImIZ + ”;1 )6(11) 1z + Ymicos71 =0 (5.6.6)

Following Derivations
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Step 1: Expressions for v(IFI) and v(lfl). Equations (5.6.6) and (5.4.4) represent a system of
two linear equation in unknowns v(IFI) and v(,’;l ) The solution of these equations for the unknowns
yields:

U(IFI) = L21tl + Lzz‘ (567)
oif = Lty + Ly (5.6.8)
Here,

F
Lo — 6(11,),‘12(0111\121 - a12Myy) (5.6.9)
2= (F)_(F) (F)_(F) S
C12K} "€1pmiz T ARy €11z

F Fly
Lo — e(”,)nlz(auMzz - a;aMyp) - "11"(11)}’"l s (5.6.10)
22 a (F) (F) F) _(F) o
1281 €pmaz T ORI €z

F

L = _C(Im)lZ(allMZI ~ a2 M) (5.6.11)

n="""1F) (F)  ___(F)_(F) e
Q2K €rpmiz 7 QUK €z

F F)
—G(Im)IZ(alljuzz - a2 My2) - (lux(, Y1 cos g

Liz = ) (F) T (F) (56.12)

F
1261 €1pmiz T Ak €z

Step 2: kxpression for #F1)

Substituting the above equation in equation (5.6.2) , we obtain
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Xty + Xyp2
i#il) = Xort: + Ao (5.6.13)

Xty + Xao

Here:

- (F) ‘ (F)
}‘U - LQ]CIm.lX + Lllelhnlx

Ry . (F)
‘\12 - LZ?EIle o leelhul,\'

. (F) (F)
"\21 - Lnelml}' + Ll]c[lml}'

(5.6.14)
- F) F
‘\22 = L226(I‘ml}' + L12£(I]1)711}'
- F F
‘\31 = I"-)le(lm)lz + L”C(lh)nlz
! F) F
Xaz = Losey 7 + Liacim 2
Step 3: Expression for f)'if”
Equations (5.4.16) and (5.4.18) yield
Xty + X
@l = | Xty + X (5.6.15)
X3ty + X3
Here,
1¥l3 = X12 - )V"ml Sin7
4¥23 - 4\r22 + 1\'"11 Sin7 - Zml cosy (5616)

X33 = X3z + Y1 cosy

H
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Step 4: Expressions for trinle products in equatiorn. (1.2.2) for aj;

(i oFYD §F = Bt © Epaty + Eg (5.6.17)
where
Ei =iy X1 + naax Ay
Ei2 = npmiy X12 = nmix Y22 — Nim. 2.X21 €08 91 + 71y X3p cos 7y (5.6.18)
Ei3 = ~(nni1zX22 — Ny Xaz)cos g
73 A0 = Yty + Y (5.6.19)
where
Yor = —npx Xorsiny: + npiy (X sinyy — Xagcos 11) + naniz X21 cosy
(5.6.20)
Y2 = —npax Xossinyy + nmly(Xxg siny; — Xazcos 71)
[T_i J(F) ’l?‘{"l)] =Yty + ¥, (5621)
where
Y= —nle(Xml siny; — Zm) cos ‘71) = N1y You1 siny
(5.6.22)

M Vs
Y12 = siny; Y7

Step 5: Expressicn for the last term in equation (1.2.2) for aas.
We have to differentiate between two derivatives: m,, aud mg,. The first one, my,, is applied

to provide a parabolic function of transmissions errors for the case of meshing of the generated
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pinion and the gear. Such a function is very useful because it will allow to absorb linear functions
of transmission errors caused by the gear misalignment. The other derivative, m'Fl, means that
the cutting ratio in the process for pinion generation is not constant and it is just an additional
parameter of machine-tool settings.

In the approach proposed in this research project it is not required to have modified roll
However the use of such parameter in the more general case with m'F1 # 0 is also included to offer

an extra choice. After some derivations, we obtain

= Zut} + Ziaty + Zis (5.6.23)
Here
Z11 = (2C) (M x X11 + Ry X21 + N1z Xay)

Z12 = (2C)[nmi1x X13 + Nyniy X23 + 12 X33 + sin 11 (mx X11 + Ny Xo1 + N1z Xa1)]

Z13 = (2C) sin 11 (nyn1x X13 + Nyn1y X3z + Nm1z X33) )
(5.6.24)

where

2C = (::11)2 (5.6.25)

Step 6: Final expression for as3.

Using the expressions received in steps 4 and 5, we obtain the following expression for ass

azaz = Zﬂ? + Z2f + Z;; (\—)626)
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where,

F F
Zy = x(, )Lgl + R(II)LH - En+2Zn

F F ,
Zy = 2K(1 'LayLos + 2N(11)L11L12 —Ey2 =Y + Y11 + 2y

F . F 7
Zs = w$ L2, + x(,,)Lfg —Ei3-Y+Y2+ Z13

Step 7: New representations of coefficients a;3 and az3.

Equations (5.6.3), (5.6.7) and (5.6.8) yield

a13 = Naity + Nap

azs = Nuity + Ny2

Here;

F
Ny = 'Ci-[)Ln + My

. (F)
Ni2 = vy L2 + M3

(F)

Nai=kp 'Ly + My

F
Ny = &} "Loz + My
Step 8: Derivation of squared equation for ¢,

Equations (5.6.30) and (5.4.5) yield

a1t;1" +asty +a3 =0
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(5.6.28)

(5.6.29)

(5.6.30)

(5.6.31)

(5.6.32)




where,

a; = a122; — NoyNyy
az = a12Z2 — (N1 N12 + Ny Npy) (5.6.33)
a3 = @12Z3 — N2y Ny,

Solving equation (5.6.32), we obtain

—ay /a2 - 4a;a3
t = > (5.6.34)
1

There are two solutions for t; and we can choose one of them. If the tilt and the modified roll
are not used, it can be proven that in this case a; becomes equal to zero and equation (5.6.32)

yields

4= -2 (5.6.35)
az

knowing t;, the ratio of roll may be easily determined as

mgy =t + sin 7

(5.6.36)

According to equations (5.4.19) and (5.6.15), the blank offset and machine center to back can

be determined by

Y ti+ X
E, = Ymmrnt X1t + Xi3 (5.6.37)
mr
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Xt Xoz — 24,
Xe1 = 21t1 + A23 — TrnaMmpa (5.6.38)
mF; COST

Knowing E,,; and X¢;, we may represent the position vector of the center of head-cutter with

respect to the cradle center as follows,

Xgicos v
1_‘("(1')1,?) _ 7.‘(,‘(),;) n —Epy (5.6.39)

Xegisinm + X

In practice, the position of the center of the head cutter is defined by radial setting S,; and

cradle angle ¢;, which may be determined by the following equations,

S = (XOP)2 4 (v10P))2
(5.6.40)

. . . )
Since the cutter center ;. must lie in the machine plane, the component Zi:ll"' ) must be zero.

Thus, the sliding base X, may be determined as,

XB] = "'XGl sin‘y] (5641)
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6 Tooth Contact Analysis

6.1 Introduction

The tooth contact analysis (TCA) is directed at simulation of meshing and contact for misaligned
gears and enables to determine the influence of errors of manufacturing ,assembly and shaft deflec-

tion. The basic equations for TCA are as follows:

#(0F, 0r.8,) = 7106, 6p. 02) (6.1.1)

iy (0F, 0F, ¢1) = 72 (8, bp. 02) (6.1.2)

Equations (6.1.1) and (6.1.2) describe the continuous tangency of pinion and gear tooth surfaces
¥, and ¥,. The subscript h indicates that the vectors are represented in fixed coordinate system
Sh. The superscripts 1 and 2 indicate the pinion tooth surface ¥, and gear tooth surface X,,
respectively. Vector equation (6.1.1) describes that the position vectors of a point on ¥, and a
point on ¥, coincide at the instantaneous point of contact Af; vector equation (6.1.2) describes
that the surface unit normals coincide at M.

Parameters 0 and ¢f represent the surface coordinates for ¥,; 6c and o, are the surface
coordinates for ¥;. Parameters ¢] and ¢, represent the angles of rotation of the pinion and gear
being in mesh.

Two vector equations (6.1.1) and (6.1.2) are equivalent to five independent scaler equations in

six unknowns, which are represented as

fi(0F, oF, 61, 6G, O, 33) =0 (i =1.2,---5) (6.1.3)
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The continuous solution of equations (6.1.3) means determination of five functions of a param-

eter chosen as the input one, say ¢]. Such functions are:
0r(¢1). or(e1), 0G(61). ou(@1), @2(or), (6.1.4)

In accordance with the theorem of Implicit Function System Existence [4], solution (6.1.4) exists
if at any iteration the following requirements are observed:

(1) There is a set of parameters
P(br, oF, b, op 2) (6.1.5)

that satisfies equations (6.1.1) and (6.1.2)
(ii) The Jacobian that is taken with the above mentioned set of parameters and with ¢; as an

independent variable, differs from zero, i.e.

D(fi. fo. fs. fa. f5)
(6r. o Og. oy 05) (6.1.6)

The solution of the system (6.1.3) of nonlinear equations is based on application of a subroutine,
such as DNEQNF of the IMSL software package. The first guess for the starting the iteration process
is based on the data that are provided by the local synthesis.

The tooth contact analysis output data, functions (6.1.4), enable to determine the contact path
on the tooth surface, the so called line of action, and the transmission errors.

The contact path on pinion tooth surface is determined in S; by the following functions
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'

71(0F, oF, ¢1), Or(61)., or(e;) (6.1.7)

Similarly, the contact path on gear tooth surface is represented by functions

!

72(0G, op. 07) . (o) . ono)) (6.1.8)

Function ¢,(o)) relates the angles of rotation of the gear and the pinion being in mesh. Devi-
ations of 0,(0;) from the theoretical linear function represent the transmission errors (see section
6.4). TCA is accomplished by the following procedure: (i) derivation of gear tooth surface, (ii)
derivation of pinion tooth surface, (iii) determination of transmission errors, and (iv) determination

of bearing contact as the set of instantaneous contact ellipses.

6.2 Gear Tooth Surface

The gear tooth surface £, and the surface unit normal have been represented in S, by equations
(3.1.5) and (3.2.10), where ¢ is the parameter of generating cone and o, 1s the rotational angle
of the cradle. Coordinate system S, is rigidly connected to the gear. To represent the gear tooth
surface £, and its unit normal in fixed coordinate system S, we can use the following matrix

equations:

7206, op. 03) = [Mia(@3)iF2(6. ;) (6.2.1)

06, By, 62) = [Lua(@y)iiiz(6. o) (6.2.2)
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6.3 Pinion Tooth Surface

We will consider two cases for generation of pinion tooth surface: (i) by a cone, and (ii) by a surface
of revolution that is formed by rotating curved blades.

Generation by a Cone Surface

Step 1: We recall that the generating cone surface and the surface unit normal has been repre-

sented in Sp by equations (5.2.1) and (5.2.3).

r

(R, ~ sFsinap)cos b |

(R4 ~ sFsinaF)sinfp
TF = (631)
—SFCosQF

— cosafcos B
F = | —cosafrsinfg (6.3.2)

—SFcosafp

where Sg and 6f are the surface coordinates.
Step 2: During the process for generation the cradle with the mounted cone surface performs a
rotational motion about the Z,,;-axis and a family of cone surfaces with parameter ¢F is generated

in S,,;. This family is represented in S,,; by the matrix equation

Tmi(sp. 0F.0F) = Mua(oF) fa(se.0F) (6.3.3)
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where

Foa=TF+ | Sncosqp - Spysingg 0] (6.3.4)

The position vector 7; represents a point of the cone surface in coordinate system S.;; S,; and
g1 are the settings of the head-cutter center O in S,,;.

Matrix (M) is (Fig.2.1.1)

cosPpp smop 0 0O

—sinofF cosorp 0 O
{A[mlcl] = (635)

The unit normal at a point of the generating surface X ¢ is represented in S,,; by

777-'"11(91"- oF) = [Lm.lr:l (¢F)lﬁrl (OF) (636)

where 71, = fip.

We recall that the generating cone surface is a ruled developed surface and the surface unit
normal does not depend on sg (Parameter sp determines the location of a point on the cone
generatrix.) Matrix (L. is the 3 x 3 rotational part of [L,,.;; and is represented as follows,

cos¢r sinog 0

‘Lypie1, = | —singr cosop 0 (6.3.7)
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Step 3: Equation of meshing of the head-cutter cone with the pinion tooth surface. The equation

of meshing is considered with vectors that are represented in S,,;. Thus:

AE) 1P _

ml

Here: #F1) is the sliding (relative) velocity represented as follows

F) = (G - Gy X oy + By x S

ml ml

(6.3.8)

(6.3.9)

While deriving equation (6.3.9), we have taken into account that vector of angular velocity &'

—

of pinion rotation does not pass through the origin O,,; of Sm1; Rm1 represents the position vector

that is drawn from O,n; to a point of line of action of &!); Ryn; can be represented as (Fig.2.1.2):

Rvnl = [XG] COS 71 - Eml XG] sin ‘71]7.

vectors &'!) and J'F) are represented in S,,; as follows

dz'f,fl) =[cosy1 0 siny]T (@'Y =1))

Equations from (6.3.8) to (6.3.12) vield
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(6.3.11)

(6.3.12)




_ Th(6F,0rF)

sp = —\OF.0F) 6.3.13
F = To(6r. or) (6.3.13)

Here:
T1 = Xami(—Emisiny; — Ai(siny; — mp1)) + Yomi (A g1 cosyy + Az(siny; — mpy))
+Zpmi(Emi cos 1 + A cos 1) (6.3.14)
Ty = Xpmi(siny: —~ mpy)sinafg sin(0r + o) — Yopa((siny; — mp1)sinar cos(6r + o)
— cos ap cos Y1) — Zpm1 cos 71 sinap sin(fr + oF) (6.3.15)
where

Ay = Repsin(fF + oF) + Srisin(—¢1 + oF)
(6.3.16)
Az = Ropcos(0p + oF) + Sy cos(—q; + oF)

Step 4: Two-parametric representation of surface of action

The surface of action is the set of instantaneous lines of contact between the generating cone
surface and the pinion tooth surface that are represented in the fixed coordinate system Sp,;. The
surface of action is represented by equations (6.3.3) and (6.3.13) being considered simultaneously.
These equations represent the surface of action by three related parameters. Taking into account

equation (6.3.13) , we can eliminate sf and represent the surface of action in two-parametric form

by
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fm1 = Tm1(0F, ¢F) (6.3.17)

The common normal to contacting surfaces has been already represented in two-parametric
form by equations (6.3.6).

Generation by a Surface of Revolution

Step 1: The shape of the blades is a circular arc (Fig.5.5.1) and such blades generate a surface
of revolution by rotation about the head-cutter axis.

The position-vector of the center of the generating arc is represented in S,,; by the equation

/_7'(":)1(017', ¢F) = [Mmlcl]{ﬁ(c) + [ Srl cosqy — Srl sin 01 O]T} (63] R)

where,

cos¢dp singrp 0 O W
—singg cos¢gp 0 O
(Mmia] = (6.3.19)
0 0 10
i 0 0 0 1

and 5{°) has been expressed by equation (5.5.7).

Step 2: We will need for further transformations the following equations

—sin(fr + éF)
€Im, = [me]é‘pﬁ’ = | cos(fF + ¢F) (6.3.20)

0
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and

- COS(G{.‘ t ¢F)
Tm1 = | —sin(fF + ¢F) (6.3.21)

0

Here: é(,f;)‘ is the unit vector of principal direction [ on the head- cutter surface and 7,; is a unit

vector that is perpendicular to €r,,, and the axis of the head-cutter (Fig. 6.3.1)

Step 3: To simplify the equation of meshing we will represent it by the following equatio:.

. {1F.C)
Ny - vml

=0 (6.3.22)

where if(,,tf'c) is the relative velocity of the center of the circular arc that generates the head-cutter

surface of revolution. The proof that (6.3.22) is indeed the equation of meshing is based on the
following considerations:
(1) The relative velocity for a point of the head-cutter surface is represented by equation [6.3.9),

given as

Ty = (Gony — Bony) X Tt + Ry % 3] (6.3.23)

ml

We can represent posi‘ion vector 7y, for a point M as

~ C ~
Fm1 = 1"('"]) + Pfim1 (6.3.24)
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where p is the radius of the arc blade.

While deriving equation (6.3.24), we have taken into account that a normal to the head-cutter
surface passes through the current arc center C; the sizn of p depends on how the surface unit
normal is directed with respect to the surface.

Then, we may represent the equation of meshing as follows

L1F) _(F) ~(1) _ o(F) - _(F) 5 ol =)
m M = {(wml ~ Wm ) X [(r"ll + Pl ) + (le X w'( )I]} .

(B2) = G X [(Frmy + (Boy x @1 -t

ml ~ %l

H

HAIF.C) =(F) _ o (6.3.25)

ml Ny =

Thus, equation (6.3.22) is proven.

Step 4: It follows from equation (6.3.22) that vector iv‘("llf'c) belongs to a plane that is parallel

to the tangent plane T to the head- cutter surface (Fig.6.3.2). This means that if vector dif’c) is
translated from point C to M it will lie in plane T. The uait vector ellf,\v lies in plane T already.

Then, we may represent the unit normal 7,,; by the equation

€ X 'L-'“EC)
Am (8, OF) = ———The (6.3.26)
1€Im, X Vppy |
where ﬁ‘(,:f'c] is represented as follows,
iy = &P« ) (6.3.27)
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'7‘(113 =gt x {ﬁ(rfl) +[-Xgicosm Em1 - Xa Sin‘h}T} (6.3.28)

3

oy = d) - &) (6.3.29)

The advantage of vector equation (6.3.26) is that the surface unit normal at the point of contact
is represented by a vector function of two parameters only, fr and ¢F; this vector function does
not contain the surface parameter A.

The order of co-factors in vector equation must provide that the direction of 7i,,; is toward the

axis of the head-cutter. The direction of 7i,,1 can be checked with the dot product

The surface unit normal has the desired direction if A > 0. In the case when A <2 0, the desired
direction of 71,,; can be observed just by changing the order of co-factors in equation (6.3.26).

To determine parameter A for the current point of contact we can use the equation,

CoOs A = ﬁml . ‘Fm] (6331)

Step 5: Our final goal is the determination in S,,; of a position vector of a current point of

contact of surfaces ¥ and £,. This can be done by using the equation,

—~ C .
Fr1(0F OF) = 35 = prims (6.3.32)
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where p is the radius of the circular arc.

Finally, the pinion tooth surface may be determined in S; as the set of contact points. Thus:

The unit normal to surface ¥, is determined in 5; with the equation

71(0F, ¢F) = [M1p)[Mpm, [Fm, (6F, ¢F)

1(0F, 0F) = [Lip)[Lpm, |7im, (0F, F)

(6.3.33)

(6.3.34)

Here: 7,,,(0F,0F) and i,n1(0F, #r) have been represented by equations (6.3.17) and (6.3.6) for

straight blade cutter and by equations (6.3.26) and (6.3.32) for curved blade cutter. Here (Fig.2.1.2):

cosy;y 0 sinyy
0 1 0

—siny; 0 cosvyy

L 0 0 0
( 1 0
0 cosgy
[Iulp] =
0 -sin¢g;
| 0 0
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sin ¢)1
cos @

0

E,.,

0

0

(6.3.35)

(6.3.36)




where ¢, is the angle of the pinion rotation in the process for generation. Angles ¢, and ¢p (the
angle of rotation of the cradle) are related as follows:

(i) in the case when the modified roll is not used and R, is constant, we have

¢1 = RopoF (6.3.37)

(ii) when the modified roll is used, ¢ is represented by the Taylor’s series

¢1 = f(6F) = Rup(0F — Co} — Doy — Edy — Fof) (6.3.38)

where (', D, E and F are the coefficients of Taylor’s series of generation motion (see Appendix
B).

Step 7: The tooth contact analysis, as it was mentioned above, is based on conditions of tan-
gency of the pinion and gear surfaces that are considered in the fixed coordinate system S; (see
section 6.1). To represent the pinion tooth surface and the surface unit normal in S; we use the

matrix equations

A = (M) (0. ¢F) (6.3.39)

Ay = [Luy )il (6F oF) (6.3.40)

Here:
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(e}

cos$; —sing; 0
[Mhi] = , , (6.3.41)
sing, cos¢; O

o

where ¢] is the angle of rotation of the pinion being in mesh with the gear.

6.4 Determination of Transmission Errors

The function of transmission errors is determined by the equation
§(y) = (65 — (2)°] - =101 — (1)) (6.4.1)

Here: (4;)° (i = 1,2) is the initial angle of gear rotation with which the contact of surfaces X,

and ¥, at the mean cov.tact point is provided. Linear function

N ' ' N
S0y - (61)°) (642)
Uy

provides the theoretical angle of gear rotation for a gear drive without misalignments. The

range of ¢, is determined as follows

(6.4.3)
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The function of transmission errors is usually a piecewise periodic function with period equal

2
to ¢; = il (:=1,2) (Fig.6.4.1). The purpose of synthesis for spiral bevel gears is to provide that

N;
the function of transmission errors will be of a parabolic type and of a limited value §' (Fig.6.4.1).
The tooth contact analysis enables to simulate the influence of errors of assembly of various

types, particularly, when the center of the bearing contact is shifted in two orthogonal directions

(see section T).

6.5 Simulation of Contact

Mapping of Contact Path into a Two-Dimensional Space

It was mentioned above that the contact path on the pinion and gear tooth surfaces is determined
with functions (6.1.7) and (6.1.8), respectively. For the purpose of visualization , the contact path
on the gear tooth surface is mapped onto plane (X.,Y:) that is shown in Fig.6.5.1. The X .-axis
is directed along the root cone generatrix and Y, is perpendicular to the root cone generatrix and
passes through the mean contact point (Fig. 6.5.1).

Consider that a current contact point N* is represented in S; (Fig.6.5.2) by coordinates:
X2(¢4), RL'(¢5) where ¢} is the angle of rotation of the gear and RL' = [EN| = (Y2 + Zf)%
Axis X, belongs to plane (X,,Y;) (Fig.6.5.2). While mapping the contact path onto plane (X, Y;),
we will represent its current point N* by N that can be determined by coordinates X, and RL’,
where RL' = |[EN| = |[EN~| (Fig.6.5.3). The coordinates of mean contact point A/, XL and R,

have been previously determined by equations (3.2.1) and (3.2.2). Drawing of Fig.6.5.3 yield

O.N =0.04, + O2E+ EN (6.5.1)

Here:
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0.0, =0.K + KO,

KOy = —RL cos(x — 72)ch
where 7, is determined by:

RL

— it Y enind
‘7k—tan (XL)

Equations from (6.5.1) to (6.5.8) yield

0.K = ~|0r05| sin y21.

0.F = X» cosvz;c — Xasin 72.;;

EN = RL'(sin y2%. + c0s 72].)

O.N = X.i. + Yo,

X. = Xo(dy)cosya + RL (0,)siny2 — [(XL)* + (RL)z]% cos(yx — 7Y2)

Y. = Xy(éy)sinya + RL'(¢3)cosy2 — Zpsin s

Contact Ellipse

(6.5.2)

(6.5.3)

(6.5.4)

(6.5.6)

(6.5.7)

(6.5.8)

(6.5.9)




Theoretically, the tooth surfaces of the pinion and the gear are in point contact. However, due
to the elastic deformation of tooth surfaces their contact will be spread over an elliptic area. The
dimensions and orientation of the instantaneous contact ellipse depend on the elastic approach § of
the surfaces and the principal curvatures and the angel o(}?) formed between principal directions
E‘,” and 64,2) of the surfaces. The elastic approach depends on the magnitude of the applied load.
The value of & can be taken from experimental results and this will enable us to consider the
determination of the instantaneous contact ellipse as a geometric problem. Usually, the magnitude
8 1s taken as § = 0.00025 inch.

In our approach the curvatures and principal directions of the pinion and the gear are determined
with the principal curvatures and directions of the generating tools and parameters of relative

motion in the process for generation.

Gear Tooth Principal Curvatures and Directions

The procedure for determination of gear tooth principal curvatures and directions was de-
scribed in section 1.2. Knowing functions 6,(¢3). 0(03) from the TCA procedure of computa-
tion, we are able to determine the position vector 7,2(8,(3). 0,(05%)) and the surface unit normal
fim2(0p(05). 0,(05)) for an instantaneous point of contact. The principal directions and curvatures
for the generating surface can be determined from equations (5.2.4), (5.2.5) and (5.2.6). The pa-
rameters of relative motions in the process for generation can be determined with equations (3.1.12)
and (3.1.13).

Pinion Tooth Principal Curvatures and Directions

As it was mentioned above, the pinion tooth surface can be generated by a cone or by a surface
of revolution. The derivation of principal curvatures and directions on the pinion tooth surface
is based on relations between principal curvatures and directions between mutually enveloping
surfaces Lf of the head- cutter and ¥; of the pinion. The procedure of derivation is as follows:

Step 1: We represent in S,,, the principal directions on the head- cutter surface ¥ using the

following equations
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F r —‘F .
élrnl)j = lel’tl]ejcl) (] = I,II) (6510)

Step 2: Parameters of relative motion in the process for pinion generation have been represented
by equations (5.4.14) to (5.4.19). The derivative of cutting ratio, m/,, is equal to zero for the case
when the modified roll is not used, and can be determined when the modified roll is applied as

follows (see the Appendix)

. d’or _ f'(oF)
P Gt T T Flor)? (6:511)

where,

f(®F) = Rap(l — 2Cop - 3Do% — 4E¢} — 5F o))

F'(6F) = —Rap(2C + 6DoF ~ 12E0% + 20F6%)

Step 3: Now, since the principal curvatures and directions on X are known and the relative
motion is also known, we can determine for each point of contact path the principal curvatures x;
and ;s of the pinion tooth surface X;, the angle ¢'F!) and the principal directions é‘,ln)ll.éllllm on

¥,. We use for this purpose equations (1.2.6) to (1.2.10). The principal directions on ; can be

represented in coordinate system 5, by the matrix equation (Fig.5.2.2),
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ey = (L) Lpl(Lpm, )0, (5 = 1,11) (6.5.13)

€py = myj

Orientation and Dimensions of the Instantaneous Contact Ellipse

Knowing the principal directions and principal curvatures for the contacting surfaces at each
point of contact path, we can determine the half-axes a and b of the contact ellipse and angle a'!’
of the ellipse orientation (Fig.6.5.4). The procedure of computation is as follows [4]:

Step 1: Determination of a and b

1

A= [I\’fv_” - K~ \/g? - 29192 cos 20 + g ] (6.5.14)

1 -
B = ; [Kg] _ 1\(22) + \/gf — 29192 cos 20 + g3 ] (6.5.15)

4]
= — 6.5.16
b /‘m 6.5.17
“\iB (6517)
where,

KO = KP4 K o= KWk (i=1,2) (6.5.18)

Step 2: Determination of o{!?) (Fig.6.5.4)
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(12) ¢

. _ 1) 42)
sing'') = {7y, €, €, ]
12) -(1’) ' 45) ' (6.5.19)

cos G'(

Step 3: Determination of a!!)

Angle a!!) determines the orientation of the long axis of the contact ellipse with respect to E‘hll)
(Fig.6.5.4) and is one of the angles determined by the following equations,
2 sin 20(12)
tan2a't) = 92707 (6.5.20)

g1 — g2 cos 2012)

Step 4: The orientation of unit vectors 7 and ¢ of long and short axes of the contact ellipse

(Fig.6.5.4) with respect to the pinion principal directions is determined with the equations

= 54,31) cosalll - 5(,‘],), sina'!! (6.5.21)

: 1) . 1
Cy = cJM’ sina'l) + 54,11)1 cos a'l! (6.5.22)

Step 5: In order to visualize the contact ellipse we represent its axes of contact ellipse in plane

(X.,Y,) (Fig.6.5.1), using the following equations

2= Lo Ca = [Lanlh (6.5.23)

where




1 0 0 cos' 0 —sinl
[Lan)= | 0 —cosp, —sing, 0 1 0 (6.5.24)
0 sing, - cosd, sinI’ 0 cosT

Axes of the contact ellipse form with the gear axes the following angles

Ay = arccos(ifz - 22)
(6.5.25)

— —

A = arccos((s - i2)

The unit vectors of axes of contact ellipse form in plane (X.,Y.) the following angles with the

X,-axis (the generatrix of the root cone) :

n=0p-72 TW=08(-" (6.5.26)
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7 V. and H check

The purpose of the so called V and H check is the computer aided simulation of the shift of
the bearing contact to the toe and to the hill of the gear. The gear quality is judged with the
sensitivity of the shape of the contact pattern and the change in the level of transmission errors to

the above-mentioned shift of contact.

7.1 Determination of V and H values

Fig.7.1.1 shows the initial position M of contact point (it is the mean contact point), and the new
position M* of the contact point). The shift of the contact pattern was caused by the deformation
under the load. Coordinates X L and RL determines the location of M. For the following derivations
we will use the following notations.

(i) PF = A — A* is the shift of the center of bearing contact, where F is the tooth length
measuring along the pitch line; p is an algebraic value, that is positive when A* < A and the shift
is performed to the toe as shown in Fig.7.1.1. Usually, p is equal to 0.25.

(ii) éc and ag are the gear dedendum and addendum angle.

(ili) PD = bg and P*D* = b}, are the gear dedendums that are measured in sections [ and I*.

(iv) hy, = BD and h* = B*_ ™ are the gear tooth heights.

(v) T'2 is the pitch cone angle

The determination of V and H for point contact M* is based on the following procedure.

Step 1: Determination of X L* and RL".

Fig.7.1.1 results in :

h™ = hy, ~ pF(tanég + tanag) (7.1.1)
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b*G =bg — pFtanég

where b}, = P*D* and b¢c = PD

h*+¢ h+c

We assume that M*D* = and MD = —5 > where ¢ is the clearance.

Taking into account that

O M* = 0P + P~ M~

we obtain

h* +C

XL" = A"cosTy + P"M™sinT'; = A" cosTy + (bg - }sinT,

h* v
RL™ = A”sinTy + P"AM" cosI'y; = A™sinTy — (bg ~ +C

ycosTy

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

The surface coordinates (65, ¢;) can be determined by solving the following two equations,

X2(65,6;) = XL*

Y

(Y2(65, 9;))F + (Z2(65.05) % = (RL™)?
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Step 2: Determination of V. ud H

We introduce the shift of the bearing contact in coordinate system S, by V and H that are
directed along the shortest distance between the pinion and gear axes, and the pinion axis, respec-
tively (Fig.7.1.2). V is positive when the gear is shifted apart from the pinion in Y}, direction, H is

positive when the pinion is withdrawn. It is obvious that

A =AY+ VG (7.1.8)
m 7 =7+ Hi, (7.1.9)

Here: ’?;1” (¢ = 1,2) is the position vector for the initial point of contact, [Fﬁf)]’ (¢ = 1.2) is the
position vector for the shifted contact point; 5.5 and l?h are the unit vectors of coordinate axes
Sh-

Equations of tangency at the new contact point provide

(06, 0,00 = (76, 0} 0,)) (7.1.10)
,_‘(2 - » ’ x «(1 * " ! I N
{ny, )(GG“bp’db)] = (7 )(BF*d)F’OI)J (7.1.11)

Gear surface ~ordinates 6;; and o} can be determined {rom equations (7.1.6) and (7.1.7).

Equations (7.1.10) and (7.1.11) vield

Vo= 0 apon) 1 (B ok o) (7112}
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H = [X2(05,65,60)]" — (X, (05, 65, 61)) (7.1.13)

( * * ! * * * LA™
[lez)(00’¢p’¢2)} ~ [Zl(ll)(eF’CbF'Cbl),! =0 (1.1.14)

(2)_(1) . _(2) (1)
Ty Tz Ty 2y

1 1)
(r\)? + (nl})?

(2), (1) (2), (1)
py™y T Myghz

(1) 1)
(n'})? + (nly)?

sina‘/1 =
(7.1.15)

i
cos¢; =

2 E * " * * - ! ®
(85,85, 09)]" — nyy (05, 05, )] = 0 (7.1.16)

Equations from (7.1.12) to (7.1.16) represent a system of five independent equations in six
unknowns: V, H, ¢,,¢],9r and ¢r. The sixth independent equation, that is required for the
solution of unknowns, can be derived based on the condition that the equation of meshing must be

satisfied with the designed gear ratio, i.e.,

A2 o) = f(05, 0%, 6. 0105 dp. V H) = 0 (7.1.17)

In solving the above system, we first solve a sub-system composed of equations (7.1.14), (7 1.16)
and (7.1.17) for ¢,, ¢F and 0, and then calculate the values of ¢;, \' and H directlv, by equations

(7.1.12). (7.1.13) and (7.1.15).
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7.2 Tooth Contact Analysis for Gears with Shifted Center of Bearing Contact

After the determination of parameters V and H, the tooth contact analysis for gears with shifted
center of bearing contact can be performed similarly to the analysis described in sections 6.4. and
6.5. The initial guess for the first iteration in the procedure of computations is provided by the set

of six unknowns obtained in section 7.1.
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Appendix A

Generation with Modified Roll

1 Introduction

Modification of roll or sometimes called modified roll means that the cutting ratio is not constant
but varied in the process for generation. The variable cutting ratio-the variable ratio of roll- can
be provided by a cam mechanism of the transmission of the cutting machine or by the servo-motors
of a computer controlled cutting machine. According to the developments of Gleason, the TCA
program can analyze the process for generation up to members of the fifth order. However, due to
the limitations caused by application of cam mechanisms only the parameters up to the third order
are controllable in the process for generation.

The modified roll is an additional parameter for the synthesis of spiral bevel gears. In our
approach the synthes:s of spiral bevel gears can be performed, as it was mentioned above, with a
constant cutting ratio. However, we consider in this section the application of modified roll as well

to provide a broader point of view on synthesis of spiral bevel gears.

2 Taylor Series for the Function of Generation Motion

According to the practice of Gleason, the kinematic relation between the angles of rotation of the
workpiece and the cradle is represented by a Tavlor's series up to fifth order. To the knowledge of

the authors, Gleason has never published anv materials related to the kinematics of the modified
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roll. However, Professor Zheng had done a good job in deciphering Gleason’s mechanisms for
modified roll and represented the kinematic relations in his valuable book [5].
Consider that the angles of rotation of the pinion and the cradle are related by a nonlinear

function

61 = f(or) feCK (K >3) (A1)

We assume that ¢; = 0 at ¢ = 0 and represent f(¢r) in the neighborhood of ¢ = 0 by the

Taylor series as follows,

! 1 "
61 = f(0)or + 5 f (0)0F + - (A.2)
Taking into account that
dé, '
2 = f(¢ A3
o = f(or) (43)
We obtain
, Wi
f(0)= F_)|¢F=0 = Ran (A.4)

where R,y is the ratio of roll.

Without loosing generality of the solution, we can take w!) = 1 and then obtain
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Differentiation of equation (A.5) yields

" d¢ . d?¢
1R = flor) T

Equation (A.6) yields

where a, —

Equation (A.7) with new designations can be represented as follows

wk f'(oF)

%’i is the angular acceleration of the cradle.

d?t

Similar differentiation of higher order of equation (A.2) yields:

Here:

01 = Rap(or — Cok — Do} — Eof — FoF)
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2 = - 5=1"(0)
b= "0
- - /")

1 v
24F = —R——f (0)

ap

L (0)

ap

120F = ~

Unfortunately, function f(¢r) cannot L2 represented in explicit form for certain cutting ma-
chines, for instance, for the Gleason spiral bevel grinder. For such a case we will consider the

following cuxiliary expressions

d*éF as
= — 6CX = — A.10
a3 dt3 A wi_ ( )
dor  pypx = & (A.11)
ag = y A = — .
4 dtd wi
o= TP igx = ® (A.12)
PTOR : Wi o

Then, differentiating equation (A.6) and taking o = 0, we may nbtain the following equations

6D = 6CX - 3(2C)? (A.13)
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24F = 24DX + (2C)[15(2C)? - 10(6C X )] (A.14)

120F = 120EX - 15(2C)(24DX) + 105(2C)?[6C X — (2C)?] - 10(6CX)*  (A.15)

The procedure for determination of coefficients C, D, E and F for the Taylor’s series (A.9) when
function fi(¢F) cannot be represented in explicit form is as follows:

Step 1: Differentiate the implicit equation that relates ¢r and ¢, up to five times and then find
WF,aa,0as, d4, as in terms of ¢, and ¢, at ¢; = oF = 0.

Step 2: Considering ¢; = ¢ = 0, find 6CX,24DX,120EX by equations (A.10) - (A.12).

Step 3: Find 2C,6D,24E,120F by equation (A.8),(A.13)- (A.15).

3 Synthesis of Gleason’s Cam

Introduction

Gleason’s cam mechanism,as shown schematically in Fig. A.3.1, is an ingenious invention that
has been proposed and developed by the engineers of the Gleason Works. The mechanism trans-
forms rotation of the cam about O into rotation of the cradle about O.. The rotation of the cam
about O, is related with the rotation of the pinion being generated, but the angles of cam rotation
and pinion rotation, ¢, and ¢,, are related by a linear function when there is no cam settings.

To authors’ knowledge, the engineers of the Gleason Works have not published the principles
of synthesis and analysis of this mechanism. However, H.Cheng {6!, Zheng 5 have made good
contributions to the deciphering of this mechanism. The following is a svstematic representation
of synthesis and analysis of Gleason's mechanism.

The purpose of cam synthesis is to obtain the shape of the cam, considering that the angles of

rotation of the cam and the cradle are related by a linear function, ¢.(¢»). However, this function
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can be modified into a nonlinear function by changing the location of the designed cam with respect
to O, and the orientation of the cam guides that are installed on the cradle. Fig. A.4.1 shows the
settings of the cam mechanism with the designed shape : (i) the cam is translated along the line
0.0, an amount AT ; (ii) and then, the cam guides are rotated about the cam rotation center
and formed angle a with O.0,. It is obvious that the cam mechanism with the settings AT and
a will transform rotation about O, to O. with a nonlinear function between the angles of rotation
of the cam and the cradle. The deviation of this function from a linear one depends on settings of
the cam mechanism and will be discussed in section A 4.

Coordinate Systems

While considering the synthesis of the cam mechanism, we will use three coordinate systems:
the movable coordinate systems S, and S, that are rigidly connected to the cradle and the cam,
and Sy that is the fixed coordinate system (Fig. A.3.2).

Equation of Meshing, Contact Point in S,

Assuming that the transformation of motion is performed with constant ratio of angular veloc-
ities and in the same direction, we can determine the location of instantaneous center of rotation,

I, in coordinate system Sy by using the equation (Fig. A.3.2)

‘e _ (A.16)

Where, E in the distance between the cradle center O, and the cam rotation center O, r, is the
so-called pitch radius of the cam.

The location of instantaneous point of contact !/ on the guides can be determined by using
the theorem of planar gearing 4. According to this theorem the common normal to the guides
and the cam at the point of their contact must pass through the instantaneous center of re tatinn

I. Thus, contact point M and the unit normal at f are represented in &, as fullows
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re=[-b-u 0 1T (A17)

n.=[1 0 0 |7 (A.18)

(A.19)

Here: b is an algebraic value (b is positive if the left side of guides is considered and b is negative
if the right side of guides is considered); u is a variable parameter that is determined with the

equation

u=(E+r,)cosb. - E (A.20)

Equations (A.17) and (A.20) yield

7e(6) = —b f(6c) 0 1]7 (A21)

where

f(6.)= E-(E+r,)cosf, (A.22)

Shape of the Cam

The shape of the cam is a planar curve that is represented in S, - the matrix equation
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(A.23)

Here: coordinate system S, is an auxiliary fixed coordinate system (Fig. A.3.2). Matrices in

equation (A.23) are represented as follows

[ cosf; —sinfy 0 0]

sinf; cosf, O O

0 0 1 0
L 0 0 0 1]
(1 0 0 0]
01 0 FE
[Mpf}:
0 010
100 0 1 |
( cosf. sinf. 0 0
. \ —sinf. cosf. 0 O
Myel = 0 0 10
L 0 0 0 1

The normal to the cam shape is represented by the matrix equation

ﬁq(()") = .,qurjpr/jiLfr:ﬁf(Or)
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Here: [Lyy] is the identity matrix and is the (3 x 3) submatrix of the respective matrix ‘A . We
consider that the shape of the cam and its normal depend on the generalized parameter 6, only

since

Ty

b =(g—7)

9, (A.28)

The final equations of the cam and its normal are represented as follows

[ —bcos(Ef—r“OQ) + (re + E)cos(;ﬁ@,,)sin(ffr—u(?q) - Esiné, |
7, = —bsin(E—fr—u()q) —(ry + E)cos(ﬁ&,,)cos(ﬁ*:—r:(?,l) - Ecosé, (A.29)
0
- 1 -
cos(—E—f—r-;Gq)
iy = | sin(zE—06,) (A.30)
q sin( 750, X

0

4 Cam Analysis

The cam analysis is directed at the determination of function 67(8;) for a cam and guides with
modified settings. The analysis is based on simulation of tangency of the designed cam with the
cradle guides taking into account the settings of the cam and the guides.

Coordinate Systems and Coordinate Transformation

Coordinate systems Sy, S. and S. are rigidly connected to the guides and the cradle (Fig.

A.4.1(a)). The guides after rotation about O, form angle a with the y.-axis
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Coordinate systems Sq, S,, and S,, are rigidly connected to the cam. The settings of the cam
with respect to S,, are determined by AT and angle a.

The cam and the cradle perform rotations about O,, and Oy, respectively (Fig. A.4.2). The
conditions of continuous tangency mean that the designed cam and the guides have a common
normal and a common position vector at every instant in Sy.

A current point N of the guide is determined in 5; with the equation (Fig. A.4.1 and Fig.

A.4.4):
A = (M) M) Mea)y (A.31)

where
Fa={-b-x 0 1T (A.32)

The unit normal is determined in Sy as follows

i) = Lyl Lol [Lealfia (A.33)

where
ig=[1 0 0 17 (A.34)

Here:
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[ cost; —sinf7 0 0

sinf] cosf> € N

(M, = (A.35)
0 0 10
0 0 01|
100 0 ]
010 -E
(M, = (A.36)
001 0
(000 1 |

r A

cosa sina 0 0

—-sina cosa 0 O

[Mea) = (A37)

A current point of the cam and the unit normal at this point are represented in S; by the

equations (Fig. A.4.1(b), Fig. A.4.2).

{2 TAfr Tagw * Cage
Ry = My M MG M, (A.38)
21 e irpe cpe pe o

nj - = ,I‘]p,‘.l'pm.‘.Lmn‘.an,n’i ("\39)
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Equations (A.38) and (A.23) yield

P = (M7 My (Mr ) Mo | Mg Mpg ) M . (A4.40)

nqgl

where

o=[-b-u 0 1) (A41)

Matrices [M,], [Mps] and [M;.] have been represented by equations (A.24), (A.25) and (A.26),

respectively. Matrices (M7 ] (A, ],[Mp,] and [31],] are represented as follows (Fig. ~.4.1(b),

pm ngq
Fig. A.4.2):
(1 00 0 ]
010 -E
(M},] = (A.42)
001 0
(000 1 |

FcosO; —sin6’; 00

sin0; cosO; 0 0
[M,:mj: (A.43)
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( cosa sina 0 0

—sina cosa 0 0

[Med] =

0 0 1 0

0 0 0 1|
1 00 0 }
01 0 -AT

(M) =

0 01 0
LO 00 1 |

Equations (A.39) and (A.27) yield

A2 = (L ) Ll L) L L apl Ll L g )7

Here:

Matrices [L*] and [L] are 3 x 3 submatrices of matrices [A{*] and [}].

Equations of Tangency

The tangency of cam and guides with modified settings is represented by equations

1 * 2 .
782,60, a) = A71(6;,0,.AT )
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(A.45)

(A.46)

(A.47)

(A.48)




r‘i(ll)(eg,Oc,a) = ﬁ(;)(g;,eq,,a) (A.49)

We recall that vector equations (A.48) and (A.49) yield a system of only three independent

equations in four unknowns: 67,67, 6. and ); setting parameters AT and a are considered as given;
8, and 6. are related with equation (A.28) and 6, is considered as a generalized parameter. Our

goal is to determine the function that relates angles of rotation of the cam and the cradle, ¢; and

=, and the parameters of settings a and AT, i.e. the function

F(6;,8:,AT,a) = 0 (A.50)

Equality of Contact Normal-Satisfaction of Equation (A.49)

Equations (A.49), (A.33) and (A.46) yield

(L34l = [Lom)[A) Lopl L 5] (A.51)

Then we obtain

|B][4] = [A]l] (A.52)

Here:
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cos(6y ~ 67) sin(6; -67) O

(B) = [L})[ L] = | ~sin(8; - 67) cos(6; - 67) 0 (A.53)
0 0 1

cos(fg — 6;) —sin(f,—-6.) O

[C]=[LgpllLsc]) = | sin(fy —6,) cos(fy —6:) O (A.54)
| o 0 1
cosa sina 0
[A] = [Led) = [L}4] = | —sina cosa O (A.55)

0 0 1

Matrices (A.52) are rotational matrices that describe rotation about axes of the same orienta-

tion. This means that we can change the order of co-factor matrices and

(B][A] = [C][4] (A.56)

This yields that
(€)Y B)A] = [A] (A.57)
[C17YBl = (I (A.58)

where []] is a unitary matrix and
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(B] = [C] (A.59)

Equation (A.59) yields

0, —6;=—(0,-0.) = “Fa ruoq (A.60)
since
b. = ¢ frufiq (A.61)
Equality of Position Vectors—Satisfaction of Equation (A.48)
Equations (A.48), (A.31) and (A.38) yield
(M7 (M) 7 (M) Mool [Mea)Fa = (Mo ][ M) Mop) [ Mpg ][ M s ] (A.62)
After transformations we obtain
[Qra = [S]Fe (A.63)

Here:
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r 7
a;; a2 0 ayy

az1 az2 0 az

Q] =
0 0 1 0
i 0 0 0 1 |
[ @11 a2 O ajy ]
az; a2 0 a3y
(] =
0 0 1 0
0 0 0 1

(A.64)

(A.65)

The rotational 3 x 3 submatrices of [@] and [S] are equal due to the equality of contact normals

(see equation (A.52). The elements of [Q] and [S] are represented by

a11 = Ccosm aiz = Sin7n Az = —ay2 a2 = ay

where 7 = 6; — 6 + a , and

aig = E[—sin(8; — 67) +sinf)] , az4 = E{-cos(f; - 67) ~ cos b,

ajy = —Esin(8y — a) — ATsina] , a3y = Eicos(8; — a) - AT cosa’

Matrix equation (A.62) yields the following system of two linear equations

an(u—/\)+a14——a;4:0 . an(u—/\)+024 —054 =0
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(A.69)




Eliminating (uz — A), we obtain
(014 - 0;4)(122 - (024 - a;4)a11 =0 (A70)

Equations (A.70), (A.66), (A.67) and (A.68) results in
13 = : r" " " AT . * * . = :
F(6;,67,AT,a) = sm[—E—(0q -00)) + 5 sin(6; — 07) - sin(4; — @) —sina =0 (A.71)

Equation (A.71) represents in implicit form the displacement function for the cam mechanism
with settings @ and AT. It is easy to be verified, that equation (A.71) with AT = 0,a = 0

represents the linear function ,

8, = 6. (A.72)

For Gleason’s grinder, E is equal to 15 inch. According to Gleason’s practice, the sense of
rotation of the cradle and the cam is opposite to the assumption in the derivation in this report.
Without loss of generality, by substituting 6] = ~6; and 6; = —6 with E = 15 in equation (A.T1)

we obtain the final expression of the relation between 4 and 6] as follows,

. OT  Tu e o
sin(0; + a) - sina + 5 sin(47 — 67) + sin 71'—5(49C -63)=0 (A.73)
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5 Determination of Coefficients of the Taylor’s Series

The determination of the coefficients of the Taylor’s Series for generation motion with modified
roll is a lengthy process. Gleason provides its customers with computer program which can select
the cams with settings and analyze the effects of the modified roll. However Gleason’s program
is a black box with no explanation for the determination of the coefficients of the Taylor’s Series.
Valuable contribution to the understanding of Gleason’s program has been made by C.Q. Zheng
[6]. For reader’s convenience, a series of derivations are represented in this section, which coincide
with the equations in [5] except some printing errors.

In the process of generation, the cam rotates at a constant angular velocity . Without loss of

generality, we assume that the cam rotates with unitary velocity, i.e. —Et—q— = 1. Using the procedure

discussed in section A.2, we differentiate equation (A.73) five time as follows,

* * AT * * Tu Tu * * _
wy cos(0 + a) + (w: - 1)[1—5 cos(8; ~ 67) + T sin(f; - 63)] =0 (A.74)

az cos(8; + a) + (w)?sin(8] + a)

Ty AT

—_— * — * R b4 _ 0*
+a2[15 cos 15(0 6;) + 15 cos(8; — 67))

” ru » " AT : * « 5
—-(wc - 1)2[(15)2 sm (0 ()q)] + E sm(()c - 0(1)] =0 (A75)

azcos(8; + a) — 3az(w?)?sin(6; + @) - (w})cos(f: + a)

ru 7‘.“ * - AT - * 3\
(13[1—5 cOs '1—5(9( — Hq) + —15' COS(GC - Oq)J
Y Tu 2 - AT * *
“3ag(w’ — 1)[( 2 - 22 sin(6r - 6
3az(w; 1)[(15) 15(0 8;) + T sin(6; - 6),
> 3 T'" 3 “ * * AT - - .
—(u,” - 1) l(ﬁ) cos i—s‘(ec - gq) + E COS(GC - 9‘))} =0 (A76)
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aq cos(0 + a) — dazw sin(0; + a) ~ 3aisin(6; + a)
—6(w?)?az cos(8: + @) + (w})*sin(8 + a)

—4daz(w] - 1)[(7‘—'\;))2 sin (9' -6 )+ orT cos(@" - 83)]

1
~3a 2[( ) sm;—g(eg - 0;)+ %sin(Bg )
+ay % cos :g(o' 6;) %52 cos(87 - 67)
—6ay(w] — 1) [(1;)3cos:—5(0 —67)+ Al—sTcos(G - 62))
(o = DY) sin 2 (67 - 03) + 3 sin(6; — 65)] = 0 (A.77)

as cos(8; + a) - [10ag(w?)? + 15a3w] — (w})® cos(8; + a)
~[5aaw; + 10azas - 10as(w; ) sin(; + a)

- AT *
+a5[ﬁcos —(6; - 6;) + Hcos(() - 6;))

Tuyz . AY il X
~5ag(w] ~ 1)[(1—5) sin _% = (07 - 03) + T sin(6; - 67)!

15
~10a3(w] - 1)%(( :;)3 cos :—5(0' -67) + A15T cos(8; — 6):
_10a2a3[(1—;) sin 15(9' ;) + % sin(8 - 67)!
~15a(e; - D) e 1;(0* - 0;)+ 25 cos(s - 0;)
+10a(w; - 1)° (1';)4 sm (0’ -83)+ —AIFT sin(67 - 67)]
+(wr 1) I(:;)S cos 1—5(0' 6;) + AI—E)T cos(6; - 67)] =0 (A.78)

At 67 = 67 = 0, we can determine w;,ay,asz, as.as from above expressions as follows,

ry + OT
15cosa + ry, + AT

by
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15sin a )
15cosa + ry + AT(W

a =

3
3aywlsina + (w2)3cosa + (wr - 1)3( 153 + é—1—5)
re + AT

15

asy =
cos a +

3
= 6az(w?)? cos a + [4azw] + 3a2 — (w7 )]sina + 6ay(w] —1)2(153 ig

ry + AT

cos a + 15

1
as = +AT{[10a3( 2)? + 1503w} — (w?)¥]cosa

cosa + B
+({5aqw? + 10aja3 — 10ay(w?)®]sin a + (10az(w? — 1)

. P AT re | OT
+15a§(wc - l)]('l_s's + a5 )_( We — 1) (153 ab )}

Using equation (A.8) and (A.10) - (A.12), we obtain

1 + 15 cos a
wr ry + AT

2C = tana

1+ 3(2C)tana + (—@fi(
6CX = ‘ 15cosa 153
1+ M

15 cos a

+AT)

24DX = T AT {6(2C) cosa + [4(6CX) + 3(2C)? - 1]sina
cos a + -1—5-

+6(2C)(1 ~ Rac)?

7'3

153 _1—5*)}
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(A.82)

(A.83)

(A.84)

(A.85)

(A.86)
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1
ry + AT {I
15
+[5(24DX) + 10(2C)(6CX) - 10(2C)]sina
+[10(6CX)(1 - Rac)? + 15(2C)*(1 - R,,,_.](l'_g'3 + ‘:_g")
rs AT

~(1- Rai(1% + 220} (A.88)

120EX = 10(6CX) + 15(2C)? - 1] cosa

cos a +

Knowing R,.,2C,6C X,24DX and 120E X, we can determine 6D,24F and 120F by equations

(A.13) - (A.15).

6 Selection of Cams and Cam Settings

In order to provide the desired low transmission errors and bearing contact, the ratio of roll R,
and second ratio of roll (2¢), which are determined by the local synthesis, must be applied for the

grinder. Due to the structure of Gleason’s grinder, the ratio of roll, R, is related to R, as follows,

Rac = mimcRap (A89)

Here, R,. is the transmission ratio between the cam and the cradle, as determined by equation
(A.84). m, is a fixed gear ratio and is equal to 1 in Gleason’s grinder; m; is the gear ratio from the

workpiece to the cam and is determined as,

mi = — (A.90)
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here, n is the number of teeth of the workpiece and n; is the index internal, i.e. the gear tooth
number skipped over in indexing.

From equation (A.80) and (A.89), we obtain

B —1¢,(2¢)Rgc
a = tan [(Rac —~ 1)] (A.91)
15cos a
ry + AT = Ro -1 (A.92)

The cams and their pitch radii 7, are tabulized. A cam with pitch radius closest to (r, + AT)
calculated by equation (A.92) should be selected. After the cam with pitch radius r, is selected

the corresponding setting, AT, can then be determined as:

15cos a
AT = R -1 ~ Ty (A.93)

In some cases, it is also necessary to control 6C X . In order to satisfy R,.,2C and 6C X, the
value of n; can be used together with AT and a. Since n; must be an integral number it is difficult
to obtain an accurate solution. But by careful selection of cams and index interval n;, a practical
engineering solution is often achievable.

When the cam and its s-itings are selected, it is then necessary to determine the coefficients of
the Taylor’s Series of the generation motion and carry out the TCA to see how the higher order
coefficients (i.e., 60,24 E and 120F) affect the transmission errors and bearing contact. If the result

of TCA are satisfactory, then the gears can be ground by the selected cam and cam settings.
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Appendix B

Description of Program and Numerical Example

Input and Output of Program

The research project is complemented by a computer program, which can be used for the
determination of machine tool settings through the method of local synthesis and simulate the
transmission errors and bearing contact through TCA. The input data to the program include four
parts.

Part 1. Blank Data
TN1 : pinion number of teeth
TN2 : gear number of teeth
C : shaft offset ( zero for spiral bevel gear )

FW : width of gear

GAMMA : shaft angle

MCD : mean Cone distance
RGMAT1 . pinion root cone angle
B1 : pinion spiral angle

B2 : gear spiral angle

RGMA2 . gear root cone angle
FGMA2 : gear face cone angle

PGMAZ2 : gear pitch cone angle
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D2R : gear root cone apex heyond pitch apex
D2F : gear face cone apex bevond pitch apex
ADD2 : gear mean addendum

DED2 : gear mean dedendum

WD : whole depth

CC : clearance

DEL : elastic approach (experiment datum)

Part 2. Cutter Specifica.ions

RU2 : gear nominal cutter radius
PW2 : point width of gear cutter

ALP2 : blade angle of gear cutter

Part 3. Parameters of Synthesis Condition

FI21 : derivative of transmission ratio, negative for gear convex side and positive for gear concave
<'’de. The range 1s —u.008 < F121 < 0.008 .

KD : percentage of the half long axes of contact eilipse uver face wadth. KD = 0.15 - 0.20 .
ETAG : direction angle of contact path. For right hand gear, -80° < ETAG < 0° for gear convex
side and —80° < ETAG < 0° for gear concave side; For left hand gear, 0° < ETAG < 80° for
gear convex side and —-80° < ETAG < 0 for gear concave side. When ETAG is close to zero, the
contact path is along the tooth height, when the magnitude is increased, the contact path will have
bias in and reach almost Inngitudinal direction if ETAG is close to 90 degrees.

GAMATL1 : pinion machine root angle, which is the same as the pinion root angle if no tilt is used.
RHO : radius of the arc blade if curved blade is used, which can be any values when curved blade
is not used.

C2 . second order ratio of roll if modified roll is used. C2 is zero without modified roll.
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ALP1 : pinion cutter blade angle. ALP1 is positive for gear convex side and negative for gear
concave side. ALP1 can be the same as ALP2. For better result, it is suggested for pinion concave
side the magnitude of ALP1 is smaller than ALP2 and for pinion convex side, the magnitude of
ALP1 is larger than ALP2.(As shown in the example).

TN1I : number of teeth skipped over indexing. TN1l is only used in modified roll, the ratio between

TN1I and TN1 must not be an integer.

Part 2. Control Codes
JCL : JCL control V and H check, JC'L = 1 means no V-H check.
JCH : For right hand gear, set JO'H = 1, for left hand gear set JOH = 2.
JCC : For straight blade, set JC'(' = 1, for curved blade set JCC = 2.

TL1, TL2 : Extra points on contact path. both should be less or equal than 2.

Tne program output includes: (1) the machine-tool settings for gear and pinion; (2) the trans-
mission error; (3) the contact path; (4) the length and orientation of the long axes of the contact
ellipse; and bearing contact at toe and heel position.

Numerical Example

The model used in this report is the spiral bevel drive with the shaft angle of 90 degrees. In
the numerical example, modified roll and curved blade for generation of gears were not used since
favorable results were attained without them. The list of the blank data and machine tool settings
are tabulized in the attached tables.

The TCA results with V-H check are shown through Fig. B.1 through Fig. B.6. The V and H

1

values shown in the figures are of 145, inch. It is shown also that .he transmission errors are very

small and the bearing contact is stable for both side at the three positions. toe, mean and heel.
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BLANK DATA

PINION GEAR
NUMBER OF TEETH: 11 41
PRESSURE ANGLE: 20°
SHAFT ANGLE: 90°
MEAN SPIRAL ANGLE: 35.0°
HAND OF SPIRAL: LF RH
OUTER CONE DISTANCE: 90.07
FACE WIDTH: 27.03
WHOLE DEPTH: 8.11 8.11
CLEARANCE: 0.81 0.81
ADDENDUN: 5.24 2.061
DEDENDUNM: 2.87 6.05
PITCH ANGLE: 15°1° 74°59'
ROOT ANGLE: 13°20° 70°39°'
FACE ANGLE: 19°21' 76°40'

GEAR CUTTER SPECIFICATIONS

BLADE ANGLE: 20°
CUTTER DIAMETER: 152.40
POINT WIDTH: 2.79
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RADIAL SETTING(s):

CRADLE ANGLE(q):

MACHINE CENTER TO BACK(Xg):
SLIDING BASE(Xp):

RATIO OF ROLL(R.):

BLANK OFFSET(Ep) :

MACHINE ROOT ANGLE(Vm):

GEAR MACHINE TOOL SETTINGS

70.43577

62.3981°

0.00

0.00

1.032397

0.0

70.65°

PINION MACHINE TOOL SETTINGS

CUTTER BLADE ANGLE:

CUTTER POINT RADIUS:

RADIAL SETTING(s):

CRADLE ANGLE(q):

MACHINE CENTER TO BACK(Xs):
SLIDING BASE(Xp):

RATIO OF ROLL(R.):

BLANK OFFSET(Eg):

MACHINE ROOT ANGLE (vp):

CONVEX

21.5°
80.4876
71.55166
59.4638°
1.08497
-0.25021
3.898097
-2.56862 (Up)

13.3333°
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CONCAVE

18.5°

71.7222

69.04316
64.0624°
-1.58960
0.36659
3.788604
2.19033 (Down)

13.3333°
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Fig. 1.2.6 Orientation and Dimension of Contact Ellipse
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Fig. 2.1.3 Tilt of Pinion Head-Cutter
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Fig. 3.1.1 Gear Head-Cutter
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Fig. 6.3.1 Principal Directions of Pinion Head-Cutter Surface with
Circular Arc Blades
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Fig.6.3.2 Visualization of Orientation of Vectors in Plane
Tangent to
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Fig. 7.1.2 Gear-Pinion Misalignment
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Fig. A.3.2 Schematic of Motions of Cam and Guides
without Modified Settings
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Transmission Error in Meshing Period
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Transmission Error in Meshing Period
Gear Coacave Side - TOB
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Transmission Error in Meshing Period
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THIS PROGRAM IS TO DERIVE THE MACHINE TOOL SETTINGS
FOR PINION GENERATION & TEST THE RESULTS

IMPLICIT REAL*8(A-H,0-2)
REAL*8 KS,KQ,K1I,K1II,K2I,K2II1,KFI,KFII,KD,KF,KH,mcd
REAL™8 M11,M12,M13,L11,L12,L13,L14,421,M22,M23,L21,L22,L23,L24,

&N11,N12,N21,N22

real*8 xi(5),x(5),£(5)
EXTERNAL FCN1,FCN2,FCN,FCNM,FCNR, FCNMR
DIMENSION CH(3),P(3),ELEF(3),ESN(3) ,EQN(3),WI1VT2(3),Wwv12(3),

SW2VT1(3) ,EFIH(3) ,EFIIH(3) ,RH(3),GNH(3),E2IH(3) ,E2IIH(3) ,PI2P(20),

&E1TH(3) ,E1I1IH(3) ,EFI(3),EFII(3),E1I(3),EL1II(3),GN(3),EFEL1(3),

&ERR(20) ,xcp(20),yep (20),AX1(20) ,AX2(20) ,ANG1 (20) ,ANG2 (20)
COMMON/A1l/CNST,TN1,TN2,C,FW,GAMMA, x1,rl,med
COMMON/A2/B1,RGMAl,FGMALl,PGMAL,DIR,DIF,ADD],DEDI
COMMON/A3/B2,RGMA2, FGMA2,PGMA2,D2R,D2F, ADD2, DED2, WD, CC, D2P
COMMON/AG4/SR2,Q2,RC2,PW2.%XB2,XG2,EM2,GaMA2,CR2,ALP2 ,PHI2,PHI2P
COMMON/AS5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M,Z2M, XN2M, YN2M, ZN2M,

&XNH2, YNH2, ZNH2,XH2, YHZ, ZH2
COMMON/A6/ES (3) ,EQ(3),CN(3) ,W1(3),W2(3),W12(3),vT1(3),vT2(3),

$v12(3) ,KS,KQ,KF,KH,EF(3),EH(3),SIGSF,PI21]
COMMON/A7/SR1,Q1,Rcf,PWl,XB1,XGl,EM]1,GaMALl,CRY,ALP],PHI1,PHI1P
COMMON/AB/SE, XML, YM1,ZM1,XNM1, YNM1,ZNML,X1M,YIM, Z1N,

&XN1M, YNIM,ZN1IM,XNH1,YNH1,ZNH1,XH1, YH1,ZH!
COMMON/A9/PHI2P0,0X,0Z,X0,20,RH0,ALP,V ,H,CRIT,PCRIT
COMMON/A10/K1I,K11I,K21,K2I1,DEL,E1IH,E1IIH,E2IH,E211H, GNH,

&A2P ,B2P,TAULR, TAU2R,A2L,B2L
COMMON/Al1/RAM,PSI1,C2,D6,E24,F120,CX6,DX24 ,EX120,RUL,LELT,RUP,

SRAl,CPF,DPF,EPF,FPF
CNST=DARCOS (-1.0D00) /180.0D00

INPUT THE CONTROL CODES

IF V AND H CHECK IS NOT DESIRED, SET JCN = 1

DO NOT SET JCN TO BE 3

JCL=2

FOR RIGHT HAND GEAR JCH=1l, FOR LEFT HAND GEAR IJCH =2
JCH=1

FOR STRAIGHT BLADE JCC=1, FOR CURVED BLADE JCC=2
Jcc=1

TL1 AND TL2 ARE NUMBER OF EXTRA POINT ON CONTACT PATH
WHICH SHOULD NOT BE LARGER THAN 2

TL1=1.0
TL2=1.0

INPUT BLANK DAT.. OF GEAR AND PINION
TN1I=11.0

TN2=41.0

C=0.0
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FW=27.03
GAMMA=90.0*CNST
MCD=76.56
RGMA1=13.3333*CNST
B1=35.0*CNST
B2=35.0*CNST
RGMA2=70.6500%*CNST
FGMA2=76.6667*CNST
PGMA2=74.9833*CNST
D2R= 0.0

D2F=0.0

ADD2=2.06
DED2=6.05

WD= 8.11

€C=0.81
DEL=0.00025%25.4

INPUT NORMINAL RADIUS OF GEAR CUTTER AND POINT WIDTH, BLADE ANGLE

RU2=152.4000/2.0
PW2=2.79
ALP2=20.0%*CNST
DC2=2.0%*RU2

INPUT THE SYNTHESIS CONDITION PARAMETERS AND PINION CUTTER BLADE
ANGLE, ALP1(FOR GEAR CONVEX, ALP1>0, FOR GEAR CONCAVE ALP1<()

seide’s GEAR CONVEX SIDE

FI121=-0.0008
KD=0.180
ETAG=-65.0*CNST
GAMA1=13.3333%CNST
RHO= 250.0

C2= 0.00
ALP1=18.500%CNST
TN1I=8.0

SGN=DSIN(ALP1) /DABS (DSIN(ALPL))
KSIDE=0

GOTO 1989
TSt GEAR CONCAVE SIDE

CONTINUE

FI121= 0.0008
KD=0.180

ETAG= 65.0"CNST
GAMA1=13.3333*CNST
RHO= 200.0

C2= 0.00
ALP1=-21.50%CNST
TN1I=8.0

SGN=DSIN(ALP1) /DABS (DSIN(ALP1))
KSIDE=1
jel=2
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INPUT GEAR MACHINE TOOL SETTINGS

Q2= 52.6589*(CNST
SR2=3,8872%*25.4
XG2=0.0
XB2=-0.0333*25.4
CR2=.9772974
RAG=1,0/CR2
GAMA2=RGMA2

EM2=0.0
RC2=RU2-SGN*PW2/2.0
ALP2= SGN™ALP2

CALCULATE GEAR MACHINE TOOL SETTINGS

hg=mcd*dcos {pgma2-rgma2)-ru2*dsin{b2)
vg=ru2®dcos (b2)

g2=datan(vg/hg)

sr2=dsqrt (hg**2+vg*¥2)

xg2=0.0

GAMA2=RGMA2

xb2=d2r*dsin(gama2)

EM2=0.0

rag=dcos (pgma2-rgma2) /dsin{pgma2)
cr2=1.0/rag

RC2=RU2-SGN*PW2/2.0

ALP2= SGN™ALP2

DELT IS THE CAM SETING
DELT=0.0
DEFINE THE MEAN CONTACT POINT

v=0.000

H=0.000

FA=FGMA2-PGMA2

RA=PGMA2-RGMA2
HM=CC+WD-0.5"FW" (DTAN(FA) ~DTAN (RA))
DED2R=DED2-0.5*FW*DTAN (RA)

XL=MCD*DCOS (PGMA2) ~ (DED2R-HM/2.0) *DSIN (PGMA2)
RL=MCD*DSIN(PGMA2) - (DED2R-HM/2.0) *DCOS (PGMA2)

AGL=DATAN (RL/XL)
0X=-~DSQRT(XL**2+RL**2)*DCOS (AGL-RGMA2)
0Y=-D2R*DSIN (RGMA2)

WRITE(9,11) 0X,0Y,XL,RL

FIND SURFACE COORDINATES OF THE MEAN CONTACT POINT

ERRREL=0.1D~10

N=2

ITMAX=200

IF (JCH.EQ.l) THEN
02=~Q2
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X1(1)=270.0%CNST+B2

ELSE

X1(1)=B2

END IF

XI(2)=0.0

CALL DNEQNF (FCN1,ERRREL,N, ITMAX,XI,X,FNORM)
TH=X (1)

PH=X(2)

ST=DSIN(TH)

CT=DCOS (TH)

SH=DSIN (PH)

CS=DCOS (PH)

SP=DSIN(ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

THIG=TH

WRITE(9,11) Xn2M,Yn2M,Zn2M,ZNM, YNM,K ZNM
WRITE(9,11) XM,YM,ZM,sg.hm

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR

ES (1) =-DSIN(TH-PH)
ES(2)= DCOS (TH-PH)
ES(3)= 0.0
EQ(1)=~SP*DCOS (TH-PH)
EQ(2)=~SP*DSIN(TH-PH)

EQ(3)=-CP
CN (1) =XNM
CN(2)=YNM
CN(3)=2ZNM
KS=CP/(RC2-SG™SP)
KQ=0.0
Wl{l)=-CM
Wwi(2)= 0.0
W1(3)=-SM
Ww2(1)= 0.0
W2(2)= 0.0
W2(3)=-CR2

VT1(1)= YM*SM+EM2%"SM
VT1(2)=—XM*SM+ (ZM-XB2) *CM
VT1(3)=-YM*CM-EM2*CM
vT2(1)= YM*CR2
VT2(2)=-XM*CR2

vi2(3)= 0.0

po 10 1=1,3
W12(D)=W1(I)-w2(ID)
Vi2(I)=vT1(I1)-v12(D)
CONTINUE

FIND THE PRINCIPAL DIRECTION AND CURVATURES AT MEAN POINT

P121=0.0

CALL CURVAL

WRITE(9,12) KF,KH,SIGSF
FORMAT (3X,3(G14.7,2X))
K21=KF

K211=KH

PHI2=PH/CR2
sh2=dsin(phi2)
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ch2=dcos (phi2)

xX= CM*ef (1) +SM*ef (3)
yY= ef(2)
22=-SM*ef (1) +CM*ef (3)
ef (1)=xx

ef (2)= CH2*yY-SH2*zZ
ef (3)= SH2*yY+CH2%*z2Z
WRITE(9,11) xx,yy,zz

xX= CM*eh (1) +SM*eh(3)

yY= eh(2)
z2=-SM*eh (1) +CM*eh (3)
eh(1)=xx

eh(2)= CH2*yY-SH2%*z2Z

eh(3)= SH2%yY+CH2%22Z
WRITE(9,11} Ef(1),Ef(2),Ef{3)
WRITE(9,11) Eh(1),Eh(2),Eh{3)

ERRREL=0.1D-10

N=1

ITMAX=200

XI1(1)=0.0

CALL DNEQNF(FCN2,ERRREL,N, ITMAX,XI,X,FNORM)
PHI2PO=Y.(1)

WRITE(9,11) X(1)

WRITE(9,11) XH2,YH2,2H2

WRITE(9,11) XNH2,YNH2,ZNH2

CHP=DCOS (X (1))
SHP=DSIN{X (1))

CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ef (1)

YY=-ef (2) *CHP+ef (3) “shp
2Z=-ef (2) *SHP-ef (3) “chp
EF(1)= XX*CMM+ZZ*SMM
ef(2)= YY
EF(3)=-XX*SMM+2Z2*CMM

XX= eh (1)

YY=-eh (2) *CHP+eh (3) “shp
2Z=-¢h(2) *SHP-eh (3) *chp
EH(1)= XX¥CMM+ZZ*SMM

eh(2)= YY

EH(3) =-XX*SMM+Z2Z*CMM
WRITE(9,11) EF(1),EF(2),EF(3)
WRITE(9,11) EH(1),EH(2),EH(3)
ETAG=90.0*CNST+SIGSF+ETAG

LOCAL SYNTHESIS AT MEAN CONTACT POINT

RH(1)=XH2
RH(2)=YH2
RH(3)=2ZH2
GNH (1) =XNH2
GNH(2)=YNH2
GNH (3)=ZNH2
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E2IH(1)= EF(l)
E2IH(2)= EF(2)
E2IH(3)= EF(3)
E2ITH(1)= EH(D)
E2TIH(2)= EH(2)
E2IIH(3)= EH(3)
K21=KF

K21I=KH

RELATIVE MOTION PARAMETERS IN GEAR & PINION MESHING PROCESS

R12=TN1/IN2
W1(1)=-1.0D00
W1(2)=0.0D00
W1(3)=0.0D00

W2(1)= R12*CMM
W2(2)=0.0D00
W2(3)=~R12%SMM
W12(1)=W1(1)-Ww2 (1)
W12(2)=W1(2)-W2(2)
W12(3)=W1(3)-W2(3)
vT1(1)= 0.0D00

VT1(2)= ZH2

VT1(3)=-YH2

VT2(1)= R12%(YH2~C) *SMM
VT2(2)=-R12% (XH2*SMM+~ZH2*CMM)
VT2(31= R12%(YH2-C) *CMM
Vi2(1)= VT1{1)-vT2(1)
Vv12(2)= VvT1(2)-VT2(2)
V12(3)= VT1 (3 -vT2(3)
WRITE(9,3) v12(1),v12(2),v1i2(3)
FORMAT (5X,3G14.7,/)

CALCULATE THE COEFFICIENT Al3,A23,A33

ESN(1)= GNH(2)“E2IH(3)-GNH(M *E2IH(2)
ESN(2)=-(GNH(1)*E2IH(3)-GNH(3)*E2IH(1))
ESN(3)= GNH(1)¥E2IH(2)-GNH(2)*E2IH(1)

EQN(1)= GNH(2)"E2IIH(3)-GNH(3)*E2IIH(2)
EQN(2)=- (GNH(1)*E2IIH(3)~GNH(3) *E2T1IH (1))
EQN(3)= GNH(1)*E2IIH(2)-GNH(2)*E2IIH(1)

WIVT2(1)= W1(2)*VT2(3)-W1(3)*vT2(2)
WIVT2(2)=- (W1 (1) *VTZ2(3)-W1(3)*vT2(1))
WIVT2(3)= WI(1)*VT2(2)-W1(2)*vT2(1)

W2VT1(1)= W2{(2)*VTL1(3)-W2(3)*VT1(2)
W2VT1(2) == (W2 (1) *VT1(3)-W2(3)*VT1(1))
W2VTI(3) - W2 ()T () -W2(2)*VvT1(1)

WV12(1)= W12(2Y*v12(3)-W12(3)*v12(2)
WV12(2)=-(W12(1)*V12(3)-W12(3)*Vv12(1))
WV12(3)= W12(1)*V12(2)-W12(2)*v12(1)

v125=0.0D00
v12Q=0.0D00
WNES=0.0D00
WNEQ=0.0D00
VWN= 0.0D00
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W1TN=0.0D00
W2TN=0.0D00
VT2N=0.0D00

DO 1 I=1,3

V12S= V12(I)*E2IH(I)+V12S
V12Q= V12 (I)*E2IIH(I)+V12Q
WNES= W12 (I)*ESN(I)+WNES
WNEQ= W12 (I)*EQN(I)+WNEQ
VWN =GNH(I)*WV12(I)+VWN
WITN=GNH(I)*W1VT2(I)+WITN
W2TN=GNH (I) *W2VT1 (I)+W2TN
VT2N= GNH(I)*VT2(I)+VT2N
CONTINUE

WRITE(9,6) V125,v12Q
FORMAT (5X,2G14.7,/)

COMPUTER THE COEFFICIENTS Al3,A23,433

B13=-K2I*V12S-WNES
B23=-K2II*V12Q-WNEQ
B33=K2I*V128%¥2+K2I1*V12Q¥ 2-VWN-WITN-W2TIN*VT2N"FI21*TN2/TN!

LOCAL SYNTHESIS OF MESHING AT MEAN CONTACT POINT

DL=KD*FW

SIGK2= K2I+K2II

SIGG2= K2I1-K2II

A=DEL/DL**2

T1=-B13*V12Q+ (B33+B13%V.2S) *DTAN(ETAG)
T2=B33+B23%(V12Q-V12S*DTAN(ETAG)

ETAP=DATAN(T1/T2)

VSl =B33/(B13+B23*DTAN(ETAP))

AM1=DSIN(ETAP) **2

AM2=-DSIN(2.0DOO*ETAP)/2.0D00
AN1=(B13-B23*DTAN(ETAP)/{{1.0DO0+DTAN(ETAP) *¥2)*Vy§1)
AN2=(B13*DTAN(ETAP)~B23}/ ((1.0D00+DTAN(ETAP) *¥2)*VS])
SGN=DSIN(ALP1) /DABS(DSIN(ALP1))

A=A*SGN

SIGK=(4.0D00%*A™*2~- (AN1¥#¥2+AN2%%2)) /( 2.0D00*A~(AN1¥*DCCS (2.0D00Q*
&ETAP) +AN2*DSIN(2.0DOO*ETAP)))

SIGK1= SIGK2-SIGK

Tl= 2.0DOC"AN2-SIGK*DSIN(2.0DOO®ETAP)
T2=S1GG2-2.0DO0*AN1~SIGK*DCOS (2.0DO0OFETAP)
SIG12=.50D00*DATAN(T1/T2)
SIGG1=(2.0D00*AN2~-SIGK*DSIN(2.0DOO*ETAP)) /DSIN(2.0D00*SIG12)
K1I=(SIGK1+SIGG1)/2.0D00

K1II=(SIGK1-SIGG1)/2.0D0O

WRITE(9,11) ETAP.KI1I.KIII
WRITE(9,11) SIGK,SIG12,SIGK1,SIGG!
WRITE(9,8) T1,T2

FORMAT (5X,3G14.7)

PRINCIPLE DIRECTIONS OF PINION SURFACE AT POINT M
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DO 15 I=1,3

EIIH(I)= DCOS(SIG12)*E2IH(I)-DSIN(SIG12)*E2IIH(I)
E1TIH(I)= DSIN(SIG12)*E2IH(I)+DCOS(SIGI2)*E2IIH(I)
CONTINUE

WRITE(9,11) EIIH(1),E1IH(2),EIIH(3)

WRITE(9,11) EIIIH(1),ELITH(2),EIIIH(3)

COINCIDE THE NORMALS OF CUTTER AND THE PINION SURFACES

SM1=DSIN (GAMAL)

CM1=DCOS (GAMAL)

SP=DSIN(ALP1)

CP=DCOS (ALP1)

Tl=- (XNH2+SP*SM1)

T2= CP*CMl

IF (JCH.EQ.1l) THEN
THF=DARCOS(T1/T2)

ELSE

THF=DARCOS(T1/T2)
THF=360.0*CNST-THF

END IF

BAl=-CP*DSIN(THF)

BA2= CP*DSIN(GAMAl) *DCCS (THF) -SP*DCCS (GAMAL)
TT=- (YNH2%*2+ZNH2%%2)

CSH=- (BAl*YNH2+BA2%ZNH2)/TT
SNH=(BA2*YNH2-BAl™ZNH2) /TT
PHIH=2.0*DATANZ2 (SNH, (1.0D0OO+CSH®)
WwRITE(9,8) THF,PHIH

FIND THE PRINCIPAL DIRECTIONS OF PINION GENERATING SURFACE

EFI(1)=-DSIN(THF)

EFI(2)= DCOS(THF)

EFI1(3)= 0.0D00

EFII(1)= SP*DCOS(THF)

EFII(2)= SP*DSIN(THF)

EFII(3)=-CP

WRITE(9,11) EFI(1),EFI(2),EFI(3)
WRITE(9,11) EFII(1),EFII(2),EFII(3)

FIND THE PINION PRINCIPAL DIRECTIONS IN SYSTEM SM!

XX= E1IH(1)

YY= DCOS(PHIH)*ELIH(2)+DSIN(PHIH) *E1IH(3)
2Z=-DSIN(PHIH) *E1IH(2)+DCOS (PHIH) *E1IH(3)
E1I(1)= CM1¥XX-SM1%*Z2Z

E1I(2)= YY

E11(3)= SMI*XX+CM1*ZZ

XX= E1IIH(1)

YY= DCOS(PHIH)*ELIIH(2)+DSIN(PHIH)*EI1IIH(3)
22=-DSIN(PHIH)*E1TIH(2)+DCOS(PHIH}“ELIIH(3)
EITI({1)= CM1*XX-SM1%ZZ

EIIT(2)= YY

EITI(3)= SM1*XX+CM1%*ZZ

FIND THE UNIT NORNMAL IN SYSTEM SHI

XX= XNH2
YY= DCOS (PHIH) *YNH2+DSIN (PHIH) *ZNH2
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ZZ=-DSIN(PHIH) *YNH2+DCOS (PHIH) *ZNH2
GN(1)= CM1*XX-SM1*2Z

GN(2)= YY

GN(3)= SM1*XX+CM1*2Z

EXPRESS THE POSITION VECTOR IN SM1

XX= XH2

YY= DCOS(PHIH) *YH2+DSIN(PHIH) *ZH2

22=-DSIN (PHIK) *YH2-DCOS (PHIH) *2H2 ]

RX= CM1*XX-SM1*Z2Z

RY= YY

RZ= SM1*XX+CM1*Z2Z

XX=-CP*DCOS (THF)
=-CP*DSIN(THF)

22=-SP

WRITE(9,11) E1I(1),E11(2),E11(3)
WRITE(9,11) E1II{1,,E11:{2;,E1I1.3;
WRITE(9,11) GN(1),GN(2),GN{3)
WRITE(9,11) XX,YY,zZ

WRITE(9,11) RX,RY,RZ

DO 20 1=1,3
XX=-EFI(I)
EFI(I)= EFII(D)
EFII(I)=XX
CONTINUE

WRITE(9,11) E1I(1),E11(2)
WRITE(9,11) EI1II(1),EIII

to -
™M =
[

FIND THE ANGLE FORMED BEITWEEN PRINCIPAL CURVATURES

EFE1(1)= EFI{2Y*E1I(3)-EFI(3}*EL1I(2)
EFEL (2)=-EFI(1)®E1T1{(3)-EFI(3)¥ELI (1)
EFE1(3)= EFI(1)"EI1I(2)-EFI(2)®ELl {1}
T1=0.0D00

T2=0.0D00

DO 30 1=1,3

T2=EFI(I)*E1I(1)+T2
T1=GN(I)*EFE1(1)~+T1
CONTINUE
SIGF1=2.0"DATAN2(T1,1.0-T2)

FIND THE CURVATURE OF PINION GENERATION SURFACE AT MEAN POINT

IF (JCC.EQ.1) THEN

KFI=0.0

B12=0.5D00* (K1I-KIII)*DSIN(~2.0D00"SIGF1)
Bl1=KFI- KlI“DCOS(SIGFl)““Z klII“DSIV(SIGFl)“*Z
TKK= KII*DSIN(SIGF1)**2+K1II*DCOS(SIGF1)™
KFII=(B12**2+B11*TKK)/Bll

WRITE(9,11) SIGFl,KFII

FIND THE CUTTER POINT RADIUS AND ITS CENTER
SF=SG*DCOS (ALP2) /DCOS (ALP1)
SF=DABS(RZ) /DCOS (ALP1)
RCF=CP/DABS(KFII)-SF*SP
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DO 40 I=1,3

P(I)= GN(I)*CP-EFI(I)*SP
40 CONTINUE

RCX= RX-SF*EFI(1)+RCF*P (1)

RCY= RY-SF*EFI (2) +RCF*P (2)

RCZ= RZ-SF*EFI(3)+RCF*P(3)

C WRITE(9,11) RCF,SF

C WRITE(9,11) RCX,RCY,RCZ
ELSE
KFI=1.0/RHO

B12=0.5D00* (K1I-K1II)*DSIN(-2.0D00*SIGFI)
Bl1=KFI-K1I*DCOS (SIGF1)**2-K1II*DSIN(SIGF1)**2
TKK= K1I*DSIN(SIGF1)**2+K1II*DCOS(SIGF1)**2
KFII=(B12**2+B11*TKK) /Bll

C WRITE(9,11) SIGF1,KFII
DBT=-RZ
RM=CP/DABS (KFII)
Z0=- (DBT+RHO*SP)
XO0=RM-RHO*CP
RCF=X0+RHO*DSQRT (1.0~ (Z0O/RHO) *%2)
RCX=RHO*GN (1) -X0*DCOS (THF) -RX
RCY=RHO*GN (2) -XO*DSIN(THF) ~RY
RCZ=RHO*GN (3) -Z0+RZ

o WRITE(9,777) X0,20
C777 FORMAT(3X,' X0, X0 =',2(2X,G14.7))
c WRITE(9,11) RCF,RM,DBT
C WRITE(9,11) RCX,RCY.RCZ
END IF
C
C
c.. THE FOLLOWING IS TO FIND THE CUTTING RATIO
c
CSM1=CM1
SNM1=SM1
TIX=EFI(1)
T1Y=EFI(2)
T1Z=EFI(3)

T2X=EFII(1)
T2Y=EFII(2)
T2Z=EFI1(3)
XN=GN (1)
YN=GN(2)
ZN=GN(3)
RXC=RX
RYC=RY
RZC=RZ

WRITE(9,11) RCX,RCY,RCZ
WRITE(9,11) TIX,TlY,Tl1Z
WRITE(9,11) T2X,T2Y,T22
WRITE(9,11) XN,YN,2ZN

WRITE(9,11) RXC,RYC,RZC

THE FOLLOWING IS TO DETERMINE DELTA,EM,AND IFM

s NeEsEeEaleEsEnNel

MI1=XN*T1Y-YN*T1X
M12=~CSM1* (YN*T1Z-ZN*T1Y)
M21=XN*T2Y-YN*T2X
M22=-CSM1* (YN*T2Z-ZN*T2Y)

C WRITE(9,11) M11,M12,M21,M22
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L11=(B12/B11*M11-M21) /KFII
L12=(B12/B11*M12-M22) /KFII

L21=-T2Z/T1Z2*L11

L22=-T2Z/T1Z*L12-RYC*CSM1/T1zZ
DTT=B12*KFI*T2Z+B11*KFII*T12Z
L11=-T1Z*(B11*M21-B12*M11)/DTT
L12=(~Bl12*KFI*RYC*CSM1-T1Z*(B11*M22-B12%M12))/DTT
L21=T2Z*(B11*M21-B12*M11) /DTT
L22=(-Bl1*KFII®*RYC*CSM1+T2Z*(B11%M22-B12%M12)) /DTT
C WRITE(9,11) L11,L12,L21,L22

X11=L21*T1X+L11%T2X

X12=L22*T1X+L12%T2X

X21=L21*T1Y+L11*T2Y

X22=L22*T1Y+L12%T2Y

X31=L21%T12+L11°T2Z

X32=L22%T1Z+L12%T2Z

E11=YN*X11-XN*X21
E12=YN¥X12-XN¥X22-ZN*X21*CSM1-YN*X31*CSM1
E13=-(ZN*X22-YN*X32) *CSM1

Y11==XN* (RXC*SNM1~RZC*CSM1)-YN*RYC*SNM]
Y12=Y11%SNM1

X13=X12-RYC*SNMI

X23=X22+RXC¥*SNM1-RZC*CSM1

X33=X32+RYC*CSMI1
Y21==XN¥X2]*SNM1+ZN*X21"CSMLI-yYN* (X1 1" SNM1-X31*CSM1
¥Y22==-XN¥X23%SNM1+ YN (SNM1¥X13-CSM1%X33) ~ZN*X237CSM!

aNe XN K]

sNeNeNe !

THE EFFECT OF SECOND ORDER RATIO OF ROLL ON A33
TM1I=XN*X11-YN*X21-ZN*X31
TM2=XN*X13+YN¥*X23+ZN*X33

C WRITE(9,163) TM1,TM2
C163 FORMAT(2X,'TMI,TM2 ',2(2X.Gl4.7))
2Z1=C2*TM1

222=C2% (TM2+SNM1*TM]1)
ZZ3=C2*SNM1*TM2

Z1=KFII®L11%%2-E1]
Z2=2.0D00*KFII*L11L12-E12-Y21~-Y1l
Z3=KFI1I*L12%%2-E13-Y22+Y12
Z1=KFI1%*L2]%*2+KFII*L11%*2-E1]1~-Z21
22=2.0%KFI*L21%L22+2.0D00*KFIT*LI1"L12-E12-Y21-Y!l1~222
Z3=KFI®L22%*2+KFII*L12%%2-E13-Y22+Y12+223
N11=KFII®L11+M21
N12=KFII*L12+M22
N21=KFI*L21+M11
N22=KFI*L22+M12
C WRITE(9,11) B'2,Z21,M11,N11

AA=B12%Z1-N21*N1]

BB=B12%22-N21*N12-N22%N11

CCC=B12%Z3-N22%*N12
- WRITE (9,11) AA,BB,CCC

IF (AA.GT.0.000001) GOTO 1949

T1=-CCC/BB

GOTO 1950

1949 T1=(-BB+DSQRT(BB**2-4,0D00AATCCC) )/ (2.0D00*AA)
1950 FM1=T1+SNMI

OO0 0

152




eNeEe NN

OO0

a0

a0 nn

H
\O
—

—
Ne
\O

(28]
wn

&
I~

&~
w

131

331

CR1=FM1
RAP=1.0/CR1
VF3=X31*T1+X32+RYC*CSM!

THE DETERMINATION OF EM AND DELTA

EMI={X11*T1+RYC*FM1+X13) /FNM1
XG1=(X21*T1-RXC*FM1+X23) / (FM1*CSNM1)

RCX=RCX+XG1*CSM1
RCY=RCY-EMI
RCZ=RCZ+XG1*SNM1

V1=RCY

H1=RCX

XB1l=RCZ
SRI=DSQRT(V]*¥2+H1**2}
Q1=-DARSIN(V1/SR1)
XBl=-XB1l

. DETERMINE THE CAM SETTING

RAal=1.0/CR1

RAM=TN1/TN1I*RAl
PSI1=DATAN(C2*RAM/(RAM-1.0))
RUP=15.0%DCOS(PSIi1)/ (RaM-.1.0)
RU1=RUP

DELT=0.0

CALL CAM

WRITE(9,191) RUP

WRITE(9,191) RU!

FORMAT (2X, 'RUL DELT = ',2(2X,Gl14.7))
WRITE(9,199) RALl,C2.D6,E24,F120
WRITE(9,199) RAl,CPF,DPF,EPF,FPF

FORMAT (2X, 'CAM',2X,5(2X,G14. 7))

WRITE(9,25) FMl

FORMAT(5X,' FM1l = ',Gl4.7)

WRITE(9,44) EM1,SR1,Ql

FORMAT (2X,'EM1,SR1,Q1',3(3X,G14.7))

WRITE(9,45) XGl,XBl,Vl1,Hl

FORMAT (2X, 'XG1,XB1,V1,H1',4(2X,G14.7))

IF (KSIDL.EQ.0.0) THEN

WRITE(9,131)

FORMAT(/ZX,' """"""" c‘******“%“““ﬂk?'A&;LA&ALA'./
S 2X,'* OUTPUT FOR GEAR CONVEX SIDE L/
& ZX,'*#k**** """ oY s de ve e i st T ve ey ﬁﬁ*ﬁﬂﬁ**k**"/)

ELSE

WRITE(9,331)

FORHAT(/ZX * ¥e e Fove e Sle e e v e e o ”****ﬁ**ﬁ#***ﬁ****ﬁ**&*ﬁﬁﬁ*"/
- 2X,'* OUTPUT FOR GEAR CONCAVE SIDE Y
& zx"**ﬁ**ﬁﬁh'"ZLA'k;k#*ﬁ*ﬁﬁ*********ﬂ**#**ﬁ#"/)

END IF
WRITE(9,13)
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‘e 3¢ Y 3t ' e 3 sie v 9t e s e e e ol e e S o ve e vie s gl se e v S de s de Yo e e e
FORHAT(/ZX r Yo e ve ok e e T 5% Fe Yo fo ve St de v ve v e '/

S 2X,'*  GEAR CUTTER SPICIFICATIONS '/
& Zx ¥ e e ¥e Y S e 3 S e v s st de STt e v e e gt e de e S e S e e e S de st de e et e de e e ke e 0 /)

WRITE(9,115) DC2,PW2,ALP2

115 FORMAT(/2X,' GEAR CUTTER DIAMETER : DCZ2 =' ,G14.7,/

61

71

16

17

S 2X,' CUTTER POINT WIDTH : PW =' ,G14.7,/
& 2X,' CUTTER BLADE ANGLE : PHI2 =' ,Gl4.7,//)

WRITE(9,3)

FORMAT ( / 2X s Pty ey e s e e de e at S v de sk S st e st o ve st deSe e st e e e sese e y
S 2%, '* BASIC GEAR MACHINE-TOOL SETTINGS L,/

& ZX v ¥ e e S e e Ve S S dle v e e ST e e v ot Yo vl e e e s e e e S e Yo st e Ve de e S st s S e s /)

WRITE(9,4) Q2,SR2,XG2,XB2,EM2,GAMA2,RAG

FORMAT(/2X,' BASIC CRADLE ANGLE : Q2 =' ,Gl4.7,/

& 2X,' RADIAL SETTING : SR2 =' ,Gl4.7,/
# 2X,' MACHINE CENTER TO BACK : XG2 =' ,Gl4.7,/
# 2X,' SLIDING BASE : XB2 =' ,Gl4.7,/
S 2X,' BLANK OFFSET : EM2 =' ,Gl4.7,/
# 2X,' MACHINE ROOT ANGLE :  GaMa2 =' ,Gl4.7,/
# 2X,' RATIO OF ROLL : RAG =' ,Gl14.7,//)

WRITE(9,6)

FORMAT (//zx , * ST YOI YIS ve T Y v S e v S de Yo v v e S Yok S e s S de g e e e e Ve , /
& 24,'%  BASIC PINION MACHINE-TOOL SETTINGS ',/
& 2% , LR R R e e R R R O R R R iR YooY sodtdestdesie ettt dese sy s /)

WRITE(9,7) ALPL, RCF, Ql,SR1,XG1,XBl,EM1,GAMAl,RAP

FORMAT (/2X,"' BLADE ANGLE : ALPL =' ,Gl14.7,/

& 2X,' POINT RADIUS : RCF ="' ,Gla4.7,/
& 2X,"' BASIC CRADLE ANGLE : Qi =" ,Gl4.7,/
S 2X,"' RADIAL SETTING : SRI =" ,Gi4.7,/
& 2X,' MACHINE CENTER TO BACK : XG. =' ,Gl&.7,/
S 2X,' SLIDING BASE : XBl =' .Gi4.7,/
& 2X,' BLANK OFFSET : EMI =" [Gl4.7,/
S 2X,"' MACHINE ROOT ANGLE : GAMALl =" ,G14.7,/
& ZX,' RATIO OF ROLL : RAP =' |Gl-.7,/"

IF (JCC.EQ.2) THEN

WRITE(9,61)

FORMAT(//2X. U Lt St T ST L St T T R T R R LT Tt , ,’/
& 2K, COORDINATES OF !
& 2X, YirvrsrestrrIois i yr e ey ar e 4

WRITE(9,71) X0,20

FORMAT(/2X,' RADIAL COORDINATE : X0 =" ,Gla. 7,

& 2X,' AXIAL COORDINATE : ZC ="' [Gla.7.//)

ELSE

GOTO 1919

END IF

CONTINUE

WRITE(9,16)

FORMAT (/ / 2X R R R B R R R TR R R R R TR TR TRl LR R TR R T R R T 1t
& 2X, 'FCAM SETTIVGS AND COE F CIV\TS OF TAYLOR SERIES™',
& ZX TeTrdeTe e ey I s g e oy R TR R IR TR RS S LR CRE R R A

WRITE(9,17) PSIl, RUP, DELT, RAl,C2,D6, LZQ,F{Zr

FORMAT(/2X,' GUIDE ANGLE : PSII ="' ,Gi&.7,/

& 2X,' CAM PITCH RADIUS : RUP =" ,Gl4.7,/
& 2X,' CAM SETTING : DELT ="' ,Gi4.7./
& 2X,' 1ST ORDER COEFFICIENT : Ral =' ,Gi4.7,/
& 2X,' 2ND ORDER COEFFICIENT : Cc2 =" ,Gl4a.7./
& 2X,' 3RD ORDER COEFFICIENT : D6 =" ,Gi&.7, 7
& 2X,' 4TH ORDER COEFFICIENT : E24 =' | Gl4.7,

& 2X,' S5TH ORDER COEFFICIENT : F120 =' [GlI4.7,

CALL TCaA
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DEFINE THE INITIAL POINT

XI1(1)=THIG
X1(2)= 0.000000
XI1(3)=THF
XI1(4)=0.0
XI(5)= 0.00

FIND THE INITIAL CONTACT POINT

N=5

ERRREL=0.1D-10

ITMAX=200

PHI2P=PHI2PO

IF (JCC.EQ.1) THEN

CALL DNEQNF (FCN,ERRREL,N, ITMAX,XI,X,FNORM/
ELSE

CALL DNEQNF (FCNR,ERRREL,N, ITMAX,XI,X,FNORM)
END IF

PHI1PO=X(5)

PHIZP1=PHI2P0-180.0"CNST/TN2-TL1"180.
PHI2P2=PHI2P0+180.0%CNST/TIN2-TL2%180.
oL=1

PHI2P=PHI2P1

CONTINUE

IF (JCC.EQ.1) THEN

CALL DNEONF (FCN,ERRREL.N, ITMAX,XI,X,FNORM)
ELSE

CALL DNEQNF (FCNR,ERRREL,N, ITMAX,XI,X.FNORM’
END IF

XI(1)=x(1)

X1(2)=x(2)

XI1(3)=x(3}

XI1(4)=x(4)

XI1(5)=%(5)

[en Y wb]

-.':C N

find the transmission error

FRRR=PHI2P~PHI2PO-TN1/TN2" (X (5)-PHI1PO)
L"RR=PHI2P~-PHI2PO+TN1/TN2* (X (5)-PHI1PO)
ERR (KK) =3600.0*ERRR/CNST
PI2P (KK)=PHI2P

computer the contact path

xle= x2m

rlc= dsqrt (y2m™*2+22m**2)

xcp(KK)= xlc*dcos (rgma2)+ric*dsin{(rgma2)+ox
ycp(KK) =-xle*dsin(rgma2)“rlc*dcos (rgma2)+oy

COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF GEAR

TH=X (1)
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PH=X(2)
ST=DSIN(TH)
CT=DCOS (TH)
SH=DSIN (PH)
CS=DCOS (PH)
SP=DSIN(ALP2)
CP=DCOS (ALP2)
SM=DSIN (GAMA2)
CM=DCOS (GAMA2)

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF GEAR

ES(1)=-DSIN(TH-PH)
ES(2)= DCOS (TH-PH)
ES(3)= 0.0
EQ(1)=~-SP*DCOS (TH~PH)
EQ(2)=-SP*DSIN(TH-PH)

EQ(3)=-(C!
CN(1)=XNM
CN(2)=YNM
CN(3)=ZNM
KS=CP/(RC2-SG*5SP)
KQ=0.0
Wl(1)=-CM
Wi(2)= 0.0
W1(3)=-5M
Ww2(1l)= 0.0
Ww2(2)= 0.0
W2(3)=-CR2

VT1(1)= YM*SM-EM2%*SM
VT1(2)=-XM*SM~ (ZM-XB2) *CM
VT1(3)=-YM*CM-EM27CM
VT2(1)= YM¥*CR2
VT2(2)=—XM*CR2

vT2(3)= 0.0

DO 110 I=1,3
W12(I)=W1({I)-W2(I)
v12(I)=vT1(I)-vT2(I)
CONTINUE

P121=0.0

CALL CURval

K21=KF

K2II=KH

PHI2=PH/CR2
sh2=dsin(phi2)
ch2=dcos (phi2)

xX= CM¥*el (1)+SM*ef (3)
yY= ef(2)
2Z=-SM*ef (1) +CM*ef (3)
ef (1) =xx

ef (2)= CH2%yY-SH2%z2
ef (3)= SH2*yY+CH2*2Z

xX= CM*eh(1)+SM*eh(3)
yY= eh(2)
22=-SM*eh (1) +CM*eh(3)
eh (1) xx
eh(2)= CHZ*yY‘SHZ*ZZ
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eh(3)= SH2%*yY+CH2*2Z

CHP=DCOS (PHI2P)
SHP=DSIN(PHI2P)
CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ef (1)

YY=-ef (2) *CHP+ef (3) *shp
2Z=-e¢f (2) *SHP-ef (3) *chp
E2IH(1)= XX*CMM+22*SMM
E2IH(2)= YY

E2TH(3) =-XX*SMM+Z2*CMM

XX= eh(1)

YY=-eh(2) *CHP+eh (3) *shp
22=-¢h(2) *SHP-eh (3) *chp
E2IIH(1)= XX*CMM+ZZ*SMM
E2ITIH(2)= YY
E2ITH(3)=~-XX*SMM+22Z*CMM

COMPUTER THE PRINCIPAL DIRECTIONS AND CURVATURES OF PINION

TH1=X(3)

PH1=X(4)
STP=DSIN(TH1+PHI])
CTP=DCOS(THI+PH1)
IF(JCC.EQ.1) THEN
SP1=DSIN{ALP1)
CP1=DCOS (ALP1)
ELSE
SGN=ALP1/DABS (ALP1)
ALP=SGN*ALP
SP1=DSIN(ALP)
CP1=DCOS (ALP)

END IF
SM1=DSIN(GAMAL)
CM1=DCOS (GAMAL)

DEFINE VECTORS TO COMPUTER THE SECOND ORDER PROPERTY OF PINION

ES(1)=-STP
ES(2)= CTP
ES(3)= 0.0

EQ(1)= SP1*CTP
EQ(2)= SP1*STP
EQ(3)=-CPl
CN(1)=XNM]
CN(2)=YNML
CN(3)=2ZNM1

IF (JCC.EQ.1) THEN
KS=CP1/(RCF+SF*SP1)
KQ=0.0

ELSE

KS=DCOS (ALP) / (RHO*DCOS (ALP) +X0)
KQ=1.0/RHO

END IF

W1(l)= CML

W1(2)= 0.0

W1(3)= sMl

W2(1)= 0.0
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W2(2)= 0.0
W2(3)~ CRIT
VT1(1)=-YM1*SM1-EM1%*SM]
VT1(2)= XM1*SM1-(ZM1-XBl)*CMl
VT1(3)= YM1*CM1+EM1*CM1
VT2(1)=-YMI*CRIT
VT2(2)= XM1*CRIT
v12(3)= 0.0
po 210 I=1,3
W12(I)=W1(I)-w2(I)
V12(I)=vT1(I)-vT2(I)
CONTINUE

PI21=PCRIT

CALL CURVAL

WRITE(9,12) KF,KH,SIGSF
K1I=KF

K1II=KH

PHI1=PH1/CR1
SH1=DSIN(PHI1)

CH1=DCOS (PHI1)

XX= CM1*EF (1) +SM1*EF(3)
yY= ef(2)
22=-SM1*EF (1) +CM1*EF (3)
ef (1)=xx

EF(2)= CH1™YY+SH1*ZZ
EF (3)=-SH1*YY+CH1*2Z

XX= CM1*EH(1)+SMI*EH(3)
yY= eh(2)
22=-SM1*EH (1) +CM1*EH(3)
eh(1)=xx

EH(2)= CHI*YY+SH1*ZZ
EH(3)=-SH1*YY+CH1%ZZ

CH1P=DCOS (X (5))

SH1P=DSIN(X(5))

ELIH(1)=EF (1)

E1IH(2)= CH1P*EF(2)-SH1P*EF(3)
ELTH(3)= SH1P*EF(2)+CHIP™EF(3)
ELTIH(1)=EH(1)

ELIIH(2)= CHIP*EH(2)-SHIP*EH(3)
E1IIH(3)= SHIP*EH(2)*CHIP*EH(3)
Do 109 I=1,3

ELIH(I)=-El1TH(I)
EITIH(I)=-E1IIH(I)

CONTINUE

COMPUTER THE DIMENSION AND ORIENTATION OF THE CONTACT ELLIPSE

GNH (1) =XNH2
GNH (2) =YNH2
GNH (3) =ZNH2
CALL ELLIP

AX1 (RK)=A2L
AX2 (KK)=B2L
ANG1 (KK) =TAUIR
ANG2 (KK) =TAU2R
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KK=KK+1
PHI2P=PHI2P+180.0*CNST/(TN2%6.0)
IF(PHI2P.LE. (PHI2P2+0.000!}) GOTO 333

WRITE(9,441)

441 FORMAT (/ ¥ dfe g de e Yo Yoo de st Te Yo T ve e e s st s e et Yo ve vevt s S s s Se st S e v ey Jevese sttt desedevese ! s
& /,'* TRANSMISSION ERROR IV « KESHING DFRIOD w
s /’ Farsesde oot dede st Tese ey seseTrsesestve oo yevese . /)

DO 444 I=1,KK-1
PI2P(I)=PI2P(I)/CNST
WRITE(9,555) PI2P(I),ERR(I)

555  FORMAT(3X,3(Gl4.7,3X))

444  CONTINLUE

WRITE(9, 551)

551 FORH.AT(/ ER R Lt C TR TRt TR LR ER LR S TR 11 [RIR AR R IR B ERERIET
& /,'* CONL‘\CT DnTH FOR A P%IR OF TEETH IN MECSH L
s / . PoevrsoiTesestr e ar i oy et e e v v v s TeTeTITIIT eI Is s s s s s ve e ! . / )

DO 666 I=],KK-1
WRITE(9,747) XCP(I),YCP(I)
747 FORMAT (3X,2(G14.7,3X)
666  CONTINUE
C
WRITE(9, 661)

661 FORMAT (/, " 7w )
& /,'" E W IENTATICON CF N LIt N
S / s R e i S R T e e S R TR T T e TR R L R T TR R R T R PRI R PP .

DO 888 I=1,KK-1
WRITE(9,889) AX1{I),ANGL 1), aK2Z{I),ANG2(])
889 FORMAT (3X,4(G14.7,3%) )
888 CONTINUE
C
C

IF(JCL.EQ.1) GOTO 1111
F(JCL.EQ.3) GOTO 11:i3

A

V AND H CHECKX FOR TOE POSITION

HMT=WD+CC-3.0/4.0"FW" (DTAN (FA) ~DTAN (RA) ;
DED2T=DED2-3.0/4.0FW*DTAN (RA)

TMCD=MCD-0.257FW
XL=TMCD*DCOS (PGMA2)~ (DED2T-HMT/2.0) *DSIN{PCMA2)
RL=TMCD*DSIN(PGMA2) - (DED2T-HMT/2.0) *DCOS (PGMA2)

(@}

FIND THE MEAN CONTACT POINT ON THE GEAR SURFACE

ERRREL=0.1D-7
N=2
1TMAX=200
IF (JCH.EQ.1) THEN
XI1(1)=270.0%*CNST+*B2
ELSE
XI(1)=B2
C XI1(1)=90.0"CNST-B2
END IF
X1(2)=0.0
CALL DNEQNF(FCNI,ERRREL,N,ITMAX,XI,X, FNORM}
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TH=X (1)

PH=X(2)

ZY1=X(1)

ZY2=X(2)

N=3

ERRREL=0.1D-10
ITMAX=200
XI1(1)=0.0
XI(2)=THF

XI(3)= 0.0

IF (JCC.EQ.1) THEN
CALL DNEQNF (FCNM,ERRREL,N, ITMAX,XI,X,FNORM)
ELSE

CALL DNEQNF (FCNMR,ERRREL,N, ITMAX,XI,X, FNORM)
END IF

PHI2PO=X (1)
XI(1)=2Y1
XI1(2)=2Y2
X1(3)=x(2)
XI1(4)=X(3)
XI{(5)=PHIlP
WRITE (9, 149)

FORMAT (//6)(' URIR S LAt R S S ATt C TR R T C R R R S T R LR LR TR R F R T FA T Rt R AT TR ERT PR .

6X. "% V aND H
6X . B H R e S R TR R Rt Rt +

WRITE(9,139) V,H

FORMAT (//4X, "™ v = ' Gl4, 7, 'w%% H =' Gi4 7/

JCL=3
GO TO 5555

vV AND H CHECK FOR HEEL POSITION

HMH=WD+CCC-1.0/4.0%FW* (DTANIFA) =DTAN (RA
DED2H=DED2-1.0/4.0"FW*DTAN{RA)
HMCD=MCD~0.25%FwW

HMH=WD~CC-0.16*FW* (DTAN{FA,*DTAN (R4},
DED2H=DED2-0.16*FW"DTAN (RA"

HMCD=MCD~-0. 16"FW
XL=HMCD*DCOS (PGMA2) ~ (DED2H-HMH/2.0) *DSIN {PGMA2}
RL=HMCD*DSIN (PGMA2) - (DED2H-HMH/2.0) *DCCS (PGYa2!
ERRREL=0.1D-7

N=2

ITMAX=200

IF (JCH.EQ.1) THEN

XI(1)=270.0%CNST=B2

ELSE

X1(1)=90.0%CNST-B2

X1(1)=B2

END IF

X1(2)=0.0

CALL DNEQNF (FCN!,ERRREL,N, ITMAX,XI.X,FNORM)
TH=X (1)

PH=X(2)

ZY1=X(1)

ZY2=X(2)

FIND THE V AND H VALUE FOR HEEL POSITION
N=3

ERRREL=0.1D-10

ITMAX=200
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XI(1)=0.00

XI(2)=THF

XI1(3)= 0.0

XI1(2)=THF+0.2

X1(3)=-0.2

IF (JCC.EQ.1) THEN

CALL DNEQNF (FCNM,ERRREL.N, ITMAX,XI,X,FNORM)
ELSE

CALL DNEQNF (FCNMR,ERRREL,N,ITMAX,XI,X,ENCRM)
END IF

PHI2PO=X (1)

XI(1)=2Y1

XI1(2)=2Y2

XI(3)=X(2)

A1(4)=X(3)

XI1(5)=PHILP

WRITE(9,11) PHI2PO,PHI.P

WRITE!9,159)

FORHAT(//6X"xr:ﬁﬂxnxrx:::rxr:t:v:rrxw~“v~~:“-:w----.
& 6X,'% V AND H CHECK a7 HEEZL PTSITI.N
& 6X, Lt SRS I R I S 1t S LR TR At R T R TRt R ¢

WRITE(9,169) V.H
FORH_AT(//[‘X":::::: v = “G1&.7":::.’:: H =‘.‘:vl~‘.7,

JCL=1

GOTO 5555

CONTINUE

IF:KSIDE.EQ.U) GOTL [990
STOP

END

FCNL IS TO FIND THE MZAN CINTAUCT 27TINT

SUBROUTINE FCNL(X.F,Ni

IMPLICIT REAL¥8 (a-H.0-Z:

INTEGER N

REAL™8 X(N),F(N),mcd
COMMON/AL/CNST. TN TN2,C.Fw, GAMMA, x1, Tl . mcc
COMMON/A3/B2,RGMA2, FGMA2,PGMA2 , D2R.D2F  ADDL . DEDZ WD, C(, D27
COMMON/AL/SR2,G2,RC2.PW2.XB2 XG2,EM2.GaMa2 , CR2,ALP2,2PHI2, PHIZ?
COMMON/AS/SG, XM, YM, ZM, XNM, YNM ZNM X2M V2M Z2M XNIM_YN2M, ZNINM,
&XNH2,YNH2,2ZNH2 ,XHZ,YH2,ZH2

TH=X(1)

PH=X(2)

SP=DSIN(ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMAZ)

CM=DCOS (CAMA2)

STP=DSIN(TH-PH)

CTP=DCOS (TH-PH)

XNM=-CP*CTP

YNM=-CP*STP

ZNM= SP

AALl=RC2*STP-SR2*DSIN(-Q2-PH)

AA2=RC2*CTP+~SR2*DCCS  -Q2~-PH:

AX=-TM2%SM

AY= 4B2*CM

AZ= EH27CM

FIND SG
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Tl= XNM* (AX-AAL* (SM-CR2))+YNM* (AY+AA2* (SM~-CR2) ) +ZNM* (AZ+AA1*CM)
T2=-XNM*(SH-CR2)*SP*STP*YNM*((SM-CRZ)*SP*CTP-CP*CH)+ZNM*CH*SP*STP
SG=T1/T2

XM= (RCZ-SG*SP)*CTP*SRZ*DCOS(—QZ-PH}
YM= (RCZ-SG*SP)*STP+SR2*DSIN(‘QZ-PH)
IM=-5G*Cp

AM=-SG*SP*CTP+AA2

YM=-SG*SP*STP+AAl

ZM=-SG*CP

xX= CM*XM+SM*ZM~XG2-XB2*SM

yY= YM+EM2

2Z=-SM*XM+CM*ZM~XB2*CM

XN= CM*XNM+SM*ZINM

YN= YNM

IN==-SM*XNM+CM*ZNM

PHI2=PH/CR2

sh2=dsin(phi2)

ch2=dcos (phi2)

X2M= xX

Y2M= CH2*yY-SH2%2Z

Z2M= SH2%yY+CH2%z2Z

XN2M= XN

YN2M= CH2*YN-SH2%*ZN

IN2M= SH2*YN+CH2*ZN

F(1)=X2M-XL

F (2) =sz'n':z..Zz:‘::':Z_RL:‘:7‘:2
F(2)=Y2M#¥2+22M* %2R 32

RETURN

END

SUBROUTINE CURVAI IS TO COMPUTER THE CURVATURE OF THE
GENERATED SURFAFE

SUBROUTINE CURVAIL

IMPLICIT REAL*8(A-H,0-2)

REAL™8 KS,KQ,KF,KHd

DIMENSION ESN(3),EON(3),WIVT2(3),WVi2{3),W2VvT1(3)
COMMON/Aé/ES(3),EQ(B),CN(3),w1(3),w2(3),w12(3),VT1(3),VT2(3)
$V12(3) ,KS,KQ,KF,KH,EF(3),EH(3),SIGSF,PI2]

’

ESN(1)= CN(2)*ES(3)-CN(3)*ES(2)
ESN(2)=-(CN(1)*ES(3)-CN(3)*ES (1))
ESN(3)= CN(1)"ES(2)-CN(2)*ES(1)

EQN(1)= CN(2)*EQ(3)-CN(3) *EQ(2)
EQN(2)=-(CN(1) *EQ(3)-CN(3) *EQ(1))
EQN(3)= CN(1)*EQ(2)-CN(2) *EQ(1)

WIVT2(1)= W1{2)*VT2(3)~W1(3)*VT2(2)
WIVT2(2)=- (W1 (1)*VT2(3)-W1(3)*VT2(1))
WIVT2(3)= WI(1)*VT2(2)~W1(2)*VT2(1)

W2VT1(1)= W2(2)*VT1(3)-W2(3)*VT1(2)
W2VT1(2)=- (W2 (1) *VT1(3)-W2(3)*VT1 (1))
W2VT1(3)= W2(1)*VT1(2)-W2(2)*VT1(1)

WV12(1)= W12(2)*V12(3)-W12(3)*v12(2)
WY12(2)=-(WI12(D)*V12(3)-W12(3)*Vi2(1))
WV12(3)= Wi2(1)*V12(2)-W12(2)*V12(])
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V125=0.
v12Q=0.
WNES=0.
WNEQ=0.
VWN= 0.
W1TN=0.
W2TN=0.
VI2N=0.

OO O0OO0CO0OOOO0

Do 1 I=1,3

V12S= V12(I)*ES(I)+V12S
V12Q= V12(I)*EQ(I)+V12Q
WNES= W12 (I) *ESN(I)+WNES
WNEQ= W12 (I)*EQN(I)-WNEQ
VWN = CN(I)*WV12(I)+VYWN
WITN= CN(I)*WIVT2(I)+*W1TN
W2TN= CN(I)*W2VT1(I)~W2IN
VT2N= CN(I)*VT2(I)+VI2N
CONTINUE

COMPUTER THE CURVATURE OF THE GENERATED SURFACE

Al3=-KS*V12S-WNES

A23=-KQ*V12Q-WNEQ
A33=KS*V]125%*2+KQ*V12Q¥*“2-VWN-WITN“WZTN+PI21%VT2N/W2(3)
T1=2.0D00*A13%*a23
T2=A237%%2-A13%72~ (KS-KG! *a23
SIG1F=0.5D0O0*DATAN2(T1,T2)

KF=0.50D00% (KS+KQ) -0.5D00 {A23%%2+-423%52 /A33
&+A13%A23/ (A33*DSIN(2.0D00*SIGLF))

KH= KF-2.0D00*A137423/(A33"DSIN{2.0D0O0*SIGLIF,)>
SIGSF=SIGIF

DO 2 1=1,3

EF(I)= DCOS(SIGLF)*ES(I)-DSIN(SIGIF)*EQ(I)
EH(I)= DSIN(SIGLF)*ES(IY~DCOS(SIGIF!*EQ(I)
CONTINUE

RETURN

END

FCN2 IS TO FIND THE INITIAL GEAR ROTATIONAL ANGLE

SUBROUTINE FCN2(X,F,N)

IMPLICIT REAL*R (A-H,0-2)

INTEGER N

REAL*8 X{N},F(N)

COMMON/A1/CNST, TN1,TN2,C,FW, GAMMA, XL,RL,MCD
COMMON/AS/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M, Y2M,2Z2M, XN2M, YN2M, ZN2Y,
&XNH2,YNK2,ZNH2,XH2, YH2,ZH?2

CM=DCOS (GAMMA)

SM=DSIN (GAMMA)

CHP=DCOS (X (1))

SHP=DSIN(X(1))

XX= X2™

YY=-Y24{*CHP+Z2M*SHP

22=-Y2M*SHP-Z2M*CHP

XH2= XY *CM+2Z%*SM

YH2= YY+C

ZH2=-XX"SM+22%*CM

163




e N el

a0

XX= XN2M
YY=-YN2M*CHP+ZN2M*SHP
ZZ=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CM+ZZ*SM
YNH2= YY
ZNH2=-XX*SM+ZZ*CM

R12=TN1/TN2

V12X=- (YH2-C) *SM*R12

V12Y= XH2*SM*R12+(1.0+R12%CM) *ZH2
V12Z=-YH2*(1.0+R12%CM)+C*CM*R12
F(1)=XNH2*V12X+YNH2*V12Y+ZNH2*V12Z
RETURN

END

THE FOLLOWING IS THE TCA SUBROUTINE FOR CURVED BLADE

SUBROUTINE FCNR(X,F,N)

IMPLICIT REAL*8(A-H,0-2)

real*8 x(N),f(N)

DIMENSION CH(3),P(3),ELEF(3),ESN(3),EQN(3),W1VT2(3,,WVv12(3),
SW2VT1(3) ,EFIH(3) ,EFIIH(3) ,RH(3),GNH(3) ,E21IH(3) ,E2ITH(3},
&E1IH(3) ,ELIIH(3),EFI(3),EFII(3),E1I(3),E1TII(3),GN(3),EFEL{3).
&ERR (20) ,XP(20) ,YP(20)

COMMON/A1/CNST,TN1,TN2,C,FW,GAMMA, x1,rl,med

COMMON/A2/B1,RGMAL,FGMALl,PGMAL ,DIR,DIF, ADD1,DEDI

COMMON/A3/B2,RGMA2,FGMA2,PGMA2 ,D2R,D2F, ADD2.,DED2 ,WD,CC.D2P

COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2,EM2,GaMA2,CR2,ALP2 PYTI2 DUTI2D

COMMON/AS5/SG, XM, YM, ZM, XNM, YNM, ZNM, X2M,Y2M, 224, XN2M, YN2M, ZN2M,
&XNH2,YNH2,ZNH2 ,XH2,YH2,ZH2

COMMON/A6/ES (3) ,EQ(3),CN(3) ,WL1(3),W2(3) ,W12(3),VT1(3),vT2(3),
$v12(3) ,KS,KQ,KF,KH,EF(3) ,EH(3),SIGSF,PI2!

COMMON/A7/SR1,Ql,Rcf,PWl,XB1,XGl,EM1,GaMAal,CR!,ALP.,PHI! PHILP

COMMON/A8/SE , XML, YM1,ZM1, XNM1, YNM1,ZNM1, X1M, V1IN, 21X,

&XN1IM, YNIM,ZNIM, XNH!, YNH],ZNH],XH1,YH],ZH]
COMMON/A9/PHI2P0,0X,0Z,X0,20,RHO,ALP,V,H,CRIT,PCRLT
COMMON/AL11/RAM,PSI1,C2.D6,E24,F120,C%6,DX24,EX120.RL1,DELT.RLP,

SRAl,CPF,DPF,EPF, FPF
TH=X(1)

PH=X(2)

SP=DSIN(ALP2)

CP=DCOS (ALP2)

SM=DSIN (GAMA2)

CM=DCOS (GAMA2)

STP=DSIN(TH-PH)

CTP=DCOS (TH-PH)

XNM=-CP*CTP

YNM=-CP*STP

ZNM= SP

AAI=RC2*STP+SR2*DSIN(-Q2-p'™"

AA2=RC2*CTP+SR2*DCOS (-Q2-PH)

AX=-EM2%*SM

AY= XB2*CM

AZ= EM2*CM

FIND SG

Tl= XNM*(AX-AA1*(SM~CR2))+YNM" (AY*AA2% (SM-CR2) i ~ZNM¥(AZ~AA1TCM)
T2=-XNM”* (SM~CR2) *SP*STP+YNM* ( (SM-CR2) “SP*CTP-CP (M  ~ZNY*CM*SP*STP
5G=T1/T2
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XM= (RC2-SG*SP) *CTP+SR2*DCOS (-Q2-PH)
YM= (RC2-SG*SP)*STP+SR2*DSIN(-Q2-PH)
ZM=-5G*CP
XM=-SG*SP*CTP+4aA2
YM=-SG*SP*STP+AAl
ZM=-SG*CP

xX= CM*XM+SM*ZM-XG2-XB2*SN
yY= YM+EM2
22=-SM*XM+CM*ZM-XB2*CM
XN= CM*XNM+SM*ZNM

YN= YNM
ZN=-SM*XNM+CM*ZNM
PHI2=PH/CR2
sh2=dsin(phi2)
ch2=dcos (phi2)

X2M= xX

Y2M= CH2*yY-SH2%z2
22M= SH2%yY+CH2%z2
XN2M= XN

YN2M= CH2*YN-SH2*ZN
ZN2M= SH2*YN+CH2%ZN
CMM=DCOS (GAMMA)
SMM=DS IN (GAMMA)
CHP=DCOS (PHI2P)
SHP=DSIN(PHI2P)

XX= X2M
YY=-Y2M*CHP+Z2M*SHP
2Z=-Y2M*SHP-2Z2M*(CHUP
XH2= XX*CMM+ZZ*SMM
YH2= YY+C~+V
ZH2=-XX*SMM+Z2Z*CMM

XX= XN2M
YY=-YN2M*CIP+ZN2M*SHP
2Z=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CMM~ZZ*SMM
YNH2= YY
ZNH2=-XX*SMM+ZZ*CMM

DEFINE THE PINION SURFACE

TH1=X(3)

PH1=X(4)
SM1=DSIN(GAMAL)
CM1=DCOS (GAMAL)
STP=DSIN(TH1+PHI)
CTP=DCOS (TH1+PH])

FIND CRIT,PF,PPF,PCRIT

DDD=DABS (PH1)
IF (DDD.LE.0.001) GOTO 6
PHIL1=RA1* (PH1-CPF*PH1**2-DPF*PH1**3~EPF*PH1**4~-FPF*PH]1**5)
PF=RA1*(1.0-2.0%CPF*PH1-3.0"DPF*PH]"*2
$-4,0"EPF#PH1"%*3-5 0" FPF*PH1"*4)
PPF=-RA1*(2.0*CPF+6.0"DPF*PH]1+12. 0 EPF*PH1**2+-20.0%*FPF PH1%*3)
CR1T=1.0/PF
PCR1T=-PPF/PF**3
GOTO 7
PHI1=RAl*PHI
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CR1T=CR1
PCR1T=2.0"CPF/ (RAL1**2)
CONTINUE

CR1T=CR1

PCR1T=0.000

FIND THE NOMAL OF THE EQUIDISTANCE SURFACE

XMO= XO*CTP+SR1*DCOS (-Ql+PH1)
YMO= XO*STP+SR1*DSIN(-Ql+PH1)
ZMO= 20
V1X=-YMO*SM1-EM1¥*SM]

V1Y= XMO*SM1-(ZMO-XB1) *CM]
V1Z= YMO*CM1+EM1*CM1
V2X=-YMO*CRIT

V2Y= XMO*CRIT

v2z= 0.0

VX=V1X-V2X

VY=v1Y-V2Y

VZ=v1z-v22

TX=-CTP

TY=-STP

TZ2=0.0

FX= STP

FY=-CTP

FZ=0.0

XNN= FY*yZ-FZ*VX

YNN= FZ*VX-FX*VZ

ZNN= FX*VY-FY*VX

DDD=DSQRT (ANNH#2+YNN¥* 2~ ZNN*#2)
XNM1=XNN/DDD

YNM1=YNN/DDD

ZNM1=ZNN/DDD
DT=TX*XNM1+TY*YNM1+TZ*ZNM1
IF(DT.GE.0.0) GOTO 10
XNM1=~XNM1

YNM1=-YNMI

ZNM1=-ZNM1

CONTINUE

XM1= XMO-RHO*XNM1

YM1= YMO-RHO*YNM1

ZM1= ZMO-RHO*ZNM1
ALP=DARCOS (TX*XNM1+TY*YNM1+TZ*ZNM1)
xX= CM1*XM1+SM1*ZM1-XG1-XB1*SM]
yY= YM1+EM1
2Z=-SM1*XM1+CM1*ZM1-XB1*CM1
XN1=CM1*XNM1+SM1*ZNM]
YN1=YNM]
ZN1=-SM1*XNM1+CM1*ZNM]
PHI1=PH1/CRI]

shl=dsin(phil}

chl=dcos (phil)

XIM= xX

YIM= CH1*yY+SH1%*z2
Z1M=-SH1*yY+CHl*22

XNIM= XNl

YNIM= CH1*YNI1+SH1*zN1
ZNIM=~SH1*YN1+CH1*ZN1
PHI1P=X(5)

shlP=dsin(phil™)
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chlP=dcos (philP)

XH1l= X1M+H

YH1= CHIP*YIM-SHIP*ZIM
ZHl= SHIP*YIM+CH1P*Z1M
ANH1= XN1IM

YNHl= CHIP*YNIM-SH1P*ZNIM
ZNH1= SHIP*YNIM+CH1P*ZNIM
F(1)=XH2-XH1

F(2)=YH2-YHI

F(3)=2ZH2-2ZHl
F(4)=XNH2-XNH1
F(5)=ZNH2-ZNH!

RETURN

END

THE FOLLOWING IS THE SUBROUTINE FOR STRAIGHT BLADE

SUBROUTINE FCN(X,F,N)

IMPLICIT REAL*8(A-H,0-2)

real®8 x(N),f(N)

DIMENSION CH(3),P(3),ELEF(3),ESN(3) ,EQN(3) ,WIVT2(3),WV12(3),
SW2VT1(3) ,EFIH(3) ,EFIIH(3) ,R4(3) ,GNH(3) ,E2IH(3) ,E2IIH(3),
&EL1TIH(3) ,E1IIH(3) ,EFI(3) ,EFII(3),E11(3),E1II(3),GN(3),EFEL1(3),
&ERR (20) ,XP(20),YP(20)

COMMON/ALl/CNST,TN1,TN2,C,FW,GAMMA, x1,rl ,med

COMMON/A2/B1,RGMAL ,FGMAL,PGMALl,DIR,.D1F,ADDL,DEDI

COMMON/A3/B2,RGMA2,FGMA2,PGMA2, D2R,D2F, ADD2 ,DED2, WD, CC,D2P

COMMON/AL/SR2,Q2,RC2,PW2,XB2,XG2,EM2,GaMA2,CR2,ALF2,PHIZ.PHIZ

COMMON/AS/SG, XM, YM, 2ZM, XNM, YNM, ZNM, X2M, Y2M, Z2M, XN2M, YN2M, ZN2M
&XNH2,YNH2,ZNH2,XH2, YH2,ZH2

COMMON/A6/ES(3) ,EQ(3).CN(3) ,W1(3),W2(3),W12(3),VT1(3),vT2{3;,
SV12(3) ,KS.KQ,KF,KH,EF (3 ,EH(3) ,SIGSF,PI21

COMMON/A7/SR1,Ql ,Rcf,PW!,XB1,XGl,EM],GaMAl,CR]1,ALPL,PHI] PHIIP

COMMON/A8/SE, XML, YM1,ZM1, XNM1, YNML,ZNM1,XIM, YIM, 21N,

&XNIM, YNIM,ZNIM, XNH1,YNH1, ZNH1, XH1, YH], ZH!
COMMON/A9/PHI2P0,0X,0Z,XC,20,RHO, ALP,V H,CR1T,PCRI1T
COMMON/All/RAM,PSI1,C2,D6,E24,F120,C%6,DX24,EX120,RUL,DELT,RUP

SRAl,CPF,DPF,EPF, FPF
TH=X (1)

PH=X(2)

SP=DSIN{ALP2)

CP=DCOS (ALP2;

SM=DSIN (GAMA2)

CM=DCOS (GAMAZ)

STP=DSIN(TH-PH)

CTP=DCOS (TH-PH)

XNM=-CP*CTP

YNM=-CP*STP

ZNM= SP

AA1=RC2%*STP~SR2*DSIN(-Q2-PH)

AA2=RC2*CTP+SR2*DCOS (-Q2-PH)

AX=—-EM27%SM

AY= XB2%*CM

AZ= EM2%CM

u

13

FIND SG

Tl= XNM*(AX-AA1" (SM-CR2))+YNM¥ (AY+AA2¥ (SM~CR2) ) +ZNM* (AZ+AAL17CM)

T2=-XNM* (SM-CR2) *SP*STP~YNM* ((SM-CR2) *SP*CTP-CP (M) ~ZNM“CM*SP*STP

SG=T1/T2
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XM= (RC2-S5G*SP) *CTP+SR2*DCOS (-Q2-PH)
YM= (RC2-SG™SP) *STP+~SR2*DSIN(-Q2-PH)
ZM=~5G*CP
XM=-SG*SP*CTP+AA2
YM=-SG*SP*STP+aAl
C ZM=-SG*CP
xX= CM*XM+SM*ZM-XG2-XB2*SM
yY¥= YM+EM2
2Z==SM*XM+CM*ZM-XB2*CM
XN= CM*XNM+SM*ZNM
YN= YNM
ZN=-SM*XNM+CM*ZNM
PHI2=PH/CR2
sh2=dsin (phi2)
ch2=dcos (phi2)
X2M= xX
Y2M= CH2%yY-SH2%*z2
Z2M= SH2¥yY+CH2%"2Z
XN2M= XN
YN2M= CH2¥*YN~SH2%ZN
ZN2M= SH2*YN+CH2*ZN
CMM=DCOS (GAMMA)
SMM=DS IN (GAMMA)
CHP=DCOS (PHI2P)
SHP=DSIN(PHI2P)
XX= X2M
YY=-Y2M*CHP~Z2M*SHP
22=-~_{"SHP-Z2M*CHP
XH2= XX*CMM-Z2Z*SMM
YH2= YY+C~V
C YH2= YY+C-V
ZH2=-XX"SMM~2Z*CMM

[ Xe)

XX= XN2M
YY=-YN2M*CHP+~ZN2M*SHP
ZZ=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CMM+ZZ*SMM
YNH2= YY
ZNH2=-XX*SMM+ZZ*CMM

(@]

DEFINE THE PINION SURFACE

TH1=x(3)

PH1=X(4)

SP1=DSIN(-ALP!)
CP1=DCOS(-ALP1)
SM1=DSIN(GAMAL)

CM1=DCOS (GAMAD
STP=DSIN(TH1+PH1)

CTP=DCOS (TH1+PH!1)
XNM1=-CP1¥%(CTP

YNM1=-CP1*STP

ZNM1= SP]
AB1=RCF*STP+SR1*DSIN(-Q1+PH1)
AB2=RCF*CTP+~SR1%DCOS (~Q1+PH])
AXX=-EM1*SM1

AYY= XB1l*CMl

AZZ= EMI“CM!

C
C... FIND SF,CRIT,PF,PPF,PCRIT
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DDD=DABS (PH1)

IF(DDD.LE.0.001) GOTO 6

PHI1=RAl* (PH1-CPF*PH1“*2-DPF*PH1**3-EPF*PH 1" 4-FPF PH1*¥5)
PF=RA1*(1.0-2.0%CPF*PH1-3.0*DPF*PH1**"
$~4.0*EPF*PH1*¥*3-5 0"FPF*PH1*¥4)

PPF=-RA1*(2.0%CPF+6.0*DPF PH1«~12.0%L F*PH1 ¥ 220 0 FPF¥PH %~

CRIT=1.0/PF
PCR1T=-PPF/PF"*3
GOTC 7
6 PHI1=RAl*PH1
CR1T=CR1
PCRIT=2.N*CPF/ (RAL1**2)
7 CONTINUE
CRIT=CR1l
C PCR1T=0.000
Tl= XNMI*(AXX-ABLl*(SM1-CRIT))~
&YNM1*(AYY+AB2 (SMI-CRIT)) -ZNM1¥ (AZZ-ABL1=CM1)
T2=-XNM1*(SM1-CRIT)*SP1#STP~
&YNM1% ((SM1-CKIT)*SP1*CTP-CP."(CML)~ZNMI*CM1SP1gTP
SF=1'/T2

O

XM1= (RCF-SF¥*SP1)“CTP~SR1*DCOS(-01~PHI)
YM1= (RCF-SF*SP1)*STP~SR1*DSIN(-Ql-PH1)
ZM1=-SF*CP1

xX= CM1*XM1+SM17ZM1-XGl-XB1%SM]

yY= YM1-EMI

2Z=-SM17XMI+CM1¥ZM1-XB1"CM¥1
AN1=CMITXNMI~SM17ZNML

YN1=YNMI

ZNI==SMI“XNMI~CM1I"ZNM!

C PHIl=PH1/CR!
shl=dsin(phil/
chl=dcos (phil)

XIM= xX

YIM= CHl®yY+SH1%z2
Z1M=-SH1*vY~CH1%z2
XNIM= XN1

YNIM= CHITYN1-SH1®ZN1
ZNIM=~SH1*YN1-CH1*zN]

o WRITE(9,111) XIM.YIM,Z1M
PHIL1P= X(5)
shlP=dsin(philP)
chlP=dcos (philP)

XH1= X1M~H

YH!= CHIP*YIM-SHiP*Z1M
ZH1= SHIP*YIM*CHIP®Z1M
XNH1= XN1IM

YNH1= CHIP*YNIM-SH1P“ZINIM
ZNHl= SHIP*YNIM~CHIP*ZNIM
F(1)=XH2-XH1

F(2)=YH2-YH1

F(3)=2H2-ZHl

F(4) =XNH.-XNH1
F(5;=YNH2-YNHI

RETURN

END
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Aa Q00ia

Aa 00020

AAa 00030




OaOon

TO 00O

(@

% OF THE CONTACT ELLIPSE %
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SUBROUTINE ELLIP

IMPLICIT REAL*8(A-H,0-2)

REAL*8 KS,KQ,K1I,K1II,K21,K211

DIMENSION RO(3),ETA2(3),2ETA2(3) ,E1E2(3),ETA(3),ZETA(3)
DIMENSION EIIH(3),El1ITH(3),E2IH(3) ,E2TIH(3),GNH(3)
COMMON/A1/CNST,TN1,TN2,C.FW,GAMMA, x1,rl,med
COMMON/A3/B2,RGMA2, FGMAZ,PGMA2,D2R, D2F, ADD2,DED2,WD,CC,D2P
COMMON/A4/SR2,Q2,RC2,PW2,XB2,XG2,EM2,GaMA2,CR2,ALP2,PHI2,PHI2P
COMMON/AS5/SG, XM, YM,ZM, XNM, YNM, ZNM, X2M, Y2M, 22M, XN2M, YN2M, ZN2M,
&XNH2, YNH2,ZNH2,XH2,YH2,ZH2
COMMON/A9/PHI2P0O,0%,0Z,X0,20,RHO,ALP,V,H,CR1T,PCRIT
COMMON/AIO/K1I,K11I,K2I,K211,DEL,E1IH,E1IIH,E2IH,E2IIH.CNH,
&A2P ,B2P, TAUIR, TAU2R,A2L,B2L

CNST=DARCOS (-1.0D00) /180.00

E1E2(1)= EL1IH(2) *E2IH(3)-EI1IH{3)*E2IH(2)
E1E2(2)=-(E1IH(1)*E2IH(3)-EITH(3) *E2IH(1))
E1E2(3)= EIIH(1) *E2IH(2)-ElIH(2)*E2IH(1}

T1=0.0

T2=0.0

DO 1 I=1,3

Tl= EITH(I)“E2IY(I)+Tl
T2= GNH(I)*E1E2(I)-T2
CONTINUE

T1=T1-1.0D00O
SIG12=2.0DO0"DATAN2 (T2, T}

SK1= KIlI+K1II
SK2= K2I+K2II
SGl= KI1I-K1II
SG2= K2I-K2II

T1=SG1-SG2*DCOS(2.0D00*S1G12)
T2=SG2*DSIN(2.0D00%SIG12)
T3=DSQRT(SG1*¥2+5G2%*2-2.0D00*SG1*SG2"DCOS{2.0D00*S1G12))

TX=T2/13
TY=T1/T3+1.0D00
ALP12=DATAN2(TX,TY)

THE DIRECTION AND LENGTH OF THE AXES OF CONTACT ELLIPSE

DF1 =0 _C0700D00

AL=0.25D00* (SK1-SK2-T3)

BL=0.25D00* (SK1-SK2-T13)

WRITE(9,5) SIGl2,AL,BL

FORMAT(2X, 'SIG12, AL,BL = ',3(2X,Gi4.7)
AL=DABS (AL)

BL=DABS(BL)

A2L=2.0D00*DSQRT(DEL/AL)
B2L=2.0DOO"DSQRI(DEL/BL)

DO 2 I=1

3
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ZETA(I)= DSIN(ALP12)*E)IH(I)+DCOS(ALP12)*E1IIH(I)
CONTINUE

DETERMINE THE PROJECTION OF CONTACT ELLIPS IN AXIAL SECTION

CHP=DCOS (PHI2P)
SHP=DSIN (PHI2P)

CMM=DCOS (GAMMA)
SMM=DSIN (GAMMA)

XX= ETA(1) *CMM-ETA(3) *SMM
YY= ETA(2)

2Z= ETA(1) *SMM+ETA{3)*CMM
ETA2(1)= XX
ETA2(2)=-YY*CHP-ZZ*SHP
ETA2(3)= YY*SHP-ZZ*CHP

XX= ZETA(1l)*CMM-ZETA(3) *SMM
YY= ZETA(2)

ZZ= ZETA(1)*SMM+ZETA(3)*CMM
ZETA2(1)= XX
ZETA2(2)=-YY*CHP-ZZ*SHP
ZETA2(3)= YY*SHP-ZZ*CHP

RO(2)=Y2M/DSQRT (Z2M*"2-Y2M**2)
RO(3)=22M/DSQRT (Z2M**2-Y2M**2)
RO(1)=0.0D0OC

T11=0.0D00O

T12=0.0D00
DO 3 I=1,3

T12= ETA2(1)*RO(I)~-T12
TII=ZETA2(I)*RO(I)~T11
CONTINUE

TAUl=DATAN2(T11,ZETA20(1):
TAU2=DATAN2(TL12,ETA2(1)>

A2P=A2L"ZETA2(1) /DCOS(TALD
B2P=B2L"ETA2(1) /DCOS{TAL2)

TAUIR=(T.U1-RGMA2) /CNST
TAU2R=(TAU2-RGMAZ) /CNST
RETURN

END

THE FOLLOWING IS THE V-H CHECK PROGRAM FOR CURVED BLADE

SUBROUTINE FCNMR (X,F,N}

IMPLICIT REAL™8(A-H,0-2)

real ™8 x(N),f(N)

COMMON/AL/CNST,IN1,TN2.C.FW,GAMMA , x1,rl,med
COHHON/AS/SG,XM.Yﬂ.Zﬂ.XNH,YNH,ZN”.XZ”,YZX.Zzﬁ,XNZX,YN:H,ZﬁZﬂ.
&XNH2 ,YNH2,ZNH2,%H2,YH2,ZH2

COMMON/A7/SRL,Q1,Rcf,PW! XBl,XGl,EM!,GaMAl ,CRL,AaLP],PH11,PHILP
COMMON/A9/PHI2P0,0X,0Z,X5,20 ,RHO,ALP,V,H,CRIT,PCRIT

COMMON/AL1/RAM,PS11,C2,D6,E24,F120,CX6,DX246  EX120,RUL,DELT RUP,

SRAL,CPF,DPF,EPF FPF
CM=DCOS (GAMMA)
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SM=DSIN (GAMMA)
CHP=DCOS (PHI2P0)
SHP=DSIN(PHI2PO)
CHP=DCOS (X (1))
SHP=DSIN(X(1))

XX= X2M
YY=-Y2M*CHP+Z2M*SHP
Z2Z=-Y2M*SHP-Z2M*CHP
AH2= XX*CM+ZZ*SM
YH2= YY+C
ZH2=-XX*SM+ZZ*CM

XX= XN2M
YY=-YN2M*CHP+ZN2M*SHP
ZZ=-YN2M*SHP~ZN2M*CHP
XNH2= XX*CM+ZZ*SM
YNH2= YY
ZNH2=-XX*SM+2Z*CM

DEFINE THE PINION SURFACE

TH1=X(2)

PH1=X(3)
SM1=DSIN(GAMAl)
CM1=DCOS (GAMAL)
STP=DSIN(TH1+PH1)
CTP=DCOS (TH1+PH1)

FIND CRIT,PF,PPF,PCRIT

DDD=DABS (PH1)
IF(DDD.LE.0.001) GOTO 6
PHI1=RA1™ (PHI-CPF*PHl*#2-DPF¥PH] ¥ 3-EPF“PH ] x4=FPF Py 5,
PF=RA1*(1.0-2.0%CPF*PH1-3.0"DPF*PH]*2
S—4.0%EPF*PH1*%3-5 (Q*FPF~PH]*"4)
PPF=-RA1*(2.0%CPF+6.0%DPF*PH1-12, 0¥EPF¥PY %5020 QHFPERpY )
CR1T=1.0/PF
PCRIT=-PPF/PF™3

GOTO 7

PHI1=RA17*PHI

CRIT=CR1
PCR1T=2.0%CPF/ (RA17%2)
CONTINUE

]

FIND THE NOMAL OF THE EQUIDISTANCE SURFAC

rn

XMO= XO¥CTP+SR1*DCOS(~Q1+PHI)
YMO= XO*STP-SRI*DSIN(-Ql+PH!)
ZMO0= 20

VIX=-YMO*SM1-EM17SM]

V1Y= XMO*SMI- (ZMO-XB1)*CM]
V1iZ= YMO*CM1+EM1*(CMI
V2X=-YMO*CRIT

V2Y= XMO*CRIT

v2z= 0.0

VX=V1X-V2X

VY=V1Y-V2Y

VZ=V1Z-V22

TX=-CTP

TY=-STP
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T2=0.0

FX= STP

FY=-CTP

Fz2=0.0

XNN= FY*VZ-FZ*VX

YNN= FZ¥VX-FX*VZ

ZNN= FX*VY-FY*VX

DDD=DSQRT (XNN**2+YNN**2~2ZNN**2)
XNM1=XNN/DDD

YNM1=YNN/ODD

ZNM1=ZNN/DLD

DT=TX*XNM1- TY*YNM1+TZ*ZNM1
1IF(DT.GE.0.0) GOTO 10
XNM1=-XNM1

YNMI=-YNM]

ZNM1=-ZNM1

CONTINUE

XM1= XMO-RHO*XNMI1

YM1= YMO-RHO*YNMI

ZM1= ZMO-RHO*ZNM!
ALP=DARCOS (TX*XNM1+TY* YNM1-TZ*ZNM1)
xX= CM1%*XM1+SM1%ZM1-XG1-XB1*SM1
yY= YM1+EMI
2Z=-SM1*XM1+CM1%*ZM1-XB1*CM]
XN1=CM1*XNM1+SM1*ZNM1
YN1=YNMI
IN1=-SM1“XNM1+CM1*ZN¥1
PHI1=PH!/CR!

shl=dsin(phil)

chl=decos (phil)

X1IM= xX

Y1M= CHl*yY-SH1%*zZ
ZlM=*SH1*yY*CH1*zZ

XNIM= XN1

YNIM= CH1*YN1+SH1%ZN1
ZNIM=-SH1*YN1-CH1*ZN!

TT=YNIM**2+ZNIM*"2
SH1P=(-ZNIMTYNH2-YNIM¥ZNH2) /TT

CHLIP=( YNIM*YNH2+ZNIM¥INH2)/TT
PHI1P=2.0D00*DATAN2 (SH1P, (1.0D0O0~CH1P))

XHI= XIM

YH1= CHIP*YIM-SHIP®ZIM
ZHl= SH1P*YIM+CHIP¥ZIM
XNH1= XNIM

YNH1= CHIP¥YNIM-SHIP™ZNIM
ZNH1= SHI1P*YNIM+~CHIP“ZNIM
v=-(YH2-YH])

H=XH2-XHI

F(1)=2H2-ZH!

F(2)=XNH2-XNH!
F(2)=YNH2"2+ZNH2**2-TT

R12=TN1/TNZ
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V12X=0.0-YH2*SM*R12

V12Y= ZH1+R12%* (XH2*SM+ZH2%*CM)
V12Z=-YH1-R12*YH2*CM
V12X=-(YH2-(C-V)) *SM*R12

V12Y= XH2*SM*R12+(1.0+R12%CM)*ZH2
V12Z=-YH2*(1.0+R12%CM)~(C-V) *CM*R12
F(3)=XNH2*V12X+YNH2"V12Y+-ZNH2*V12Z
RETURN

END

THE FOLLOWING IS THE V-H CHECK SUBROUTINE FOR STRAIGHT BLADE

SUBROUTINE FCNM(X,F,N)

IMPLICIT REAL*8(A-H,0-2)

real®8 x(N),f(N)

COMMON/A1/CNST,TNI,TN2,C,FW,GAMMA, x1, !, med

COMMON/AS/SG, XM, YM, ZM, XNM, YNM, ZNM X2M, Y2M,Z2M, XN2M, YN2M, ZN2M,
&XNH2, YNH2,ZNH2,XH2,YH2,ZH2

COMMON/A7/SR1,Q1,Rcf,PWl,XB1,XGl ,EM]1,GaMAl ,CRI,ALPL,PHI1.FHILP

COMMON/A9/PHI2P0,0X,0Z,X0,20,RHO,ALP,V,4,CRIT,PCRIT

COMMON/AL1l/RAM,PSI1,C2,D6,E24,F120,CX6,DX24,EX.20,RU1,DELT RLP,

SRAl,CPF,DPF,EPF,FPF
CM=DCOS (GAMMA)
SM=DSIN{(GAMMA)
CHP=DCOS (X (1))
SHP=DSIN (X (1)}

XX= X2M
YY=-Y2M*CHP~Z2M“SHP
ZZ=-Y2M*SHP-Z2M*CHP
XH2= XX*CM+ZZ%SM
YH2= YY~C
2H2=-XX*SM~Z2"CM

XX= XN2M
YY=-YN2M*CHP-ZN2M*SHP
ZZ=-YN2M*SHP-ZN2M*CHP
XNH2= XX*CM=~ZZ™*SM
YNH2= YY
INH2=-XX*SM=~ZZ"CM

DEFINE THE PINION SURFACE

TH1=X(2)

PH1=X(3)

SP1=DSIN(-ALP1)
CP1=DCOS(-ALP1)
SM1=DSIN(GAMAD)

CM1=DCOS (GAMAL)
STP=DSIN(TH1+~PHI:
CTP=DCOS(TH1~PHI;
XNM1=-CP1*CTP

YNM1=-CP17*STP

INM1= SP1
AB1=RCF*“STP+SR1I*DSIN(-Ql-PH!1)
AB2=RCF*CTP+SR1*DCOS(~-Q1~PH]}
AXX=-EM17*SM!

AYY= XBI1*CMI

AZZ= EM1CMI




aEsEaNe!
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FIND SF,CRI1T,PF,PPF,PCRIT

PHI1=RAI*(PHI-CPF*PHl**2-DPF*PHl**3-EPF*PH]**4-FPF*PH1**5)
PF=RA1*(1.0-2.0"CPF*PH1-3.0%DPF*PH]**2
S-4 .0 EPF*PH1**3-5.0*FPF*PH1%4)
PPF=~RA1*(2.0"*CPF+6.0"DPF*PH1+12.0*EPF*PH]**2+20, 0*FPF*PH1%"3)
CR1T=1.0/PF

PCR1T=-PPF/PF**3

Tl= XNM1*(AXX-AB1*(SM1-CRI1T))~
&YNM1* (AYY+AB2* (SM1-CRI1T)) +ZNM1* (AZZ+AB1*CM1)
T2=-XNM1*(SM1~CR1T) “SP1*STP+
&YNM1* ((SM1-CRIT)*SP1*CTP-CP1*CM1)+ZNM1*CM1*SP1*STP
SF=T1/T2

XM1= (RCF-SF*SP1)*“CTP+SR1*DCOS (-Ql+PH1)
YM1l= (RCF-SF*SP1)*STP+SR1*DSIN(-Q1+PH1)
ZM1=-SF*CP1

xX= CMI*XM1+-SM1%ZM1-XG1-XB1"“SM1

yY= YM1+EM1

2Z=—SM1*XM1+CM1*ZM1-XB1*CM1
XN1=CM1*XNM1+SM1*ZNM1

YN1=YNM1

ZN1=-SM1¥*XNM1+CM1*ZNM!]

PHI1=PH1/CR1

shl=dsin(phil)

chl=dcos (phil)

XIM= xX

Y1M= CH1®yY+SH1*zZ

Z1M=-SH1*yY~CHl*2Z

XN1M= XNl

YNIM= CHI*YNI+=SH1*ZN1
ZN1M=-SH1*YN1+CH1*ZNI
TT=YNIM*2+ZN1IM**2
SH1P=(-ZNIM*YNH2+YNIM*2NH2) /TT

CHIP=( YNIM*YNH2+«ZNIM*Z4H2) /TT
PHI1P=2.0DOO*DATAN2 (SH1P, (1.0DO0+CH1P})
SH1P=DSIN(PHI1P)

CH1P=DCOS (PKI1P)

XH1= X1M

YH1= CHIP*YIM-SHIP“ZIM

ZHl= SHIP*YIM+CHIP*Z1iM

XNH1= XN1M

YNH1= CHIP*YNIM-SHIP*ZN1M

INHI= SHIP*YNIM+~CHIP*ZNIM

v=-(YH2-YH1)

H=XH2-XH1

F(1)=ZH2-ZH!
F(2)=XNH2-XNH1
F(2)=YNH2%*2+2ZNH2¥%2-TT

R12=TN1/TN2

V12X=0.0-YH2*SM*R12

V12Y= ZHI+R12™ (XH2*SM~ZH2%*CM)
V12Z=-YH1-R12*FYH2"CM
V12X=-(YH2-(C-V)) "SM*R12

v12Y= XH2*SM*R12+(1.0+-R12%CM) "ZH2
V12Z=-YH2*(1.0+R127%CM)+(C-V1*CM*R]2

175




E-5865

(@}

F(3)=XNH2*V12X+YNH2*V12Y+ZNH2*V12Z
RETURN
END

SUBROUTINE CAM IS FOR THE COEFFICIENTS OF GENERATION MOTION

SUBROUTINE CAM

IMPLICIT REAL*8(aA-H,0-2)
COMMON/A11/RAM,PSI11,C2,D6,E24,F120,CX6,DX24,EX120,RC1,DELT,RLP,
SRAl,CPF,DPF,EPF,FPF

T1=1.0+3.0%C2*DTAN(PSI1)
&+ (1.0-RAM) #*3% (RUL**3/15.0%%2=-DELT)/(15.0"DCOS(PSIl})
T2=1.0+(RUL+DELT)/(15.0*DCOS(PSI1i))

CX6=T1/T2

Ti= 6.0%C2*DCOS(PSI1)~(4.0%CX6+3.0%C2"2-1.0) "DSIN(PSI!)
&-6,0%C2% (1.0-RAM) *=2% (RU1¥%3/15.0%*3+DELT/15.0)

T2= DCOS(PSI1)+(RUI-DELT)/15.0

DX24= T1/T72

T1=(10.0%CX6+15.0%C2%"2-1.0)*DCOS(PSIL:
& ~(5.0"DX24+10.0%C2%CX6-10.0%C2)*DSINPSI])
& +(10.0%CX6% (1.0-RAM) 2
&  -15.0%C2%%2%(1.0-RAM)Y*(RU1%%3/15.0"3~DELT/15.0;)
& -—(1.0-RAM) **5%(RU1*%5/15.0%%5~DELT/15.0)
T2=DCOS(PSI1)~(RUI-DELT)/15.0

EX120=T1/T2

DA=CX6-3.0%C27%2

Mg o m

9F=E24/24.0
PF
T
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